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Abstract 
The adsorption of whey protein (β-lactoglobulin/α-lactalbumin) and NaCas (αs1/αs2/β/κ-caseins) onto 

colloidal Cr2O3 was examined at 20 °C as a model for the prefouling of steel . The role of electrostatic 

interactions in formation of a monolayer of adsorbed protein was studied by characterizing the adsorption 

as function of pH. From zeta potential measurements NaCas and whey proteins were found to have their 

isoelectric point around pH 5 and colloidal Cr2O3 an isoelectric point of pH 3, similar to stainless steel. 

Expecting maximum adsorption in a pH range where surface charges have opposite signs, we assessed whey 

protein and NaCas adsorption onto Cr2O3 in the pH range 3 to 7. Colloidal stability analysis indicated protein 

adsorption through its stabilizing effect on the Cr2O3 dispersions. Stabilization by adsorbed NaCas was not 

found to be pH dependent Whey proteins were found to stabilize Cr2O3 marginally less at low pH than at 

neutral pH. Similarly, adsorption isotherms constructed via UV-Vis spectroscopy, revealed that adsorption 

of NaCas onto Cr2O3 was pH-independent and whey protein adsorbed less at low pH than at neutral pH. 

From these findings, we conclude that electrostatic interactions are not the primary factor in monolayer 

adsorption of milk proteins. These findings contribute to the understanding required for the development of 

better strategies to mitigate protein fouling in the food industry. 
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Introduction  
The unwanted adsorption of proteins onto solid surfaces is a persistent problem in the food industry. It is an 

almost unavoidable problem when working with proteins in solution. Therefore for decades, the phenomena 

that dictate the adsorption  of proteins onto solid surfaces have been actively researched. In industry, this 

issue is called fouling and is present nearly everywhere where solutions containing proteins are processed 

[1]. Milk is a prime candidate for fouling because it is a protein rich fluid that has to be heat treated for 

consumption, a process called pasteurization. During the heat treatment, fouling occurs, and layers of protein 

and salts adhere irreversibly on the steel surface used in heat diffusers[2]. These adsorbed fouling layers 

must be periodically removed to keep a dairy processing plant functional because they reduce the flow in 

the steel pipes and provide a substrate for the growth of microbial contaminates[3]. The cleaning of these 

fouling layers is a labor and chemically intensive process[4]. The economic impact of fouling cannot be 

underestimated as the cleaning of fouling accounts for 15% of production time [5] and up to 80 % production 

cost are attributed to cleaning and removal of fouling [6].  In the dairy industry, billions of euros are lost 

each year and it has a significant impact on the environment. Furthermore, in recent years non-dairy 

alternatives have gained a large part of the global food market [7]. This has happened in part because it has 

become clear that the protein transition, the shift away from animal proteins toward plant-based proteins, is 

an unmissable part in the reduction in our carbon footprint[8]. Plant-based proteins encounter the same 

fouling problem as traditional dairy products [9], [10], [11]. Therefore, it is now more than ever relevant to 

gain more understanding of fouling. 

 As fouling is a persistent issue in the food industry, much research has been done on the mechanisms of 

fouling and which phenomena dictate its different steps. However, due to the complexity of the involved 

components and the process, much is still unclear. Milk is comprised of a mixture of proteins, salts, sugars, 

and fats. The proteins are chiefly responsible for fouling [3] and at high temperatures salts precipitate out 

of solution and contribute to the fouling layer. Therefore, fouling is often divided into three distinct steps: 

(1) the initial monolayer adsorption, (2) the growth of the fouling through the addition of aggregates to the 

surface and (3) the evolution of the fouling layer when the layer is heated for a prolonged period [12].  

This thesis focuses on the first step in fouling: the initial adsorption of a monolayer of protein onto the steel 

surface. Competing theories exist on the driving force of the adsorption. Previous work done at NIZO food 

research has suggested that there is relation between the charge of the surface, the charge of the adsorbent 

and the amount of adsorption [13]. An opposite sign of charges of the surface and adsorbent would cause a 

maximum in adsorption though electrostatic attraction. Heat diffusers, where the majority of fouling takes 

place, are made from stainless steel whose surface consists of a layer of Cr2O3 [14]. Our novel approach is 

to use colloidal Cr2O3 to study the first step of fouling. Colloids have a large surface-to-mass ratio, making 

them extremely well suited for studying adsorption. The general experimental approach consists of adding 

well-known milk proteins to colloidal dispersions of Cr2O3. These dispersions are then analyzed with a 

variety of colloidal characterization techniques, such as analytical centrifugation, laser-Doppler 

electrophoresis, dynamic light scattering, optical microscopy, and UV-Vis spectroscopy. New information 

on the mechanism of monolayer adsorption of protein onto stainless steel is found and this rationalized 

through existing theories on adsorption. Finally, the phenomena that dictate the first step in fouling in the 

dairy industry are discussed, yielding insights that can be used to find solutions for the unwanted adsorption 

of food proteins on stainless steel.   



5 

 

2.Theory 
The precise mechanism of the first step in protein fouling is still not completely understood. To gain more 

understanding of fouling, a closer look at the involved components is first taken. The adsorption of proteins 

on solid surfaces is a complicated process. Numerous factors influence the adsorption and desorption, and 

the involved proteins are complex molecules. Fortunately, protein adsorption is a well-developed field of 

study, which allows us to build on a wealth of knowledge. In this chapter we will expand on the introduction 

and discus in more detail the accepted theories on protein adsorption in the first part. In the second part 

discusses the properties of our experimental system and in the third part we present the theory behind some 

of the experimental techniques.   

2.1.a Protein adsorption 

Fouling can result in different types of deposit. Type A deposits are voluminous and are rich in whey 

proteins, contain 30-50% minerals and formed during treatment under 110 °C. Type B deposits are more 

compact, contain more minerals and are formed above 110 °C [15]. The type of deposit that forms depends 

on the temperature, heating rate, surface, flowrate and the composition of the product. Milk is comprised of 

fats, sugars, minerals and proteins and the specific amount of each component can result in a different type 

of deposit [2]. The temperature is also of great importance in determining the type and amount of deposit. 

However, both types of deposit have in common that the initial fouling starts with the adsorption of a 

monolayer of proteins, this occurs at low temperatures. This monolayer itself is not a problem for the 

production because it is only nanometers thick and therefore does not cause any measurable effects on the 

flowrate or heat transfer. The time it takes for this monolayer to form is typically referred to as the lag time 

or the induction time and can range from minutes to hours [15]. Unlike the monolayer, the subsequent 

fouling layers do negatively affect the production process. Even though most research on fouling is focused 

on the growth and evolution of fouling layers due to heat treatment, it is for the development of strategies 

for the prevention of fouling important that the formation of the initial monolayer is studied. 

Protein adsorption onto solid surfaces is not only a problem in the food industry, it is also a issue in the 

biomedical sciences, pharmaceutical sciences and any other area were proteins are present [16]. The 

adsorption of proteins is a very common event, but also a very complicated event. The complexity of the 

involved materials causes a large  number of factors to be relevant. To understand why and how proteins 

adsorb these all have to be taken into consideration. Temperature, ionic strength, the character of the surface, 

and pH have all been shown to affect protein adsorption [16]. Giving rise to multiple explanations for protein 

adsorption, including attributing hydrophobic forces, Van der Waals forces and electrostatic interactions. 

For the case of the adsorption of milk proteins onto stainless steel, which we model with Cr2O3, the pH 

dependence of fouling gives an indication on which phenomena are relevant [12]. The pH determines the 

electrostatic state of the proteins and of the surface. Proteins contain a large number of residues that can be 

charged. When the pH sis equal to the isoelectric point, IEP, of the protein, there are as many positive charges 

as negative charges. The total net charge of the molecule is then zero. If the pH is above the IEP point the 

proteins have an overall negative charge whereas they have an overall positive charge below the IEP. Metal 

oxide surfaces contain hydroxyl groups, these group can accept or donate a proton [17]. In water a pH 

dependent amount of positive or negative charges are present surface of Cr2O3. Cr2O3 in the same manner 

as a protein has an IEP. Typical values for the IEP of a protein are 4-5 pH [18] and the IEP of stainless steel 

has been reported to be around pH 3 [19]. Work on the adsorption of bovine serum albumin, BSA, onto mica 

has shown that the adsorption is pH dependent. They found more adsorption below the IEP of BSA, where 

BSA is positively charged and mica is negatively charged [20]. However, research on the adsorption of β-

lactoglobulin has found adsorption above its IEP onto negatively charged surfaces [21]. It is still not entirely 

clear to what extent electrostatic interactions dominate the adsorption behavior of milk proteins. Maximum 
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fouling is observed between the IEPs of the protein and the surface which leads to suspect that the 

electrostatic have an important role in the adsorption. In Figure 1 the surface charge of proteins and the 

surface is shown as a function of the pH. If electrostatic interactions are dominant for the adsorption, we 

would expect a strong effect of the pH on monolayer formation. The adsorption behavior can be studied in 

a number of ways. Adsorption isotherms are often used to quantify adsorption, the meaning and construction 

of these will be explained in the next chapter.  

 

Figure 1 Schematic drawing of the surface charges on proteins and metal oxides as a function of the pH. 

2.1.b Adsorption models 

To characterize adsorption phenomena, adsorption isotherms have been the standard method in the 

literature [16], [22], [23]. In an adsorption isotherm the adsorbed amount of molecules is plotted as a 

function of the concentration of the free molecules in solution. Information on the in the interactions 

between the adsorbent and adsorbate can be gained from the adsorption isotherm . Multiple adsorption 

models are available for plotting experimental data [22]. Depending on the chosen model, different 

conclusion on the adsorption behavior can be found. Therefore, care must be taken when selecting an 

adsorption model. 

In the field of protein adsorption the Langmuir adsorption model has long been the dominant model for 

describing protein adsorption. However, the Langmuir adsorption model has four criteria that have to be 

met before it is valid [24]. Only if these conditions are met, it is possible to reach accurate conclusions on 

the adsorption phenomena from the adsorption isotherm. For the Langmuir model, the conditions are:  

1) All adsorption sites are identical. 

2) Each adsorption site can bind one solute molecule. 

3) Adsorption is reversible. 

4) There are no interactions between solute molecules once they are adsorbed. 

 

The Langmuir adsorption isotherm describes at which concentration of free molecules a monolayer of 

particles adsorb onto a surface depending on an equilibrium constant. The coverage is denoted with 𝜃 and 

has a maximum of 1 at which a full monolayer has been formed and can  be further defined as:  

𝜃 =
𝑞

𝑄
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( 1 ) 

Here 𝑞 is the adsorbed amount and 𝑄 the adsorbed amount where all sites are occupied. The concentration, 

𝐶, is the free solute molecule concentration and 𝑘𝑒𝑞 is the combined equilibrium constant for adsorption 

and desorption. The Langmuir adsorption isotherm is then defined as follows: 

𝜃 =
𝐶𝑘𝑒𝑞

1 + 𝐶𝑘𝑒𝑞
 

( 2 ) 

In Figure 2 the Langmuir isotherm is plotted. The 𝜃 goes to maximum of 1, a full monolayer, at high free 

solute concentration. The 𝜃 is not always experimentally accessible. Eq. (2) can be rewritten as:  

𝑞 = 𝑄 
𝐶𝑘𝑒𝑞

1 + 𝐶𝑘𝑒𝑞
 

 

( 3 ) 

Of interest is the equilibrium constant because it gives us information about the free energy of the system 

through [24]:  

𝑘𝑒𝑞 =  𝑒−
∆𝐺0

𝑅𝑇  

( 4 ) 

Here ∆𝐺0 is the Gibbs free energy of adsorption, 𝑅 the gas constant and 𝑇 the absolute temperature. The 

Gibbs free energy of adsorption describes the strength of the interaction of the adsorbate with the surface. 

However, we have already addressed the conditions that have to be met to apply Eq. (2). Our hypotheses is 

that electrostatic interactions determine whether adsorption is favorable or not. On the molecular scale, 

electrostatic interactions are long distance interactions [25]. The force between two charged particles scaling 

with 𝑟−2 [26] compared to the Van der Waals forces that scale with 𝑟−6 [27]. From the presence of charged 

residues in the involved proteins[28] and the presence of charged groups on a metal oxide surface [17], we 

know that electrostatic interactions are present. Therefore, one of the conditions for the use of Eq. (2) is not 

met. The adsorbed molecules will have lateral interactions so that the interaction between surface and 

adsorbent will change with surface coverage and the adsorption isotherm will no longer be accurately 

described by Eq. (2). 

However the Langmuir model, Eq (2), can be adjusted to more accurately describe the adsorption behavior. 

Through interactions between already adsorbed molecules, the equilibrium constant is not constant. We 

assume that electrostatic attraction between the surface and adsorbents causes the adsorption. The already 

adsorbed molecules have the same charge as the molecules in solution. Therefore, if the surface is 

sufficiently covered, the electrostatic interactions between already adsorbed molecules and molecules in 

solution would alter the equilibrium constant. By assuming two regions: (1) a region where the adsorption 

is irreversible, (2) a region where the equilibrium constant is more favorable for desorption and thus 

adsorption is reversible, Eq (2) can be altered. We then define the altered Langmuir model as: 

𝑞 = 𝑄𝑖𝑟𝑟 + 𝑄
𝐶𝑘𝑒𝑞

1 + 𝐶𝐾𝑒𝑞
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( 5 ) 

Here 𝑄𝑖𝑟𝑟 is the irreversible adsorbed amount. Eq. (5) is plotted against the free solute concentration in 

Figure 3. 

