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Abstract

Mood-based music recommendation systems have the potential to signifi-

cantly enhance user experience by tailoring music selections to fit specific

emotional states. This thesis presents a comprehensive approach to de-

veloping such a system by leveraging digital signal processing (DSP) and

machine learning techniques. The proposed system collects user input via

a web-based interface, where users report their current emotional states

and music preferences for various situations. Utilizing the Demucs algo-

rithm, the system decomposes MP3 files into individual instrumental tracks,

allowing for detailed analysis of each component’s spectral features and

emotional connotations. A hybrid model inspired by the U-Net architec-

ture, incorporating both spectrogram and waveform separation, is used for

this purpose. The mood assessment process, implemented with Streamlit,

enables accurate capture of user emotions, which are then translated into

mood weights influencing the recommendation process. This methodology

ensures that the recommended tracks align with the user’s emotional state

and context, providing a more personalized and engaging music experi-

ence. The results demonstrate the efficacy of the system in enhancing user

satisfaction through contextually relevant music recommendations.
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1. Introduction

Mood-based music recommendation systems have garnered significant at-

tention in recent years due to their ability to enhance the listener’s expe-

rience by tailoring music to fit specific emotional states. Human emotions

are complex and multifaceted, influencing various aspects of daily life, in-

cluding productivity, relaxation, and social interactions. Music, with its pro-

found impact on mood and emotional well-being, serves as a powerful tool

to modulate these states. By understanding the intricate relationship be-

tween mood and music, we can develop recommendation systems that not

only cater to individual preferences but also dynamically adapt to changing

emotional landscapes. Such systems have the potential to provide personal-

ized and contextually relevant music suggestions, enhancing user satisfac-

tion and engagement [1]–[3] .

One of the significant challenges in developing mood-based recommen-

dation systems lies in the separation and analysis of individual musical in-

struments. Traditional approaches often treat a song as a monolithic entity,

analyzing its overall characteristics without considering the unique con-

tributions of each instrument. However, instruments like the guitar, bass,

drums, vocals, and piano each possess distinct spectral features and emo-

tional connotations. For instance, a melancholic piano melody can evoke

different emotions compared to an energetic drum beat. By isolating these

instrumental components, we can achieve a more granular understanding

of how different instruments contribute to the overall emotional impact of

a song. This separation poses technical challenges, such as accurately ex-

tracting and analyzing the spectral features of each instrument, but it also

opens up opportunities for more precise mood mapping and personalized

recommendations.

Approaching music recommendation by separating instruments allows

for a more curated and context-specific selection of music, tailored to var-

3



Introduction

ious occasions and activities. For example, during a workout session, a

recommendation system might prioritize songs with energetic drums and

powerful basslines to maintain high energy levels. In contrast, a relaxation

session might benefit from soothing piano melodies and soft acoustic gui-

tar. By aligning the mood conveyed by specific instruments with the de-

sired emotional state of the listener, we can create more effective and sat-

isfying music experiences. This level of customization acknowledges the

diverse ways in which people use music to cope with emotions, enhance

their mood, or simply enjoy a moment, making the recommendation system

not just a passive provider of music but an active enhancer of the listener’s

emotional journey.

This study introduces a sophisticated music recommendation system

designed to tailor music selections based on the user’s current mood and

listening occasions. By integrating digital signal processing and machine

learning techniques, the system collects user input through a web-based in-

terface. Users report their emotional states and specific music preferences

for different situations. This input data is processed to derive mood weights,

which significantly influence the recommendation process. At its core, the

Demucs algorithm is employed to decompose MP3 files into separate in-

strumental tracks, such as drums, bass, guitar, vocals, and piano, enabling

a detailed analysis of each component.

The mood assessment component of the system is implemented using a

web-based interface, developed with Streamlit, where users are prompted

to answer questions about their feelings and preferences. These questions

are designed to cover a range of moods and occasions, allowing the system

to capture the user’s emotional state accurately. The responses are then used

to calculate the weight of each mood, which informs the music recommen-

dation process. By analyzing user inputs, the system assigns specific mood

weights to different music attributes, thereby aligning the recommended

tracks with the user’s current emotional state and context.

