
A Vulkan Backend for Accelerate

Master Thesis

Xinliang Lu
xinliang.lu@outlook.com

12 August 2024

Supervisors: Prof. dr. G.K. (Gabriele) Keller
I.G. (Ivo Gabe) de Wolff MSc
Dr. M.I.L. (Matthijs) Vákár

Computing Science
Department of Information and Computing Sciences

mailto:xinliang.lu@outlook.com

My light boat has already passed ranges

and ranges of mountains.

Li Bai

To my family, friends,

and my beloved important one.

Contents

Abstract 1

1 Introduction 1
1.1 Array programming . 2
1.2 Data parallelism . 2
1.3 GPU computing and its eco-systems 4
1.4 Accelerate . 5
1.5 Dilemma and a way out . 6
1.6 Research questions . 6

2 Preliminaries 8
2.1 Data parallelism models . 8

2.1.1 SIMD . 8
2.1.2 SIMT . 9

2.2 Accelerate . 10
2.2.1 Compiler pipelines . 10
2.2.2 Programming model 12

2.3 Vulkan . 13
2.3.1 Programming model on the device side 13
2.3.2 Programming model on the host side 14
2.3.3 Vulkan-Haskell bindings 17

2.4 Haskell . 17
2.4.1 ADTs . 17
2.4.2 GADTs . 19
2.4.3 Record notation . 20

3 Inside Accelerate 21
3.1 Tuples . 21
3.2 Environments . 22
3.3 Scalar types . 23
3.4 Primitive types . 24
3.5 Buffers . 25
3.6 Variables . 26
3.7 Shapes . 28
3.8 Arrays . 28
3.9 Arguments . 29
3.10 Program terms . 30

i

3.11 Array terms . 33
3.12 Modifications . 36

4 The Vulkan backend 36
4.1 Backend-specific operations 37

4.1.1 Vulkan operations . 37
4.1.2 Desugaring . 38

4.2 Vulkan kernels . 40
4.2.1 Compiling to GLSL . 41
4.2.2 Vulkan context . 55
4.2.3 Making kernels . 57

4.3 Execution . 61
4.3.1 Vulkan runtime . 62
4.3.2 Scheduling and execution 65

5 Evaluation and discussion 70
5.1 Experiments . 70

5.1.1 Naive N-body simulations 71
5.1.2 Multigrid methods . 72
5.1.3 FlashAttention . 73
5.1.4 Discussion . 74

5.2 Limitations . 75

6 Conclussion 78

References 79

ii

Abstract

With the continuous advancement of parallel hardware, and the grow-
ing demand for cross-platform high-performance computing, Vulkan, as an
open standard and cross-platform, low-overhead, low-level library for 3D
graphics and computing, has emerged noticeably. The vast majority of scien-
tific software, however, only supports executing programs on NVIDIA graph-
ics processing units (GPUs) due to various reasons. Accelerate, a domain-
specific language (DSL) for high-performance array computation in the func-
tional programming language – Haskell, is one example that traditionally
relies on CUDA for GPU acceleration.

This thesis presents the development of a Vulkan backend for Acceler-
ate, enabling general-purpose GPU computing on a broader range of hard-
ware. The main contribution includes the design and implementation of a
code generator for the OpenGL shading language (GLSL), which is a lan-
guage for building the Vulkan computing kernel. The code generator supports
most primitive scalar operations in Accelerate. Additionally, a runtime for
the Vulkan backend was developed.

Experimental results demonstrate that the Vulkan backend offers com-
petitive performance compared to the CUDA backend, proving its viability
as an alternative. However, Vulkan extension support across various plat-
forms poses the biggest limitation of our work, restricting the ability to run
programs on certain devices.

Beyond technical contributions, this thesis also provides comprehensive
introductions to the components of Accelerate and the features of Vulkan. We
hope to provide extensive learning material for those interested in the Vulkan
compute pipeline and possibly developing a Vulkan backend for similar DSLs.

1 Introduction

In recent decades, computing technology has evolved quickly, espe-
cially in massive physical simulations, large-scale neural networks, and big
data mining. They all have a similar need for efficient parallel computing,
which is the key to boosting performance. For instance, the most effective
approach to rapidly compute a fractal image involves avoiding single-thread
algorithms and utilizing multiple cores on central processing units (CPUs)
or other parallel hardware.

1

1.1 Array programming

Array programming is a way to access, manipulate, and operate on
arrays [29]. Each array has a few important pieces of information: the shape
and its element’s type. Shapes contain both the dimension structure and the
length for each dimension, i.e. the dimensional number. For example, a shape
(10, 5, 2) means a three-dimensional structure where the lowest dimensional
number is 10, and the highest is 2. To be specific, a vector has one dimension,
and a matrix has two dimensions. A matrix consists of rows and columns,
which can be seen as the extension of a vector. So, if we index the matrix’s
rows first and then columns, the latter can be considered extended from the
former. In this case, we called the dimension reflecting columns the higher
dimension.

As for the array length, it is the linearization of shape, which can be
computed by multiplying all dimensional numbers together. It is often used
in storing arrays in the flat memory. At that point, the multi-dimensional
array will be linearized into a vector according to the row-major or column-
major orders [56], i.e. concatenating rows (fixing lower dimensional indices)
or columns (fixing higher dimensional indices) into a long list of values. In
this thesis, we use the row-major order to store arrays.

In terms of array manipulations, they can be classified into two types:
array-level ones and element-level ones. The former focuses on transforming
the array as a whole, e.g. array production and array slicing. However, in-
side these operations, more thorough and operational element-wise functions
guide the transformation, e.g. updating elements one by one. In general, the
former takes the latter as its argument or its subroutine, so it operates at a
higher level (more abstract).

Apart from ordinary arrays, i.e. each position of the array only contains
one value, array of structures (AoS) and structure of arrays (SoA) [52] are
also common to represent high-dimensional data. The former is an array,
but each position accommodates a record of data. For example, in C++,
one can define an array of structures or an array of tuples in Haskell. SoA
is the opposite of AoS, where a record contains multiple ordinary arrays. In
most scientific libraries, including Accelerate, though users can interact with
AoS data, inside the pipeline, AoS data is usually converted to SoA, which
is easier to process.

1.2 Data parallelism

Data parallelism is one of the programming models that maximizes the
potential of parallel hardware. It focuses on processing each data item of a

2

data collection in independent task instances [30]. In other words, it maps a
function to each value over sets of data.

Flat and nested data parallelism have been introduced to exploit par-
allelism for different data structures better. The major difference between
these two models is the type of functions mapped to the data, where the for-
mer requires a sequential one while the latter takes any function, including
parallel ones [11]. Nested data parallelism can thus be seen as an extension
of flat data parallelism, and has been recognized as necessary for writing
high-level parallel programs [12]. Compared to flat data parallelism, nested
data parallelism can better utilize the power of parallel hardware. This is
because the executed function can also be parallelized and run on multiple
threads.

Nested data parallelism has many advantages. However, it comes with
costs. The most obvious one is the overhead associated with the spawning,
scheduling, and synchronizing of threads. To fully exploit the parallelism,
nested data algorithms may decompose the mapped function into individual
instances, and execute each part in parallel. In this process, the algorithm
needs to balance the benefits of increased parallelism and the overhead in-
curred. The second cost comes from the execution efficiency of irregular
parallelism on certain parallel hardware. Graphics processing units (GPUs)
are a good example of such a problem. They provide good performance
for integer and floating-point calculation, because of the massive amount of
functional units (execution units for integer/floating-point data [43]) inte-
grated in a single GPU. However, they can only peak the performance when
all the units execute the same instruction within the minimum schedulable
group, since these units share the same instruction unit (including instruc-
tion scheduler and some other resources) [43]. Consequently, when executing
non-uniform (or irregular) parallelism, the parallel program becomes sequen-
tial, and only one unit is activated. As a result, nested data parallelism is not
well-suited for execution on this type (known as Single-Instruction-Multiple-
Data or SIMD, introduced in §2.1) of devices (such as GPUs) [9].

One solution is to vectorize the nested data parallelism program and
flatten the nested array structures to execute operations more efficiently [9,
35]. This is also known as flattening transformation (or vectorization), in-
troduced by Blelloch [10]. The approach includes two steps: lifting functions
operating on a single value into array operations, and creating a flag vector
to identify whether a value from the flattened vector corresponds with the
beginning of the original array.

3

1.3 GPU computing and its eco-systems

Graphics processing units (GPUs) are among the most common and
affordable pieces of parallel hardware. They have a long history starting from
the 1980s or even earlier [21]. They were first used as devices to draw wire-
frame shapes on the screen serving a specific purpose. Furthermore, they
were built to process a large amount of data in parallel. Traditional GPUs,
however, only serve to calculate graphical textures. People then proposed
a special concept of using GPUs to enable general-purpose computing, and
GPUs that fulfil this concept can be called general-purpose graphics process-
ing units (GPGPUs) [57]. In other words, GPGPUs are a sub-class of GPUs
that can be programmed to execute general-purpose code and are not limited
to graphics commands. Compared to CPUs, GPUs or GPGPUs are designed
to share each instruction unit (scheduler, dispatch unit, etc.) across multiple
functional units (or cores). Hence, they have more space to accommodate
more cores, which results in much better performance in processing integer
and floating point data.

