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Abstract

The path explosion problem is a significant issue for verification tools that use symbolic execution. Mono-
tonic partial order reduction introduces a sound and complete method of pruning paths irrelevant to the
verification process. It does this by finding dependencies within transitions, chaining them, and determin-
ing if a computation can be considered quasi-monotonic; if not, the path can be pruned. The algorithm
does not clarify possible dependencies between symbolic or concrete references to objects and arrays that
must be considered when pruning paths in a concurrent object-oriented language. The contributions made
by this research are the extension of the original monotonic partial order reduction method, as well as a
performance study of the algorithm when implemented in a symbolic execution verification tool. After a
comprehensive, in-depth look at the monotonic partial order reduction algorithm, it was implemented in a
verification tool for an intermediate object-oriented language called OOX. When testing the verification tool
using many benchmark programs, it is shown that the algorithm remained sound in the pruning of paths
and is complete over most scenarios (does not allow for pruning paths using assumptions made over symbolic
references). The testing also showed that the algorithm caused a significant increase in performance when
compared to not having any form of path reduction, and a simplistic reduction method.
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Chapter 1

Introduction

Malfunctioning software can significantly impact anyone’s life these days. Verifying programs is becoming
more critical as more fields start adopting software as a primary source of operations. There are many ways
of verifying programs. The most common method is testing, automatically or manually, but more intriguing
approaches exist. Formal program verification is one method that focuses on verifying programs concerning
a given specification or behavior.
The previous definition is still quite vague, and that is by intention since there are also many ways of

attempting formal program verification. The most relevant for this paper will be symbolic execution, but
explicit state model checking will also be referenced throughout. When using explicit state model checking,
the verification tool will look at each state individually to check if it fits the specifications given. Depending
on that verification process, it can be determined if the program is valid over all reachable states. When
using symbolic execution, all paths of the program are constructed, and then, for each path, a formula is
constructed that can be formally proven using a satisfiability solver. Symbolic execution proves a program
is correct over sets of states instead of checking individual states.
No task comes without its own sets of problems; for program verification, it comes in the form of computa-

tional complexity. Since formal program verification tries to fit a program to a specific specification instead
of a singular input and output, many different paths must be explored throughout the programs. Certain
programs could have infinitely many states, so verification tools generally are limited to a set depth of states
to explore. If the verification tool encounters a violation before reaching the maximum set depth, the tool
terminates with the violation; if the maximum depth is reached, the program is considered satisfiable. Since
reaching said depth can be very expensive, a preferred method would be to prevent the exploration of states
that will not impact the outcome of the verification process.
The computational complexity gets dialed up another notch when trying to prove concurrent programs

formally. Concurrent programs consist of multiple threads, and a scheduler is used to schedule the transitions
of the threads. Schedulers are non-deterministic, which means that the execution order of a program
consisting of multiple threads can not be known beforehand. The threads can access the same heap and
read and write the same data. The ability to read and write shared data structure causes the program to
behave differently based on how the computations are scheduled. Due to the non-deterministic nature of
the scheduler, the program must be verified over all interleaving execution paths possibly executed by the
schedular. The need to verify all interleaving contributes to the path explosion problem, a known problem
when performing symbolic execution.
Multiple methods exist to deal with the path explosion problem in concurrent programs. One of the
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CHAPTER 1. INTRODUCTION 2

methods that will come to mind is partial order reduction. As previously mentioned, the ability to read
and write data from the different threads makes it necessary to check all interleaving for the program. This
also means that when operations in the threads do not alter the same section of the heap, evaluating all
interleaving paths is unnecessary. Using the independence between operations, it can be determined what
paths are unnecessary for the verification process. Pruning the paths that do not necessarily need to be
verified within the set of interleaving paths is called partial order reduction.

Many different partial order reduction algorithms have been researched over the years. Some of the note-
worthy are the original paper on partial order reduction(POR) [Peled, 1993], Peephole partial order reduc-
tion(PPOR) [Wang et al., 2008], and Monotonic partial order reduction(MPOR) [Kahlon et al., 2009]. The
paper on POR written by Peled introduces the idea of pruning unnecessary paths based on the equivalence
between sequences of transitions, although this algorithm was far from optimal. PPOR is an implementation
that can be used with symbolic execution but is limited to two threads. MPOR is a complete and sound
algorithm for pruning paths without being limited to a set number of threads. Another benefit is that it can
be applied to explicit state model checking and symbolic verification methods.

Within this research, a method is explored to implement the ability to verify concurrent programs while
minimizing the path explosion problem using Monotonic Partial Order Reduction (MPOR). This will be
implemented in a verification tool for an intermediate object-oriented language called OOX [Koppier, 2020].
OOX has been developed within Utrecht University as an alternative to existing program verification meth-
ods. Two separate verification tools were developed within the University, one in a Haskell code base and
one in a Rust code base. The Rust-based verification tool will be the target of this research, as it cannot
currently handle concurrent programs.

In the original paper on Monotonic Partial Order Reduction, an algorithm is introduced that can prune
paths using dependencies between shared variable accesses. The paper only mentions the dependencies
between concrete variables, but many variables might not be concrete in object-oriented languages. Objects
and arrays can be symbolic and, therefore, cause unexpected conflicts between references when altered.
Arrays also have unique behavior since their indexation determines what part of the heap is altered,
meaning that dependencies only exist when the alteration happens on the same index.

The primary focus of this research is encapsulated in the following two research questions:

• RQ-1: How can the monotonic partial order reduction algorithm be extended to account for depend-
encies in transitions that involve arrays and objects while preserving its soundness and completeness? :
This question explores how Monotonic Partial Order Reduction can be extended to handle the unique
dependencies and interactions present in Object-Oriented Languages. Since the original paper proves
that the algorithm is complete and sound, after extending it to handle objects and arrays, the goal is
to keep this algorithm complete and sound.

• RQ-2: What is the impact of monotonic partial order reduction on the performance of symbolic execution
verification tools for object-oriented languages? : This question investigates whether Monotonic Partial
Order Reduction can be effectively implemented within a symbolic execution engine. Symbolic execution
allows for exploring program paths using symbolic values instead of concrete ones, which can significantly
aid in verifying concurrent programs by reducing the state space that needs to be explored. It is necessary
to research the performances gained and the algorithm’s possible overhead when verifying programs to
prove the effectiveness of monotonic partial order reduction within OOX.

This research makes the following key contributions:
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• Extension of Monotonic Partial Order Reduction: The MPOR algorithm is extended to handle the
specific challenges posed by Object-Oriented Languages. This includes managing dependencies between
symbolic references and objects not addressed in the original MPOR paper. These extensions make
MPOR applicable to a wider range of programming paradigms, particularly those involving complex
object interactions.

• Implementation in a Symbolic Execution Verification Tool : The extended MPOR method is imple-
mented within the Rust-based OOX verification tool. This involves integrating MPOR with symbolic
execution to efficiently verify concurrent programs written in OOX, thereby enhancing the tool’s cap-
abilities and performance.

• Performance Study : A comprehensive study is conducted to evaluate the performance of the extended
MPOR method within the symbolic execution verification tool. This study assesses the effectiveness of
MPOR in reducing the path explosion problem and improving the verification process for concurrent
programs. The results provide insights into the practical benefits and limitations of the approach.

By addressing these questions and making these contributions, this research aims to enhance the verifica-
tion capabilities of the Rust-based OOX tool and provide better insights into the performance and capabilities
of monotonic partial order reduction.



Chapter 2

Related Work

2.1 Formal Program Verification Tools

Formal program verification is used to verify that software programs behave correctly and is an alternative
to testing. Testing suffers that it is limited to a finite amount of runs for programs with a finite length.
Therefore, it is nearly impossible to test all behaviors for a program [van den Bos and Huisman, 2022]. A
program is proven to adhere to its formal specification in formal program verification. To construct this
formal specification, Hoare logic is often used to reason about the validity of a program. The following nota-
tion is a Hoare triple, {P}C{Q}. The notation includes a precondition P and post-condition Q, both in the
form of boolean formulas. The precondition P implies that the postcondition Q is valid over a computation
C [Hoare, 1978]. Using the basis provided, many different techniques have been used to implement many
different verification tools. As example CMBC [Kroening and Tautschnig, 2014], CIVL [Zheng et al., 2015],
KLEE [Cadar et al., 2008], VerCors [Blom and Huisman, 2014], DIVINE [Baranová et al., 2017], and many
others.

CBMC [Kroening and Tautschnig, 2014] uses a symbolic Bounded model checking technique to verify
programs. It does this specifically for C programs, but there exists a Java version that is called JBMC
[Cordeiro et al., 2019]. A symbolic program verification method provides the program with symbolic inputs
instead of concrete inputs. This means the program is validated over a possible range of inputs instead of
a single concrete value for each run. Symbolic bounded model checking encodes the initial states and the
transition relations that depict the changes that occur to the state when traversing the program. Combined
with a property encoding generally constructed in CBMC by the assertions made, the verification tool builds
a formula to determine if the reachable states allow for violating the property encoding. When the property
encoding can be violated, the program is considered invalid [Cordeiro et al., 2019]. The soundness of the
verification is achieved by incrementing the bounds of the state graph until it finds a witness that concludes
the program is considered invalid. Completeness is only possible when the input program is finite. If a
program is not finite, the bounds will infinitely be increased to find a possible invalid state. To prevent
this behavior, a maximum depth is given that stops the process [Kroening et al., 2023]. Even though a
non-finite program does not receive a complete verification, it can verify a program to a given depth, unlike
other program verification methods.

Divine [Baranová et al., 2017] is an LLVM-based verification tool designed for verifying C and C++ pro-
grams. Divine was originally implemented with a dedicated non-embedded domain-specific language, but
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later, a shift was made to verify LLVM-based programs. It uses a parallel form of explicit state model-
checking techniques to verify programs. Unlike symbolic verification techniques, Explicit state model check-
ing uses concrete inputs. In explicit model checking, each visited state has to fit a formal specification to
determine if a program is valid. It lends well to asynchronous programs since the state graph of interleaving
can be easily reduced using partial order algorithms and abstraction [Holzmann, 2018]. Divine is unique
since, in general, depth-first algorithms are used to progress through program paths, but Divine works on
a parallel algorithm that explores program paths breath-first. A main benefit of this method is the ability
to handle cycle detection easily. Divine makes use of multiple algorithms that can detect cycles, when a
cycle is found it can helps identifying loops in the system’s state space. Recognizing loops and cycles can
prevent the program from exploring the same loop indefinitely. This means that Divine can avoid redundant
computations and, with that, accelerate the verification process [Baranová et al., 2017].
Klee [Cadar et al., 2008] is a verification tool that uses the Symbolic Execution method for verifying

programs. Bounded symbolic execution is similar to symbolic bounded model checking, but one major
difference exists. While symbolic bounded model checking concatenates the formulas over all the reachable
states, symbolic execution explores paths separately and verifies a specification for the given path, e.g., it
could be in the form of assertions or LTL formulas. The main benefit of symbolic execution is the early
out possibility when an early explored path is determined invalid. This means that invalid programs can be
found faster, but when a program is valid, there is a possible downside of repeatedly calling the SMT/SAT
solver for each path. SMT/SAT solvers are notoriously expensive to call, but a front-end simplify-er could
significantly decrease the size of the single LTL formula in symbolic model checking.

2.2 Challenges of Symbolic Execution

The paper “A Survey of Symbolic Execution Techniques” by Roberto Baldoni, Emilio Coppa, Daniele Cono
D’Elia, Camil Demetrescu, and Irene Finocchi [Baldoni et al., 2018] provides a comprehensive overview of
symbolic execution. Symbolic execution is a program analysis technique introduced in the mid-70’s. For
a verification process to be symbolic execution, it has to satisfy the following properties for each explored
control flow path:

1. It tracks a first-order boolean that describes if the current path can be satisfied.
2. A symbolic state is kept that maps variables to values or symbolic expressions.

