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Abstract

Predictive Process Monitoring (PPM) leverages machine learning to forecast
future behaviours of ongoing processes to support decision-making across var-
ious domains. However, the complexity and opacity of these machine learning
models, often termed ”black box” models, challenge user interpretability and
trust, leading to the development of Explainable AI (XAI) techniques. De-
spite recent efforts to integrate XAI into the PPM field, it remains unclear
how effectively these techniques explain predictions to users and support their
decision-making processes, highlighting a gap in understanding the effects of
explanations on user behaviour.

This thesis addresses this gap by investigating the impact of explanation
styles and perceived AI accuracy on user decision-making within the PPM
domain. An empirical user evaluation was conducted to assess the effec-
tiveness of three explanation styles—Feature importance-based, Rule-based,
and Counterfactual-based—in influencing task performance, agreement, and
decision confidence in decision-making tasks related to loan application out-
comes.

The results demonstrate that perceived AI accuracy significantly influ-
ences decision-making, with lower perceived accuracy linked to higher task
performance across explanation styles. Counterfactual explanations were
particularly effective in enhancing task performance and agreement, whereas
Feature importance-based explanations resulted in the lowest agreement lev-
els. Conversely, Rule-based explanations led to the highest satisfaction and
decision confidence compared to Feature importance-based explanations. These
findings show the importance of user evaluations in assessing the effectiveness
of XAI explanations. This research contributes to the development of more
user-centred and interpretable AI systems by providing insights into how
explanation styles and perceived accuracy shape user trust and engagement.
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Chapter 1

Introduction

Predictive Process Monitoring (PPM) is a group of techniques that uses
historical event logs to predict the future behavior of ongoing processes using
machine learning [16]. This capability spans various predictive aspects, in-
cluding remaining case duration, the next process step, and overall outcome
prediction [44]. For example, in the loan application process, PPM can es-
timate the time remaining in the verification stage, predict the likelihood of
approval, and anticipate the next process step, such as contacting the appli-
cant. These predictions enable organizations to make informed decisions by
incorporating them in a decision support system, thereby increasing efficiency
and productivity across diverse domains, including healthcare, finance, and
business operations.

Achieving high levels of prediction accuracy requires advanced machine
learning techniques, resulting in complex predictive models with superior per-
formance. However, the increased accuracy of these predictions often comes
at the cost of model interpretability. Such models are frequently referred to
as ”black box” models because they are incomprehensible to human intu-
ition. This makes it difficult for users (e.g., decision-makers, process owners)
to understand the rationale behind the predictions, making them more hesi-
tant to adopt the system [21]. This issue is particularly critical in the PPM
domain, where model outputs can directly influence crucial decisions made
by process owners regarding individual cases or even entire workflows [29].

Explainable AI (XAI) has emerged as a promising solution to address this
challenge. XAI focuses on revealing the “how” and “why” behind specific
predictions, aiming to provide insights while maintaining the strong predic-
tive performance of complex models [3]. Recent advancements in PPM have
applied existing XAI techniques such as SHAP [31] and LIME [41] to ex-
plain process predictions [19, 18, 24, 34, 56] or evaluate process predictive
models [44]. By offering interpretable insights, XAI can enhance user trust
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and facilitate the widespread adoption of PPM technologies across various
sectors.

Following this realization, there has been a recent shift towards imple-
menting XAI techniques in the PPM field. However, it remains unclear how
well these techniques explain predictions to the users for decision-making
processes. This is because the XAI evaluation still occurs mainly through
predictive performance-based metrics, not accounting for the user side of the
“interpretability” of these XAI explanations. Adopting the definition set by
Miller [35], interpretability is the degree to which a human can understand
the cause of a decision made by the AI method.

However, understanding is rarely an end goal in itself, and it is often more
meaningful to measure the effectiveness of explanations in terms of a specific
notion of usefulness or explanatory goals [9]. As highlighted in [52, 9, 67, 12],
these goals include task performance, agreement, and decision confidence.
“Task performance” evaluates how well the explanation helps users make
informed and accurate decisions. “Agreement” measures the persuasiveness
of the explanation in convincing users to take a particular action. “Decision
confidence” assesses the level of confidence users have in their decisions after
receiving the explanations. By setting clear explanation goals or effectiveness
measures, researchers can effectively evaluate XAI explanations and ensure
they are tailored to meet users’ needs, therefore enhancing user experience
and trust in AI predictions [12].

In the context of XAI evaluation, factors such as explanation styles and
perceived AI accuracy can influence the effectiveness of explanations [9, 27].
This is because different explanation styles can support distinct logical rea-
soning as they determine how information is structured and presented to
users [52, 9]. These styles are often defined by the algorithmic approach to
generate explanations. On the other hand, perceived AI accuracy impacts
user trust and reliance on AI predictions [10]. Research by Kenny et al.
(2021) [27] suggests a direct relationship between AI prediction correctness
and the information people use in decision-making. When AI predictions are
perceived as accurate, users may consider the predictions sufficient to confirm
their judgments or even alter their decisions based on the AI’s output.

1.1 Research Motivation

Literature reviews indicate a general lack of high-quality user evaluations
emphasizing a user-centred approach in XAI [13, 1]. This gap is evident
in the PPM domain as well, where, to the best of our knowledge, only two
studies have evaluated their XAI frameworks with a focus on user-centered
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evaluation [18, 43]. As explanations serve a user’s need, it is crucial to
evaluate XAI explanations to gain insights into user requirements and the
effects of different explanations on decision-making.

Therefore, in this thesis, we conduct an empirical user evaluation to inves-
tigate the impact of explanation styles on decision-making while considering
the perceived accuracy (high or low) of AI predictions. We aim to enhance
our understanding of how users react to AI predictions and explanations,
allowing us to categorize decision-making situations based on prediction ac-
curacy. We compare the effectiveness of three explanation styles: Feature
importance-based, Rule-based, and Counterfactual-based as they have dis-
tinct logic in explaining. Feature importance-based explanations highlight
the specific features impacting a prediction. Rule-based explanations trans-
late the model’s logic into clear rules, while Counterfactual-based explana-
tions describe how a prediction might change with different inputs, such as
“If X had not occurred, Y would not have occurred”. To generate these ex-
planation styles, we employ post-hoc XAI techniques: LIME [41] for Feature
importance, Anchors [42] for Rule-based explanations, and DiCE [36] for
Counterfactual explanations. We will use a mix of objective and subjective
evaluation metrics: Task Performance and Agreement for objective metrics,
and Decision Confidence for subjective metrics.

The evaluation will take place in a decision-making context where partic-
ipants determine whether they agree with the AI’s prediction of accepting or
rejecting a loan application. To the best of our knowledge, no research has
been conducted to compare the effectiveness of different explanation styles
in decision-making while considering the impact of AI accuracy in the PPM
domain. The experiment design for this user evaluation was adapted from
previous research by F.M. Cau et al. [9] and Van der Waa et al. [52] with
modifications applicable to our evaluation.

1.2 Research Questions

Following the introduction and context of this thesis, the main research
question (MRQ) is structured as follows:

MRQ: How do different explanation styles affect decision-making
in Predictive Process Monitoring (PPM), taking into account the
perceived accuracy of AI predictions?

This main research question leads to the following sub-research questions
(RQs). The first research question (RQ1) focuses on understanding the cur-
rent state-of-the-art in evaluating XAI explanations. This will help identify
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gaps in the existing evaluations and determine what types of assessments
are necessary. The second and third research questions aim to address these
gaps by conducting thorough evaluations of XAI in decision-making con-
texts. Specifically, RQ2 explores how external conditions, such as perceived
accuracy, influence decision-making. RQ3 examines the impact of different
explanation styles on decision-making effectiveness.

RQ1: What are the current XAI techniques applied in the PPM
domain, and how are they evaluated?

To address this question, we will conduct a literature review of the XAI
techniques employed in the PPM domain. Additionally, we will explore ex-
isting literature on the evaluation of XAI explanations in PPM. This review
will help us identify current gaps in the evaluation of XAI explanations. This
research question will be addressed in Chapter 3, Related Work.

RQ2: How does the perceived level of accuracy in AI predictions
influence decision-making in terms of effectiveness?

To answer this question, we will compare the effectiveness of decision-
making, measured by task performance, agreement, and decision confidence,
between high-accuracy and low-accuracy groups, irrespective of explanation
styles.

RQ3: How do different explanation styles vary in influencing
decision-making in terms of effectiveness?

To answer this question, we will conduct an empirical user evaluation
through an experimental study. We will measure effectiveness, specifically
task performance, agreement, and decision confidence, across different expla-
nation styles and analyze the differences.

1.3 Contribution

This thesis makes several key contributions to the field of PPM. First,
it addresses the current gap of limited research on user evaluation by con-
ducting empirical evaluation. Secondly, the effectiveness of three distinct ex-
planation styles- Feature importance-based, Rule-based, and Counterfactual-
based- will be compared within the PPM context. We expect that this com-
parative analysis will provide insights into differences in explanation styles.
Third, the study examines whether the perceived accuracy of AI predictions
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affects decision-making processes, providing empirical evidence on how users
interact with and trust AI systems based on perceived reliability. Addition-
ally, the thesis explores the reasons behind variations in explanation effec-
tiveness, considering external subjective factors such as users’ backgrounds
and satisfaction levels. Finally, this research offers valuable insights into user
requirements and preferences for XAI explanation, informing the design of
more user-centred and interpretable AI systems that align with the needs of
decision-makers in process domains.

1.4 Thesis Outline

This chapter has detailed our motivation to assess the impact of different
explanation styles within the context of PPM. In Chapter 2 (Background),
we outline an overview of PPM and XAI. We also address the evaluation
approaches for XAI explanations. In Chapter 3 (Related Work), we discuss
what the current XAI techniques are in the PPM domain and their evalu-
ation approaches in the PPM domain. This will answer the first research
question (RQ1). In Chapter 4 (Explanation Generation), we introduce how
we generate explanations for each explanation style. Here, we describe the
dataset and discuss the models & XAI techniques employed for generating
explanations. Chapter 5 (Research Method) outlines the research method de-
signed to assess these explanations, which includes experiment structures &
surveys. Chapter 6 (Results) is where we report statistical results including
descriptive and hypotheses testing. Following this, Chapter 7 (Discussion)
focuses on presenting the findings from Chapter 6 data analysis, addressing
the research questions (RQ2, RQ3) and the main research question (MRQ).
We also discuss limitations, offering potential directions for future research.
Finally, Chapter 8 (Conclusion) concludes the thesis, summarizing our con-
clusions and reflections on the study.
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Chapter 2

Background

In this chapter, we present the main background concepts discussed in
this paper which are PPM and XAI. First, we address the preliminaries of
PPM to understand the prediction tasks. Next, we address the overview of
XAI and the specific explanation styles we use in our user-study. Lastly, we
introduce the overview of evaluating the explainability of explanations, more
specifically for human-grounded evaluations.

2.1 Overview of PPM

PPM relies on the use of historic process data recorded in an event log,
which is typically stored in the standard XES format. An event log is a
collection of traces. Each trace represents a single execution of a business
process, such as a loan application or an order fulfilment process within an
information system. This execution is further broken down into individual
events, showing the occurrence of a specific activity within the process. In
each event there are three mandatory attributes:

1. Case identifier: Uniquely identifies the process instance to which the
event belongs.

2. Activity name: Specifies the exact activity undertaken within the
process.

3. Timestamp: Indicates the precise time at which the event occurred,

A trace is a sequence of events generated by executing activities in a
process, sorted based on the timestamps of the events. All events within
a trace belong to the same case identifier. The event log itself acts as a
repository for all traces generated by various process executions within a
particular business process. An example of an event log structure is visualized
in Figure 2.1.
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Figure 2.1: Example Eventlogs [14]

Each event in the log is represented by a separate row with its associated
attributes. Attributes with consistent values across all rows of a specific pro-
cess instance are classified as static attributes. Examples of static attributes
include case ID and customer name. Conversely, dynamic attributes possess
values that change for each event within a process instance. In Figure 2.1,
the Case ID serves as a unique identifier for the trace, while the event ID
identifies a specific event within that trace. Fields representing dynamic at-
tributes, such as timestamps, resource allocation, and monthly cost, exhibit
varying values across each row associated with a process instance. In con-
trast, other fields, like Requested Amount, represent static attributes and
maintain consistent values throughout the trace.

2.1.1 PPM Workflow

PPM approaches leverage past historical complete executions to provide
predictions of an ongoing case, which is usually incomplete. They tend to
have two phases: a training phase (aka offline-phase), in which a predictive
model is learned from historical execution traces and a prediction phase (aka
online phase), in which the predictive model is queried for predicting the
future of an ongoing case [16]. Figure 2.2 and Figure 2.3 show the PPM
workflow for the offline and online phases respectively.

During the offline phase the system first extracts prefixes (initial se-
quences of events) from a historical log to train the prediction model. These
prefixes might be filtered based on specific criteria, such as retaining only
those up to a certain length or certain state, to ensure efficient processing.
Next, the identified prefixes are grouped into buckets. This can be done based
on factors such as process state or similarity between prefixes. Features are
then extracted from these buckets for classification purposes. Finally, each
bucket of encoded prefixes is used to train a separate classifier. This creates
a collection of specialized classifiers tailored to specific patterns within the
data.

The online phase concerns the actual prediction for a running trace, lever-
aging the system that the elements built offline. Given a new event sequence
(running trace) and the set of historical prefix buckets, the system first iden-
tifies the appropriate bucket based on the characteristics of the running trace.
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Using the identified bucket, the system extracts features from the running
trace relevant to that specific context. Finally, the system utilizes the pre-
trained classifier associated with the chosen bucket to make a prediction
based on the encoded features of the running trace. This allows the model to
make predictions for new sequences by reusing the knowledge captured from
the historical data.

Figure 2.2: PPM workflow (offline phase) [51]

Figure 2.3: PPM workflow (online phase) [51]

Concerning the tasks of prediction, the existing prediction tasks are gen-
erally classified into three main categories [32, 51, 16]:

A Next Activity Prediction: Predictions related to the activities that
are going to be executed next. For example, predicting the sequence of
activities in a process from the current point until its completion.

B Outcome Prediction: Predictions related to categorical or boolean
outcomes. Typical examples include classifying each ongoing case of a
process, such as predicting whether a loan application will be accepted
or not.
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C Remaining Time Prediction: Predictions related to measures of in-
terest that take numeric or continuous values. Typical examples include
predicting the remaining time of an ongoing execution, its duration, or
its cost.