 

The Langmuir model is the most common adsorption model but other models are available. One such 

model is the Freundlich isotherm. The Freundlich isotherm is an empirical model and is described with the 

following equation [22]:  

𝑞 =  𝐾𝐶1 𝑛⁄  

( 6 ) 

Here 𝑞 is the adsorbed amount, 𝐾 is  the Freundlich 

equilibrium constant, 𝐶 is the free solute molecule 

concentration and 𝑛 is a correction factor. Eq .(6) is 

plotted against the free solute molecule 

concentration in Figure 4. However,  the Freundlich 

isotherm is unlike the Langmuir model not based on 

a physical model. This means that the equilibrium 

constant and the correction factor are only relevant 

for the plotting of the experimental data and do 

contain more information on the adsorption 

behavior. Even though Eq. (6) is not based on 

physical model, information can still be gained from 

it. Because, when experimental data can be 

accurately fitted onto Eq (6) it is an indication that 

the adsorption sites are heterogeneous [29].  

 

q
 (

g/
m

²)

C (g/L)

θ

C (g/L)

Figure 2 The Langmuir isotherm. θ goes to value of 1 

for high solute concentrations. 
q

 (
g/

m
²)

C (g/L)

Figure 3 The Langmuir isotherm with an irreversible 

amount of adsorbent. The dotted line is Qirr 

Figure 4 The Freundlich adsorption isotherm.  
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2.2 Properties of our experimental system 
For understanding protein adsorption onto a surface three factors are the most influential: (1) External 

factors as in the environment, (2) the surface properties, (3) and the internal structure and properties of the 

adsorbate, the protein. In this chapter we discuss the protein and surface properties. The implicit effect of 

the environment are also discussed.  

2.2.a Protein folding and residues  

Proteins are an extremely complex class of materials, but they are also very common. Comprised of 20 

amino acids and generally hundreds of residues long. They provide an interesting challenge when trying to 

understand processes where they are involved.  For this thesis, the proteins present in In this research we 

focus on two groups of protein that are found in cow’s milk, whey proteins and caseinates. Extensive work 

has been done on the characterization of the proteins in cow’s milk.  

Caseins comprise by weight ~80% of the proteins in cow’s milk. In milk caseins, together with calcium 

phosphates form micelles. Giving due to characteristic white color of milk. For this research caseins are 

used in a different form. Caseins are resalted  with sodium ions to form sodium caseinates. Caseins in milk 

are divided in four proteins fractions: αS1-, aS2-, β- and κ- caseins [18]. Caseins are phosphoproteins, which 

means that they contain a relatively large number of prolines [30]. All caseins posses charged groups and 

contain hydrophilic regions and hydrophobic regions. The formation of α-helices and β-sheets is prevented 

by the presence of proline in a cyclic amine side chain of caseins [31]. This results in caseins not having a 

set secondary or tertiary structure. Making them a class of unfolded proteins. In Table 1 properties of 

individual casein proteins are reported.    

Approximately 20% of proteins present in cow’s are whey proteins. This group of proteins is characterized 

as globular, folded, proteins. They have complex secondary and tertiary structures, this is opposed to caseins. 

Whey proteins consist of a number of proteins, including: α-lactalbumin, β-lactoglobulin, immunoglobulins, 

bovine serum albumin, and numerous enzymes are present in smaller amounts [32]. The focus is on α-

lactalbumin and β-lactoglobulin as they are the main participating proteins in fouling [12] and the largest 

protein fractions in whey protein. Both are tightly folded proteins and the secondary structure is relatively 

insensitive to pH changes. α-lactalbumin has tightly folded structure [33] and is present as a monomer. β-

lactoglobulin contains a free thiol group in it structure which is suspected to chemically bind to metal 

surfaces at high temperatures [3]. β-lactoglobulin is mostly found as dimer in nature but can also form 

monomer or oligomers depending on the pH [34]. At low pH the monomer form is dominant while near the 

IEP oligomers are found and at higher pH values dimers. In Table 1 more properties of α-lactalbumin and 

β-lactoglobulin are reported.  

Table 1 selected properties of caseins and whey proteins 

 Protein Mass (kDa) IEP (pH) Fraction reference 

Caseins - 4.6 ~80% [18], [35] 

αs1-casein 23.6 kDa 4.2-4.6 31% [18], [35] 

αs2-casein 25.2 kDa - 8% [18] 

β-casein 24,0 kDa 4.6-5.1 29% [18], [35] 

κ-casein 19.0 kDa 4.1 32% [18] 

Whey proteins - 4.9 ~20% [18] 

β-lactoglobulin 18.4 kDa 5.35-5.49 55-65 % [36] 

α-lactalbumin 14.2 kDa 4.2-4.5 15-25% [36] 
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2.2.b Solid surface properties 

The interest of this research is the protein adsorption at the liquid/solid interface. The solid interface is the 

surface of Cr2O3. Cr2O3 is a crystalline material with a rhombohedral crystal lattice [37]. The exact properties 

of the surface depend on the terminal facet of the crystal [38]. The general characteristics are similar, 

regardless of the terminal facet and with a polycrystalline sample of Cr2O3 the effect will be averaged. There 

is large difference between the dielectric constant of Cr2O3 [39] and of water [40] form which we expect 

relatively strong Van der Waals interactions predicted by Lifshitz theory [41]. Furthermore, the surface 

oxygen molecules form hydroxyl groups when Cr2O3 is exposed to water [42]. The hydroxyl groups serve 

as cation and anion exchange sites which are the origin of the surface charge [17]. The surface charge 

dictates the electrostatic interactions with the surroundings of Cr2O3 particles. How the surface charge is 

characterized is discussed in the next paragraph.  

2.2.c Zeta potentials of solids and proteins  

In this paragraph, a concise overview of theory behind the zeta potential is presented based on the book 

Basic Principles of Colloid Science by D.H. Everett [43]. The significance of electrostatic interactions in 

colloid science cannot be overstated, as they are the origin of many of the defining characteristics of colloids, 

including the surface charge. The zeta potential is a measure of the surface charge. Colloidal stability is 

often discussed in relation to surface charge, where a higher surface charge indicates greater stability [44]. 

Moreover, surface charges have a direct impact on the adsorption behavior of charged particles. Generally, 

particles with a surface charge are not expected to adsorb onto a charged surface with the same sign of 

charge unless there is a stronger force driving the adsorption. Therefore, to correctly interpret the 

interactions between proteins and Cr2O3 their surface charges have to be characterized. 

In colloidal chemistry, surface charge is usually characterized by determining the zeta potential. In contrast 

to the surface charge, the zeta potential is easily accessible experimentally through electrophoretic mobility 

measurements. The electrophoretic mobility is the velocity of the charged particles caused by the application 

of an electric field and is defined as [43], [45]:  

𝜇𝑒 =
2

3

𝜀0𝜀𝑟

𝜂
𝜁𝑓(𝜅𝑎) 

( 7 ) 

here the charge of the particle is accounted for by the zeta potential, 𝜁. 𝜀0𝜀𝑟 is the electric permittivity of 

the medium, 𝜂 is the viscosity and 𝑓(𝜅𝑎) is the Henry function. We will first discuss in more depth the 

definition of the zeta potential before we touch on the meaning of the Henry function. Upon dispersing 

particles in an aqueous medium, almost instantaneously an electric double layer, EDL, is formed. This is 

caused by electrically charged groups disassociating from the surface and the equilibrium between the 

charged particle and counter ions that is then formed. DLVO theory describes the formation of the EDL 

[46]. For our purposes it is enough to know that the EDL is described as being comprised of two regions: a 

stationary layer and diffuse layer. The zeta potential is the potential of the electric double layer at the slipping 

plane. The slipping plane is defined as the plane of shear between the diffuse layer and the stationary layer. 

The location of the slipping plane, and thus the zeta potential, depends on the cut-off for the stationary layer. 

The exact location of this plane depends the on the hydrodynamic radius, 𝑎, and the reciprocal Debye 

screening length, 𝜅 . The Debye screening length is defined as [47]:  

𝜅−1 = √
𝜀0𝜀𝑟𝑘𝐵𝑇

2𝑒2𝐼
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( 8 ) 

where 𝑘𝐵is the Boltzmann constant, 𝑇 is the temperature, 𝑒 is the elementary charge, and 𝐼 is the ionic 

strength. The ionic strength is the summation of all ions present times the square of their valency. The ratio 

between the electrophoretic mobility and the zeta potential depends on the Henry function. The Henry 

function connects two approximations, The Hückel approximation and Helmholtz-Smoluchowski 

approximation. The Hückel approximation is applied if 𝜅𝑎 < 0.1, which is the case for small particles at 

low ionic strength, in this limit 𝑓(𝜅𝑎) → 1. If 𝜅𝑎 > 100, the Helmholtz-Smoluchowski approximation is 

used and 𝑓(𝜅𝑎) → 3
2⁄ .  This is the case for large, ~1 μm, particles at high ionic strength. For our purposes, 

it is important to remember that the zeta potential is a measure of the surface charge. But care must be taken 

when interpreting electrophoretic mobility measurements because the ionic strength and the particle radius 

influence the size of the zeta potential. 

 

2.3 Experimental characterization techniques 

2.3.a Nitrogen physisorption 

To compare adsorption data with the literature in terms of grams per square meter, it is necessary to 

accurately determine the surface area. For non-uniformly shaped particles the surface area is not easily 

accurately determined with optics. A standard way to determine the surface area is nitrogen physisorption. 

Nitrogen is used as a probe molecule and by calculating the total number of molecules that is used to cover 

a sample with a monolayer, the total surface area can be determined. This is done by placing a sample in a 

vacuum chamber at the boiling point of nitrogen. Precisely measured amounts of nitrogen are added to the 

chamber. This increases the pressure in the chamber and according to the ideal gas law we would expect a 

linear increase in pressure but physisorption of nitrogen onto the sample causes the pressure to increase non-

linearly. Nitrogen is added until 𝑝0 is reached which is the boiling pressure for nitrogen at 77 K. The pressure 

is then lowered till a vacuum is reached again. This creates an adsorption isotherm and a desorption 

isotherm. If the sample is porous hysteresis will be found between the adsorption and desorption isotherm. 

The shape and size of the hysteresis contains information on the type and size of the pores in the sample.  

The surface is determined from the adsorption isotherm with the BET model [48] [49]. The BET model 

builds on the Langmuir adsorption model but BET model accounts for the formation of multilayers of 

nitrogen onto the surface. From this model an equation for an isotherm is formulated that can be used to 

determine the surface area.  

𝑣 =  
𝑣𝑚𝑐𝑝

(𝑝0 − 𝑝)(1 + (𝑐 − 1)(𝑝/𝑝0))
 

( 9 ) 

Here 𝑣 is the volume of the added nitrogen gas and p the measured pressure. 𝑐 is the BET constant and is 

the ratio between adsorption strength of a monolayer and the adsorption strength of the subsequent layers. 

𝑣𝑚 is the volume of the monolayer of nitrogen molecules. For the determination of the surface area the 

isotherm is fitted onto the region where  𝑝 ≪ 𝑝0 and to fit the experimental data Eq. (9) is written in the 

linear form: 

𝑝

𝑣(𝑝0 − 𝑝)
=

1

𝑣𝑚𝑐
+  

𝑐 − 1

𝑣𝑚𝑐

𝑝

𝑝0
 

( 10 ) 
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This linear equation is useful since a plot of this equation will have a y-intercept of 1/𝑣𝑚𝑐 and a slope of 

(𝑐 − 1) 𝑣𝑚𝑐⁄ . From here the 𝑣𝑚 and 𝑐 can be determined. The number of nitrogen molecules in the adsorbed 

monolayer is calculated. Knowing the surface per nitrogen molecule and the mass of the sample, the surface 

area per gram of sample is determined. This is the BET surface area and is commonly used to report the 

surface area of a material.     

2.3.b Analytical centrifugation 

One way to determine the particle size distribution, PSD, is through analytical centrifugation. Analytical 

centrifugation has long been a trusted tool in colloidal chemistry and has been successfully used to determine 

PSDs from all manner of dispersed colloidal particles [50][51]. In our research the PSD is of interest because 

it is an indicator of the degree of aggregation [52]. The definition of a stable colloidal dispersion in which 

the particles are not aggregated. Preliminary work has shown that the addition of proteins the colloidal 

dispersions stabilizes them [13]. This stabilizing effect of proteins can be explained by the steric repulsions 

caused by adsorbed proteins [53]. By calculating the particle size distribution, the stabilizing effect of 

proteins on colloidal dispersions can be quantified. The extent of the stabilization can then be linked to 

protein adsorption.  

