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Abstract

This thesis explored how software architecture can be visualized using
dynamic data. To address this, literature reviews and experiments were con-
ducted to determine the necessary data requirements. Subsequently, various
visualizations were evaluated by stakeholders to identify the most effective
approach for representing software architecture. Finally, the Interaction Net-
work Visualization was developed to provide a comprehensive and effective
visualization of software architecture.
The thesis identified two distinct methods for visualizing software architec-
ture using dynamic data. Tracing data can be visualized using process min-
ing techniques, particularly Directly Follows Graphs, as they are well-suited
for identifying and visualizing sequences. For visualizing data that offers
more hierarchical and structural information about the software architec-
ture, graph-based visualizations, such as the Interaction Network Visualiza-
tion, are more appropriate. These visualizations provide greater flexibility in
identifying and visualizing the overall structure of a software architecture.



Contents

1 Introduction 3

2 Research Approach 5
2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Tools for Process Mining and Visualization . . . . . . . . . . . 11

2.5.1 PM4Py . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 D3.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Background 13
3.1 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Visualization Techniques . . . . . . . . . . . . . . . . . . . . . 15
3.4 Dynamic Tracing . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Process Mining . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Architecture Mining . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Scope of the Thesis 25

5 Data Processing for Software Architecture Visualization 26
5.1 Data Requirements . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Data Transformation . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.1 Connection Dataset . . . . . . . . . . . . . . . . . . . . 32
5.4.2 Trace Dataset . . . . . . . . . . . . . . . . . . . . . . . 34

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1



6 Testing Visualization Techniques for Software Architecture 39
6.1 Visualization Purpose . . . . . . . . . . . . . . . . . . . . . . . 39

6.1.1 Architecting Activity . . . . . . . . . . . . . . . . . . . 39
6.1.2 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Graph-Based Visualizations . . . . . . . . . . . . . . . . . . . 40
6.2.1 Mobile Patent Suits . . . . . . . . . . . . . . . . . . . . 43
6.2.2 Hierarchical Edge Bundling . . . . . . . . . . . . . . . 44
6.2.3 Radial Tidy Tree . . . . . . . . . . . . . . . . . . . . . 46

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Software Architecture Visualization 50
7.1 Data Extension . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2 Data Filtering and Graphical Representation of Group Dis-

tinctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3 Hierarchical Views . . . . . . . . . . . . . . . . . . . . . . . . 53
7.4 Metrics and Information . . . . . . . . . . . . . . . . . . . . . 54
7.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 Conclusion, Limitations, Discussion, and Future Work 57
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3 Discussion and Future Work . . . . . . . . . . . . . . . . . . . 60

Bibliography 64

A Code Snippets 65

2



Chapter 1

Introduction

Software architecture is seen as an important aid to software develop-
ment and maintenance. However, it is frequently observed that software sys-
tems within corporate environments are, if at all, inadequately documented
[1]. This lack of documentation, regardless of the cause, can lead to various
issues in regards of maintenance or security. With the introduction of pro-
cess mining, which gathers information about the process as they take place,
several frameworks and solutions have been developed [2].

In [3] the Integrated Component Identification Framework was pro-
posed, which identifies a set of components for a given software system using
execution data in the process mining framework ProM [4] to construct infor-
mation about a running system. While the framework is able to identify sets
of components, it cannot reconstruct the overall architecture. Furthermore
does the framework not allow for the evaluation of the software architecture,
including the identification of bottlenecks or measuring quality attributes.

In [5], a ProM plugin that uses dynamic inputs was developed, to create
a hierarchical view that shows the interactions of different elements within
a system. The developed plugin uses logs of object interactions to analyze
and transform them into a hierarchical interaction model, which depicts con-
tainer interaction. While the developer involvement is minimal, the plugin
is limited to instrumenting Java code.

While comprehensive documentation is the initial step in the right di-
rection, it still leaves it up to the reader to identify issues or bottlenecks
related to quality attributes within the software system. Although the Inte-
grated Component Identification framework provides a starting point towards
an automated solution, it focuses more on a process event perspective rather
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than a software architecture perspective. Other challenges are the discovery
of component interactions via interfaces, and reconstructing the overall soft-
ware architecture [3]. The hierarchical interaction model identifies container
interactions for java systems, leaving other systems unaddressed [5].

As this shows, several process mining solutions have been developed,
to address the lack of software architecture documentations. Frameworks to
identify components already exist, but lack the overall reconstruction and
evaluation of the software architecture [3]. Other plugins [5] show a more
hierarchical view, but are limited in their system compatibility. While exist-
ing frameworks and plugins provide a first step into documenting software
architecture, challenges still persist.

To address these challenges, a framework can be introduced which gen-
erates a visualization from a software architecture perspective. In Addition,
parameters for analyzing quality attributes could be incorporated to address
the above mentioned challenges. Furthermore should event logs from differ-
ent systems be able to be analyzed by the framework, making it possible to
include multiple different systems in the component identification.

Problem statement

The objective of this thesis is to use dynamic data from existing software
architectures to visualize them. By doing so, this research aims to offer an
approach to documenting, understanding, and analyzing software systems
within corporate environments. For this, dynamic data will be used, as
it is a form of data present within every system. The focal point lies in
identification and visualization of software architecture components, leading
to the following Research Question (RQ):

RQ: How can we visualize software architecture using
dynamic data?
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Chapter 2

Research Approach

The following sections outline the research questions addressed in this
thesis and the methods employed to answer them. Additionally, a running
example and case study will be explained, which serve as experimental frame-
works for testing the proposed solutions. Finally, an overview of the tools
utilized throughout the thesis will be provided.

2.1 Research Questions

To address the problem statement described in Chapter 1 the following
research question (RQ) has been formulated:

RQ: How can we visualize software architecture using
dynamic data?

To answer the research question, several sub-questions (SQs) have been
defined.

The effectiveness of visualizing software architecture depends on select-
ing the right event data. Therefore, the first step is to define what data is
relevant. It ensures the visualization includes only the information needed
to accurately represent the architecture, preventing misinterpretations. Fo-
cusing on relevant data makes the visualization easier to understand and
navigate.
This results in the following sub-question:

SQ1: Which event data is relevant for visualizing
software architecture?
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Different visualization techniques offer varying degrees of clarity and ef-
fectiveness in communicating complex software architectures. Identifying the
most effective technique ensures that the intended message is communicated
accurately to diverse stakeholders. Therefore, the following sub-question
needs to be answered:

SQ2: Which visualization techniques are considered
the most effective for representing software

architecture?

Complex software systems with dynamic behavior can be difficult to
understand. Visualizations can help identify bottlenecks, support quality as-
surance, or facilitate communication between stakeholders. This makes it
crucial to understand how dynamic data can be utilized for visual represen-
tations, leading to the following sub-question:

SQ3: How can dynamic data from existing software
architectures be used for visual representations to

aid in understanding complex software systems?

2.2 Research Methods

The research of this thesis will follow the principles of design science
as described in [6]. After the problem statement in Chapter 1, background
information on the research will be covered. This will be followed by an
analysis of the required data, which will result in answering SQ1. For this,
the data will be processed to extract the necessary information, which will
then be visualized using process mining techniques to verify if the extracted
data meets the requirements to visualize software architecture. Afterwards,
literature will be analyzed to identify visualization techniques for software
architecture. The results of the analysis will be analyzed with experiments
and stakeholder interviews, resulting in answering SQ2. Based on these re-
sults, experiments will be conducted to identify how software architecture
can be visualized using dynamic data, answering SQ3 in the process of it.
The results will again be evaluated with a case study.
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2.3 Running Example

For a running example of this thesis, the group project1 of group 72

of the course “Cloud and Edge Computing” at the Utrecht University from
2023 will be used.

The project is about a research lab where different scientists conduct
experiments. The research facility contains multiple labs where scientists
can run experiments for their research, some of which require monitoring of
the temperature throughout the experiment. For this, a Temperature Ob-
servability Microservice is used, which provides historic trace of temperature
values, and notifies scientists when temperature values are not within a pre-
defined range of the experiment. For each experiment there is an arbitrary
amount of sensors monitoring the temperature. The average temperature of
all sensors of an experiment result in the physical space’s temperature, which
is defined for each experiment by the scientist when configuring the experi-
ment. Each experiment is carried out for as long as the scientist decides to.

The Temperature Observability Microservice keeps track of multiple
experiments running concurrently. Its architecture, including the Kafka topic
and the notification service, are illustrated in Figure 2.1.
The consumer service reads from the Kafka topic, where the experiment
data are being produced. Each message is taken in one by one, deserialized,
and send to the appropriate URL path of the API. Once the API received
all measurements of an experiment from the consumer, it aggregates the
measurements into a single mean value after which it will check whether
the scientist should be notified or not. If a scientist needs to be notified,
the API sends a message to the notification service, which will then notify
the scientist. Moreover, the API is responsible for the connection to the
PostgreSQL database for the persistent storage. Scientists can request from
the API historic temperatures of an experiment, and when a temperature
was out or range.
The individual components will log either the data they are sending, the data
they are receiving, or both. The arrows indicate the data flow between the
components. Event logs containing the necessary data will be retrieved from
the individual components.

1https://github.com/landaudiogo/cc-assignment-2023.git
2https://github.com/EC-labs/cc2023-g7.git
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Figure 2.1. Architecture of the running example.

2.4 Case Study

To include real-life complexity of software architectures within compa-
nies, a case study within the company Bol will be concluded as well.
Bol (formerly known as bol.com) is a web-shop in the Netherlands, offering
products in various categories since 1999. As of January 1st 2024, Bol has 13
million active customers in the Netherlands and Belgium, a product range of
38 million items and 50,000 sales partners [7].
The company made two different datasets available to use within this thesis
- one including data from dynamic tracing, and one including application
connecting data. Furthermore will stakeholder interviews be conducted in
regards of visualizations.

Connections Dataset

The dataset including application connection data shows data about
applications that are allowed to connect. This means it contains connections
that not necessarily have been made, but could be made if wanted. As seen
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in Figure 2.2, the relevant columns are named application shortname, de-
pend application shortname, opex, productGroupShortName, productAreaShort-
Name, and productDomainShortName.
The application shortname makes calls to the depend application shortname.
opex is a Bol specific name referring to the team name and, like productGroup-
ShortName, productAreaShortName, and productDomainShortName, refers
of the application shortname.
The dataset contains 26,535 lines of data and did not have to be cleaned.

Figure 2.2. Extract of the Connections Dataset.

From the column names it can be derived, that the dataset provides
information about the structure of the software architecture at Bol. The ap-
plication shortname and the depend application shortname columns provide
information about the interaction of applications within Bol, while opex,
productGroupShortName, productAreaShortName, and productDomainShort-
Name provide more hierarchical information.

Trace Dataset

The dataset including data from dynamic tracing includes data about
the web-shop, as this is currently the only area where dynamic tracing is ap-
plied within Bol. It starts tracing actions done by customers once they enter
the web-shop page of Bol.com, such as accessing their user profile, looking
for products, or writing reviews.

As seen in Figure 2.3, the columns of the file are named spanId, par-
entSpanId, http url, istio namespace, istio canonical service, traceId, and start-
Time. The values within the http url column have been changed in order to
obtain privacy for Bol.

The parentSpanId refers to the spanId which came before the spanId
in terms of sequence, as shown in Figure 2.4. The http url contains the desti-
nation URL of the spanId, and the istio namespace contains the destination
application of the spanId. The traceId identifies the spanIds belonging to-
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Figure 2.3. Extract of the Trace Dataset.

gether.

Lines of data with empty fields in the http url column have to be re-
moved, as they are considered incomplete. However, empty fields in the
istio namespace column are not considered incomplete and therefore do not
have to be removed. The original file contains 378,425 lines of data. How-
ever, about two-third of the file had to be removed during the data cleaning
process due to incomplete data, leaving a total of 119,271 lines of data.

Figure 2.4. Example of the spanId and parentSpanId connection.

Stakeholder Interviews

The stakeholder interviews will be conducted regarding visualizations
of software architecture. The intention with this is to receive opinions about
the visualizations in regards of usability and displayed information, as well
as improvement for their work.

The stakeholders interviewed are employees of Bol. Most of them are
IT architects, while few are managers. All of the interviewed stakeholders
are familiar with the data which will be used to create the visualizations.
While some had a good understanding of a bigger amount of the data, at
least everyone had a specific part which they were extremely familiar with
due to working with it on a regular basis. Each visualization was shown
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to the stakeholders and briefly explained. They were then asked about the
following topics:

– Their general opinion of the visualization.

– What they like or don’t like about the visualization.

– What information they can obtain from the visualization.

– What other information they would like to see in the visualization.

– If they can think of use cases when they would use this visualization
for work related topics.

The outcomes of the interviews will be used to evaluate the visualiza-
tions based on qualitative feedback from stakeholders regarding perceived
error rates, efficiency improvements, and overall satisfaction. The visualiza-
tions should positively impact the stakeholders’ work, making their tasks less
error-prone and less time-consuming.

2.5 Tools for Process Mining and Visualiza-

tion

This chapter will give an overview of the tools and libraries used
throughout this thesis. The usage of each depends on the task to be achieved.
Each tool and library comes with its own advantages and disadvantages,
which will be addressed in their respective chapter where they are used.

2.5.1 PM4Py

To incorporate process mining techniques, the Python library PM4Py
has been used. Its function like pm4py.read.read xes() reads files in XES
format, which is the standard format for event data, into a pandas data
frame. This allows for easy processing of the data for further process mining
techniques. Furthermore, does it allow for process discovery, where it creates
directly-follows graphs or petri-nets. The idea behind using PM4Py is to use
the incorporated process mining techniques in order to identify processes,
and to apply process mining statistics.
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2.5.2 D3.js

It was decided to use D3.js3, which is a free, open-source JavaScript
library for visualizing data using dynamic, data-driven graphics. An advan-
tage of using D3.js is that it already provides ready-to use solutions where
only the own dataset needs to be provided. It consists of 30 discrete libraries
which can be combined as needed [8].
Furthermore does it provide a gallery with different examples, divided into
subcategories. This makes it easier to test different types of visualizations to
be able to quickly determine what visualization works best.