With the introduction of GPGPU hardware and developing kits by
manufacturers, a considerable amount of third-party libraries have emerged,
leveraging such computing power while offering user-friendly programming
models and other features for users [14]. However, most of the scientific
software is developed using the CUDA [23] library, which is NVIDIA’s toolkit
and a programming language for developing NVIDIA GPGPU programs.
This is due to two main reasons: significant market share and the CUDA
ecosystem.

As an important player in the GPU market, NVIDIA provided devices
with innovative features and reasonable prices in the early years [48], and
they were equipped with mature drivers. Thus, NVIDIA historically took a
large share of the GPU market [48]. After that, NVIDIA first equipped even
their gaming GPUs with the support of general-purpose parallel computing
in 2006, namely the GeForce 8800 [25], and simultaneously implemented
marketing campaigns of their CUDA library. For programmers and scientists,
this met the need for cheap parallel hardware with mature development kits.
Together, NVIDIA and their GPGPUs gradually became widespread in the
programming community [51].

NVIDIA’s CUDA ecosystem is mature and well-supported by most
NVIDIA GPUs for general-purpose GPU programming and computing, which
includes vast libraries, tools, documents, and large community supports. Be-
cause of its ease of use and relatively smooth learning curve, backends based
on CUDA were developed and integrated into many scientific libraries and
packages for utilizing the great power of GPGPU, including the PTX back-

4

end for Accelerate [13] (introduced in §1.4). Thus, many developers stuck
with CUDA rather than investing resources to support alternative platforms.

In 2016, Vulkan [5] was initially released and many vendors support
it nowadays. Vulkan is not only a low-level, low-overhead, cross-platform
library for 3D graphics and GPU computing, but also an open standard
in these areas [5]. Over time, Vulkan won significant support from both
hardware and software industries. The main reason for this is that it was
developed by the Khronos Group – an industry consortium that includes
major hardware and software companies. Apart from that, its performance,
scalability, cross-platform features, and advanced structure design, make it
popular. It is gaining more and more support from consumer-grade device
manufacturers, including phone makers.

1.4 Accelerate

To utilize the power of GPGPUs while maintaining a user-friendly pro-
gramming model, various domain-specific languages (DSLs) were created to
enable offloading computation to GPGPUs. Accelerate [13] is such a DSL,
used for high-performance parallel array computations in Haskell with type
safety as its biggest selling point. It currently has three backends:

1. CPU (Native) Backend: This backend employs multiple CPU cores for
parallel computing by generating LLVM IR [36] first and then compiling
to machine code.

2. NVIDIA GPU (PTX) Backend: Using the LLVM NVPTX backend
[37] to generate NVIDIA GPUs executable machine code and enabling
computations to be offloaded to such GPUs. PTX [44] is a low-level
assembly-like language used as a target for CUDA code compilation.
It represents NVIDIA GPU parallelism and memory operations in a
low-level form, including comprehensive instructions for thread man-
agement, synchronization, and memory operations. In short, the rela-
tionship between PTX and CUDA is like that between assembly and
C.

3. Sequential Interpreter: Unlike the other backends, this backend evalu-
ates Accelerate’s program directly without transforming it to a third-
party intermediate representation (IR).

5

1.5 Dilemma and a way out

Currently, a large number of libraries selling a convenient way to access
the power of GPGPU are emerging. However, many such parallel computing
libraries or DSLs only have a CUDA backend for the GPGPU-offloading
computing pipeline, not a cross-platform/cross-vendor backend, including
Accelerate. This is because CUDA is mature and well-supported by both
NVIDIA and the community. Additionally, Vulkan is not widely used for
two reasons. First, the material about using Vulkan to perform general-
purpose computations is not as extensive as that of CUDA. Vulkan is still
new and needs time to mature and gain widespread adoption. Moreover,
while it is supported by multiple GPU vendors, it may not receive the same
level of focus and investment from individual vendors as CUDA does from
NVIDIA. Second, using Vulkan is not as handy as using CUDA in general.
Moreover, it is extremely verbose to use.

Although using Vulkan is not as easy as programming in CUDA, the
cross-platform concept is tempting. The vision of running Accelerate appli-
cations on consumer devices, like smartphones, mobile VR/AR headsets, and
wearables, is right in the corner powered by Vulkan. Therefore, this thesis
studies the possibility of using the Vulkan compute pipeline to implement a
backend of Accelerate. We evaluate such an implementation with a series of
benchmarks, and compare it with the old CUDA backend and the CPU back-
end of the new pipeline. To be more specific, we create a pipeline to convert
Accelerate IRs into Vulkan-compatible code and benchmark the performance
of Accelerate programs.

1.6 Research questions

The main goal of the thesis is to examine whether it is possible or not
to implement a Vulkan backend for Accelerate. Therefore, we investigate the
following research questions:

RQ 1. Is it possible to generate GLSL kernel functions from Ac-
celerate’s intermediate representation (IR)?
The compute kernel (known as the compute shader) of Vulkan is coded using
OpenGL shading language (GLSL) [40]. Thus, to perform computations, the
intermediate representation of Accelerate taken from the surface language
is necessary to convert into GLSL kernel code. This means that except for
memory management (or array allocations) and data transfer, all operations,
including mapping, generation, and permutations, need to be transformed
into one kernel function in a way. Because these are represented as higher-

6

order array operations, while GLSL is a first-order programming language,
a certain amount of work would be required to implement such a conversion
layer.

RQ 2. Does the Vulkan provide suitable APIs to implement a
backend for Accelerate?
After generating the GLSL code, a GLSL compiler compiles it into machine
code, which the Vulkan framework uses to run the program on heterogeneous
systems. Vulkan, however, is still new, and its community support needs time
to mature, which means it may not include all the suitable APIs to implement
the Acclerate backend.

Thus, for Vulkan, a certain list of functions supported on the host
and the target (Vulkan-supported device) side must be checked. On the
host side, APIs for data transfer from and to the target device and memory
management are essential to inspect since they function as the cornerstone
for all data manipulations.

On the target side, Accelerate currently supports a large range of math-
ematical operations and various data types, which should also be supported
in Vulkan kernels. Although GLSL has rich support for such operations and
data types, Vulkan only accepts a small subset of GLSL’s features. Exam-
ining the range of supported features in GLSL of Vulkan version, checking
whether they are sufficient and suitable or not to build the computation, are
important for implementing such a backend.

This could be challenged if not all the functions, data types, and op-
erations are supported by Vulkan or GLSL itself. On the Vulkan framework
side, a certain amount of workarounds are needed to emulate missing func-
tionalities. This requires me to be familiar with Vulkan’s APIs. On the
Vulkan-specific GLSL side, a decent amount of work will be allocated to sim-
ulate and bypass such invalid parts in GLSL to compensate for the missing
data types and operations.

RQ 3. Compared to the old CUDA backend, how is the perfor-
mance of the new backend?
If the Vulkan backend for Accelerate is implemented, a benchmark and com-
parisons between the new and old backend help spot out limitations of such
a backend and Vulkan itself. Also, this gives insights for future work.

7

2 Preliminaries

2.1 Data parallelism models

Most GPGPUs have thousands of functional units (or cores), which
make them suitable for executing massive parallel programs. To unleash and
better utilize such computing power, two data-level parallelism programming
models are commonly used: single instruction multiple data (SIMD) and
single instruction multiple threads (SIMT).

2.1.1 SIMD

Just as its name describes, Single instruction multiple data (SIMD)
enables hardware to perform the same operation on multiple data in parallel
by a single instruction. This not only improves the overall throughput for
tasks involving large datasets and repetitive calculations, but also increases
performance for vectorizable computations by exposing native SIMD inter-
faces. In addition, the support for SIMD on the hardware depends on both
architecture design and instruction set. For example, in the x86 architecture
(a common CPU instruction set), _mm256_add_pd [32] is used to add two
packed 64-bit floating-point numbers together (or add two vectors together)
for a single instruction.

Instruction Pool

Instruction Unit

Functional Unit

Functional Unit

Functional Unit

Functional Unit

SI
M

D
 B

lo
ck

D
at

a
Po

ol

Figure 1. 4-lane SIMD block (inspired by Curtis et al. [19, Figure 1a]).

In detail, Figure 1 depicts a simple yet common SIMD block featuring
four execution units that share a scheduler. This block allows for applying
a single instruction to four pieces of data. Since these units share the same

8

instruction unit, when encountering any control-flow instruction, they should
all enter the same branch to maximize performance. Otherwise, a penalty
may happen if some units enter different branches [46] which is also known
as non-uniform (or irregular) parallelism, since one instruction unit can only
handle one situation at a time. However, thanks to the absence of a dedicated
scheduler and other instruction units for each functional unit, manufacturers
can have more area to place more execution cores on the chip, which is
typically how mainstream GPUs are designed and what most GPU vendors
are doing.