The sedimentation velocity is experimentally determined. To find the corresponding particle size the forces 

to which the particle is subject to are examined. We assume that only the centrifugal force, a friction force, 

and the buoyant force work on the particles, neglecting interactions between particles, diffusion and the 

gravitational force. Interactions between particles can be neglected as long as the sedimentation velocity is 

measured in the region where the particles are not too concentrated. For the diffusion and the gravitational 

force the assumption that they can be neglected is valid as long as the centrifugal force, and resulting 

velocity, are much greater than the gravitational force and any effects caused by diffusion. The force balance 

is then defined as: 

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐹𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑙 

( 11 ) 

The balance between these forces is nearly instantaneously reached. The centrifugal force is defined as:  

𝐹𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑙 = Δ𝑚𝜔2𝑟 

( 12 ) 

with Δ𝑚 the buoyant mass, 𝜔 the radial velocity and 𝑟 the radius of rotation. The radius of rotation is 

assumed to be constant and equal to the radius of the centrifuge. The buoyant force is integrated into this 

definition of the centrifugal force by using the buoyant mass, Δ𝑚. The buoyant mass is the difference in 

density between the solvent and the particle times the volume of the particle:  

Δ𝑚 = 𝑉(𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 − 𝜌𝑠𝑜𝑙𝑣𝑒𝑛𝑡) =  
4

3
𝜋𝑎3Δ𝜌 

( 13 ) 

where 𝑎 is the radius of the particle which we assume is equal to hydrodynamic radius. This assumption is 

valid if the particles are roughly spherical.  Δ𝜌 is the effective density of the particle. We then obtain from 

combining Eq. (11) and Eq. (12): 

𝐹𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑙= 

4

3
𝜋𝑎3Δ𝜌𝜔2𝑟 
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( 14 ) 

This is one half of our force balance. The other side of the force balance is the determined by the friction 

force which we define as the Stokes’ friction factor times the velocity [54]: 

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑓𝑆𝑡𝑜𝑘𝑒𝑠𝑣 = 6𝜋𝑎𝜂𝑣 

( 15 ) 

with 𝑎 the hydrodynamic radius, 𝜂 the viscosity and 𝑣 the sedimentation velocity. The Stokes’ friction factor 

for spherical particles is used. The assumption of by approximation spherical particles is validated with 

transmission electron microscopy. By filling in Eq. (13) and Eq. (14) in Eq. (10) we find: 

6𝜋𝑎𝜂𝑣 =
4

3
𝜋𝑎3Δ𝜌𝜔2𝑟 

( 16 ) 

We can rewrite Eq. (15) to a function for the radius because the radius of the particle is assumed to be equal 

to the hydrodynamic radius: 

𝑎 = √
9

2

𝜂𝑣

𝛥𝜌𝜔2𝑟
 

( 17 ) 

The sedimentation velocity, 𝑣, is experimentally determined and the effective density, radial velocity and 

the radius of the centrifuge are known. The sedimentation velocity is defined as: 

𝑣 =  
Δ𝑥

Δ𝑡
 

( 18 ) 

where the change in position for a fraction with one absorbance value is measured. For a monodisperse 

sample, one sedimentation velocity will be found. For a polydisperse sample a distribution of sedimentation 

velocities will be measured. The sedimentation velocities are calculated per absorbance fraction. To find the 

size distribution, in other words the probability function of the size, the first derivative of the following 

cumulative function is taken: total absorbance against the sedimentation velocity. The reason for this is that 

the cumulative absorbance scales with the amount of particles (the total volume of colloidal material) and 

the sedimentation velocity, a measure of the size of the particles.  We take the derivative of this function to 

find the distribution of the sedimentation velocities. 

P(𝑣) =
d𝐴

d𝑣
 

( 19 ) 

This is done numerically in Python, where the probability values of discrete sedimentation velocities are 

calculated. A plot is then generated of the probability value against the corresponding sedimentation 

velocity. With Eq. (16) the sedimentation velocity is related to the hydrodynamic radius. Resulting in 
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probability values for the radii of the particles. This is particle size distribution. To find a function that 

describes this distribution, the data points are fitted on a log-normal distribution.  

By assuming a log-normal distribution of the particles, the distribution can be expressed with an average 

size and a standard deviation. Log-normal distributions are often used to describe the distribution of 

colloidal particles[52], [55]. The probability density function for the log-normal distribution is defined as 

[56]: 

𝑓(𝑎) =
1

𝑎𝜎√2𝜋
𝑒

−
1
2

(
ln(a)−μ

𝜎
)

2

 

( 20 ) 

where 𝑎 is log-normal distributed value. 𝜎 the standard deviation of log-transformed data and 𝜇 the mean 

of log-transformed data. These are not the same as the mean and standard deviation of the data and must be 

transformed before being interpreted. Otherwise, they are only scaling parameters for the log-normal 

distribution. The mean of the normal population is then calculated with[57]:  

Mean(𝑎) = exp (𝜇 +
1

2
𝜎2) 

( 21 ) 

And the variance, the square of the standard deviation, is: 

Variance(𝑎) = (exp(𝜎2) − 1)exp(2𝜇 + 𝜎2)  

( 22 ) 

The 𝜇 and 𝜎 are found by fitting experimental data on log-normal distribution. The particle size distribution 

can then be represented by two variables, the mean and standard deviation. By summarizing the particle size 

distribution with two parameters the effect of a change in pH on the extent of the stabilization can be 

examined. 

2.3.c Dynamic light scattering 

Dynamic light scattering, DLS, is another powerful method for the determination of particle size 

distributions. Frequently used in colloid science [58], [59] and biomedical sciences [59] for the 

determination of particle sizes in the colloidal domain. Strengths of this technique are that the particle size 

is measured in-situ compared to other characterization techniques such as electron microscopy. Furthermore, 

by definition a very large number of particles is used to determine the PSD which provides a robust statistical 

average. Drawbacks are that samples must be dilute to prevent multiple scattering and because DLS uses 

the intensity of scattering, larger particles are heavily favored. This second drawback makes it crucial that 

samples are dust free, as large dust particles would dominate the PSD. We give a very brief overview of the 

theory behind DLS here, to provide theoretical basis on which we compare DLS PSDs to PSDs calculated 

with analytical centrifugation.  

DLS is based on two characteristics of the colloidal particles, their scattering and Brownian motion. A 

monochromatic and coherent beam of light is shone through a sample containing colloidal particles. The 

intensity at a specific angle (173° for large particles) is measured as a function of time. The changes in 

intensity are related to motion of the particles with an autocorrelation function. The motion of colloidal 

particles is the Brownian motion. Brownian motion depends on the translational diffusion coefficient of the 

particles. Which is defined with the Stokes-Einstein relation as[60]: 



15 

 

𝐷𝑡 =
𝑘𝑇

𝑓𝑆𝑡𝑜𝑘𝑒𝑠
 

( 23 ) 

where 𝑘 is the Boltzmann constant, 𝑇 is the temperature and 𝑓𝑆𝑡𝑜𝑘𝑒𝑠 is the same friction factor as in Eq (14). 

This allows us to directly compare radii from DLS with the radii from analytical centrifugation.   

2.3.d UV-Vis spectroscopy 

UV-Vis spectroscopy is a sensitive, low cost and non-invasive method for the characterization and 

quantification of UV-Vis active components in solution.  Proteins are extremely suited for analysis with UV-

Vis spectroscopy because they strongly absorb light at 280 nm. This is due to the presence of the residues 

tryptophan, tyrosine, and in a lesser capacity phenylalanine [61]. The difference between the intensity of a 

reference beam and the intensity of beam of light that passed through the sample is analyzed. Where intensity 

of the sample beam is equal to the reference beam if there are no absorbing species in the sample. This is 

called the transmittance and is defined as follows: 

𝑇 =
𝐼

𝐼0
 

( 24 ) 

The absorbance, or more strictly speaking the optical density, is then defined as:  

𝐴 = −𝑙𝑜𝑔10 (
𝐼

𝐼0
) 

( 25 ) 

The absorbance only accounts for the extinction of light through absorption by components in the sample. 

The optical density is given by the same formula but accounts for absorption and scattering. The absorption 

is directly proportional to the concentration of absorbing components times a coefficient and the optical path 

length. The following equation is commonly known as Lambert-Beer’s law [62]: 

𝐴 =  𝜀𝑐𝑙 

( 26 ) 

𝜀 is the extinction coefficient, 𝑐, the concentration and 𝑙 the path length. The extinction coefficient is readily 

experimentally determined with a calibration series and the path length is known. The concentration is the 

value that is of interest. Lambert-Beer’s law can be applied as long as the sample is dilute, scattering is 

limited, and absorbing species do not interact. In samples without any contaminants the concentration is 

then accurately determined by comparing the absorption at one wavelength with a calibration series. If the 

sample consists of more than one UV-Vis active component with overlapping absorption peaks, more steps 

are necessary to determine the concentration of the components. This can be solved because Lambert-Beer’s 

law holds at any given wavelength. This can be written down as:  

𝐴𝑖 = 𝑘𝑖𝑐 

( 27 ) 

The subscript 𝑖 denotes the wavelength and the factor 𝑘𝑖 is the product of the wavelength specific extinction 

coefficient, 𝜀𝑖 , and the pathlength, 𝑙. The different extinction coefficient per wavelength gives rise to a 
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characteristic spectrum. If there is more than one UV-Vis active component present, the absorption is the 

sum of the absorption of 𝑛 components:  

𝐴𝑖 = ∑ 𝑘𝑖𝑛𝑐𝑛

𝑛

 

( 28 ) 

This can also be notated in the matrix form: 

[

𝐴1

𝐴2

⋯
𝐴𝑖

] =  [

𝑘11𝑐1 + 𝑘11𝑐2 + ⋯ + 𝑘1𝑛𝑐𝑛

𝑘21𝑐1 + 𝑘21𝑐2 + ⋯ + 𝑘21𝑐𝑛

⋯ + ⋯ + ⋯ + ⋯
𝑘𝑖1𝑐1 + 𝑘21𝑐2 + ⋯ + 𝑘𝑖1𝑐𝑛

] 

( 29 ) 

 

which can be written as,  

𝐴 =  𝐾𝑐 

( 30 ) 

𝐾 is the matrix containing the pure spectra of the components, 𝐴 the vector with measured absorbance at 

each wavelength and 𝑐 the vector with the unknown concentrations of 𝑛 pure components. Notated in matrix 

form:  

𝐴 =  [

𝐴1

𝐴2

⋯
𝐴𝑖

] , 𝐾 =  [

𝑘11 𝑘12 ⋯ 𝑘1𝑛

𝑘21 𝑘22 ⋯ 𝑘2𝑛

⋮ ⋮ ⋱ ⋮
𝑘𝑖1 𝑘𝑖2 ⋯ 𝑘𝑖𝑛

]  𝑎𝑛𝑑        𝑐 = [

𝑐1

𝑐2

⋯
𝑐𝑛

] 

( 31 ) 

Knowing 𝐾 and 𝐴 we can calculate the concentrations, 𝑐𝑛, for all components. The 𝐾 is determined by 

measuring pure reference spectra with a known concentration. There is an exact solution for Eq. (29) if there 

is no noise in the signal and there are no unaccounted-for components. In practice this not possible; however, 

with the classical least squares method, CLS, the solution can be approximated. CLS minimizes the square 

of the error between the measured absorbance and the calculated absorbance. This is done by varying the 

weight of the components in 𝑐. Limitations on the allowed solutions can be set, such as disallowance of 

negative values for components. This is variant of CLS is called non-negative least squares, NNLS, method. 

For our purposes, this allows the determination of protein concentrations even when the spectra of other 

UV-Vis active components overlap with the spectrum of interest. Python modules are available to implement 

NNLS. Above method is derived largely from a blogpost by Nicolas Coca on Quantitative Spectral Analysis, 

here a full derivation of the CLS is also given [63] and on Quantitative Chemical analysis by D. Harris [64].  
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3. Materials and methods  

   3.1 Materials  
Chromium(III) oxide, (Cr2O3,, ultra dry) was purchased from Sigma-Aldrich and used as received. Bipro, 

(whey proteins) and NaCas (sodium caseinates) were provided by NIZO and used as received. Approximate 

compositions of the used whey protein and NaCas are listed in Table 2 below [13]. Sodium phosphate dibasic 

(Na2HPO4, ≥99.0%), sodium phosphate monobasic dihydrate (NaH2PO4 · 2H2O, ≥99.0% (T)), hydrochloric 

acid (HCl, fuming 37% sol), and sodium hydroxide (NaOH, ≥98.0%) were purchased from Sigma-Aldrich 

and used as received.  Potassium dichromate(VI) (K2Cr2O7, ≥99.5%) was purchased from Fisher Scientific 

and used as received. In all experiments MilliQ water (18.2 MΩcm at 20 °C) was used. 

Table 2 composition of NaCas and whey protein in % of proteins  

Protein mixture  Protein Abundance 

NaCas αs1-casein 31% 

 αs2-casein 8% 

 β-casein 31% 

 κ-casein 10% 

Whey proteins β-lactoglobulin 80% 

 α-lactalbumin 20%  

 

   3.2 Methods 

3.2.a. Colloidal stability analysis  

Sample preparation for colloidal stability analysis 

A buffer solution of 0.1 M sodium phosphate was used for all samples. Phosphate buffer was made by 

adding 3.287 g of Na2HPO4 and 2.649 g of NaH2PO4 to 400 mL MilliQ, the buffer had a pH of 6.97. The 

Buffer was brought to required pH with HCl and NaOH and pH was determined with a negative electrode 

probe with a pH meter (Seven Excellence, Mettler Toledo). All samples were prepared with 2 wt% Cr2O3 

and 0.5 wt% protein. Proteins that were used were NaCas and whey proteins. The pH was varied between 3 

and 7 with steps of 0.5 pH unit. The samples were prepared in batches and with the following order of 

operations. 100 mg of Cr2O3 powder was added to a 10 mL counting vial; subsequently 3.9 g of buffer at 

the required pH was added and then 0.5 g of 5 wt% protein stock. The protein stock was prepared by 

dissolving protein in buffer at pH 7. The sample was then vortex mixed to ensure all of the Cr2O3 surface 

had been exposed to the protein. Samples were stored at 4 °C to prevent spoilage of the proteins.  