In this thesis, we focus on outcome prediction, which will return the
predicted class for ongoing cases. The prediction model will be trained to
return the predicted outcome by training up to a specific state in the process.

2.2 Explainable AI

2.2.1 Taxonomy of explainability approaches

The field of XAI has shown significant growth in recent years, driven by
the widespread adoption of machine learning, especially deep learning. In
the literature, XAI techniques are commonly classified based on two primary
criteria [58]: Scope and Stage.

1. Scope: This refers to the breadth of the explanation provided by a
method and is composed of Global and Local explanations.

(a) Global explanations aim to make the entire model’s inferential
process transparent

(b) Local explanations focus on explaining individual model predic-
tions

2. Stage: This refers to the point at which explanations are generated and
is divided into Ante-hoc methods and Post-hoc methods. Additionally,
Post-hoc methods are further categorized intomodel-specific andmodel-
agnostic methods.

(a) Ante-hoc methods integrate explainability into the model struc-
ture during training, resulting in inherently interpretable models
(e.g., decision trees, linear regression) [23].

(b) Post-hoc methods explain the behaviour of already trained models
using external explainers at testing time. Post-hoc methods are
further divided into:

i. Model-specific methods are tailored to explain the behaviour
of specific types of models.
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ii. Model-agnostic methods can generate explanations for any
prediction model, regardless of its underlying structure. The
form of explanation remains the same even when the predic-
tion model changes.

Furthermore, Markus et al. [33] classify XAI techniques based on the
type of explanation, identifying three categories: model-based explanations,
attribution-based explanations, and example-based explanations.

1. Model-based explanations : Utilise a model to explain the original task
model. This may involve using the task model itself (e.g., decision
tree) or generating more interpretable models to explain the task model
(post-hoc explanations).

2. Attribution-based explanations : Rank or measure the explanatory power
of input features to explain the task model. For example, Feature im-
portance or influence-based explanation approaches fall into this cate-
gory.

3. Example-based explanations : Explain the task model by selecting in-
stances from the dataset or creating new instances. For example, iden-
tifying influential instances for the model parameters or output or cre-
ating a Counterfactual explanation.

In Table 2.1, XAI techniques are classified based on stage, explanation
type, and scope. For this thesis, we selected explanation styles that represent
each explanation type. For the model-based explanation type, we adopted
a Rule-based style using Anchors [42] algorithm. For the attribution-based
explanation type, we employed a Feature importance-based style derived
from LIME algorithm [41]. Lastly, for the example-based explanation type,
we utilised a Counterfactual-based style derived from DiCE algorithm [36],
which generates Counterfactuals. All of these XAI techniques belong to post-
hoc explanations and are within the local scope.
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Table 2.1: Classification of XAI techniques with examples

Approach Type of explanation Scope Examples of explainable AI techniques Ref

Post-hoc explanation

Model

Global
Tree extraction

Distill-and-compare

[4]

[50]

Local Anchors [42]

Attribution Global

PDP

ALE

Feature importance

[17]

[2]

[15]

Local

ICE

SHAP

LIME

[20]

[31]

[41]

Example

Global MMD-critic [28]

Local
DiCE

Unconditional Counterfactual explanations

[36]

[60]

2.2.2 Explanation styles

Rule-based Style

Rule-based explanations resemble decision trees, presenting a set of logical
“if-then” statements that mimic the model’s decision-making process. These
rules explicitly define the conditions under which specific outcomes are pre-
dicted. For example, in a loan application scenario, a Rule-based explanation
might state: “If the applicant’s credit score is above 700 and their debt-to-
income ratio is below 35%, then approve the loan”. This style provides users
with a structured and transparent rationale, facilitating straightforward rea-
soning and making it suitable for those who prefer clear, rule-based logic.
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Feature Importance-based Style

Feature importance-based explanations prioritize identifying the most in-
fluential factors contributing to a model’s prediction. This style helps users
gain valuable insights into the decision-making process by highlighting the
key features in the process data that significantly impacted the outcome. For
instance, within a loan approval system, a Feature importance-based explana-
tion might reveal: “Credit score is the most significant factor in determining
loan approval. Income level is another important determinant, particularly
in assessing the applicant’s ability to repay the loan”. By emphasizing the
relative importance of each feature, this style allows users to focus on the
most important factors, thereby supporting a more targeted and analytical
approach to reasoning.

Counterfactual- based Style

Counterfactual-based explanations utilise “what-if” analyses to illustrate
how changes in input variables could alter the model’s predictions. This
style presents alternative scenarios that demonstrate the sensitivity of the
model to specific factors. Continuing with the loan application example, a
Counterfactual explanation might involve simulating a scenario where the
applicant’s credit score is increased by 50 points and analysing if it would
lead to loan approval. Counterfactual analyses help users understand how
modifications to the input data can potentially change the model’s outcome.

2.3 Evaluating the Explainability of Explana-

tions

2.3.1 Taxonomy of Evaluating Explanations

As a response to the wide adoption of XAI approaches, multiple XAI
evaluation approaches have been proposed. A widely cited taxonomy of eval-
uation from Doshi-Velez and Kim [13] proposed a taxonomy for evaluating
XAI explanations, highlighting three categories: the first is the application-
grounded evaluation, which affects domain experts evaluated on actual tasks.
The second is the human-grounded evaluation, which considers novice users
evaluated on simplified tasks. The last is the functionally grounded evalu-
ation, which requires no human experiments and uses properties of fidelity
explanation quality. In this thesis, we consider human-grounded evaluation.
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Figure 2.4: Categories of XAI evaluation approaches [67]

2.3.2 Metrics for Human-Grounded Evaluations

Besides evaluation tasks for XAI explanations, the choice of evaluation
metrics plays a critical role in the correct evaluation of ML systems. Two
types of evaluation metrics can be found in explainable AI research [67],
which are subjective and objective metrics. Subjective measures consider
the personal experience of the user on tasks and AI explanations, which have
been largely embraced as the focal point for the evaluation of explainable sys-
tems [41, 65, 68]. For example, Zhou et al. [68, 66] investigated factors such
as uncertainty and correlation that affect user confidence in ML-informed
decision-making. Meanwhile, objective measures involve evidence measured
on task and AI explanations, such as the task completion time and task
performance, which refers to choosing correct answers.

Figure 2.5: Metrics for Human-Ground Experiments [67]

In this thesis, we focus on decision confidence as a subjective measure,
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assessing how confident one is with their choice. In Nourani et al. [37], they
conducted experiments in an explainable video activity recognition tool in the
cooking domain, exposing model weaknesses and strengths. They discovered
that participants were more confident in their predictions when explanations
were present, and users experienced overconfidence in their mental model
either when explanations were present or when the model’s strengths were
observed earlier. Based on this, we aim to compare the decision confidence
of the users before and after they are exposed to explanations. Subsequently,
we will compare the decision confidence between the explanation types.

Regarding the objective measure, we focus on how Task Performance and
Agreement between the user and the AI vary considering the different levels
of AI accuracy. Task Performance is defined as the ability to make correct de-
cisions. Buçinca et al. [8] explored the impact of explanation styles (inductive
vs. deductive) on task performance using proxy tasks. Their findings suggest
that users achieve similar performance levels regardless of explanation styles
in these simplified scenarios. However, in real-world decision-making tasks,
they discovered that users were more likely to choose the correct answer when
presented with inductive explanations compared to deductive explanations,
especially when the AI recommendation itself was incorrect. In our study, we
aim to identify which explanation styles are most effective in leading users
towards accurate decision-making in PPM, particularly when the AI model’s
accuracy varies.

Agreement refers to agreeing with the AI’s prediction. Zhang et al. [64]
investigated how confidence scores displayed alongside AI predictions influ-
ence user agreement. Their findings suggest that users are more likely to
adopt the AI’s prediction when presented with high confidence scores. Sim-
ilarly, Van der Waa et al. [52] explored the persuasiveness of different ex-
planation types (Rule-based vs. example-based) in the context of diabetes
self-management. Their research demonstrates that explanations, regardless
of style, are generally more persuasive than no explanation at all. In our
study, we will utilize the agreement metric to assess user behavior in various
experimental settings. We aim to understand when users are more likely to
follow the AI’s prediction in PPM tasks and identify potential persuasive
influences depending on different explanation styles.
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Chapter 3

Related Work

This chapter addresses the first research question (RQ1), which investi-
gates the current state of the art in XAI evaluation and identifies gaps within
the PPM domain. The chapter is structured as follows: first, we explore the
XAI techniques currently employed in PPM. Next, we examine the evaluation
approaches used for assessing explanations in PPM. Finally, we summarize
the identified gaps and outline the contributions of this thesis.

3.1 XAI methods applied in PPM

Recently, explainability approaches have also been applied and investi-
gated in the field of PPM. In Table 3.1, the relevant studies are classified
based on the stage at which explanations are generated (Ante-hoc, Post-
hoc), along with whether they are model-specific or agnostic for Post-hoc
method. We further analyzed whether these studies encompassed explain-
ability evaluation. In the PPM Tasks in this Table, NAP stands for “Next
Activity Prediction”, RTP for “Remaining Time Prediction”, OOP for “Out-
come Oriented Prediction”, and TCP for “Total Cost Prediction”.

Concerning the ante-hoc explainability, multiple approaches have been
proposed. Maggi et al. [32] introduced a decision tree-based method, while
Breuker et al. [7] proposed a probabilistic-based technique, and Senderovic
et al. [46] presented a regression-based approach.

Post-hoc explainability can be further divided into model-specific and
model-agnostic methods. Model-specific approaches offer explanations tai-
lored to predictions from specific predictive models, such as attention-based
LSTM models by Sindhgatta et al. [47], Layer-wise Relevance Propagation
(LRP) into LSTM model by Weinzierl et al. [62], and gated graph neural
networks (GGNN) by Harl et al. [22]. Pasquadibiceglie et al. [38] pro-
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posed explaining process instance outcomes using If-Then rules learned by a
neuro-fuzzy network.

Model-agnostic methods have received considerable attention in post-hoc
explainability. For instance, Galanti et al. [19] applied SHAP [30] to ex-
plain local predictions from LSTM and Catboost models, addressing various
prediction tasks like remaining time, activity occurrence, and case total cost.
Rizzi et al. [44] utilised LIME [41] and SHAP to identify features leading
to incorrect predictions, aiming to enhance predictive model accuracy.

Recent advancements include the development of Counterfactual expla-
nations. For example, Huang et al. [25], Hsieh et al. [24], and Hundogan
et al. [26] employ a Counterfactual approach, shedding light on alternative
actions to achieve desired outcomes like loan approval. Verenich et al. [57]
propose a two-step decomposition-based approach for predicting remaining
time, followed by aggregation using flow analysis techniques. Mehdiyev and
Fettke [34] introduce explainable DNN-based process outcome predictions
through partial dependence plots (PDP) for causal explanations. Rehse et al.
[40] employ connection weights to calculate Feature importance for outcome
predictions.

Moreover, Elkhawaga et al. [14] and Stevens et al. [49] propose method-
ologies for quantitatively evaluating XAI methods. Elkhawaga et al. compare
SHAP, Permutation Feature Importance [15], and ALE [2] using multiple
process datasets, while Stevens et al. introduce metrics encompassing various
transparent and non-transparent machine learning and deep learning models,
along with post-hoc explainability techniques.
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Table 3.1: XAI applied in PPM

Year Ref. PPM Task

Stage

iML / XAI Method EXP Eval.
Ante-hoc

Post-hoc

Model-specific Model-agnostic

2014 [32] NAP Decision Tree

2016 [7] NAP Probabilistic based

2017 [46] RTP Regression-based

2020 [47] NAP Attention Based LSTM

2020 [62] NAP Layer-wise relevance propagation LSTM

2021 [38] OOP Neuro-Fuzzy Network

2020 [22] OOP Gated graph neural networks

2019 [48] OOP, RTP LIME(XGBoost)

2023 [19] OOP, RTP, TCP SHAP(Catboost)

2020 [18] OOP, RTP SHAP(LSTM)

2020 [44] OOP LIME, SHAP

2020 [54] OOP LIME, SHAP

2021 [55] OOP LIME, SHAP

2022 [25] OOP Counterfactual

2021 [24] NAP Counterfactual

2023 [26] OOP, NAP Counterfactual

2019 [57] RTP Decomposition-based

2020 [34] OOP PDP (DNN based)

2018 [40] OOP Connection-weight(DNN based)

2024 [14] OOP SHAP, Permutation Importance, ALE

2023 [49] OOP Attention-based (LSTM, CNN), iML( GLRM, LLM, LR), SHAP(XGB, RF)

3.2 Evaluation of XAI methods in PPM

Unfortunately, only a few studies in the PPM domain are concerned with
evaluating the explanations generated with XAI techniques. However, as the
importance of explaining PPM results gains recognition, the evaluation of
XAI explanations is expected to gain more interest. As explained in sec-
tion 3.2, explainability evaluation can be categorized into three approaches:
Application-, Human-, and Function-grounded evaluations. In Table 3.2, rel-
evant studies are classified based on their evaluation approaches and whether
they compare XAI methods.

Function-grounded evaluation approaches assess explanations based on
their inherent characteristics. Velmurugan et al. [54, 55] focused on assess-
ing stability and fidelity. According to Visani et al. [59], stability refers
to the consistency of explanations generated for the same data sample un-
der identical conditions. They proposed metrics to evaluate the stability
of the top-K feature subset and their respective weights across multiple ex-
planations for certain process instances [55]. Fidelity, on the other hand,
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pertains to the ability of XAI methods to accurately mimic the behavior of
the explained ML model in the vicinity of the explained process instance.
Velmurugan et al. [54] introduced an approach to evaluate local XAI meth-
ods for their internal fidelity, which compares the decision-making process
of the explainer proxy model with the explained complex black-box model.
Huang et al. [25] also utilize a fidelity metric for Counterfactual explana-
tions to evaluate the faithfulness of explanations. They additionally assess
explanation quality by examining whether the most important attributes in-
dicated by the explanations correspond to the domain knowledge. Among
the Function-grounded evaluation studies in the PPM domain, Stevens et
al. [49] and Elkhawaga et al. [14] proposed evaluation approaches for var-
ious XAI methods applied to PPM results. Stevens et al. introduced four
out-of-the-box metrics from relevant XAI evaluation research, applied to dif-
ferent attributes in process mining data. They argue that these attributes
should be studied separately due to differing characteristics and effects on
predictions and explanations. Elkhawaga et al. proposed an approach for
evaluating global model-agnostic XAI methods using feature attributions to
explain ML model reasoning. They aimed to assess the consistency of expla-
nations with basic concepts extracted from underlying data.

