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Abstract

Correct estimation of probability of default (PD) for credit loans is an es-

sential task for BridgeFund, an online loan broker operating in the Dutch

Small and Medium-Sized Enterprizes (SME) market . Advanced machine

learning techniques are increasingly being explored to enhance predic-

tion accuracy. Traditional models like logistic regression offer clear inter-

pretability but often lack predictive power compared to more complex al-

gorithms. Ensemble methods and deep learning techniques show poten-

tial for significant performance improvements in PD quantification. This

study compares XGBoost, Random Forest, Feedforward Neural Networks

(FNN) and Tabular Networks (TabNet) against logistic regression to de-

termine their efficacy. The results show that XGBoost outperforms logistic

regression and all other models, in all evaluation metrics for PD scoring.

However, the "black box" nature of XGBoost raises concerns about model

transparency and stakeholder trust, necessitating careful implementation.

Developing techniques to demystify XGBoost’s decision-making process

such as calculation of SHAP values will enhance the model’s interpretabil-

ity and, therefore, applicability.
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1. Introduction

1.1 Scope of BridgeFund

For banks and commercial financial institutes alike, there is a perpetual need

to quantify the potential risk of outstanding and newly given loans. Banks

aim to integrate the bearing risk in loan pricing by setting interest rate pre-

miums while trying to maintain market competitive prices.

BridgeFund is an online financial institution specializing in providing

loans to small and medium-sized enterprises (SMEs) within the Nether-

lands. SMEs inherently face greater financial risks compared to large cor-

porations due to their typically limited capital reserves and fewer available

resources (Cathcart et al., 2020). BridgeFund secures its capital through a

network of investors. The company currently has over 4,500 businesses as

clients, spanning more than 30 sectors. This broad diversification across

various sectors mitigates the risk exposure for BridgeFund, enhancing the

stability and resilience of its loan portfolio. Nevertheless, there is an existen-

tial need for adequately modeling credit risk given the additional risk that

is synonymous with the client pool BridgeFund operates in.

Additionally, BridgeFund aspires to become a data driven FinTech where

its products are processed largely automated. This ambition can strictly be

met with a well incorporated model that estimates economic consequences

of accepting applying businesses adequately. For starters, an estimation

should be made of the probability a loan is defaulted.

1.1.1 Use of PD model

Correctly estimating a Probability of Default (PD) model is not the end of

the road for BridgeFund; in fact, it is merely the beginning of quantifying

its exposed risk and the loss that is accompanied with the defaulted loan.
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Introduction

Expected Loss (EL) quantifies the anticipated average loss a lender, in this

case BridgeFund, can expect over a specific period, considering the likeli-

hood of default and the severity of loss if a default occurs. EL is formulated

as follows:

EL = PD × LGD × EAD (1.1)

where,

LGD =
EAD − Recovery

EAD
(1.2)

and

EAD = Current Balance+(Credit Conversion Factor×Undrawn Commitments)

(1.3)

Here, Loss Given Default is noted as LGD and Exposure At Default is

given as EAD. Recovery is the amount recovered from the defaulted loan,

which may include collateral liquidation, guarantees, and any other recov-

erable amounts.

As can be derived from equation 1.3, EAD is a dynamic value that changes

in the direction that Undrawn Commitments (UC) changes. Current Bal-

ance (CB) is the amount of money that has been drawn or borrowed by the

borrower and is currently owed to BridgeFund. This includes the principal

amount and any accrued interest or fees up to the point of calculation. In

the context of EAD, this represents the portion of the credit line or loan that

is actively being used. Credit Conversion Factor (CCF) is a regulatory mul-

tiplier used to convert off-balance sheet exposures (like undrawn commit-
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ments) into an equivalent on-balance sheet exposure. This factor accounts

for the likelihood that the undrawn portion of a credit line will be drawn

down before or at the time of default. The CCF is expressed as a percentage.

For instance, a CCF of 40% means that 40% of the undrawn commitment is

expected to be utilized if the borrower defaults.

Accurately estimating EL scores and establishing business-level thresh-

olds for these scores enables BridgeFund to implement an automated work-

flow. In this workflow, incoming loan applications can be accepted or de-

clined based on a pre-trained model. This automation enhances Bridge-

Fund’s capacity to process a higher volume of loan applications, reduces

labor costs by decreasing the need for risk analysts, and allows for a more

personalized product for the customer.

Institutionalized banks are required to measure and apply capital charges

in respect of their market risks in addition to their credit risks after the in-

troduction of the first Basel Capital Accord (Basle Committee on Banking

Supervision, 1996). This accord has been extended significantly over the

years to regulate individual and market risk in the banking’s operations.

BridgeFund is not an institutionalized bank and therefore has fewer restric-

tions and obligations regarding their risk strategy and scoring. This allows

BridgeFund to deploy more opaque credit scoring techniques than its com-

petitors.

1.2 Literature Review

The Z-score model is an early multivariate formula used to predict the prob-

ability of bankruptcy among companies. This model analyzes a combina-

tion of five financial ratios, weighted by coefficients derived through dis-

criminant analysis, to classify firms into solvent and insolvent categories.

Altman’s model was one of the first to use quantitative financial metrics to

predict bankruptcy, setting a precedent for the use of statistical and mathe-

matical models in credit risk modeling (CRM). It demonstrated that finan-

cial ratios could be systematically combined to assess credit risk, paving

the way for more sophisticated models. The use of discriminant analysis
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in the Z-score model highlighted the importance of multivariate techniques

in CRM. This approach showed that considering multiple financial indica-

tors simultaneously could provide a more accurate prediction of financial

distress than univariate analysis (Altman, 1968).

Another proposed technique is the application of Merton’s Option Pric-

ing Model (1973) to estimate PD scores. This approach is assessed against

the backdrop of Basel II’s recommendations for risk capital estimation, which

include the standardized approach based on external credit ratings and the

Internal Ratings-Based (IRB) approach relying on internal PD estimates. The

study finds that the PDs estimated using Merton’s model generally increase

as credit ratings decline (from AAA to BBB). However, there is consider-

able overlap in PDs across different rating categories, suggesting that credit

ratings may not accurately reflect the true default risk. The PDs show high

volatility over time, reflecting the influence of equity market fluctuations on

the model’s inputs. This high volatility translates to highly variable capital

requirements under the IRB approach, posing challenges for bank capital

planning. Nevertheless, structural models like Merton’s offer a theoretically

grounded method to estimate PDs by linking a firm’s default risk to its capi-

tal structure and asset volatility. This model captures the dynamic nature of

default risk more effectively than static credit ratings (Jacob & Gupta, 2005).

Logistic regression is used to develop the O-score model, which esti-

mates the probability of a firm defaulting (PD) within a specific period.

The logistic regression approach does not assume linear relationships be-

tween variables and the outcome, making it more flexible and robust for

real-world applications. Ohlson’s model used a set of nine financial ratios

and firm characteristics, weighted by coefficients derived through logistic

regression, to predict bankruptcy. Logistic regression provides probabili-

ties of default, offering a nuanced view of credit risk rather than a binary

classification. This probabilistic approach allows for more flexible decision-

making and risk management. Furthermore, the coefficients in a logistic

regression model are interpretable as log-odds ratios, making it easier to

understand the impact of each predictor on the probability of default. This

interpretability is crucial for explaining the model’s decisions to stakehold-
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ers and regulators (Ohlson, 1980).

The exploration of various methods and applications of credit scoring

highlights the widespread adoption of logistic regression in this domain.

Logistic regression is particularly favored due to its capability to handle bi-

nary outcomes (default/no default) and to provide probabilities of default,

which are crucial for risk assessment and decision-making in lending. It

is emphasized that logistic regression does not necessitate the stringent as-

sumptions required by discriminant analysis, such as multivariate normal-

ity and equal covariance matrices. This flexibility renders logistic regression

more robust and applicable to a broader range of datasets, including those

with non-normal distributions and heteroscedasticity. (Thomas et al, 2002)

In their examination of the importance of interpretability in logistic re-

gression for PD estimation, various studies emphasize that logistic regres-

sion is particularly advantageous due to its clear interpretability. For in-

stance, a study on feature importance measures discusses how logistic re-

gression’s coefficients directly indicate the relevance of each predictor vari-

able to the model’s output, making it straightforward for analysts to un-

derstand and communicate the factors driving default predictions (Saarela,

2021).