The core architecture of demucs is inspired by the U-Net convolutional

network, particularly Wave-U-Net, and utilizes a hybrid model combin-
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ing spectrogram and waveform separation. A cross-domain transformer

encoder with self-attention within domains and cross-attention across do-

mains is trained on the MUSDB HQ [4] dataset, supplemented with an addi-

tional 800 songs. This inference was conducted using NVIDIA A4000 GPUs,

which required approximately 8 hours of inference time. The entire system

integrates these models to produce separate audio tracks, analyze spectral

features, and generate music recommendations that enhance user satisfac-

tion and emotional engagement by providing contextually relevant music

choices.
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2. Literature Review

2.1 Explainability in Recommendation Systems

Explainability is crucial in recommendation systems, especially in music

recommendation systems (MRSs), because it enhances user trust and sat-

isfaction. Users often encounter recommendations that seem unexpected or

inappropriate, and without an understanding of why these recommenda-

tions are made, they might lose trust in the system. Explainability helps

users make sense of these recommendations, fostering a sense of trans-

parency and reliability. This is particularly important in mood-based music

recommendations, where the alignment of music with a user’s emotional

state is subjective and personal. By providing clear explanations, such as

highlighting specific musical attributes or user inputs that influenced the

recommendation, the system can improve user engagement and satisfac-

tion. For instance, explaining that a particular song was recommended be-

cause its tempo and instrumentals match the user’s current mood can vali-

date the recommendation and enhance the listening experience [5].

A rule-based approach to weight assignment in MRSs is often preferred

over complex black-box models like deep neural networks due to its trans-

parency and interpretability. Rule-based systems use explicit criteria and

pre-defined rules derived from domain knowledge, making it easier to un-

derstand and justify the recommendations. For example, in the mood-based

recommendation system discussed in this study, mood weights are assigned

based on psychological and music theory insights. This method ensures

that each recommendation can be traced back to specific rules, such as asso-

ciating slow tempos and soft dynamics with relaxation. In contrast, black-

box models like neural networks, while potentially more accurate, lack this

transparency. They operate through complex, often opaque decision-making

processes that are difficult to interpret. This opacity can be problematic,
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2.2 Psychological Influence of Music

as users and developers cannot easily understand why certain recommen-

dations are made. By using a rule-based approach, the recommendation

system can provide clear, understandable justifications for its choices, en-

hancing user trust and the overall effectiveness of the system.

2.2 Psychological Influence of Music

The psychological aspects of music recommendations are an emerging area

of research that explores how music influences emotions, behavior, and

mental states. Studies have shown that music can significantly impact stress

recovery and mood regulation, making it a powerful tool in recommenda-

tion systems. For instance, Adiasto et al. conducted a systematic review and

meta-analysis of experimental studies to investigate the effects of music lis-

tening on stress recovery. They found that while music listening had a non-

significant cumulative effect on stress recovery, the genre, tempo, and the

personal selection of music played crucial roles in its efficacy [1]. Similarly,

Chanda and Levitin’s review on the neurochemistry of music underscores

the role of music in modulating neurochemical systems related to stress and

reward, suggesting that music can be an effective tool for managing stress

and enhancing emotional well-being [6].

In the context of music recommender systems, understanding these psy-

chological effects is essential for creating more personalized and effective

recommendations. Linnemann et al.’s study on the stress-reducing effects

of music in daily life found that listening to music, particularly for relax-

ation, significantly reduced subjective stress levels and cortisol concentra-

tions, highlighting the importance of context and user intention in music

recommendations [7]. This aligns with the findings of Leubner and Hin-

terberger, who reviewed the effectiveness of music interventions in treat-

ing depression and emphasized the need for personalized music choices to

maximize therapeutic outcomes [8]. Integrating such psychological insights

into music recommendation algorithms can enhance user satisfaction and

engagement by aligning recommendations with the users’ emotional and

psychological needs, thereby improving the overall user experience.
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Literature Review

These insights are crucial for developing music recommender systems

that go beyond mere preference matching and take into account the psy-

chological and emotional states of users, ultimately leading to more holistic

and satisfying user experiences. By incorporating psychological principles,

such as those related to stress reduction and mood enhancement, into the

design and functionality of music recommender systems, developers can

create tools that not only entertain but also contribute positively to users’

mental health and well-being.