Only two studies [43, 19] focused on human evaluations, specifically
application-grounded evaluation. Rizzi et al. [43] are among the first to
investigate whether users understand the explanation plots. Instead of ap-
plying actual XAI methods, they generate three levels of different plots in
event, trace, and event log levels. While the study involved participants from
both the PPM and ML fields, comprehension and usage levels of explana-
tions varied based on domain knowledge and experience. However, the study
relied on qualitative evaluation with a limited number of participants with-
out employing a consolidated user-interface evaluation methodology. Galanti
et al. [19] proposed a framework to evaluate the understanding and comfort
level of process analysts with results from an explainable predictive moni-
toring framework. Their evaluation focused on accuracy in task execution,
perceived task difficulty, usability, and user experience dimensions. Regard-
ing the comparison of XAI methods, no user study compares the effectiveness
of different XAI methods in qualitative user evaluation in the PPM domain.
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Table 3.2: Explainability Evaluation Approaches in PPM

Year Ref. Evaluation Metric
H. Evaluations

Function
XAI Methods

ComparisonApplication Human

2020 [54] Fidelity

2021 [55] Stability

2022 [25]
Fidelity

Domain Knowledge

2023 [49]

Parsimony

Functional Complexity

Importance Ranking Correlation

Level of Disagreement

2024 [14] Consistence

2022 [43] Understandability

2023 [19]

Accuracy

Perceived Task Difficulty

Usability

3.3 Summary of Research Gaps and Thesis

Contribution

In this chapter, we answered RQ2 by conducting current literature re-
views. First, reviewed studies that apply XAI techniques in the PPM domain.
Additionally, we explored existing research on evaluating XAI explanations,
including the evaluation approaches and metrics used. Through this analysis,
we identified two key research gaps that motivate our work.

First, there are limited comparative user studies in the PPM domain.
Existing user studies in the PPM domain primarily focus on individual XAI
frameworks or qualitative evaluations with limited generalizability. Second,
there is a lack of research on the decision-making effects of different expla-
nation styles. Existing research primarily focuses on the understandability
and usability of explanations. There is no systematic investigation into how
different explanation styles influence a user’s decision process.

25



Given these research gaps, this thesis aims to address the aforementioned
research gaps by conducting empirical user evaluation to compare the effec-
tiveness of different explanation styles within the PPM domain. In addi-
tion, we will incorporate each representing a type of explanation: Model-
based (Rule-based style), Attribution-based (Feature importance style), and
Example-based (Counterfactual style).
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Chapter 4

Explanation Generation

This chapter addresses how each XAI explanation is generated for the
experiment. We will discuss the dataset, the chosen method for data prepro-
cessing and the black-box model, and the specific approaches for generating
each XAI explanation.

4.1 Data Set

The dataset used for this experiment uses the BPIC 2017 event log data
[53]. This dataset concerns the loan application process of a Dutch financial
institution and is based on real-life event logs. Figure 4.1 shows the code
snippet of the BPIC 2017 event log before preprocessing. We selected this
dataset for several reasons. First, it is a popular dataset widely used in the
PPM domain (i.e. [25, 18, 51, 56]), which helps ensure the generalizability of
our findings to other PPM applications. Second, the loan application process
depicted in the data offers a familiar and relatable scenario for participants,
even for those without prior knowledge of PPM. This is crucial for our human-
centred evaluation, where the explanations are designed to be understandable
by non-expert users.

This data includes information on 1) States of the loan application, 2)
States of offers associated with the application, and 3) States of work items
related to the application. The overall application process can be decomposed
into three stages, receiving applications, negotiating offers, and validating
documents respectively [25, 5]. At the end of the process, an application can
be successful (A Pending) or not (A Denied). Additionally, an application
set A Canceled is set if the customer neither replied to the call nor sent the
missing documents as requested.
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Figure 4.1: Snippet of BPIC2017 eventlog

Figure 4.2 shows an example of a filtered process map that shows cases
that end with A Pending, A Denied, A Canceled.

Figure 4.2: BPIC 2017 Process Map
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4.2 Training Black-Box Model

Figure 4.3: PPM workflow

4.2.1 Data preprocessing

Label Assignment for Cases

The first step for data preprocessing is assigning outcome labels to cases in
event log data. Events are grouped by case ID to gather all events associated
with each case. These events are then sorted chronologically to ensure that
activities are in the correct order. The sequence of activities is scanned
to identify key events that determine the case’s outcome. Then labels are
assigned based on predefined significant activities, ensuring that each case is
categorized for subsequent analysis.

For this dataset, the process began by grouping all events by case ID
to gather all events associated with each case. Within each group, events
were sorted by their timestamp (ts) to ensure that the activities were in
chronological order. Next, the sequence of activities for each case was scanned
to identify key events that determine the case outcome. Specifically, the
activities “A Pending”, “A Denied”, and “A Cancelled” were used to assign
labels. They were labelled as “Accept Application”, “Reject Application”,
and “Cancel Application” respectively.

State-based Bucketing

When training the model with event log data, the initial sequences of
events (prefixes) should be extracted from the historical event log. These
prefixes can be filtered based on specific criteria, for example, by retaining
only those up to a certain length (prefix-length-based bucketing) or certain
state (state-based bucketing) to ensure efficient processing. Next, the iden-
tified prefixes are grouped into buckets.

For this dataset, state-based prefix extraction was used to create buckets,
utilising O Returned as the key state. We followed the approach of Wick-
ramanayake et al. [63], which also used the BPIC 2017 dataset for the next
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activity prediction. In addition, BPIC 2017 winner [39] analyzed O Returned
as the decision point.

Each case was sliced to include only the events up to and including the
O Returned activity. O Returned was chosen because it signifies the appli-
cant submitting documents for a selected credit offer. After this state, many
cases proceed to be accepted (A Pending), rejected (A Denied), canceled
(A Canceled), or even validated again (W validate Application) if there are
missing documents. In essence, O Returned was selected as the state for
filtering because it serves as a pivotal decision point for predicting the out-
come.

Aggregate Encoding

The prefixes within the same bucket must be represented as fixed-length
feature vectors to be effectively used for classification. This transformation
is achieved using abstraction techniques such as considering the last n events
(last n-state encoding), calculating activity frequencies (aggregate encoding),
or maintaining the order of events (index-based encoding).

For this dataset, aggregate encoding was employed to capture both the
frequency of activities and the cumulative duration up to the O Returned
state, providing a comprehensive representation of each case. In the im-
plementation, the cumulative duration for each case up to O Returned was
computed, and the frequency of each activity within the filtered event log
for each case was calculated. Relevant case attributes (e.g., “LoanGoal”,
“RequestedAmount”) were also included.

By aggregating all events and attributes up to each prefix, this encoding
approach ensures that the model has a complete view of the past events that
may influence the future state of each case. This comprehensive representa-
tion facilitates accurate and meaningful outcome predictions.

Partial Data Generation

After aggregate encoding, new attributes were generated based on the
outcome label to enrich the dataset with additional features relevant to loan
application data. The attributes were added to provide participants with
more context beyond event logs, simulating real-world scenarios.

To introduce variability, half of the dataset was generated randomly, in-
cluding attributes such as income, employment status, credit score, and age,
independently of the outcome labels. This approach ensured that the gener-
ated rules did not disproportionately influence the features derived from the
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event log data. The following rules were used to generate these additional
features:

• Income: Generated using a normal distribution.

– Accept: $40,000 (SD $7,000)

– Reject: $25,000 (SD $5,000)

– Cancel: $35,000 (SD $6,000)

• Employment Status: Probabilities for “Permanent” vs “Fixed-Term”.

– Accept: 70% Permanent, 30% Fixed-Term

– Reject: 40% Permanent, 60% Fixed-Term

– Cancel: 60% Permanent, 40% Fixed-Term

• Credit Score: Specific ranges, rounded to nearest 50.

– Accept: 710-850

– Reject: 500-750

– Cancel: 550-800

• Age: Weighted sampling with higher density around 31-40 years.

Figure 4.4 shows the code snippet of the dataset after preprocessing in-
cluding applying the above rule to half of the dataset.

Figure 4.4: Snippet of preprocessed data
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Black-Box Model

We selected Random Forest [6] as the black-box model to generate ex-
plainable artificial intelligence (XAI) explanations. This model predicts the
outcomes (Accept, Reject, or Cancel Application) based on activity frequen-
cies and cumulative time duration. The event log was split into a training
set (80% of the traces) and a testing set (20% of the traces). Given that the
primary goal of this experiment was to produce XAI explanations for com-
parative analysis, we did not undertake exhaustive hyperparameter tuning
or structural optimization of the model. Due to the high imbalance in the
dataset (Accept: 55%, Cancel: 33%, Reject: 12%), we applied resampling
techniques to address this issue. Following resampling, the model achieved
an overall accuracy of around 0.85.

In addition, as we aimed to measure the influence of perceived AI accuracy
on decision-making effectiveness, we considered using models with different
levels of actual accuracy. However, testing with high and low-accuracy mod-
els resulted in significantly varied XAI outcomes, which could potentially bias
the survey results. With differing content, we concluded that isolating the
impact of different explanation styles would be challenging. Therefore, we
trained a single model as previously mentioned, and used the model to gener-
ate XAI explanations. The only variation for participants was the presented
accuracy level (high-accuracy group: 96%, low-accuracy group: 63%).

4.2.2 XAI Instance Generation

Figure 4.5: Post Modelling XAI
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To generate local XAI explanations for individual predictions, we utilized
local model-agnostic XAI techniques. Specifically, we employed LIME [41] for
-based explanations, Anchor [42] for Rule-based explanations, and DiCE [36]
for Counterfactual-based explanations. After generating the explanations,
we refined them into a more human-friendly format while retaining their
original content.

We initially generated six cases for each prediction category (accept, re-
ject, cancel), including correctly classified and misclassified instances. How-
ever, to reduce the length of the survey, we later adjusted this to include only
four cases by focusing on accept and reject application cases. In total, 12
instances were used for the survey, with four instances for each explanation
style.

In the following sections regarding each XAI explanation, we include the
“Cancel Application” cases, although these were not ultimately used in the
survey due to the reduction in the number of instances.

Feature Importance-based: LIME

For Feature importance-based explanations, we used LIME [41], which
identifies which variables influenced the prediction and highlights the impor-
tant features of a particular prediction. LIME works by testing the effect
on the predictions when variations of the data are input into the machine
learning model. During the generation of instances, some parts were cut off
due to long texts. These were revised using Illustrator to ensure clarity.

The figures below illustrate a prediction classified as “Reject Applica-
tion”. Figure 4.6 shows the original version and Figure 4.7 side displays
the revised version. The right bars represent factors that support the AI’s
decision to reject the application, while the left bars indicate factors that
oppose the decision, suggesting either “Cancel Application” or “Accept Ap-
plication”.
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Figure 4.6: Example of Before Edit - LIME

Figure 4.7: Example of After Edit - LIME

Rule-based: Anchor

We used the Anchor [42] technique for Rule-based explanations. Anchor
generates rule explanations in a sequential manner, connecting conditions
with “AND”. For example, for a prediction to “Accept Application”, the
rule was:

“Income >44300.00” AND “W Complete application <= 3.00”
AND “Age >47” AND “LoanGoal Home Improvement = 1” AND “duration
<= 824966.04” AND “EmploymentStatus Fixed-Term =0”

Since this format was difficult to read at a glance, we revised it into
decision-tree-like figures for better clarity. Figure 4.8 below shows the revised
version of the instance.
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Figure 4.8: Example of After Edit - Anchor

Counterfactual-based: DiCE

We used DiCE [36] for Counterfactual-based explanations. DiCE allows
customization of Counterfactuals by choosing the desired class, the number
of Counterfactuals, and the method for generating them (general or random).
The random method can be particularly useful when dealing with sparsity
issues due to a large number of Counterfactuals or features. For instance, if
the original prediction was “Reject Application”, the desired class could be
set to “Accept Application” or “Cancel Application”.

In this experiment, we used the random method to generate two Counter-
factuals for each desired outcome. Given that there were 38 features, includ-
ing encoded categorical features, we selected nine categorical features for the
instances shown to participants. This number was chosen to be consistent
with the number of features shown in -based and Rule-based explanations.
The criteria for selecting these features were based on their appearance in
other explanations to ensure relevance.

Figure 4.9 shows the code snippet that DiCE generated for “Reject Ap-
plication” prediction of the instances generated by DiCE and shows Coun-
terfactuals or “Accept Application”.
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Figure 4.9: Example of Before Edit - DiCE

Figure 4.10 shows the explanation for “Reject Application” prediction
of the instances generated by DiCE and shows Counterfactuals or “Accept
Application” and “Cancel Application”.

Figure 4.10: Example of After Edit - DiCE

Note that “Cancel Application” was later deleted due to the long length
of the survey.
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Chapter 5

Research Method

In this chapter, we outline the research methods for conducting the em-
pirical user evaluation within the context of outcome prediction in a loan
application process. The chapter is organized as follows: we introduce the
evaluation objectives, describe the experimental design, define the hypothe-
ses and analytical approach, and detail the overall experimental procedure.

5.1 Evaluation Objectives

This thesis aims to evaluate the impact of explanation styles on decision-
making within the context PPM, considering variations in perceived AI ac-
curacy. The experimental design for the user evaluation is structured around
the following objectives, which are aligned with RQ2 and RQ3:

RQ2: How does the perceived level of accuracy in AI predictions
influence decision-making in terms of effectiveness?

Obj. 1: Investigating the Influence of Perceived AI Accuracy Levels on User
Decisions

RQ3: How do different explanation styles vary in influencing
decision-making in terms of effectiveness?

Obj. 2: Assessing the Impact of Explanation Styles on Decision-Making

Obj. 3: Evaluating Changes between Pre- and Post-Explanation

Obj. 4: Investigating the Reasons Behind Effectiveness Differences
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The first objective examines how perceived AI accuracy, categorized as
high or low, influences decision-making in terms of task performance, agree-
ment, and decision confidence. Understanding these influences will help cat-
egorize decision-making situations based on prediction accuracy. The second
objective focuses on evaluating the effects of various explanation styles— Fea-
ture importance-based, Rule-based, and Counterfactual-based—on the afore-
mentioned effectiveness metrics. The aim is to determine which styles best
support informed decision-making, effectively persuade users to take specific
actions and enhance their confidence in their decisions. The third objective
involves assessing how decision-making metrics change after explanations are
provided. The aim is to identify which explanation style influences the most
in affecting task performance, agreement, and decision confidence. The final
objective is to explore the reasons for differences in explanation effectiveness,
focusing on external subjective factors such as users’ backgrounds and satis-
faction levels. This will help us to gain insights into the factors influencing
the impact of explanations.