1.2.1 Ensemble methods

Traditional models such as logistic regression and decision trees offer trans-

parency but often lack predictive power when dealing with complex, high-

dimensional data. In contrast, ensemble methods like Random Forests pro-

vide superior accuracy but are criticized for their black-box nature, making

it difficult to interpret the results and understand the underlying drivers of

credit risk as noted by Aria et al (2021). Random Forests operate by creat-

ing an ensemble of decision trees, each constructed from a random subset

of the training data through a process called bootstrap sampling. Addition-

ally, at each node of the trees, only a random subset of features is considered

for splitting. This method reduces overfitting and improves generalization

by ensuring that the trees in the forest are de-correlated. The final predic-
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tion of the RF is made by aggregating the predictions of all individual trees,

typically through majority voting for classification tasks or averaging for

regression tasks (Breiman, 2001).

The interpretability of RFs is hampered by their complex ensemble struc-

ture and the way they handle feature interactions. Each RF model can con-

sist of hundreds or thousands of decision trees, each making splits based

on different features. This results in an ensemble with numerous decision

paths, making it nearly impossible to trace how a specific prediction was

derived. Furthermore, RFs model intricate interactions between features,

which, while enhancing predictive performance, obscure the direct rela-

tionships between input variables and the predicted outcome (Hasties et

al, 2009). In credit risk modeling, the need for interpretability is paramount,

not only for regulatory compliance but also for ensuring that credit deci-

sions are transparent and justifiable. The application of methods like inTrees

and NodeHarvest, as proposed by the authors, can significantly enhance the

interpretability of RF models in this domain. By extracting understandable

rules and visualizing feature effects, these methods provide insights into

the decision-making process, helping stakeholders understand the factors

driving credit risk predictions (Aria et al, 2021).

Another widely implemented machine learning technique is XGBoost

and LightGBM. The use of LightGBM and XGBoost represents an advanced

approach to PD estimation, leveraging ensemble learning techniques to im-

prove predictive accuracy. These models build on the principles of Gradi-

ent Boosting Decision Trees (GBDT), enhancing the ability to handle high-

dimensional data and complex interactions among variables. By utilizing

real transaction data from Lending Club, a peer-to-peer lending platform at

the time, the data-driven nature of modern credit risk modeling is exempli-

fied. The algorithms can process vast amounts of data to identify patterns

and predictors of default, providing more nuanced and timely risk assess-

ments compared to traditional methods. The significant reduction in default

rates achieved by the LightGBM model highlights the potential for machine

learning algorithms to enhance the predictive power of PD models. This

aligns with the ongoing shift towards more sophisticated risk modeling
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techniques in the financial industry, driven by the need for more accurate

and reliable credit risk assessments (Ma et al., 2018).

The limitations of existing personal credit risk assessment models, par-

ticularly the weak explanatory power and suboptimal feature selection pro-

cesses, are addressed by proposing a two-fold approach: effective feature

selection using Logistic Regression methods and robust default discrimina-

tion using the XGBoost algorithm. Effective feature selection is crucial in

PD estimation as it determines which borrower characteristics and loan at-

tributes are most predictive of default. By using Logistic Regression and

its variants (AIC and BIC), the most relevant features are identified, en-

suring that the model is both parsimonious and predictive. The XGBoost

algorithm was chosen for its advanced capabilities in handling structured

data and capturing complex interactions between features. This approach

demonstrated that XGBoost outperformed traditional models like Decision

Trees and K-Nearest Neighbors (KNN) in terms of key performance metrics

(Wang et al., 2021).

1.2.2 Deep learning

The promising capability of neural networks was highlighted as they were

compared to traditional linear scoring models, specifically logistic regres-

sion, for predicting credit risk in the credit union context.In the feedforward

neural network (FNN), the input layer consisted of various financial and de-

mographic variables related to the credit applicants. The network included

one or more hidden layers, with the exact architecture (e.g., the number

of hidden layers and the number of neurons per layer) determined based

on experimentation to optimize performance. The output layer provided

a single output, representing the probability of default. The neural net-

work model demonstrated higher predictive accuracy compared to logistic

regression. This was measured using standard metrics such as classification

accuracy, sensitivity, specificity, and the area under the ROC curve (AUC).

The neural network’s ability to capture complex, non-linear relationships

among variables contributed to its superior performance. Nevertheless, it
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was noted that the FNN is also more prone to overfitting, especially when

the dataset is small or imbalanced. Proper regularization techniques and

cross-validation were necessary to mitigate overfitting (Desai et al., 1996).

Yeh and Lien (2009) investigate the default payment behavior of credit

card clients in Taiwan by comparing the predictive accuracy of six data min-

ing techniques. These techniques include discriminant analysis, logistic re-

gression, Bayes classifier, nearest neighbor, artificial neural networks, and

classification trees. The study utilizes a novel "Sorting Smoothing Method"

to estimate the real probability of default, given that the actual probability

is unknown. The study finds significant differences in classification accu-

racy among the six data mining techniques. The area ratio proves to be a

more sensitive measure than error rates for evaluating model performance.

Among the techniques, artificial neural networks (ANNs) demonstrate su-

perior performance with the highest area ratio in the validation set (0.54)

and a low error rate (0.17).

The strong mathematical power provided by DNNs is further empha-

sized through modeling the asset value process of a firm using a stochastic

differential equation, specifically an Ornstein-Uhlenbeck (OU) process with

jumps. This process reflects the random nature of asset value fluctuations

and incorporates sudden changes (jumps), which are realistic in financial

markets. The primary objective is to estimate the probability that the as-

set value falls below a certain threshold (default) within a specified time

frame. The PD estimation problem is formulated as a first-passage-time

problem, focusing on the first time the asset value hits the default thresh-

old. This leads to the derivation of Partial Integro-Differential Equations

(PIDEs) that describe the evolution of the default probability over time.

DNNs are utilized to approximate the solutions to these PIDEs. The ratio-

nale behind using DNNs lies in their ability to approximate complex, high-

dimensional functions without suffering from the curse of dimensionality,

where the complexity and computational cost of analyzing and organizing

data increase exponentially as the number of dimensions (features) grows.

By leveraging the power of DNNs to solve PIDEs derived from complex

asset value processes, the approach provides accurate and efficient PD esti-
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mates. This method not only enhances the predictive capabilities of credit

risk models but also aligns with regulatory requirements, ensuring its prac-

tical applicability in financial institutions (Georgiou et al., 2023).

Although FNN have shown promising accuracy for classification, and

thus PD estimation, it should be noted that neural networks struggle with

the tabular structure of datasets. One of the primary struggles for neural

networks on tabular data is their difficulty in effectively capturing and pri-

oritizing interactions between features. Tree-based models, such as Ran-

dom Forests and Gradient Boosting Machines, naturally handle interactions

between features due to their hierarchical structure, which splits the data

based on feature values in a way that inherently captures these interactions.

The study concludes that while neural networks can perform well on tab-

ular data, they often require extensive hyperparameter tuning and regu-

larization. (Borisov et al, 2021) Furthermore, tabular data often includes

a mix of continuous and categorical variables. Neural networks generally

require extensive preprocessing, such as one-hot encoding, to handle cate-

gorical data. This can lead to high-dimensional feature spaces and increased

computational complexity. In contrast, tree-based models can directly han-

dle categorical variables without extensive preprocessing, maintaining effi-

ciency and often leading to better performance (Grinsztajn & Oyallon, 2022)

In a comparative study, the performance of ensemble methods was an-

alyzed against deep learning techniques for PD estimation. The conclusion

was that ensemble methods, particularly boosting, provide more consis-

tent and higher predictive performance compared to deep neural networks.

Neural networks, while flexible and capable of capturing complex patterns,

are sensitive to hyper-parameter settings and may not always outperform

simpler ensemble methods in small sample scenarios. Ensemble methods

like boosting aggregate predictions from multiple base models, enhancing

the robustness and accuracy of PD estimates. Boosting, in particular, im-

proves classification accuracy by sequentially adjusting weights based on

previous errors, making it effective in handling imbalanced datasets, com-

mon in credit risk modeling. The practical applicability of machine learning

models in credit risk management is underscored by their ability to pro-
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cess large datasets and uncover patterns that traditional statistical methods

might miss. Ensemble learning methods, due to their simplicity and effec-

tiveness, offer a robust alternative to more complex neural networks, espe-

cially in scenarios with limited data (Hamori et al., 2018).