3https://d3js.org
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Chapter 3

Background

In this background chapter, the context of this research will be covered.
It starts by giving an introduction to software architecture and its concepts,
as well as its evaluation methods. It continues to give an overview of vi-
sualization techniques for software systems. Lastly, the topics of dynamic
tracing, process mining, and architecture mining will be explained.

3.1 Software Architecture

In [9] software architecture is defined as a “set of structures needed
to reason about the system, which compromise software elements, relations
among them, and properties of both”. According to this definition, archi-
tecture is seen as a set of software structures, where a structure is a set of
elements and its relations. In other words, the architecture describes which
high-level components a software system consists of, which responsibilities
these components have towards other components in the system, and how
these components are organized and interact [9, 10].

Software architecture is considered a key asset for any organization
that builds complex software-intensive systems [10]. Reason for that is mod-
ern systems becoming more complex, which makes it difficult to grasp the
system all at once [9]. Therefore, [11] focuses on three fundamental concepts
of software architecture: stakeholders, viewpoints, and perspectives.

Stakeholders

A stakeholder is considered everyone who is affected by the system.
Their needs is the reason why the system is created in the first place, making

13



meeting their need the main goal. It is therefore important to know how
to work with stakeholders: identify them, understand their concerns, and
balance often conflicting needs. The goal should be to design an architecture
that addresses requirements as effectively as possible [11].

Viewpoints

An architectural view is a description of one aspect of a systems ar-
chitecture. It can be seen as the application of the principle of separation of
concerns, as considering a systems architecture through a number of distinct
views can help to understand, define, and communicate a complex architec-
ture, without overwhelming its readers. While a view is a representation
of one or more structural aspects of an architecture, a viewpoint provides a
framework for constructing a view. Collectively, all views together describe
the whole system [11].

Perspectives

Nonfunctional factors, such as performance, security, or availability, are
called quality properties (or quality attributes). Their goal is to describe how
the system provides its services and is therefore crucial for an architecture.
To address a particular quality property, architectural perspectives are used.
Perspectives are a complementary concept to viewpoints and help structure
the architecture definition process by separating concerns [11].

3.2 Evaluation Methods

Software architecture plays a significant role in achieving system-wide
quality attributes. Therefore, methods for evaluating the quality attributes of
a system are important, since they can assess whether or not an architecture
will lead to the desired quality attributes [12]. Software architecture evalua-
tions can reduce the possibility of risks and verify quality requirements on one
hand, and manage and understand existing systems on the other. Further-
more can they determine the attributes characteristics, or identify potential
risks in architecture design. Evaluation methods can be performed at various
stages of the software development process. They can be performed during
the early design stages, or they can be used to evaluate existing systems be-
fore they undergo future maintenance or enhancements [10, 13].

Evaluation methods can be divided in four main categories: experience-
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based, simulation-based, mathematical modelling, and scenario-based.
Experience-based evaluations are based on previous experience and domain
knowledge to say if a software architecture will be good enough. Simulation-
based evaluations create a high-level implementation of some or all of the
components in the software architecture. The results of the simulation are
then used to evaluate quality requirements. Mathematical modelling evalu-
ations use mathematical proofs and methods to mainly evaluate operational
qualities. They can be combined with simulation-based evaluations to create
more accurate results. Scenario-based evaluations create a scenario profile
for a particular quality attribute to step through the software architecture.
The consequences of the scenario are then documented [10, 13].

3.3 Visualization Techniques

Over the years, software systems have become larger and more com-
plex. This has lead to an increased interest in visualization techniques (VTs)
as they are used to communicate and understand software architectures of
large scale complex systems. Software architecture visualization is used to
help stakeholders (e.g. architects, developers, testers, project managers) of
a system to not only reason and understand the designed architecture, but
also to manage and evolve software intensive systems [14]. Visualization in
computer graphics is used to enhance information understanding by com-
municating information which may otherwise not be easy to describe and
understand in other formats, e.g. textual. This is achieved by creating im-
ages, diagrams, or animations [14]. While software visualization is defined
as the visual representation of artifacts related to software and its develop-
ment process [15], software architecture visualization is defined as the visual
representation of architectural models and some or all architectural design
decisions about the models [14].

In a systematic literature review (SLR) in [14], it was found that visu-
alization techniques can be classified into four types: graph-based, notation-
based, matrix-based, and metaphor-based. Examples for each visualization
type can be found in Figure 3.1. Graph-based visualization techniques make
use of nodes and links to represent the structural relationships between ar-
chitectural elements. Their emphasis is more on the overall properties of
a structure than on the types of nodes. Notation-based visualization uses
a combination of the modeling techniques SysML (systems modeling lan-
guage), UML (unified modeling language) and specific notation-based visu-
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alization. It tries to represent the different relationships between elements in
a structure, as well as the role of it. To achieve this, various notations are
provided. Matrix-based visualizations provide a complementary representa-
tion of a graph when a graph is large or dense. Metaphor-based visualization
uses contexts from the physical world (e.g. cities) to visualize entities and
their relationships. This makes the visualization process rather intuitive and
effective [14].

(a) Graph-based visualization [16]. (b) Notation-based visualization [17].

(c) Matrix-based visualization [18]. (d) Metaphor-based visualization [19].

Figure 3.1. Examples of four visualization techniques used in software architecture.

In [20], architecting activities were classified, which are various activ-
ities performed by architects for different purposes during the architecting
process. Those activities are used towards the construction of the architec-
ture of a software-intensive system. General architecting activities include
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architecture recovery, architecture description, architecture understanding,
change impact analysis, and architecture reuse. Specific architecting activ-
ities are architectural analysis, architectural synthesis, architectural evalua-
tion, architectural implementation, and architectural evolution [14].

According to the SLR, architecture recovery was the most popular
architecting activity that was being supported by various visualization tech-
niques. It is followed by architectural evolution, architectural evaluation,
change impact analysis, architectural analysis and architectural synthesis. It
is also stated that graph-based visualization techniques are mostly employed
in architectural recovery and architectural evolution, while there is no visu-
alization technique that can support all architectural activities [14].

The (level of) tool support is an important concern of stakeholders
when it comes to software architecture visualization techniques. It can be
considered an indicator of the limitations and can indicate whether the re-
ported techniques are theoretical or practical. According to the SLR, vi-
sualization techniques mainly use various kind of tools (92.%), followed by
semi-automatic tools (47.1%), automatic tools (41.5%) and manual support
(11.3%) [14].

According to [14], the domains graphics software, distributed system,
and information management system have gained the most attention when
it comes to applying architecture visualization techniques to support archi-
tecting activities. Altogether, visualization techniques have been validated
in 16 domains with the most popular architecture visualization techniques
used in industry being graph-based visualization technique (38), matrix visu-
alization technique (9), notation visualization technique (7), and metaphor
visualization technique (6).

3.4 Dynamic Tracing

Dynamic tracing is an observation technology, enabling dynamic instru-
mentation of unmodified kernel and user software. It allows for analyzing the
behavior and performance of a software system during its execution, both in
development and production. The provided observability is achieved through
the use of instrumentation points called probes, and therefor not requiring
code modifications. By instrumenting the code at runtime it can collect real-
time information about various aspects of the system including function calls,
variable values, or resource utilization. This way it enables insights into how
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the program behaves in different scenarios without the need for pre-defined
static instrumentation [21].

Its capabilities are vast, allowing troubleshooting of any software func-
tion, detailed observation of devices and core resources, and analysis of the
entire software stack. Moreover, it can be utilized in production environ-
ments without the need for restarting or modifying applications or operating
systems [21].

Dynamic tracing inserts instrumentation points, called probes. These
probes can trace execution flow through code, collect relevant data, and
provide insights into kernel behavior, application performance, and network
activity. If a probe has been enabled and the code where the probe has been
inserted executes, the probe will fire. Once the actions assigned to the probe
have been taken, the code resumes executing normally. Dynamically gener-
ated probes alter code only when they are in use, ensuring minimal impact
on performance when disabled [21].

A well-known tool for dynamic tracing is DTrace, which was first in-
troduced in 2005. Previous to DTrace, existing tools consisted of several
limitations, such as adding performance burden to the running system, they
required special recompiled versions of the software to function, several dif-
ferent tools were needed to give a complete view of the system behavior, they
had limited available instrumentation points and data, and they required sig-
nificant postprocessing to create meaningful information from the gathered
data. DTrace addresses these limitations by offering a comprehensive observ-
ability across the entire software stack, making it able to understand software
systems [21].

3.5 Process Mining

Process mining emerged as a new research field over the past decade
due to the growth of event data and the maturing of process mining tech-
niques. Its overarching goal is to focus on analysing processes using event
data. Other goals include to discover, monitor, and improve real processes in
a variety of application domains. The main drive of process mining is the in-
creasing amount of recorded events, which are needed to improve and support
business processes in competitive and rapidly changing environments [22, 23].

Process mining is a field between computational intelligence and data
mining on one hand, and process modeling and analysis on the other. While
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it is seen to be related to data mining (mostly data-centric), process min-
ing is process-centric. It is also truly intelligent (learning from historic data)
and fact based (based on event data and not on opinion) [23]. While classical
data mining techniques don’t focus on business process models and often only
focus on a specific step, process mining focuses on the end-to-end processes
[22]. This makes it an important bridge between data mining and business
process modeling and analysis [23].

There are three types of process mining which event logs can be used
for: discovery, conformance, and enhancements. A discovery technique takes
event logs and produces a model without using any prior information. A
conformance technique, on the other hand, compares an existing model with
an event log of the same process. This is done to check if reality, as recorded
in the log, conforms to the existing model. An enhancement technique is
used to extend or improve an existing process model [22].

Tool support

Different tool support for process mining exists, both software tools
with a graphical user interface, and programming libraries. Some of these
will be introduced in the following paragraphs.

ProM is a plugable generic open-source process mining framework for
implementing process mining algorithms in a standard environment. Since
its introduction it has allowed many developers in different countries to con-
tribute their research in the form of plug-ins [24, 25].

Process Mining for Python (PM4Py) is a process mining library which
was introduced in [26], providing integration with state-of-the-art data sci-
ence libraries, e.g., pandas, numpy, scipy, and scikit-learn. It aims to provide
a solution which does not rely on a graphical user interface and facilitates
a usage in a large-scale experimental setting. Furthermore does it provide a
wider support for algorithmic customization [26].

eXtensible Event Stream (XES) is an XML-based standard for event
logs. It stores event logs from many different information systems directly
to provide a generally-acknowledged format for the interchange of event log
data. It has been adopted by the IEEE Task Force on process mining as the
default format for event logs [23, 25, 27].
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Figure 3.2. XES example log [25].
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Figure 3.2 shows a XES log example. XES uses log, trace, and event
elements to define the structure of the document, meaning those elements do
not contain any information themselves. The log element contains all event
information that is related to one specific process. The trace element de-
scribes the execution of one specific instance, or case, of the logged process.
The event element represents atomic granules of activity that have been ob-
served during the execution of a process [27].
To store any data in XES format, attributes are used. Every attribute has
a string based key, a known type, and a value of that type. Possible types
are string, date, integer, float, and boolean. Attributes can have attributes
themselves, which allows to provide more specific information.
Extensions are used to define precise semantics of an attribute. There are
standard extensions and user-defined extensions. Standard extensions in-
clude concept extensions, lifecycle extensions, organizational extension, time
extension, and semantic extensions.
To make events comparable to other events, event classifiers are used, which
can be specified in the log element.
The global element is used to specify in the log that certain attributes have
well-defined values for every trace and/or event [25].

3.6 Architecture Mining

In [28] the Architecture Mining Framework was introduced as a way
to use runtime software execution data to assess and improve the quality of
software architecture. Architecture Mining addresses the collection, analysis,
and interpretation of software operation data to foster architecture evalua-
tion and evolution. Its aim is to close the loop between the intended software
architecture and the realized software architecture by monitoring and ana-
lyzing the realized system [28, 29].

The five main activities of architecture mining as proposed by [28] can
be seen in the gray area of Figure 3.3: Architecture Reconstruction, Evolu-
tion Analyzer, Architecture Conformance, Runtime Analyzer, and Architec-
ture Improvement Recommender.

The architecture mining framework seen in Figure 3.3 does not imply
an order between the different phases, only dependencies are shown. The
black arrows indicate the dependencies between different elements, while the
red arrows indicate where software execution data can be utilized.

In the framework, the intended architecture is shown separate from

21



Figure 3.3. Architecture Mining Framework [28].

the realized architecture due to architectural erosion, which is the realization
of software typically tending to drift away from the intended architecture.
Both, the intended and the realized architecture, consist of a set of struc-
tures, represented by architectural views, and quality attributes [28].

The intended software is realized to create software artefacts, which
are then deployed. This results in a operational software system, creating
software operation data, which is the main input for architecture mining.
Software operation data is then used for three activities: Architecture Re-
construction, Runtime Analyzer, and Architecture Conformance. The Archi-
tecture Reconstruction does a reverse engineering by combining the realized
software artefacts and the dynamic information captured in software oper-
ation data. This activity results in the Realized Architecture. Architecture
Conformance, together with the Intended Architecture, validates whether an
architecture conforms to the intended architecture, resulting in a set of de-
viations. The Runtime Analyzer uses software operation data to analyze to
which degree the quality attributes in the intended architecture are satisfied.
This analysis results in metrics. The Evaluation Analyzer compares the in-
tended and the realized architecture and gives insights in how they drifted
apart. This results in a set of changes. The Architecture Improvement Rec-
ommender then uses the realized architecture, the metrics, deviations, and
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changes as input and results in an improved intended architecture [28, 29].