2.3 Acoustic Features on Recommendation Systems

Recommendation systems have become a cornerstone of digital content de-

livery, especially in the music industry where platforms like Spotify and Ap-

ple Music use them to curate personalized listening experiences for users.

Current music recommendation systems (MRS) primarily employ collab-

orative filtering and content-based methods to suggest tracks. Collabora-

tive filtering relies on user interaction data to recommend items that sim-

ilar users have liked, while content-based methods analyze the attributes

of the items themselves to find similar ones. Shao et al. propose a hybrid

approach that combines content features and user access patterns, signifi-

cantly enhancing the accuracy of music similarity measurements [9]. This

hybrid strategy addresses the limitations of both methods, such as the cold

start problem in collaborative filtering and the lack of user preference un-

derstanding in content-based systems.

Acoustic feature analysis plays a crucial role in content-based recom-

mendation systems by enabling the extraction and analysis of various mu-

sical attributes. These attributes include tempo, rhythm, harmony, timbre,

and pitch, which are essential for understanding the music’s structure and

style. For instance, the study by Sheikh Fathollahi and Razzazi demon-

strates the use of convolutional neural networks (CNNs) to classify music

genres based on these acoustic features, achieving high accuracy in genre

classification [10]. This type of feature extraction is vital for creating detailed

profiles of songs that can be matched to user preferences. Additionally, the
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2.3 Acoustic Features on Recommendation Systems

research by Kostek and Plewa highlights the use of low-level features such

as Mel Frequency Cepstral Coefficients (MFCCs) and energy-based param-

eters in music mood recognition, which can be used to recommend songs

that fit a user’s current mood or activity [11].

In integrating these advanced acoustic analysis techniques with collab-

orative filtering, modern MRSs can provide more nuanced and satisfying

recommendations. By leveraging both user behavior data and the intrinsic

properties of the music, these systems can better cater to individual tastes

and preferences, making the listening experience more personalized and

engaging. Future advancements in machine learning and signal processing

will likely continue to enhance the precision and relevance of music recom-

mendations, further bridging the gap between human emotional needs and

automated recommendation technologies.
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3. Method

For the implementation of the recommendation system, three separate mod-

els were used. The first model (Demucs) separates the individual instru-

ments from the song. The second model assigns individual weights for each

user’s mood. The third model assigns weights to each spectral feature of the

instruments based on mood characteristics.

3.1 Instrument (Source) Separation

3.1.1 Demucs Algorithm

The Demucs [12] algorithm is a state-of-the-art music source separation model

designed to decompose an audio track into its constituent components, such

as drums, bass, vocals, and other instruments. Demucs employs a U-Net

convolutional architecture inspired by Wave-U-Net, which allows it to per-

form detailed waveform and spectrogram-based separation. The latest ver-

sion, Demucs v4, features a hybrid model that integrates a cross-domain

Transformer Encoder, using self-attention within domains and cross-attention

across domains, enhancing its ability to separate sources more effectively.

This hybrid approach has proven to achieve a Source-to-Distortion Ratio

(SDR) of 9.00 dB on the MUSDB HQ test set, indicating its high accuracy in

isolating individual musical elements.

The model htdemucs_6s was selected for this study due to its capability

to handle six different sources, including drums, bass, vocals, guitar, piano,

and other instruments. This expanded capacity is particularly beneficial for

analyzing a wider range of instrumental features, which is crucial for the de-

tailed spectral feature analysis required in this research. While the standard

htdemucs model is effective, the 6-source version provides more granular-

ity by including guitar and piano, despite some acknowledged limitations
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3.1 Instrument (Source) Separation

Figure 3.1: Full Application Diagram
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Method

in the piano source’s quality. This model’s ability to provide finer separa-

tion of additional instruments makes it a better fit for the comprehensive

analysis aimed at understanding the emotional impact of each instrumental

component in music.

3.1.1.1 Model Inference

Since this is a transformer-based algorithm, it requires significant compu-

tational resources, especially when dealing with large datasets that include

large files. One approach would be to run the Demucs algorithm on a CPU.

However, this would significantly limit the amount of data that can be pro-

cessed due to the large music files. It is possible to downsample the songs

to a lower kbps, but this limits the performance of the overall model. There-

fore, an NVIDIA A4000 GPU was used in a cloud-based environment. This

cloud-based environment had all audio files (around 5 GB), and additional

network storage was needed to store the separated audio tracks (55 GB).