A novel approach to predicting the PD for mid-cap companies using

transformer models focuses on companies with market capitalizations be-

tween USD 1 billion and USD 10 billion, observed over a 30-year period.

The transformer-based model demonstrated superior performance in pre-

dicting default probabilities compared to traditional models, evidenced by

a significant improvement in the Area Under the Curve (AUC) metric. The

model effectively integrated various data sources, including fundamental,

market, and pricing data. This multi-channel approach allowed the model

to utilize a comprehensive set of inputs, enhancing its predictive accuracy.

The core of the model is the transformer encoder, which employs a multi-

head self-attention mechanism. This mechanism allows the model to con-

sider the entire sequence of input data, capturing complex temporal de-

pendencies and relationships. The use of transformer models represents a

cutting-edge advancement in machine learning applied to credit risk mod-

eling. Transformers, originally developed for natural language processing,

have shown exceptional performance in capturing complex patterns in se-

quential data, making them well-suited for PD estimation (Korangi et al.,

2023).

To tackle the shortcomings of neural networks on tabular data, an inno-

vative method was presented at the AAAI Conference on Artificial Intelli-

gence. TabNet, a novel deep learning model specifically designed for tabu-

lar data, combines the strengths of neural networks with the interpretability

of decision trees, offering a new approach to handling structured data com-

monly found in many practical applications, including credit risk modeling.

TabNet uses sequential attention to select the most relevant features at each

decision step, allowing the model to focus on different subsets of features

for different samples. The model employs a sparse selection mechanism,

which reduces redundancy and focuses on the most important features.

This mechanism is inspired by decision trees, where only relevant features

12
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are used for splits. For classification problems in tabular data, TabNet out-

performs XGBoost, classification trees, and other traditional classification

techniques (Arik & Pfister, 2021).

1.3 Formulation of research question

This study aims to challenge the current standard, Logistic Regression, for

estimating probability of default scores. The study will deploy ensemble

techniques – XGBoost and Random Forest – as well as deep learning tech-

niques – FNN and TabNet – to challenge the benchmark method. Based on

this challenge, the following research question can be constructed:

“To what extent can Logistic Regression be outperformed to estimate probabil-

ity of default scores by ensemble methods XGBoost and Random Forest and deep

learning techniques FNN and TabNet in the Dutch SME market”

Based on the theoretic framework supplied in section 1.2, it is hypoth-

esized that both ensemble methods and deep learning techniques will out-

perform Logistic Regression. Moreover, deep learning techniques FNN and

TabNet are expected to outperform all other techniques due to their excel-

lent performance in non-linear, big datasets.
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2. Method

2.1 Logistic Regression

The use of logistic regression in banking has been well documented. Logis-

tic regression has proven accurate for a great volume of datasets to estimate

PD scores. In logistic regression, the relationship between the predictor vari-

ables and the probability of an event occurrence is estimated. In this study,

the occurring event is a loan going into default. A logit function is used to

estimate binary outcomes.

logit(P) = log
(

P
1 − P

)
= β0 + β1X1 + β2X2 + · · ·+ βnXn (2.1)

where:

• P is the probability of the event occurring (e.g., loan default),

• β0 is the intercept,

• β1, β2, . . . , βn are the coefficients for the predictor variables X1, X2, . . . , Xn.

Logistic regression is a form of supervised learning, meaning the labels

are known when training the model. The coefficients are estimated using

Maximum Likelihood Estimation (MLE) to maximize the likelihood of ob-

serving the given sample. Once the model is trained, it can be used to make

predictions on new data. For any new input, the model calculates the linear

combination of the input features using the learned coefficients and then

applies the logistic function to predict the probability of the outcome.

The coefficients (β) represent the change in the log odds of the outcome

for a one-unit increase in the corresponding input variable. In simpler terms,
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2.2 Random Forest

they indicate how each feature affects the probability of the outcome.

Logistic regression models are well-established and accepted by regu-

lators. Regulatory frameworks often require models that can be easily ex-

plained and validated, criteria that logistic regression meets well. Logistic

Regression will serve as a performance benchmark for PD estimation due to

its simplicity and its proven sufficiency.

2.2 Random Forest

Random Forests are found to be very effective, particularly for classification

and regression tasks. A Random Forest is an ensemble learning method that

constructs multiple decision trees during training and merges their results

to enhance predictive accuracy and control overfitting. A decision tree is

a flowchart-like structure where each internal node represents a test on an

attribute, each branch represents an outcome of the test, and each leaf node

represents a class label (decision taken after computing all attributes). The

core idea is to create a ’forest’ of decision trees, each trained on a bootstrap

sample of the data—a technique known as bagging (bootstrap aggregating).

In each tree, a random subset of features is selected at each split, ensuring

that the trees are decorrelated. This randomness in feature selection and

data sampling reduces the variance of the model, making it more robust

to overfitting compared to single decision trees, which can become highly

sensitive to the training data. (Breiman, 2001)

The process of building a Random Forest begins with the generation of

multiple bootstrap samples from the original dataset. The construction of

each tree involves selecting a random subset of features at each split point,

a method that prevents the trees from being overly similar to each other.

This randomness introduces diversity among the trees, enhancing the over-

all generalization ability of the model. Once the forest of trees is constructed,

predictions are made by aggregating the results of individual trees. For clas-

sification tasks, this is typically done through majority voting, where the

class that receives the most votes from all the trees is selected as the final

prediction.

15



Method

Figure 2.1: Random Forest Architecture (Rudd, 2020)

The strength of Random Forests lies in their ability to handle large datasets

with higher dimensionality and their robustness to noise and outliers. They

are particularly effective when the relationship between the features and the

target variable is complex and nonlinear. (Louppe, 2014)

2.3 XGBoost

XGBoost, short for eXtreme Gradient Boosting, is a highly sophisticated ma-

chine learning algorithm that converts weak learners into strong ones, a

fundamental concept in ensemble learning.
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2.3 XGBoost

Figure 2.2: XGBoost Architecture (Wang et al, 2020)

XGBoost constructs an ensemble of decision trees in a sequential manner

(see figure 2.2). Each new tree in the sequence is built to model and correct

the residuals (errors) of the sum of the previously built trees.

The process starts with an instance (data point) that needs to be pre-

dicted. Initially, a simple model (which can be a single leaf or a base pre-

diction like the mean of the target variable) provides a preliminary predic-

tion. This initial prediction is used to calculate the residuals. The residuals

represent the difference between the actual target values and the predicted

values from the initial model. These residuals serve as the new targets for

the subsequent tree:

Tree-1: The first decision tree is trained to predict the residuals from the

initial model. The results (Result_1) are then summed to improve the initial

predictions.

Tree-2: The second tree (Tree-2) is built to predict the new residuals, which

are the differences between the actual target values and the updated predic-

tions from Tree-1. The results (Result_2) are added to the sum of previous

results.

Tree-3: This process continues iteratively, with each new tree predicting the

residuals from the previous step. Tree-3, for instance, predicts the residu-

als after accounting for the contributions of Tree-1 and Tree-2. The results
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(Result_3) are then added to the cumulative sum.

The objective function in XGBoost includes both a loss function and a

regularization term. For each tree added to the model, the goal is to mini-

mize the following objective:

Objective =
n

∑
i=1

ℓ(yi, ŷ(t)i ) +
t

∑
k=1

Ω( fk) (2.2)

Where:

• ℓ is the loss function (e.g., mean squared error for regression tasks).

• yi is the actual target.

• ŷ(t)i is the predicted target after t trees.

• Ω is the regularization term to prevent overfitting, which includes the

complexity of each tree fk.

The final result is obtained by summing the predictions of all individual

trees. Each tree contributes to refining the model’s accuracy by focusing on

the errors of the previous ensemble. (Ramraj et al, 2016)

2.3.1 Feedforward Neural Network

Feedforward Neural Networks (FNNs) have been a cornerstone in the de-

velopment of neural network models for various tasks, including classifica-

tion and regression. An FNN is composed of multiple layers of nodes (neu-

rons), where each layer is fully connected to the next. The basic building

block of an FNN is the perceptron, a simple model of a biological neuron

that receives inputs, applies a weighted sum, adds a bias, and passes the

result through an activation function (Rosenblatt, 1958).