2.1.2 SIMT

Single instruction multiple threads (SIMT) is very similar to SIMD,
but instead of executing one instruction with multiple data in one thread,
SIMT enables the hardware to execute the same instruction with different
data in different threads, which allows non-uniform parallelism. Recalling
the vector-addition example given in the last paragraph, in SIMT, the way
to achieve parallel addition for each element in two vectors is to create a
bunch of threads and do single-element addition in each thread.

Instruction ThreadFunctional Unit

Functional Unit

Functional Unit

Functional Unit

SIMT Block

D
at

a
Po

ol Instruction Thread

Instruction Thread

Instruction Thread

In
st

ru
ct

io
n

U
ni

t

In
st

ru
ct

io
n

Po
ol

Figure 2. 4-cores SIMT block (inspired by Curtis et al. [19, Figure 1b]).

Although SIMT treats data parallelism differently from SIMD, at the
hardware level, not much modification is required. As shown in Figure 2,
multiple instructions called by different threads enter the instruction pool
first and then are scheduled and dispatched by the instruction unit. Take
CUDA as an example, SIMT model is mostly a different software approach on
the same hardware, because it can automatically map a thread to a functional
unit in the SIMD block.

9

2.2 Accelerate

In Accelerate [13], CPU and NVIDIA GPU backends use SIMD and
SIMT models to achieve data parallelism, but in the surface language, users
program the computation using high-level interfaces without touching the
parallelism. Furthermore, we call the stage, which transforms the surface
language into low-level representations and executes them, as the pipeline.

2.2.1 Compiler pipelines

Accelerate has two pipelines to compile and execute programs: the old
and new ones. Although in the thesis, the old pipeline is not relevant to
our work on the Vulkan backend, we introduce it to readers who might be
interested in learning about the involvement of Accelerate.

The new pipeline is currently in development and will eventually re-
place the old one. Each describes the construction of the computation
flow, low-level code generation, and computation scheduling. For now, only
the CPU and the Vulkan backend proposed in this thesis support the new
pipeline. In both pipelines, to conduct the array computation, the first step
is to build the compute steps according to the user-defined array computa-
tion using the surface language. No actual array or value is involved except
their structure and type at this stage. Then, concrete values are passed into
compute steps to produce the result.

Figure 3 demonstrates the old and new pipeline stages in Accelerate,
with key components and essential transformations. SmartAcc is an inter-
mediate representation (IR) for array-level computations, which is the input
of all backend-specific compilers in Accelerate. Sharing Recovery and Fusion
are optimization techniques to reduce redundant computation and overhead.
The former recovers the sharing let-binding expressions to prevent recomput-
ing them, and the latter eliminates intermediate values to avoid the overhead
of dispatching additional compute kernels and data transfer [42]. “Named”
IR is an abstract syntax tree (AST) representing collective array computa-
tions on program level parameterized over array variables. It also contains
information to represent sharing and control evaluation orders.

In the old pipeline, there are two IRs: Delayed IR and Skeleton. The
Delayed IR serves as a container capturing various array operations and
simply composites them as a single kernel as long as they can be chained
together without launching a new kernel. The Skeleton is a backend-specific
(or hardware-specific) IR that encloses the actual kernel awaiting execution
in devices. Due to the diverse implementations of backends across different
devices, each supporting various kernel codes, the skeleton is tailored for both

10

SmartAcc

"Named" IR

Sharing Recovery

Delayed IR

Skeletons

Operation IR

Partitioned IR

Schedule

Fusion Desugaring

Fusion

Execute

Execute

Old Pipeline New Pipeline

Kernel IR

Compiling

Figure 3. Accelerate pipelines.

hardware and the backend.
In the new pipeline, four IRs play key roles: Operation IR, Partitioned

IR, Kernel IR, and Schedule. Beginning with the “Named” IR, desugaring
takes place in the very first step. As its name describes, this transformation
converts program-level array computations into more extensive computing
operations (containing backend-specific operations), namely Operation IR.
As such, Accelerate allows each backend more flexibility in deciding how to
represent the array computation using dedicated hardware operations. Since
different backends target different executing devices, each potentially provid-
ing unique features to accelerate data operations, Operation IR can improve
computing efficiency. Then fusion shows up to convert operations into Par-
titioned IR, which is a collection of Operation IRs, as some of them can be
chained together to reduce the overhead of launching additional kernels. In
short, the purpose of Partitioned IR is the same as Delayed IR. After that,
backend-specific kernel codes are generated and compiled according to the
backend-specific operations within Partitioned IRs. Then, we can have Ker-
nel IRs, which are not of the actual type in Accelerate. Instead, the type
is the same as the Partitioned IR but parameterized over the Vulkan kernel
type and contains device-specific kernel codes. Finally, these IRs would be

11

scheduled and executed with the help of backend-specific runtimes. This step
controls the order and place (either on devices or the host) of executing each
Kernel IR.

The old pipeline is the very initial one for Accelerate, and has been used
for a long time. It accommodates many transformations and optimizations
in one module, plus some of them can be have made universal across different
backends. For these reasons, the new pipeline has come out. Though it is
still experimental, the concept of reusing common components and separating
nested IR layers relieves the work of creating new backends for Accelerate.
Now, not only is fusion more flexible, but also implementing a new backend
is easier, and each can have its own optimization stages.

In general, all the internal stages and IRs can be classified into Acceler-
ate’s compile-time and runtime. Only the execution belongs to the runtime,
while others take place in the compile-time. Sometimes, the” runtime” also
refers to libraries or functions that are invoked at runtime.

2.2.2 Programming model

Accelerate is a higher-order DSL in Haskell. As such, array manipu-
lations are done through high-level array operations instead of element-wise
computations. To be more precise, unlike low-level array operations, such as
using loops to compute or update each element in the array, Accelerate takes
lambda calculus or functions and then maps them to the individual element.

Consider a dot product example in Accelerate:
1 import Data.Array.Accelerate
2 import Data.Array.Accelerate.LLVM.Native as CPU
3

4 dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)
5 dotp xs ys = fold (+) 0 (zipWith (*) xs ys)
6

7 main :: IO ()
8 main = do
9 let vec1 = fromList (Z:.10) (take 10 (repeat 1)) :: Vector Float

10 let vec2 = fromList (Z:.10) (take 10 (repeat 2)) :: Vector Float
11 let result = CPU.run $ dotp (use vec1) (use vec2)
12 putStrLn $ show result

Listing 1. Accelerate code snippet for dot product which runs on CPU.

In the above code snippet, the first and second lines import basic building
blocks from Accelerate. The fifth line defines a function dotp, given two
arrays as input. It performs as an element-wise product first, then folds all
elements together by accumulating each one. The ninth and tenth lines create
two floating-point vectors containing ten ones and twos, respectively. The
eleventh line first calls function use to embed the input, making it available

12

for the computation, then runs function (or kernel) dotp using the CPU
backend and finally binds the result.

In Listing 1, only array-wise operations – zipWith [53, §Zipping] and
fold [53, §Folding] are involved. Though deep in the backends of Acceler-
ate, these high-level operations are desugared into low-level operations that
hardware can recognize, the surface language provides concise higher-order
interfaces to express array operations.

2.3 Vulkan

As described before, Vulkan [5] is a library and an open standard for 3D
graphics and GPU computing with advanced designs and benefits. However,
these advantages come with costs. Take cross-platform and hardware control
as an example. To provide consistent APIs and configurations across various
platforms while allowing developers to optimize their programs, Vulkan ex-
poses many details of the underlying hardware architecture and chooses not
to handle these. This means programmers have no choice but to manage all
the resources manually. Though Vulkan has phenomenal features, such as
cross-platform, good performance and efficiency, the design philosophy and
goals of Vulkan make it extremely verbose to use, requiring developers to
specify every detail explicitly. Moreover, programming models for the host
side and device side are different. On the device side, developers need to use
GLSL to code kernel functions that are awaiting execution on the Vulkan
device, which further makes the overall learning curve steeper for beginners.

2.3.1 Programming model on the device side

The code on the host side depicts common steps for initialization, mem-
ory management, data transfer, command execution, etc. It builds a suitable
Vulkan environment in which to execute shaders, where shaders are Vulkan
kernels that are written in special shader languages (such as GLSL [40] or
HLSL [45]) and compiled into SPIR-V (Standard Portable Intermediate Rep-
resentation) [54] bytecode. SPIR-V is no more than an intermediate binary
representation of defining shaders [54] and will be compiled by the GPU
driver to the GPU native code when loading it into the shader [33]. Apart
from the binary format, it has a human-readable text format called SPIR-V
Assembly. In other words, the relationship between SPIR-V and GLSL is
like that between PTX and CUDA languages.