In previous works, [5] developed an approach that uses dynamic inputs
to create a hierarchical view that shows interactions of different elements
within a system under study. The approach uses software execution data
as an input, which consists of logs including method calls with their callers
and callees registered. A ProM plugin was developed, which can process
these logs and use them to visualize the system under study as a hierarchical
interaction model. The model allows users to abstract parts of the system
and select interactions between software elements for process mining. Eval-
uations of the plugins showed that the approach created accurate models
without developer effort [5].

In [30], an approach was taken to rely on the software operation data
generated by the system to gain new insights for software architects. The
Architectural Intelligence Framework, or ArchitectureCity, was developed,
which uses the analogy of cities to visualize the runtime of software. Build-
ings represent individual architectural elements and are grouped in districts
based on different clustering techniques. Streets depict the traffic between
the different districts. The framework is based on software operation data by
the system and employs architecture mining to extract and enhance opera-
tional data to support the software architect. This way, it is able to capture
dynamic aspects of running systems to construct relevant architectural views
and perspectives for stakeholders by analyzing the logging data the system
produces [30].

3.7 Conclusion

This chapter has provided a comprehensive overview of key concepts
and topics essential for understanding the context of the research. It started
with a definition of software architecture, emphasizing its significance in han-
dling complex software systems. The chapter then delved into evaluation
methods for software architecture, emphasizing its role in assessing system
wide quality attributes, reducing the possibility of risks and verifying quality
requirements throughout the software development process.

Visualization techniques for software systems were introduced, high-
lighting their increase in interest, as they are used to communicate and under-
stand software architectures of large scale complex systems. The systematic
literature review on visualization techniques revealed four main types: graph-
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based, notation-based, matrix-based, and metaphor-based. Architecting ac-
tivities were introduced as well, were graph-based techniques were widely
employed.

The chapter then introduced dynamic tracing, an observing technol-
ogy which enables real-time insights into the behavior and performance of
software systems without code modifications. Its allowance for analyzing a
software system during its execution provides a potential source for extract-
ing event logs, which can be then used in process mining.

Process mining was explored as a field dedicated to analyzing processes
using event data. The field emerged due to the increasing amount of recorded
events, which are needed to improve and support business processes in com-
petitive and rapidly changing environments. With process mining being a
field between data mining, and process modeling and analysis, it provides a
technique useful for visualizing and analyzing software architectures.

Lastly, the Architecture Mining Framework was introduced as an ap-
proach to use software execution data to assess and enhance the quality of
software architecture. Its five main activities were outlined, showing the
framework’s capability to provide a bridge between intended and realized
software architectures, as well as emphasizing the loop between it. The chap-
ter concluded by referencing specific works that applied architecture mining
concepts for architectural intelligence and hierarchical interaction modeling
based on software operation data.
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Chapter 4

Scope of the Thesis

The scope of this thesis includes two principle activities: Architecture
Reconstruction and Runtime Analyzer of architecture mining. As described
in Chapter 1, documentation of software architectures is notably scare. Con-
sequently, this thesis assumes that there is insufficient documentation for a
given software architecture available. This may include a complete absence
of documentation, incomplete documentation, outdated documentation, lack
of access to static information, or other scenarios. Therefore, architecture
reconstruction needs to be performed in order to retrieve the existing ar-
chitecture of the system, establishing the basis for any further action. This
approach involves the use of dynamic data, i.e. event logs, which will be used
for reverse engineering, as they can be captured within a running system.

Once the software architecture has been reconstructed, the runtime an-
alyzer will evaluate to which extend quality attributes are satisfied. Given the
absence of documentation of the software architecture, there may be a cor-
responding lack of documentation concerning the quality attributes or their
criteria for satisfaction. Therefore, measures to evaluate quality attributes
or identify bottlenecks may have to be derived from the data. This can be
achieved by using timestamp information of events, which can indicate when
a system is particularly loaded or stressed.

The activity of Architecture Conformance will not be part of this the-
sis, given that it is assumed that there is insufficient documentation for a
given software architecture available. While the architecture reconstruction
and the runtime analyzer result in outcomes which can be used for the Ar-
chitecture Improvement Recommender, this activity will be out of scope of
this thesis.
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Chapter 5

Data Processing for Software
Architecture Visualization

To start visualizing software architecture, data needs to be collected,
manipulated, and transformed in order to retrieve meaningful information.
Therefore, this chapter will address the topics of data processing to obtain
software architecture visualizations.

5.1 Data Requirements

It first needs to be determined what data is needed to achieve soft-
ware architecture visualizations. For this, it is relevant to know what the
goals and aspects of the software architecture that will be visualized are. As
explained in Chapter 4, the activities that will be focused on in this thesis
are Architecture Reconstruction and Runtime Analyzer. Therefore, data that
will achieve these two activities will be considered relevant.

The main source for software execution data that will be used are event
logs from components of the software architecture. Ideally, each log should
contain a case ID, an activity name, timestamp(s), and component identi-
fier(s). However, the required information is not always given in one log file.
In these cases, event logs should be able to be linked to additional datasets
containing the required data.
The case ID and activity name are necessary to be able to apply process
mining techniques to the event logs [22]. Timestamps can be used to identify
sequences and time sensitive performance metrics. This can include event
timestamps, which record the exact time at which a particular event took
place within a system, system timestamps, which provide a reference for the
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current time within the system and are often used for coordinating and se-
quencing events, or both. The component identifiers are required to identify
the involvement and connection of different components with particular in-
teractions. For an ideal component interaction identification, both the sender
and receiver component identifier should be included.
The above mentioned case ID and activity name are requirements for process
mining and are therefore defined to suite event logs of processes. Since the
data used throughout this thesis is software execution data, and not neces-
sarily process event data in terms of process mining, the definitions for case
ID and activity name need to be changed to match the software execution
data.
In terms of software architecture, the case ID is the identification of a specific
instance or occurrence of a process, such as a transaction ID or an instance
ID. The activity name can be a specific action within a process, such as a
event name, method name, or action label.

Figure 5.1 shows an example of event logs which were obtained from
the consumer service of the running example, which was introduced in Chap-
ter 2.3. It includes date and time of the log generation within the consumer
service, the receiving endpoint (i.e., the IP address hosting the consumer
service), the data source (i.e., the bootstrap server of the Kafka topic), the
activity name, and the content of the message received. The contents of the
application data can be split into their own columns, allowing for the exper-
iment ID to be used as a case ID.

Figure 5.1. Example of event logs of the consumer service.

Figure 5.2 shows an example of event logs which were obtained from
the API of the running example. Similar to the consumer event logs, the
API event logs contain date and time of the log generation. Additionally,
certain logs include details such as the source (i.e., the IP address of the
consumer sending the data), the endpoint (i.e., the API URL where the data
was received), and the experiment ID of application data. Meanwhile, other
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logs contain the response code generated by the API. The experiment ID can
be used as a case ID here as well”, while the message that is being sent (e.g.,
“Information received, “200 OK”) can be used as activity name.

Figure 5.2. Example of event logs of the API.

5.2 Data Transformation

Once the data requirements have been made clear, the next step is to
collect the data and convert it into the desired format and structure. The
data collection depends on the company that wants to visualize software ar-
chitecture. It can be available in files right away, or needs to be retrieved
from a database or a different source.
Once the data is collected, it can be converted into the desired format and
structure. Since process mining will be part of this thesis, converting the
data into XES format is the most ideal choice. As mentioned in Chapter 3.5,
XES is an XML-based standard for event logs and has been adopted as the
default format for event logs in process mining.

Also mentioned in Chapter 3.5 is ProM, a plugable generic open-source
process mining framework for implementing process mining algorithms. Ad-
ditionally to implementing process mining algorithms, it also provides several
plug-ins which allow to convert different data formats into XES, such as the
Convert CSV to XES package by F. Mannhardt, N. Tax, and D.M.M. Schun-
selaar.

The data of the running example comes in CSV format. Therefore, the
Convert CSV to XES package has been used to convert it to XES format, as
seen in Figure 5.3. In this example, the date was selected as case column, and
the record name was selected as event column. Generally, the case column
and the event column have to be selected for every data file individually,
depending on the data they contain. When deciding on which column best
to use for this selection, it is advised to follow the guidelines in Chapter 3.5.
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Figure 5.3. Example of the converted XES file of the consumer log data from the running
example.

In a next step, the XES files of the consumer log and the API log were
combined, to create one file. This was done to be able to create a singular
DFG for the combined datasets, as explained in 5.3. PM4Py does not provide
a function that allows the combination of two or more XES files. However,
since the pm4py.read.read xes() function reads the XES file into a pandas
data frame, pandas could be used to merge multiple files using pd.concat.

Lastly, to focus more on the components of the software architecture,
the sources and endpoints will be converted to activity names. For this, the
source and endpoint combination of the loaded data frame will be extracted
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and combined to chains. As an example, if source {A} has endpoint {B},
and in another row {B} is the source and {C} the endpoint, then the chain
{A, B, C} will be formed. Then, for each value in the chain, a new row will
be added to the data frame, where the value of source or endpoint will be
assigned the value of the activity name. The source and endpoint columns
will be removed and consecutive numbering for each chain will be generated
as the case column. Once this is done, the data frame can be saved as a
XES file again. This step is done to shift from a process event perspective
to a software architecture perspective by looking at the connections of the
software architecture components of the process.

5.3 Data Visualization

Once the data is available in XES format, it can be analysed. For
this, the PM4Py library was used. To start with something simple, the
start and end activities of the consumer log were determined, using the
pm4py.get start activities(xes event log) and the pm4py.get end

activities(xes event log) functions. As a result it gives the names of the
start activity experiment configured and the end activity experiment terminated.

In a next step, a separate Directly Follows Graph (DFG) of the con-
sumer log and the fastapi log was generated, using the pm4py.discover dfg(log)

function. As seen in Figure 5.4 and Figure 5.5, the DFG contains a start and
end point, the activities of the event log, the direction of the activities, and
the amounts each activity was performed.

Figure 5.4. Directly Follows Graph of the consumer log using PM4Py.

consumer

After, a DFG was created for the combined XES log, which was cre-
ated in Chapter 5.2. For this, the ignore index needed to be set to True,
in order to treat the dataset as one, and not as two (or multiple) separate
ones. If this were not done, the pm4py.discover dfg(log) function would
treat it as different processes and generate separate DFGs like in Figure 5.4
and 5.5, simply in one picture.
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Figure 5.5. Directly Follows Graph of the fastapi log using PM4Py.

By setting the ignore index to True, it combines the two individual
DFGs and creates one DFG with one start and one end point, as seen in
Figure 5.6.

Figure 5.6. Directly Follows Graph of the fastapi log and the consumer log combined
using PM4Py.

The DFGs in Figure 5.4 and 5.5 show the process within each compo-
nent, and the DFG in Figure 5.6 shows the complete process. However, while
the naming of some activities gives some indication about the component, it
does not distinguish (graphically) between the components involved, i.e., the
consumer, the fastapi, and the database. As clear from the created DFGs,
the graphs are created using the activity name of the datasets. In order to
therefore create a DFG using the names of the components used, i.e., source
and endpoint, the data needs to be changed accordingly.

As explained in Chapter 5.2, the source and endpoint of the combined
data frame were converted into activity names. This is required to be able
to create a DFG of the components. Figure 5.7 shows the DFG which is a
result of the newly generated data frame. It can be seen that it represents
the structure of the software architecture of the running example.

5.4 Case Study

The above explained steps will be applied to the datasets received from
Bol, to see whether they can be applied to bigger and more complex data
from real-life scenarios. By applying the steps to the trace dataset, it will
also be evaluated whether the explained process can be applied to tracing
data. The overall intention is to see whether the described process can be

31



Figure 5.7. DFG with components as activity names.

applied to real-life datasets and what their results will be.

5.4.1 Connection Dataset

The connection dataset was explained in Chapter 2.4 as a dataset con-
taining structural information about the software architecture at Bol.

Figure 5.8. Excerpt of the trans-
formed XES file of the Connection
dataset.

Data Requirements

First, the columns and the data
of the connection dataset mentioned in
Chapter 2.4 are compared with the data
requirements in Chapter 5.1. The
opex values can be used as a case
ID, the application shortname and de-
pend application shortname are component
identifiers. Both activity name and
timestamp are missing from the dataset.
This was to be expected, as the con-
nection dataset isn’t technically an event
log containing information about pro-
cesses, but rather about structural connec-
tions.

However, in Chapter 5.1 the columns
source and endpoint, which are component
identifiers, were transformed into activity
names. This was done to focus on the com-
ponents of the software architecture of the
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running example by extracting the connec-
tions of the components and turning them into activity names in order to be
able to visualize them using DFGs. This logic can be applied to the connec-
tions dataset as well. Therefore, the only data requirement that is missing
is the timestamp.

Data Transformation

The datasets have been provided in CSV format and, in a first step,
converted to XES using the Convert CSV to XES package in ProM. The pro-
ductGroupName was selected as case column as it can be used as an unique
identifier for its events, and the application shortname as the event column
as it indicates a specific action within the process.

In a next step, the XES file was read into a data frame using PM4Py, in
order to convert the application shortname and depend application shortname
into activity names. An excerpt of the result can be seen in Figure 5.8. The
file has a total of 962,203 lines of data and consists of 20,002 traces.

Data Visualization

The newly generated XES file was used to generate a DFG using
PM4Py. On a first attempt, the code had been running for over an hour
and still hadn’t produced a DFG. It was therefore decided to run the code
with a smaller file, consisting of 5,199 lines of code and 42 traces, which
generated a DFG seen in Figure 5.9 within a couple of seconds. Generating
DFGs based on bigger files than the smaller file are possible, however, their
DFGs become unreadable due to their size and the zoom in function not
being sufficient enough. Similar results have been achieved using ProM.

Evaluation

Different generated DFGs were shown to a group of stakeholders. The
amount of lines, a missing filtering option, and a missing visual distinction
between teams and their respective applications made it difficult to derive
information from the DFGs, according to the stakeholders.
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Figure 5.9. DFG of a smaller Connection Dataset including 42 traces.