SMT/SAT solvers are used in symbolic execution to prove that the postcondition is valid for each path
given the symbolic state. Generally, SMT/SAT solvers confirm if a specific formula is satisfiable, but by
negating the formula, it can be checked if an invalid case can be found. If each outcome is considered valid for
every path in the program, then it can be determined that the complete program is valid. There are multiple
difficulties when working with symbolic execution. When implementing symbolic execution, an exhaustive
search is performed through the program to find all control flow paths. While this theoretically works fine,
in practice, we deal with the physical limitations of the hardware used. A full, exhaustive search should
be sound and complete, but non-finite programs are not feasible for practical implementation. This means
concessions are made when verifying programs, such as limiting the maximum depth that the program can
take. With the maximum depth, it is still possible that a path explosion occurs when verifying a program.
This can occur due to the program branching over many transitions, causing an explosion of the state graph
in breadth. Path explosion is a term used when repeated branching in the program causes the creation of
many paths and hurts computational time and memory. Therefore, computational complexity and memory
management are critical for creating a usable verification tool that uses symbolic execution.
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The paper then describes techniques used to handle practical implementations of symbolic execution.
These are the Mixing of Symbolic and concrete execution, Path selection, and Symbolic backward execution.
These methods can significantly reduce the program’s state space, but they all have their own trade-offs.

Mixing symbolic execution with concrete execution works by running a version of symbolic execution
and concrete execution simultaneously. An example is a method where concrete execution drives a symbolic
execution. By exploring the state space using concrete inputs driven by a search heuristic while still updating
both a concrete and symbolic store, it is possible to verify the symbolic path constraints directly using the
concrete execution. This minimizes the need to invoke an SMT/SAT solver for each case and improves the
performance. This form of symbolic execution is called Dynamic Symbolic Execution (DSE).

Path selection is a method that prunes paths that likely have a minimal impact on the verification process.
The main downside to path selection is the possible loss of relevant paths; even though these methods try
to minimize the pruning of important paths, they are not always able to do so. An example target could be
maximizing code coverage and, therefore, removing the paths that repeatedly go over the same space in the
code. This method can cause a loss of completeness due to not exploring every reachable path.

Backward execution is just an alternative approach to the same problem. This method finds the program’s
assertions and exceptions and then propagates backward toward input constraints. When a path is not
satisfiable, it backtracks and restarts. This method could be beneficial in some cases, but unfortunately,
implementation can be difficult.
From these methods, it can be seen that the main target for improving the symbolic execution of a program
can be summarized in the following design principles:

1. Progression should be feasible within the physical limitations of the system, the main focus being
memory management to keep the required memory below the system’s total memory capacity.

2. Same parts of the program should not be executed repeatedly for the same values.
3. The program should reuse information as much as possible to reduce the invocations on the SMT solver.

Each step of symbolic execution still has areas of improvement, so paths can be pruned based on feasibility
to handle the state explosion problem or reduce the boolean formulas to lower the usage of the SMT solver.
The usage and implementation of symbolic execution within tools to check programs for violations keep
growing. Therefore, many new ideas enter the space to improve implementations that handle the challenges
of symbolic execution.

2.3 Partial Order Reduction

When dealing with concurrent programs, a scheduler determines in what order the transitions of threads are
scheduled. These transitions are generally noted down as ti where i is a unique id of the transitions, and
the thread id of a transition is denoted as tid(ti). Let’s use the notation ti < tj if transition ti is executed
before transition tj . The non-deterministic nature of the scheduler can impact the execution order of the
scheduled transitions. Since the execution order of the program is unknown, generally, all interleaving is
verified to guarantee that the program is valid over all paths. Exploring all interleaving means exploring all
execution orders of transitions (paths). If two threads exist, each with a transition (t1, t2), then a path has
to be explored where t1 < t2, and a path where t2 < t1. The exploration of all interleaving can lead to an
unnecessarily huge state graph. It is unnecessary because transitions can be independent of each other. If
two transitions are independent, then the ordering of execution does not alter the outcome, leading to the
same state. The state graph can be reduced with Partial Order Reduction methods to combat this issue.
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In the paper ”All from One, One for All: on Model Checking Using Representatives” [Peled, 1993], model-
checking techniques are studied that can generate representative interleaving sequences using a reduced state
graph. This paper introduces the idea of using partial order reduction to reduce state graphs for program
verification. This is done by finding pairs of operations that affect the global states commutatively. With
these pairs, a state graph can be constructed with one representative sequence of operations for each pair.
This reduces the amount of sequences of operations that have to be evaluated.
This paper introduces an algorithm that has a relation with algorithms introduced in earlier papers. These

include the sleep set method for spanning a reduced state graph introduced by Godefroid [Godefroid, 1991]
and the algorithm proposed in [Valmari, 1990] that is based on avoiding the expansion of all the enabled
directions of a given node. Using these methods from these algorithms, the author introduces a new algorithm
that reduces the state graph. This algorithm has two main goals: (1) constructing a reduced state graph with
one representative sequence for all equivalence classes; therefore, the results when using the reduced state
graph or the full state graph are the same. (2) existing algorithms that use fairness assumptions efficiently
can be directly used on the reduced state graph to check that a property holds under a fairness assumption
and that the state graph can be further reduced when using fairness during state graph expansion.
The algorithm benefits from using fairness assumptions to reduce the state graph further because it does

not recognize that a program takes an unfair sequence where an operation is left out. When checking for all
unfair sequences, the algorithm can reduce the state graph further. A downside to this is that calculating
enough sets that can be used to generate minimal-sized state graphs, with representatives for each equivalence
class, is NP-hard. This leads to the trade-off between better predictions and computational time.
The algorithm uses static analysis, allowing for reducing state graphs in explicit state model checking,

but it does not lend well to symbolic execution. When implementing the algorithm, Peled shows a clear
reduction in the nodes and edges between the full state graph and the reduced state graph, thereby decreasing
computation time.

2.4 Peephole Partial Order Reduction

In the paper ”Peephole Partial Order Reduction” [Wang et al., 2008], Wang, Yang, Kaglon, and Gupta
propose a new method for reducing state graphs that works with symbolic execution. Previously, partial
order reduction methods have been applied to explicit state model checking by exploiting equivalence re-
lations between sequences of interleaving transitions. The methods before [Peled, 1993, Godefroid, 1996,
Valmari, 1991] relied on conservative static analysis, however applying these methods to symbolic execution
is hard. Symbolic execution evaluates a larger set of states that have been combined, and reducing states
that are equivalent for this form of verification is hard compared to individual states.
Something that previous methods failed to do is to set conditions where specific sequences become equival-

ent, while this could actually be used to reduce state graphs. Missing out on these partial order reductions
can be costly. To combat this issue a new method called Peephole partial order reduction is proposed, to ex-
ploit the dynamic independence of transitions. A new relation is introduced called the guarded independence
relation (GIR), which takes the form ⟨t1, t2, cG⟩ where the transitions t1 and t2 are independent in a state
S when condition cG holds on S. The benefit of this type of relation is that they can easily be constructed
with a single traversal of the program.
After defining the properties of an independence relation and a guarded independence relation, multiple

scenarios can be presented that would require the use of the guarded independence relation. These scenarios
are within a C-like program.

• When two transitions (t1, t2) do not contain heap accesses to the same variable, the GIR is ⟨t1, t2, true⟩.
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• When two transitions (t1, t2) both contain an array access with {a[i], a[j]}, the GIR would be
⟨t1, t2, i ̸= j⟩.

• When two transitions (t1, t2) contain a reference access with {∗pi, ∗pj}, the GIR would be
⟨t1, t2, pi ̸= pj⟩.

• When two transitions (t1, t2) contain a global variable with {x}, the GIR would depend on the following
cases.
- RD-WR, where one transition reads and the other writes, with the assignment x := e the GIR

would be ⟨t1, t2, x = e⟩.
- WR-WR, where both transitions write to the variable, with the statements x := e1 and x := e2,

the GIR would be ⟨t1, t2, e1 = e2⟩.
- WR-C, where one transition writes, and the other uses the variable in a condition cond. The

difference between RD-WR and WR-C is that the assignment does not necessarily change the outcome
of the condition. Therefore the GIR for the assignment x := e would be ⟨t1, t2, cond = cond[x −→ e]⟩

The proposed algorithm works as follows: the scheduler originally consists of all possible interleaving
transitions of the threads. If multiple sequences fall within the same equivalence class, then ideally, only
one has to be checked for a violation of properties. With the constructed GIR relations, the program can be
constrained from exploring paths that would be equivalent. This is done in the order of the thread ids, where
the smaller id would be the preferred execution. If two transitions are independent, the transition is explored
with the lowest thread id; both transitions will be explored when the transitions are dependent. This method
guarantees that all the removed interleaving are redundant, meaning that they wouldn’t have altered the
outcome of the verification. When a program consists of only two threads, the algorithm guarantees that all
the redundant interleaving paths are removed.

GIR constraints have an overhead that can be significant for SMT/SAT solvers; therefore, reducing the
overhead would be beneficial. There are some methods to lower the overhead, (1) is to merge GIR constraints,
when a transition t1 is guarded independent to all transitions t2, then it is not necessary to have separate
constraints for all pairs of ⟨t1, t2⟩. (2) if two threads are completely independent, the threads do not have
to be interleaved at all, allowing for the full execution to be in order of thread id.

Concluding the paper, the authors mention that the Peephole partial Order Reduction method leads to
significantly more reduction than existing methods at the time and that the method is well suited for
SMT/SAT solvers. However, the method is unsuited for systems with more than two concurrent threads.

2.5 Separation Logic

Separation logic [Reynolds, 2002] is an extension of Hoare logic [Hoare, 1978], designed to provide reasoning
over programs that manipulate pointer data structures. Separation logic makes clear distinctions between
parts of the heap and introduces new operations to the existing syntax of Hoare logic. To define the allocation
of cells in the heap, the notations x 7→ 1 and x 7→ 1, 2 are added. In the first case, x is a pointer referencing
a cell with the value 1, whereas in the second case, x is a pointer that points to a cell with the value 1
with a neighboring cell with the value 2. By defining neighboring cells, the notation allows using pointer
arithmetic where [x+ 1] retrieves the neighboring cell of x. This allows for defining cells, but in the case of
x 7→ 1∧ y 7→ 1 it can not be guaranteed that x and y do not point at the same cell. This is where separation
logic introduces the P1∗P2 notation to show a clear separation between P1 and P2, indicating that both parts
of the condition point to different parts of the heap. In the case of x 7→ 1 ∗ y 7→ 1, it can be guaranteed that
x and y point to different cells in the heap. The separation implication operator enables the user to define
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that a condition holds after extending the heap with a separated disjoint part that satisfies a condition. This
means in the case of P −∗Q if the heap is extended with the disjoint part where P holds, then Q holds in
the modified heap after the operation. As an example, {x 7→ 9∗((x 7→ 16)−∗p)} [x] := 16 {p} can be proven
as correct. Separation Logic can inspire ideas that could be transferred over to other verification techniques
but are generally implemented in deductive program verification systems. Deductive systems split up parts
of a program and require assertions of properties over these sections. This is where separation logic can be
used to reason about pointers by determining ownership of the references within these assertions.
The heap is often shared between the different threads when the program allows for the execution of

concurrent programs. Reasoning about the heap could allow more proper reasoning about concurrency.
Hearn developed an extension called Concurrent Separation Logic [O’Hearn, 2007] that can be used for
reasoning independence between threads. The following proof rule is considered the key to this method:

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 || C2 {Q1 ∗Q2}

The rule states that for a parallel composition to be proven, each process must be given a separate piece
of state, and the postconditions for each process must be combined. The goal of the paper is to simplify
logical notation for concurrent proofs. In the case of a merge sort algorithm, the array is separated in the
middle, and either half of the array is merge sorted. This can be a clear case of an algorithm that can be
executed in parallel without conflicts due to its ability to adjust separate parts of the heap.

{array(a, i,m)} ms(a, i,m) {sorted(a, i,m)} {array(a,m+ 1, j)} ms(a,m+ 1, j) {sorted(a,m+ 1, j)}
{array(a, i,m) ∗ array(a,m+ 1, j)} ms(a, i,m) || ms(a,m+ 1, j) {sorted(a, i,m) ∗ sorted(a,m+ 1, j)}

In the example proof above, it can be seen that if we prove that the left side of the array (array(a, i,m))
results in a sorted version of the sub-array (sorted(a, i,m)), after executing mergesort over that sub-array
(ms(a, i,m)), and similarly for the right side of the array; it can be proven that if the two sub-arrays are
separated in a heap, and the merge sort of the sub-arrays are executed in parallel, that it results in the sorted
sub-arrays in separated sections of the heap. Writing these kinds of proofs allows for better reasoning over
concurrent programs while being trivial. Although the parallel composition rule mostly captures the ease
of proving independently operating programs, it struggles to write proof rules over non-disjoint concurrent
programs. This is where another proof rule is introduced for critical regions.