5.2 Experimental Design

The experiment is structured based on the evaluation objectives outlined
in the previous section. Figure 5.1 illustrates the two-phase decision-making
process, highlighting how accuracy and explanation styles influence the par-
ticipants’ decisions. Each ”scenario” presents participants with an applicant
profile and process map related to a loan application. These scenarios are
described in more detail in Section 5.3.2.

Following the first objective, participants are initially divided into two
distinct accuracy groups: High Accuracy and Low Accuracy, based on the
displayed AI prediction accuracy for a set of control tasks. Participants in
the high-accuracy group are presented with tasks where the AI model demon-
strates high accuracy, such as 96%, while those in the low-accuracy group
are shown tasks with a lower accuracy, around 63%. This setup allows us to
isolate and assess the influence of perceived AI accuracy on decision-making.
In Figure 5.1, we are comparing the effectiveness of “initial decisions”.

Within each accuracy group, participants are further assigned to explana-
tion style subgroups (Feature importance-based, Rule-based, and Counterfactual-
based). This division helps evaluate the effect of different explanation styles
on decision-making, addressing the second objective. Figure 5.1 shows how
the explanation groups are divided. We compare the effectiveness from the
post-explanation decision point. In this Figure, Feature- importance is ab-
breviated as “FI”, and Counterfactual as “CF”.
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To assess the impact of the explanation provision, participants make de-
cisions at two different points. In their initial decision-making phase, no
explanations are provided. In the second phase (Post decision), participants
are provided with one of the three explanation styles. This allows the assess-
ment of within-group changes and between-group comparisons, highlighting
the impact of explanations on user decisions.

To achieve the last objective, we also incorporate post-experiment ques-
tionnaires that assess subjective opinions about the decision-making tasks.
Participants were asked to rank the information they relied on the most. We
also evaluate their satisfaction and the perceived difficulty of the explana-
tions they received. Additionally, we collect data on participants’ educational
backgrounds and experience with process mining/XAI to determine if these
factors influence the effectiveness of the explanations. An open-ended ques-
tion is also included to capture participants’ suggestions for improving the
explanations. This comprehensive feedback collection provides insights into
the factors affecting explanation effectiveness and helps clarify the differences
in the impact of explanations across various groups. This section corresponds
to the post-questionnaire in Figure 5.1.

Figure 5.1: Experiment Setting
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Independent Variables

1. Perceived AI Accuracy: Low or High (Participants will be divided
into two groups based on AI prediction accuracy)

2. Explanation styles: Three styles (Participants will receive one of
three styles of explanations: Rule-based, Counterfactual-based, or Fea-
ture importance-based. A control condition is also included where no
explanation is provided.)

Dependent Variables

The dependent variables are the metrics to assess the impact of the styles
of explanation and the accuracy level of AI on decision-making.

1. Task performance: The number of correct decisions the participants
chose.

2. Agreement: This number of participants’ decisions align with AI pre-
dictions.

3. Decision Confidence: 5-point Likert Scale ranging from 1 (com-
pletely unsure) to 5 (extremely confident), answering their confidence
in their decision-making

5.3 Survey Procedure

Before distributing the survey, we conducted pilot testing with five indi-
viduals, representing a mix of those with and without process mining knowl-
edge and those with and without a Business IT background. This pilot test
aimed to estimate the average time required to complete the task and assess
the task difficulty. Participants without these backgrounds took approxi-
mately 20 minutes to complete the survey. Recognizing the varying levels
of knowledge and anticipating that a long survey duration might reduce the
quality of responses, we decided to reduce the number of tasks. Initially, the
survey included five scenario tasks that involved cancel predictions. Based
on the pilot test feedback, we reduced this to four scenarios, focusing only
on accept and reject predictions, each with correct and incorrect predictions.
After these adjustments, the median completion time for the pilot survey
was approximately 10 minutes.

The survey distribution was divided into multiple phases. The first batch
consisted of Business Informatics master’s students at Utrecht University en-
rolled in a Process Mining lecture. The second batch included other master’s
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students from backgrounds related to Business and IT, including Business
Informatics. The third batch consisted of PhD researchers in the process
mining field. The final batch was recruited from the Prolific platform1 to
fill in the required number of participants. In total, we gathered 222 par-
ticipants. After excluding responses based on the quality of answers and
completion time (under 5 minutes), we retained data from 181 participants.
The median time to complete the survey for these qualified participants was
566.5 seconds, approximately 9-10 minutes.

In the actual survey, participants were randomly assigned to one of six
groups using a randomizer implemented in the Qualtrics survey tool2. Figure
5.2 shows the survey structure made in Qualtrics and Table 5.1 shows the
number of participants per accuracy and explanation styles groups. All par-
ticipants, regardless of their group assignment, followed the same procedure
throughout the experiment.

It is followed as:

1. Introduction: Participants first receive an overview of the study’s
objectives and context, specifically focusing on the loan application
process. This initial step sets the stage for the experiment and ensures
participants have a clear understanding of the context.

2. Informed Consent: Before participation, individuals are presented
with a consent form detailing the study’s scope, their rights as partici-
pants, and confidentiality measures.

3. Experiment: This involves the main decision-making tasks that par-
ticipants complete. Each participant goes through 4 decision-making
tasks. A detailed example of these tasks is discussed in Section 5.3.2.

4. Post Questionnaire: Concluding the experiment, this questionnaire
gathers feedback on participants’ satisfaction with the explanations
(rated on a 1-5 scale) and the difficulty of the explanation interface.
Open-ended answers are also collected for qualitative insights into the
challenges participants faced in understanding the explanations and
their suggestions for improving the interface.

5. Demographic Questionnaire: Participants complete a questionnaire
to collect demographic information, including their highest education
level, whether they have a STEM background, and their years of ex-
perience with XAI and Process Mining. This data helps in analysing

1Copyright © [2024] Prolific. https://www.prolific.com
2Copyright © [2024] Qualtrics. https://www.qualtrics.com
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results across diverse groups and ensures a comprehensive understand-
ing of the experiment’s impact.

Figure 5.2: Experiment Setting
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Table 5.1: Number of Participants per Explanation Groups

Accuracy Explanation Styles N

High

Feature importance 30

Rule 30

Counterfactual 27

Low

Feature importance 32

Rule 31

Counterfactual 31

5.3.1 Participants

Table 5.2 describes the demographics of the participants, including their
education levels, fields of study, and experience with XAI and Process Min-
ing. The total number of participants in the experiment was 181. Note that
there are 2 missing entries in the demographic data; these correspond to par-
ticipants who completed the experiment but did not answer the demographic
questions.

43



Table 5.2: Participant demographics (N=181, missing = 2)

Characteristics N %

Education (highest completed)

High School 3 1.7
Bachelor or equivalent 98 54.1
Master or equivalent 69 38.1
Ph.D. or higher 9 5

STEM Background
Yes 138 22.7
No 41 76.2

Process Mining Experience

Never worked with it 107 59.1
Less than 1 year 41 22.7
1-2 years 17 9.4
2-3 years 6 3.3
3-5 years 4 2.2
5+ years 4 2.2

XAI Experience

Never worked with it 107 59.1
Less than 1 year 32 17.7
1-2 years 24 13.3
2-3 years 6 3.3
3-5 years 8 4.4
5+ years 2 1.1
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5.3.2 Experiment Decision Making Task Example

This section outlines the structure of the decision-making tasks that par-
ticipants engaged in, showcasing how scenarios were presented. The general
process that a participant followed for each scenario is as follows:

1. Scenario: Applicant’s Profile and Process Map

2. AI Prediction: Accept / Reject

3. Participant’s Initial Decision: Agree / Disagree, Confidence Level

4. XAI Explanation

5. Participant’s Post-XAI Decision: Agree / Disagree, Confidence Level

This process is repeated 4 times with different applicant scenarios. The
whole survey material is also provided in Appendix A.

Pre-Scenario

Before the scenarios were shown, the participants were provided with the
accuracy of the AI system. They were shown as: You will now review a set
of loan applications along with AI predictions indicating whether the loan will
be Accepted or Rejected. The AI system used for these decisions has a ( )%
accuracy rate. For the high accuracy group, they were assigned as 96% and
for the low accuracy group, they were assigned as 63%. This was shown only
one time. As we aim to test the perceived accuracy, only the numbers were
shown differently. The scenarios and tasks that were given to the applicants
were the same.

Scenario

The scenarios included the sequence of activities (Directly Follows Graphs
(DFGs) from Disco), and applicant characteristics. Figure 5.3 shows one of
the scenarios, that the participants were shown. This scenario was the one
that was correctly classified as a “Reject Application(Applicant 2)”. Par-
ticipants were also provided information on “Starting Point” and “Current
Status”, and the total duration time of the application process. Figure 5.4
shows the example of the information. With previous information on the
process map, applicant info, and this additional information, participants
conduct a personal assessment of whether they agree or disagree with the
prediction.
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Figure 5.3: Scenario Example - Reject Application

Figure 5.4: Introduction of Scenario

For the first scenario, participants were also provided with simple infor-
mation on how to read the process map (Appendix A.1). In addition, they
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were provided with a link that explains how to read the process map, in case
they wanted to check the definitions of all activities (Appendix A.2).

Pre-Explanation Decision Stage

Initially, participants were presented with the AI prediction regarding the
outcome of the loan application process. For example, the prediction was
provided as: “Based on this application process and the applicant’s profile,
the AI predicts that the application will be REJECTED after the last activ-
ity.” Participants were then asked whether they agreed with this prediction,
responding with either Agree or Disagree to the question: Do you agree
with the AI Prediction of ’Reject Application’?” Following this, participants
rated their decision confidence on a scale of 1-5, based on their agreement or
disagreement with the AI prediction. The question was phrased as: “How
confident are you with your decision on a scale of 1-5? (1- Not confident at
all, 5- Very confident)”

Explanation Styles

Depending on the group the participant is assigned to, participants are
presented with different explanation styles. Figures 5.5, 5.6, 5.7 explanation
that was provided to the participants. They show the Feature importance-
based, Rule-based, and Counterfactual-based styles respectively.

Figure 5.5: Feature importance-based style
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Figure 5.6: Rule-based style

Figure 5.7: Counterfactual-based style

Post-Explanation Decision Stage

After being provided with the XAI explanations, participants were asked
to reassess their agreement with the AI prediction and rate their decision
confidence, following the same procedure as in the pre-explanation decision
stage. The key difference was that this reassessment occurred after they
had received the XAI explanations. This process aimed to measure the in-
fluence of the XAI explanations on their decisions. By comparing the pre-
and post-explanation responses, we could evaluate the impact of different
XAI explanations and determine how the provision of explanations affected
participants’ decisions.
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5.3.3 Post-Questionnaire & Demographics

After completing the four decision-making scenarios, participants were
asked to complete a post-questionnaire. The post-questionnaire consisted of
four main sections:

1. Reliance on Information: Participants were asked to rank the informa-
tion sources they relied on the most during the decision-making tasks:
Process Map, Applicant’s Profile, XAI Explanation, and AI Prediction.
Figure 5.8 shows the example of the questions.

2. Satisfaction: Participants rated their satisfaction with the XAI expla-
nation on a scale of 1 to 5 (1 - not satisfied at all, 5 - very satisfied).

3. Difficulty: Participants assessed the difficulty of understanding the XAI
explanation on a scale of 1 to 5 (1 - extremely difficult, 5 - extremely
easy).

4. Demographics: Participants provided information on their highest ed-
ucational degree and education field.

5. XAI/Process Mining Experience: Participants indicated their level of
experience with XAI or process mining, ranging from no experience to
5+ years.

Figure 5.8: Ranking Question Example

This data was collected to address the fourth evaluation objective: under-
standing the reasons behind the differences in effectiveness across different
explanation styles.

49



5.4 Hypotheses

Based on the work of Kenny et al. [27], we anticipate a relationship
between effectiveness measures and AI accuracy. Furthermore, we hypothe-
size that the styles of explanation provided can significantly influence effec-
tiveness. These hypotheses are directly related to the evaluation objectives
outlined earlier in Section 5.1. Briefly, Objective 1 focuses on the influence of
perceived AI accuracy on effectiveness, Objective 2 examines the differences
in effectiveness across various explanation styles, and Objective 3 investi-
gates how the provision of explanations affects effectiveness and compares
these changes across explanation styles. The relationships between these
objectives and the corresponding hypotheses are summarized in Table 5.3.

Table 5.3: Evaluation Objectives and Hypotheses Alignment

Objectives Measure Hypotheses

Obj. 1

Task Performance H1

Agreement H4

Decision Confidence H7

Obj. 2

Task Performance H2

Agreement H5

Decision Confidence H8

Obj. 3

Task Performance H3

Agreement H6

Decision Confidence H9

1. Task Performance

H1 (Perceived AI Accuracy Influence on Task Performance)
focuses on the initial differences in task performance between the high-
accuracy and low-accuracy groups before explanations are provided.

• H10: There is no difference in initial task performance between partici-
pants in the high-accuracy and low-accuracy groups before explanations
are provided.

• H11: Participants in the high-accuracy group will have better initial
task performance than those in the low-accuracy group before expla-
nations are provided.
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H2 (Explanation styles Influence on Task Performance) whether
the styles of explanation (Rule-based, Counterfactual-based, Feature importance-
based) affect task performance after explanations are provided.

• H20: The styles of explanation do not affect task performance after
explanations are provided.

• H21: Task performance will vary significantly across different styles of
explanations provided.

H3 (Explanation Provision Influence on Task Performance ex-
plores the impact of explanations on participants’ ability to make correct
decisions, considering potential differences in effectiveness across explanation
styles.

• H30: The provision of explanations does not change the task perfor-
mance of participants, regardless of the explanation styles.

• H31: Explanations will improve the task performance of participants
on average, regardless of the specific explanation styles provided.

2. Agreement

H4 (Perceived AI Accuracy Influence on Agreement) focuses on
the initial impact of accuracy before explanations.

1. H40: AI prediction accuracy does not affect the likelihood of partici-
pants agreeing with the AI’s predictions (measured by the number of
times participants’ decisions align with AI predictions).

2. H41: Participants exposed to higher AI prediction accuracy are more
likely to agree with the AI’s predictions compared to those exposed to
lower AI prediction accuracy.

H5 (Explanation styles Influence on Agreement) explores the effect
of explanation styles on agreement after explanations are provided.