Colloidal stability analysis  

The colloidal stability was measured with the LUMiSizer. The LUMiSizer is a slow analytical centrifuge 

with the ability to measure the time resolved transmission over the length of a cuvette. Samples were 

redispersed before measuring with a vortex mixer. ~0.5 mL of sample was added to a plastic disposable 

LUMiSizer cuvette and centrifuged at 400 rpm (23 g) for 40 minutes. The transmission was measured at  

865 nm every 10 seconds at 255 positions along the cuvette. The temperature was kept at 20 °C during all 

measurements. Two reference measurements were performed, one with cuvette with water for a 100% 

transmission measurement and 0% transmission with a cuvette filled with a cut-to-size piece of black paper. 

We determined the particle size distribution from the LUMiSizer transmission data with a custom Python 

script. In Appendix I the data processing with Python code is explained. In this way, we obtained a 

transmission weighted particle size distribution. This distribution is fitted on log-normal distribution in 

Excel. For the fit in Excel we normalize the weights of the of the found radii to one. The normal log-

distribution in Excel used is: 
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Probability = S ∗  LOGNORM. DIST(a, μ, σ, FALSE) 

( 32 ) 

where 𝑎 is the found radius, μ is the mean of ln(𝑎), 𝜎 is the standard deviation of ln(𝑎) and the clause FALSE 

ensures that a probability function is used. S is a scaling factor that we added because the data set that we 

fit on is incomplete. The data sets are incomplete because the radii of the particles were calculated for a 

limited number of sedimentation velocities. A fit was generated by minimizing the cumulative sum of the 

residuals between the found distribution weights and the calculated weights by adjusting the parameters S, 

μ and σ with the solver plugin. Obvious outliers caused by artefacts of the data processing were removed 

before fitting. An R2 
 value was calculated to judge the quality of the fit; typical R2 values found were above 

0.98. The mean and standard deviation were converted to mean and standard deviation of the normal 

population. The mean of the normal population was found with Eq. (20) and the variance, which is the 

standard deviation squared, was calculated with Eq. (21). The average size and standard deviation found 

with log-normal distribution were plotted against the pH. 

3.2.b Adsorption isotherms  

Sample preparation for adsorption isotherms 

A stock solution of protein was prepared at pH 7 with a concentration of 2 wt% in milliQ water. Experiments 

were performed in 2 mL Eppendorf tubes. Samples were prepared in batches. The concentration of Cr2O3 

was kept constant at 4wt%. Samples were brought to the required total volume with MilliQ water at pH 3, 

pH 5 or pH 7. The protein concentration was varied from 0.01 wt% to 0.1 wt% (approx. 10 mg/L to 1000 

mg/L) by adding concentrated protein stock. Samples were then thoroughly mixed with a vortex mixer to 

ensure the complete surface had been exposed. Samples were left overnight to make sure an equilibrium 

had been reached. Cr2O3 particles were separated by centrifuging at 14800 rpm with a tabletop centrifuge 

(Microfuge). The supernatant was then analyzed with UV-Vis spectrometer (PerkinElmer, Lambda 365+) 

to quantify the remaining protein concentration. Undiluted samples were placed in a 10 mm quartz cuvette 

(Hellma analytics) and analyzed between 200 and 700 nm. Reference spectra of 10 times diluted stock was 

measured for each batch. The quartz cuvettes were flushed thrice with MilliQ water and thrice with ethanol 

and were then dried with pressurized nitrogen between measurements and. 

Sample preparation reversibility experiments 

The reversibility of adsorption was tested by washing the samples with MilliQ water and analyzing the 

amount of protein in the supernatant. Experiments were performed in 2 mL Eppendorf tubes. Samples 

containing 4 wt% Cr2O3 and 0.1 wt% protein at pH 7 were examined. Samples were washed three times. 

The concentration in the supernatant of the unwashed protein was analyzed to determine the initial adsorbed 

amount. For the first wash, the sample was redispersed in fresh water at pH 7 and left to reach equilibrium 

for one hour. After one hour the sample was centrifuged at 14800 rpm and the supernatant was analyzed. 

This was repeated for a total of three times. For the last wash the sample was left to equilibrate overnight 

before centrifuging and analyzing supernatant. 

Data processing of UV-Vis spectra  

The Cr2O3 colloidal powder was used as received from Sigma-Aldrich. UV-Vis spectroscopy showed that 

the Cr(III) was contaminated with Cr(VI). Cr(VI) was present in two hydration forms , HCrO4
-
 and CrO4

2- , 

at low concentrations and moderate pH [65]. Both these Cr(VI) species absorb strongly in the near UV and 

visible spectrum [66]. These contaminants proved to be difficult to wash away and therefore we filtered out 

the absorption by Cr(VI) using a Python script. This code was written inspired by a blog post by Nicolas 

Coca on quantitative spectral analysis [63]. The method is based on the classical least squares method and 

modified to disallow negative concentrations of components as a solution and account for a scattering 
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background component. This method requires reference spectra of all components. Reference samples were 

made by making a stock solution of K2Cr2O7 with a concentration of 30 mM. Samples for UV-Vis 

spectroscopy were made by diluting stock solutions 200 times to a concentration of 0.15 mM. Samples were 

prepared at pH 2 and pH 12. These were the reference spectra for respectively HCrO4
-
 and CrO4

2-. The 

Python code is explained in Appendix II. After processing, the concentration of protein in the supernatant 

was determined. The adsorbed amount of protein was then calculated by comparing the initial concentration 

with the measured steady state concentration with the mass balance: 

𝐶𝑎𝑑𝑠 = 𝐶𝑖 − 𝐶𝑠𝑠 

( 33 ) 

where 𝐶𝑎𝑑𝑠 is the adsorbed concentration, 𝐶𝑖 the initial concentration and 𝐶𝑠𝑠 the measured concentration al 

in mg/L. The steady state concentration is equal to free solute molecule concentration form Eq. (2). The 

adsorbed amount per surface area, 𝑞, was then calculated with:  

𝑞 =  
𝐶𝑎𝑑𝑠𝑉

𝑆𝑆𝐴 ∗ 𝑚
 

( 34 ) 

where the 𝑆𝑆𝐴 is the specific surface area in m2/g of Cr2O3. This the BET surface determined with nitrogen 

physisorption. 𝑉 is the total sample volume in L and 𝑚 is the mass of the Cr2O3 in the sample in g. The 

adsorption isotherms are then constructed by plotting 𝑞, the adsorbed amount per surface, against the 𝐶𝑠𝑠, 

the steady state protein concentration.  

3.2.c Optical microscopy  

Preliminary work showed that colloidal Cr2O3 dispersions were stabilized by the addition of a protein in 

solution. To further examine this effect, samples were placed under an optical microscope (Nikon Ts2). A 

representative image was taken for a qualitative comparison between samples. The samples were 2 wt% 

Cr2O3 with 1 wt% NaCas in 0.1 M phosphate buffer, 2 wt% Cr2O3 with 1 wt% whey protein in 0.1 M 

phosphate buffer and 2 wt% in 0.1 M phosphate buffer at pH 7.  

3.2.d Dynamic light scattering 

Dynamic light scattering (DLS) was used to determine the particle size and distribution of Cr2O3 particles 

as a function of the pH. Samples were measured with the multi angle particle analyzer (Zetasizer Ultra 

Malvern). To prevent multiple scattering effects, the samples were diluted to 1*10-4 vf (volume fraction) 

with water. This was done by dispersing 1 mg of Cr2O3 in 10 mL of water and sonicating. Measurements 

were performed simultaneously with zeta potential measurements. A DTS1070 sample cell was used, and 

the sample was continuously stirred and pumped around between measurements. Sample was titrated from 

the starting pH to pH 2 using an auto titrator with a step size of 1 pH unit. Titrants used were 0.1 M HCl, 

0.01 M HCl and 0.1 M NaOH. The temperature was set at 25 °C and per pH value three measurements were 

taken for error analysis.   

3.2.e Transmission electron microscopy 

Transmission electron microscopy (TEM) was used to examine the particle size and shape of Cr2O3. The 

effect of adsorbed proteins on Cr2O3 particles was also examined with TEM (Tecnai 20 FEI). Strongly 

diluted samples (1*10-4-1*10-5
 vf) of bare Cr2O3 and of Cr2O3 with protein were deposited on copper grids 

and dried under an IR lamp for 1 hour. Images were analyzed with ImageJ software.  
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3.2.f. Nitrogen physisorption isotherms 

Nitrogen physisorption was used to give a measure of the surface area per gram of Cr2O3 and the porosity. 

A sample of Cr2O3 was heated to 150 °C under vacuum overnight to drive off any remaining moisture. The 

mass of the sample after drying was 2.4178 g. In a vacuum chamber at 77 K nitrogen was added till 𝑝0 was 

reached. The adsorption and desorption isotherms were measured by measuring the pressure in the vacuum 

chamber. The surface area was determined with BET method, where Eq. (9) is fitted on the adsorption 

isotherm where  𝑝 ≪ 𝑝0. The selection area for the fit of the BET isotherm was 0.04 𝑝/𝑝0 till 0.16 𝑝/𝑝0. A 

cross-sectional area for nitrogen of 0.1620 nm2
 was assumed and the equilibrium time between 

measurements was 12 s.  Measurements were performed on a Micrometrics TriStar II Plus.  

3.2.g Zeta potential 

The zeta potential at different pH values was measured through laser doppler electrophoresis with the 

Zetasizer ultra (Malvern). The zeta potential of 0.1 wt% proteins in MilliQ water was measured from pH 7 

to pH 2 in. Dispersion with 1*10-4 vf Cr2O3 were measured in MilliQ and in 0.1 M phosphate buffer. The 

titrants used were HCl solutions with a concentration of 0.1 M and 0.01 M and a 0.01 M NaOH solution. 

Temperature was kept at 25 °C. DTS1070 sample cells were used, and the samples were continuously stirred 

and pumped around between measurements. 5 measurements with 120 s for equilibration between the 

measurements were performed for error analysis. For the double layer approximation, the automated setting 

of the Zetasizer was used.  
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4. Results and discussion 

   4.1 Particle size determination Cr2O3  

For an accurate description of protein adsorption on the surface of Cr2O3 particles, we need to accurately 

know the characteristics of these particles. The main parameters of the colloidal Cr2O3 that we need to 

determine are the size and surface area of the particles. Other characteristics such as the surface charge are 

also of interest and have been studied. We have used three techniques to determine the size and/or surface 

area of the particles: transmission electron microscopy (TEM), dynamic light scattering and nitrogen 

physisorption.  

4.1.a Transmission electron microscopy 

Bare Cr2O3  

Dilute dispersions of Cr2O3 were dried to examine the particles with TEM. The samples were very dilute 

limiting the number of particles captured with TEM. Images of four examples of bare Cr2O3 are shown in 

Figure 5 . 

The particles are relatively compact but not spherical. They can better be described as potato-like, and they 

do not show clear facets. Larger particles are built out of smaller segments and aggregates are comprised of 

smaller loose particles. The segments are not uniformly sized. The dimensions of the shown particles are 

typically in the range between 400 and 2000 nm. . Due to the small number of particles, no PSD from the 

images was determined. To determine a PSD, a large number of particles is necessary to calculate a 

distribution representative of the total population, but the particle and segment sizes are highly polydisperse. 

Clusters of particles are found, which can have formed during the drying process during sample preparation 

or in solution earlier in the sample preparation. TEM images give a qualitative image but fail to give 

quantitative data in our case and furthermore, samples preparation changes the aggregation condition due 

to drying effects.  

Cr2O3 with whey protein  

TEM images of dispersions of Cr2O3 particles stabilized with whey protein were also made. The dispersions 

were made with an excess of protein and subsequently washed. The aim of this was to picture Cr2O3 particles 

covered with a monolayer of protein. We did not expect to be able to distinguish proteins on the surface 

because the proteins have a radius of 3-4 nanometers and a low mass density compared to Cr2O3. Particles 

were sonicated before taking TEM samples to obtain the maximum number of loose particles. More 

representative images of the PSD of Cr2O3 can be made in this manner. In Figure 6 strongly diluted and 

washed Cr2O3 with and adsorbed whey protein layer dispersions are shown. 

Figure 5 TEM images of bare Cr2O3 particles.   
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Figure 6 TEM images of Cr2O3 with adsorbed whey protein. 

The whey protein-covered protein particles have a diameter of hundreds of nanometers. A larger number of 

particles could be imaged than with the bare Cr2O3 particles (Figure 5). The particles are comparable 

particles to those in Fig 5. The particles appear to be in stages of aggregation. From these images, the extent 

of stabilization by protein adsorption cannot be analyzed. TEM images do not give information on 

aggregation state in-situ since samples are diluted and dried before imaging, completely altering the 

environment and therefore the aggregation state of the particles.  

Cr2O3 with NaCas 

TEM images of Cr2O3 particles with a layer of adsorbed NaCas were made. The samples were prepared in 

the same manner as Cr2O3 with whey protein samples. The average particle size found in TEM images of 

Cr2O3 with NaCas was larger than that of Cr2O3 with whey protein. Aggregates found were significantly 

larger. In Figure 7A one such aggregate is shown and in Figure 7B a particle with a suspected protein layer 

is shown.  

 

Figure 7 TEM images of Cr2O3 with NaCas. Figure A shows a large aggregate cluster. Figure B shows a particle with a possible 

protein layer.. 