5.4.2 Trace Dataset

The trace dataset includes data from dynamic tracing as mentioned in
Chapter 2.4.

Data Requirements

Comparing the columns of the trace dataset with the data require-
ments in Chapter 5.1 shows that the dataset fulfills all requirements. The
column traceId is the case ID, http url is the activity name, istio namespace
is the component identifier, and startTime is the timestamp. If the connec-
tion between the applications want to be analyzed instead of the connection
between the http URLs, then the istio namespace can be converted into ac-
tivity names similar as done with the connection dataset.

Data Transformation

The trace dataset has been provided in CSV format as well, and has
been converted to XES using the Convert CSV to XES package in ProM.
The traceId was selected as the case column and the http url as the event
column. The generated XES file can directly be used to generate a DFG
with the http url as activity names. However, Bol was more interested in
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the connection between the different applications, instead of the http URLs.
Therefore, the XES file had to be changed accordingly.

Figure 5.10. Excerpt of the final trace
XES file using application names as ac-
tivity names.

The originally generated XES file
is read into a data frame using PM4Py,
in order to extract the values for
spanId, parentSpanId, istio namespace,
startTime, and traceId.
Sequences are generated using the
spanId and the parentSpanId. For this,
the combinations of spanId and par-
entSpanId are derived from each row,
including their application name (is-
tio namespace). Once all combinations
are extracted, the sequences are build by
taking the first combination and extend-
ing it by the combination where the par-
entSpanId matches the spanId. Figure
5.11 shows an example for this process.

Figure 5.11. Example of the sequence creation for the trace dataset.

Once the sequences are created, the values of the spanId and the par-
entSpanId are replaced by their respective application value. Since the is-
tio namespace of a row always refers to the spanId of the same row, there
are cases where the parentSpanId does not have a istio namespace value. In
these cases the application value is replaced with NaN. The final data frame
is then converted back into a XES file using PM4Py, with the traceId being
the case ID and the application name being the activity name. Figure 5.10
shows an excerpt of the final XES file.

Data Visualization

The generated XES file was used to generate a DFG using PM4Py.
Since the individual traces have been created separately from each other,
there does not exist a connection between them. Therefore, it is not useful
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to create a DFG containing more than one traceID. During the DFG cre-
ation of the connection dataset it was identified that PM4Py was not able to
process larger datasets in a reasonable time. Since the trace dataset is larger
than the connection dataset, combined with the fact that generating a DFG
for multiple trace IDs is not logical, the DFG seen in Figure 5.12 was created
using only one trace ID. The XES file for this trace ID consisted of 922 lines.

Figure 5.12. DFG of one Trace ID of the trace dataset.

Evaluation

Different generated DFGs were shown to a group of stakeholders. Since
only one trace ID was shown at a time, the DFGs were more clear compared
to the DFGs generated for the connection dataset. While a visual distinc-
tion between the team membership of applications was still missing, it was
considered more of a “nice to have” instead of a “must have”, as it was for
the connection dataset. The possibility to load a larger dataset and then
selectively choose a trace ID for visualization was requested.
Overall speaking, the DFGs for the traces was met with approval and interest
by the stakeholders, as they were quickly able to derive information from it.

5.5 Conclusion

This Chapter addressed the topics of data processing in order to ob-
tain meaningful information for software architecture visualizations. For this,
data requirements and transformation for software execution data was dis-
cussed, and data visualizations for software architectures using process min-
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ing were analyzed.

In regards of data requirements and data transformations, the assump-
tions made in the beginning were mostly confirmed by the case study. Data
that provides information about the structure and interaction of a software
architecture, like the connection dataset, might most likely not include an
activity name. However, the data transformation and visualization showed
that the names of the component identifiers can be used as activity names,
indicating that activity names in the original data are not required. The
reason for this is that they provide the same purpose in a DFG in process
mining as an activity name would.
On the other hand, tracing data, like the trace dataset, tend to include an
activity name. While their activity name can be used in a DFG in process
mining like it is intended to, the names of component identifiers can also be
used as activity names. This largely depends on the data available and the
information that wants to be retrieved from it.

Furthermore did the missing timestamps in the connection dataset not
cause any issues, as the order of applications could be recreated using chains.
It can therefore be said, that data to visualize software architecture does not
necessarily require an activity name or timestamps. However, it does require
component identifiers, which can be transformed into activity names for pro-
cess mining. Combining the two datasets could also be an option to use the
timestamps of the trace dataset in the connection dataset. However, this is
dependent on the datasets itself. Since the connection dataset contains in-
formation of connections that could be made if wanted, but not information
about actual connections made like the trace dataset does, combining these
two datasets would fall under the category of Architecture Conformance,
which is out of the scope for this thesis.

Process mining tools can be used to visualize software architecture us-
ing DFGs up until a certain level. The visualizations are mainly limited by
processing power, graphical options, and filtering. PM4Py and ProM both
reached their limit when visualizing the complete connection dataset, con-
taining about 120,000 lines of code. Commercial process mining tools like
Celonis or Disco might be able to process such big files, but were not tested
within this thesis.

While the DFG does show the connection between individual applica-
tion, it cannot visually distinguish between groups of them, such as applica-
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tions belonging to the same team or domain. Especially with large, complex
visualizations, this feature could help with a quicker distinguishing of appli-
cations belonging together.

The DFGs are always structured in a block-like structure, with the
start point on top (or left side) and the end point at the bottom (or right
side) with the activity names arranged between them. This prevents the
visualization from potentially showing the structure of the software archi-
tecture. The start and end point of the DFG can also be misleading, as a
software architecture might not necessarily have a start and end point.

Additionally, both PM4Py and ProM lack essential filtering options.
While PM4Py did not have any dynamic filtering options at all, ProM was
not able to filter based on team name or domain name. Such filtering options
would be beneficial for focusing on specific parts of the visualization, which
is particularly necessary for large files, as seen in the case study. Viewing the
complete visualization of large datasets can be overwhelming and hinder the
extraction of useful information.
Another functionality missing is the view of different hierarchical views. Es-
pecially for datasets like the connection dataset, a switch between different
hierarchies (i.e., from team to area to domain) could visualize more of the
information that is already provided.
Furthermore became DFGs created with PM4Py unreadable from a certain
size onwards.

The findings suggest that, while the data sources are already sufficient
for visualizing software architecture, PM4Py and ProM, or process mining
in general, are not ideal to visualize them due to the above named shortcom-
ings. When it comes to trace data, however, the DFGs generated were able
to provided sufficient visualizations within the case study.

The next Chapter will therefore explore other options of visualizations
for software architecture. The focus here will lie on the capability to visualize
larger datasets, filtering options, and visual distinguishing options.
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Chapter 6

Testing Visualization
Techniques for Software
Architecture

Complex software systems with dynamic behavior can be difficult to
understand. Visualizations can help identify bottlenecks, support quality as-
surance, or facilitate communication between stakeholders. This makes it
crucial to understand how dynamic data can be utilized for visual represen-
tations. With different types of visualizations being available, it needs to be
determined which ones are most suitable for visualizing software architecture.

The following Chapter will address topics regarding the purpose, and
realization of visualizations in the context of software architecture.

6.1 Visualization Purpose

As mentioned in Chapter 3.3, different visualizations are used depend-
ing on the architecting activities, and the stakeholders addressed [20]. There-
fore, it needs to be determined what purpose the architecting activity wants
to achieve, and who the stakeholders are.

6.1.1 Architecting Activity

As mentioned in Chapter 1 and 4, this thesis aims to bridge the gap
of missing, outdated, or incomplete software architectures. Furthermore, as
mentioned in Chapter 4, the scope of this thesis is limited to the activities
of Architecture Reconstruction and Runtime Analyzer of the Architecture
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Mining Framework. Together with the general architecting activities defined
in [20], mentioned in Chapter 3.3, the architecting activities that want to
be achieved with the software architecture visualizations in this thesis are
Architecture Recovery, and Architecture Impact Analysis.
Architecture Recovery is defined as uncovering architecture design based on
existing implementation and documentation of the system. Architecture Im-
pact Analysis identifies the architectural elements affected by a change sce-
nario. The outcome helps architects to understand the dependencies between
the changed parts and the affected parts of an architecture [20].

In the findings of the SLR in [14], the visualization technique most
used to support Architecture Recovery is graph-based visualization, account-
ing for more than half of the chosen visualization techniques. For Architecture
Impact Analysis, the most used visualization technique is notation-based vi-
sualization, occurring one time more than graph-based visualization.
To combine both architecting activities in one visualization, the graph-based
visualization is therefore the most common visualization technique used to
achieve this.

6.1.2 Stakeholders

Stakeholders are considered those who will use the visualization to
obtain information from them in order to fulfill the above mentioned archi-
tecting activities. It can also be of interest to those who need to understand
different aspects of software systems during the software development pro-
cess as it can help to reduce the cost of software evolution [15]. Therefore,
stakeholders are skilled and knowledgeable people within the domain of soft-
ware architecture, or a related field, such as architects, developers, testers,
and project managers [14].

6.2 Graph-Based Visualizations

From the D3.js gallery, which includes several examples, visualization
examples from the subcategories Hierarchies and Networks were selected.
The selection was made based on the data requirements for the D3.js vi-
sualizations and the data available of the case study. The focus here was
to find visualizations that were able to reflect the connections between the
components, and therefore the software architecture. Furthermore should
the visualizations be able to reflect the structure of the software architecture
in a way that lets stakeholders look at individual parts if needed. To incorpo-
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rate process mining techniques, the data structure used for the visualizations
should be extendable accordingly and the visualizations themselves should
be able to visualize process mining techniques. These visualizations were
then shown to different stakeholders as part of a case study. By doing so,
stakeholders could voice their opinions and give insights into whether the
created visualizations gave them insights into the software architecture or
not.

The visualization examples selected were:

– Hierarchies: Tidy Tree, Radial Tidy Tree, Cluster Dendrogram, Radial
Dendrogram

– Networks: Mobile Patent Suits, Arch Diagram, Hierarchical Edge Bundling

The Tidy Tree, the Cluster Dendrogram, and the Arch Diagram were
discarded first from the options, as they display the data in a row like struc-
ture. This results in having to scroll down on a page to be able to see the
complete data displayed, making it difficult to get an overall picture of the
data visualized and the structure of the software architecture that comes
with it. The Radial Dendrogram was discarded as well, since it does not
display nodes on the same level, which could lead to a misinterpretation of
the visualization and its data.

Figure 6.1 shows an overview of the final three visualizations which
were selected. The Mobile Patent Suits and the Hierarchical Edge Bundling
visualizations have been created using the connections dataset, while the Ra-
dial Tidy Tree visualization has been created using the trace dataset. Only
the datasets from the case study have been used, as they are larger and more
complex than the dataset form the running example, resulting in more re-
alistic visualizations. However, for the first visualizations the dataset was
shortened. Reason for this was that the complete dataset lead to crowded
visualizations, which didn’t allow for any valuable insights anymore. Since
an option to filter the visualization was not yet available, the dataset had to
be reduced to around 10% of its original size. This, however, did not have
an influence on the original message of the visualization and was still larger
than the dataset of the running example.
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(a) Radial Tidy Tree Visualization. (b) Hierarchical Edge Bundling Visualization.

(c) Mobile Patent Suits Visualization.

Figure 6.1. Examples of the selected D3.js Visualizations.
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6.2.1 Mobile Patent Suits

The Mobile Patent Suits visualization shows the connection between
different nodes by linking them together with arrows. Each arrow is repre-
sented in a different color, indicating the group the node belongs to.

Data Requirements

The Mobile Patent Suits visualization requires three different informa-
tion as data input in a CSV file: source, target, and type. Source and target
are the nodes, with the arrow of the link between them pointing to the target
node. Type is the group each node belongs to, with different colours for the
links used as a way of distinguishing between them.

Figure 6.2. Example of a trace visual-
ized using the Mobile Patent Suits Visu-
alization.

To generate the data input for the
Mobile Patent Suits visualization, the
XES file of the connection dataset is con-
verted into a CSV file. For this, for
every event the application shortname
value is added as the source, the
depend application shortname value is
added as the target, and the opex value
is added as the type. The connection
dataset was not used for this visual-
ization, as it is not suitable for this
type of visualization. Reason for this
is that the sequence within a trace is
a key information, which cannot be vi-
sualized adequately, as seen in Figure
6.2.

Visualization

Figure 6.1c shows the Mobile Patent Suits visualization using the con-
nection dataset. Every node represents an application, each color stands for
a different team. The way the visualization creates the links between differ-
ent nodes allows for a more unstructured visualization, allowing for a good
overview of the structure of the software architecture.
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Evaluation

The Mobile Patent Suits visualization was shown first during the stake-
holder interview, as it gives a good overview of the connections between
different applications. This was also something all stakeholders confirmed.
While a good overview of the software architecture and its structure was
something all stakeholders thought of as useful, they also all wanted it to
display or contain more information. The requested information was usually
about the individual nodes itself, wanting to add metrics or descriptions. An-
other frequent request was to be able to select a node and get to a different
hierarchical level from there. This was reasoned with stakeholders wanting
to use this visualization for a specific use case and diving deeper into its
connections by switching to a different hierarchy.
While IT Architects can see themselves using this visualization for specific
use cases, managers tend to also want to use it for exploration.
The coloring of the links based on team affiliation was perceived as positive
and useful, making it easier to grasp certain information from the visualiza-
tion. Requests for a filtering option to be able to use the complete dataset,
different hierarchical views, more descriptive information about the nodes,
and a short description regarding the meaning of the directions of the arrows
were made by all stakeholders.

6.2.2 Hierarchical Edge Bundling

The Hierarchical Edge Bundling visualization is used to show depen-
dencies among various modules in a software system. It helps in understand-
ing how different parts of the system are interconnected, which modules are
critical based on their size, and which modules have the most dependencies.