Having network storage made it possible to stop and restart the GPU with-

out losing any data. This allowed the Demucs algorithm to run in a more

efficient setting where parallelization could be utilized. Overall, 800 songs

were analyzed with an inference time of 8 hours on the GPU.

3.2 Mood Assessment

The interface for the study was developed to create a personalized music

recommendation system based on the user’s current mood and the specific

occasion they are preparing for. The goal was to enhance user satisfaction

by providing music that aligns with their emotional state and contextual

needs. The interface leverages a simple, user-friendly aesthetic built with

Streamlit, allowing users to input their feelings and preferences through a

series of questions. This input is then processed to derive mood scores,

which are used to tailor music recommendations accordingly.

The code functions by presenting users with a series of questions related

to different mood states and preferences for various occasions. Users select

their responses from predefined options, and these selections are mapped
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3.3 Mood Weight Assignment

Figure 3.2: User Interface for Mood Assessment

(a) Only 5 questions are shown here. There are a total of 40 questions in the full user inter-
face

to numerical values that quantify their mood profile. The application then

prompts users to specify the occasion for which they need music recom-

mendations, such as relaxation, workout, study, or celebration. Based on

the user’s mood profile and the selected occasion, the application provides

tailored music recommendations, which aim to enhance the user’s experi-

ence by aligning the music with their emotional and situational context.

One of the main challenges in developing this application was ensuring

the accuracy and relevance of the mood-to-music mapping. This required

careful consideration of the mood descriptors and their corresponding mu-

sical attributes. Another challenge was creating an intuitive user interface

that would engage users and encourage them to provide accurate responses.

3.3 Mood Weight Assignment

Field knowledge and music theory play critical roles in assigning mood

weights to specific musical attributes in the context of this study. For in-
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stance, when considering relaxation, psychological studies have shown that

certain types of music can significantly reduce stress and induce a state of

calm. Music therapists often use slow-tempo music with smooth, flowing

melodies to help patients unwind. Drawing from music theory, the appli-

cation assigns higher weights to tracks with lower tempo, softer dynamics,

and smooth harmonic progressions. Instruments like the piano or acoustic

guitar, playing in a legato style, are emphasized for their calming effects,

providing a soothing experience for the listener.

In the context of energy and vitality, research indicates that fast-paced,

rhythmically complex music can boost energy levels and enhance physi-

cal performance, making it ideal for activities like workouts. The applica-

tion, informed by music theory, prioritizes music with higher tempo, strong

rhythmic elements, and upbeat melodies. Genres such as electronic dance

music (EDM) or energetic rock, which feature driving beats and repetitive

rhythmic patterns, are preferred to match the mood of feeling energetic and

vital. This approach ensures that the music recommended for exercise ses-

sions keeps users motivated and invigorated.

When addressing melancholy and sadness, the application leverages the

understanding that music evoking these emotions often employs slow tem-

pos, minor keys, and introspective lyrics. Such music can provide emo-

tional catharsis for listeners experiencing feelings of sorrow. From a music

theory perspective, the application assigns higher weights to tracks with

minor tonalities, slower tempos, and somber, reflective lyrics. Instruments

such as the cello or solo piano, known for their ability to produce rich, reso-

nant tones that evoke sadness, are highlighted. This thoughtful integration

of field knowledge and music theory ensures that the music recommenda-

tions resonate deeply with users’ emotional states, offering comfort and val-

idation.

It is important to note that the mood weight assignment presented in

this study serves as a proof of concept. Assigning precise mood weights to

each instrument and spectral feature is a complex and nuanced task. An

automated optimization strategy based on machine learning could be em-
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3.4 Musical Contrast

ployed to enhance this process by identifying the most significant spectral

features. In this study, preliminary analysis of the feature set was conducted

using Principal Component Analysis (PCA) to determine the most influen-

tial spectral features.

3.4 Musical Contrast

Musical contrast, which reflects how eventful or varied a piece of music

is, plays a significant role in understanding the occasion and overall mood

of a song. Changes in dynamics, tempo, pitch, and texture evoke differ-

ent emotional responses. For instance, high contrast in music, characterized

by abrupt changes in dynamics and tempo, is often perceived as exciting

and energizing, making it suitable for active occasions like workouts or par-

ties. Conversely, low-contrast music, with smooth, gradual changes, is bet-

ter suited for relaxation or meditative contexts, promoting a sense of calm

and stability.