{(P ∗RIr) ∧B}C{Q1 ∗RIr}
{P} with r when B do C {Q}

This rule requires a given ”resource invariant” RIr, for each resource r present in the program. This
allows for reasoning over programs that are not disjoined; however, it’s important to note that the lo-
gic is unsound unless resource invariants are precise, i.e., unambiguously carve out an area of the heap
[Gotsman et al., 2011]. This precision is crucial to ensure the soundness of the logic when dealing with con-
current threads manipulating shared memory. The additions of the parallel composition and critical region
rule proofs can be written over concurrent programs using separation logic.



Chapter 3

Concurrent programs in the OOX
verification tool

OOX was previously defined with concurrency in mind by Stephan Koppier in the thesis ”The Path Explosion
Problem in Symbolic Execution: An Approach to the Effects of Concurrency and Aliasing” [Koppier, 2020].
OOX was designed with other object-oriented languages in mind, like Java and C#, so that programs written
in those languages could be easily represented in OOX. This excluded the inheritance and polymorphism
features since it was not within the project’s scope. When the Rust implementation of the OOX verification
tool was implemented, it was chosen to focus on other aspects of the code, for example, inheritance and
exceptions. With the necessity of verifying concurrent programs, we opted to introduce concurrency into
the Rust base OOX verification tool.

3.1 Statements

Multiple statements have to be added to allow verification of concurrent programs. Most of the state-
ments introduced are similar to the implementation of Koppier [Koppier, 2020], but there are some critical
differences in locking and unlocking. The introduced statements are fork, lock, unlock, and join.

S ∈ Statement ::= Statement | fork I | lock ref | unlock ref | join

3.1.1 Fork

The fork is used to spawn a new thread. The syntax fork I shows that an invocation I is given to the
fork statement; the invocation is seen as the entry point for the thread. Any program state consists of a
set of threads. A fork spawns a new thread using the given invocation. When this happens, the invocation
parameters are pushed onto the stack. Besides variables, it also allows references to the heap to be passed
into threads, making it a shared variable. When the thread is spawned, a unique tid (shorthand for thread
id) is generated to allow distinction between the different threads/processes.
The invocation has to satisfy a set of properties to allow it to be forked:

• The invocation has to be a method or static method; constructors cannot be forked.

10
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• The invocation can only have the return type of void. A fork can never return a value, so allowing it
could confuse the user.

• During symbolic execution, invocations are only considered if the invocation target is non-symbolic. An
invocation target is symbolic when called from a symbolic reference to an object. The symbolic nature
of the reference could cause major branching over its aliases. While this is possible to implement, it has
not been attempted as part of this research.

In the OOX example given below, the fork statement is used to spawn a thread. The fork in line 10
adheres to the before-given rules. The invocation given is a method call with a return type of void, and the
method is not invoked from a symbolic reference to an object. The assertion in line 12 has to consider that
the spawned thread may not execute before the assertion due to the non-deterministic nature of threads.

1: class Example {
2: int val;
3: Example() {}
4: void f() {
5: this.val := 5;
6: }
7: static void main() {
8: Example x := new Example();
9: x.val := 0;

10: fork x.f();
11: int out := x.val;
12: assert(out == 0 || out == 5);
13: }
14: }

3.1.2 Lock and Unlock

Locking and unlocking is performed on a reference to the heap. When an object is created, the reference
of the object can be locked or unlocked. When another thread already locks a reference, the current thread
cannot lock on that same reference. The thread is considered disabled until the reference is unlocked using
an unlock statement.
In the original specifications of OOX created by Koppier [Koppier, 2020], the lock is performed on a

reference and a code block. As long as the code block is not finished executing, the reference remains locked,
and no other thread can lock the same reference. Within the rust implementation, we chose a separate
lock and unlock statement. In many scenarios, the original version would suffice, but the separation of the
statement comes with some utility. For example, a thread can now unlock a reference that was locked within
another thread (this requires proper use to ensure a deadlock does not occur). This is done to keep OOX
more in line with other object-oriented languages that also allow separate locking and unlocking actions.
In the OOX example below, locking and unlocking statements allow the user to guarantee a specific control

flow. The assertion does not have to consider that the spawned thread might execute after the assertion
since the lock statement at line 13 prevents continuing the main thread until the child thread unlocks the
reference. This type of guaranteeing a specific control flow would not be available when the lock and unlock
statements are fused together. Note that the locking of object x does not prevent the ability to execute the
forking of x or its ability to continue its spawned thread.
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1: class Example {
2: int val;
3: Example() {}
4: void f() {
5: this.val := 5;
6: unlock this;
7: }
8: static void main() {
9: Example x := new Example();

10: x.val := 0;
11: lock x;
12: fork x.f();
13: lock x;
14: int out := x.val;
15: assert(out == 5);
16: }
17: }

3.1.3 Join

The join statement can be used to ensure that all child processes are finished executing before continuing.
When the join statement is called, the thread becomes disabled. When a child of the joining thread finishes,
it will check if all child processes of the thread are finished. If not, the thread will stay disabled. The thread
state will update to enabled if all child processes are finished.

In the previous example, locks are used to guarantee the control flow by locking and unlocking references
within threads. In some instances, like the example, the join statement can simplify forcing a specific
control flow. The join statement at line 11 enforces that all child processes are finished. This means that
the spawned thread will always execute before the join statement and assertion.

1: class Example {
2: int val;
3: Example() {}
4: void f() {
5: this.val := 5;
6: }
7: static void main() {
8: Example x := new Example();
9: x.val := 0;

10: fork x.f();
11: join;
12: int out := x.val;
13: assert(out == 5);
14: }
15: }
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3.2 Threads and Scheduling

A program always consists of at least one thread with the thread id 0. Generally, this is called the main
thread. The program can spawn in more processes using the fork statement. All threads are by default
children of the main thread; this is the case because if a thread T1 spawns a thread T2, and T2 spawns a
thread T3, then T3 is still considered a child of T1. The program can be synchronized using the locking
and join statements, enforcing specific control flows as shown in the examples above. The main challenge
of verifying concurrent programs comes from the non-deterministic schedule. The schedule determines the
order in which the transitions should be scheduled. This means that the control flow is not guaranteed
in some instances when multiple threads exist in a program. When formally proving the correctness of a
program, all possible execution orders must be verified. This means all interleaving of the threads has to be
checked.

Case 1 Program with two independent threads

1: procedure T1
2: t1: x := 1;
3: end procedure

1: procedure T2
2: t2: y := x;
3: end procedure

In Case 1, two threads exist, both with a single transition t1 and t2. Since the scheduler is non-deterministic
when scheduling these transitions, to verify this program, two paths have to be explored, where t1 is executed
before t2 (t1 < t2), and where t2 is executed before t1 (t2 < t1). This means that threads will force branching
to verify all possible control flows when the number of transitions or threads, the state graph, will scale
exponentially by having to explore all permutations of the transitions.

3.2.1 Deadlocks and Exceptions

A deadlock occurs when no thread can continue because locking methods block them. Note that if the
main thread is finished, it is not considered deadlock. Deadlocks should not happen in correctly written
programs; therefore, this is not considered strictly valid or invalid. The verification process is terminated
and returned with a deadlock error message to indicate that verifying the program was not possible. The
Rust-based implementation of OOX offers the functionality of exception handling. This allows a program
to throw exceptions and catch these exceptions. When an exception is not caught in the main thread, the
execution path that found this exception is ended, and an exceptional clause is checked. The exceptional
clause is used when the user wants to guarantee specific program behavior when an exception is not caught.
When a spawned thread throws an exception without catching it, it also terminates the path and checks
the exceptional clause provided at the start of the main thread. A decision had to be made on whether the
thread should terminate and that the execution path should continue throughout the other threads, or that
the entire execution path should be terminated. The behavior of other languages can vary based on the
specifics of the language, runtime environment, and how the program is structured. Due to the undefined
nature of this specific case, it was chosen to go for the more simplistic implementation that terminates the
whole execution path. This means that the further execution of the program is left unverified.
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3.3 A complete and sound verification

The implementation of verifying concurrent programs must be complete and sound. This means that if
the previously defined concurrent statements are implemented and the program correctly handles threads,
then any concurrent program using these statements should verify with the correct output. The output of
the verification tool is valid or invalid. The following definitions determine whether the verification tool is
sound and complete.

Definition 1 (Sound verification of concurrent programs). The verification process of a program is considered
sound when it always considers a valid program valid, but it may classify invalid programs as valid. This
means it allows for false positives but never false negatives.

Definition 2 (Complete verification of concurrent programs). The verification process of a program is
considered complete when it always considers a invalid program invalid, but it may classify valid programs
as invalid. This means it allows for false negatives but never false positives.

When the verification process is considered complete and sound, the tool always returns the right output
for every program. Classifying all valid programs as valid, and all invalid programs as invalid.

3.4 Implementation

A simple algorithm can be implemented to explore all interleaving of a concurrent program. The algorithm
is a recursive program that explores until the maximum depth k is reached or until there aren’t any available
states to progress. Let S be a state of the program. S contains the list of threads T , the threadCounter
that generates unique thread ids, the active thread id atid, and the heap H. Let CFG be the control flow
graph that contains nodes (N) and edges (E). Npc returns the primitive statement for program counter pc.
Epc returns all transitions to other nodes as a list of program counters. In T , let the individual thread be
accessed with Ttid. A thread contains its unique id tid, the program counter pc, its parents as a vector of
thread ids, and its local stack.

The algorithm that explores all interleaving can be seen in algorithm 1. The algorithm loops over all the
remaining states, first it executes the transitions (the primitive statements that occur at the transition is
executed) in the active thread. The next step is to find all transitions from the current node in the edges E.
For each found transition, a new state is cloned from the current state, and then the active thread and the
pc of the active thread are updated. Over the iterations of the program finished states are collected, these
are states that have reached a point where there were not possible transitions to be taken even if there are
not any disabled threads in the program.
In line 8, it is checked if there is at least a single enabled thread. If this is not the case, this is now considered
a Deadlock, and the whole verification process gets terminated. A program that possibly leads to a deadlock
is considered faulty in all scenarios.
The algorithm given already shows the explosive nature of this method very well since a new state is generated
for each possible transition that could be taken from any of the threads in the program at the current time
step. This requires a significant amount of computational complexity and memory.
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Algorithm 1 Exploration of all interleaving

1: procedure ExecuteStates(remaining states, k, (N,E) ∈ CFG)
2: if k ≤ 0 then
3: return remaining states
4: end if
5: resulting states← ∅
6: finished states← ∅
7: for S in remaining states do
8: if not ∃T ∈ T : T.enabled then
9: throwDEADLOCK

10: end if
11: S ← ExecuteTransition(S) ▷ Current transition is executed, and S is updated
12: continues← false
13: for T in S.T do
14: if T.enabled then
15: from← T.tid
16: for to in CFGfrom do
17: next← clone S
18: next.atid← from
19: next.(Ttid).pc← to
20: push next onto resulting states
21: continues← true
22: end for
23: end if
24: end for
25: if not continues then
26: push S onto finished states
27: end if
28: end for
29: if |resulting states| > 0 then
30: append ExecuteStates(resulting states, k − 1, CFG) onto finished states
31: end if
32: return finished states
33: end procedure

The current transition is executed in line 11 of the algorithm. The addition of the statements fork, lock,
unlock, and join requires a change in the ExecuteTransition method.