There are various types of shaders (e.g. vertex shader, geometry shader,
compute shader) in Vulkan, and each serves a specific purpose in either ren-
dering or computing. Compute shader is one of those shaders and is used

13

for general-purpose computing on GPUs. Here is an example of the compute
shader that calculates the dot product coded in GLSL:

1 #version 450
2 #extension GL_EXT_shader_atomic_float : enable
3 #extension GL_ARB_shader_storage_buffer_object : enable
4

5 layout(local_size_x = 32) in;
6 layout(set = 0, binding = 0) buffer InBufferXs {
7 float xs[];
8 };
9 layout(set = 0, binding = 1) buffer InBufferYs {

10 float ys[];
11 };
12 layout(set = 0, binding = 2, std430) buffer OutBuffer {
13 float zs;
14 };
15

16 void main() {
17 uint globalIndex = gl_GlobalInvocationID.x;
18 if (globalIndex >= xs.length ()) return;
19 float elementProduct = xs[globalIndex] * ys[globalIndex];
20 atomicAdd(zs , elementProduct);
21 }

Listing 2. GLSL code snippet for dot product.

In the above code snippet, from line 1 to line 3, the GLSL version and enabled
extension for it are identified. Line 5 expresses the local thread number when
executing the shader. From line 6 to line 14, input and output buffers are
declared with variable names and binding numbers. Line 17 queries the
global thread (called the invocation in Vulkan) index for the current thread,
and the following line checks if it is indexing out of the buffer. Lines 19 and
20 compute the element-wise product and use atomic addition to accumulate
it.

Although in the example Listing 2, we set the local thread number to
32 (on the fifth line) as a working group, during execution, we launch multiple
working groups so that each thread only needs to handle one element from
the buffer.

2.3.2 Programming model on the host side

To better introduce Vulkan, we show its programming model on the
host side (i.e., the common steps to build a Vulkan application), where coding
for the host side is more demanding than that of the device side. This also
shows how verbose Vulkan is.

The starting point of making a Vulkan program is creating an instance,
which is a fundamental object. It serves as the gateway for the application to
interact with the Vulkan library. To create such an object, one must specify
the creation information [55, §4.2. Instances], such as enabled extensions

14

and layers. Before enabling them, users should call the Vulkan runtime to
determine which device to use and to query what extensions and layers it
supports.

Then, with the instance, we can create a Vulkan device object, which
is a logical device that serves the purpose of bridging the Vulkan applica-
tion with the physical device. It is used to perform operations like memory
management, command management, and task submission. When creating
a logical device [55, §5.2. Devices], we should specify the queue family [55,
§5.3.1. Queue Family Properties] to identify the type of commands that will
be executed on it. This tells the device whether to perform graphics, com-
puting, or other operations. Each of them has different hardware behaviors
and performance.

With the instance, logical device, and physical device, we can now cre-
ate a Vulkan memory allocator [4] to simplify memory management. Specif-
ically, it is a utility that exposes convenient interfaces to allocate and man-
age memory resources in Vulkan applications, including memory allocation,
alignment, deallocation, and memory pooling. With the help of the allocator,
developers can write efficient and robust Vulkan applications.

After creating an allocator, we can use it to allocate memory space to
accommodate Vulkan buffers. Note that buffers are required to be declared
before then. The byte size and usage flags are necessary to create a buffer,
where the usage flag [55, §12.1. Buffers] points out whether the buffer is
uniform or treated as a pipeline to transfer commands, etc. Then, we call
the allocator to assign a memory space to the buffer, given the memory usage
flag that tells the allocator which parties can visit the space and how often
they visit it. For example, we can allocate a visible space for both the Vulkan
device and the host, but the device performs read and write operations more
frequently.

Then it comes to the step for creating the descriptor pool, the descriptor-
set layout, and the descriptor set. We can consider the descriptor pool
as a container to hold descriptor sets that collect descriptors [55, §14. Re-
source Descriptors]. In short, a descriptor functions as a pointer to resources
stored in the memory. It directs the shader (or kernel) to the location of
an object, either a buffer, an image, or even a function. Moving on to the
descriptor-set layout, it defines the types and positions for descriptors in
the descriptor set, with the position denoted by a binding number. When
creating such a layout, users must set the type and binding for each descrip-
tor. Once the descriptor pool and descriptor-set layout are established, a
descriptor set can be allocated. However, buffers and other resources remain
unbound to the set at this stage. To continue, we have to manually update

15

it with all the buffers that will be accessed by the shader and corresponding
binding numbers.

Now, it is time to create the key module, namely the shader module
[55, §9. Shaders]. In Vulkan, shaders are kernels written in special shader
languages (such as GLSL [40] or HLSL [45]) and compiled into SPIR-V
(Standard Portable Intermediate Representation) bytecode. In this thesis,
we choose GLSL as the shading language for making shaders. There are
various types of shaders (vertex shader, geometry shader, compute shader,
etc.) in Vulkan, and each serves a specific purpose in rendering or computing.
Given the binary shader and the logical device, these shaders will be loaded
into Vulkan as shader modules.

Then, we create a pipeline [55, §10. Pipelines] to wrap the shader mod-
ule. Before building such a pipeline, supplementary information must be
included. This includes the shader module and the entry point for the main
function. We should also create a pipeline layout that contains a list of
descriptor-set layouts. With all this information, we can now create a valid
pipeline.

Similar to the descriptor pool and descriptor set, we need to define a
pair of command pools and buffers [55, §6. Command Buffers] to record the
commands that will be pushed to the device. Note that different commands
should be classified to fit with the queue family to improve performance.

At this point, the command buffer is empty and in the pending state.
For the next step, we need to wake the command buffer and make it in the
recording state [55, §6.4. Command Buffer Recording]. Then we bind the
pipeline and descriptor set to it and dispatch given a thread number for the
kernel. Then, we end the command buffer to make it return to the pending
mode. Before submitting the mission, we should map the Vulkan buffer to
get a pointer for access and transfer the data from the ordinary memory
space to the buffer with the pointer.

As mentioned, different pipelines should be submitted to different queues
according to the queue family. We query the correct queue and submit the
command buffer to it. After the submission, commands are executed in-
stantly. Now, we wait for the fences that either mark the execution done
or time out [55, §7.3. Fences]. In addition, we should also wait for the data
transfer to be done and visible to the host.

For the very last step, data is waiting to be copied back from the Vulkan
buffer. Apart from that, the essential action is to free all the resources that
were created or allocated before. They cannot be deallocated too soon or too
late.

In general, the actions described above are the common and required

16

steps when creating a Vulkan application. Resource management and explicit
control are the major difficulties in this process.

2.3.3 Vulkan-Haskell bindings

Because Accelerate is coded using Haskell while Vulkan only provides
interfaces in C++, to make a Vulkan backend for it, we have to find a way
to bridge native Vulkan APIs with Haskell, which is to find a Vulkan-Haskell
binding. In other words, Vulkan-Haskell bindings are supposed to allow de-
velopers to utilize Vulkan APIs within Haskell programs. These bindings
empower Haskell developers to create high-performance graphics and GPU
computing applications with Vulkan’s flexibility and low-level control. Cur-
rently, there are two such bindings available in Hackage, which are vulkan
[22] and vulkan-api [3]. The former provides more Vulkan APIs than the
latter and keeps updating. Thus, in this thesis, we use it to call Vulkan
interfaces and implement a Vulkan backend for Accelerate.

2.4 Haskell

In Haskell, both algebraic data types (ADTs) and generalized algebraic
data types (GADTs) are data constructors. They work as containers to
group multiple data together and expose specific types for such data groups
to guarantee more type safety. Though ADTs and GADTs are similar, the
major difference is that GADTs provide a finer and more flexible way to
define data types with varied and explicit type constraints. Because of these
features, ADTs and GADTs are commonly used in Accelerate to construct
complex data with metadata, such as storage locations, data representations,
and lifetimes. In other words, Accelerate is built based on ADTs and GADTs,
so we introduce them in the thesis.

Apart from them, record notation is a useful Haskell syntax, which is
also widely used in Accelerate.

2.4.1 ADTs

Though the name algebraic data types (ADTs) sound too mathemati-
cal, the concept is quite straightforward. In ADTs, several common types or
usage patterns are used to form the constructor: sum types, product types,
single constructors, recursive types, and enumerated types. To clarify, type
or type-level information means the part on the left-hand side of the equality,
and data or data-level information means that on the right-hand side of the

17

equal symbol. Type constructors and data constructors can share the same
names.

Sum types These represent a value that can only be one of several different
yet fixed types. In Accelerate, Tree is such an example:

1 data Tree a = Leaf a | Forest [Tree a]

Listing 3. Sum type example.

The Tree ADT contains two different constructors, namely a leaf and a list
of trees, which are parameterized over the type a of data stored in the leaf.
The Tree data type can only represent one of two constructors at one time,
e.g. Tree Int can be either Leaf Int or Forest [Tree Int] but not both.
Sum types types are similar to union types in C.