1. H50: The styles of explanation accompanying AI predictions do not
influence participants’ agreement with these predictions

2. H51: The styles of explanation provided will influence participants’
agreement with AI predictions

H6 (Explanation Provision Influence on Agreement) This hypoth-
esis investigates the overall impact of explanations on agreement, considering
both before and after scenarios and potential variations by explanation styles.
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1. H60: The provision of explanations does not influence participants’
agreement with AI predictions, irrespective of the explanation styles.

2. H61: Participants’ agreement with AI predictions increases after re-
ceiving explanations, with the degree of increase differing based on the
styles of explanation provided.

3. Decision Confidence

H7 (Confidence Based on Perceived AI Accuracy) explores the
influence of AI accuracy on participants’ decision confidence.

• H70: There is no difference in decision confidence between participants
in the high-accuracy and low-accuracy groups before explanations are
provided.

• H71: Participants in the high-accuracy group will report higher de-
cision confidence (on average) than those in the low-accuracy group
before explanations are provided.

H8 (Confidence Based on Explanation styles) investigates whether
the styles of explanation affect decision confidence after explanations are
provided.

• H80: The styles of explanation provided do not influence participants’
decision confidence after explanations are given.

• H81: Participants’ decision confidence will vary significantly across dif-
ferent styles of explanations provided after explanations are given with
certain explanation styles leading to higher confidence compared to
others.

H9 (Confidence Change) Compare decision confidence before and after
the explanations among the explanations groups.

• H90: Participants’ decision confidence does not change before and after
receiving an explanation.

• H91: Participants’ decision confidence will increase (on average) after
receiving an explanation compared to before.

5.5 Analytical Approaches

The variables used for testing the hypotheses varied depending on the
specific hypothesis. Table 5.4 outlines the variables and statistical methods
employed for each hypothesis. For all tests, we used G*Power to calculate
the required sample size based on a mid-effect size to ensure valid results.
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Hypotheses H1, H4, and H7, which examine the influence of AI accuracy,
were tested using Independent Samples T-Tests. For these tests, G*Power
calculations indicated that 88 participants were needed per accuracy group
(high and low) with the following parameters: effect size = 0.5, α = 0.05,
and power (1-β err prob) = 0.95. Although one participant was missing from
the high-accuracy group, we excluded them to maintain data quality.

Hypotheses H2, H5, and H8, which focus on outcomes after explanations
are provided, were analyzed using One-Way ANOVA followed by Tukey HSD
post-hoc tests. G*Power calculations with an effect size = 0.25, α = 0.05,
and power (1-β err prob) = 0.8 indicated that 26 participants were needed
per explanation style group across both high and low accuracy, totalling 156
participants. For these hypotheses, we recruited sufficient participants for
testing.

Hypotheses H3, H6, and H9, which assess changes before and after expla-
nations, were tested using Paired Samples T-Tests. For these tests, G*Power
calculations (effect size d = 0.5, α = 0.05, power (1-β err prob) = 0.80)
indicated that 26 participants per group were sufficient.

Apart from H1, H4, and H7, the remaining hypotheses were also ana-
lyzed separately for the high-accuracy and low-accuracy groups to explore
the differential effects of perceived AI accuracy. Additionally, we conducted
analyses combining explanation styles regardless of accuracy levels.

Table 5.4: Analytical Approaches per Hypotheses

Measure Task Hypotheses IV DV Analysis Method

Task Performance (TP)

H1 Perceived AI Acc. Initial TP Independent t-test

H2 Exp. styles Post TP One-way ANOVA

H3 Exp. styles Initial TP - Post TP Paired t-test

Agreement (Agg.) H4 Perceived AI Acc. Initial Agg. Independent t-test

H5 Exp. styles Post Agg. One-way ANOVA

H6 Exp. styles Initial Agg.-Post Agg. Paired t-test

Decision Confidence (DC) H7 Perceived AI Acc. Initial DC Independent t-test

H8 Exp. styles Post DC One-way ANOVA

H9 Exp. styles Initial DC - Post DC Paired t-test
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Chapter 6

Results

This chapter presents the quantitative and qualitative results obtained
from the participants and details the analyses performed. The analyses were
conducted using IBM SPSS Statistics 27.

6.1 Descriptive Statistics

Tables 6.1 - 6.6 provide a summary of the results for task performance,
agreement, and decision confidence across different explanation styles and
accuracy levels.

Task performance is measured by the number of correct decisions made
by participants, with a maximum possible score of 8 (2 points per scenario,
across 4 scenarios). Agreement refers to the number of decisions where par-
ticipants aligned with the AI’s prediction, regardless of correctness, with a
maximum score of 8 as well. Decision confidence is assessed on a 1-5 Likert
scale, reflecting participants’ confidence in their decisions, and is reported as
an average score.

Task Performance

Table 6.1 summarizes the total task performance across explanation styles
and accuracy groups. Participants in the high-accuracy group displayed vary-
ing levels of task performance depending on the explanation style provided.
For those who received Feature importance explanations, the average task
performance was 4.3 out of 8. Participants who received Rule-based expla-
nations performed slightly better, with an average score of 4.5. However,
those who received Counterfactual explanations had the lowest average task
performance in the high-accuracy group, scoring 3.5 out of 8.
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In contrast, participants in the low-accuracy group generally performed
better across all explanation styles. Those who received Feature importance
explanations had an improved average task performance of 4.5 out of 8,
compared to their high-accuracy counterparts. Participants who received
Rule-based explanations scored even higher, with an average of 4.9. The
highest task performance was observed in the low-accuracy group receiving
Counterfactual explanations, with an average score of 5.2 out of 8.

Table 6.1: Task Performance(avg.) by Accuracy, Explanation(Exp.) Styles

Accuracy Exp. Styles Task Performance SD

High

Feature importance 4.3 1.1

Rule 4.5 1.3

Counterfactual 3.5 0.8

Low

Feature importance 4.5 0.9

Rule 4.9 1.4

Counterfactual 5.2 1.2

Table 6.2 shows task performance before and after explanations. The
high-accuracy group showed minimal changes compared to the low-accuracy
group. For Feature importance explanations, the average task performance
slightly increased from 2.1 to 2.2. Those who received Rule-based expla-
nations maintained a consistent score of 2.2 before and after explanations.
Participants who received Counterfactual explanations experienced a minor
improvement, with their average task performance rising from 1.7 to 1.8.

The low-accuracy group, however, showed more noticeable improvements.
Participants who received Feature importance explanations saw their average
task performance increase from 2.1 to 2.4. Those who received Rule-based
explanations improved from 2.3 to 2.5. The most significant improvement
was in the group receiving Counterfactual explanations, where the average
task performance jumped from 2.3 to 2.8.
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Table 6.2: Before, After Task Performance by Accuracy and Explana-
tion(Exp.) Styles

Accuracy Exp. Styles Before Exp. After Exp.

High

Feature importance 2.1 (0.6) 2.2 (0.7)

Rule 2.2 (0.9) 2.2 (0.6)

Counterfactual 1.7 (0.5) 1.8 (0.6)

Low

Feature importance 2.1 (0.6) 2.4 (0.6)

Rule 2.3 (0.8) 2.5 (0.8)

Counterfactual 2.3 (0.6) 2.8 (0.7)

Agreement

Table 6.3 summarizes the total agreement across explanation styles and
accuracy groups. In the high-accuracy group, the Counterfactual explana-
tions led to the highest agreement with AI predictions (7.0 out of 8), followed
by Rule-based (6.4 out of 8) and Feature importance (6.1 out of 8).

In the low-accuracy group, Rule-based explanations led to the highest
agreement (6.6 out of 8), with Feature importance and Counterfactual ex-
planations both at 6.5 out of 8.

Table 6.3: Agreement(avg.) by Accuracy and Explanation(Exp.) Styles

Accuracy Level Exp. Styles Agreement avg. SD

High

Feature importance 6.1 1.9

Rule 6.4 1.5

Counterfactual 7.0 1.3

Low

Feature importance 6.5 1.3

Rule 6.6 1.6

Counterfactual 6.5 1.3

Table 6.4 shows the average agreement before and after explanations.
Rule-based explanations increased agreement in the high-accuracy group
(from 3.1 to 3.3 out of 4), while Counterfactual explanations saw a slight
decrease (from 3.5 to 3.4 out of 4). In the low-accuracy group, both Rule-
based and Counterfactual explanations slightly increased agreement.
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Table 6.4: Before, After Agreement by Accuracy and Explanation(Exp.)
Styles

Accuracy Exp. Styles Before Exp. After Exp.

High

Feature importance 3.1(1.0) 2.9(1.2)

Rule 3.1(0.9) 3.3(0.9)

Counterfactual 3.5(0.7) 3.4(0.7)

Low

Feature importance 3.4(0.8) 3.1(0.6)

Rule 3.2(0.9) 3.2(0.9)

Counterfactual 3.1(0.8) 3.4(0.7)

Decision Confidence

Decision confidence varied across explanation styles and accuracy levels.
Table 6.5 shows the total decision confidence average. In the high-accuracy
group, Rule-based explanations had the highest decision confidence with an
average of 4.1, followed by Counterfactual (4.0), and Feature importance
(3.6). Compared to the high-accuracy group, the low-accuracy group gen-
erally showed lower decision confidence. In the low-accuracy group, Feature
importance-based explanations had the highest confidence (3.9), followed by
Rule-based (3.8) and Counterfactual (3.7).

Table 6.5: Decision confidence(avg.) by Accuracy and Explanation Styles

Accuracy Exp. Styles Decision Confidence SD

High

Feature importance 3.6 0.9

Rule 4.1 0.7

Counterfactual 4.0 0.6

Low

Feature importance 3.9 0.8

Rule 3.8 0.9

Counterfactual 3.7 0.6

Table 6.6 summarizes the decision confidence change between before and
after explanations. In the high accuracy group, Rule-based explanations led
to the highest decision confidence after explanations (4.1 out of 5), followed
by Counterfactual (4.0 out of 5) and Feature importance (3.6 out of 5). For
the low accuracy group, Feature importance explanations resulted in the
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highest decision confidence after explanations (3.9 out of 5), followed closely
by Rule-based explanations (3.8 out of 5) and Counterfactual explanations
(3.7 out of 5).

Table 6.6: Before, After Explanation Decision Confidence by Accuracy and
Explanation(Exp.) Styles

Accuracy Exp. Styles Before Exp. After Exp.

High

Feature importance 3.5(0.9) 3.6(0.9)

Rule 3.8(0.6) 4.0(0.6)

Counterfactual 4.0(0.5) 3.9(0.5)

Low

Feature importance 3.7(0.9) 3.9(0.7)

Rule 3.7(0.8) 3.8(0.8)

Counterfactual 3.8(0.5) 3.6(0.6)

6.2 Hypotheses Result

All hypotheses were tested with a critical value of α =0.05. Table 6.7
provides a summary of the hypothesis results, with the “Validity” column
indicating where the null hypothesis was rejected.

Hypotheses H1, H4, and H7 were tested by grouping participants based on
accuracy level, independent of explanation styles. The remaining hypotheses
were analyzed separately for the high and low-accuracy groups. Additionally,
these hypotheses were tested by grouping participants according to explana-
tion styles, regardless of accuracy levels.

In terms of task performance, H1 demonstrated that perceived AI accu-
racy significantly influenced initial task performance, with the low-accuracy
group outperforming the high-accuracy group. H3 showed that task perfor-
mance improved significantly after explanations were provided, particularly
with the Counterfactual style in the low-accuracy group. This effect was
also evident when participants were grouped by explanation styles. H5 re-
vealed marginal differences in agreement between explanation styles, with
Feature importance explanations leading to lower agreement rates, partic-
ularly when grouped by explanation styles. H6 demonstrated a significant
decrease in agreement after explanations, especially with Feature importance-
based styles in the low-accuracy group, as well as when grouped by expla-
nation styles. Lastly, for decision confidence, H8 indicated that explanation
styles influenced confidence levels, particularly in the high-accuracy group,
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with Rule-based explanations resulting in higher confidence than Feature
importance-based styles. The remaining sections provide detailed statistical
analysis and results.

Table 6.7: Hypotheses Results Summary (Accuracy - Acc., Explanation -
Exp.)

Measure Hypotheses
Validity (Null Hypothesis Rejected)

High Acc. Low Acc.
Grouped by

Acc.
Grouped by

Exp.

Task Performance
H1
H2
H3

Agreement
H4
H5
H6

Decision Confidence
H7
H8
H9

6.2.1 Task Performance

First, we aimed to verify whether perceived AI accuracy, explanation
styles, and explanation provision influence task performance, which measures
the number of correct decisions.

H1: Accuracy Influence on Initial Task Performance

H1 investigated whether perceived AI accuracy levels influence initial task
performance. The independent variable is the accuracy group (high vs. low),
and the dependent variable is the initial task performance, measured before
any explanations are provided. There was a significant difference in initial
task performance between the high-accuracy and low-accuracy groups. Par-
ticipants in the high-accuracy group had significantly different task perfor-
mance compared to those in the low-accuracy group, with a mean difference
of -0.24040 (df = 179, t = -2.137, p = .034). The effect size, measured by
Cohen’s d, was 0.75, indicating a medium to large effect.

As both task performance measurements were positive and calculated
by subtracting low-accuracy task performance from high-accuracy task per-
formance, the negative mean difference means that the low-accuracy group
performed better. Thus, we reject the null hypothesis (H10), which states
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that there is no difference in initial task performance between participants
in the high-accuracy and low-accuracy groups before explanations are pro-
vided. The data supports the alternative hypothesis (H11), concluding that
participants in the high-accuracy group have lower task performance before
explanations are provided.

H2: Explanation Styles Influence on Task Performance

H2 investigated whether the styles of explanation affect task performance
after explanations are provided. The independent variable is the explanation
style, and the dependent variable is the task performance after explanations
are given. However, the analysis revealed no significant difference in task
performance across the different explanation styles for both the high (F(2,85)
= 2.971, p = .057) and low-accuracy groups (F(2,91) = 2.137, p = .124)
both indicating small effect sizes. This was the same when grouped with
explanation styles as well. The Tukey HSD post hoc test also confirmed
the ANOVA results, showing no significant differences in task performance
between the different explanation styles in both groups

H3: Explanation Provision Influence on Task Performance

H3 examined whether providing explanations affects participants’ task
performance, with explanation provision as the independent variable and
task performance as the dependent variable.