In algorithm 2, the implementation can be found for the ExecFork method. This method is executed
by the ExecuteTransition method in algorithm 1 when the transition found contains a fork statement.
The method requires the current state of the program, as well as the invocation given as part of the fork
statement. The entry point is initially found and verified using the GetEntryPoint method. This entry
point can only have a return type of void; otherwise, the program recognizes a typing error at the point of
the fork. A new thread is then initialized and given a thread id based on the threadCounter within the
state. This is done to make sure each thread has a unique id. The processing of the invocation ensures
that the invocation arguments are correctly stored within the stack of the new thread and that the program



CHAPTER 3. CONCURRENT PROGRAMS IN THE OOX VERIFICATION TOOL 16

Algorithm 2 Executing a fork primitive statement

1: procedure ExecFork(S, invocation)
2: entry ← GetEntryPoint(invocation)
3: if not entry then
4: throw InvalidEntryPoint
5: end if
6: thread← new Thread()
7: thread.tid← S.threadCounter
8: push thread.tid onto S.Tatid.children
9: S.threadCounter ← S.threadCounter + 1

10: ExecInvocation(thread, entry)
11: push thread onto S.threads
12: end procedure

counter is set to the invocations entry point.

Within the earlier definition of locking and unlocking statements, a specific reference is locked. So,
generally, an object is created and then passed into multiple threads to make it a shared reference. In
the case of two threads, T1 and T2, when the thread T1 locks this object, it acquires the lock. When T2
attempts to lock on this object, it is refused until the reference is unlocked.

Algorithm 3 Executing a lock primitive statement

1: procedure ExecLock(S, T, ref)
2: if ref ∈ S.L then
3: push T.tid onto S.Lref

4: T.enabled← false
5: else
6: S.Lref ← ∅
7: end if
8: end procedure

In algorithm 3, the ExecLock method is introduced and is executed when the ExecuteTransition method
finds a lock statement. Locks are saved inside a map located at S.L. This structure maps references to an
array of thread ids. When ref does not exist within S.L, then there is no lock on the current reference.
When the reference does exist, it maps to a set of thread id’s. These thread ids give the threads currently
disabled due to them having attempted to lock the reference.
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Algorithm 4 Executing an unlock primitive statement

1: procedure ExecUnlock(S, T, ref)
2: tids← S.Lref

3: for tid in tids do
4: S.Ttid.enabled← true
5: end for
6: remove ref from S.L
7: end procedure

In algorithm 4, the ExecUnlock method is introduced, which is executed when the ExecuteTransition
method finds an unlock statement. When an unlock is found on a reference, all disabled threads that have
attempted to lock this reference are enabled. This causes the locking and unlocking of statements to be
handled non-deterministic. Then, the reference is entirely removed from the locks map to ensure a new lock
can be acquired.

Algorithm 5 Executing a join primitive statement

1: procedure ExecJoin(S, T, ref)
2: T.enabled← not ∃tid ∈ T.children : not S.Ttid.finished
3: T.joining ← not T.enabled
4: end procedure

In algorithm 5, the ExecJoin method is introduced, which is executed when the ExecuteTransition
method finds a join statement. When a join statement is found, it is checked if all children have already
finished executing. If this is not the case, then the thread is disabled, and the joining flag is set to true on
the thread. When this flag is enabled, and a child of the joining thread is finished, the ExecJoin is executed
again on the joining thread. When all children have finished joining, the thread can continue.



Chapter 4

Monotonic Partial Order Reduction

An attempt has been made to reduce the full state graph of all interleaving executions of a concurrent
program. This is done to combat the path explosion problem. Monotonic Partial Order reduction is proposed
in the paper ”An Optimal Symbolic Partial Order Technique”[Kahlon et al., 2009]. Using dependencies
between transitions, the algorithm can determine if two program paths are Mazurkiewicz equivalent. This
indicates that the program’s behavior is the same even though the ordering of transitions in the program
paths is different. Since the behavior is the same, the algorithm considers them representatives of each other,
so only one program path has to be executed. The algorithm is considered sound since it only removes
unnecessary paths and complete because it removes all unnecessary paths. Note that this differs from the
definition of a sound and complete verification process; the following definitions are given in perspective of
the pruning of paths.

Definition 3 (Soundness of a Partial Order Reduction method). A partial order reduction method is sound
when an equivalent representative path is not pruned by the algorithm for every path pruned by the algorithms.

Definition 4 (Completeness of a Partial Order Reduction method). A partial order reduction method is
complete when it prunes every path in a program where an equivalent representative path exists that is not
pruned by the algorithm.

This differs from the definitions given by the original paper since they consider the algorithm to be optimal.
Their definition of monotonic partial order reduction being optimal is that ”No two computations explored
are Mazurkiewicz equivalent” [Kahlon et al., 2009]. This aligns with our definition of completeness given in
definition 4. Generally, algorithmic complexity is reduced to its minimal point when referring to an algorithm
as optimal. Since this is not necessarily the case for the algorithm, a wording change was chosen for this
research.

4.1 Dependent transitions

A dependency between transitions exists when the order of execution for these transitions determines the
outcome of a verification. This means that for two transitions t1 and t2 that are part of a computation x, a
dependency exists when executing t1 before t2 results in a different state than when executing t2 before t1.
From now on, the notation t1 <x t2 indicates that transition t1 is executed before t2 along computation x.

18
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When applying partial order reduction on concurrent programs, it is assumed that this dependency is only
relevant if the transitions t1 and t2 are part of different threads.

Definition 5 (Independence relation). Two transitions t1 and t2 from different threads are independent if
the following properties hold over any state s ∈ S.

• If t1 is enabled in s and s
t1−→ s′, then t2 is enabled in s iff t2 is enabled in s′, and

• If t1 and t2 are enabled, then there exists a unique state s′ such that s
t1t2−−→ s′ and s

t2t1−−→ s′.

Case 2 Program with three independent threads

1: procedure T1
2: t1: x := 1;
3: end procedure

1: procedure T2
2: t2: y := x;
3: end procedure

1: procedure T3
2: t3: z := x + 1;
3: end procedure

When a program consists of multiple threads, these threads execute transitions within their own local
scope; this means that dependencies only occur when a variable is shared between different threads. In Case
2, an example is given of a program that consists of three different threads, T1, T2, and T3, each with a
single statement that corresponds with a transition t1, t2 and t3. Let x, y, and z be shared variables with
an initial value of 0. In this case, an explicit dependency exists between the transitions t1 and t2. For the
execution order t1 <x t2, the variable y will have the value of 1 at the end. In comparison, the execution
order t2 <x t1 will cause the variable y to be assigned 0 at the end. A very similar dependency can be found
between t1 and t3. There is no dependency between t2 and t3 since the execution order does not impact the
resulting state since both variables only read from x.

When two transitions are independent, the execution order does not matter for the resulting state. To
choose which execution order is explored, we generally prefer in-order execution, meaning that the transition
with the lowest thread id is chosen in a set of independent transitions.

Definition 6 (Out of Order execution). An execution is out-of-order when two transitions ti and tj are
executed in the order ti < tj, where tid(ti) > tid(tj). A computation x is fully in-order when any pair of
transitions along computation x where ti <x tj, the following holds: tid(ti) < tid(tj).

The original paper on Monotonic Partial Order Reduction implements the algorithm only for a language
consisting of concrete references to shared variables. These can be easily determined, as shown in the
previous example. The goal is to implement the algorithm for an object-oriented language that allows for
symbolic references and array indexations. This means that the original monotonic partial order reduction
algorithm must be extended to consider dependencies between these data structures.
Symbolic references differ from concrete references since multiple symbolic references can point to the

same object. When two symbolic references a and b that point to an object of the same type exist, we have
to consider the possibility that b points to object a and vice versa. When a possibly points to b, we consider
b an alias of a. These aliases are stored in an alias table, denoted by A.

Case 3 Program with three independent threads

1: procedure T1
2: t1: a.x := 1;
3: end procedure

1: procedure T2
2: t2: b.x := 2;
3: end procedure
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In Case 3, two threads exist with a single transition, t1 and t2, respectively. Let’s assume that a and b are
symbolic references pointing to an object with the same type and that A contains an alias a −→ b. When
checking for a dependency between t1 and t2, we find two writes with different symbolic references, a and b.
Since the references are symbolic, a and b must be checked for possible aliases. Since A contains the alias b
for the symbolic reference a a, we consider that t1 can possibly write to a.x or b.x. Since t2 writes to b.x, we
consider t1 and t2 to have a possible dependency. There is no way of determining a definitive dependence
or independence in this situation. To keep the algorithm sound, we consider a possible dependency as an
actual dependency.

To determine dependencies between transitions that write to specific indices of arrays, the indices must be
compared to determine if the writes alter the same value. Suppose two transitions t1 and t2 write to array
a with assignments to a[i] and a[j] respectively, where i and j are expressions. Then, it can be said that a
dependency exists when i = j. In the OOX language, expressions cannot contain any references. If the user
wants to use the value of a reference, it first has to assign it to a local variable. When an assignment is made
from a symbolic reference to a local variable, the state is split for each alias. This means it is unnecessary to
consider symbolic references inside the array indexation. When implementing this in other languages that
allow for this behavior, it must be considered that array indexation can possibly contain symbolic references.

For a full recap of all possible dependencies that can occur in the program, labels are given to all possible
heap accesses that can occur:

• IndexedWrite {a, i}: The writing of an indexed element of an array to the heap, where a is a (sym-
bolic/concrete) reference to the array, and i is the index.

• IndexedRead {a, i}: The reading of an indexed element of an array of the heap, where a is a (sym-
bolic/concrete) reference to the array, and i is the index.

• FieldWrite {obj, f}: The writing of an object field to the heap, where obj is a (symbolic/concrete)
reference to the object and f is the field label.

• FieldRead {obj, f}: The reading of an object field of the heap, where obj is a (symbolic/concrete)
reference to the object and f is the field label.

Locks can also cause dependencies since a lock occurs on a reference shared between threads. Since
the value linked to the reference is not important for locking threads, they never cause dependency with
statements other than with locks. Joins can only have dependencies with a FunctionExit, where the joining
thread is a parent of the thread that exits. When a thread exits, it can cause a join to be able to continue,
always causing an out-of-order execution. This out-of-order execution should be allowed since the join
enforces this control flow, which is considered a dependency.

• LockAccess {ref}: The locking and unlocking of the reference ref .
• JoinAccess {tid}: The joining of a thread.
• FunctionExit {parents}: The joining of a thread.

Using the above labels, a complete map can be given for all possible dependencies between transitions. A
dependency condition is given for each pair of accesses, and when the dependency condition is evaluated to
be true, the pair is considered dependent on each other. The function aliases(x) is used when dealing with
symbolic references. The aliases(x) function returns all aliases in alias map A for reference x. When x is
already concrete, the method returns just the concrete reference. This means that if A contains the aliases
x −→ y, and x −→ z, the resulting set of aliases(x) is {x, y, z}.
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Access 1 Access 2 Dependency Condition
IndexedWrite {a, i} IndexedWrite {b, j} aliases(a) ∩ aliases(b) ̸= ∅ ∧ i = j)
IndexedWrite {a, i} IndexedRead {b, j} aliases(a) ∩ aliases(b) ̸= ∅ ∧ i = j
IndexedWrite {a, i} FieldWrite {obj, f} false
IndexedWrite {a, i} FieldRead {obj, f} false
FieldWrite {obj, f} IndexedRead {a, i} false
FieldWrite {obj1, f1} FieldWrite {obj2, f2} aliases(obj1) ∩ aliases(obj2) ̸= ∅ ∧ f1 = f2
FieldWrite {obj1, f1} FieldRead {obj2, f2} aliases(obj1) ∩ aliases(obj2) ̸= ∅ ∧ f1 = f2
LockAccess {ref1} LockAccess {ref2} ref1 = ref2
LockAccess {ref} JoinAccess {tid} false
LockAccess {ref} FunctionExit {tid} false
JoinAccess {tid} FunctionExit {parents} {tid} ∩ parents ̸= ∅

Table 4.1: Dependency conditions for the possible accesses of a program

As previously mentioned, no pairs of reads are given in the table since two reads are never considered
a dependency. In the table, three different pairs result in a false dependency condition. The pair consists
of an object field and an indexed access in all three cases. In many languages, there could be a case for
a possible dependency since the object field could be equal to an array accessed in another thread. Still,
for this research, we consider each statement to consist of at most one heap access. As an example, the
statement obj.f [i] = 0 would be split into two separate statements int[]a = obj.f ; a[i] = 0. Therefore, the
first statement would cause the dependency with another obj.f write. When comparing expressions like the
indexations of arrays, it is also important that the expressions are fully evaluated in their found state. All
variables present in the expression must be retrieved from their current state to ensure that the value of the
expressions cannot change when executing future transitions.
For future reference, let’s define the following notation DEP (t1, t2) to show a dependency between the

accesses in t1 and those in t2. To determine the dependence between transitions, at least one dependency
should be found when using Table 4.1.