Product types Unlike the sum types, these ones represent a value that
contains multiple data, each of which can have different types. Consider a
desugared array shape in Accelerate, which is defined as

1 data Sh sh e = Shape (ShapeR sh) sh

Listing 4. Product type example.

It depicts that each desugared shape must have two fields in its constructor,
namely the representation of the shape (ShapeR sh) and a set of pointers
(sh) that can query the length of each dimension. Product types are similar
to structure types in C.

Single constructors As the name implies, single-constructor ADTs only
contain one constructor, which is often used to add semantic meaning. In
Accelerate, a good example is implementing the zero-dimension shape:

1 data Z = Z

Listing 5. Single constructor example.

The above code makes an ADT represent the zero-dimension shape for data,
e.g., a single scalar. Though single scalars are usually stored as one-dimension
arrays with length one, using Z as the shape is also fine.

Recursive types These are critical to enriching the representation of ADTs.
They allow for the creation of complex, self-referential structures, such as the
Haskell snoc-list [34], and higher ranks of arrays in Accelerate:

18

1 data tail :. head = tail :. head

Listing 6. Recursive type example.

The above ADT recursively nests multiple singleton or complex data con-
structed by :. together, with left associativity to build higher shape repre-
sentations, which is also a special case of the product type. For example, the
shape of a 10 by 5 by 3 matrix can be represented as (Z:.10:.5:.3) or with
parenthesis (((Z:.10):.5):.3) that both have the same type (Z:.Int:.Int
:.Int).

Enumerated types These types are special cases of the sum type, where
each constructor takes no arguments, which is often used to define a fixed
set of possible values. Similar to single constructors, they are used to add
semantic meaning or labels in Accelerate, for instance:

1 data Check = Bounds | Unsafe | Internal

Listing 7. Enumerated type example.

Check provides a series of tags to mark the type of runtime errors, which
enables better output information for such errors.

2.4.2 GADTs

Generalized algebraic data types (GADTs) extend the concept of ADTs
by allowing more explicit control over constructor types. By using them, we
can specify more complex type relationships and constraints. In Accelerate,
this feature is particularly beneficial since its biggest selling point is type
safety. McDonell et al. [41] were able to lower Accelerate’s surface lan-
guage down to low-level register languages while preserving the type safety
by using GADTs and type-safe interfaces for code generation. In their work,
this approach helped to minimize the application compile-time errors. How-
ever, type-safe interfaces for generating GLSL code are beyond the scope of
this thesis; we include only the type-safety for Accelerate expression terms.
Specifically, we simply append generated strings together, which results in
the loss of type information.

Here is an example of using the GADT in Accelerate to guarantee more
precise types for constructors:

1 data PrimFun sig where
2 -- operators from Num
3 PrimAdd :: NumType a -> PrimFun ((a, a) -> a)
4 PrimSub :: NumType a -> PrimFun ((a, a) -> a)
5 PrimMul :: NumType a -> PrimFun ((a, a) -> a)
6 PrimNeg :: NumType a -> PrimFun (a -> a)

19

7 PrimAbs :: NumType a -> PrimFun (a -> a)
8 PrimSig :: NumType a -> PrimFun (a -> a)
9 -- operators from Integral

10 PrimQuot :: IntegralType a -> PrimFun ((a, a) -> a)
11 PrimRem :: IntegralType a -> PrimFun ((a, a) -> a)
12 PrimQuotRem :: IntegralType a -> PrimFun ((a, a) -> (a, a))
13 PrimIDiv :: IntegralType a -> PrimFun ((a, a) -> a)
14 PrimMod :: IntegralType a -> PrimFun ((a, a) -> a)
15 PrimDivMod :: IntegralType a -> PrimFun ((a, a) -> (a, a))
16 ...

Listing 8. PrimFun GADT.

PrimFun is a GADT that represents primitive scalar operations. Each oper-
ation takes different argument types, parameterizing PrimFun over different
sig types. For instance, primitive addition of two integer numbers is repre-
sented as PrimAdd TypeInt (simplified), with the type PrimFun ((Int,Int)
→Int). Though this does not directly guarantee type safeties, it exposes
more extensive types for such constructors, enabling any function that oper-
ates on this data type to perform more rigorous type checks.

The same situation happens in environment GADTs in Accelerate:
1 data Env f env where
2 Empty :: Env f ()
3 Push :: Env f env -> f t -> Env f (env , t)

Listing 9. Env GADT.

Env constructs a series of data to form a parameterized data type, where f
is a partially applied data type or a data type that takes type arguments
(known as higher-rank types), and t is a concrete data type. Take Identity
[24, §Data.Functor.Identity] as an example. It is a data type that takes a
singleton type as the argument and returns exactly the same type, as its
name suggests, which is a higher-rank type. On the data level, it simply
stores the original values. So, if we have Push (Push Empty Identity 2.5)
Identity 3, its type would be Env Identity (((),Float),Int). Similar
to the previous GADT, although this one only exposes rich type information,
any function that takes it should leverage this information to ensure type
safety.

In general, ADTs cannot achieve such delicate type controls.

2.4.3 Record notation

Record notation is a Haskell syntax for defining data types with named
fields. It makes constructing, accessing, and updating these data types easier.
Due to these features, record notation is frequently used in Accelerate. The
desugared variable data type in Accelerate is defined as:

20

1 data Var s env t = Var { varType :: s t, varIdx :: Idx env t }

Listing 10. Record notation example.

It is parameterized over env, a partially applied type or a higher-rank type –
s, and a type t. Assume var is the data. To get the varType from it, we can
write varType var. Or, to update a field, we can do var { varType=... }.

3 Inside Accelerate

The old pipeline of Accelerate can be found in the GitHub reposi-
tory AccelerateHS/accelerate [1], and AccelerateHS/accelerate-llvm
[2] provides implementations for all three backends on the old pipeline. For
the new pipeline, the relevant repositories are dpvanbalen/accelerate [6]
and dpvanbalen/accelerate-llvm [7] under the branch new-pipeline. Note
that only the CPU backend is implemented for the new pipeline. The Vulkan
backend has been implemented exclusively for the new pipeline to narrow the
scope of this thesis.

As shown in Figure 3, to have a functional backend for Accelerate on the
new pipeline, it is necessary to implement the desugaring, compiling, and ex-
ecuting stages. These stages are centred around backend-specific operations,
hardware-specific code generation, and the runtime of the Vulkan backend.
As their names suggest, each stage serves a distinct purpose. Since fusion is
primarily an optimization, it is not required for a functional implementation
and is outside the scope of this thesis.

In Accelerate, several basic data types provide interfaces for storing
common data across multiple modules or serve as components of other data
types in Accelerate. In addition, a large number of data types construct the
Accelerate program in different levels or tiers. In this section, we will intro-
duce the foundational Accelerate elements involved in the Vulkan backend.

3.1 Tuples

Tuples are commonly used in Accelerate among other data types, and
most of them parameterize over tuple types. It is defined as nested pairs:

1 data TupR s a where
2 TupRunit :: TupR s ()
3 TupRsingle :: s a -> TupR s a
4 TupRpair :: TupR s a -> TupR s b -> TupR s (a, b)

Listing 11. TupR data type, which constructs elements in nested pairs.

21

TupR is constructed using the TupRsingle constructor, where s is a partial-
applied type or higher-rank type, and a is a data type. This data type
parameterizes over the type of nested elements to form a tuple of types.

In Addition, only binary tuples are used within internal Accelerate.
Therefore, built from TupRunit, each element in the tuple is appended to
it using TupRpair as the second argument starting from the first one of the
tuple. Recalling the higher-rank type Identity from §2.4.2, if we construct
data TupRpair (TupRpair TupRunit (TupRsingle (Identity 2.5)))
(TupRsingle (Identity 5)) for example, its type is TupR Identity (((),
Float),Int).

Though in the tuple, type a can vary, the higher-rank type s must
remain consistent across all elements. Note that constructing a single value
(assuming an Int value) by using a standalone TupRsingle (of type TupR
s Int) and a TupRpair (of type TupR s ((),Int)) with a TupRunit and
a TupRsingle differs from each other, since the former constructs a unary
while the latter builds a binary tuple. Only the latter is accepted inside
Accelerate.

3.2 Environments

As illustrated in Listing 9, environments are parameterized over a
higher-rank type and a tuple of types. Along with de Bruijn indices [8],
elements in the environment can be queried.

A de Bruijn index is a mathematical notation used to represent lambda
calculus expressions without using variable names. It specifies the position of
a variable’s binding lambda in terms of the number of intervening lambdas.
For example, with de Bruijn indices, lambda calculus λx.λy.λz. x y z can be
represented as λλλ 2 1 0.