The construction of an FNN begins with an input layer that receives the

raw data. This layer is followed by one or more hidden layers, which are

responsible for capturing the complex patterns in the data. Each neuron in

a hidden layer receives inputs from all neurons in the previous layer, pro-
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2.3 XGBoost

cesses them using an activation function (ReLU, sigmoid, tanh), and sends

the output to all neurons in the next layer. The final layer is the output layer,

which provides the model’s prediction. In a classification task, the output

layer typically uses a softmax activation function to generate probabilities

for each class (Goodfellow, Bengio, & Courville, 2016).

Figure 2.3: Feedforward Neural Network Architecture (An, 2021

Training an FNN involves adjusting the weights and biases of the neu-

rons to minimize a loss function, which quantifies the difference between

the predicted and actual outputs. For binary classification tasks, the binary

cross-entropy loss function is commonly used. Binary cross-entropy mea-

sures the performance of a classification model whose output is a proba-

bility value between 0 and 1, as is the case in PD scoring. The function is

defined as:

Binary Cross-Entropy Loss = − 1
N

N

∑
i=1

[yi log(pi) + (1 − yi) log(1 − pi)]

where yi is the actual label, and pi is the predicted probability. This process

is done using backpropagation, an algorithm that computes the gradient

of the loss function with respect to each weight by applying the chain rule

of calculus. The gradients are then used to update the weights through an

optimization algorithm, such as stochastic gradient descent (SGD) or Adam

(Kingma & Ba, 2014).
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In more mathemetical terms, the FNN architecture can be described as

follows. Given an input data vector x ∈ Rp and a categorical variable

y ∈ {0, 1}, the goal is to predict the output ŷ = P(Y = 1 | X = x). This

prediction process involves multiple layers of neurons, indexed from k = 1

to l. Layers where k < l are referred to as hidden layers, and the layer l

is the output layer. Each of these layers includes a bias term bk ∈ R and

multiple units, each represented by an activation hk
i ∈ R.

The neurons in each layer k are connected to the neurons in the previous

layer, k − 1, via a set of weights wk
ij ∈ R. These weights define how much

influence each neuron from the previous layer has on each neuron in the

current layer. The initial input data x is weighted by these weights wk
ij as

it passes through the network, and each neuron i in every layer k applies

these weights to its inputs.

In the final output layer, there is an additional bias term bl+1 ∈ R, and

the neurons in this layer are connected to the previous layer by weights

wl+1
j ∈ R. Each neuron’s response is determined by an activation function

sk
i (·), which processes the weighted sum of inputs. This activation function

generates an output that serves as the input for the next layer. This pro-

cess repeats iteratively through all layers, continuously adjusting until the

network’s predictions converge to an optimal value, either local or global.

This way, the network learns to accurately map the input data to the desired

output. (Sariev & Germano, 2020)

2.3.2 Tabular Network

Feedforward Neural Networks often face difficulties in identifying interac-

tions among features in tabular data. To address this issue, a new train-

ing methodology for neural networks tailored for tabular data, known as

Tabular Networks (TabNet) is developed. This architecture is specifically

designed to effectively capture the relationships among tabular features.

TabNet’s architecture is mainly composed of two key components: the

Attentive Transformer (AT) and the Feature Transformer (FT). The AT is

responsible for selecting the most pertinent features for further processing
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stages, while the FT transforms these selected features into more informa-

tive representations.

The AT plays a critical role in feature selection at each stage, utilizing

sparsemax activation to consider prior scales. Prior scales manage the fre-

quency of feature selection by the model, influenced by their usage in earlier

stages. The input to the prior scales comes from the previous AT, providing

information on the features’ usage history. Similar to the FT, the AT can be

implemented as a TensorFlow model and integrated into a broader neural

network framework.

An FT consists of a series of feature blocks applied sequentially. Each FT

includes two shared blocks (with weights reused across steps) and two step-

specific blocks. Using shared weights reduces the number of model param-

eters, thereby enhancing generalization capabilities. Prior scales regulate

the frequency of feature selection by the model. These scales are calculated

using the activations from the preceding AT and incorporate a relaxation

factor (γ).

P[i] =
i

∏
j=1

(γ − M[j]) (2.3)

where:

• P[i] is the resulting importance of feature i,

• γ is the relaxation factor, and

• M[j] represents previous sparsemax activations at step j.

Equation 2.3 explains the update mechanism for prior scales. The update

involves a product over all preceding steps up to the current step i. Con-

ceptually, if a feature has been heavily utilized in earlier steps, the model

shifts focus to the remaining features to avoid overfitting. For instance, with

γ = 1, features with high multiplicative activations (e.g., 0.8) will result in

small prior scales (1 − 0.8 = 0.2). Thus, small prior scales reduce the likeli-
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hood of such features being selected in the current step.

Hence, the initial input features are processed through the Feature Trans-

former to generate initial feature representations. The output from the Fea-

ture Transformer then serves as input to the Attentive Transformer, which

selects a subset of features for the next step. This process repeats for the

specified number of steps. The model makes final predictions using out-

puts from the Feature Transformer at each decision step. By aggregating

attention masks at each step, one can identify which features were used in

making predictions, thus determining both local and global feature impor-

tance.

Figure 2.4: TabNet Architecture (Tocilins-Ruberts, 2022)

Sequential attention allows TabNet to dynamically adjust the importance

of features at each step, leading to better utilization of the data. For the prob-

ability of default estimation, this means the model can more effectively fo-

cus on the most indicative features of default risk. By processing features se-

quentially and re-weighting them at each step, TabNet can capture complex,

non-linear relationships that might be missed by simpler models. This ca-

pability is crucial for accurately estimating the probability of default, which

often involves intricate interactions between financial indicators. The atten-

tion mechanism also enhances interpretability by providing insights into

which features are most influential at each decision step. This transparency

is valuable for understanding the factors driving the model’s predictions

and for building trust in its estimates of default probability. (Arik et al.,

2022)
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3. Experimental evaluation

The objective of this study is to challenge logistic regression for PD mod-

eling with deep learning techniques and ensemble methods. Specifically,

XGBoost, Random Forest, a fully connected feedforward network (FNN)

and TabNet will be deployed to challenge the logistic regression, which has

become the standard to estimate PD scores for most banks. A set of explana-

tory variables are fitted on the dependent variable ‘label’ where expression

of 1 indicates a default and expression of 0 indicates a non-default.

Performance of each model was measured using the Area Under Curve

(AUC), Area Under Curve Precision Recall (AUC-PR), F-score and Brier

scores

3.1 Experimental setup

The data used in this study was obtained from loan management system

VTiger. VTiger is a Customer Relationship Management (CRM) platform

that integrates various functionalities for managing customer data, includ-

ing loan management. The raw data is migrated from VTiger to AWS S3.

Here, the data is stored in the cloud.

To extract raw data from AWS S3 to DataBricks, the DataBricks inte-

grated API and built-in data import features were utilized. The API allowed

for programmatically retrieval of data directly from the system, ensuring

that the most recent and accurate information was obtained. This data in-

cluded customer information, loan applications, loan statuses, repayment

schedules, and transactional data from applicants. Feature engineering was

performed on this data to extract relevant features for the models.

Databricks was utilized extensively in this study to streamline the com-

putation of model predictions and the performance of statistical tests in a
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shared environment. Databricks provides a collaborative platform that inte-

grates seamlessly with Apache Spark, allowing for efficient data processing

and version control.

For the predictive modeling, both TensorFlow and PyTorch frameworks

were employed to build and train neural networks. TensorFlow was used

for the initial implementation due to its ease of use and comprehensive

documentation, while PyTorch was utilized for its dynamic computational

graph and flexibility in model customization. Using TensorFlow, a FNN to

predict loan default probabilities was constructed. The model architecture

included multiple hidden layers with ReLU activation functions, dropout

layers for regularization, batch normalization and a final sigmoid activation

for binary classification.

The models were trained on the accepted loans dataset. This is because

only for those observations there were available labels. It should be noted

that training solely on the accepted loans introduces a selection bias since

all loans were deemed low-risk by the risk analyst during the application

process.

The best fitting hyperparameters were determined through cross-validation,

optimizing for the highest precision.