4.2 Dependency Chains

An important concept to understand is dependency chains before getting into the reduction of the state
graph. A program consists of transitions that alter the state. This means that each program path can
be seen as a linear order of transitions. Dependency chains are connected pairs of dependent transitions,
meaning a single pair of dependent transitions is also considered a dependency chain. Let us use t1 ⇒ t2 to
denote a dependency chain between t1 and t2.

t1 −→ t2 −→ t3 −→ t4 −→ t5

Figure 4.1: Path of transitions

In the above example, the base case of a dependency chain would be if there exists a dependency
DEP (t1, t2), then automatically there exits a dependency chain t1 ⇒ t2. When there exist two dependencies
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DEP (t1, t2) and DEP (t2, t3), then the following chains exist, t1 ⇒ t2, t2 ⇒ t3, and t1 ⇒ t3. This is the case
since the dependency chains chain together, allowing for a larger chain. This is possible for any dependency
chain present in the path of transitions, so if there exist two dependencies DEP (t1, t3) and DEP (t3, t5), the
following chains exist t1 ⇒ t3, t3 ⇒ t5, and t1 ⇒ t5. This example is given to indicate that there can exist
a dependency chain from t3 ⇒ t5 without there being any dependencies for t4. This is because dependency
chains are present not only on consecutive transitions but can exist for any sub-sequence of transitions within
a computation. Note that dependency chains can only exist in the order of transitions; therefore, it can
never be considered that a dependency chain t5 ⇒ t3 exists since, in this case, t5 and t3 are not in the order
of scheduled transitions.

t1

t3

t2

t5

t4

Figure 4.2: Dependency graph of transitions

The above graph visualizes a dependency graph for the following dependencies: DEP (t1, t3), DEP (t2, t3),
DEP (t3, t5), and DEP (t4, t5). The graph is just for visualization to show what dependency chains exist in
the execution. All transitions have a dependency chain to t5 in the graph since all paths eventually lead to
t5. A more formal definition taken from the original ”Monotonic Partial Order Reduction” paper:

Definition 7 (Dependency chain). Let t and t′ be transitions executed along a computation x such that
t <x t′. A dependency chain along x starting at t is a (sub-)sequence of transitions tri0 , ..., trik executed
along x, where (a) i0 < i1 < ... < ik, (b) for each j ∈ [0..k − 1], trij is dependent with trij+1, and (c) there
does not exist a transition executed along x between trij and trij+1 that is dependent with trij .

4.3 Quasi Monotonic Computation

With the concepts of determining dependencies between transitions and dependency chains along a compu-
tation, it is possible to start reducing paths with quasi-monotonic computations. When a path/computation
is not considered quasi-monotonic, removing this as a path from the verification process is possible without
altering the program’s outcome. This rule ensures that all unnecessary paths are removed and none of the
necessary paths are removed.

For a path to be a quasi-monotonic computation, one of the following two rules has to be satisfied for
each pair of transitions (ti, tj) along computation x, where ti <x tj and tid(tj) < tid(ti):

• Rule 1: There exists a dependency chain ti ⇒ tj , or
• Rule 2: There exists a transition tl where there exists a dependency chain ti ⇒ tl, with the execution
order ti <x tl <x tj , and tid(tl) < tid(tj).

This concept can be difficult to grasp; therefore, the following section provides a complete example and a
step-by-step guide for determining whether an execution path is quasi-monotonic.
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4.4 Validating Paths to be Quasi Monotonic

Case 4
1: procedure T1
2: t1: int y = 3;
3: t2: x.val := y * 2;
4: t3: a[y] = 3;
5: end procedure

1: procedure T2
2: t4: int i = x.val;
3: t5: a[i] = 2;
4: t6: int z = a[i];
5: end procedure

In case 4, two threads are given that both contain a couple of statements that modify local and shared
variables. x and a are the only variables shared in this program. x and a are symbolic references with no
aliases. The accesses to shared variables can be extracted for each transition in the above program.

Transitions Accesses
t1 ∅
t2 FieldWrite {x, val}
t3 IndexedWrite {a, y}

Table 4.2: Accesses T1

Transitions Accesses
t4 FieldRead {x, val}
t5 IndexedWrite {a, i}
t6 IndexedRead {a, i}

Table 4.3: Accesses T2

The tables 4.2 and 4.3 show the accesses that can be used to check if there exist dependencies between the
transitions using table 4.1. Below, multiple execution paths are given. Then, for each path, what dependency
chains occur and if the computations are quasi-monotonic according to the rules. Note that there are no
possible paths, like t2 −→ t1, since out-of-order execution is not allowed inside a single thread.

Example 1

t1 −→ t4 −→ t2 −→ t5 −→ t3 −→ t6

In the definition of quasi-monotonic computations, it can be found that only transitions that are executed
out-of-order (according to their thread ids) are relevant to determining if an execution path is quasi-
monotonic. This means that in the above path, the only relevant execution orders are t4 < t2, t5 < t3, and
t4 < t3.

• t4 < t2: Both t4 and t2 contain a single access, a FieldWrite{x, val} and FieldRead{x, val} respect-
ively. According to table 4.1, the dependency condition is aliases(x) ∩ aliases(x) ̸= ∅ ∧ val == val.
This is true, and even though this is an out-of-order execution, it follows Rule 1 of quasi-monotonic
computations due to its dependency. Therefore, this execution order is allowed.

• t5 < t3: Both t5 and t3 contain a single access, a IndexedWrite{a, i} and IndexedWrite{a, y}
respectively. According to table 4.1 the dependency condition is aliases(a) ∩ aliases(a) ̸= ∅ ∧ i = y,
both a reference the same array so that part is considered true. i = y can be evaluated down to x = 3,
and then x was assigned y ∗ 2 in t3, resulting in the final expression 6 = 3. This means that this
out-of-order execution does not allow this path to be quasi-monotonic.
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Example 2

t1 −→ t4 −→ t2 −→ t3 −→ t5 −→ t6

As in the previous example, it’s only necessary to validate the out-of-order executions in a computation to
determine if it is quasi-monotonic. For the above computation, the out-of-order computations are t4 < t2
and t4 < t3.

• t4 < t2: Transitions t4 and t2 both contain a single access, FieldWrite{x, val} and FieldRead{x, val}
respectively. According to table 4.1 the dependency condition for these accesses would be concrete(x)∩
concrete(x) ̸= ∅∧ val == val. The dependency condition is true since concrete(x) always contains x as
an alias. This means a dependency chain t4 ⇒ t2 exists, and according to Rule 1 of quasi-monotonic
computations, this out-of-order transition is allowed.

• t4 < t3: This execution order, according to Rule 2 of quasi monotonic computations is valid. This is
because there exists a dependency chain t4 ⇒ t2 and a dependency chain between t2 ⇒ t3. This means
a direct dependency chain t4 ⇒ t2 also exists.



Chapter 5

Algorithm for Dynamic Pruning of
Non Quasi Monotonic Paths

In the previous section, a method was discussed on how it can be determined if an execution path is quasi-
monotonic. In this section, the method is applied as an algorithm that dynamically prunes paths that do
not follow the rules for quasi-monotonic computations. In certain cases, some choices had to be made about
the result of the verification process. When a possible dependency is mentioned, it means that a symbolic
reference has an alias that causes a conflict. If just one alias causes a dependency with another thread, then
a pessimistic approach is taken, considering the possible dependency as a dependency.

5.1 Simplification of a complex concept

The concept of quasi-monotonic computations is somewhat difficult to understand, while the algorithm can
be simplified to a point where it is easy to implement. This is possible because keeping track of all the
full dependency chains is unnecessary. Lets take the following threads with their transitions, T1{t1, t2},
T2{t3, t4, t7} and T3{t5, t6}.

t5 −→ t1 −→ t6 −→ t2 −→ t3 −→ t4

With the above path, the dependency chains are, by default, t5 ⇒ t6, t1 ⇒ t2 and t3 ⇒ t4 due to the
dependencies of transitions within the same thread, let’s ignore the other dependencies that would make this
path quasi-monotonic. When attempting to schedule t7 that is part of T2, then it can be said that there
exists two out-of-order executions, t5 < t7 and t6 < t7. From the perspective of t7, if t6 satisfies Rule 1
of quasi-monotonic computations, then so does t5. If t6 satisfies Rule 2 of quasi-monotonic computations,
then so does t5. It can be said that t5 is never relevant for scheduling t7 due to its natural dependency
chain to t6. This means that the from transitions in dependency chains between transitions of the same
thread can be considered irrelevant by both rules of quasi-monotonic computations. This means only the
last executed transition of each thread is relevant to determine the ability to schedule the next transition.

25
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Instead of tracking the full dependency chains, each thread only has to store the accesses that occurred in
the last executed transition.

5.2 Extracting Accesses from Statements

The OOX language was designed not to contain heap accesses in expressions. This means the only statement
that actually contains heap accesses is the assignment statement. The lock, unlock, join, and function exit
primitive statements also allow for possible dependencies; therefore, they are included within the accesses of
a statement.

5.2.1 Assignment

The primitive statement of assignment Assign Lhs Rhs contains a left-hand side (Lhs) and a right-hand
side (Rhs). Both the Lhs and Rhs can only contain a single heap access; with that, at most, two accesses
are present in any primitive statement.

Lhs ::= lhsvar(x) | lhsfield(x, f) | lhselem(x, i)

Rhs ::= rhsexpr(E) | rhsvar(x) | rhsfield(x, f) | rhscall(I) | rhselem(x, i) | rhsarray(x)
(5.1)

Accesses(Assign Lhs Rhs) = Accesses(Lhs) ∪Accesses(Rhs)

Accesses(Lhs) =

{
{IndexedWrite{x, i}} lhselem(x, i)

{FieldWrite{x, f}} lhsfield(x, f)

Accesses(Rhs) =



∅ rhsexpr(x)

{FieldRead{x, f}} rhsfield(x, f)

∅ rhscall(I)

{IndexedRead{x, i}} rhselem(x, i)

∅ rhsarray(x)

(5.2)

5.2.2 Locks and Joins

The primitive statements of locks (Lock x, Unlock x) contain both a singular access. The Join (Join tid)
statement results in an access that only contains a thread id. The FunctionExit statement results in an
access containing its parents’ thread ids. The function getRef(x) is used to get the reference of the variable
x from the stack.

Accesses(Lock x) = {LockAccess{getRef(x)}}
Accesses(UnLock x) = {LockAccess{getRef(x)}}
Accesses(Join) = {JoinAccess{atid}}
Accesses(FuncionExit) = {FunctionExit{parents}}

(5.3)
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5.3 Reducing Non Quasi Monotonic Paths

To start reducing non-quasi-monotonic paths, every transition has to be checked to see if it conforms to the
quasi-monotonic rules. The algorithm is implemented in symbolic execution, so it would also be possible to
prune the paths after the full exploration, but a large benefit of this algorithm is the ability to dynamically
remove paths during the path exploration step.

For the purposes of this research, each transition consists of a single primitive statement. The previously
explained method to extract accesses from primitive statements is used after each execution of a transition,
and these accesses are stored in a part of the thread. The value of the thread’s previous accesses can be
null or a list of accesses. When the value of the thread’s previous accesses is null, a dependency chain exists
with another thread’s last executed statement. In this scenario, the thread’s last executed transition does
not have to be checked for an out-of-order execution with the currently scheduled transition, as explained
in section 5.1. When the value of a thread’s previous accesses is a list of accesses, it has to be checked if the
current transition tcurr is out-of-order with the thread’s last executed transition tprev. tcurr is considered
out-of-order if tid(tprev) > tid(tcurr). When the scheduling of tcurr is out-of-order, it has to be checked
if there exists a dependency between tcurr and tprev. This is the case if tid(tcurr) = tid(tprev), or when
DEP (tcurr, tprev) = true when using table 4.1. When there exists a dependency, it can be said that there
exists a dependency chain tprev ⇒ tcurr, and therefore the previous accesses in tprev’s thread can be set
to null. If no dependency exists, the MPOR algorithm should prune the path. After each iteration, the
prev accesses of the active thread is always set for the current scheduled transition.