Pushing a new element into the environment is similar to using lambda
calculus to bind a local variable, so to query it we can use de Bruijn indices.
Instead of denoting each element with a numeric number, Accelerate uses
Peano numbers [20]. The Idx data type provides this functionality:

1 data Idx env t where
2 ZeroIdx :: Idx (env , t) t
3 SuccIdx :: Idx env t -> Idx (env , s) t

Listing 12. Idx data type, which constructs a de Bruijn index.

In this data type, data constructors are recursively stacked together where
ZeroIdx points to the correct location of the desired element with type t in
the env type parameter. Recalling the environment example we introduced in
§2.4.2, which is Push (Push Empty Identity 2.5) Identity 3 with type

22

Env Identity (((),Float),Int) where env is (((),Float),Int), we make
a index to the floating number 2.5 as SuccIdx ZeroIdx, and its type is Idx
(((),Float),Int) Float. They are both perfectly parameterized over the
same environment type env, which can guarantee the type safety and elimi-
nate the out-of-bound indexing when querying a member.

By recurring through the environment with the typed index, the ex-
pected value can be fetched. This process is called the projection:

1 prj ’ :: Idx env t -> Env f env -> f t
2 prj ’ ZeroIdx (Push _ v) = v
3 prj ’ (SuccIdx idx) (Push env _) = prj ’ idx env

Listing 13. Environment projections.

Apart from the regular environment, Accelerate also has a partial en-
vironment type – PartialEnv. It allows missing elements but can still have
a consistent type parameter with a regular environment.

1 data PartialEnv f env where
2 PEnd :: PartialEnv f env
3 PPush :: PartialEnv f env -> f t -> PartialEnv f (env , t)
4 PNone :: PartialEnv f env -> PartialEnv f (env , t)

Listing 14. Partial environments.

Listing 14 presents that PartialEnv has three data constructors. Com-
pared to the regular environment (as shown in Listing 9), PEnd functions
similarly with Empty but can type any environment parameter in its type
argument env, which means that building an environment does not have to
start from an empty tuple. PPush works as same as Push. PNone represents
a missing value, and there is no restriction for its type t, resulting in it be-
ing able to push any type in the tuple. For example, Push (Push (Push
Empty Identity 2.5) Identity 3) Identity 3.5 has a regular environ-
ment type Env Identity ((((),Float),Int),Float), but using PNone
(PPush PEnd Identity 3) can give us the same type parameter env.

3.3 Scalar types

Scalar types in Accelerate are classified into two categories: VectorType
and SingleType.

1 data ScalarType a where
2 SingleScalarType :: SingleType a -> ScalarType a
3 VectorScalarType :: VectorType (Vec n a) -> ScalarType (Vec n a)

Listing 15. ScalarType data type, which constructs types for basic elements.

The former constructs the type of vectors (constructed by Vec data type)
which are only used in SIMD expressions, but this is not commonly used

23

within Accelerate and can be replaced by using regular expressions with nor-
mal arrays without significant performance impact. Therefore, both VectorType
and Vec won’t be implemented and supported in the thesis, while the latter
– SingleType is more interesting and valuable to be researched here.

1 type TypeR = TupR ScalarType
2

3 data SingleType a where
4 NumSingleType :: NumType a -> SingleType a
5 data NumType a where
6 IntegralNumType :: IntegralType a -> NumType a
7 FloatingNumType :: FloatingType a -> NumType a
8

9 -- Integral types supported in array computations.
10 data IntegralType a where
11 TypeInt :: IntegralType Int
12 TypeInt8 :: IntegralType Int8
13 TypeInt16 :: IntegralType Int16
14 TypeInt32 :: IntegralType Int32
15 TypeInt64 :: IntegralType Int64
16 TypeWord :: IntegralType Word
17 TypeWord8 :: IntegralType Word8
18 TypeWord16 :: IntegralType Word16
19 TypeWord32 :: IntegralType Word32
20 TypeWord64 :: IntegralType Word64
21 -- Floating -point types supported in array computations.
22 data FloatingType a where
23 TypeHalf :: FloatingType Half
24 TypeFloat :: FloatingType Float
25 TypeDouble :: FloatingType Double

Listing 16. Type constructors for single scalar numbers.

As depicted by Listing 16, integers and floating-point numbers are con-
structed separately. They are used to identify data structures to represent
which type of numbers. For example, (SinlgeScalarType NumSingletype
IntegralNumType TypeWord) has type SingleType Word, where Word is
type unsigned integer. Because acquiring the type parameter is sometimes
difficult, this also provides an explicit way to get the type of the represen-
tation. Together with TupR, we have nested tuples to denote any data type
that contains multiple SingleType data.

3.4 Primitive types

Apart from scalar types, primitive types are also used in primitive
expressions in Accelerate. They are defined as:

1 type TAG = Word8
2 type PrimBool = TAG
3 type PrimMaybe a = (TAG , ((), a))

Listing 17. Primitive types and TAG.

24

In the above code snippet, TAG is a type synonym for Word8 (unsigned 8-bit
integer), i.e. a new name for the existing type. It is used as the condition for
flow-controls and loops, e.g. if-else, switch-case, and for-while expressions.
Thus, PrimBool is also a type synonym for TAG.

Additionally, type PrimMaybe is special since it constructs an irregular
flow-control for data, which is unlike the if-else expression. If TAG is zero in
the data field, PrimMaybe encloses a Nothing [31] -like structure, which is
the left element in the pair; otherwise, it contains a type a data. To support
it, the backend should either discard the value constructed by PrimMaybe or
return an undefined value if it represents a Nothing, which can be done by
using regular flow-controls and special handling for the pointless return.

3.5 Buffers

Every piece of numeric value is stored in a buffer during execution,
making it one of Accelerate’s most critical components. A buffer represents
an array by storing each field of its SoA [49] (structure of arrays) separately
in flat memory, where the shape and dimensional information are stored in
independent buffers as scalars. Not just arrays but even scalar values are
placed in buffers, except their length is one.

In Accelerate, we have two types of buffer, namely Buffer and
MutableBuffer. As their names suggest, the former is the immutable buffer.
Having these separate data types can avoid unexpected buffer modifications.
They are defined as:

1 -- Distributes a type constructor over the elements of a tuple.
2 type family Distribute f a = b where
3 Distribute f () = ()
4 Distribute f (a, b) = (Distribute f a, Distribute f b)
5 Distribute f a = f a
6

7 -- Mapping from scalar type to the type as represented in memory.
8 type family ScalarArrayDataR t where
9 ScalarArrayDataR (Vec n t) = t

10 ScalarArrayDataR t = t
11

12 newtype Buffer e = Buffer (UniqueArray (ScalarArrayDataR e))
13 -- A structure of buffers represents the SoA of an array.
14 type Buffers e = Distribute Buffer e
15 newtype MutableBuffer e = MutableBuffer (UniqueArray (ScalarArrayDataR e))
16 type MutableBuffers e = Distribute MutableBuffer e

Listing 18. Accelerate buffer types.

As depicted in Listing 18, Buffer data type works as a wrapper for UniqueArray
which is an Accelerate-specific pointer to the actual space that contains the
data. On the other hand, to construct the whole SoA of an array, we have
Buffers. It distributes the Buffer type to a regular Haskell tuple con-

25

taining multiple buffers with each representing one field of the SoA. As-
suming we have a multi-dimensional array storing a ternary tuple of type
(Float,Half,Int) as each element, then it will be represented by a Buffers
data of type Buffers ((((),Float),Half),Int). Within Accelerate IR,
(Float,Half,Int) will be transformed to ((((),Float),Half),Int), and
Distribute Buffer ((((),Float),Half),Int) ∼ ((((),Buffer Float),
Buffer Half),Buffer Int). In general, an array of tuples will be trans-
formed into a tuple of arrays throughout the internal Accelerate.

Not only buffer data types, module Data.Array.Accelerate.Array.
Buffer also includes a series of functions to manage and access buffers. As for
the special pointer – UniqueArray, module Data.Array.Accelerate.Array.
Unique exposes several functions to allocate and deallocate such an object,
and convert the pointer into the ordinary Haskell Foreign.Ptr [39] so that
users can manipulate the corresponding memory space.

3.6 Variables

Variables in Accelerate are represented based on Var and Vars type,
which are record notations. They are defined as:

1 data Var s env t = Var { varType :: s t, varIdx :: Idx env t }
2 type Vars s env = TupR (Var s env)

Listing 19. Basic variable types.

Each variable has a field to mark the type with a higher-rank type s and
a field to identify the referenced position in the environment. It is also
parameterized over the corresponding environment that it points to. For
Vars, it gives the partial applied Var to TupR, forming a tuple structure for
Var data.

To introduce new local variables, which usually happens when passing
arguments to a function, we have data type LeftHandSide in Accelerate.
As its name suggests, LeftHandSide is used as a binding point which is the
part on the left-hand side of the equality when calling a let-binding. Unlike
binding a value to a named local variable, LeftHandSide indicates how to
push new elements to the existing environment.