To quantify musical contrast, the process begins with generating a spec-

trogram of the song. A spectrogram is a visual representation of the spec-

trum of frequencies in a sound signal as they vary with time. This involves

converting the audio signal into a time-frequency representation using a

Short-Time Fourier Transform (STFT), which helps identify the amplitude

of various frequencies at different time points. The resulting data is then

converted to decibels for better visualization.

Next, the spectrogram is converted into a grayscale image. This im-

age represents the amplitude of frequencies, where darker regions indi-

cate lower amplitudes and lighter regions indicate higher amplitudes. The

grayscale image serves as the basis for further analysis.

Thresholding is then applied to the grayscale image. This involves set-

ting a specific cutoff value, above which the pixel values are turned white

(indicating significant energy), and below which they are turned black. This

process results in a binary image that highlights regions with significant en-

ergy in the spectrogram. Thresholding isolates the most eventful parts of
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Figure 3.3: Short-Time Fourier Transform [13]

the music, which are crucial for understanding its contrast.

Morphological operations, specifically closing, are applied to the binary

image. Closing is a combination of dilation followed by erosion, which

helps remove small noise and fill small gaps in the binary image. This step

ensures that the highlighted regions in the binary image are continuous and

well-defined, making it easier to analyze the structure of the music.

Finally, the musical contrast is calculated by analyzing the differences

in intensity between adjacent regions in the thresholded image. One ap-

proach is to count the number of connected components in the binary image,

which represents distinct areas of high energy. The number of these compo-

nents indicates the level of contrast in the music; a higher number of com-

ponents suggests higher contrast, indicating more eventful music, while a

lower number suggests lower contrast, indicating smoother and more uni-

form music.

This is achieved by using a Python module called OpenCV [14]. This

library allows to make operations such as thresholding and morphing.
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3.5 Spectral Feature Analysis

// Load the Image

// Convert to Grayscale

// Define Darkness Threshold

SET darkness_threshold to 64 // Adjust this value as

needed (0 -255)

// Separate Dark from Light

FOR each pixel in image

IF pixel intensity < darkness_threshold

SET pixel value to black (0)

ELSE

SET pixel value to white (255)

END IF

END FOR

// Clean the Image

// Count Dark Points

SET number_of_dark_points to 0

FOR each pixel in image

IF pixel value is black (0)

INCREMENT number_of_dark_points

END IF

END FOR

PRINT "There are", number_of_dark_points , "dark points."

Listing 3.1: Pseudo-code for Image Processing

3.5 Spectral Feature Analysis

To understand how the spectral features of each instrument were calculated,

several processing steps are required. This process involves the following

key steps: generating the spectrogram of the audio, extracting specific spec-
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Figure 3.4: Spectrogram of a Track

tral features, and analyzing these features to derive meaningful metrics.

The first step is to generate the spectrogram of the audio file. A spectro-

gram is a visual representation of the spectrum of frequencies in a sound sig-

nal as they vary with time. This is achieved by converting the audio signal

into a time-frequency representation using a Short-Time Fourier Transform

(STFT). The STFT divides the audio signal into small overlapping segments,

applies the Fourier Transform to each segment, and maps the amplitude of

frequencies to different time frames. The resulting spectrogram shows how

the frequency content of the signal evolves over time. Librosa library [15]

in Python gives a wide selection of signal-processing functions that make it

possible to generate and analyze spectrograms.

Once the spectrogram is generated, several spectral features are extracted.

These features include:

Spectral Centroid: This feature indicates the "center of mass" of the spec-

trum and is often associated with the brightness of a sound. It is calculated

by taking the weighted mean of the frequencies present in the signal, with

their magnitudes as weights. A higher spectral centroid value indicates a

brighter sound.

Spectral Bandwidth: This measures the width of the spectrum and is

related to the perceived timbre of the sound. It is calculated by measuring

the variance of the spectral centroid. A wider bandwidth indicates a more

complex sound with more high-frequency components.