Data Requirements

The visualization uses a JSON file as data input. As seen in Figure
6.3, it consists of objects containing the properties name, size, and imports.
The name includes the name and the hierarchical path of the object. In
the example shown it is structured as organization.team.application, where
application is the name of the object, while organization and team are the
hierarchical path. The size represents the amount of imports of this object,
while the imports lists the names of the objects which are imported to the
related object.
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Figure 6.3. Example of the data struc-
ture for the Hierarchical Edge Bundling
visualization.

To generate the required JSON
file, the XES file of the connec-
tion dataset is read into a data
frame using PM4Py. For each
row in the data frame, the val-
ues opex, application shortname, and
depend application shortname are ex-
tracted in order to construct the names
in the format of bol.opex value.- applica-
tion shortname and bol.opex value.- de-
pend application shortname.
The application shortname is added to
the imports of the
depend application shortname if they
appear in the same row in the data
frame. Additionally, a count is main-
tained for the imports of each de-
pend application shortname.
Since each application shortname needs

to be an object as well in order to generate the links between applica-
tion shortname and depend application shortname in the visualization, it
needs to be initialized if necessary.

Visualization

The Hierarchical Edge Bundling visualization displays the data in a
circle, as seen in Figure 6.1b. This allows for a good overview of the software
architecture and its interconnections. Each name around the circle repre-
sents an application, grouped together by their teams. Small spaces visually
separate the teams from another. The connections between the applications
is represented by blue and red lines, where blue represents the source it is
coming from and red the target it is going to.

Evaluation

The Hierarchical Edge Bundling visualization uses the connection dataset
like the Mobile Patent Suits visualization. Therefore, stakeholders pointed
out the similarity of the overall information shown and compared the two
visualizations with each other. While both, the Hierarchical Edge Bundling
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and the Mobile Patent Suits visualization, show connections between ap-
plications, the Hierarchical Edge Bundling focuses more on the overview of
the data flow. The two different colors and the thickness of lines allows for
a quick identification of hot spots and general traffic between applications
and teams, which all interviewees liked. While the overall visualization and
its perceived information was liked by all stakeholders, they all preferred
the Mobile Patent Suits visualization over the Hierarchical Edge Bundling
visualization. When asked for the reason, stakeholders named structural rep-
resentation of the software architecture and personal needs for information.
Some voiced the idea to incorporate the thickness of lines into the Mobile
Patent Suits visualization, as this was the feature most favored about the
Hierarchical Edge Bundling visualization.

6.2.3 Radial Tidy Tree

Figure 6.4. Example of the data
structure for the Radial Tidy Tree vi-
sualization.

The Radial Tidy Tree visualiza-
tion constructs hierarchical node-link dia-
grams, placing nodes of the same hierar-
chical level on the same level in the visu-
alization.

Data Requirements

The Radial Tidy Tree uses a JSON
file as data input, with a data structure
that represents a hierarchical organization
of nodes, where each node has a name
and may have a list of child nodes. As
seen in Figure 6.4, the file begins with a
root node, which in the case of this exam-
ple is the company name. This root node
has a name and multiple children. The
child nodes represent the first hierarchy
level, which in this example is the appli-
cation. Each child node can have none,
one, or multiple child nodes itself, rep-
resenting different hierarchical levels. In
the shown example, the second hierarchi-
cal level consists of the services of each
application. The third, and last, hierar-
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chical level represents the path of the service.

In order to create the required JSON file, the http url values of the trace
dataset had to be split into Scheme, Netloc, Path, and Params in order to
create a hierarchical structure. The new XES file was then read into a data
frame using PM4Py, and the values for istio namespace, Netloc, and Path
were extracted. To create the hierarchical structure, the istio namespace is
added to a list if it isn’t already in there. It then checks if Netloc already
exists under the current namespace. If not, it creates a new netloc entry.
The same is done for the Path under the current Netloc entry.

Visualization

Just like the Hierarchical Edge Bundling visualization, the Radial Tidy
Tree visualization displays the data in a circle, as seen in Figure 6.1a. By ar-
ranging the nodes like this, the visualization allows for a better overview than
compared to a list like arrangement. The root node is centered in the middle,
with the nodes of each hierarchy level visualized on a different level around it.

Evaluation

The Radial Tidy Tree caused the most controversy between stakehold-
ers. While very few liked the depth of the visualization, the remaining stake-
holders could not get any use out of it. Those who did not like the visual-
ization found it too detailed, and couldn’t see a use case for it. Those who
did like the visualization appreciated the depth and detail it visualized.
The reason for the two different opinions mainly could be find in the position
of the stakeholders, and therefore the work they do. Managers and Tech leads
liked the visualization as it gave them insights into the software architecture,
which they stated reflected the quality of outcome of certain decisions that
had been made. An example was that the decision had been made to bundle
APIs within the company. However, the visualization showed that this had
not been realized everywhere and could be improved in other cases. The vi-
sualization also gave them inspiration of new topics to look into that would
improve the overall software architecture within the company. Architects, on
the other hand, had little to no interest in the grain of detail, as it didn’t
contribute to the decisions they had to make.

47



6.3 Conclusion

This Chapter aimed to find visualizations most suitable for visualizing
software architecture. To be able to answer this question, the purpose of the
visualization has been identified. Furthermore have different visualizations
been created and evaluated by stakeholders.

The visualization purpose depends on the architecting activity that
wants to be achieved, and the stakeholders requirements for the visualiza-
tions. Within the scope of this thesis, the Architecture Recovery and Archi-
tecture Impact Analysis are the identified architecting activities that want
to be achieved with the software architecture visualizations. People within
the domain of software architecture, or a related field, were identified as the
stakeholders.

The evaluation of the generated visualizations reveled that all inter-
viewed stakeholders preferred the Mobile Patent Suits visualization. The
reasons for this are a quick overview of connections between applications,
the distinguishing between teams, and identification of the structure of the
software architecture. Additionally, this was the visualization stakeholders
thought would most answer questions in regards of decisions that had to be
made for their work. Furthermore is the dataset used for this visualization
easily extendable, allowing to enrich the visualization with more informa-
tion. The node and link structure also reminds of a DFG, which means
similar graphical representations of information (e.g., thickness or color of
the lines based on occurrence or time) could be incorporated into it.

However, while the explored visualizations were capable of loading the
complete datasets of the case study, they lack capabilities to visualize large
datasets in a sufficient manner. This meant that only part of the datasets
could be loaded and visualized at a time, defeating the point of visualizing
a complete software architecture. Additionally were hierarchical structures,
which are given in both datasets, not always able to be visualized in a desired
manner. Furthermore did the explored visualizations not include any metrics
that could be used for an Architecture Impact Analysis.

These findings suggest that, while visualizations like the Mobile Patent
Suits spark interest among stakeholder, the information they convey is still
limited. The above mentioned shortcomings highlight the need for more ad-
vanced and flexible visualization tools in the field of software architecture.
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The tested visualisations, while helpful, fall short in handling large datasets
and accurately representing hierarchical structures. To address these lim-
itations, future tools should incorporate the ability to visualize complete
datasets and integrate relevant metrics for activities such as Architecture
Impact Analysis. Additionally, the tools must be adaptable to the specific
needs of different architecting activities and stakeholder requirements. By
enhancing these aspects, visualization tools can provide more comprehensive
and actionable insights.

The next Chapter will therefore address the above mentioned short-
comings within the visualizations, in order to improve them and be able to
derive more information from them.
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Chapter 7

Software Architecture
Visualization

As concluded in Section 6, the Mobile Patent Suits visualization pro-
vides a good base structure for the visualization of software architecture with
datasets like the connection dataset. However, it is missing certain attributes
and functionalities to sufficiently visualize software architecture and to be
able to derive useful information from it. Therefore, the following Chapter
will explain and discuss the attributes and functionalities that were added
to the Mobile Patent Suits visualization to achieve the desired goals.
Since the main feature of the Mobile Patent Suits Visualization is to show in-
teractions between different nodes, the visualization will be called Interaction
Network Visualization from now on.

7.1 Data Extension

The original data input file of the Interaction Network Visualization
only included information about source, target, and type. In order to be able
to derive more information from the final visualization, more information
needs to be made available in the data input file. Therefore, the information
about Group, Area, and Domain from the connection dataset were added.
This allows to view the software architecture from different hierarchies, while
also providing information for potential calculation of metrics. Furthermore
has a description of the applications been added, which could be derived from
an additional file.
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7.2 Data Filtering and Graphical Represen-

tation of Group Distinctions

As previously mentioned, the ability to effectively visualize large datasets
is currently insufficiently handled by the Mobile Patent Suits Visualization.
Large datasets can also overwhelm the end-user’s ability to interpret the
visualizations. Therefore, incorporating filtering options into data visualiza-
tion tools is essential. In order to achieve this, a checkbox selection for the
type values has been added. Figure 7.1 shows an example of the checkbox
selection of the connection dataset, where the team names were used.

Figure 7.1. Checkbox filtering for the team names.

The data is filtered based on the value in the type column. This means,
that by selecting a type, the visualization generated will include nodes of all
the values in the source column and their respective values in the target col-
umn, that match the selected value in the type column. The links between
the nodes will be included in the visualization as well, with the arrow starting
at the node of the source and pointing to the node of the target. For the
connection dataset, this means the visualization will show all calls that are
made within the selected team, but also calls made from the selected team
to applications from other teams, as well as calls made from other teams to
applications of the selected team.

In order to include calls made from application of other teams to ap-
plications of the selected team, the filtering logic needs to be extended. For
this, the values of the source where the type value matches the selected type
are temporarily put into a separate list. The values from this list are then
compared with the entries from the target column. If there is a match, value
of the source will be added as a node to the visualization, with a link to the
target value, which should already be in the visualization. This ensures that
the final visualization will not only include nodes and links of the selected
team and the applications it makes calls to, but also nodes of other teams
that make a selection to the selected team. This generates a more complete
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view of the interaction between teams and applications, as desired by the
interviewed stakeholders.

As previously mentioned, the visualization includes nodes representing
different types, i.e., teams, areas, groups, or domains. To facilitate easy
differentiation between the types, the links associated with each type are
color-coded uniquely, as seen in Figure 7.2 for the connection dataset.

Figure 7.2. Team phoenix and its nodes, with team phoenix represented by blue links.
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7.3 Hierarchical Views

The example explained in Section 7.2 used team names for filtering,
as it represents the highest hierarchy available in the dataset. However, the
same logic can be applied to different hierarchical levels, such as Group,
Area, and Domain. To achieve this, the application shortname values and
their respective opex values are stored as pairs in a dictionary. The values
from the application shortname column are then compared with the appli-
cation shortname values in the dictionary, and if a match is found, they are
replaced by their corresponding opex values. This process is repeated for the
depend application shortname column. The result of this visualization can
be seen in Figure 7.3, where it is filtered for groups and teams are represented
as nodes.
This process can be repeated for all other hierarchies as well.

Figure 7.3. Group “Decide to Buy” and its respective teams represented as nodes with
blue links.
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7.4 Metrics and Information

Figure 7.4. Example of
the information box for ap-
plication scarcity.

Above the visualization, metrics about the
selected team(s) were displayed. These met-
rics included the count of distinct teams, ar-
eas, groups, and domains with which the team(s)
interact. During interviews, stakeholders high-
lighted that this information is particularly valu-
able for them when making changes to the soft-
ware architecture, as it helped them to esti-
mate a potential impact. It also gives them
insights into the cross-dependency of teams,
which they stated that they want to reduce
due to risk and cost aspects. They also
stated that this task currently had to be
done manually and therefore was quite time-
consuming.

To enhance the visualization and provide
more details about each node, an interactive infor-
mation box was added, as seen in Figure 7.4. When
a node is clicked, this box appears, displaying ad-
ditional information such as the team, group, area,
and domain to which the node belongs. It also in-
cludes a description of the node, if available, along
with information about the teams and applications
that the node interacts with, either by making calls
to or receiving calls from them.

7.5 Evaluation

The final visualizations were presented to the stakeholders, who ex-
pressed great enthusiasm and appreciation for the work. They were par-
ticularly impressed with the filtering capabilities, the graphical distinction
between groups, and the metrics provided. The filtering allows the stake-
holders to to get a quick overview of the applications within their own team,
but also the connections that are made or coming from outside the team.
This is also applicable to different hierarchical views and, together with the
color distinction between groups, helps stakeholders to quickly estimate the
extend of a potential change. Since this task currently has to be done manu-
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ally by talking to different team members or looking through different textual
documentations, the visualization drastically reduces the time consumption
needed for this task. The addition of an information box about each node,
displayed on the side, was also well-received, as the list of names of the in-
teracting nodes provides a more detailed information of the visualization.
The stakeholders were pleased with the differences compared to the earlier
visualizations they were shown, noting that the final version was much more
helpful and allowed them to derive more useful information. They identified
several practical use cases for the visualizations and suggested additional
metrics and features that could enhance their utility further. Additional fea-
tures mentioned were the size of the message flows within calls, the count of
the calls made, and the comparison of calls allowed to make and calls actually
made. Stakeholders also mentioned additional datasets that they thought of
which could be added to the visualization in order to enrich it and improve
their work even more.
Overall, the feedback was rated positive and successful, as the visualization
provided an automated documentation of the software architecture which
improved the work of the stakeholders by providing new insights or reducing
the time needed for tasks that currently are done manually.

7.6 Conclusion

This Chapter focused on addressing the attributes and functionalities
identified as missing in the previous Chapter, which explored visualizations
for software architectures. The goal of this Chapter is to experiment with the
capabilities of the Interaction Network Visualization, aiming to sufficiently
represent software architecture and extract meaningful information from it.