The aggregate in Figure 7A is built out of smaller units that have a similar size as the particles shown in 

Figure 5. In the left bottom a particle with a fuzzy border is shown. A close up of a similar particle is shown 
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in Figure 7B. The diffuse layer is possibly due to a drying effect, where the caseins form a non-dense layer 

around the particles. It is not clear why only a fraction of the particles shows this effect. In Conclusion, the 

particles have an ill-defined shape, and it is difficult to determine an average size or surface area from TEM.  

4.1.b Dynamic light scattering  

Dilute dispersions (1*10-4 vf) of Cr2O3 were analyzed through dynamic light scattering. The size of particle 

cluster was studied and the effect of the pH on the particle size was examined. In Figure 8 the average 

number weighted particle size against the pH is shown. One point is comprised of three measurements and 

the error bars indicate the standard deviation. There is a slight trend to a larger particle diameter at lower 

pH. The average particle diameter is around 700 nm, this is in the same order of magnitude to findings from 

the TEM images. The particle diameter is an indication of the aggregation state. At lower pH more particles 

have aggregated. Figure 9 shows one number weighted particle size distribution of Cr2O3, the particle size 

distribution has a log-normal shape. 

  

 

4.1.c Nitrogen physisorption  

Nitrogen physisorption was used to determine the total surface area of the Cr2O3 particles. In Figure 10 a 

nitrogen physisorption isotherm is shown of Cr2O3 particles. The BET surface area was determined to be 

2.4590 ± 0.0029 m²/g.  From the specific surface area, the surface area per mass, and the density of Cr2O3 

an estimation of the average particle size can be made when the particles are assumed to be spherical. The 

specific surface area can be written as: 

𝑆𝑆𝐴 =
𝑠

𝑉𝜌
 

( 35 ) 

with the surface area, 𝑠,  is given by: 

𝑠 = 𝜋𝑑2 
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Figure 9  Number weighted PSD of bare Cr2O3 (1*10-4 vf) at pH 6 
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( 36 ) 

and the volume,  𝑉, is equal to:  

𝑉 =  
𝜋𝑑3

6
 

( 37 ) 

Rewriting Eq. (34), the diameter of the average particle can then be calculated with:    

𝑑 =
6

𝑆𝑆𝐴 𝜌
 

( 38 ) 

Here 𝑑 is the diameter of the average particle. Assuming a density of 5.22 g/cm3 for Cr2O3 [67], the average 

particle diameter is 470 nm, which is comparable to results gathered from DLS data. The found average 

particle diameter is slightly smaller than the particle radius found with DLS. Irregularly  shaped particles 

have more surface per area per gram than spherical particles, therefore the calculated diameter of is an 

overestimation of the actual average diameter. In Figure 10 a small amount of hysteresis is observed, 

however the hysteresis is reversed to what is expected for porous materials. The desorption isotherm is 

below the adsorption isotherm. Capillary forces in the pores would retard the release of nitrogen molecules, 

therefore another effect must be responsible. We suspect either a specific interaction of the nitrogen 

molecules with the surface or an experimental error. That being said, the BET surface area is determined 

only with the adsorption isotherm and is therefore still valid.  

 

Figure 10 Nitrogen physisorption measurement of colloidal Cr2O3. 
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   4.2 Zeta Potential measurements   
According to our hypothesis the adsorption of proteins on surfaces is dominated by electrostatic interactions. 

Therefore, we need to characterize the involved surfaces charges. In Chapter 2.2.c we explained how the 

zeta potential can be taken as a measure of the surface charge. The zeta potential was measured through the 

electrophoretic mobility.  

Zeta potential of Cr2O3, whey proteins and NaCas 

The zeta potential of a dilute Cr2O3 (1*10-4 vf) dispersion was measured in MilliQ. Measurement started at 

pH 6 and ended at pH 2. HCl and NaOH were added to change the pH and 5 measurements were performed 

per pH value. The average value with standard variation is shown in Figure 11. The zeta potential of a 0.1 

wt% whey protein and a 0.1 wt% NaCas solution in MilliQ water was measured. Measurements started at 

pH 7.5 and stopped at pH 2. HCl and NaOH were again used to change the pH of the samples. Zeta potential 

measurements are shown in Figure 11. We find an IEP of approximately pH 4.5 for NaCas and pH 4.9 for 

whey proteins. This agrees with values found in the literature [35]. Both proteins have a zeta potential of 

approximately -40 mV at pH 7 and 30 mV at pH 3.  No IEP was found for Cr2O3 but from extrapolating the 

data we expect an IEP at pH 2. The zeta potential is -10 mV at pH 3 and -40 mV at pH 7. This is comparable 

to the measured zeta potential of stainless steel surface in 1 mM KCl  [19]. This supports the use of colloidal 

Cr2O3 as model for the surface of stainless steel. We identify two regions based on our hypothesis. Region 

1 is below the IEP of the proteins, where we except maximum adsorption because the proteins are positively 

charged and the surface is negatively charged. At low pH the surface has almost no charge and a possibly 

lessened effect of the charge can be expected. In region 2, above the IEPs of the proteins, the proteins and 

the surface are both negatively charged and based on our hypothesis weak adsorption is expected.  

 

Figure 11 Zeta potential against pH for Cr2O3 (1*10-4 vf), whey protein (0.1 wt%.) and NaCas (0.1 wt. Dotted lines are only there 

to guide the eye. Each data point is comprised of 5 measurements.  
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For Cr2O3 dispersions, the zeta potential was measured in two different environments. The experiment was 

repeated in a 0.1 M phosphate buffered solution. This increases the ionic strength of the solution and 

therefore shrinks the electric double layer of the Cr2O3 particles. This has an effect on the zeta potential. The 

zeta potential against the pH of Cr2O3 in MilliQ and in phosphate buffer is shown in Figure 12. 

 

Figure 12 Zeta potential against pH for Cr2O3 (1*10-4 vf) in MilliQ and Cr2O3 (1*10-4 vf) in 0.1 M phosphate buffer. Dotted lines 

are only there to guide the eye. Each data point is comprised of 5 measurements. 

The IEP of Cr2O3 in 0.1 M phosphate buffer is found at approximately pH 3.7. The zeta potential is increased 

with 15 mV for the entire pH range compared to Cr2O3 in MilliQ. The shape of the zeta potential plot is 

preserved. A change in the iconic strength of the dispersion has an effect on the zeta potential of the 

components but from the theory described in Chapter 2.2.c we do not expect a change in the IEP. Only a 

chance in the magnitude of zeta potential is expected based on Eq (6). Therefore, we suspect that a specific 

interaction of phosphate ions with Cr2O3 causes the shift in IEP. However, the regions that identified earlier 

in this paragraph are still valid and therefore we do not expect this change to play a significant role on the 

adsorption.  

   4.3 Colloidal stability measurements  
The stability of colloidal dispersions can be characterized by the average size of the colloidal entities, 

relatively small in the case of separate colloidal particles, and relatively large in the case of aggregates of 

those same particles, resulting from poor colloidal stability. Therefore, by measuring the average colloidal 

size of particle or aggregates size the aggregation state of a sample can be followed. Proteins are known to 

have a stabilizing effect on colloidal dispersions [53]. This effect can then be used to assess the protein 

adsorption by studying the stabilizing effect.  

4.3.a Optical microscopy  

Stabilization of Cr2O3 dispersions were examined through optical microscopy. Visual observations showed 

already that the addition of protein solution to colloidal dispersions greatly increased the stability. In Figure 

13 photos after vortex mixing a sample and after 30 minutes are shown.  
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Figure 13 Pictures of Cr2O3 dispersions. picture on the left is a freshly dispersed sample. Three pictures on the right show samples 

after 30 minutes. Sample 1 only contains Cr2O3 (2wt%), sample 2 contains NaCas and Cr2O3 (1 wt%, 2 wt%) and sample 3 

contains whey proteins and Cr2O3 (1 wt%, 2 wt%) 

In Figure 13 a completely opaque dispersions is shown as the starting condition. After 30 minutes the 

dispersion containing only Cr2O3 shows an almost completely clear supernatant and a separate sediment. 

Cr2O3 with whey protein and Cr2O3 with NaCas have a thinner colorless layer of fluid on top of a second a 

still fully opaque layer. The sample containing only Cr2O3 has fully sedimented after 30 minutes while the 

samples with added protein have not sedimented. Sedimentation of colloidal dispersions is hastened by the 

aggregation of the colloids. Therefore, we conclude that the addition of protein to a Cr2O3 halts 

aggregation.  

Optical microscopy images were made of the previously mentioned samples. Samples containing 2 wt% 

Cr2O3 and 0.5 wt% of whey protein or NaCas are shown in Figure 14.  

 

Figure 14 Optical microscope images of Cr2O3 dispersions with and without protein. The pH of dispersions is 7. Scale is bar is 

50 μm.  

Large aggregates are visible in samples containing only Cr2O3. Samples containing Cr2O3 and whey 

protein or NaCas consist of smaller aggregates. pH was 7 for all samples, showing the proteins are able to 

stabilize  even at pH above both the IEP of protein and the IEP of Cr2O3.    

4.3.b Analytical centrifugation  

Slow analytical centrifugation was used to quantify the colloidal stability of Cr2O3 protein mixtures. The 

LUMiSizer was used to assess the stability of colloidal dispersions with added protein at different pH values. 

Custom Python scripts were used to analyze the LUMiSizer data. From sedimentation plots, sedimentation 

velocity distributions were found. These distributions were converted to hydrodynamic radii by assuming 

that the only forces acting on the particles are the centrifugal force and the Stokes’ drag. Subsequently these 

distributions are fitted on a log-normal distribution in Excel. This allowed us to indicate the aggregation 

state with an average particle size and a standard deviation. This was done for Cr2O3 mixed with NaCas and 
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for Cr2O3 with whey proteins. Bare Cr2O3 sedimented too quickly to be analyzed with the LUMiSizer. Plots 

of individual distributions are included in Appendix III. 

In Figure 15, particle size distribution of Cr2O3 stabilized with NaCas is plotted against the pH. Dispersions 

were made with 2 wt% and 0.5 wt% NaCas. 0.5 wt% was chosen because earlier work showed that at 

0.5wt% a maximum in stabilization effect was reached. We found an average particle radius of 600 nm for 

particles between pH 3 and pH 6. At pH 6.5 and pH 7 the average particle radius is between 400 and 500 

nm. The error bars shown indicate the width of the particle size distribution as explained in Chapter 2.3.b. 

The width of the particle size distribution is practically constant along the measured pH range. Compared 

to the particle diameter measured with DLS, which also assumes the Stokes’ radius, the particles are 2 times 

larger than loose particles. This indicates that we are not looking at large aggregates but minimally 

aggregated particles. However, the DLS particle size distribution are number weighted as opposed to the 

transmission weighted LUMiSizer PSDs. Transmission scales with volume and volume weighted PSDs 

report a larger average size. This effect could contribute to found difference in size. We find no strong 

dependence of the particle size on the pH of NaCas covered Cr2O3 particles. We conclude that NaCas 

effectively covers Cr2O3 particles throughout the measured pH range and halts aggregation through 

adsorption.  

 

Figure 15 Average particle cluster radius against the pH. All samples contain 2 wt% Cr2O3 with 0.5 wt% NaCas. Error bars indicate 

width of the particle size distribution. 

The same experiment was performed with whey protein. In Figure 16 the average found particle radius is 

plotted against the pH. Dispersions were made with 2 wt% Cr2O3 and 0.5 wt% whey protein. The average 

particle radius is in this instance not constant throughout the measured pH range. We find an average particle 

of approximately ~700 nm below pH 4 and at average particle radius of 400 nm at pH 7. The radius decreases 

gradually between pH 7 and pH 3. The standard deviation is nearly constant. The samples are as polydisperse 

at all measured pH points. The higher average particle radius found at low pH indicates that there are 

aggregated particles. The adsorption of protein halts aggregation, therefore we deduce that less adsorption 

happens at lower pH. At pH 7 a small average particle radius is found, indicating sufficient adsorption of 

whey protein to stabilize the Cr2O3 dispersions. Nevertheless, even though at pH 7 both the whey protein 

and the Cr2O3 have a negative zeta potential. The rise in average particle size at low pH can also be explained 

by the lower zeta potential of Cr2O3. Colloidal dispersions are unstable if the colloids have a low zeta 

potential [44].   
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Figure 16 Average particle cluster radius against the pH. All samples contain 2 wt% Cr2O3 with 0.5 wt% whey protein. Error bars 

indicate the width of the particle size distribution. 

   4.4 Adsorption isotherms  
Adsorption isotherms were measured of NaCas and whey protein on Cr2O3 at 20 °C. The amount of protein 

in solution was measured and compared to the amount of added protein to determine the adsorbed amount. 

The concentration was determined through UV-Vis spectroscopy. The Cr2O3 powder was found to be 

contaminated with Cr(VI). Cr(VI) is present at low concentration and normal pH ([Cr] < 1mM, 3 < pH) as 

two hydration forms, HCrO4
- and CrO4

2- which both strongly absorb light in the UV-Vis region[65], [66]. 

In Appendix I is explained how we filter out the absorption by contaminants with custom Python scripts 

based on a classical least squares method.    