These methods can be applied to pseudo-code easily. The data structures from the implementation at
section 3.4 must be extended. The previous accesses are stored in each thread with the notation T .χ.
The GetAccesses(n) method takes a node n and then checks for accesses within that node using the
Accesses(Node) method denoted in section 5.2. The Dep(x, y) method takes two different sets of accesses
and uses table 4.1 to determine if there exists a dependency between the accesses.

Algorithm 6 Monotonic Partial order reduction

1: procedure MPOR((T , atid, h) ∈ S, (N,E) ∈ CFG)
2: curr ← Tatid.pc
3: accesses← GetAccesses(Ncurr)
4: out← true
5: for thread in T do
6: if thread.χ ̸= null then
7: if thread.tid = atid orDep(accesses, thread.χ) then
8: thread.χ← null
9: else if thread.tid > atid then

10: out← false
11: break
12: end if
13: end if
14: end for
15: Tatid.χ← accesses
16: return out
17: end procedure
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The method MPOR of algorithm 6 is called for each remaining state in ExecuteStates method in al-
gorithm 1. Due to the state being cloned beforehand in the execute states method, no side effects can happen
during the MPOR method. The currently scheduled transitions are allowed when the MPOR method re-
turns true. If it returns false, the current execution path is considered not quasi-monotonic, and with that,
the execution path gets pruned (removing the state from the remaining states before continuing).



Chapter 6

Benchmarks and Data Collection

Multiple important steps must be taken to determine if this implementation of MPOR benefits the
concurrent form of the OOX verification tool. The goal of the performed benchmarks is to confirm the
soundness and completeness of the verification process and to answer the following research question:

RQ-2: What is the impact of monotonic partial order reduction on the performance of symbolic execution
verification tools for object-oriented languages?

The verification tool has to be tested to see if it retains its soundness with the implementation that allows
the verification of concurrent programs, meaning that for all valid programs, valid is the outcome of the
verification process. It has to be tested if the verification tool retains its completeness over the given depth
with the implementation that allows the verification of concurrent programs, meaning that invalid programs
can be determined invalid. The verification tool’s ability to verify concurrent programs has to be tested to
see if it retains its completeness and soundness when using monotonic partial order reduction, and therefore,
monotonic partial order reduction being sound and complete itself according to the definitions 3 and 4. The
verification tools’ performance has to be measured with and without monotonic partial order reduction to
determine if there is a performance benefit.
All the above points will be tested throughout experiments, challenging the ability of verification tools to

verify programs. In table 6.1, it can be seen what experiments target which of the above-mentioned targets.

targets EXP-1 EXP-2 EXP-3 EXP-4 EXP-5 EXP-6

Soundness X X X X
Completeness X X X X
Performance X X X

Soundness of MPOR X X X X
Completeness of MPOR X
Performance with MPOR X X X

Table 6.1: Targets of the performed experiments

During the experiments, NOPOR will be used to indicate that no form of partial order reduction is used.

29
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MPOR will indicate that monotonic partial order reduction is used. When performing EXP-4 and EXP-6,
a straight comparison between NOPOR and MPOR could be insufficient since it is likely that any form of
reduction will perform better than no form of reduction. SR (Simplistic reduction) is introduced for these
experiments to see the impact of MPOR when compared to a minimal form of reduction. SR considers
a transition dependent on all other transitions when it contains any access from section 4.1. This means
many paths with equivalent representatives remain, but this method still prunes out many interleaving over
statements that affect the local process.

For all experiments, a laptop was used with the following environment and specifications:
• Apple Silicon M2 (8 cores)
• 16 GB Ram (DDR4)
• Minimal background processes
• Power cord attached

6.1 EXP-1 : Soundness of verifying concurrent programs

It has to be determined if the verification tool can verify concurrent programs with and without the MPOR
algorithm to indicate if both the tool and algorithm are sound. Multiple programs that make use of con-
currency are tested. Some of these programs should be returned as invalid. When showing the verification
tool can correctly determine if a program is valid or invalid, it can be determined that the verification tool
behaves as expected. The programs that are to be tested are available in Appendix A.1, and they will have
the following targets:

• EXP-1.1 (Invalid): Showing that threads behave non-deterministic and therefore not guaranteeing that
the threads execute before the assertion.

• EXP-1.2 (Valid): Showing that a join can be used to enforce that the threads are executed before
continuing the main thread.

• EXP-1.3 (Invalid): Showing that the non-deterministic nature of threads causes the program to execute
reads and writes of shared variables in random orders.

• EXP-1.4 (Valid): Showing that locks can be used to guarantee a wanted control flow to prevent the
random reads and writes of shared variables.

• EXP-1.5 (Invalid): Shows that arrays are also considered shared variables and that the verification tool
can determine that the non-deterministic flow causes the program to be considered Invalid.

• EXP-1.6 (Valid): Showing that the execution order is non-deterministic, causing either thread to be
executed last.

• EXP-1.7 (Deadlock): This shows that the verification tool can detect deadlocks caused by improper
usage of locks.

• EXP-1.8 (Valid): Shows that unlocking the shared variable prevents the deadlock from EXP-1.7 from
occurring.

• EXP-1.9 (Invalid): Showing that the verification tool can correctly handle conditional branches on a
shared variable.
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• EXP-1.10 (Invalid): Showing that the verification tool can correctly handle loops and being able to
identify an invalid control flow.

• EXP-1.11 (Valid): This shows that locking can guarantee a control flow inside a loop, ensuring shared
variables are read and written properly.

• EXP-1.12 (Invalid): Showing that the verification tool can find undesired behavior when branching
occurs, causing a shared variable to be assigned a non-determinist value.

NOPOR MPOR Expected
Experiment Max Depth k Output Time(S) Output Time(S) Output
EXP-1.1 40 Invalid 0.17 Invalid 0.18 Invalid
EXP-1.2 40 Valid 0.14 Valid 0.16 Valid
EXP-1.3 40 Invalid 0.14 Invalid 0.15 Invalid
EXP-1.4 40 Valid 29.37 Valid 0.18 Valid
EXP-1.5 40 Invalid 0.14 Invalid 0.14 Invalid
EXP-1.6 40 Valid 1.83 Valid 0.15 Valid
EXP-1.7 40 Deadlock 0.01 Deadlock 0.01 Deadlock
EXP-1.8 40 Valid 1.06 Valid 0.13 Valid
EXP-1.9 40 Invalid 174.20 Invalid 0.18 Invalid
EXP-1.10 120 Invalid 0.20 Invalid
EXP-1.11 120 Valid 1.17 Valid
EXP-1.12 40 Invalid 0.17 Invalid 0.15 Invalid
EXP-1.13 120 Valid 28.38 Valid

Figure 6.1: Experiment results that show NOPOR output, MPOR output, and expected output

In figure 6.1, the results can be found for all the programs that were run for EXP-1. Some values are left
out for the NOPOR settings since the program could not produce a result within a reasonable time. It can
be seen that the NOPOR (when the program is finished) and MPOR both return the correct output for the
given programs. This confirms that the earlier setup goals can be verified.
Even though this experiment is not about performance, the above execution times show that MPOR is

not always faster than NOPOR. This is the case when the overhead of the pruning is larger than the benefit
gained from the pruned branches. When the complexity and explosive nature of the code increase, MPOR
shifts to being faster.

6.2 EXP-2 : Symbolic References when using MPOR

When determining dependencies to ensure no unnecessary paths are pruned, symbolic references are some-
what of a challenge. This is due to multiple symbolic objects of the same type that could refer to the same
reference, meaning that a dependency is possible. The implementation has a pessimistic approach, meaning
that if a possible dependency exists, it is considered a dependency, therefore not allowing the pruning of
some paths. As example in the following algorithm 11 can be seen that two objects of type Foo are passed
to a separate fork. The outcome of this program should be invalid since there is a possibility that the two
symbolic references point to the same object, possibly causing the out variable to have a value of 1.
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Algorithm 11 Usage of symbolic references in a concurrent program

1: class I2 {
2: static void SetZero(Foo x) {
3: x.val := 0
4: }
5: static void SetOne(Foo y) {
6: y.val := 1
7: }
8: static void main(Foo x, Foo y) {
9: fork I2.SetZero(x)

10: fork I2.SetOne(y)
11: join
12: int out := x.val
13: assert(out == 0)
14: }
15: }

To determine that these scenarios are handled properly, multiple tests are run on different concurrent
programs that include the usage of symbolic references. The programs that are to be tested are available in
Appendix A.2, and they will have the following targets:

• EXP-2.1 (Valid): Writing to an array using two different symbolic references in separate threads.
Including an assumption that the symbolic references are not equal.

• EXP-2.2 (Valid): Writing to an array using two different symbolic references in separate threads. Invalid
due to a possible equality between the references.

• EXP-2.3 (Valid): Updating a field on two symbolic references that point to an object with the same
type in separate threads. Including an assumption that the symbolic references are not equal.

• EXP-2.4 (Invalid): Updating a field on two symbolic references that point to an object with the same
type in separate threads. Invalid due to a possible equality between the references.

• EXP-2.5 (Valid): The locking of two symbolic references that point to the same typed object in separate
threads. Including an assumption that the symbolic references are not equal.

• EXP-2.6 (Deadlock): The locking of two symbolic references that point to the same typed object in
separate threads. Deadlocks are due to the possibility of having the same reference.

Experiment NOPOR MPOR Expected
EXP-2.1 Valid Valid Valid
EXP-2.2 Invalid Invalid Invalid
EXP-2.3 Valid Valid Valid
EXP-2.4 Invalid Invalid Invalid
EXP-2.5 Deadlock Deadlock Valid
EXP-2.6 Deadlock Deadlock Deadlock

Table 6.2: Experiment results that show NOPOR output, MPOR output, and expected output
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As seen in table 6.2, it can be seen that for all except one, the expected output is given. In EXP-2.5, it can
be seen that the program still deadlocks even when an assumption is made that the two symbolic references
are separate. Locking looks at the alias table to identify whether the two symbolic references overlap. An
assumption does not alter the alias table; it just clarifies that the two values of the references are unequal.
This is a case that is not caught with the current implementation.

6.3 EXP-3 : MPOR path pruning using traces

This shows that the implementation of monotonic partial order reduction prunes all paths that do not affect
the outcome of the verification while keeping all the necessary paths sound when verifying the program.

Algorithm 12 SharedVar and T1 classes

1: class SharedVar {
2: int val
3: SharedVar() { }
4: }
5: class T1 {
6: static void a(SharedVar var) {
7: var.val := 5;
8: }
9: static void main() {

10: SharedVar var := new SharedVar();
11: fork T1.a(var);
12: var.val := 3;
13: }
14: }

The algorithm shows that the outcome of var.val is non-deterministic because lines 7 and 12 do not
have a guaranteed control flow while editing a shared variable. Even though, through our eyes, only these
two transitions are necessary to interleave, the program contains many more primitive statements that
occur between these transitions. In this case, these statements include if-else statements to guarantee that
classes are not null and entering and exiting methods. This means that the amount of paths generated using
interleaving heavily increases, in the case of this program 128 path traces are recorded during the verification
process.
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Program Counter Code Line
0, 1, 2, 3 3

4 6
5, 11, 13 7

14 8
15 9

17, 20 10
23, 25, 31 11

33 12
34 13

Table 6.3: Program counters in relation to lines of code from algorithm 12

1: 15→ 17→ 20→ 0→ 1→ 2→ 3→ 23→ 25→ 31→ 4→ 5→ 11→ 13→ 33→ 34→ 14

2: 15→ 17→ 20→ 0→ 1→ 2→ 3→ 23→ 25→ 31→ 33→ 34→ 4→ 5→ 11→ 13→ 14

3: 15→ 17→ 20→ 0→ 1→ 2→ 3→ 23→ 25→ 31→ 4→ 5→ 11→ 13→ 33→ 14→ 34

4: 15→ 17→ 20→ 0→ 1→ 2→ 3→ 23→ 25→ 31→ 33→ 4→ 5→ 11→ 13→ 14→ 34

Figure 6.2: path traces found using MPOR on algorithm 12 represented with program counters

The traces in figure 6.2 are the only traces found when using MPOR. When using NOPOR, the program
found 128 traces. This means that MPOR was able to prune 124 traces from the program. One hundred
twenty-eight traces sound like a lot for a program containing four statements and some declarations, but
many primitive statements can take place for a single statement in code. In table 6.3, the program counters
from the traces in figure 6.2 are translated to code lines. This shows that, for example, line 3 contains four
separate primitive statements (entering the method, the skip statement, returning the created object, and
exiting the method).