1 data LeftHandSide s v env env ’ where
2 LeftHandSideSingle
3 :: s v
4 -> LeftHandSide s v env (env , v)
5 LeftHandSideWildcard
6 :: TupR s v
7 -> LeftHandSide s v env env
8 LeftHandSidePair
9 :: LeftHandSide s v1 env env ’

10 -> LeftHandSide s v2 env ’ env ’’

26

11 -> LeftHandSide s (v1 , v2) env env ’’

Listing 20. Basic variable types.

As presented in Listing 20, we have three constructors which are similar
to TupR (depicted in Listing 11), to denote the similar tuple type structure.
LeftHandSide is parameterized over the order and structure of the local
binding. which will be reflected in the type of new environment (env’).
Among these constructors, LeftHandSideSingle contains a single element
of type s v, and exposes its type v by nesting v with the original envi-
ronment using a tuple. Similar to the environment type, to build from
the ground, LeftHandSideWildcard is used to contain wildcard variables
(e.g. () – TupRunit) such that the environment type remains intact. Finally,
LeftHandSidePair just recursively combines all single elements to form a
new environment type. For example, to make a local binding for one variable
in the environment, we can write LeftHandSidePair (LeftHandSideWildcard
TupRunit) (LeftHandSideSingle Identity 5), so that its type becomes
LeftHandSide Identity ((),Int) env (env,Int). Note that this data
type does not build a new environment; it only exposes types for other func-
tions to ensure type safety. Users should implement a function to update the
environment themselves.

Listing 21 shows ExpVar and ExpVars. They represent the expression
type within internal pipelines as their results are either in ScalarType type
or a nested tuple of ScalarType type corresponding to the expression of tuple
arrays. To bind values from expressions, and introduce these local variables
to other expressions, ELeftHandSide is implemented.

1 type ELeftHandSide = LeftHandSide ScalarType
2 type ExpVar = Var ScalarType
3 type ExpVars env = Vars ScalarType env

Listing 21. Expression types.

Another special internal variable type is the ground type. Ground vari-
ables are those values that are stored in the remote memory. In general, the
keyword “Ground” means something placed in the device’s memory. Similar
to expression variable types, Listing 22 illustrates ground variable types with
similar type definitions. Additionally, GroundR identifies whether a ground
variable is a scalar value or an array in the buffer.

1 -- Ground values are buffers or scalars.
2 data GroundR a where
3 GroundRbuffer :: ScalarType e -> GroundR (Buffer e)
4 GroundRscalar :: ScalarType e -> GroundR e
5

6 type GLeftHandSide = LeftHandSide GroundR
7 type GroundVar = Var GroundR

27

8 type GroundVars env = Vars GroundR env

Listing 22. Gound variable types.

In general, Var and Vars are parameterized over different variable rep-
resentations to form different Accelerate variables, while representations are
no more than identifiers to mark types and contain some metadata. The
commonality across all variables is that they all have a field for de Bruijn
indices of the actual location in the environment storing the value.

3.7 Shapes

Shapes in Accelerate are represented by ShapeR which only preserved
the structure instead of actual numbers for each dimension. ShapeR and
common shapes are defined as follows:

1 data ShapeR sh where
2 ShapeRz :: ShapeR ()
3 ShapeRsnoc :: ShapeR sh -> ShapeR (sh, Int)
4

5 -- Synonyms for common shape types
6 type DIM0 = ()
7 type DIM1 = ((), Int)
8 type DIM2 = (((), Int), Int)
9 type DIM3 = ((((), Int), Int), Int)

Listing 23. Shape representations.

The shape data type takes nested pairs of type Int to construct the shape
representation. As mentioned in §2.4.2, the surface language of Accelerate
provides a set of data types to assign the shape for an array. Take the same
example (Z:.10:.5:.3) from that section; it will be represented as ShapeR
((((),Int),Int),Int) inside Accelerate’s pipeline, while the actual value
of each dimension is stored in the environment and can be accessed by given
de Bruijn indices.

Though shapes are stored as nested tuples to reflect the structure, they
can be converted to and from ordinary linearized numbers. Meaning that it is
possible to access a high-dimensional array given its linearized indices. Also,
it is one of the critical functionalities that any backend should support. These
conversions are written in the file Representation/Shape.hs of Accelerate
with the name toIndex and fromIndex.

3.8 Arrays

Similar to the shape, arrays are represented by ArrayR data type where
actual elements are obtained in the environment.

28

1 data Array sh e where
2 Array :: sh -- extent of dimensions = shape
3 -> Buffers e -- array payload
4 -> Array sh e
5

6 -- Type witnesses shape and data layout of an array
7 data ArrayR a where
8 ArrayR :: { arrayRshape :: ShapeR sh
9 , arrayRtype :: TypeR e

10 }
11 -> ArrayR (Array sh e)
12

13 type ArraysR = TupR ArrayR

Listing 24. Array representations.

The above code snippet depicts the structure of the array representation.
Array is parameterized over shape and element type of Buffers containing
the actual shape numbers in nested tuples, and Buffers data. Though it
hosts the actual shape rather than shape representations, this is only available
in surface language to interact with the array. When diving deep into internal
pipelines, we only use Array’s type to guarantee the type-safety for other
data types, instead of its data. ArrayR data type is defined using the record
notation, which captures ShapeR and TypeR. And it is parameterized over
Array type.

Array instruction defined in module AST.Operation of Accelerate types
the operation of fetching a single element from the external environment di-
rectly or indirectly. As shown in Listing 25, it has two constructors: Index
and Parameter. The former types an array-indexing, where its type param-
eter Int → e means returning an element e from the array when given a
linearized index. The argument of Index is the de Bruijn index of a buffer,
which is parameterized over a buffer environment. Parameter constructs the
operation of fetching a scalar element directly from the external environment
with type () → e meaning that returns element e given nothing.

1 data ArrayInstr benv t where
2 Index :: GroundVar benv (Buffer e) -> ArrayInstr benv (Int -> e)
3 Parameter :: ExpVar benv e -> ArrayInstr benv (() -> e)

Listing 25. Array instructions.

3.9 Arguments

When desuaring the surface Accelerate program into IRs, part of the
program will be represented as arguments for some operations. This involves
not only arrays but also expressions and functions from the user interfaces.

1 data Arg env t where

29

2 ArgVar :: ExpVars env e -> Arg env (Var ’ e)
3 ArgExp :: Exp env e -> Arg env (Exp ’ e)
4 ArgFun :: Fun env e -> Arg env (Fun ’ e)
5 ArgArray :: Modifier m
6 -> ArrayR (Array sh e)
7 -> GroundVars env sh
8 -> GroundVars env (Buffers e)
9 -> Arg env (m sh e)

Listing 26. Argument types.

As listed above, we have four different constructors to contain arguments.
Each of them parameterizes over a corresponding type. The ArgArray is
the most common one, as it builds metadata for arrays. Its first field marks
the access permission (depicted in Listing 27) for corresponding buffers. As
mentioned in §3.7, the number of each dimension is stored in the environment
as a scalar value. And the Third field of ArgArray is the place that provides
an interface to get the number, which contains scalar ground variables which
have de Bruijn indices to query concrete values from the environment. As
for the fifth one, it consists of de Bruijn indices for ground buffers.

1 data Modifier m where
2 -- Read -only.
3 In :: Modifier In
4 -- Write -only.
5 Out :: Modifier Out
6 -- Read and write.
7 Mut :: Modifier Mut

Listing 27. Array access controls.

To chain individual arguments together, we have operator (:>:). It is
parameterized over a special function type, namely s→t.

1 data PreArgs a t where
2 ArgsNil :: PreArgs a ()
3 (:>:) :: a s -> PreArgs a t -> PreArgs a (s -> t)
4 infixr 7 :>:
5

6 type Args env = PreArgs (Arg env)

Listing 28. Arguments.

3.10 Program terms

The Accelerate program that will be desugared is represented by a
series of program-level terms. This means that though users create various
Accelerate programs, deep in the IR level, they are replaced with certain
combinations of corresponding program-level dialects. These program-level
terms or dialects are wrapped in PreOpenAcc data type. Although it has the
same name with array-level terms PreOpenAcc, they share little similarity

30

with each other. Reflecting on Figure 3, this PreOpenAcc is the “Named”
IR. Unlike Operation IR, it only contains general information about the
program computation without details, e.g. memory management and kernel
executions.