4.4.a Adsorption isotherms of NaCas onto Cr2O3 

The adsorption of NaCas on Cr2O3 was measured at 20 °C at pH 3, pH 5 and pH 7 and is presented in Figure 

17. Substantial adsorption was found at all three pH values. A maximum adsorption of ~3 mg/m2 was 

reached at a free protein concentration of roughly 200 mg/L for all samples.  A Langmuir type isotherm was 

fitted on the adsorption data. With an assumed irreversible adsorbed amount of 1.5 mg/m2 and an equilibrium 

constant, 𝑘𝑒𝑞, of 1700 M-1, represented by the dotted line in Figure 17. Fit of the Langmuir adsorption 

isotherms is not good enough to put physical meaning to the equilibrium constant. In addition the 

equilibrium constant would only provide meaningful insights if all conditions for the Langmuir isotherms 

were met as explained by Latour [68]. The maximum adsorbed amount corresponds to one monolayer of 

sodium caseinates.  We confirmed this with following rough calculation. We assume an average weight of 

22.9 kDa based on the weights on the individual caseins and their prevalence [35]. For the radius we use 

that α and β caseins have a hydrodynamic radius between 2.9 nm and 3.9 nm depending on the pH[69]. 

Moreover, we assume an assumed approximate hydrodynamic radius of 1.8 nm [70]and HCC packing, 

which has a 2D packing efficiency of 90.64%, and an average weight of 22.9 kDa. The amount adsorbed in 

g/m2 is calculated with: 

𝑞 =
𝑠 ∗ 𝑃𝐸

𝜋𝑟2
∗ 𝑚 

( 39 ) 
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Here 𝑠 is the surface and is set at 1 m2, 𝑃𝐸 is the packing efficiency, 𝑟 is the radius of the protein and 𝑚 the 

mass per protein. We find an expected monolayer of ~3.4 mg/m2. Considering the assumptions made, this 

is in good agreement with the found value of ~3 mg/m2.  Furthermore, no effect of the pH on the adsorption 

isotherms was observed. Which means adsorption occurs even when the zeta potential measurements 

indicate that the sign of the charge on the surface is the same. We address the implications of these findings 

in the discussion in more detail. 

4.4.b Adsorption isotherms of whey proteins on Cr2O3 

The adsorption of whey proteins was measured at pH 3, pH 5 and pH 7 at 20 °C. In Figure 18 the adsorption 

isotherms are shown. Absorption at pH 5 and pH 7 is strong and reaches a maximum after at a free protein 

concentration of ~100 mg/L. Maximum adsorption is approximately 2.5 mg/m2. Adsorption at pH 3 does  

not reach a maximum in the studied protein concentration range. The dotted lines are Langmuir type 

isotherms, where for pH 5 and pH 7 an irreversible adsorbed of 1.5 mg/m2 was assumed and an equilibrium 

constant of, 𝑘𝑒𝑞, of 1700 M-1. For pH 3 the dotted line is a Langmuir isotherm with no assumed irreversible 

adsorption and an equilibrium constant of 150 M-1. The maximum adsorption of 2.5 mg/m2 corresponds to 

one monolayer according to calculations done by Wahlgren et al. where they calculate that a HCC packed 

Figure 17 Adsorption isotherms of NaCas onto Cr2O3. Adsorbed amount against the steady state protein concentration. The 

dotted lines represent a Langmuir type adsorption isotherm with an assumed irreversible adsorbed 1.5 mg/m2 of NaCas. 

Measured at pH 3, 5, and 7. T = 20 °C 

Figure 18 Adsorption isotherms of whey proteins onto Cr2O3. Adsorbed amount against the steady state  protein concentration. 

The dotted lines represent a Langmuir type adsorption isotherm.  For pH 5 and pH 7 with an assumed irreversible adsorbed 1.5 

mg/m2 of NaCas. Measured at pH 3, 5, and 7. T = °20 C 
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monolayer of pure β-lactoglobulin is 2.7 mg/m2 [21]. We find identical adsorption behavior at pH 5 and pH 

7, even though we know from zeta potential measurements that the surface charge of whey proteins Is 

strongly negative at pH 7 and close to neutral at pH 5 while the surface is strongly negatively charged at 

both pH. We therefore have adsorption regardless of the same sign surface charge. At pH 3 we expect 

stronger adsorption based on the surface charge; however, the opposite is observed. β-lactoglobulin, the 

main constituent of whey protein, is present as a dimer or as monomer depending on the pH. α-lactalbumin 

is a monomer at all measured pH values. At low pH the monomer of β-lactoglobulin is more prevalent than 

the dimer [34]. The monomer packing is less efficient than the dimer packing on the surface assuming that 

proteins arrive randomly and subsequentially at the surface. Monomers exclude more surface than dimers. 

This gives an explanation to the found lower adsorption at pH 3. 

 

Figure 19 Adsorption of whey protein at pH 3 on Cr2O3. In the left figure the dotted line represents a Langmuir isotherm. In the 

right figure the dotted line represents a Freundlich isotherm. T = 20 °C 

In Figure 19 the adsorption of whey protein at pH 3 is shown again. This time two different isotherms are 

used to fit the adsorption data. The figure on the left uses the Langmuir adsorption isotherm while the figure 

in the right uses a Freundlich isotherm. The data points show a large deviation from the fitted isotherm for 

the Langmuir isotherm, but they are however fitted with great accuracy on the Freundlich isotherm. As 

explained in Chapter 2.1.b Langmuir type isotherms can only be properly applied when the conditions on 

which the theoretical model is based are met. In our hypothesis we state that we expect that electrostatic 

interactions play an important role in the adsorption of proteins on a surface. This a priori rules out 

Langmuir type adsorption. The adsorption sites are not identical due to the lateral electrostatic interaction 

with already adsorbed proteins. This means that the previously mentioned equilibrium constant found by 

fitting Langmuir isotherms does not hold a physical meaning apart from fitting a curve on the data. With a 

low equilibrium constant, the deviation from Langmuir type adsorption becomes clear. Freundlich type 

adsorption assumes heterogenous adsorption sites, which concurs with our molecular picture. Adsorbed 

proteins influence the adsorption energy of the next protein that adsorbs. Which makes the Freundlich 

isotherm more suited to fit our data. However, as mentioned in Chapter 2.1.b the equilibrium constant, 𝐾, 

and the correction factor, 𝑛, only have an empirical basis. Therefore, the Freundlich isotherms only confirms 

our suspicions that we are dealing with heterogenous adsorption sites, but the equilibrium constants lack a 

physical meaning because the Freundlich isotherm is not based on physical model.  
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4.4.c Reversibility of adsorption  

The reversibility of adsorption of NaCas and of whey proteins onto Cr2O3 was tested by washing 

dispersions of Cr2O3 with adsorbed protein with fresh MilliQ water at pH 7 and analyzing the protein 

content in the runoff. Three washes were performed, one after an hour, another after two hour and a final 

wash after waiting overnight. The reversibility of adsorption is shown in Figure 20, the amount of protein 

is normalized to adsorbed amount on the surface before washing.  

 

Figure 20 Reversibility of adsorption. The amount of protein on the surface of the Cr2O3 compared to unwashed particles. 1st 

wash is after one hour, 2nd wash is after another hour and 3rd wash is after soaking overnight. 

For NaCas we find that after washing once with MilliQ water pH 7, 12% of the NaCas is removed. 

Subsequent washing removes another 2%, the third wash removes no measurable amount of protein. For 

whey protein the first wash removes 12% of the adsorbed protein, the second wash removes another 1 %, 

and the third wash does not remove a measurable amount of protein. For both Cr2O3 protein mixtures almost 

90% of the protein was found to be irreversible adsorbed onto the surface of Cr2O3. The irreversibility of 

the adsorption is thought to be due to the high adsorption energy and reorientation of the proteins on the 

surface[16], [71]. This is line in with our finding of a rapid formation of a monolayer on the surface, 

indicating a high adsorption energy. Furthermore, the irreversibility of the adsorption also validates our 

suspicion that a Langmuir type isotherm, although often used for protein adsorption, is not suited to describe 

the adsorption behavior of NaCas and whey protein onto Cr2O3. To accurately describe adsorption with 

Langmuir type isotherm the adsorption must be reversible.  

   4.5 Discussion 
This research was prompted by earlier work on the pH dependence of the fouling of milk proteins on 

stainless steel surfaces. In relevant conditions, 90 °C 2 wt% protein, fouling was found to be maximal 

between pH 4 and pH 5.  Zeta potential measurement confirmed that is the region where the signs of the 

surface charge are opposite, with a negatively charged surface and positively charged proteins. Leading to 

the hypothesis that electrostatic interactions dominate the adsorption behaviors of NaCas and whey proteins 

onto stainless steel surfaces. However, for NaCas no pH dependence was found in colloidal stability 

measurements and no pH dependence was found on the adsorption measured through UV-Vis spectroscopy. 

Similar finds were made for the adsorption behavior of whey proteins, only lessened adsorption was found 

at low pH. Our hypothesis in combination with the measured zeta potentials predicted a maximum 
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adsorption between the IEP of the protein and IEP of Cr2O3.  No such maximum  was not found for either 

NaCas or whey proteins. 

We have identified strong adsorption in pH 

regions where because of the overall surface 

charge we would not expect this. Therefore, we 

conclude that the adsorption behavior of whey 

protein and NaCas is not dominated by 

electrostatic interactions. Other explanations are 

necessary to rationalize the observed adsorption 

behavior. Earlier works on the adsorption of β-

lactoglobulin have already determined that 

adsorption is found on surface with same sign of 

charge [21], [23], [72]. They noted that the 

charge distribution is not uniform on the surface 

of a protein. On β-lactoglobulin at pH 7, 

although the zeta potential is negative, there are 

positively charged regions [23]. Globular 

proteins commonly have regions with different 

charges [28]. Unfolded proteins such as caseins 

possess differently charged residues as well [18]. 

Because the proteins are in solution, they are able 

to freely rotate. Our new hypothesis then is that 

proteins reorient themselves in space to minimize the electrostatic repulsion with the surface for same sign 

adsorption. Schematically drawn in Figure 21 for whey proteins and NaCas in Figure 21. 

If the reorienting of proteins to minimize/maximize electrostatic interactions were the only reason for the 

adsorption we would still expect an effect of the pH. Therefore, the driving force is then not the electrostatic 

attraction between the surface and the protein but hydrophobic interactions with the solvent [16] and the 

Van der Waals interaction with the surface. Which can be expected because of the hydrophobic nature of 

NaCas [18] and the strong Van der Waals interactions with Cr2O3 discussed in Chapter 2.2.b. Furthermore, 

simulations for adsorption of β-lactoglobulin onto gold surfaces at low pH showed Van der Waals forces 

caused the adsorption [73]. Explaining the pH independent formation of a monolayer. The weaker 

adsorption of whey protein is then not explained by a difference in zeta potential but is caused by the 

presence of β-lactoglobulin monomers at low pH.  

This research was performed on two types of milk proteins. We think these results can generalized to a larger 

class of proteins. The description of the adsorption behavior of whey proteins and NaCas is not unique to 

these specific proteins. In the introduction the importance of the protein transition was stressed. We expect 

plant-based globular proteins or unfolded proteins to show the same type of behavior. However, protein 

remain a complex class of molecules and it is thus difficult to make predictions. 

  

Figure 21 Schematic drawing of how proteins reorient themselves 

to minimize electrostatic repulsions on a surface with same sign of 

charge. 
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5. Conclusion and Outlook 
The role of electrostatic interactions in the adsorption of whey proteins and NaCas onto colloidal Cr2O3 has 

been investigated through measuring the change in colloidal stability and through the construction of 

adsorption isotherms at 20 °C. Via zeta potential measurements of IEP ~2 pH for Cr2O3, 4.6 pH for NaCas 

and 4.9 pH for whey proteins. Maximum adsorption between the IEPs of the protein and Cr2O3 was 

expected, where the sign of charge is opposite. Experiments showed that adsorption of protein was not 

dependent on the pH. 

For NaCas, the adsorption and resulting stabilizing properties were not found to be dependent on the pH. 

Between pH 3 to pH 7 a monolayer of protein was adsorbed. The monolayer was found to be approximately 

90% irreversibly bound to surface. Strong adsorption of NaCas onto Cr2O3 was found even when the zeta 

potential indicates the same sign of surface charge. Therefore, we conclude that the adsorption of NaCas is 

not dominated by electrostatic interactions. 

In the case of whey protein, the adsorption and resulting stabilizing properties were found to be less at low 

pH. Adsorption isotherms showed that a monolayer of whey protein adsorbed at pH 5 and pH 7 whereas at 

pH 3 adsorption was weaker. We explain this difference by the presence of β-lactoglobulin monomers at pH 

3 and dimers at higher pH. Monomers have a less efficient packing, explaining the lessened   adsorption. 

The main conclusion is once again that electrostatic interactions are not the dominant factor in adsorption. 

We hypothesize that electrostatic repulsions between the negatively charged surface of colloidal Cr2O3 and 

the overall negative surface charge of protein above IEP are minimized by the ability of proteins to direct 

positively charged or neutral regions to the surface. The driving force of protein adsorption is then not 

electrostatic attraction but hydrophobic interactions.  

In future research, the hypothesis of protein reorientation might be validated with circular dichroism 

spectroscopy [74]. If our hypothesis is correct, the orientation of adsorbed protein on the surface should 

differ above and below the IEP. Another suggestion for future work is to vary the ionic strength. In this 

research experiments have been conducted in mostly MilliQ water with added HCl and NaOH to change the 

pH. In phosphate buffers, different IEP were found, although it is not clear whether this was due to the 

higher ionic strength of specific adsorption of phosphate ions. Lastly, in the introduction the relevance of 

this research was said to not only be for cow’s milk but also for plant-based milks. Our findings on the 

adsorption of milk proteins on Cr2O3 give strong indications that non-milk proteins are expected to show 

similar behavior, but it would be informative to study these.  
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Appendix I 

Data processing LUMiSizer data 
Based on the relation between particle size and sedimentation velocity explained in Chapter 2.3.b. We 

have written Python code that is able to transform raw LUMiSizer data to custom sedimentation plots and 

particle size distributions. The found particle size distributions are plotted on log-normal distribution in 

Excel. Some parts are condensed for readability.  