3.1.1 Weight of Evidence Encoding

The deployed classification methods necessitate numerical input. Therefore,

categorical data will be encoded using Weight of Evidence (WOE). WOE

encoding transforms categorical data based on the distribution of a binary

target variable, in this scenario ‘label’, within each category.

One of the primary reasons WOE is widely used in credit risk modeling

is that it enhances the model’s explainability, which is crucial for regulatory

compliance. Financial institutions are required to provide transparent and

justifiable risk models. WOE encoding helps in this by creating a monotonic

relationship between predictor variables and the target variable, making it

easier to interpret and explain the model’s decisions. (Lund, 2016)
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It is particularly useful for creating features that are linearly separable

and thus more compliant to the linear transformations within neural net-

works. WOE is calculated as:

WOEi = log

 NGood
i

NGood

NBad
i

NBad

 (3.1)

where:

NGood
i = Number of good observations in group i

NGood = Total number of good observations

NBad
i = Number of bad observations in group i

NBad = Total number of bad observations

3.1.2 Z-Score normalization

In credit risk modeling, Z-score normalization is particularly beneficial be-

cause it standardizes financial metrics and personal information features,

making the model less susceptible to the distorting effects of outliers. Credit

risk models often deal with data that can have extreme values due to atyp-

ical financial behaviors or data entry errors. By transforming the data to

have a mean of zero and a standard deviation of one, Z-score normalization

reduces the influence of these extreme values. This standardization process

helps to mitigate the impact of outliers, leading to more reliable credit risk

predictions. (Hand & Henley, 1997)

In neural network training, Z-score normalization is equally crucial. Neu-

ral networks, particularly deep learning models, are sensitive to the scale of

input data. Disparities in feature scales can lead to inefficient training and

suboptimal model performance.( LeCun et al. , 1998)
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The normalization of input data ensures that the gradients during train-

ing are more balanced, thereby facilitating faster convergence of the gradi-

ent descent optimization process. This balancing act is crucial for avoiding

problems such as exploding or vanishing gradients, which can severely im-

pede the training process of deep neural networks. Furthermore, standard-

ized data enables the activation functions„ in this studt ReLU, to operate

more effectively by ensuring the input values fall within an optimal range,

preventing issues like saturation that can occur with unnormalized data.

The process of Z-score normalization involves calculating the mean and

standard deviation of the dataset, then transforming each data point using

the formula:

z =
x − µ

σ
(3.2)

where:

z = The z-score (normalized value)

x = The raw score (original value)

µ = The mean of the population

σ = The standard deviation of the population

3.2 Evaluation Metrics

3.2.1 AUC

AUC is an essential metric for classification models. Calculating AUC re-

quires the predicted scores column and the actual label column, the so-

called ground truth. AUC can be derived by calculating the True Positive

Rate (TPR) and False Positive Rate (FPR). The calculation of AUC can be
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written as follows:

AUC =
TPR
FPR

(3.3)

where

TPR (Sensitivity) =
TP

TP + FN
(3.4)

and

FPR (Specificity) =
FP

FP + TN
(3.5)

As can be derived from equation (3.3), a high AUC indicates a higher

discriminatory capability of the model (A combination of high TPR and low

FPR will result in a high AUC)

3.2.2 F1 Score

Another metric to estimate the performance of classification models is the

F1 score. F1 consists of two main components:

Precision =
TP

TP + FP
(3.6)

and
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Recall =
TP

TP + FN
(3.7)

The F1 score is the harmonic mean of these two metrics. The harmonic

mean is used instead of the arithmetic mean because it punishes extreme

values more, ensuring that a high F1 score can only be achieved if both

precision and recall are reasonably high. The formula for the F1 score can

be given as:

F1 Score = 2 ×
(

Precision × Recall
Precision + Recall

)
(3.8)

There is an inherent trade-off between precision and recall. Increasing

precision typically reduces recall and vice versa. The F1 score provides a

single metric that captures this trade-off.

3.2.3 AUC-PR

Another metric to estimate the performance of classification models is the

Area Under the Precision-Recall Curve (AUC-PR). The AUC-PR evaluates

the trade-off between precision and recall across different threshold settings.

The precision-recall curve plots precision (y-axis) against recall (x-axis)

at various threshold levels. Unlike the ROC curve, which can be overly op-

timistic for imbalanced datasets, the precision-recall curve provides a more

informative picture when dealing with skewed classes.

The formula for AUC-PR is given by:

AUCPR =
n−1

∑
i=1

(Ri+1 − Ri) ·
Pi+1 + Pi

2
(3.9)
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where:

• Pi is the precision at the i-th threshold,

• Ri is the recall at the i-th threshold,

• n is the number of precision-recall points.

In formula 3.9, the precision-recall pairs (Pi, Ri) are sorted by recall val-

ues. The AUC-PR is approximated using the trapezoidal rule, which sums

up the areas of the trapezoids formed by consecutive points.

Higher AUC-PR values indicate better model performance, reflecting a

higher precision and recall trade-off. The AUC-PR metric is particularly

useful for evaluating models in contexts where the positive class is of greater

interest and more critical than the negative class, as is the case in this study.

3.2.4 Brier Score

The Brier score is another critical metric for evaluating the performance

of probabilistic predictions in classification models. It assesses the mean

squared difference between the predicted probability and the actual out-

come, providing insights into both the accuracy and calibration of the model’s

predictions. The score ranges from 0 to 1, with 0 indicating perfect predic-

tions and 1 representing the worst possible accuracy. This renders the Brier

score especially valuable in PD estimation, where the output is probabilistic

rather than binary.

The Brier score is mathematically defined as follows:

Brier Score =
1
N

N

∑
i=1

( fi − oi)
2 (3.10)

where

• N is the number of forecasts,

• fi is the forecast probability for the i-th instance,
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• oi is the actual outcome for the i-th instance (1 if the event occurred, 0

if it did not).

3.3 Evaluation of Data

3.3.1 Dependent variable

The variable to be estimated is noted as ‘label’. The variable indicates a state

of default for the loan. The accuracy of PD models significantly hinges on

the precise definition of what constitutes a "default." An incorrect or am-

biguous definition can lead to flawed risk assessments, inappropriate cap-

ital allocation, and ultimately, financial instability for BridgeFund. There-

fore, a clear and consistent definition of default is paramount. A well-

defined default criterion is essential for the robustness of statistical models

used in PD estimation, ensuring that the predicted probabilities align with

the actual risk of default. (Bellotti & Crook, 2009)

In the context of defining defaults for PD estimation, a common thresh-

old used in the financial industry is the number of days past due. (Basel,

2006) (EBA, 2019) BridgeFund has set an internal business rule stating that

loans with a days past due over 60 days is considered a defaulted loan.

Therefore, this rule will be maintained in this study.

Depicted in Figure 3.1, is the vast class imbalance in the dependent vari-

able. There is a clear majority in the non-default class, as can be expected.

Figure 3.1: Class imbalance in the dependent variable

To address this issue, cross-validation, particularly stratified k-fold cross-
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validation, is applied when training the models. Cross-validation mitigates

the risk of biased performance estimates by ensuring that each fold used

for training and validation maintains the original class distribution, thereby

providing a balanced evaluation environment (Kohavi, 1995). This method

helps in understanding of model performance across different subsets of

the data, including the minority class, which might otherwise be underrep-

resented in a single train-test split (Wong & Yeh, 2020). Furthermore, cross-

validation is employed here to facilitate robust hyperparameter tuning, as

the model is tested on multiple data splits, enhancing its ability to generalize

well on unseen data (Kohavi, 1995). By averaging evaluation metrics across

folds, cross-validation offers a reliable measure of the model’s capability to

handle imbalanced datasets, thus ensuring a more accurate and fair assess-

ment of its performance (Japkowicz & Stephen, 2002). A deliberate choice

is made when opting not to correct for the aforementioned class imbalance.

The implementation of techniques such as random undersampling, random

oversampling, and SMOTE in PD estimation lead to poorly calibrated mod-

els, with a significant overestimation of the likelihood of defaults for minor-

ity classes. These resampling methods do not enhance the area under the

ROC curve compared to models that do not address class imbalance (see

Appendix for proof). This indicates that while resampling techniques aim

to rectify class imbalance, they may not necessarily contribute to more ac-

curate PD predictions.(Van den Goorbergh, 2022)
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3.3.2 Missing data

Figure 3.2: Missing values

Figure 3.2 shows the sum of missing values per column. The four features

on the right side of the graph show missing entry for all observations, there-

fore these features are simply removed from the dataset. Some other fea-

tures show some cases of missing values. The proportion of missings in

these features are negligible and therefore, are simply replaced with their

respective median for numerical features and respective mode for categori-

cal variables.