Spectral Contrast: This feature measures the difference in amplitude be-
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3.5 Spectral Feature Analysis

Figure 3.5: Spectral Feature Plots of a Track

tween peaks and valleys in the sound spectrum. High contrast values sug-

gest more dynamic and eventful music, while low contrast values suggest

smoother, less eventful music. This is particularly useful in understanding

the overall mood and occasion suitability of the music.

Spectral Flatness: This measures how noise-like a sound is. A high spec-

tral flatness indicates that the spectrum is relatively flat, similar to white

noise, whereas a low spectral flatness indicates a peaky spectrum, charac-

teristic of tonal sounds.
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4. Results

To evaluate the effectiveness and user satisfaction of the developed music

recommendation system, a user experience study was conducted involving

seven participants. Each participant interacted with the system, tested the

recommendations, and completed a user experience survey afterward. The

survey aimed to gather insights into the usability of the interface, the rele-

vance of the recommendations, and any areas for improvement.

4.1 User Experience Survey

The survey results indicated that the user interface was generally well re-

ceived. Participants appreciated the simplicity and intuitiveness of the de-

sign, which made it easy to input their mood and occasion preferences. The

use of Streamlit for developing the interface contributed significantly to this

positive feedback, as it allowed for a clean and user-friendly interaction. On

the other hand, participants noted that there are simply too many questions

(or sliders) that make it difficult to change their preferences after the recom-

mendations are presented.

4.2 Relevance of Recommendations

One of the key strengths highlighted by the participants was the relevance

of the music recommendations in relation to the specified moods. The sys-

tem was praised for its ability to align the music suggestions with the user’s

stated context, whether it was for relaxation, study, workouts, or celebra-

tions. However, some participants noted that the recommendations looked

"random". This might have occurred due to the small size of the dataset.
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4.3 Additional Observations

4.3 Additional Observations

Participants also provided constructive feedback on potential areas for im-

provement:

• Question Reduction: Simplifying the mood assessment by reducing

the number of questions or finding alternative ways to capture mood

more efficiently could enhance the user experience.

• Performance: While the system’s performance was satisfactory, some

users mentioned the occasional delay in generating recommendations.

There were also some UI bugs due to some type errors in the final

dataset.

Question Response Op-
tions

Percentage Count

How easy was it to navigate the
user interface?

Very Difficult 0% 0
Difficult 0% 0
Moderate 14.29% 1
Easy 14.29% 1
Very Easy 71.43% 5

How would you rate the overall
design of the user interface?

Very Poor 14.29% 1
Poor 0% 0
Average 14.29% 1
Good 28.57% 2
Excellent 42.86% 3

How simple was it to input
your mood and occasion
preferences?

Very Complicated 14.29% 1
Complicated 0% 0
Moderate 14.29% 1
Simple 28.57% 2
Very Simple 42.86% 3

Please rate the overall relevance
of the music recommendations.
1 - Not relevant, 5 - Very
Relevant

1 14.29% 1
2 28.57% 2
3 28.57% 2
4 0.00% 0
5 28.57% 2
Total 7

Table 4.1: Survey Results for User Experience of the Interface

Overall, the results from the user experience survey underscore the strengths
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of the content-based music recommendation system while also pointing out

areas for refinement. The positive reception of the user interface and the

relevance of the recommendations validate the approach taken, while the

feedback on the mood assessment process and the desire for greater musi-

cal diversity provide valuable insights for future iterations. By addressing

these aspects, the system can be further optimized to offer an even more

engaging and satisfying user experience.

22



5. Conclusion

5.1 Discussion

In this study, we embarked on an exciting journey into the realm of content-

based music recommendation systems. Unlike traditional recommendation

systems that rely on collaborative filtering, content-based systems offer a

more individualized approach. They analyze the actual content of the mu-

sic, such as spectral features and instrumental components, to tailor rec-

ommendations specifically to the user’s tastes. This personalized approach

promises to revolutionize how we experience music, making our listening

habits more aligned with our unique preferences and moods.

One of the main distinctions between content-based and collaborative

recommendation systems lies in their core methodologies. Collaborative

recommendation systems leverage the preferences of multiple users to sug-

gest new content. This method compares a user’s listening habits with those

of others who have similar tastes. While this approach can be effective, it

has several limitations. For instance, it requires a substantial amount of user

data to be effective, which raises potential privacy concerns. Additionally,

collaborative systems tend to skew recommendations towards more popu-

lar artists, potentially reducing the diversity of suggestions.