1: 9→ 10→ 3→ 11→ 6→ 7→ 12→ 13→ 8

2: 9→ 10→ 3→ 11→ 12→ 13→ 6→ 7→ 8

3: 9→ 10→ 3→ 11→ 6→ 7→ 12→ 8→ 13

4: 9→ 10→ 3→ 11→ 12→ 6→ 7→ 8→ 13

Figure 6.3: path traces found using MPOR on algorithm 12 represented in lines of code

With the traces shown using lines of code in figure 6.3, it is possible to reason about the paths that
were retained when using MPOR. It is important to note that two traces (3 and 4) here are not actually
quasi-monotonic; this is due to this implementation of MPOR pruning all non-quasi-monotonic chains in the
following iteration. Trace 3 and 4 are both not quasi-monotonic due to line 13 being executed after line 8.
There is no dependency between these transitions; therefore, the paths would always be pruned in the next
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iteration, retaining the completeness of the algorithm. Since line 6 and line 12 have a dependency, there
should be a representative trace where line 6 is to be executed before 12 and vice versa. Since trace 1 and
trace 2 are representative of these scenarios, it can be determined that, for this example, MPOR retains the
soundness of the verification tool.

6.4 EXP-4 : The Dining Philosophers Problem

The dining philosopher’s problem is well known as a challenge to write a concurrent program that cannot
result in a deadlock. The Dining Philosophers problem can cause a large path explosion by spawning N
threads for N amount of philosophers. This generates many interleaving paths, making it a good benchmark
for testing the performance of the Monotonic Partial Order Reduction method. The dining philosopher’s
problem allows for many dependent transitions between different threads, and in that scenario, MPOR is
challenged because dependencies limit the pruning of paths. This allows us to get more evidence to be able
to answer RQ-2. The program used is available in Appendix A.3, and the results of the benchmarks can be
found in Appendix A.6.

Multiple runs are performed with the maximum depth increased to test MPOR’s performance. Each run
tests the verification tool using three different settings: without any state graph reduction, using a simple
reduction method that only takes the interleaving if no heap access is found, and monotonic partial order
reduction. The program was run with N = 4 so that there are four philosophers/threads.
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Figure 6.4: Performance in time for a range of given depths

In figure 6.4, the performance using the three different verification tool settings is measured against
multiple depths. In all cases, clear exponential growth happens, but for each method, there is a different
depth where the time for validation heavily increases. For NOPOR, the extreme growth starts at a depth
of 90; for SR, the growth starts at 105; and for MPOR, the growth starts at 115. This shows that MPOR
can handle a significantly higher depth than the other programs.



CHAPTER 6. BENCHMARKS AND DATA COLLECTION 36

80 90 95 100 105 110 115 120 125
0

40000

80000

120000

160000

200000
·105

Depth (k)

P
a
th
s

NOPOR
SR

MPOR

Figure 6.5: Completed paths over a range of depths

The number of completed paths is plotted in figure 6.5. When comparing this graph with the graph in
figure 6.4, it can be easily determined that SR and MPOR perform better than NOPOR because paths are
being pruned using the reduction methods when the verification occurs. MPOR prunes more paths in the
SR since it can detect more accurate dependencies between transitions. It does this with a cost by verifying
possible dependency chains for each transition. In regards to RQ-2, it can be said that for the dining
philosophers, the pruning of paths performed by the MPOR algorithm outways the possible overhead of the
algorithm; it can be said that the algorithm is beneficial for this case.

6.5 EXP-5 : Deadlocked Dining Philosophers Problem

As previously mentioned, the Dining Philosophers Problem is prone to deadlocking if implemented incor-
rectly. A program was written for the Dining Philosophers problem that deadlocks to verify that the MPOR
algorithm can find a deadlock within a faulty program. The program used is available in Appendix A.4.
The program is faulty in that it allows all philosophers to take the left fork, causing no philosopher to be

able to take the right fork. Since the program can be evaluated manually to show there exists a deadlock,
the faulty program is only verified using the monotonic partial order reduction method. After ten runs with
N = 4 philosophers, the average time to find the deadlock was 51.50 seconds. For ten runs of N = 3, the
average time to deadlock was 2.23 seconds. This again shows that exponential growth occurs in paths when
the number of threads is increased.

6.6 EXP-6 : Concurrent Merge Sort

Merge sort is easily convertible to a concurrent program due to its nature to compartmentalize sections of
an array. This is a program that shows the strength of monotonic partial order reduction. This is due to the
compartmentalization where, in no case, the same section of an array is modified by different threads. All
updates to an array still cause SR to find interleaving, whereas MPOR can distinguish the different sections
of the array and, therefore, prune more paths. To answer RQ-2, in EXP − 4, a benchmark is done on a
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program that contains many dependencies, causing MPOR to be limited in the pruning of paths. In this
experiment, merge sort spawns concurrent threads over separate parts of an array. This should be a best-case
scenario for MPOR. The program used is available in Appendix A.5, and the results of the benchmarks can
be found in Appendix A.7.
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Figure 6.6: Performance in time for a range of given depths

In figure 6.6, the performance is measured of the verification tool using the SR and MPOR method. The
reason for not including NPOR in the above graph is that it causes a memory overload from 40 depth
onward. This means it can clearly be said that without any form of state graph reduction, the verification
tool cannot verify the concurrent merge sort algorithm reasonably.
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Figure 6.7: Performance in time for a range of given depths zoomed in

When looking at figure 6.7, the same results are graphed as in figure 6.6, but zoomed in along the y-
axis. It is shown that unlike in the other experiments, after a depth of 100, the time required to verify
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stops exponentially growing. This is due to the merge sort algorithm finishing in most paths. Due to the
algorithm being recursive with a symbolic array as input, not every path can be pruned afterward. SR also
has this decrease in growth, but due to its inability to prune the same number of paths, it will continue its
exponential growth after a slight stall.
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Figure 6.8: Completed paths for a range of given depths

In figure 6.8, it can be seen that the number of paths explored. At a depth of 150, the simple method
explored 45355, while MPOR only had to verify 1267 paths to determine if the program was valid at this
depth. This confirms the previous statement, in which it was identified that MPOR can reduce the number
of paths significantly due to the nature of the concurrent merge sort algorithm. Regarding RQ-2, just
like with the dining philosophers problem, the benefits of the MPOR algorithm are significant by heavily
outperforming NOPOR and SR.



Chapter 7

Conclusion & Discussion

The research aimed to try to manage the path explosion problem within the OOX verification tool. After
reviewing the results from the experiments, it can be concluded that the implementation of Monotonic Partial
Order Reduction is feasible within a symbolic execution verification tool for an object-oriented language. It
can also be said that the performance of the OOX verification tool using monotonic partial order reduction
is heavily increased, with no form of reduction or a simplistic form of reduction.
The original paper on Monotonic Partial Order Reduction[Kahlon et al., 2009] explores the algorithm

within a bounded symbolic model checking system. Due to the partial order reduction focusing on reducing
paths dynamically during the exploration step, this method lends well to Symbolic Execution. As far
as known, this is the first implementation of Monotonic Partial Order Reduction in a full-scale symbolic
execution verification tool for an object-oriented language.
The performance is measured for multiple large-scale concurrent programs like the dining philosophers

problem in EXP-4 and EXP-5 as well as the merge sort algorithm in EXP-6. These experiments show
that the use of the monotonic partial order reduction results in a significant gain in performance. A clear
relation is found between the number of pruned paths and the program’s performance. This performance
increase allows the verification tool to explore the program in a larger depth within the same amount of time.
For the merge sort in EXP-4, the verification tool, without any form of state graph reduction, could not
handle a depth higher than 40, not allowing it to traverse the program fully. This means that the algorithm
significantly improves the OOX verification tool.
There is a possibility that the overhead of checking dependencies between two different indexations of an

array could cause a lower performance when using Monotonic Partial Order Reduction. Since the reduction
has such a high-performance gain, this is unlikely. Still, in very complex programs that require large
invocation of the formula prover, this overhead might become large enough to be a detriment. This can not
be verified currently due to the depth required for programs that are this complex. The depth causes the
program to not verify within a reasonable time.
Two cases are currently not handled properly. The first case is shown in EXP-2.5, where the locking of

two threads using symbolic references causes a deadlock, while an assumption is made that the two symbolic
references are not equal. The cause is the assumption not affecting the alias table, causing the lock and
unlock statements to always check for a collision between aliases. The second case is not being able to
guarantee that the Monotonic Partial Order Reduction is complete for this implementation. This is because
assumptions are not considered when tracking dependencies, causing false-positive dependencies. This means
the algorithm remains sound but does not prune every possible path. As with the first case, the algorithm
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also does not handle assumptions over symbolic references. These cases will be explored within the future
work 8, and a possible solution will be given.



Chapter 8

Future Work

As mentioned in the discussion section of this thesis, two cases are currently not being handled properly by
the OOX verification tool. Both cases have very similar origins since they are caused by assumptions over
symbolic references not being considered. There are multiple ways to tackle this problem, including checking
the assumptions over each iteration where a dependency has to be checked. This method would cause a
significant increase in invocations of the theorem prover and is unlikely to have a performance benefit.
Another method is introducing a new statement or operator that allows us to reason about symbolic

references. This is a very similar idea to the operations that were introduced in the paper Separation logic
[Reynolds, 2002]. A separation operator guarantees that two symbolic references do not point to the same
part of the heap and, with that, alters the alias table. This could allow the monotonic partial order reduction
to ignore possible conflicts in aliases, and with that, more paths could be pruned. The same would go for
locking and unlocking statements, not causing deadlocks when two symbolic references that are being locked
have aliases left. This method also has its own downsides since if an assumption is made over the value
of symbolic references with the not equals operator, it could be said that automatically, the two symbolic
references do not point to the same object.
There are many more possibilities, and therefore, some future work can be done on handling assumptions

and symbolic references within symbolic execution over concurrent programs as well as monotonic partial
order reduction.
Due to the extension and implementation of monotonic partial order reduction being quite complex, there

was not much time to research other methods of partial order reduction as well as completely different
techniques like deductive systems using concurrent separation logic [O’Hearn, 2007]. Future work can be
done towards a more inclusive comparison of monotonic partial order reduction compared to other verification
methods and state graph reduction.
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Appendix A

Benchmarks and Results

A.1 EXP-1: Benchmarks for Soundness

A.1.1 EXP-1.1: Invalid

1: class E1 {
2: static void a(SharedVar var) {
3: var.val := 5;
4: }
5: static void main() {
6: SharedVar var := new SharedVar(0);
7: fork E1.a(var);
8: int x := var.val;
9: assert(x == 5);

10: }
11: }

A.1.2 EXP-1.2: Valid

1: class E2 {
2: static void a(SharedVar var) {
3: var.val := 5;
4: }
5: static void b(SharedVar var) {
6: var.val := 3;
7: }
8: static void main() {
9: SharedVar var := new SharedVar(0);

10: fork E2.a(var);
11: fork E2.b(var);
12: join;
13: int x := var.val;
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14: assert(x == 5 || x == 3);
15: }
16: }

A.1.3 EXP-1.3: Invalid

1: class E3 {
2: static void a(SharedVar var) {
3: int val := var.val;
4: var.val := val + 1;
5: }
6: static void main() {
7: SharedVar var := new SharedVar(0);
8: fork E3.a(var);
9: fork E3.a(var);