3.3.3 Multivariate analysis

The cross-correlation matrix visualized in figure 3.3 provides a detailed view

of the relationships between multiple features used in the study. This anal-

ysis aims to identify significant correlations, potential multicollinearity is-

sues, and insights that can be drawn from the data.
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Figure 3.3: Correlation Matrix

Multicollinearity, a pair of extremely highly correlated explanatory vari-

ables, can distort the results of a regression analysis, leading to unreliable

and unstable estimates of regression coefficients. In classification models,

multicollinearity can decrease the precision of the estimated coefficients,

making it difficult to assess the relative importance of each predictor. When

multicollinearity is present, the standard errors of the coefficients tend to

increase. This means that even if the overall model fits well, individual pre-

dictors might appear insignificant, leading to potential misinterpretation of

the model. Additionally, multicollinearity can make the model more sen-

sitive to changes in the model or the data, which can reduce the model’s

predictive performance.

To address multicollinearity, one feature was systemetically removed

from each pair of highly correlated features. The criterion for removal was

a correlation coefficient greater than 0.8. The goal was to retain as much

unique information as possible while minimizing redundancy and improv-

ing the model’s performance. The refined correlation matrix is depicted in

figure 3.4.
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Figure 3.4: Refined Correlation Matrix

3.3.4 Univariate analysis

The array of boxplots provided in Appendix A gives a visual summary of

each feature’s distribution, highlighting central tendency, spread, and out-

liers. These outliers are corrected for using Z-Score normalization. In the

boxplot for label it can be visually assessed there is a class imbalance, as the

label = 1 are depicted as outliuers.

3.4 Experimental results

In this section, a comparison of performance of five different classification

models used to estimate the PD scores is presented. The models evaluated

include Logistic Regression, Random Forest, XGBoost, Feedforward Neural

Network (FNN), and TabNet. The performance of these models is assessed

using four key metrics: Area Under the Curve (AUC), F1 Score, Area Under

Curve Precision Recall (AUC-PR) and Brier Score. The performance will be

visually assessed using ROC, PR curves, Kernel Density Estimation (KDE)

plots and calibration plots. The statistical results are summarized in Table

3.1.
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3.4.1 Probability distributions

The distribution of PD scores exhibits a notable shape that offers insights

into the risk assessment process of loan applications. The PD scores are

distinctly peaked between the range of 0.05 to 0.10, suggesting that the ma-

jority of loans are perceived to carry a low risk of default. This peak aligns

with the underlying class imbalance present in the dataset. Such a distri-

bution indicates a conservative lending strategy where loans are primarily

approved for applicants who are considered low-risk by the risk analysts.

The tail of the distribution, which extends from around 0.3 to 1, reflects

a smaller subset of loans that are perceived to be high-risk. This tail is rel-

atively sparse, which is consistent with the class imbalance and further un-

derscores the predominance of low-risk loans within the accepted pool. The

presence of this tail, albeit thin, is crucial as it highlights that the risk model

is capable of identifying loans with a high likelihood of default.

The nature of this distribution can be attributed to the preliminary man-

ual approval process by risk analysts. Before any loan is included in the

dataset and subsequently scored by the model, it has already passed an ini-

tial human evaluation. This manual screening process likely filters out the

riskiest loan applications, resulting in a dataset where most loans are inher-

ently low-risk. Therefore, the model’s PD scores are skewed towards the

lower end.
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Figure 3.5: Distribution Logistic
Regression Figure 3.6: Distribution XGBoost

Figure 3.7: Distribution Random
Forest Figure 3.8: Distribution FNN

Figure 3.9: Distribution TabNet

The histogram of predicted PDs from the Random Forest model, as shown

in figure 3.7, exhibits a distribution with some noticeable characteristics, in-

cluding random local peaks. This pattern can be attributed to the inherent

properties of the Random Forest algorithm and the nature of the data it pro-

cesses.Random Forest, being an ensemble learning method, constructs mul-

tiple decision trees and aggregates their predictions to form a final output.

Each tree is trained on a different subset of the data, selected through boot-

strapping, and considers a random subset of features for splitting nodes.

This randomness introduces variability in the model’s predictions, leading
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to the observed local peaks in the distribution of PD scores. These peaks

represent areas where individual trees in the forest are likely to agree on

certain predictions more strongly due to the specific splits and data subsets

they were trained on.

The differences in the distributions of PD scores among various models

stem from their distinct mechanisms of learning and prediction. Logistic

regression, being a linear model, tends to produce a smoother probability

distribution as it fits a single linear decision boundary across the feature

space. XGBoost, which is a gradient boosting algorithm, builds trees se-

quentially to correct the errors of the previous ones, resulting in more re-

fined predictions. FNN and TabNet display more continuous distributions

of PD scores. They learn through backpropagation and gradient descent,

which optimizes the entire network’s weights simultaneously, contributing

to the overall smoothness of their prediction distributions.

3.4.2 Kernel density plots

The Kernel Density Estimate (KDE) plot of predicted probabilities provides

an approximation of the distribution of the predicted PD scores for the two

classes: non-defaulted loans and defaulted loans.
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Figure 3.10: KDE for Logistic
Regression Figure 3.11: KDE for XGBoost

Figure 3.12: KDE for Random
Forest Figure 3.13: KDE for FNN

Figure 3.14: KDE for TabNet

The KDE is a non-parametric way to estimate the probability density

function of a variable. It works by placing a Gaussian kernel on each data

point and summing these kernels to produce a smooth curve. The band-

width of the kernel controls the smoothness of the KDE: a smaller band-
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width leads to a more sensitive, less smooth estimate, while a larger band-

width results in a smoother estimate. (Gan & Bailis , 2017)

The KDE plots show a prominent peak for non-defaulted loans (Label =

0) around a predicted probability close to 0. This indicates that the models

frequently assign very low probabilities of default to non-defaulted loans.

For defaulted loans (Label = 1), the density is more spread out with a peak

around a predicted probability of approximately 0.1 to 0.2. This suggests

that the model is more conservative and assigns a range of probabilities

rather than clustering at low values.

The area under the orange curve is larger, indicating the higher fre-

quency of non-defaulted loans in the dataset. There is a region where the

densities of the two classes overlap, particularly around the predicted prob-

ability of 0.1 to 0.3. This overlap indicates the model’s uncertainty in dis-

tinguishing between defaulted and non-defaulted loans within this proba-

bility range. The overlap suggests that some defaulted loans receive low

predicted probabilities (leading to false negatives), and some non-defaulted

loans receive higher predicted probabilities (leading to false positives).

3.4.3 ROC curves

The ROC curve is a graphical representation of the model’s performance

across various threshold settings. It plots the TPR against the FPR at differ-

ent thresholds, illustrating the trade-off between sensitivity and specificity.

XGBoost exhibits the best performance with the highest AUC of 0.83, effec-

tively distinguishing between defaults and non-defaults. FNN and Logistic

Regression have comparable performances with AUCs of 0.79, capturing

substantial patterns but missing some complexities. TabNet and Random

Forest, both with AUCs of 0.77, show good performance but with more vari-

ability and slightly lower discriminative power.
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Figure 3.15: ROC Curve for Lo-
gistic Regression

Figure 3.16: ROC Curve for XG-
Boost

Figure 3.17: ROC Curve for Ran-
dom Forest Figure 3.18: ROC Curve for FNN

Figure 3.19: ROC Curve for Tab-
Net

3.4.4 Precision-Recall Curves

Due to the class imbalance present in the dependent variable, looking at

AUC curves alone would give a biased estimate. AUC measures the over-
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all ability of the model to discriminate between classes. However, it does

not account for the skewed distribution of classes. In a highly imbalanced

dataset, AUC can present an overly optimistic view of model performance

because it treats all FPR and TPR equally, regardless of the actual class pro-

portions. For instance, a model predicting strictly non-defaults in a dataset

with 95% non-defaults, an accuracy of 95% would still be measured, gravely

overestimating the model’s performance. (Buda et al, 2018)

Hence, an investigation will be made of the Precison-Recall (PR) curves.