Various functionalities were explored to determine their feasibility and
contribution to the desired end product. As a result, features such as fil-
tering, graphical representation of group distinctions, hierarchies, metrics,
and additional information were incorporated into the Interaction Network
Visualization to enhance its effectiveness. The final visualization was then
evaluated by stakeholders, who expressed satisfaction with the results. They
also provided suggestions for further enhancements to address additional use
cases and improve the visualization even more.
Process mining techniques were not implemented due to the complexity of
combining the PM4Py library with JavaScript. However, such an implemen-
tation would increase the possibilities to analyze the data available, such as
throughput times, occurrences of connections, most used connections, and so
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on. The connection dataset already provides a good amount of data to apply
process mining techniques to it, but replacing it with a dynamic dataset to
add the currently missing timestamps would be more beneficial.

One limitation to consider is that the visualizations are influenced by
the structure of the dataset used. While this thesis aimed to create univer-
sally applicable results, it cannot be denied that the specific structure of the
provided dataset had an impact on the outcomes. Consequently, this limi-
tation implies that the conclusions may not be directly transferable to other
data structures or sets.

In conclusion, this Chapter successfully demonstrated the potential for
enhancing data visualizations through thoughtful integration of advanced
functionalities, paving the way for future improvements and applications.
Future work could focus on integrating these suggestions to further refine
the visualization and expand its applicability.
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Chapter 8

Conclusion, Limitations,
Discussion, and Future Work

This thesis explored the question of how software architecture can be
visualized using dynamic data. To address this, literature reviews and ex-
periments were conducted to determine the necessary data requirements.
Subsequently, various visualizations were evaluated by stakeholders to iden-
tify the most effective approach for representing software architecture.

This Chapter aims to draw conclusions from the project by providing
concise answers to the posed research questions, acknowledge the limitations
encountered, and suggest potential directions for future work to further ad-
vance the field of software architecture visualization.

8.1 Conclusion

In order to derive conclusions surrounding the research question, the
sub-questions that were posed are addressed first.

SQ1: Which event data is relevant for visualizing
software architecture?

With the first sub-question, the topic of what kind of data is needed for
effectively visualizing software architecture was addressed in Chapter 5. To
answer this question, experiments were conducted with the available data to
determine what kinds of graphs could be generated using process mining, and
what specific information was necessary to achieve useful results. Given that
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process mining was a key aspect of this thesis, it was evident that the data
requirements for process mining should be integrated into the overall data
requirements. By converting component information into activity names,
Directed Flow Graphs (DFGs) were successfully generated to visualize both
software architecture and trace data. The results demonstrated that having
activity names in the original data is not mandatory, as component identifiers
can be converted into activity names. This implies that detailed information
about the components is essential for visualizing software architecture.

To determine the sequence of each activity or component, either a
timestamp or the order of the components (i.e., source and endpoint infor-
mation) is necessary. Typically, trace data includes a traceID, serving the
role of a case ID in process mining. For software architecture component
data, a case ID can be generated.

SQ2: Which visualization techniques are considered
the most effective for representing software

architecture?

To answer sub-question 2, literature was reviewed to identify the most
effective visualization techniques for representing software architecture, based
on the suitability of its visualization purposes, Architecture Recovery and Ar-
chitecture Impact Analysis. Given that graph-based visualizations are most
commonly used for these purposes, three different graph-based visualizations
were selected for evaluation.

To assess their effectiveness, three example visualizations using the
datasets provided within the case study were presented to stakeholders. Dur-
ing this process, stakeholders evaluated each visualization technique and pro-
vided feedback on aspects such as clarity, usefulness, and the ability to convey
information. Among the visualizations presented, the Mobile Patent Suits
visualization, which visualized structural data, was favored by stakeholders.
They appreciated its dynamic nature and the comprehensive information it
displayed, which aligned with their needs and expectations. Consequently,
based on the findings from the case study, the Mobile Patent Suits visualiza-
tion emerged as the most effective technique for visualizing software archi-
tecture in this context. Comparing the results from Chapter 5 and Chapter
6, it was also discovered that DFGs are the most suitable way of visualizing
tracing data, as they are capable of accurately visualizing sequence data,
while the other visualizations weren’t.
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SQ3: How can dynamic data from existing software
architectures be used for visual representations to

aid in understanding complex software systems?

To answer sub-question 3, the Mobile Patent Suits visualization, which
was determined most effective for visualizing software architecture, was ex-
tended to create the Interaction Network Visualization. The Interaction
Network Visualization included additional data attributes, filtering options,
and color-coded links to distinguish between different types. Hierarchical
views were implemented to allow for different levels of detail, and interac-
tive information boxes provided detailed node-specific information. Through
stakeholder feedback it was evaluated that these enhancements aid in un-
derstanding complex software systems by providing clearer insights and ac-
tionable metrics, highlighting the practical benefits and potential for further
improvements.
Process mining techniques were not applied to the Interaction Network Vi-
sualization due to the complexity of incorporating the PM4Py library with
JavaScript, which resulted in a decreased availability of data analyzing func-
tionalities.

RQ: How can we visualize software architecture using
dynamic data?

By combining the insights gained from the previous research questions,
the main research question can be answered: how to (best) visualize software
architecture depends on the data. When employing process mining tech-
niques for visualization, it is essential to transform the available data appro-
priately. This involves converting each component into an activity name and
accurately representing the sequence of connections. Directed Flow Graphs
(DFGs) generated through process mining can provide initial insights into
smaller datasets or less complex software architectures, and are especially
useful for tracing data. Furthermore can process mining techniques easily be
applied to DFGs due to the inherent structure and properties of them that
align well with the goals and methods of process mining. For more com-
prehensive analysis and detailed information, graph-based visualizations are
more suitable. This is especially applicable for dynamic data that provides
structural information of a software architecture. These visualizations excel
in dynamically representing each component as a node with links indicating
their connections, offering a clearer and more detailed depiction of the soft-
ware architecture. Process mining techniques are more complex to apply to
them, as there currently is no ready-to-use solution available.
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8.2 Limitations

One significant limitation of this study is the use of datasets from
only one company. This singular focus means that the data structure and
visualizations observed may not be representative of other organizations. As
a result, the findings and conclusions drawn from these datasets may not be
universally applicable. This is especially true for the connection dataset, as
different companies may have different structures and patterns, which could
lead to varying results when the same visualizations and analyses are applied.
Therefore, caution should be exercised when generalizing these results to
other contexts, and further research involving diverse datasets from multiple
companies is recommended to validate these findings.

8.3 Discussion and Future Work

The motivation behind this project was to visualize software architec-
ture using dynamic data, in order to be able to derive information from it.
Process mining played a central aspect in the processing of the data and
the creation of the visualizations in this. As the experiments and results in
this thesis have shown, there are two different outcomes based on the two
different datasets that were analyzed within the case study.
The connection dataset contains structural information about the overall
software architecture. However, process mining techniques are not yet suit-
able for visualizing this type of data. The primary limitations include the
inability to effectively represent different hierarchical levels, challenges in
processing large datasets, and the lack of visual distinction between groups
or components. These shortcomings hinder the ability to gain clear insights
into the complex structure of the software architecture using current process
mining visualization methods.
Conversely, the trace dataset containing data gathered from dynamic tracing
proved to be more suitable for process mining. This dataset enabled the
quick generation of useful Directed Flow Graphs (DFGs), which stakehold-
ers found very interesting. This area presents significant opportunities for
future work, as there is difference of definition between traces in the context
of software architecture or company data are, and traces in process mining.
Additionally, the potential use cases of trace data within companies war-
rant further research. Improving process mining for trace data is another
promising topic. While current methods are quite effective at deriving infor-
mation, there is room for experimentation with features such as loading large
datasets and selectively displaying individual traces, comparing traces with
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each other, and more. These enhancements could further refine the process
mining capabilities and provide deeper insights into software architecture.

Future work in the domain of software architecture visualizations using
process mining should focus on enhancing the ability to visualize different
hierarchical views and enable seamless switching between them. Currently,
process mining techniques lack this capability, which limits their effective-
ness in representing complex software architectures. Research in this direc-
tion could significantly improve the utility of process mining for software
architecture data, providing more comprehensive and multi-layered insights
into the structure and dynamics of software systems. Developing methods
to better integrate hierarchical visualizations would facilitate a deeper un-
derstanding of architectural components and their interactions, ultimately
leading to more robust and actionable analyses.

Another promising area for future work is enhancing process mining for
tracing data. While visualizations for both the connection dataset and the
trace dataset were deemed helpful, the DFGs generated from tracing data
sparked greater interest and inspired more use cases among stakeholders.
While the previously mentioned improvements would already benefit tracing
data, it furthermore provides promising opportunities in all three types of
process mining: discovery, conformance, and enhancement.
For discovery, tracing data can be rapidly implemented across the entire
software architecture to uncover actual data flows and interactions between
components. When happy flows are available, tracing data can be utilized for
conformance checking to ensure the system operates as intended. Addition-
ally, process mining could be used to identify and apply the right metrics to
the discovered software architecture, providing suggestions for enhancements
to improve the system. These advancements in process mining could sig-
nificantly optimize the understanding and management of complex software
systems.
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Appendix A

Code Snippets

1 import pm4py

2
3 def import_xes(xes_file_path):

4 xes_event_log = pm4py.read_xes(xes_file_path)

5 start_activities = pm4py.get_start_activities(

xes_event_log)

6 end_activities = pm4py.get_end_activities(xes_event_log)

7 print("Start activities: {}\ nEnd activities: {}".format(

start_activities , end_activities))

8
9 if __name__ == "__main__":

10 import_xes("/Users/Path/XES_event_log.xes")

Listing A.1. Getting the Start and End Activity with PM4Py.

1 import pm4py

2
3 if __name__ == "__main__":

4 # read xes file into dataframe

5 log = pm4py.read_xes(os.path.join("/Users/Path/

XES_event_log.xes"))

6 # discover dfg

7 dfg , start_activities , end_activities = pm4py.

discover_dfg(log)

8 # show dfg

9 pm4py.view_dfg(dfg , start_activities , end_activities)

Listing A.2. Discover Directly Follows Graph with PM4Py

1 import pm4py

2 import os

3 import pandas as pd

4
5 if __name__ == "__main__":
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6 # read first xes file into log (DataFrame)

7 log1 = pm4py.convert_to_dataframe(pm4py.read_xes(os.path.

join("/Users/Path/XES_event_log_one.xes")))

8
9 # read second xes file into log (DataFrame)

10 log2 = pm4py.convert_to_dataframe(pm4py.read_xes(os.path.

join("/Users/Path/XES_event_log_two.xes")))

11
12 # concatenate logs using pandas with continuous index

13 combined_log_df = pd.concat ([log1 , log2], ignore_index=

True)

14
15 # convert the concatenated DataFrame back to a pm4py

event log

16 combined_log = pm4py.convert_to_event_log(combined_log_df

)

17
18 # discover dfg

19 dfg , start_activities , end_activities = pm4py.

discover_dfg(combined_log)

20
21 # show dfg

22 pm4py.view_dfg(dfg , start_activities , end_activities)

Listing A.3. Getting the Start and End Activity with PM4Py.

1 import pm4py

2 import os

3 import pandas as pd

4
5 # Read the XES file into a DataFrame

6 log = pm4py.convert_to_dataframe(pm4py.read_xes(os.path.join(

"/Users/Path/XES_event_log.xes")))

7
8 # Initialize a list to store the new rows

9 new_rows = []

10
11 # Initialize a dictionary to track chains of events

12 chains = {}

13 case_concept_counter = 1

14
15 # Function to add a row to the list with a given

case_concept_name

16 def add_row(row , case_concept_name , is_source=True):

17 new_row = row.copy()

18 new_row[’concept:name’] = new_row[’source ’] if is_source

else new_row[’endpoint ’]

19 new_row[’case:concept:name’] = str(case_concept_name)

20 new_rows.append(new_row)

21
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22 # Process each row to form chains

23 for index , row in log.iterrows ():

24 source = row[’source ’]

25 endpoint = row[’endpoint ’]

26
27 # Check if the source is already in any chain

28 found_chain = False

29 for key in list(chains.keys()):

30 if chains[key][-1] == source:

31 # Append the endpoint to the existing chain

32 chains[key]. append(endpoint)

33 found_chain = True

34 # Add rows for source and endpoint

35 add_row(row , key , is_source=True)

36 add_row(row , key , is_source=False)

37 break

38
39 # If no existing chain was found , create a new chain

40 if not found_chain:

41 chains[case_concept_counter] = [source , endpoint]

42 # Add rows for source and endpoint

43 add_row(row , case_concept_counter , is_source=True)

44 add_row(row , case_concept_counter , is_source=False)

45 case_concept_counter += 1

46
47 # Convert the list of new rows to a DataFrame

48 transformed_log = pd.DataFrame(new_rows)

49
50 # Drop the ’source ’ and ’endpoint ’ columns

51 transformed_log.drop(columns =[’source ’, ’endpoint ’], inplace=

True)

52
53 # Save the new dataframe to a XES file

54 pm4py.write_xes(transformed_log , "/Users/Path/

XES_event_log_transformed", case_id_key=’case:concept:name

’)

Listing A.4. Generating a new pandas data frame with source and endpoint values as
activity names.