10: join;
11: int x := var.val;
12: assert(x == 2);
13: }
14: }

A.1.4 EXP-1.4: Valid

1: class E4 {
2: static void a(SharedVar var) {
3: lock var;
4: int val := var.val;
5: var.val := val + 1;
6: unlock var;
7: }
8: static void main() {
9: SharedVar var := new SharedVar(0);

10: fork E4.a(var);
11: fork E4.a(var);
12: join;
13: int x := var.val;
14: assert(x == 2);
15: }
16: }

A.1.5 EXP-1.5: Invalid

1: class E5 {
2: static void a(int[] var) {
3: arr[2] := 5;
4: }
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5: static void b(int[] var) {
6: arr[2] := 6;
7: }
8: static void main() {
9: int[] arr := new int[5];

10: arr[2] := 0;
11: fork E5.a(arr);
12: fork E5.b(arr);
13: join;
14: int x := arr[2]
15: assert(x == 5);
16: }
17: }

A.1.6 EXP-1.6: Valid

1: class E6 {
2: static void a(int[] var) {
3: arr[2] := 5;
4: }
5: static void b(int[] var) {
6: arr[2] := 6;
7: }
8: static void main() {
9: int[] arr := new int[5];

10: arr[2] := 0;
11: fork E6.a(arr);
12: fork E6.b(arr);
13: join;
14: int x := arr[2]
15: assert(x == 5 || x == 6);
16: }
17: }

A.1.7 EXP-1.7: Deadlock

1: class E7 {
2: static void a(SharedVar var) {
3: lock var;
4: }
5: static void main() {
6: SharedVar dummy := new SharedVar(0);
7: fork E7.a(dummy);
8: fork E7.a(dummy);
9: join;

10: assert(true);
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11: }
12: }

A.1.8 EXP-1.8: Valid

1: class E8 {
2: static void a(SharedVar var) {
3: lock var;
4: unlock var;
5: }
6: static void main() {
7: SharedVar dummy := new SharedVar(0);
8: fork E8.a(dummy);
9: fork E8.a(dummy);

10: join;
11: assert(true);
12: }
13: }

A.1.9 EXP-1.9: Invalid

1: class E9 {
2: static void a(SharedVar var) {
3: var.val := 1;
4: }
5: static void b(SharedVar var, SharedVar var2) {
6: int x := var.val;
7: if (x == 0) {
8: var2.val = 1;
9: }

10: }
11: static void main() {
12: SharedVar var1 := new SharedVar(0);
13: SharedVar var2 := new SharedVar(0);
14: fork E9.a(var1);
15: fork E9.b(var2);
16: join;
17: int val2 := var2.val;
18: assert(val2 == 1);
19: }
20: }

A.1.10 EXP-1.10: Invalid

1: class E10 {
2: static void a(SharedVar var) {
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3: int k := 0;
4: while (k < 2) {
5: int x := d.val;
6: d.val := x + 1;
7: k := k + 1;
8: }
9: }

10: static void main() {
11: SharedVar var := new SharedVar(0);
12: fork E10.a(var);
13: fork E10.a(var);
14: join;
15: int val := var.val;
16: assert(val == 4);
17: }
18: }

A.1.11 EXP-1.11: Valid

1: class E11 {
2: static void a(SharedVar var) {
3: int k := 0;
4: while (k < 2) {
5: lock var;
6: int x := var.val;
7: var.val := x + 1;
8: unlock var;
9: k := k + 1;

10: }
11: }
12: static void main() {
13: SharedVar var := new SharedVar(0);
14: fork E11.a(var);
15: fork E11.a(var);
16: join;
17: int val := var.val;
18: assert(val == 4);
19: }
20: }

A.1.12 EXP-1.12: Invalid

1: class E12 {
2: static void a(SharedVar var) {
3: int val := var.val;
4: if (val == 0) {
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5: var.val := 10;
6: }
7: }
8: static void main() {
9: SharedVar var := new SharedVar(0);

10: fork E12.a(var);
11: var.val := 1;
12: join;
13: int val := var.val;
14: assert(val1 == 10);
15: }
16: }

A.1.13 EXP-1.13: Valid

1: class E13 {
2: V10() {}
3: static void a(int[] var) {
4: int k := 0;
5: while (k < #a) {
6: lock this;
7: int x := a[i];
8: a[i] := x + 1;
9: unlock this;

10: k := k + 1;
11: }
12: }
13: static void b(int[] var) {
14: int k := 0;
15: while (k < #a) {
16: lock this;
17: int x := a[i];
18: a[i] := x + 2;
19: unlock this;
20: k := k + 1;
21: }
22: }
23: void main(int[] a, int k) requires(a ̸= null && #a > 1 && #a < 10 && 0 <= k && k < #a) {
24: a[k] := 10;
25: E13 g = new V10();
26: fork g.a(var);
27: fork g.b(var);
28: join;
29: int val := a[k];
30: assert(val == 13);
31: }
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32: }
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A.2 EXP-2: Benchmarks for Symbolic References

A.2.1 EXP-2.1: Valid

1: class E1 {
2: static void SetZero(Foo x) {
3: x.val := 0;
4: }
5: static void SetOne(Foo y) {
6: y.val := 1;
7: }
8: static void main(Foo x, Foo y) {
9: assume(x != y);

10: fork E1.SetZero(x);
11: fork E1.SetOne(y);
12: join;
13: int out := x.val;
14: assert(out == 0);
15: }
16: }

A.2.2 EXP-2.2: Invalid

1: class E2 {
2: static void SetZero(Foo x) {
3: x.val := 0;
4: }
5: static void SetOne(Foo y) {
6: y.val := 1;
7: }
8: static void main(Foo x, Foo y) {
9: fork E2.SetZero(x);

10: fork E2.SetOne(y);
11: join;
12: int out := x.val;
13: assert(out == 0);
14: }
15: }

A.2.3 EXP-2.3: Valid

1: class E3 {
2: static void SetZero(int[] arr, int key) {
3: arr[key] := 0;
4: }
5: static void SetOne(int[] arr, int key) {
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6: arr[key] := 1;
7: }
8: static void main(int x, int k) requires(x ≤ 0&&x < 5&&k ≤ 0&&k < 5) {
9: assume(x != k);

10: int[] arr := new int[5];
11: fork E3.SetOne(arr, x);
12: fork E3.SetOne(arr, y);
13: join;
14: int out := arr[x];
15: assert(out == 0);
16: }
17: }

A.2.4 EXP-2.4: Invalid

1: class E4 {
2: static void SetZero(int[] arr, int key) {
3: arr[key] := 0;
4: }
5: static void SetOne(int[] arr, int key) {
6: arr[key] := 1;
7: }
8: static void main(int x, int k) requires(x ≤ 0&&x < 5&&k ≤ 0&&k < 5) {
9: int[] arr := new int[5];

10: fork E4.SetOne(arr, x);
11: fork E4.SetOne(arr, y);
12: join;
13: int out := arr[x];
14: assert(out == 0);
15: }
16: }

A.2.5 EXP-2.5: Valid

1: class E5 {
2: static void Lock(Foo x) {
3: lock x;
4: }
5: static void main(Foo x, Foo y) {
6: assume(x != y);
7: fork E5.Lock(x);
8: lock y;
9: join;

10: assert(true);
11: }
12: }
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A.2.6 EXP-2.6: Deadlock

1: class E6 {
2: static void Lock(Foo x) {
3: lock x;
4: }
5: static void main(Foo x, Foo y) {
6: fork E6.Lock(x);
7: lock y;
8: join;
9: assert(true);

10: }
11: }
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A.3 EXP-4: Benchmark, Valid Philosophers Dining Problem

1: class Philosophers {
2: static void main() {
3: Mutex mainLock := new Mutex();
4: int n := 4;
5: Fork[] forks := new Fork[n];
6: int i := 0;
7: while (i < n) {
8: Fork f := new Fork();
9: forks[i] := f;

10: i := i + 1;
11: }
12: i := 0;
13: while (i < n) {
14: fork Philosophers.eat(mainLock, left, right, i);
15: i := i + 1;
16: }
17: join;
18: }
19: static void eat(Mutex mainLock, Fork[] forks, int i) {
20: Fork left := forks[i];
21: Fork right := forks[(i + 1) % n];
22: while(true) {
23: // Philosopher is Thinking
24: lock mainLock;
25: lock left;
26: lock right;
27: // Philosopher is Eating
28: unlock mainLock;
29: unlock left;
30: unlock right;
31: }
32: }
33: }
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A.4 EXP-5: Benchmark, Invalid Philosophers Dining Problem

1: class Philosophers {
2: static void main() {
3: int n := 4;
4: Fork[] forks := new Fork[n];
5: int i := 0;
6: while (i < n) {
7: Fork f := new Fork();
8: forks[i] := f;
9: i := i + 1;

10: }
11: i := 0;
12: while (i < n) {
13: fork Philosophers.eat(left, right, i);
14: i := i + 1;
15: }
16: join;
17: }
18: static void eat(Fork[] forks, int i) {
19: Fork left := forks[i];
20: Fork right := forks[(i + 1) % n];
21: while(true) {
22: // Philosopher is Thinking
23: lock left;
24: lock right;
25: // Philosopher is Eating
26: unlock left;
27: unlock right;
28: }
29: }
30: }
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A.5 EXP-6: Benchmark, Valid Concurrent Merge Sort

1: class Main {
2: static int[] sort(int[] array) requires(!(array == null))
3: ensures(forall v, i : retval : forall w, j : retval : i < j ==> v ≤ w) exceptional(false)
4: {
5: Main.mergesort(array, 0, #array - 1);
6: assert(false);
7: return array;
8: }
9: static void mergesort(int[] array, int left, int right) exceptional(false)

10: {
11: if (left < right) {
12: int middle := (left + right) / 2;
13: fork Main.mergesort(array, left, middle);
14: Main.mergesort(array, middle + 1, right);
15: join;
16: Main.merge(array, left, middle, right);
17: }
18: }
19: static void merge(int[] array, int left, int middle, int right) exceptional(false)
20: {
21: int[] temp := new int[right - left + 1];
22: int i := left;
23: int j := middle + 1;
24: int k := 0;
25: while (i ≤ middle && j ≤ right) {
26: int arrayI := array[i];
27: int arrayJ := array[j];
28: if (arrayI ≤ arrayJ) {
29: temp[k] := array[i];
30: k := k + 1;
31: i := i + 1;
32: } else {
33: temp[k] := array[j];
34: k := k + 1;
35: j := j + 1;
36: }
37: }
38: while (i ≤ middle) {
39: temp[k] := array[i];
40: k := k + 1;
41: i := i + 1;
42: }
43: while (j ≤ right) {
44: temp[k] := array[j];
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45: k := k + 1;
46: j := j + 1;
47: }
48: i := left;
49: while (i ≤ right) {
50: array[i] := temp[i - left];
51: i := i + 1;
52: }
53: }
54: }
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A.6 EXP-4: Results Valid Philosophers Dining Problem

Philosophers NOPOR SPOR MPOR
Depth (k) Avg. Time (s) Paths Avg. Time (s) Paths Avg. Time (s) Paths
20 0.26 1 0.35 1 0.27 1
40 0.27 5 0.26 5 0.26 5
80 0.27 18 0.27 8 0.26 8
90 1.77 3347 0.26 13 0.27 15
95 33.87 48479 0.28 48 0.28 37
100 900.26 2041193 0.33 146 0.30 77
105 1.33 1436 0.43 264
110 17.31 22375 0.66 665
115 147.87 882280 1.54 1908
120 21.85 30639
125 93.92 161025
130 487.03 510520

A.7 EXP-6: Results Valid Philosophers Dining Problem

Mergesort NOPOR SPOR MPOR
Depth (k) Avg. Time (s) Paths Avg. Time (s) Paths Avg. Time (s) Paths
20 0.07 112 0.02 18 0.06 40
30 13.45 69187 0.07 28 0.08 155
31 38.43 198795
32 107.11 547295
40 0.08 70 0.13 277
80 1.24 4285 0.30 813
100 2.99 8815 0.51 1047
120 5.11 13585 0.52 1077
140 11.09 31765 0.56 1183
150 15.14 45355 0.59 1267
160 20.63 56226 0.60 1345
170 25.17 69655 0.61 1411
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