Unlike ROC curves, PR curves ignore true negatives and provide a clearer

picture of the classifier’s performance on the positive class. This makes PR

curves more appropriate for highly imbalanced datasets where the number

of true negatives overwhelms the number of true positives and false posi-

tives. (Grau et al, 2015)

Based on the analysis of the PR curves, the XGBoost model (Figure 3.23)

demonstrates the best performance, with the highest average precision of

0.48. This model maintains a higher precision across a broader range of re-

call values compared to the other models evaluated. In contrast, the FNN

(Figure 3.20) and Tabular Network (Figure 3.21) show similar and lower

performance, with average precisions of 0.34 and 0.31, respectively. The

Logistic Regression model (Figure 3.22) performs slightly better with an av-

erage precision of 0.36, maintaining relatively higher precision over a longer

range of recall values. The Random Forest model (Figure 3.24), with an av-

erage precision of 0.39, performs better than the FNN Tabular Network, and

Logistic Regression but falls short of XGBoost.

41



Experimental evaluation

Figure 3.20: PR Curve Feedfor-
ward Neural Network

Figure 3.21: PR Curve Tabular
Network

Figure 3.22: PR Curve Logistic
Regression Figure 3.23: PR Curve XGBoost

Figure 3.24: PR Curve Random
Forest

3.4.5 Calibration slopes

Calibration refers to the agreement between predicted probabilities and ac-

tual outcomes. A well-calibrated model means that when it predicts a 20%
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probability of an event, that event occurs about 20% of the time. For all mod-

els, the calibration slopes indicate that the models are well-calibrated for

predicted probabilities up to around 0.50. Beyond 0.50, the models exhibit

overconfidence and underconfidence, meaning that their predicted proba-

bilities deviate from the actual observed frequencies. Overconfidence oc-

curs when the model’s predicted probabilities are higher than the observed

frequencies, while underconfidence occurs when the predicted probabilities

are lower.
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Figure 3.25: Calibration Plot for
Logistic Regression

Figure 3.26: Calibration Plot for
XGBoost

Figure 3.27: Calibration Plot for
Random Forest

Figure 3.28: Calibration Plot for
FNN

Figure 3.29: Calibration Plot for
TabNet

The primary reason for the models’ poor calibration beyond 0.50 is the

scarcity of observations with high PD scores. Since most loans are deemed

low-risk and receive low PD scores, there is insufficient data to reliably es-

timate probabilities in the higher range. This lack of high-PD observations
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leads to inaccurate probability estimates, resulting in overconfidence and

underconfidence.

Still, there is a notably difference in how poorly-calibrated the models

are from the 0.5 point onwards. Logistic Regression is a linear model, and

its probability predictions are based on a sigmoid function applied to a lin-

ear combination of features. This simplicity ensures good calibration in the

lower probability ranges but can struggle with more complex relationships

at higher probabilities, leading to underconfident predictions. In Random

Forests, each tree is trained on a random subset of the data, leading to vari-

ability in predictions. This ensemble approach results in good average per-

formance but also introduces randomness, which may cause the erratic be-

havior seen in the calibration curve at higher probabilities. Nevertheless,

based on the depicted plots, it can be concluded that Random Forest is the

best calibrated model.

For TabNet, the curve shows a steep rise and then a sharp decline, in-

dicating significant overconfidence followed by underconfidence at higher

predicted probabilities. TabNet’s attention mechanism might emphasize

certain features disproportionately in high-risk cases, resulting in overcon-

fident predictions. When these features do not generalize well, the model’s

confidence drops sharply, leading to the observed decline.

Poor calibration at higher PD scores affects the model’s generalizabil-

ity, particularly in BridgeFund’s business context, where accurate high-risk

predictions are crucial for business longevity. Models that become over-

confident or underconfident at higher PDs may not perform reliably when

applied to new data, particularly if that data includes more high-risk obser-

vations.

3.4.6 Statistical results

The results in Table 1 provide insights into the models’ ability to distinguish

between labels (AUC and AUC-PR), their balance between precision and re-

call (F1-score), and the accuracy of their predicted probabilities (Brier score).

Logistic Regression demonstrates a commendable performance with an
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Method AUC F1 Score Brier Score Precision
Logistic Regression 0.79 0.27 0.11 0.36
Random Forest 0.77 0.16 0.11 0.39
XGBoost 0.83 0.31 0.10 0.48
FNN 0.79 0.27 0.10 0.34
TabNet 0.77 0.27 0.12 0.31

Table 3.1: Performance Metrics of Different Methods

AUC of 0.79, indicating a good capability to distinguish between defaulted

and non-defaulted loans. Its F1-score is 0.27, which, although not high, sug-

gests a reasonable balance between precision and recall. The Brier score of

0.11 indicates that the probability predictions are fairly accurate. Logistic

Regression’s performance is reliable and consistent, reflecting its strength

in handling linear relationships within the data.

Random Forest shows slightly weaker performance with an AUC of 0.77,

implying a somewhat reduced ability to differentiate between the two de-

fault states compared to Logistic Regression and FNN. The F1-score is no-

tably lower at 0.16, indicating challenges in achieving a balanced trade-off

between precision and recall, possibly due to overfitting issues inherent in

its ensemble nature. However, the Brier score of 0.11 is similar to that of

Logistic Regression, suggesting reasonable accuracy in its probability pre-

dictions.

XGBoost emerges as the best-performing model across all metrics. It

has the highest AUC of 0.83, showcasing its superior ability to distinguish

between defaulted and non-defaulted loans. The F1-score of 0.31 is also the

highest, indicating the best balance between precision and recall among the

models tested. Additionally, the Brier score of 0.10, the lowest among all

models, signifies the most accurate probability predictions.

The FNN exhibits similar performance to Logistic Regression, with an

AUC of 0.79, reflecting good discriminatory power. The F1-score is 0.27, in-

dicating a reasonable balance between precision and recall, comparable to

Logistic Regression. The Brier score of 0.10 suggests accurate probability

predictions, slightly better than Logistic Regression. The FNN’s ability to

capture non-linear relationships in the data contributes to its strong perfor-
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mance, although it does not surpass XGBoost.

TabNet shows an AUC of 0.77, on par with Random Forest, indicating

a decent but not outstanding ability to distinguish between the labels. The

F1-score is 0.27, similar to Logistic Regression and FNN, suggesting a rea-

sonable balance between precision and recall. However, its Brier score of

0.12 is the highest among all models, indicating less accurate probability

predictions.

3.4.7 Feature Importance

Table 6.1 in the Appendix shows the feature importance table derived from

the logistic regression. The table illustrates which factors most strongly in-

fluence the likelihood of default. The coefficients, along with their standard

errors (SE), highlight the relative importance and reliability of these predic-

tors.

Understanding the economic implications of these features is crucial for

BridgeFund for effective risk assessment and management. Features like

Feature 2 highlight the increased risk associated with borrowers consoli-

dating existing debts, indicating potential financial distress. Higher Feature 4

reflects greater financial burdens, thereby elevating default risk. Larger

Feature 16 correlate with a higher risk of default due to the substantial

obligations they represent. The feature Feature 25 indicates that more ex-

tended transaction histories facilitate better credit assessments, reducing de-

fault risk. A higher Feature 31 denotes stable and compliant financial be-

havior, which reduces default risk. Finally, Feature 37 suggests that while

reliance on a major client can be risky, a higher percentage from a reliable

client may indicate stability and lower default risk.

The selection bias arising from using only accepted loans implies that

the model may not generalize well to all loan applicants. The requirement

of a revenue threshold of at least 45.000EUR signifies that features related

to lower revenue may be deemed insignificant. Likewise, the strict thresh-

old of company age exceeding 12 months could result in features related to

company age are regarded insignificant for PD estimation.

47



Experimental evaluation

3.5 Discussion

In this study, an evaluation is made of the performance of five different clas-

sification models in estimating PD scores: Logistic Regression, Random For-

est, XGBoost, Feedforward Neural Network (FNN), and TabNet. The mod-

els were assessed using key metrics including AUC, F1 Score, Brier Score,

and Precision. The results, summarized in Table 3.1, provide insights into

each model’s ability to distinguish between defaulted and non-defaulted

loans, balance precision and recall, and accurately predict probabilities.