1 import pm4py

2 import pandas as pd

3 import os

4 import numpy as np

5 from pm4py.objects.log.obj import EventLog , Trace , Event

6
7 # Read the XES file into a DataFrame

8 log = pm4py.convert_to_dataframe(pm4py.read_xes(os.path.join(

"/Users/Path/XES_event_log.xes")))

9
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10 # Function to build sequences from the chains

11 def build_sequences(chains):

12 sequences = []

13 while chains:

14 current_chain = chains.pop(0)

15 current_sequence = [current_chain [0], current_chain

[1]]

16 applications_sequence = [current_chain [2],

current_chain [2]]

17 timestamps_sequence = [current_chain [3],

current_chain [3]]

18
19 while True:

20 found = False

21 for i, (src , end , app , timestamp) in enumerate(

chains):

22 if current_sequence [-1] == src:

23 current_sequence.append(end)

24 applications_sequence.append(app)

25 timestamps_sequence.append(timestamp)

26 chains.pop(i)

27 found = True

28 break

29 if not found:

30 break

31
32 sequences.append (( current_sequence ,

applications_sequence , timestamps_sequence))

33 return sequences

34
35 # Function to replace sequence values with application values

or ’NaN’ based on preceding values

36 def replace_with_application(sequences):

37 # Find all unique sequence values that have preceding

values

38 preceding_values = set()

39 for seq , apps , timestamps in sequences:

40 for i in range(1, len(seq)):

41 preceding_values.add(seq[i])

42
43 replaced_sequences = []

44 for seq , apps , timestamps in sequences:

45 replaced_sequence = []

46 for i in range(len(seq)):

47 if i == 0 and seq[i] not in preceding_values:

48 replaced_sequence.append(np.nan)

49 else:

50 replaced_sequence.append(apps[i] if apps[i]

is not None else np.nan)
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51 replaced_sequences.append (( replaced_sequence ,

timestamps))

52
53 return replaced_sequences

54
55 # Initialize an empty list to store all sequences

56 all_sequences = []

57
58 # Group the log by ’case:concept:name’ and process each group

59 for trace_id , group in log.groupby(’case:concept:name’):

60 # Initialize a list to store unique (source , endpoint ,

application , timestamp) tuples for the current traceId

61 chains = []

62
63 # Process each row in the group to collect unique (source

, endpoint , application , timestamp) tuples

64 for index , row in group.iterrows ():

65 source = row[’source ’]

66 endpoint = row[’endpoint ’]

67 application = row[’istio_namespace ’]

68 timestamp = row[’time:timestamp ’]

69
70 if (source , endpoint , application , timestamp) not in

chains:

71 chains.append ((source , endpoint , application ,

timestamp))

72
73 # Build the sequences from the chains

74 sequences = build_sequences(chains)

75
76 # Replace sequence values with application values or ’NaN

’

77 replaced_sequences = replace_with_application(sequences)

78
79 # Append the replaced sequences to the list of all

sequences with the traceId

80 for seq , timestamps in replaced_sequences:

81 all_sequences.append ({’traceId ’: trace_id , ’sequence ’

: seq , ’timestamps ’: timestamps })

82
83 # Convert the sequences to a DataFrame for better

visualization

84 sequences_df = pd.DataFrame(all_sequences)

85
86 # Convert the sequences DataFrame back to XES format

87 event_log = EventLog ()

88 for trace_id , group in sequences_df.groupby(’traceId ’):

89 trace = Trace()

90 trace.attributes["concept:name"] = trace_id
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91 for i, row in group.iterrows ():

92 for j, (activity , timestamp) in enumerate(zip(row[’

sequence ’], row[’timestamps ’])):

93 event = Event ()

94 event["concept:name"] = activity if not pd.isna(

activity) else ’NaN’

95 event["time:timestamp"] = timestamp

96 # event["case:concept:name"] = trace_id

97 trace.append(event)

98 event_log.append(trace)

99
100 # Export the event log to an XES file

101 pm4py.write_xes(event_log , "/Users/Path/

XES_event_log_activity_names.xes")

Listing A.5. Generating a new XES file with application names as activity name for a
trace.

1 import os

2 import pm4py

3 import csv

4
5 # Directory containing XES files

6 xes_directory = "/Users/Path"

7
8 # Open a CSV file in write mode

9 with open(’mobile_patent_suits.csv’, ’w’, newline=’’) as

csv_file:

10 # Define field names for the CSV file

11 fieldnames = [’source ’, ’target ’, ’type’]

12 # Create a CSV writer object

13 writer = csv.DictWriter(csv_file , fieldnames=fieldnames)

14 # Write the header row

15 writer.writeheader ()

16
17 unique_combination = set()

18
19 # Read XES files

20 for xes_file in os.listdir(xes_directory):

21 if xes_file.endswith(".xes"):

22 # Read XES file into dataframe

23 log = pm4py.read_xes(os.path.join(xes_directory ,

xes_file))

24
25 # Process each row in the log

26 for index , row in log.iterrows ():

27 # Extract values from the columns

28 opex_value = row[’opex’]

29 source = row[’source ’] #

application_shortname
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30 endpoint = row[’endpoint ’] #

depend_application_shortname

31
32 combination = (source , endpoint , opex_value)

33
34 if combination not in unique_combination:

35 unique_combination.add(combination)

36
37 # Write the row to the CSV file

38 writer.writerow ({’source ’: source , ’

target ’: endpoint , ’type’: opex_value })

Listing A.6. Creating the CSV file for the Mobile Patent Suits Visualization from the
XES file of the connection dataset.

1 import os

2 import pm4py

3 import json

4
5 # Directory containing XES files

6 xes_directory = "/Users/Path"

7
8 # Define a dictionary to hold the hierarchical data

9 data = {}

10
11 # Read XES files

12 for xes_file in os.listdir(xes_directory):

13 if xes_file.endswith(".xes"):

14 # Read XES file into dataframe

15 log = pm4py.read_xes(os.path.join(xes_directory ,

xes_file))

16
17 # Process each row in the log

18 for index , row in log.iterrows ():

19 # Extract values from the columns

20 opex_value = row[’opex’]

21 application = f"bol.{ opex_value }.{ row[’

application_shortname ’]}"

22 depend_application = f"bol.{ opex_value }.{row[’

depend_application_shortname ’]}"

23
24 # Update data dictionary for depend_application

25 if depend_application not in data:

26 data[depend_application] = {"size": 0, "

imports": []}

27
28 # Increment size for depend_application

29 data[depend_application ]["size"] += 1

30
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31 # Add application to imports of

depend_application if not already present

32 if application not in data[depend_application ]["

imports"]:

33 data[depend_application ]["imports"]. append(

application)

34
35 # Update data dictionary for application if

not already present

36 if application not in data:

37 data[application] = {"size": 0, "imports":

[]}

38
39 # Convert dictionary to list of dictionaries

40 result = [{"name": namespace , "size": data[namespace ]["size"

], "imports": data[namespace ]["imports"]} for namespace in

data]

41
42 # Save the data to a JSON file

43 with open(’hierarhical_edge_bundling.json’, ’w’) as json_file

:

44 json.dump(result , json_file , indent =4)

Listing A.7. Creating the JSON file for the Hierarchical Edge Bundling Visualization
from the XES file of the connection dataset.

1 import os

2 import pm4py

3 import json

4 import pandas as pd

5
6 # Directory containing XES files

7 xes_directory = "/Users/Path"

8
9 # Define a list to hold the hierarchical data

10 data = []

11
12 # Read XES files

13 for xes_file in os.listdir(xes_directory):

14 if xes_file.endswith(".xes"):

15 # Read XES file into dataframe

16 log = pm4py.read_xes(os.path.join(xes_directory ,

xes_file))

17
18 # Process each row in the log

19 for index , row in log.iterrows ():

20 istio_namespace = row[’istio_namespace ’]

21 netloc = row[’Netloc ’]

22 path = row[’Path’]

23

72



24 # Skip rows where any required field is empty or

NaN

25 if not istio_namespace or pd.isna(istio_namespace

) or not netloc or pd.isna(netloc) or not path or pd.isna(

path):

26 continue

27
28 # Check if istio_namespace already exists in data

29 namespace_exists = False

30 for namespace in data:

31 if namespace["name"] == istio_namespace:

32 namespace_exists = True

33 namespace_entry = namespace

34 break

35
36 if not namespace_exists:

37 # Create a new namespace entry

38 namespace_entry = {"name": istio_namespace , "

children": []}

39 data.append(namespace_entry)

40
41 # Check if netloc already exists under the

namespace

42 netloc_exists = False

43 for nl in namespace_entry["children"]:

44 if nl["name"] == netloc:

45 netloc_exists = True

46 netloc_entry = nl

47 break

48
49 if not netloc_exists:

50 # Create a new netloc entry

51 netloc_entry = {"name": netloc , "children":

[]}

52 namespace_entry["children"]. append(

netloc_entry)

53
54 # Check if path already exists under the netloc

55 path_exists = False

56 for p in netloc_entry["children"]:

57 if p["name"] == path:

58 path_exists = True

59 break

60
61 if not path_exists:

62 # Create a new path entry

63 path_entry = {"name": path}

64 netloc_entry["children"]. append(path_entry)

65
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66 # Save the data to a JSON file

67 with open(’radial_tidy_tree.json’, ’w’) as json_file:

68 json.dump(data , json_file , indent =4)

Listing A.8. Creating the JSON file for the Radial Tidy Tree Visualization from the
XES file of the connection dataset.

1 import pandas as pd

2
3 # Read the CSV file into a DataFrame

4 df = pd.read_csv(’mobile_patent_suits.csv’)

5
6 # Duplicate the target column

7 df[’original_target ’] = df[’target ’]

8
9 # Create a dictionary to map source to type

10 source_to_type = df.set_index(’source ’)[’type’]. to_dict ()

11
12 # Function to replace target with type if source matches

target

13 def replace_target(row):

14 if row[’target ’] in source_to_type:

15 return source_to_type[row[’target ’]]

16 return row[’target ’]

17
18 # Apply the function to the DataFrame

19 df[’target ’] = df.apply(replace_target , axis =1)

20
21 # Function to replace source with type

22 def replace_source(row):

23 if row[’source ’] in source_to_type:

24 return source_to_type[row[’source ’]]

25 return row[’source ’]

26
27 # Apply the function to the DataFrame to replace source

values

28 df[’source ’] = df.apply(replace_source , axis =1)

29
30 # Write the modified DataFrame back to the CSV file

31 df.to_csv(’mobile_patent_suits_GroupHierarchy.csv’, index=

False)

Listing A.9. Creating the CSV file for the Mobile Patent Suits Visualization for the
Group Hierarchy.

1 import define1 from "./ a33468b95d0b15b0@817.js";

2
3 function _1(md){return(

4 md‘

5 <div style="font -size: 26px; font -weight: bold; margin -top:

30px">Interaction Network Visualization </div >
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6
7 <div style="font -size: 16px;margin -top: 20px">This view shows

teams and the calls made between their applications. The

arrow points to the application the call is made to.</div >

8
9 <div style="font -size: 16px;margin -top: 20px">Each selected

team is represented by a different color.</div >

10
11 <div id="top -stats -container" style="display: flex; flex -wrap

: wrap; margin -bottom: 20px;"></div >

12 <div id="distinct -nodes -info" style="font -size: 16px; margin -

top: 20px; display: none;"></div >

13
14 <div id="checkbox -container" style="display: flex; flex -wrap:

wrap; margin -bottom: 10px;"></div >

15 <button id="select -all -button">Select All </button >

16 <button id="select -none -button">Select None </button >

17 <button id="generate -button">Generate Visualization </button >

18 <div id="node -info" style="border: 1px solid grey; padding:

10px; margin -top: 60px; display: none;position:absolute;

right :50px;top :550px;">

19 <h2 >Node Information </h2 >

20 <p id="node -id"></p>

21 <p id="node -additional -info" style="max -width: 300px; word -

wrap: break -word;"></p>

22 <h3 >Additional Information </h3 >

23 <p id="node -stats"></p>

24 </div >

25 ‘

26 )}

27
28 function _2(Swatches , chart) {

29 return Swatches(chart.scales.color)

30 }

31
32 function _chart(suits , d3, location , drag , linkArc ,

invalidation) {

33 const width = 2428;

34 const height = 1400;

35 const types = Array.from(new Set(suits.map(d => d.type))).

sort();

36 let nodes = [];

37 let links = [];

38
39 let color = d3.scaleOrdinal ();

40
41 let simulation = d3.forceSimulation(nodes)

42 .force("link", d3.forceLink(links).id(d => d.id))

43 .force("charge", d3.forceManyBody ().strength ( -100))
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44 .force("x", d3.forceX ())

45 .force("y", d3.forceY ());

46
47 const svg = d3.create("svg")

48 .attr("viewBox", [-width / 2, -height / 2, width , height

])

49 .attr("width", width)

50 .attr("height", height)

51 .attr("style", "max -width: 100%; height: auto; font: 14px

sans -serif;"); // outline: thin solid black;

52
53 // Add zoom functionality

54 const zoom = d3.zoom()

55 .scaleExtent ([0.1 , 10])

56 .on("zoom", (event) => {

57 g.attr("transform", event.transform);

58 });

59
60 svg.call(zoom);

61
62 const g = svg.append("g");

63
64 // Add checkboxes to the container

65 const checkboxContainer = document.getElementById(’checkbox

-container ’);

66 types.forEach(type => {

67 const label = document.createElement(’label ’);

68 label.style.display = ’flex’;

69 label.style.alignItems = ’center ’;

70 label.style.marginRight = ’10px’;

71 const checkbox = document.createElement(’input ’);

72 checkbox.type = ’checkbox ’;

73 checkbox.value = type;

74 checkbox.checked = false; // Set checkboxes to be

unchecked initially

75 label.appendChild(checkbox);

76 label.appendChild(document.createTextNode(type));

77 checkboxContainer.appendChild(label);

78 });

79
80 // Get node stats for nodes in selected visualization

81 function calculateNodeStats(nodes , links) {

82 const nodeStats = {};

83
84 nodes.forEach(node => {

85 nodeStats[node.id] = {

86 types: new Set(),

87 sources: new Set(),

88 targets: new Set(),
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89 sourceNames: [],

90 targetNames: [],

91 productGroup: "",

92 productArea: "",

93 productDomain: "",

94 Description: "",

95 additionalTypes: new Set(),

96 additionalGroups: new Set(),

97 additionalAreas: new Set(),

98 additionalDomains: new Set()

99 };

100 });

101
102 // Updates the nodeStats object with details based on the

links (type name , source name , target name)

103 links.forEach(link => {

104 nodeStats[link.source ].types.add(link.type);

105 nodeStats[link.target ].types.add(link.type);

106 nodeStats[link.source ]. targets.add(link.target);

107 nodeStats[link.target ]. sources.add(link.source);

108 nodeStats[link.source ]. targetNames.push(link.target);