 

Summary  

Time resolved transmission data along the LUMiSizer cuvette is transformed optical density and presented 

in a more comprehensible manner. On the basis of sedimentation plot the sedimentation velocity of fractions 

of optical density are determined. We find a range of sedimentation velocities. The error for these velocities 

is determined. By taking the derivative of the change of the sedimentation velocity and plotting it against 

the sedimentation velocity we find a distribution. The sedimentation velocity is converted to a particle radius 

by assuming only stokes drag and the centrifugal force work on the particle. These distributions are then 

exported to excel for further analysis.  

Python implementation  

The LUMiSizer produces time resolved transmission plots with the included STEP software, shown in 

Figure 22. Information about the particle size and the size distribution is present in this graph. Custom 

Python is used to transform these graphs into for us a more usable form.  

The raw LUMiSizer data is available in .txt files. To facilitate the data processing in Python the data is 

first saved as .CSV files. The transmission values are stored in columns with the time as the header and 

the rows are the position in the cuvette in mm.  

 

 

 

Figure 22 Time resolved transmission plot. The transmission is shown on the y-axis and the 

position in the cuvette on the x-axis. Every line is one moment in time and the green lines are the 

last transmissions to be measured. 
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For the analysis in Python, we start by importing the required packages:  

 

import csv 

import numpy as np 

from numpy import gradient 

import matplotlib.pyplot as plt 

import pandas as pd 

import math 

import os.path 

 

 

The final step in the data processing is the transformation of sedimentation velocity to a hydrodynamic 

radius. We define the necessary constants here: 

 

# Constants 

n = 0.0010016 * 1.2 # (pa*s) viscosity water with ~1 wt protein at 20 C  

pCr = 4220 # kg/m^3 buoyant mass Cr2O3 

rpm = 400 # rpm lumisizer 

pi = math.pi 

w = rpm /60*pi*2 # rad/s omega 

w2r = w**2 * 0.1293 # radius is the radius of the Lumisizer 

 

 

The files as .csv file are loaded into Python. This includes reference files used to determine absorbance form 

transmission data. File paths for the storage of plots is also defined and lists are defined. 

 

file_path = 'U:\My Documents\Python\csv files' 

file_path2 = 'U:\My Documents\Python\\figuresSFIT' 

file_path_refW = 'U:\My Documents\Python\csv files\water ref pH7.csv' 

file_path_refB = 'U:\My Documents\Python\csv files\Black paper ref 255.csv' 

 

# 'U:/Documents/Python/'     # directory with the measured file 

input_file_name = "Cr2O3 w 0.25wt% Bipro"   # LUMiSizer exported txt file 

input_file_name_incl_path = os.path.join(file_path, input_file_name + ".csv") 

 

output_lum_derivative_plot_jpg = os.path.join(file_path2, input_file_name + 

"_lum_derivative_plot.jpg") 

 

number_of_profiles = 255 # total number of profiles 

final_time = 0 # starts of counter for time 

skipping_nr = 1 # determines how much of the data is used. if 1 all dat is 

used, if 2 half is skipped. 

v_list = []  

r_list = [] 

v_error = [] 

dvdz_list = [] 

z_min_list = [] 

z_min = 0 
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The particle size distribution is found by examining the distribution of sedimentation velocities. First the 

sedimentation velocities are calculated from the LUMiSizer data. This is done by calculating the velocity 

for a fraction of the absorbance values and looping the code till all relevant absorbance values have been 

examined.  We define the loop as follows: 

 
 
while True: 

    z_min = z_min + 0.02 

    # + number determines step size of the calculation 

    z_max = z_min + 0.05 

    # + number defines area over which points are taken for a 

 

    def absorbance_plot():… 

 

    absorbance_plot() 

    if z_max > 1.1: 

        break 

 

 
Where z_min the is lower limit of the absorbance and z_max the upper limit of the absorbance for the 

selected fraction. The z_min = z_min + 0.02 determines the step size between fractions and z_max = 
z_min + 0.05 determines the size of the fraction. The loop ends when the max adsorption is larger than 

1.1.  
 

For the absorbance plot we first define the area on which the sedimentation velocity is calculated. As 

described in Chapter 2.3.b we use the sedimentation velocity to calculate the hydrodynamic radius. For this 

calculation the assumption is made that only the Stokes’ drag, and centrifugal force are relevant. This 

assumption breaks down if the dispersions is too dense. Selection border is chosen to account for this. Here 

we define these selection borders: 
 
 

def absorbance_plot(): 

 

# lists are defined  

x_list = [] 

y_list = [] 

z_list = [] 

x_list_fit = [] 

y_list_fit = [] 

 

# selection borders for measuring time, position, and absorption. 

# the slope should be between the y_min and y_max, this depends on how far the 

tube was filled and the speed 

# of sedimentation 

 

x_min = 0 

x_max = 2500 

y_min = 118 

y_max = 125 

fit_n = 0 

sum_x = 0 

sum_y = 0 

sum_xy = 0 
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sum_x2 = 0 

sum_d2 = 0 

 
Next the transmission from reference measurements is determined. To transform the measured 

transmission of the sample to absorbance or more strictly speaking optical density the transmission must 

be scaled. The transmission of pure water is defined as a 100% transmission and the transmission of 

cuvette filled with a cut-to-size black piece of paper is defined as 0% transmission. The absorbance is then 

calculated with:  

𝐴 =  −𝑙𝑜𝑔 (
𝑇𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑇𝑝𝑎𝑝𝑒𝑟

𝑇𝑤𝑎𝑡𝑒𝑟 − 𝑇𝑝𝑎𝑝𝑒𝑟
) 

( 40 ) 

 
Where the 𝑇𝑠𝑎𝑚𝑝𝑙𝑒 are the transmission values of the sample. 𝑇𝑝𝑎𝑝𝑒𝑟 is the transmission 0% transmission. 

𝑇𝑤𝑎𝑡𝑒𝑟 is the transmission of pure water. The .csv files are loaded in, and the first 10 lines are skipped as 

they contain information on the SOP. The transmission values are read out for all profiles and saved. 
 
 

counter = 0 # this loads in the 100% transmission, pure water, reference 

with open(file_path_refW) as f: 

    reader = csv.reader(f, delimiter=";") 

    i = 0 

    for i in range(1, 11): # this skips the first ten rows 

        next(reader) 

        i = i +1 

    div_ten = skipping_nr - 1   

 

    for row in reader: 

        div_ten = div_ten + 1 

        if div_ten == skipping_nr: 

            counter = counter + 1   

            profile_nr = 0 

            while profile_nr < number_of_profiles: 

                profile_nr = profile_nr + 1 

                transmission_water = float(row[profile_nr]) 

 

counter = 0 # this loads in the 0% transmission, black paper, reference 

with open(file_path_refB) as f: 

    reader = csv.reader(f, delimiter=";") 

    i = 0 

    for i in range(1, 11): 

        next(reader) 

        i = i + 1 

    div_ten = skipping_nr - 1   

 

    for row in reader: 

        div_ten = div_ten + 1 

        if div_ten == skipping_nr: 

            counter = counter + 1  # counter = 0 at position 103.6893; counter 

= 1871 bij position 130.0096 

            profile_nr = 0 

            while profile_nr < number_of_profiles: 

                profile_nr = profile_nr + 1 

                transmission_paper = float(row[profile_nr]) 
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The sample data is now loaded in. With Eq. (40) the transmission values are converted to absorbance 

values:  

# first counter loads a v and b value so that the second counter can make an 

error calculation 

counter = 0 

with open(input_file_name_incl_path) as f: 

    reader = csv.reader(f, delimiter=";") 

    i = 0 

    for i in range(1, 11): 

        next(reader) 

        i = i + 1 

    div_ten = skipping_nr-1    # slechts 1 op de 10 punten bewaren, zodat de 

berekening sneller gaat 

    for row in reader: 

        div_ten = div_ten+1 

        if div_ten == skipping_nr: 

            position = float(row[0]) 

            y = position 

            counter = counter+1     # counter = 0 at position 103.6893; 

counter = 1871 at position 130.0096 

            profile_nr = 0 

 

            while profile_nr < number_of_profiles: 

                profile_nr = profile_nr+1 

                x = profile_nr*final_time/number_of_profiles 

                transmission = float(row[profile_nr]) 

                absorbance = -math.log10((transmission - transmission_paper) / 

(transmission_water - transmission_paper)) 

                z = absorbance 

                 

 

 

The absorbance is saved as z, this value is tied to a specific x and y coordinate. In order to generate an 

absorbance plot the values are added to a list and plotted with a scatter plot. The z values are plotted with a 

colormap:  

 

                x_list.append(x) 

                y_list.append(y) 

                z_list.append(z) 

 

plt.scatter(x_list, y_list, s=10, c=z_list, vmin=0, vmax=1.3, 

cmap='Spectral_r') 

plt.title(input_file_name) 

plt.xlabel("time (s)") 

plt.xlim(0, final_time) 

plt.ylabel("radial position (mm)") 

plt.ylim(130, 105) 

cbar = plt.colorbar(label="Absorbance", orientation="vertical", shrink=0.75) 

 

plt.savefig(output_lum_absorbance_plot_jpg) 

plt.show() 

 

 



46 

 

This generates absorbance plot as shown in Figure 23. The sedimentation of a sample can be interpreted in 

a more intuitive manner compared to original LUMiSizer plots. The sharp difference between the area 

with high absorbance and low absorbance is the sedimentation front.  

 

 

Figure 23 Absorbance plot generated with Python code. The y-axis is the position in the cuvette. The x-axis is the time and the 

absorbance is represented with a colormap. When the absorbance is high, there are still many particles present at the point and 

time in the cuvette. 

For further data analysis sedimentation velocities are derived from the presented plot. The velocity is the 

slope of a fraction absorbance values. In Figure 23 a distinct fraction is depicted as a noticeable yellow 

line, with an absorbance value of 0.6. The slope of the yellow line is the velocity of that fraction.  

For the determination of the sedimentation velocities per absorbance fraction the Python script continues 

at z = absorbance. If the data falls within earlier determined selection criteria it is added to a list. 

        # if values meet criteria below, they are added to a list and the 

slope of the plot through these points is determined   

        if x_min < x < x_max: 

            if y_min < y < y_max and z_min < z < z_max: 

                x_list_fit.append(x) 

                y_list_fit.append(y) 

                fit_n = fit_n+1 

                sum_x = sum_x+x 

                sum_y = sum_y+y 

                sum_xy = sum_xy + x * y 

                sum_x2 = sum_x2 + x * x 

 

        x_list.append(x) 

        y_list.append(y) 

        z_list.append(z) 

div_ten = 0 

 

v = ((fit_n * sum_xy) - (sum_x * sum_y)) / ((fit_n * sum_x2) - (sum_x * 

sum_x)) 

b = ((sum_x2 * sum_y) - (sum_x * sum_xy)) / ((fit_n * sum_x2) - (sum_x * 

sum_x)) 
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where v is the sedimentation velocity and b the intercept with y-axis. We use here a first order least-

squares method to determine the slope based on the plotted points [75].  

The error of the sedimentation velocity and y-intercept is calculated by repeating the calculation and 

calculate the difference from every fitted point. The calculation is repeated in the loop and altered from the 

line: if y_min < y < y_max and z_min < z < z_max: as shown below: 

 

   …….. 

 

                        if y_min < y < y_max and z_min < z < z_max: 

 

                            sum_d2 = sum_d2 + (y-v * x – b) ** 2 

 

        div_ten = 0 

 

sum_d2 = sum_d2 / (fit_n – 2) 

s_v = math.sqrt((sum_d2 * fit_n)/((fit_n * sum_x2) - (sum_x * sum_x))) 

# error bars for a (sedimentation speed in mm/s) 

s_b = math.sqrt((sum_d2 * sum_x2)/((fit_n * sum_x2) – (sum_x * sum_x))) 

 

v = ((fit_n*sum_xy)-(sum_x*sum_y))/((fit_n*sum_x2)-(sum_x*sum_x)) 

b = ((sum_x2*sum_y)-(sum_x*sum_xy))/((fit_n*sum_x2)-(sum_x*sum_x)) 

 

v_error.append(s_v) 

v_list.append(v) 

 

 

The velocity is converted to a hydrodynamic radius with Eq. (17) from Chapter 2.3.b.  

 

r = (math.sqrt(((9 / 2) * ((n * (v / 1000)) / (pCr * w2r)))) * 1e9) 

r_list.append(r) 

z_min_list.append(z_min+0.05) 

 

 

The loop is stops when z_max > 1.1 . The distribution is then determined by taking the derivative of 

the velocities.  

 

print('r_list =', r_list) 

 

dv = gradient(v_list) 

dz = gradient(z_list) 

dzdv = dz/dv 

 

print('dz/dv =', dzdv) 

 

plt.plot(r_list, dzdv) 

plt.title(input_file_name) 

plt.xlabel("Radius (nm)") 

plt.ylabel("dv") 
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plt.savefig(f'U:\My Documents\Python\\figuresSFIT\\{input_file_name} 

output_lum_derivative_plot.png') 

plt.show() 

 

 

The list with the calculated radii and the probability density (dz/dv) are exported to excel and analyzed 

further as described in Chapter 2.3.b. in Excel.  
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Appendix II  

Data processing UV-Vis spectroscopy  
The theory behind separating absorption spectra is explained in Chapter 2.3.d. Here the implementation of 

this theory with Python code is shown. Some parts are condensed for readability. For more information the 

blog post of Nicolas Coca on quantitative spectral analysis is recommended [63].  