The histogram of predicted PD scores, particularly from the Random

Forest model, reveals a distinctive distribution (Figure 3.7). The scores pre-

dominantly cluster between 0.05 and 0.10, indicating a conservative risk as-

sessment approach where most loans are considered low-risk. This distri-

bution reflects the underlying class imbalance. The thin tail extending to 1

suggests the model’s ability to identify high-risk loans, albeit these instances

are rare due to initial human vetting of loan applications.

Random Forest, as an ensemble learning method, introduces variability

through bootstrapping and random feature selection, which can create local

peaks in the distribution of PD scores. These peaks represent the model’s

consensus on certain predictions due to specific data subsets used in train-

ing individual trees.

The KDE plots (Figures 3.10-3.14) offer a smooth approximation of PD

score distributions for non-defaulted and defaulted loans. Non-defaulted

loans show a prominent peak near 0, indicating low predicted probabilities.

Defaulted loans have a more spread-out density, with peaks around 0.1 to

0.2, reflecting the model’s conservative nature in assigning PD scores. The

overlap between the densities of the two classes (0.1 to 0.3) indicates areas

of uncertainty, leading to potential false positives and false negatives. This

overlap underscores the challenge in perfectly distinguishing between the

two classes.

Calibration plots (Figures 3.25-3.29) reveal the models’ calibration qual-

ity, comparing predicted probabilities to observed frequencies. All models
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exhibit reasonable calibration up to 0.50 but show overconfidence or un-

derconfidence beyond this point. The scarcity of high PD score observa-

tions likely causes this poor calibration at higher probabilities, as models

lack sufficient data to make accurate high-risk predictions. Logistic Regres-

sion, due to its simplicity, remains well-calibrated at lower probabilities but

struggles with more complex relationships at higher ranges. TabNet’s sharp

overconfidence and subsequent underconfidence likely results from its at-

tention mechanism, which can disproportionately weigh certain features in

high-risk cases.

Regarding precision, XGBoost stands out with the highest precision value

of 0.48, underscoring its superior performance in correctly identifying pos-

itive instances across the range of thresholds. Logistic Regression and FNN

both exhibit precision values of 0.36 and 0.34, respectively, indicating their

comparable effectiveness in distinguishing between positive and negative

classes, with Logistic Regression being slightly better. Random Forest achieves

a precision of 0.39, reflecting its ability to maintain higher accuracy in pos-

itive instance identification despite its lower F1 Score. TabNet, with a pre-

cision of 0.31, demonstrates the lowest effectiveness in identifying positive

instances among the evaluated models.

In conclusion, XGBoost stands out as the best-performing model, ex-

celling in F1-score, Brier Score, and precision. Its superior ability to han-

dle both linear and non-linear relationships, coupled with its robust gra-

dient boosting framework, makes it highly effective for this task. Logistic

Regression and FNN also perform well, providing reliable and consistent

results. However, Random Forest and TabNet, while decent, show weak-

nesses, particularly in achieving a balanced precision-recall trade-off and

accurate probability predictions.

49



4. Conclusion

This study aimed to estimate to what extent deep learning techniques and

ensemble methods outperform logistic regression in calculating probabil-

ity of default scores for credit loans. The experiments conducted in this

research make a strong case for the application of XGBoost in credit risk

modeling as it outperforms the other techniques in all evaluation metrics.

However, despite these promising results, it is crucial to incorporate XG-

Boost with caution due to its inherent complexity and "black box" nature.

Unlike logistic regression, which offers clear insights into the relationships

between predictors and outcomes, XGBoost’s decisions are not as easily in-

terpretable. This opacity can pose challenges in the context of credit risk

modeling where model transparency, stakeholder trust and interpretability

are essential.

This tradeoff between transparency and performance is in line with the

No Free Lunch (NFL) theorem. The NFL theorem posits that no single

model works best for every problem; rather, the effectiveness of a model

depends on the specific nature of the data and the problem at hand. While

XGBoost has shown superior performance in this particular study, there is

no guarantee that it will consistently outperform other models in all scenar-

ios. Each model, including FNN, RF, TabNet, and logistic regression, has

its strengths and weaknesses, and their performance can vary significantly

depending on the dataset. (Wolpert & Macready, 1997)

For future research, it is recommended to delve deeper into the opaque

nature of XGBoost to improve its explainability for stakeholders and risk an-

alysts who will be utilizing the PD scoring model. For BridgeFund, obtain-

ing risk-drivers through feature importance is highly valuable. One such

technique is the use of SHAP values, which provide a unified measure of

feature importance. SHAP values are derived from cooperative game the-
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ory and indicate how each feature contributes to the model’s predictions.

(Liu et al, 2022) By applying SHAP values to XGBoost, BridgeFund can pin-

point the influence of each variable on the classification of default , thereby

enhancing transparency.
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6.1 Adjustment for class imbalance with random undersampling

6.1 Adjustment for class imbalance with random

undersampling

6.1.1 Logistic Regression

Figure 6.2: ROC for logistic regression with random undersampling

Figure 6.3: KDE for logistic regression with random undersampling
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Appendix

Figure 6.4: Calibration for logistic regression with random undersampling

6.1.2 XGBoost

Figure 6.5: ROC for XGBoost with random undersampling

Figure 6.6: KDE for XGBoost with random undersampling
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6.1 Adjustment for class imbalance with random undersampling

Figure 6.7: Calibration for XGBoost with random undersampling

6.1.3 Random Forest

Figure 6.8: ROC for RF with undersampling

Figure 6.9: KDE for RF with undersampling
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Figure 6.10: Calibration for RF with undersampling

6.1.4 FNN

6.1.5 TabNet

Figure 6.11: ROC for TabNet with random undersampling

Figure 6.12: KDE for TabNet with random undersampling
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Figure 6.13: Calibration for TabNet with random undersampling
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Feature Coefficient Standard Error P-value Significance
Feature 1 0.058 0.015 0.001 **
Feature 2 0.153 0.015 0.000 ***
Feature 3 0.146 0.017 0.000 ***
Feature 4 0.272 0.017 0.000 ***
Feature 5 -0.020 0.015 0.298
Feature 6 0.104 0.017 0.000 ***
Feature 7 0.264 0.015 0.000 ***
Feature 8 0.115 0.015 0.000 ***
Feature 9 0.375 0.015 0.000 ***
Feature 10 0.113 0.016 0.000 ***
Feature 11 0.304 0.015 0.000 ***
Feature 12 0.177 0.016 0.000 ***
Feature 13 0.264 0.015 0.000 ***
Feature 14 0.173 0.015 0.000 ***
Feature 15 0.100 0.015 0.000 ***
Feature 16 0.326 0.022 0.000 ***
Feature 17 0.015 0.015 0.381
Feature 18 0.076 0.016 0.001 **
Feature 19 -0.090 0.021 0.005 **
Feature 20 -0.422 0.018 0.000 ***
Feature 21 0.050 0.022 0.121
Feature 22 0.037 0.017 0.236
Feature 23 0.052 0.015 0.004 **
Feature 24 0.095 0.018 0.000 ***
Feature 25 -0.076 0.015 0.000 ***
Feature 26 -0.078 0.042 0.306
Feature 27 -0.153 0.028 0.036 *
Feature 28 -0.295 0.017 0.000 ***
Feature 29 0.036 0.016 0.183
Feature 30 0.093 0.016 0.093
Feature 31 -0.504 0.018 0.000 ***
Feature 32 0.050 0.017 0.064
Feature 33 0.084 0.016 0.000 ***
Feature 34 -0.113 0.034 0.154
Feature 35 0.167 0.024 0.000 ***
Feature 36 -0.030 0.073 0.211
Feature 37 -0.106 0.017 0.000 ***
Feature 38 -0.015 0.016 0.308
Feature 39 0.023 0.017 0.216
Feature 40 -0.016 0.020 0.449
Feature 41 0.069 0.025 0.162
Feature 42 -0.126 0.018 0.000 ***
Feature 43 0.109 0.016 0.000 ***
Feature 44 -0.221 0.017 0.000 ***
Feature 45 -0.067 0.027 0.101
Feature 46 -0.283 0.016 0.000 ***

Table 6.1: Coefficients, Standard Errors, and P-values for Logistic Regression
Model. Significance levels: * p < 0.05, ** p < 0.005, *** p < 0.0005
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