When testing the high and low-accuracy groups separately, the analysis
showed a significant improvement in task performance for the Counterfactual-
based style, particularly in the low-accuracy group. This is also shown in the
descriptive statistics in Table 6.2. Specifically, in the low-accuracy group,
task performance improved significantly from before (Mean = -0.4516, Std.
Deviation = 0.7228) to after explanations, with a t-value of -3.478 (df = 30),
p = 0.002, and an effect size of 0.72. No significant changes were observed
in the high-accuracy group, nor in the Feature importance-based and Rule-
based styles.

When grouped by explanation styles, task performance for the Counterfactual-
based style increased significantly from before (Mean = -0.31034, Std. Devi-
ation = 0.73046) to after explanations, with a t-value of -3.236 (df = 57), p
= 0.002, and a medium effect size of 0.73.

Thus, we reject the null hypothesis (H30), which posits that explanations
do not affect task performance. The data supports the alternative hypoth-
esis (H31), indicating that Counterfactual-based explanations significantly
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increase task performance, especially for the low-accuracy group, highlight-
ing their effectiveness with a medium effect size.

6.2.2 Agreement

Second, we aimed to verify whether perceived AI accuracy, explanation
styles and the provision of explanations influence agreement, measured by the
number of decisions participants follow, regardless of whether those decisions
are correct or incorrect.

H4: Accuracy Influence on Initial Agreement

H4 investigated whether perceived AI prediction accuracy affects the like-
lihood of participants agreeing with the AI’s predictions. This follows the
same analysis method as H1, except the dependent variable here is agreement
instead of task performance. It indicated no significant difference in agree-
ment between the high-accuracy and low-accuracy groups, with a t-value of
-0.078 (df = 179) and a p-value of 0.938. The mean difference in agreement
was very small (-0.01052), and the effect size, measured by Cohen’s d, was
-0.012, indicating a very small effect size. Thus, we fail to reject the null hy-
pothesis (H40), suggesting that AI prediction accuracy does not significantly
influence participants’ agreement with AI predictions before explanations are
provided.

H5: Explanation Styles Influence on Agreement

H5 examined whether the styles of explanation accompanying AI pre-
dictions influence participants’ agreement with these predictions. The in-
dependent variable is the explanation style, and the dependent variable is
agreement after explanations are provided. The analysis showed a marginally
significant effect of explanation styles on agreement, with a p-value of 0.055,
indicating a trend toward significance. Post hoc tests (Tukey HSD) revealed
significant mean differences between the Feature importance and Counterfactual-
based styles (mean difference = 0.39998, p = 0.043), suggesting differences
in agreement rates between these styles.

The homogeneous subsets analysis indicated that the Counterfactual-
based style had a higher mean agreement (mean = 3.4) compared to the
other two styles (Feature importance-based style: mean = 3.04, Rule-based
style: mean = 3.26).

However, when the high and low accuracy groups were analyzed sepa-
rately, neither showed significant differences in agreement across explana-
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tion styles. This suggests that while individual group effects may be subtle,
the combined dataset reveals a trend toward significance, highlighting the
Counterfactual-based style’s potential impact.

Thus, we fail to reject the null hypothesis (H50), which states that ex-
planation styles do not influence agreement. Nonetheless, the overall results
suggest a marginally significant influence of explanation styles on agreement,
particularly highlighting the impact of the Counterfactual-based style.

H6: Explanation Provision Influence on Agreement

H6 investigated whether the provision of explanations influences partici-
pants’ agreement with AI predictions. The independent variable is the pro-
vision of explanations, and the dependent variable is agreement, measured
before and after explanations are provided.

When testing the high and low-accuracy groups separately, the Feature
importance-based style in the low-accuracy group showed a significant de-
crease in agreement, with a mean difference of 0.28 and a p-value of 0.027.
This positive mean difference indicates that participants agreed more be-
fore the explanation was provided, as it was calculated by subtracting after-
agreement from before-agreement. Conversely, in the high-accuracy group,
there were no significant changes in agreement for any explanation styles.

When grouped by explanation styles, for the Feature importance-based
style, the mean difference in agreement was 0.25, with a p-value of 0.028,
indicating a significant decrease in agreement. The effect size was large,
suggesting a substantial impact of explanations on agreement for this style.
For the Rule-based and Counterfactual-based styles, there were no significant
changes in agreement, as both p-values were above 0.05.

6.2.3 Decision Confidence

Lastly, we evaluate whether perceived AI accuracy, explanation styles,
and the provision of explanations influence decision confidence, measured on
a scale from 1 to 5.

H7: Accuracy Influence on Initial Decision Confidence

Same as H1 and H4, we measure whether decision confidence is influ-
enced by the perceived AI Accuracy. The independent variable is the accu-
racy group (high vs. low), and the dependent variable is the initial decision
confidence, measured before any explanations are provided.
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The result indicated no significant difference in decision confidence be-
tween the high-accuracy and low-accuracy groups. The mean difference was
0.03800 (df = 179, t = 0.333, p = 0.739), with a very small effect size (Co-
hen’s d = 0.050). Thus, we fail to reject the null hypothesis (H70), which
states that there is no difference in decision confidence between participants
in the high-accuracy and low-accuracy groups before explanations are pro-
vided. The data does not support the alternative hypothesis (H71). These
results suggest that perceived AI accuracy does not significantly influence
decision confidence before any explanations are provided.

H8: Decision Confidence Based on Explanation Styles

H8 investigates whether the explanation styles affect decision confidence
after explanations are provided. The independent variable is the explanation
style, and the dependent variable is the decision confidence after explanations
are given.

When tested grouping by explanation styles, the results indicated no
significant difference in decision confidence among the different explanation
styles. The analysis showed a p-value of 0.329 (df = 2, F = 1.117), which is
greater than the significance level of 0.05, suggesting that explanation styles
do not significantly affect decision confidence. Thus, we fail to reject the null
hypothesis (H80), which states that the styles of explanation do not influence
participants’ decision confidence after explanations are provided.

However, when tested separately, the results were significant (p = 0.031,
F = 3.630), suggesting that explanation styles do have an impact on deci-
sion confidence in the high-accuracy group. Specifically, post hoc analysis
revealed that Rule-based explanations resulted in higher confidence com-
pared to Feature importance-based explanations, with a significant mean
difference of 0.47796 (p = 0.033). This indicates that for participants in the
high-accuracy group, Rule-based explanations may have greater confidence
in decision-making than Feature importance explanations.

H9: Decision Confidence Based on Explanation Styles

H9 investigates whether decision confidence changes before and after re-
ceiving an explanation, considering different explanation styles. The inde-
pendent variable is the explanation style, and the dependent variable is the
change in decision confidence, measured before and after explanations.

When analyzing the high and low accuracy groups separately, the results
were non-significant for both groups: high accuracy (Feature importance-
based p=0.239, Rule-based p=0.076, Counterfactual-based p=0.557); low ac-
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curacy (Feature importance-based p=0.372, Rule-based p=0.585, Counterfactual-
based p= 0.285).

Overall, the analysis indicated no significant change in decision confidence
before and after explanations for any of the explanation styles, with p-values
above 0.05: Feature importance-based (p=0.253), Rule-based (p=0.135),
Counterfactual-based (p=0.218). The effect sizes were small, suggesting a
negligible impact of explanations on decision confidence. Thus, we fail to
reject the null hypothesis (H90), which states that participants’ decision
confidence does not change before and after receiving an explanation.

6.3 Ranking Analysis

After completing the decision-making task, participants were asked to
rank the information they relied on the most, with the choices being the
Applicant’s Profile, AI Explanation, AI Prediction, and Process Map. Rank-
ings were measured on a scale from 1 to 4, with 1 indicating the highest
reliance and 4 the lowest. Table 6.8 shows a summary of the average rank-
ings across different accuracy levels and explanation styles. In Table 6.8 -
6.10 and Figures 6.1 - 6.4, the Applicant’s Profile is abbreviated as “Profile,”
and “AI Explanation” refers to the explanation provided to participants af-
ter the pre-decision stage. Overall, participants most frequently relied on
the Applicant’s Profile, followed by the AI Explanation, AI Prediction, and
Process Map. This trend is all presented in Figures 6.1 - 6.4.

As shown in Figure 6.1, participants in the low-accuracy group tended
to rely more on the instances provided in the scenario (Process Map and
Applicant’s Profile). For Process Map, the low accuracy group ranked as 3.11
while the high accuracy group ranked as 3.24 on average. For the Applicant’s
Profile, the low-accuracy group ranked as 1.40 while the high-accuracy group
ranked as 1.48. In contrast, participants in the high-accuracy group placed
greater reliance on AI Explanation (high-accuracy: 2.35, low-accuracy:2.45)
and AI Prediction (high-accuracy:2.92, low-accuracy:2.45). Note that a lower
number means higher reliance.
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Table 6.8: Ranking Avg. Summary by Accuracy and Explanation(Exp.)
Styles (1- highest reliance, 4- lowest reliance)

Accuracy Exp. Styles Profile AI Exp. AI Prediction Process Map

High
FI 1.54 2.37 2.96 3.14
Rule 1.49 2.18 2.93 3.40
CF 1.42 2.51 2.87 3.19

Low
FI 1.31 2.47 2.86 3.37
Rule 1.44 2.30 3.31 2.95
CF 1.46 2.56 2.95 3.03

Table 6.9: Ranking by Accuracy

Accuracy Profile AI Explanation AI Prediction Process Map
High 1.48 2.35 2.92 3.24
Low 1.40 2.45 3.04 3.11

Figure 6.1: Ranking Comparison by Accuracy Level

When examining reliance by explanation style (Table 6.10 and Figure
6.2), all three explanation styles showed similarly high reliance on the Appli-
cant’s Profile. However, participants who received Rule-based explanations
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relied the most on the AI Explanation compared to other groups (Rule-
based: 2.24, Feature importance-based: 2.42, Counterfactual-based 2.54).
Conversely, those who received Rule-based explanations relied the least on AI
Prediction (Rule-based: 3.12, Feature importance-based: 2.91, Counterfactual-
based 2.91). Regarding the Process Map, participants who received Counterfactual-
based explanations showed a marginally higher reliance than other explana-
tion styles (Counterfactual-based:3.11, Rule-based: 3.18, Feature importance-
based: 3.25).

Table 6.10: Ranking by Explanation (Exp.) Styles

Exp. Styles Profile AI Explanation AI Prediction Process Map
Feature Importance 1.42 2.42 2.91 3.25
Rule 1.46 2.24 3.12 3.18
Counterfactual 1.44 2.54 2.91 3.11

Figure 6.2: Ranking Comparison by Explanation Styles

A more detailed comparison of the high-accuracy (Figure 6.3) and low-
accuracy group (Figure 6.4) revealed a significant difference in the reliance
on AI Prediction and Process Map within the Rule-based explanation group.
In the low-accuracy group, participants who received rule-based explanations
tended to rely more on the Process Map than on AI Prediction. In contrast,
those in the high-accuracy group showed greater reliance on AI Prediction
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over the Process Map. Across both groups, participants who received Rule-
based explanations generally relied more on the explanation than those in
other groups. Additionally, participants who received Counterfactual-based
explanations in the low-accuracy group relied more on the Process Map com-
pared to their high-accuracy counterparts.

Figure 6.3: High Accuracy Group Ranking
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Figure 6.4: Low Accuracy Group Ranking

6.4 Satisfaction and Difficulty

Based on the explanation styles and accuracy levels received, we expected
different levels of satisfaction with the explanation and difficulty in under-
standing. Satisfaction was measured on a 1-5 Likert scale, where 1 indicates
“Not Satisfied” and 5 indicates “Very Satisfied.” Difficulty was also mea-
sured on a 1-5 Likert scale, where 1 indicates “Extremely Difficult” and 5
indicates “Extremely Easy.” Table 6.11 and Figure 6.5 show the average sat-
isfaction scores, and Table 6.12 and Figure 6.6 show the average difficulty
scores. The results indicate that the satisfaction and difficulty levels varied
across different explanation styles and accuracy levels.

For high accuracy, the Rule-based explanation style had the highest av-
erage satisfaction score of 3.80, followed by Feature importance with a score
of 3.66, and Counterfactual with a score of 3.41. In terms of difficulty, the
Rule-based explanation style was rated as the easiest with an average score
of 3.30, followed by Counterfactual at 3.04, and Feature importance at 2.97.

For low accuracy, the Rule-based explanation style again had the highest
average satisfaction score of 3.61, followed by Feature importance at 3.39,
and Counterfactual at 3.19. Regarding difficulty, the Rule-based explanation
style was rated as the easiest with an average score of 3.29, followed by
Feature importance at 3.23, and Counterfactual at 2.84.
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Table 6.11: Satisfaction Average by Explanation Styles

Accuracy Explanation Styles Satisfaction Avg. (1-5)

High

Feature Importance 3.66

Rule 3.80

Counterfactual 3.41

Low

Feature Importance 3.39

Rule 3.61

Counterfactual 3.19

Figure 6.5: Satisfaction Average by Explanation Styles
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Table 6.12: Difficulty level by Explanation Styles

Accuracy Explanation Styles Difficulty Avg. (1-5)

High

Feature Importance 2.97

Rule 3.30

Counterfactual 3.04

Low

Feature Importance 3.23

Rule 3.29

Counterfactual 2.84

Figure 6.6: Difficulty Average by Explanation Styles

These results suggest that the Rule-based explanation style generally led
to higher satisfaction compared to the other styles, regardless of the accuracy
level. Additionally, it was perceived as easier to understand. The Feature
importance explanation style had relatively lower satisfaction and higher dif-
ficulty ratings, particularly in the high accuracy condition. The Counterfac-
tual explanation style tended to have lower satisfaction and higher difficulty
ratings than the other styles.
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6.5 Background-based Statistics

As the experiment scenario was in the process domain and related to
XAI, we anticipated different results based on participants’ backgrounds, in-
cluding their STEM background and experience in Process Mining and XAI.
Tables 6.13, 6.14- 6.17 summarize the task performance, agreement, and deci-
sion confidence with different backgrounds, all measured after explanations.
Overall, there were no significant differences between the backgrounds in
STEM and experience in XAI.

The differences in task performance based on the background were rel-
atively small, with a process mining background showing a slightly more
noticeable positive impact, particularly for participants with less than 1 year
of experience, as shown in Table 6.15. This might be due to the first batch
distribution where we tested with Process Mining course enrolled students.
Differences in agreement rates are also minor, with process mining experience
slightly reducing agreement rates (6.14, 6.15). Regarding decision confidence,
a background in STEM, Process Mining, and XAI generally increases deci-
sion confidence, with the most noticeable increase observed in participants
with XAI experience. However, task performance among participants with
more than 5 years of XAI experience was the lowest, though this group con-
sisted of only two individuals. Thus, these findings should be interpreted
with caution due to the skewed data distribution in certain groups.