109 nodeStats[link.target ]. sourceNames.push(link.source);

110 });

111
112 // Searches for an entry in the suits dataset that has

its source equal to the id of the current node

113 nodes.forEach(node => {

114 const nodeData = suits.find(suit => suit.source ===

node.id);

115 if (nodeData) {

116 nodeStats[node.id].type = nodeData.type;

117 nodeStats[node.id]. productGroup = nodeData.

productGroup;

118 nodeStats[node.id]. productArea = nodeData.productArea

;

119 nodeStats[node.id]. productDomain = nodeData.

productDomain;

120 nodeStats[node.id]. Description = nodeData.Description

;

121 }

122 });

123
124 // Adds team (type), source , and target list of displayed

visualization , i.e., only type , source and target which

are visualized will be listed here

125 Object.keys(nodeStats).forEach(key => {

126 nodeStats[key]. typeCount = nodeStats[key].types.size;

127 nodeStats[key]. sourceCount = nodeStats[key]. sources.

size;
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128 nodeStats[key]. targetCount = nodeStats[key]. targets.

size;

129 nodeStats[key]. typeList = Array.from(nodeStats[key].

types).join(", ");

130
131 // Ensure sourceList includes only distinct entries

132 const uniqueSourceNames = Array.from(new Set(nodeStats[

key]. sourceNames));

133 nodeStats[key]. sourceList = uniqueSourceNames.join(", "

);

134
135 // Ensure targetList includes only distinct entries

136 const uniqueTargetNames = Array.from(new Set(nodeStats[

key]. targetNames));

137 nodeStats[key]. targetList = uniqueTargetNames.join(", "

);

138 });

139
140 return nodeStats;

141 }

142
143 // Calculate full stats for each node based on the complete

dataset

144 const allNodes = Array.from(new Set(suits.flatMap(l => [l.

source , l.target ]))).map(id => ({ id }));

145 const allStats = calculateNodeStats(allNodes , suits);

146
147 function displayTopStats(stats , selectedTypes ,

additionalStats) {

148 const topStatsContainer = document.getElementById(’top -

stats -container ’);

149 topStatsContainer.innerHTML = ’’;

150
151 // Calculate and display the total number of distinct

nodes per selected type

152 const nodeCountByType = selectedTypes.reduce ((acc , type)

=> {

153 acc[type] = new Set(Object.entries(stats).filter (([_,

stat]) => stat.types.has(type)).map (([id , _]) => id)).size

;

154 return acc;

155 }, {});

156
157 // Display the total count of distinct nodes per type

158 const distinctNodesInfo = document.getElementById(’

distinct -nodes -info’);

159 distinctNodesInfo.style.display = ’block ’;

160 distinctNodesInfo.innerHTML = ’<h3>Total Nodes Selected

Team makes a call to </h3 >’;
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161 const ulDistinctNodes = document.createElement(’ul’);

162 selectedTypes.forEach(type => {

163 const li = document.createElement(’li’);

164 li.textContent = ‘${type}: ${nodeCountByType[type]}‘;
165 ulDistinctNodes.appendChild(li);

166 });

167 distinctNodesInfo.appendChild(ulDistinctNodes);

168
169 // Display additional stats

170 const additionalStatsContainer = document.createElement(’

div’);

171 additionalStatsContainer.innerHTML = ’<h3 >Additional

Stats </h3>’;

172 additionalStatsContainer.innerHTML += ‘

173 <p>Distinct Teams: ${additionalStats.types.size}</p>
174 <p>Distinct Groups: ${additionalStats.groups.size}</p>
175 <p>Distinct Areas: ${additionalStats.areas.size}</p>
176 <p>Distinct Domains: ${additionalStats.domains.size}</p

>

177 ‘;

178 topStatsContainer.appendChild(additionalStatsContainer);

179 }

180
181 function calculateAdditionalStats(links , allStats) {

182 const additionalStats = {

183 types: new Set(),

184 groups: new Set(),

185 areas: new Set(),

186 domains: new Set()

187 };

188
189 links.forEach(link => {

190 if (allStats[link.source ]) {

191 additionalStats.types.add(allStats[link.source ].type)

;

192 additionalStats.groups.add(allStats[link.source ].

productGroup);

193 additionalStats.areas.add(allStats[link.source ].

productArea);

194 additionalStats.domains.add(allStats[link.source ].

productDomain);

195 }

196 if (allStats[link.target ]) {

197 additionalStats.types.add(allStats[link.target ].type)

;

198 additionalStats.groups.add(allStats[link.target ].

productGroup);

199 additionalStats.areas.add(allStats[link.target ].

productArea);
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200 additionalStats.domains.add(allStats[link.target ].

productDomain);

201 }

202 });

203
204 return additionalStats;

205 }

206
207 // Function to update the chart based on selected

checkboxes

208 function updateChart () {

209 // Select checked types

210 const selectedTypes = Array.from(checkboxContainer.

querySelectorAll(’input:checked ’)).map(input => input.

value);

211 // Filters links based on selected types

212 let filteredLinks = suits.filter(d => selectedTypes.

includes(d.type));

213 // Identifies nodes (source and target) of selected types

214 const filteredNodesSet = new Set(filteredLinks.flatMap(l

=> [l.source , l.target ]));

215
216 // Create a set of sources from the filtered links

217 const filteredSourcesSet = new Set(filteredLinks.map(l =>

l.source));

218
219 // Add additional source -target combinations based on the

new condition

220 // Filters the suits dataset again to find additional

links where the target node is already in the

filteredSourcesSet

221 const additionalLinks = suits.filter(link =>

filteredSourcesSet.has(link.target));

222 // Concatenates additionalLinks to the existing

filteredLinks

223 filteredLinks = filteredLinks.concat(additionalLinks);

224 additionalLinks.forEach(link => {

225 filteredNodesSet.add(link.source);

226 filteredNodesSet.add(link.target);

227 });

228
229 const filteredNodes = Array.from(filteredNodesSet).map(id

=> ({ id }));

230
231 const nodeStats = calculateNodeStats(filteredNodes ,

filteredLinks);

232 const additionalStats = calculateAdditionalStats(

filteredLinks , allStats);

233
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234 // Update the color scale based on selected types

235 color = d3.scaleOrdinal(selectedTypes , d3.

schemeCategory10);

236
237 // Stop the previous simulation

238 simulation.stop();

239
240 // Clear previous elements

241 g.selectAll("*").remove ();

242
243 // Create a new simulation with the filtered nodes and

links

244 simulation = d3.forceSimulation(filteredNodes)

245 .force("link", d3.forceLink(filteredLinks).id(d => d.id

))

246 .force("charge", d3.forceManyBody ().strength ( -1200))

247 .force("x", d3.forceX ())

248 .force("y", d3.forceY ());

249
250 // Redefine markers

251 g.append("defs").selectAll("marker")

252 .data(selectedTypes)

253 .join("marker")

254 .attr("id", d => ‘arrow -${d}‘)
255 .attr("viewBox", "0 -5 10 10")

256 .attr("refX", 15)

257 .attr("refY", -0.5)

258 .attr("markerWidth", 6)

259 .attr("markerHeight", 6)

260 .attr("orient", "auto")

261 .append("path")

262 .attr("fill", color)

263 .attr("d", "M0 ,-5L10 ,0L0 ,5");

264
265 // Update the links

266 const link = g.append("g")

267 .attr("fill", "none")

268 .attr("stroke -width", 1.5)

269 .selectAll("path")

270 .data(filteredLinks)

271 .join("path")

272 .attr("stroke", d => color(d.type))

273 .attr("marker -end", d => ‘url(${new URL(‘#arrow -${d.
type}‘, location)}) ‘);

274
275 // Update the nodes

276 const node = g.append("g")

277 .attr("fill", "currentColor")

278 .attr("stroke -linecap", "round")
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279 .attr("stroke -linejoin", "round")

280 .selectAll("g")

281 .data(filteredNodes)

282 .join("g")

283 .call(drag(simulation))

284 .on("mouseover", (event , d) => {

285 const stats = nodeStats[d.id];

286 d3.select(event.currentTarget)

287 .append("title")

288 .text(‘ID: ${d.id}\nTeam: ${stats.typeList }\nTeam
Count: ${stats.typeCount }\ nSources: ${stats.sourceCount }\
nTargets: ${stats.targetCount }‘);

289 })

290 .on("mouseout", (event , d) => {

291 d3.select(event.currentTarget).select("title").remove

();

292 })

293 // add box with node info on right side

294 .on("click", (event , d) => {

295 const stats = nodeStats[d.id];

296
297 const nodeInfo = document.getElementById(’node -info’)

;

298 nodeInfo.style.display = ’block ’;

299 document.getElementById(’node -id’).innerHTML = ‘<

strong >ID:</strong > ${d.id}‘;
300 document.getElementById(’node -stats ’).innerHTML = ‘

301 <p><strong >Teams:</strong ></p>

302 <ul >${stats.typeList.split(’, ’).map(type => ‘<li>$
{type}</li >‘).join(’’)}</ul >

303 <p><strong >Sources (${stats.sourceCount }):</strong
></p>

304 <ul >${stats.sourceList.split(’, ’).map(source => {

305 const sourceType = suits.find(suit => suit.source

=== source)?.type;

306 return ‘<li >${source} (${sourceType }) </li >‘;
307 }).join(’’)}</ul >

308 <p><strong >Targets (${stats.targetCount }):</strong
></p>

309 <ul >${stats.targetList.split(’, ’).map(target => {

310 const targetType = suits.find(suit => suit.target

=== target)?.type;

311 return ‘<li >${target} (${targetType }) </li >‘;
312 }).join(’’)}</ul >

313 ‘;

314 document.getElementById(’node -additional -info’).

innerHTML = ‘

315 <p><strong >Team:</strong > ${stats.type}</p>
316 <p><strong >Product Group:</strong > ${stats.
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productGroup }</p>

317 <p><strong >Product Area:</strong > ${stats.
productArea }</p>

318 <p><strong >Product Domain:</strong > ${stats.
productDomain }</p>

319 <p><strong >Description :</strong > ${stats.
Description }</p>

320 ‘;

321 });

322
323 node.append("circle")

324 .attr("stroke", "white")

325 .attr("stroke -width", 1.5)

326 .attr("r", 4);

327
328 node.append("text")

329 .attr("x", 8)

330 .attr("y", "0.31em")

331 .text(d => d.id)

332 .clone(true).lower ()

333 .attr("fill", "none")

334 .attr("stroke", "white")

335 .attr("stroke -width", 3);

336
337 simulation.on("tick", () => {

338 link.attr("d", linkArc);

339 node.attr("transform", d => ‘translate(${d.x},${d.y}) ‘)
;

340 });

341
342 // Update top stats

343 displayTopStats(nodeStats , selectedTypes , additionalStats

);

344 }

345
346 // Event listeners for the select all and select none

buttons

347 document.getElementById(’select -all -button ’).

addEventListener(’click’, () => {

348 checkboxContainer.querySelectorAll(’input[type=" checkbox

"]’).forEach(checkbox => {

349 checkbox.checked = true;

350 });

351 updateChart (); // Trigger chart update

352 });

353
354 document.getElementById(’select -none -button ’).

addEventListener(’click’, () => {

355 checkboxContainer.querySelectorAll(’input[type=" checkbox
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"]’).forEach(checkbox => {

356 checkbox.checked = false;

357 });

358 updateChart (); // Trigger chart update

359 });

360
361 document.getElementById(’generate -button ’).addEventListener

(’click’, updateChart);

362
363 return Object.assign(svg.node(), { scales: { color } });

364 }

365
366 function _suits(FileAttachment) {

367 return FileAttachment("suits.csv").csv();

368 }

369
370 function _linkArc () {

371 return function linkArc(d) {

372 const r = Math.hypot(d.target.x - d.source.x, d.target.y

- d.source.y);

373 return ‘

374 M${d.source.x},${d.source.y}
375 A${r},${r} 0 0,1 ${d.target.x},${d.target.y}
376 ‘;

377 };

378 }

379
380 // drag function

381 function _drag(d3) {

382 return simulation => {

383
384 function dragstarted(event , d) {

385 if (! event.active) simulation.alphaTarget (0.3).restart

();

386 d.fx = d.x;

387 d.fy = d.y;

388 }

389
390 function dragged(event , d) {

391 d.fx = event.x;

392 d.fy = event.y;

393 }

394
395 function dragended(event , d) {

396 if (! event.active) simulation.alphaTarget (0);

397 d.fx = null;

398 d.fy = null;

399 }

400
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401 return d3.drag()

402 .on("start", dragstarted)

403 .on("drag", dragged)

404 .on("end", dragended);

405 };

406 }

407
408 export default function define(runtime , observer) {

409 const main = runtime.module ();

410 function toString () { return this.url; }

411 const fileAttachments = new Map([

412 ["suits.csv", { url: new URL("./files /63

c4d2f34c05d62a116fc16daf04215d82790c6bd036ce5783f7d002c5d83f704798ae8d61da50e2cc4cb81af8f629e4b14cc82abeeffd789a0cd425072cf2e6

.csv", import.meta.url), mimeType: "text/csv", toString }]

413 ]);

414 main.builtin("FileAttachment", runtime.fileAttachments(name

=> fileAttachments.get(name)));

415 main.variable(observer ()).define (["md"], _1);

416 main.variable(observer ()).define (["Swatches", "chart"], _2)

;

417 main.variable(observer("chart")).define("chart", ["suits",

"d3", "location", "drag", "linkArc", "invalidation"],

_chart);

418 main.variable(observer("suits")).define("suits", ["

FileAttachment"], _suits);

419 main.variable(observer("linkArc")).define("linkArc",

_linkArc);

420 main.variable(observer("drag")).define("drag", ["d3"],

_drag);

421 const child1 = runtime.module(define1);

422 main.import("Swatches", child1);

423 return main;

424 };

Listing A.10. Code for the Interaction Network Visualization.
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