 

Summary  

Reference spectra of proteins and Cr(VI) are loaded into Python with known concentrations. A horizontal 

baseline component is loaded in and the sample spectrum is loaded in. All spectra are adjusted to have the 

same wavelength range and formatting. Reference spectra and baseline are used to generate a spectrum. 

With NNLS (non-negative least squares) the calculated spectrum is fitted on the sample spectrum by varying 

the concentrations of the reference spectra. The NNLS opposed to CLS does not allow negative components. 

Both the fitted calculated spectrum and the sample spectrum are plotted to visually inspect the fit. If fit is 

satisfactory, concentrations of the components are taken as the concentration of the components in the 

sample.  

Python implementation 

We start by loading the necessary Python packages:  

 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

from numpy.linalg import inv 

import os 

import scipy.optimize as opt 

 

 

For ease-of-use toggles switching between NaCas and whey protein are implemented. A toggle for the 

correction of the formatting of the reference spectra is used as well:  

 

# Create a toggle to switch between components C and D. now the switch between 

protein ref 1 and 2 is manual 

use_component_C = False  # Set to True to use component C (Bipro), False to 

use component D (NaCas) 

 

# turn one if the sample of interest and protein reference have increasing 

wavelength 

use_increasing_wavelength_order = False 

 

 

The quality of the fit was improved by limiting the area of interest to between 250 and 500 nm. Below 250 

nm the absorption became too strong, and no peaks of interest are above 500 nm. Sample file is loaded in 

and formatting and selection of x_range is applied:  

 

# X-axis (Wavelengths) 

# the range of the calculated is defined here, (end, start, number of points 
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between) 

x_range = np.linspace(500, 250, 251)  # Define your desired x_range 

# Define the desired wavelength range with 2 nm intervals 

new_wavelength_range = np.linspace(500, 250, len(x_range))  # Ensure same 

length as x_range 

new_wavelength_range = new_wavelength_range[::-1]  # Make sure it's in 

decreasing order 

# Modify your code to filter out redundant data points 

 

 

csv_file_path = 'U:\My Documents\Python\csv files\sample.csv' 

 

dataS = pd.read_csv(csv_file_path, delimiter=';', decimal=',') 

sample_spectrum = dataS.iloc[:, 1].values 

wavelength_range = dataS.iloc[:, 0].values 

 

if use_increasing_wavelength_order: 

    sample_spectrum = sample_spectrum[::-1] 

    wavelength_range = wavelength_range[::-1] 

 

# Extract the file name from the path 

file_name = os.path.splitext(os.path.basename(csv_file_path))[0] 

 

# Create a mask to select data points that match the x_range wavelengths 

mask = np.isin(wavelength_range, x_range) 

 

adjusted_sample_spectrum = sample_spectrum[mask] 

 

 

The non-negative least squares formula used to find the concentration of the reference components in the 

sample spectrum is then defined:  

 

def least_sq(adjusted_sample_spectrum, components): 

 

    # adjusted_sample_spectrum: array of x-values, these are in nm. 

    # components (reference spectra): array of n (number of components)  

columns with x-values. 

 

    # This def returns an array of n values. Each value is the similarity 

score for the sample_spectrum and a component spectrum. 

 

    similarity = np.dot(inv(np.dot(components, components.T)), 

np.dot(components, adjusted_sample_spectrum)) 

 

    nnls_result, _ = opt.nnls(components.T, adjusted_sample_spectrum) 

 

    print('Similarity scores:', similarity) 

    print("nnls_result:", nnls_result) 

 

    return nnls_result 

 

# similarity is the fit 
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Next the reference components are loaded in. The reference components are carefully made so that the 

concentration can be used to solve the sample spectrum. We create in total 5 components. For Cr(VI), 

component A and B are created; component A is the measured at pH 2 so that the only present absorbing 

species is HCr2O4
-, component B is the measured at pH 12 so that the only present absorbing species is 

Cr2O4
2-. 

 

# Component A, pH 2.00 K2Cr2O7 

dataA = pd.read_csv('U:\My Documents\Python\csv files\\0.15 mM K2Cr2O7 pH 2.00 

reference.csv', delimiter=';') 

absorbanceA = dataA.iloc[:, 1].values  # Extracts absorbance column 

wavelength_rangeA = dataA.iloc[:, 0].values 

# Create a mask to select data points that match the x_range wavelengths 

maskA = np.isin(wavelength_rangeA, x_range) 

 

# component B, ph 11.98 K2Cr2O7 

dataB = pd.read_csv('U:\My Documents\Python\csv files\\0.15 mM K2Cr2O7 pH 

11.98 reference.csv', delimiter=';') 

absorbanceB = dataB.iloc[:, 1].values 

wavelength_rangeB = dataB.iloc[:, 0].values 

# Create a mask to select data points that match the x_range wavelengths 

maskB = np.isin(wavelength_rangeB, x_range) 

 

 

For the protein reference components are created. For each batch the stock is carefully diluted and used only 

as a reference spectrum for that batch. We assume that the protein absorption spectrum is pH independent. 

For the construction of the calculated spectrum either component C or component D is used depending on 

the toggle. 

 

# component C, whey protein reference 

dataC = pd.read_csv('U:\My Documents\Python\csv files\samples 2023926\\Stock 1 

0.2 wt Bipro.Sample.Raw.csv', delimiter=';',decimal=',') 

absorbanceC = dataC.iloc[:, 1].values 

wavelength_rangeC = dataC.iloc[:, 0].values 

 

if use_increasing_wavelength_order: 

    absorbanceC = absorbanceC[::-1] 

    wavelength_rangeC = wavelength_rangeC[::-1] 

 

# Create a mask to select data points that match the x_range wavelengths 

maskC = np.isin(wavelength_rangeC, x_range) 

 

# component D, NaCas reference 

dataD = pd.read_csv('U:\My Documents\Python\csv files\samples 20231013\Stock 3 

NaCas 0,2 wt.Sample.Raw.csv', delimiter=';',decimal=',') 

absorbanceD = dataD.iloc[:, 1].values 

wavelength_rangeD = dataD.iloc[:, 0].values 

 

if use_increasing_wavelength_order: 

    absorbanceD = absorbanceD[::-1] 

    wavelength_rangeD = wavelength_rangeD[::-1] 

 

# Create a mask to select data points that match the x_range wavelengths 

maskD = np.isin(wavelength_rangeD, x_range) 
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The last component is a baseline adjustment. To account for a baseline, we found that a horizontal baseline 

gave a more than adequate fit. A more sophisticated baseline adjustment could be implemented but time 

limitations prevented further code optimization. The component made by constructing a spectrum with  

constant absorption at all wavelengths in Excel.  

 

# Component Horizontal baseline 

dataH = pd.read_csv('U:\My Documents\Python\csv files\\reference component 

horizontal .csv', delimiter=';',decimal=',') 

absorbanceH = dataH.iloc[:, 1].values 

wavelength_rangeH = dataH.iloc[:, 0].values 

 

# Create a mask to select data points that match the x_range wavelengths 

maskH = np.isin(wavelength_rangeH, x_range) 

 

 

These four spectra will generate our component matrix or K-matrix from Chapter 2.3.b Eq. (30). The spectra 

are arranged in rows. The concentrations of the reference components are needed to determine K. 

Concentrations for component C and D are carefully determined by weighing and are from the same stock 

as the sample that is analyzed. These determine the final concentration that is reported. The concentration 

given for the horizontal baseline determines the height of the baseline. 

 

# Define the concentrations for components A, B, C, D, and H 

concentration_A = 0.150  # mM 

concentration_B = 0.150  # mM 

if use_component_C: 

    concentration_P = 0.2009 # wt # component C 

    concentration_C = concentration_P 

else: 

    concentration_P = 0.1996  # wt # component D 

    concentration_D = concentration_P 

 

concentration_H = 0.01 

 

# Create a list of component names and concentrations 

component_names = ['Component A', 'Component B'] 

component_concentrations = [concentration_A, concentration_B,concentration_P, 

concentration_H] 

 

 

To ensure that all spectra have the same size a mask is applied:  

 

adjusted_sample_spectrum = sample_spectrum[mask] 

 

adjusted_absorbanceA = absorbanceA[maskA] 

adjusted_absorbanceB = absorbanceB[maskB] 

adjusted_absorbanceC = absorbanceC[maskC] 

adjusted_absorbanceD = absorbanceD[maskD] 

adjusted_absorbanceH = absorbanceH[maskH] 
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The beforementioned toggle determines which protein is used to create an array with all the components. 

These are the components of our K-matrix and is saved as components: 

 

# Determine which component to use based on the toggle 

if use_component_C: 

    componentP = adjusted_absorbanceC 

    component_concentrations.append(concentration_C) 

    components = np.array([adjusted_absorbanceA, adjusted_absorbanceB, 

adjusted_absorbanceC, adjusted_absorbanceH]) 

    component_label = 'Component C, Bipro reference' 

    component_label2 = 'Component C' 

else: 

    componentP = adjusted_absorbanceD 

    component_concentrations.append(concentration_D) 

    components = np.array([adjusted_absorbanceA, adjusted_absorbanceB, 

adjusted_absorbanceD, adjusted_absorbanceH]) 

    component_label = 'Component D, NaCas reference' 

    component_label2 = 'Component D' 

 

 

The components are individually plotted this is the left plot in Figure 24. 

 

plt.figure(figsize=(12, 6))  # Adjust the width and height as needed 

plt.subplot(1, 2, 1)  # 1 row, 2 columns, first subplot 

plt.plot(x_range, adjusted_absorbanceA, label='Component A, pH 2.00 

K$_{2}$Cr$_{2}$O$_{7}$') 

plt.plot(x_range, adjusted_absorbanceB, label='Component B, pH 11.98 

K$_{2}$Cr$_{2}$O$_{7}$') 

plt.plot(x_range, componentP, label=component_label) 

plt.plot(x_range, adjusted_absorbanceH, label='baseline correction') 

plt.title('Known components in our mixture', fontsize=15) 

plt.xlabel('Wavelength (nm)', fontsize=15) 

plt.ylabel('Absorbance', fontsize=15) 

plt.legend(fontsize=10) 

 

 

The next step is to compare the sample spectrum with the reference components. The non-negative least 

squares method is then used to recalculate the concentrations of the components to minimize the 

difference with the sample spectrum. 

# Apply non negative least squares method 

cs = least_sq(adjusted_sample_spectrum, components) 

 

 

This uses the definition for least_sq that we gave in the beginning and calculates a spectrum. Both the 

sample spectrum and the calculated spectrum are then plotted to visually inspect the quality of the fit: 

 

plt.subplot(1, 2, 2)  # 1 row, 2 columns, second subplot 
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plot_title = 'Mixture spectrum and calculated components' 

sample_name2 = 'raw' 

 

plt.plot(x_range, adjusted_sample_spectrum, color='black', label=sample_name) 

# Plots the unknown sample spectrum 

 

plt.plot(x_range, np.dot(cs, components), color='red', linewidth =2, 

label='Calculation') # Plots the calculated spectrum 

 

for i in np.arange(len(cs)): 

    concentration_units = 'mM' if i in [0, 1] else 'wt'  # Use 'mM' for 

components A and B, 'wt' for C and D 

    legend_label = f'{component_names[i]} = {np.round(cs[i], 

4)*component_concentrations[i]:.4f} {concentration_units}' if i in [0,1,2] 

else 'baseline correction' 

    plt.plot(x_range, cs[i]*components[i], label=legend_label) 

 

 

plt.title(plot_title, fontsize=15) 

plt.xlabel('Wavelength (nm)', fontsize=15) 

plt.ylabel('Absorbance', fontsize=15) 

plt.legend() 

# Adjust subplot spacing 

plt.tight_layout() 

 

plt.savefig(f'U:\My Documents\Python\\figures CLS method\samples 

20231013\{sample_name} {sample_name2}.png') 

 

plt.show() 

 

 

 

The resulting plot is shown in Figure 23. The concentrations of the components are reported in the legend. 

Which is found by multiplying the component concentrations with reported reference component 

concentration.  
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Figure 24 Python plots of a sample spectrum resolved with NNLS method. Left are the reference components. Right are the sample 

spectrum, calculated spectrum, and the scaled reference components. 

The goal of this exercise was to determine the protein concentration in the sample. This is the concentration 

of the protein component times the reference concentration. This printed with 3 decimals as shown below 

and processed further in Excel.  

 

# this prints the concentration in wt for the protein component, the f'{...,3)}' gives the amount of decimals 

now 3 

print(f'{np.round(cs[2] * component_concentrations[2], 3)}') 
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Appendix III 

LUMiSizer PSDs of Cr2O3 with whey 

protein 

Particle cluster distribution for Cr2O3  (2 wt%) with 

whey protein (0.5 wt%) between pH 3 and pH 7. 

Hollow points are not used for the fit of the log-

normal distribution. PSDs are volume weighted.  0
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LUMiSizer PSDs for Cr2O3 with NaCas 

Particle cluster distribution for Cr2O3  (2 wt%) with 

NaCas (0.5 wt%) between pH 3 and pH 7. Hollow 

points are not used for the fit of the log-normal 

distribution. PSDs are volume weighted. 
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