Table 6.13: Task Performance, Agreement, Decision Confidence Avg. & SD
by STEM Background

STEM Background Task Performance Agreement Decision Confidence
No 2.4(0.8) 3.3(0.8) 3.6(0.7)
Yes 2.3(0.7) 3.2(0.9) 3.8(0.8)

Table 6.14: Task Performance, Agreement, Decision Confidence Avg. & SD
by Process Mining(PM) Experience

PM Experience Task Performance Agreement Decision Confidence
No 2.2 (0.7) 3.3 (0.8) 3.8 (0.7)
Yes 2.4 (0.8) 3.1 (1.0) 3.9 (0.7)
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Table 6.16: Task Performance, Agreement, Decision Confidence by XAI Ex-
perience

XAI Experience Task Performance Agreement Decision Confidence
No 2.3 (0.7) 3.2 (0.8) 3.7 (0.8)
Yes 2.3 (0.7) 3.2 (0.9) 3.9 (0.6)

Table 6.15: Task Performance, Agreement, Decision Confidence by Process
Mining(PM) Experience (Detail version)

PM Experience Task Performance Agreement Decision Confidence
No experience 2.2 (0.7) 3.3 (0.8) 3.8 (0.7)
Less than 1 year 2.6 (0.8) 3.0 (0.9) 3.7 (0.8)
1 - 2 years 2.2 (0.7) 3.2 (1.2) 4.0 (0.4)
2 - 3 years 2.0 (0.6) 3.3(0.8) 3.8 (0.7)
3 - 5 years 2.5 (1.0) 3.5 (1.0) 4.3 (0.4)
5 + years 2.2 (0.5) 3.2(0.9) 3.9 (0.8)

Table 6.17: Task Performance, Agreement, Decision Confidence by XAI Ex-
perience (Detail version)

XAI Experience Task Performance Agreement Decision Confidence
No experience 2.3 (0.7) 3.2 (0.8) 3.7 (0.8)
Less than 1 year 2.3 (0.7) 3.2 (1.0) 3.7 (0.7)
1 - 2 years 2.2 (0.5) 3.3 (0.8) 4.0 (0.5)
2 - 3 years 2.5 (1.0) 3.1 (1.4) 3.9 (0.7)
3 - 5 years 2.6 (0.9) 2.8 (0.9) 4.0 (0.5)
5 + years 1.5 (0.7) 3.5 (0.7) 4.6 (0.1)

6.6 Qualitative Analysis

To gain qualitative insights into XAI explanations, participants were
asked to provide feedback on potential improvements for the explanations
they received after the experiment section in the survey. The following are
the summarized points from the participants who expressed similar opinions.
More points are also available in the Appendix A.4

Feature Importance-based Explanations

Participants who received Feature importance-based explanations men-
tioned several areas for improvement:
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1. Weighting of Reasons: Users expressed a desire for clear explana-
tions on the weighting of each reason in the decision-making process (5
participants).

2. Specific Details on Variables: Participants requested detailed ex-
planations on why certain thresholds are set, how the duration factors
in, and the significance of percentage gaps between income and loan
amounts (7 participants).

3. Contextual Scaling: There is a need for scales to provide context
(e.g., credit score ranges) and to explain the relative values of data
used in decision-making (6 participants).

Rule-based Explanations

Participants who received Rule-based explanations highlighted the fol-
lowing improvements:

1. Step-by-Step Process: Participants called for step-by-step explana-
tions of the decision-making process, ideally presented in a flowchart
format (8 participants).

2. Detailed Feature Explanations: Participants wanted more empha-
sis on explaining what each rule or feature means and how it impacts
the decision. They also requested specific conditions under which deci-
sions are made to help understand the decision logic (6 participants).

Counterfactual Explanations

Participants who received Counterfactual explanations suggested the fol-
lowing enhancements:

1. Focus on Alternatives: Users wanted to see several different alter-
natives that could affect the decision in combination(9 participants).

2. Understanding Hierarchies: There was a specific interest in under-
standing the hierarchy of importance factors and how different combi-
nations of factors influence decisions (4 participants).

3. Comparative Examples: Participants desired examples of accepted
cases in the event of rejection. They wanted to see comparisons between
their case and similar accepted cases to better understand the reasons
behind the AI’s decision (7 participants).
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In the feedback from participants who received Feature importance-based
explanations, a common request was for information on the relative impor-
tance of different factors influencing the AI’s prediction and broader contex-
tual information to help interpret the AI’s decisions. For Rule-based expla-
nations, participants expressed a preference for a flowchart format to make
the decision logic more accessible and easier to follow. They also wanted
explanations for why specific rules influenced the AI’s decision. Participants
who received Counterfactual explanations wanted to see more alternatives
and a hierarchy of important factors. They also wanted to see the compar-
isons between their case and similar accepted cases to better understand the
reasons behind the AI’s decision.
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Chapter 7

Discussion

In this chapter, we discuss the findings of the experiment’s results that
eventually answer the research questions (RQ2, RQ3) and related evalua-
tion objectives in Section 5.1 in this thesis. Furthermore, we address the
limitations and future works related to the findings.

7.1 Research Questions & Findings

In the experiment, we evaluated the effectiveness of three different expla-
nation styles (Feature importance-based, Rule-based, and Counterfactual-
based) in decision-making by considering the level of perceived AI accu-
racy in the PPM domain. We used metrics such as “Task Performance,”
“Agreement,” and “Decision Confidence” to conduct a comprehensive user
evaluation that includes both objective and subjective measures in a human-
grounded evaluation. We investigated subjective opinions about each ex-
planation style through a post-questionnaire assessing information reliance
(ranking), satisfaction, difficulty, and open-ended questions. This was done
to potentially find the reasons behind the hypothesis results and trends ob-
served in the descriptive statistics. Furthermore, as this study was conducted
in the PPM domain, we also aimed to determine if there were varying effects
based on participants’ educational backgrounds or experiences in Process
Mining and XAI.

7.1.1 RQ 2 - Obj. 1

RQ2 - Obj. 1 was about investigating the influence of perceived AI accu-
racy levels on users’ decision-making. We have found that there were differ-
ences in effectiveness between high and low-accuracy in decision-making.
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Difference in Task Performance

As shown in the task performance measure in Table 7.1 and Figures 7.1,
7.2, it has shown that participants in the low-accuracy group generally per-
formed better than the high-accuracy group. Specifically, participants in the
low-accuracy group outperformed those in the high-accuracy group when
comparing the same explanation styles.

Moreover, hypothesis H1 demonstrated that participants in the low-accuracy
group exhibited better initial task performance than those in the high-accuracy
group. This initial performance was assessed before any explanations were
provided, indicating that participants relied solely on process maps, applica-
tion profiles, and the initial prediction and accuracy rate presented to them.
These results suggest that the lower perceived accuracy of AI predictions may
drive participants to engage more critically with the information. In addition,
ranking analysis in Figures 6.1 shows that the higher accuracy group focused
more on AI prediction than the low accuracy group did. This addresses the
second research question (RQ2 - Obj. 1), showing that differences in task
performance exist between high and low-accuracy groups, regardless of the
explanation styles used.

Table 7.1: Task Performance, Agreement, Decision Confidence across Accu-
racy and Explanation(Exp.) Styles

Accuracy Exp. Styles Task Performance Agreement Decision Confidence

High
Feature Importance 4.30 6.10 3.58
Rule 4.50 6.43 4.07
Counterfactual 3.50 7.00 3.97

Low
Feature Importance 4.50 6.50 3.88
Rule 4.90 6.60 3.81
Counterfactual 5.20 6.50 3.66
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Figure 7.1: Task Performance, Agreement, Decision Confidence in High Ac-
curacy Explanation Styles

Figure 7.2: Task Performance, Agreement, Decision Confidence in Low Ac-
curacy Explanation Styles

Different results in High and Low Accuracy Groups

While only H1, H4, and H7 specifically examined differences between high
and low-accuracy groups irrespective of explanation styles, other hypotheses
revealed notable distinctions between these groups when considering expla-
nation styles. For instance, hypothesis H3, which focused on changes in task
performance, was significant only in the low-accuracy group for the Counter-
factual explanation style. This was not observed in the high-accuracy group.
The descriptive results further indicated that participants in the low-accuracy
group outperformed the high-accuracy group after explanations were pro-
vided. This trend is reflected in Table 7.2 in the task performance measure,
showing that an AI with a perceived low accuracy might encourage more
user engagement.
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Table 7.2: Before, After Explanation (Exp.): Task Performance, Agreement,
Decision Confidence among Accuracy and Exp. Styles (Feature importance
- FI. Counterfactual-CF)

Accuracy Exp. Styles
Task Performance Agreement Decision Confidence

Before Exp. After Exp. Before Exp. After Exp. Before Exp. After Exp.

High

FI 2.1 2.2 3.1 2.9 3.5 3.6

Rule 2.2 2.2 3.1 3.3 3.8 4.0

CF 1.7 1.8 3.5 3.4 4.0 3.9

Low FI 2.1 2.4 3.4 3.1 3.7 3.9

Rule 2.3 2.5 3.2 3.2 3.7 3.8

CF 2.3 2.8 3.1 3.4 3.8 3.6

Similarly, hypothesis H6, which examined changes in agreement, showed
a significant decrease only in the low-accuracy group for the Feature impor-
tance style. In contrast, the high-accuracy group showed a smaller trend of
agreement decrease. On the other hand, differences in decision confidence
between the groups were significant only in the high-accuracy group, where
participants who received Rule-based explanations reported higher decision
confidence (H8). These findings show that even with identical scenarios and
explanations, perceived AI accuracy can lead to varying outcomes.

7.1.2 RQ 2 - Obj. 2

Obj. 2 investigated the difference in effectiveness between the explanation
styles. The results showed that there were differences in agreement measure
between Counterfactual-based and Feature importance-based explanations.
In addition, there was a significant difference in decision confidence between
Feature importance and Rule-based styles.

Counterfactual & Feature Importance- Agreement

Hypothesis H5 highlighted differences in the persuasiveness of various
explanation styles, particularly in terms of agreement. The counterfactual
explanation style was significantly more persuasive than both the Rule-based
and Feature importance styles, with notable differences compared to the
Feature importance-based style.

Counterfactual explanations, which present alternative scenarios and “what
if” options, might have demonstrated stronger persuasive power. This find-
ing is consistent with previous research, where counterfactual explanations
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were perceived as more helpful than causal explanations [11]. Additionally,
another user study suggests that the natural human tendency toward “Coun-
terfactual thinking may enhance the persuasive impact and effectiveness of
these explanations [61]. These results also align with the descriptive statistics
in the agreement measure, as shown in Table 7.1 where the Counterfactual-
based style showed a higher agreement rate compared to all other explanation
styles which are close to causal explanations.

Feature Importance & Rule-based - Decision Confidence

Regarding decision confidence, Hypothesis H8 indicated significant differ-
ences between Feature importance-based and Rule-based explanation styles.
Participants who received Rule-based explanations reported significantly higher
decision confidence than those who received Feature importance-based expla-
nations. The ranking analysis (Section 6.3) shows that participants who re-
ceived Rule-based explanations relied more on AI Explanation than Feature
importance, which may have resulted in these statistics. In addition, this
result aligns with findings on satisfaction and difficulty levels (Table 7.3), as
discussed further in RQ3. Rule-based explanations’ clarity and straightfor-
ward nature may have contributed to higher decision confidence by providing
users with a more accessible understanding of AI predictions.

Table 7.3: Satisfaction and Difficulty across Accuracy and Explanation(Exp.)
Styles Satisfaction (1 - Very Dissatisfied, 5- Very Satisfied, Difficulty (1 -
Extremely difficult, 5 - Extremely easy)

Accuracy Explanation Styles Satisfaction Difficulty
High Feature Importance 3.7 3.0

Rule 3.8 3.3
Counterfactual 3.4 3.0

Low Feature Importance 3.4 3.2
Rule 3.6 3.6
Counterfactual 3.2 2.8

79



7.1.3 RQ 2 - Obj. 3

Obj. 3 focused on understanding how the provision of explanations in-
fluences effectiveness measures and identifying any differences between the
explanation styles. We conducted a separate analysis for high and low ac-
curacy groups, while also examining whether similar trends emerged across
explanation styles within both accuracy groups. Initially, we assessed the
impact of providing explanations on all effectiveness measures, followed by
investigating patterns across explanation styles in these measures.

Improved Task Performance: Counterfactual Style

For task performance, most explanation style groups showed an increase
after explanations were provided. The descriptive statistics in Table 7.2
revealed that task performance improved across both accuracy groups. As
expected, the provision of additional information generally led to better task
performance.

When comparing task performance improvements between high and low-
accuracy groups, the low-accuracy group showed greater improvements than
the high-accuracy group, as visualized in Figure 7.3, which illustrates the
improvements across all accuracy and explanation groups. This suggests
that perceived accuracy may play a significant role in influencing task per-
formance. Especially, the Counterfactual style in the low-accuracy group
showed a 19% improvement rate. This finding was further supported by H3,
which showed a significant increase in task performance for the Counterfactual-
based style. These results suggest that Counterfactual explanations might
be particularly sensitive to the influence of perceived AI accuracy, leading to
greater effectiveness in this context compared to other explanation styles.

Decreased Agreement: Feature importance- based style

When comparing agreement across different explanation styles, we ob-
served a consistent trend in the Feature importance style for both accuracy
groups. Participants who received Feature importance explanations experi-
enced a decrease in agreement, a trend that was statistically significant as
indicated by H6. This decrease in agreement was notable compared to the
initial agreement before any explanation was provided. Figure 7.4 illustrates
the agreement trends across the different explanation styles.

Meanwhile, for Rule-based explanations, agreement increased after the
explanation was provided in the high-accuracy group, while it remained con-
sistent in the low-accuracy group. In contrast, Counterfactual explanations
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showed different trends: agreement decreased slightly in the high-accuracy
group but increased in the low-accuracy group.

Figure 7.3: Task Performance Before, After Explanations

Figure 7.4: Agreement Before, After Explanations
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Interaction between Perceived AI Accuracy and Explanation Styles
on Task Performance and Agreement

We initially expected a high persuasive power, meaning higher agreement
would affect task performance negatively. This follows the argumentation
that persuasive explanations can cause harm as they may convince users
to over-trust a system [45]. Based on this, we analyzed the trend between
agreement and task performance across all explanation styles, grouped by
the same explanation styles. Figures 7.5 - 7.7 illustrate the trends.