Collaborative recommendation systems, despite their widespread use,

face notable challenges. They depend heavily on the aggregation of user

histories, which can compromise user privacy as machine learning algo-

rithms sift through personal listening habits. Furthermore, this reliance on

user data can lead to a homogenization of recommendations, where lesser-

known artists and genres receive less exposure. As a result, users might

find themselves stuck in a loop of popular songs, missing out on the rich

diversity of the musical landscape.
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In contrast, content-based recommendation systems offer several com-

pelling advantages. By focusing solely on the content of the music itself,

these systems bypass the need for user data aggregation, thus preserving

privacy. The core principle here is that the intrinsic qualities of the music,

such as tempo, rhythm, and spectral features, are what truly matter. This

approach allows for a richer diversity in recommendations, as it is not in-

fluenced by the listening habits of other users or the popularity of certain

artists. Instead, it thrives on the unique preferences of each individual lis-

tener, providing a more tailored and satisfying experience.

The performance of the algorithm we developed underscores the bene-

fits of content-based recommendations. By separating instruments and an-

alyzing the spectral features of each one, we gain a more nuanced under-

standing of the music. This granular analysis is far superior to examining

a whole mixture spectrogram. It allows us to appreciate the distinct char-

acteristics that different instruments bring to a song. For example, while

studying, a listener might prefer music where vocals are minimized in fa-

vor of instrumental tracks. This level of specificity in data analysis enables

us to craft recommendations that are finely tuned to the listener’s context

and mood.

Moreover, while instrument separation provides detailed insights, mix-

ture analysis remains essential for understanding broader musical elements

such as tempo and contrast. These factors play a significant role in setting

the overall mood and energy of a song. By integrating both detailed spectral

analysis and broader mixture analysis, we can achieve a more comprehen-

sive understanding of the music. This dual approach ensures that our rec-

ommendations are not only precise but also consider the holistic attributes

of the songs.

5.2 Limitations

While the results of this study are promising, several limitations must be

acknowledged. One significant challenge is the time-intensive nature of

inference using the Demucs algorithm. Because Demucs is a transformer-
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5.2 Limitations

based model, it requires substantial computational power, necessitating the

use of GPUs. This reliance on GPUs makes the algorithm more scalable

through parallelization; by adding more GPUs, we can increase the number

of recommendations generated. However, despite this scalability, it remains

challenging to work with extremely large datasets, such as millions of songs,

due to the computational overhead involved.

Furthermore, the performance and accuracy of the recommendations

are inherently subjective and must be validated through real user testing.

This subjectivity means that the algorithm’s effectiveness can’t be fully mea-

sured by computational metrics alone; user surveys and feedback are cru-

cial for assessing the quality of the recommendations. Conducting these

surveys and gathering sufficient data to refine the algorithm can be time-

consuming and resource-intensive. This makes it difficult to fine-tune the

spectral weights since re-running the model takes a lot of time. The system

simply needs more data and more trials to work in an optimized fashion.

Another limitation lies in the scope of the instruments considered by the

model. Although the version of the Demucs algorithm used in this study

can separate six different sources (drums, bass, vocals, guitar, piano, and

other instruments), this is not comprehensive enough to represent the full

spectrum of musical diversity. For example, genres such as traditional In-

dian music, which often feature instruments like the sitar or tabla, or African

music, with its distinct percussion instruments, may not be adequately cap-

tured by the current model. This limitation can affect the accuracy and rele-

vance of the recommendations for non-Western music genres.

Addressing these limitations requires ongoing refinement of the model

and expanding its capacity to recognize and separate a broader range of

instruments. Future research should aim to include a more diverse set of

musical genres and instruments to enhance the universality and inclusive-

ness of the recommendation system. Additionally, improving the efficiency

of the algorithm to handle large-scale datasets without compromising per-

formance will be crucial for scaling up the system to accommodate millions

of songs.
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Conclusion

In summary, while the content-based recommendation system devel-

oped in this study offers significant advantages and potential, it is not with-

out its limitations. The computational demands, the subjectivity of user val-

idation, and the limited scope of instrument recognition are key areas that

need further development. By addressing these challenges, future iterations

of the system can provide even more accurate, diverse, and personalized

music recommendations to users worldwide.
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