Figure 7.5: Before, After Task Performance and Agreement for Feature
importance-based Explanations (FI) in High and Low Accuracy group

Figure 7.6: Before, After Task Performance and Agreement for Rule-based
Explanations in High and Low Accuracy group
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Figure 7.7: Before, After Task Performance and Agreement for
Counterfactual-based Explanations in High and Low Accuracy group

For the Feature importance-based style (Figure 7.5), the data shows that
when agreement decreases, task performance increases in both high and low-
accuracy groups. In the Rule-based style (Figure 7.6), in the high-accuracy
group, when agreement increased slightly, task performance remained stable.
Conversely, in the low-accuracy group, when agreement remained consistent,
task performance improved slightly.

However, for the Counterfactual style, the relationship varied depending
on the perceived AI accuracy. The expected effect of agreement and task per-
formance was observed in the high-accuracy group, when agreement lowered
slightly, task performance increased. In contrast, in the low-accuracy group,
when agreement increased, task performance increased together, suggesting
that perceived low AI accuracy may alter the typical relationship between
these metrics. This result indicates that perceived AI accuracy might in-
fluence the interaction between task performance and agreement differently
depending on the explanation style.

7.1.4 RQ 3 - Obj. 4

The main research question of this thesis focused on how different expla-
nation styles impact decision-making effectiveness, particularly when con-
sidering varying levels of perceived AI accuracy. As discussed in Sections
7.1.1, 7.1.2, and 7.1.3, perceived AI accuracy significantly influences decision-
making, and distinct patterns and trends emerge between explanation styles
when accounting for this factor.

In summary, Feature Importance and Counterfactual explanations were
most effective in the objective measures of task performance and agreement,
while Rule-based explanations excelled in decision confidence. Specifically,
Counterfactual explanations led to increased task performance (H3) and
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achieved the highest agreement rates (H5) among the different styles. In
contrast, Feature Importance explanations resulted in a decrease in agree-
ment (H6) when provided and had the lowest overall agreement rate (Tables
7.1, 7.2). Additionally, participants who received Rule-based explanations
exhibited higher decision confidence than those who received Feature impor-
tance explanations (H8).

To explore the reasons behind these outcomes, we analyzed post-questionnaire
responses (including ranking analysis, satisfaction, and difficulty), along with
qualitative feedback, which addresses RQ 3 - Obj. 4.

Explanation Difficulty and Satisfaction influencing Effectiveness

Feature importance-based explanations were rated as the most difficult
and received the lowest satisfaction scores, as shown in Table 7.3. This
is also related to the result of the lowest decision confidence shown in the
descriptive statistics in Table 7.1. The decrease in agreement (H6) and low
decision confidence suggest that Feature importance explanations might not
provide sufficient context or clarity to convince users of the AI’s predictions.
Participant feedback supported this, with many indicating a desire for more
context to understand the relative values of data used in decision-making.

Counterfactual explanations, on the other hand, presented a different
scenario. Although they were also rated as high in difficulty and low in sat-
isfaction (Table 7.3), they had high persuasive power, demonstrated by the
highest agreement rate and improved task performance. Despite being con-
sidered difficult and having low satisfaction, users were more likely to trust
and agree with AI predictions when given detailed, scenario-based explana-
tions that explore different outcomes.

Rule-based explanations did not significantly affect objective measures
such as task performance and agreement. However, they were rated as the
easiest to understand and received the highest satisfaction scores, which may
explain the highest decision confidence observed in the descriptive statistics
(Tables 7.1, 7.2). While Rule-based explanations clearly explain the logic of
model predictions, we expected a positive impact on task performance and
agreement, but this was not the case. This suggests that high satisfaction
or simplicity does not necessarily translate to better objective effectiveness.
However, higher satisfaction and lower difficulty were associated with higher
decision confidence, which was evident in H8. The ranking analysis in Sec-
tion 6.3 and Figure 6.2 also show that participants who received Rule-based
explanations tended to rely on the most on AI explanations than other ex-
planation groups.

These results suggest that balancing complexity and satisfaction is cru-
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cial, as it involves comparing the need for more information with user satis-
faction. This balance can be achieved by incorporating feedback from partici-
pants, which could potentially enhance both effectiveness and satisfaction, for
example by incorporating hierarchies in Counterfactual-based explanations
or more detailed feature explanations for Rule-based explanations or giving
more contextual information on Feature importance-based explanations.

Background Influencing Effectiveness

We also anticipated different results based on participants’ backgrounds,
given that the experiment scenario was based on the process domain and
related to XAI. However, as mentioned in the Results chapter, there were
no significant differences overall based on background. This is related to
the limitations that will be addressed in the next section regarding skewed
backgrounds, which might obscure the reasons for effectiveness.

However, among other backgrounds, task performance and agreement
seemed to be influenced by the level of experience in process mining. Partici-
pants having a process mining background showed a slightly more noticeable
positive impact, particularly those with less than one year of experience, as
shown in Table 6.15. As mentioned in the Results chapter, this might be
due to the first batch distribution where we tested with students enrolled in
a Process Mining course, where they can interpret process maps. Addition-
ally, participants with process mining experience slightly reduced agreement
rates (Tables 6.14, 6.15). This might indicate a more critical assessment of
AI predictions by those with process mining experience.

7.2 Limitations

One of the primary limitations of this study is the difficulty participants
faced in solving process related tasks without a background in process min-
ing. The aim of this thesis was to investigate the effectiveness of different XAI
explanation styles in the context of PPM by conducting a human-grounded
experiment using simplified tasks and lay participants. We selected partic-
ipants with business or IT backgrounds, anticipating that this would help
them solve the process-related tasks in the scenarios. However, despite the
simplified design and detailed descriptions, many participants expressed dif-
ficulty in completing the tasks without prior process mining knowledge.

This challenge is evident in our analysis, which revealed that participants
with a background in process mining, particularly those from the first batch
enrolled in a Process Mining course, performed better than others. This
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suggests that the tasks may have been too complex for participants without
a process mining background, potentially skewing the results. Furthermore,
the ranking analysis in Section 6.3 showed that most participants relied the
least on the process map. While this was anticipated, given the relative
simplicity of other information, providing a more accessible PPM context
could have helped to generalize the results more effectively within the PPM
domain.

Therefore, one of the limitations is that the results may not be fully
generalizable within the PPM context, and the participant pool may have
been skewed toward those with process mining experience.

Another limitation is the choice of machine learning models used in the
study. While our experiment aimed to compare different XAI techniques us-
ing a black-box model, we opted for Random Forest due to its simplicity and
configurability as a black-box model. However, using more complex mod-
els like neural networks or deep learning could have provided more accurate
predictions and insights into how different XAI styles affect decision-making.

A closely related limitation is the use of XAI techniques that are not
specifically designed for event log data. In this experiment, we employed
XAI techniques commonly used for tabular data. However, event log data
have unique characteristics, including timestamps, activities, and various at-
tributes. Using XAI techniques developed specifically for event log data could
have generated more process-related explanations and closer approximations
to real-life PPM scenarios.

7.3 Future Works

This thesis has provided insights into how different explanation styles
impact user decision-making in the context of Predictive Process Monitor-
ing (PPM), considering the level of perceived accuracy. However, several
areas for future research could expand our understanding and address the
limitations outlined in the previous section.

Firstly, as mentioned in the limitations, this thesis involved lay partici-
pants with business and IT backgrounds, which potentially resulted in skewed
results for those with process mining backgrounds. For human-grounded re-
search, more simplified process-related tasks could encourage greater user
engagement and allow participants to approach tasks more proactively. This,
in turn, would enable a more critical comparison between performance with
and without explanations. Additionally, involving domain experts and using
real-life scenarios through application-grounded experiments could provide
a more comprehensive understanding of explanation styles’ effectiveness in
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PPM. This approach would allow for a more realistic assessment of expla-
nation effectiveness in complex, real-world PPM scenarios. Domain experts
can offer valuable insights into the challenges and requirements of decision-
making within their specific domain.

Furthermore, this study primarily focused on outcome-oriented predic-
tion tasks. Future research can explore the impact of different explanation
styles on ”next activity prediction” tasks, where the goal is to predict the
subsequent step in a process based on the current stage. This would provide
a deeper understanding of how explanations can support decision-making
throughout the process life cycle.

Thirdly, while this thesis utilized Random Forest as the black-box model
for producing post-hoc XAI explanations, future research could explore the
impact of different model complexities on explanation effectiveness. As men-
tioned in the limitations, employing more complex algorithms like neural
networks or deep learning models might generate different prediction pat-
terns and subsequently necessitate distinct explanation strategies.

This thesis focused on Rule-based, Feature importance, and Counterfac-
tual explanations, which were selected from model-based, attribution-based,
and example-based XAI explanation types. To further enhance comparisons
within the PPM context, using XAI techniques specifically developed for
event log data could generate more process-related explanations and provide
closer approximations within the PPM context.

Lastly, a potential addition to the explanation styles comparison could
be human language-generated explanations using Large Language Models
(LLMs), which are becoming increasingly popular for their ability to produce
easily interpretable text without requiring specialized background knowledge.
This aligns with feedback received in the open-ended questions, where some
participants expressed difficulty in understanding visual-based explanations
alone. Incorporating LLM-based XAI explanations could help address this
issue and allow for a comprehensive analysis of the difficulty in understanding
XAI, as well as its effectiveness in decision-making.
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Chapter 8

Conclusion

The field of Predictive Process Monitoring (PPM) is currently character-
ized by a lack of user evaluations in XAI, leaving the effectiveness of these
XAI explanations in supporting users’ decision-making processes unclear.
This thesis aimed to evaluate the impact of Feature importance-based, Rule-
based, and Counterfactual-based explanations on decision-making within the
PPM domain. To further explore this, we introduced the condition of per-
ceived AI accuracy to better categorize decision-making situations based on
prediction accuracy. The effectiveness of these explanation styles was mea-
sured using three different metrics: task performance, agreement, and deci-
sion confidence. The evaluation was conducted in a decision-making context
where participants determined whether they agreed with the AI’s prediction
of accepting or rejecting a loan application.

The results indicated that perceived AI accuracy significantly affects
decision-making, with lower accuracy leading to higher task performance
across all explanation styles. This suggests that perceived accuracy plays
a crucial role in shaping user engagement and trust in AI systems. Addi-
tionally, Counterfactual explanations were particularly effective in improving
task performance and agreement, where we believe that scenario-based ex-
planations might enhance user engagement and understanding. Conversely,
Feature importance explanations showed the least agreement among all ex-
planation styles. Rule-based explanation styles received the highest satisfac-
tion and lowest difficulty ratings, resulting in the highest decision confidence,
particularly compared to Feature importance, which was rated the lowest in
satisfaction and highest in difficulty. These findings suggest that there is a
relationship between satisfaction and effectiveness, which is not always linear.
Instead, lower satisfaction and higher difficulty appear to correlate with more
significant differences in effectiveness. This indicates that tailoring explana-
tion styles to user preferences and needs may enhance overall effectiveness.
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Building on this result, future work may focus on application-grounded
evaluations of these explanation styles with domain experts. Additionally, it
can also incorporate more sophisticated black-box models or advanced XAI
techniques for improved performance. Additionally, new explanation styles,
including human language-based explanations using Large Language Models
(LLMs), could be explored. Future studies could also consider using ”next
activity prediction” tasks to provide insights that are more relevant to the
process life cycle.
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Explainable agents and robots: Results from a systematic literature re-
view. In Edith Elkind, Manuela Veloso, Noa Agmon, and Matthew E.
Taylor, editors, Proceedings of the 18th International Conference on Au-
tonomous Agents and MultiAgent Systems, AAMAS ’19, Montreal, QC,
Canada, May 13-17, 2019, pages 1078–1088. International Foundation
for Autonomous Agents and Multiagent Systems, 2019.

[2] Daniel W Apley and Jingyu Zhu. Visualizing the effects of predictor
variables in black box supervised learning models. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 82(4):1059–1086,
2020.

[3] Alejandro Barredo Arrieta, Natalia Dı́az Rodŕıguez, Javier Del Ser,
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gio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and
Francisco Herrera. Explainable artificial intelligence (XAI): concepts,
taxonomies, opportunities and challenges toward responsible AI. Inf.
Fusion, 58:82–115, 2020.

[4] Osbert Bastani, Carolyn Kim, and Hamsa Bastani. Interpreting black-
box models via model extraction. CoRR, abs/1705.08504, 2017.

[5] Liese Blevi, Lucie Delporte, and Julie Robbrecht. Process mining on the
loan application process of a dutch financial institute. BPI Challenge,
pages 328–343, 2017.

[6] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.

[7] Dominic Breuker, Martin Matzner, Patrick Delfmann, and Jörg Becker.
Comprehensible predictive models for business processes. MIS Q.,
40(4):1009–1034, 2016.

90
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Appendix A

Survey Materials

A.1 Extra Description for Scenarios

A.1.1 Simple Version

Figure A.1: Additional Information for Process Maps(Simple version)
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A.1.2 Detailed Version

Figure A.2: Additional Information for Process Maps (Link version)
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A.2 Scenarios

Figure A.3: Applicant 1 (Correctly Predicted: Accept)
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Figure A.4: Applicant 2 (Correctly Predicted: Reject)
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Figure A.5: Applicant 3 (Misclassified: Reject)
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Figure A.6: Applicant 4 (Misclassified: Accept)
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A.3 XAI Explanations

A.3.1 Feature Importance-based Explanation

Figure A.7: Feature Importance Explanation for Applicant 1

Figure A.8: Feature Importance Explanation for Applicant 2
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Figure A.9: Feature Importance Explanation for Applicant 3

Figure A.10: Feature Importance Explanation for Applicant 4

107



A.3.2 Rule-based Explanation

Figure A.11: Rule-based Explanation for Applicant 1

Figure A.12: Rule-based Explanation for Applicant 2

108



Figure A.13: Rule-based Explanation for Applicant 3

Figure A.14: Rule-based Explanation for Applicant 4

109



A.3.3 Counterfactual-based Explanation

Figure A.15: Counterfactual Explanation for Applicant 1

Figure A.16: Counterfactual Explanation for Applicant 2

Figure A.17: Counterfactual Explanation for Applicant 3

Figure A.18: Counterfactual Explanation for Applicant 4
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A.4 Feedbacks about XAI Explanations

Figure A.19: Feature Importance-based Explanation Feedbacks
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Figure A.20: Rule-based Explanation Feedbacks
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Figure A.21: Counterfactual-based Explanation Feedbacks
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