1 data PreOpenAcc (acc :: Type -> Type -> Type) aenv a where
2 -- Local non -recursive binding.
3 Alet :: ALeftHandSide bndArrs aenv aenv ’
4 -> acc aenv bndArrs
5 -> acc aenv ’ bodyArrs
6 -> PreOpenAcc acc aenv bodyArrs
7

8 -- Variable bound by a ’Let ’, represented by a de Bruijn index.
9 Avar :: ArrayVar aenv (Array sh e)

10 -> PreOpenAcc acc aenv (Array sh e)
11

12 -- Tuples of arrays.
13 Apair :: acc aenv as
14 -> acc aenv bs
15 -> PreOpenAcc acc aenv (as, bs)
16 Anil :: PreOpenAcc acc aenv ()
17

18 -- Array -function application.
19 Apply :: ArraysR arrs2
20 -> PreOpenAfun acc aenv (arrs1 -> arrs2)
21 -> acc aenv arrs1
22 -> PreOpenAcc acc aenv arrs2
23

24 -- If-then -else for array -level computations.
25 Acond :: Exp aenv PrimBool
26 -> acc aenv arrs
27 -> acc aenv arrs
28 -> PreOpenAcc acc aenv arrs
29

30 -- Value -recursion for array -level computations.
31 Awhile :: PreOpenAfun acc aenv (arrs -> Scalar PrimBool)
32 -> PreOpenAfun acc aenv (arrs -> arrs)
33 -> acc aenv arrs
34 -> PreOpenAcc acc aenv arrs
35

36 -- Array inlet.
37 Use :: ArrayR (Array sh e)
38 -> Array sh e
39 -> PreOpenAcc acc aenv (Array sh e)
40

41 -- Capture a scalar (or a tuple of scalars) in a singleton array.
42 Unit :: TypeR e
43 -> Exp aenv e
44 -> PreOpenAcc acc aenv (Scalar e)
45

46 -- Change the shape of an array without altering its contents.
47 Reshape :: ShapeR sh
48 -> Exp aenv sh
49 -> acc aenv (Array sh ’ e)
50 -> PreOpenAcc acc aenv (Array sh e)
51

52 -- Construct a new array by applying a function to each index.
53 Generate :: ArrayR (Array sh e)
54 -> Exp aenv sh
55 -> Fun aenv (sh -> e)

31

56 -> PreOpenAcc acc aenv (Array sh e)
57

58 -- Generalised forward permutation.
59 Permute :: Fun aenv (e -> e -> e)
60 -> acc aenv (Array sh ’ e)
61 -> Fun aenv (sh -> PrimMaybe sh ’)
62 -> acc aenv (Array sh e)
63 -> PreOpenAcc acc aenv (Array sh ’ e)
64 ...

Listing 29. Program terms data type.

In Listing 29, we only show those constructors that are currently used.
The full list can be found in module Data.Array.Accelerate.AST. Compu-
tation dialects that can be replaced by Generate and Permute, and those that
are not supported yet in the general Accelerate pipeline, are not included.
These operations interact with surface languages and are parameterized over
the returned element type a:

• Tuples: Unlike Buffers, Apair and Anil have nothing to do with
the SoA of arrays. They are used to wrap multiple arrays as a binary
nested tuple similar to TupR, which might be used in array loops and
array control-flows.

• Local Variables: To bind and query local arrays, Alet and Avar are
introduced. They both interact with the environment. The first and
second arguments of Alet are the bound expression and the bound
scope.

• Shapes: Reshape constructor marks the array computation of reshap-
ing. The second argument is the expression to compute the new di-
mensional number for the new shape. The third one is the original
array.

• Array Inlet: Though Use does not return a new data type for an
embedded array since its returned type a is in the same type with its
second argument, it marks a possible data transfer.

• Singleton Array: As the name of Unit implies, it is used to mark a
singleton array with only one scalar element.

• Application: Apply marks the application for an Accelerate function
given the function arguments at its third position.

• Flow-Control: To make the program switch over different branches,
we have Acond. Its first argument is an expression giving the condi-
tion. Its second and third arguments contain other Accelerate pro-
grams, which fall into the true and false branches separately.

32

• Loop: Similar to Acond, Awhile also branches over different condi-
tions, and keeps updating the array arrs until it does not satisfy the
condition.

• Generate [53, §Initialisation]: This constructor represents the pro-
gram generating each element for the array given a shape expression
and a scalar expression to compute the value according to each element
index.

• Permute [53, §Forward permutation (scatter)]: Permute (forward per-
mutation) contains the combination expression as the first argument of
updating the default array given its original value and a value from
the source array according to the permutation expression. The second
argument of Permute is the default array. The third one is the index
permutation expression, which maps a position in the source array to
a new position of the default array, or just drops the current index
and doesn’t update the default array. The source array is given as the
fourth argument.

Additionally, program-level PreOpenAcc is also the entry point for all
Accelerate backends, where transformations and analysis of backends start
from here.

3.11 Array terms

Though backend-specific operations are the core for building computa-
tions on the device, the whole Accelerate program still needs supplementary
information to run, such as the memory allocation, data transfer, executing
the built computation. PreOpenAcc is such the data type to contains all
these operations, namely array terms, including the execution for backend-
specific operations. Though it shares the same name with the program-level
term data type, they are totally different. Note that this data type does not
execute any operation. Instead, it just represents the internal process to run
the computation and provides certain type parameters. As shown in Figure
3, this is actually the Operation IR, which contains details about how the
operation should go, and it will be executed in the execution module.

1 data PreOpenAcc (op :: Type -> Type) env a where
2 -- Executes an executable operation.
3 Exec :: op args
4 -> Args env args
5 -> PreOpenAcc op env ()
6

7 -- Returns the values of the given variables.
8 Return :: GroundVars env a

33

9 -> PreOpenAcc op env a
10

11 -- Evaluates the expression and returns its value.
12 Compute :: Exp env t
13 -> PreOpenAcc op env t
14

15 -- Local binding of ground values.
16 Alet :: GLeftHandSide bnd env env ’
17 -> Uniquenesses bnd
18 -> PreOpenAcc op env bnd
19 -> PreOpenAcc op env ’ t
20 -> PreOpenAcc op env t
21

22 -- Allocates a new buffer of the given size.
23 Alloc :: ShapeR sh
24 -> ScalarType e
25 -> ExpVars env sh
26 -> PreOpenAcc op env (Buffer e)
27

28 -- Buffer inlet.
29 Use :: ScalarType e
30 -> Int -- Number of elements
31 -> Buffer e
32 -> PreOpenAcc op env (Buffer e)
33

34 -- Capture a scalar in a singleton buffer
35 Unit :: ExpVar env e
36 -> PreOpenAcc op env (Buffer e)
37

38 -- If-then -else for array -level computations
39 Acond :: ExpVar env PrimBool
40 -> PreOpenAcc op env a
41 -> PreOpenAcc op env a
42 -> PreOpenAcc op env a
43

44 -- Value -recursion for array -level computations.
45 Awhile :: Uniquenesses a
46 -> PreOpenAfun op env (a -> PrimBool)
47 -> PreOpenAfun op env (a -> a)
48 -> GroundVars env a
49 -> PreOpenAcc op env a

Listing 30. Array terms data type.

As shown in Listing 30, PreOpenAcc consists of constructors for con-
verting ordinary arrays to and from Accelerate arrays, local bindings, back-
end operation executions, array-level flow-controls and loops. This type is
parameterized over the backend-specific operation type op. Unless stated
explicitly, the following operations interact with memory space on the device
side.

• Backend Operation Execution: Exec consists of a backend-specific
operation that is awaiting to be executed on the device with arguments.
Since its return type (which is a) is an empty tuple, instead of returning
a value, it should directly write results to buffers after execution.

• Expression Evaluation: Compute constructor represents an expres-

34

sion that is awaiting execution on the host rather than the device and
returns the evaluation result with type t.

• Array Lift: Use represents lifting a buffer from the host side to the
device side. It explicitly tells when to transfer the data.

• Array Return: Unlike Use, Return does not trigger data transfer. It
contains querying buffers from the environment given de Bruijn indices
and returns them.

• Array Allocation: Given the shape and element type, Alloc marks
the operation of allocating a new empty buffer on the device.

• Singleton Array: As mentioned before, scalars are actually captured
in buffers with size one. To mark the action of allocating and writing
such the buffer, Unit is created given the index for such a scalar.

• Array-Level Local Binding: Alet identifies the array-level binding
operations. Its third argument introduces new arrays to the environ-
ment, whereas the fourth argument is the actual computation. As the
binding value bnd might be changed during execution, Uniquenesses
marks the buffer usage. After executing this constructor, the environ-
ment should stay intact.

• Array-Level Flow-Control: Acond is the array-level flow-control,
where its first argument marks the index for the condition. The second
and third array operations are the true and false branches, respectively.

• Array-Level Loop: Awhile constructs the loop-terminated function,
the loop body, and the index for the initial value. Then it returns the
final result when breaking the loop.

None of the above operations triggers the data transfer from the device to
the host. This is because after executing all such operations, the very outer
layer of the recursive PreOpenAcc data type should return the final value a
which is either a single buffer or nested buffers stored on the device, while
this value should be caught and fetched from the remote memory by the
function who calls to execute PreOpenAcc data.

The Schedule (of type SeqSchedule) of Figure 3 is essentially the
same as PreOpenAcc but parameterized over the backend-specific kernel type
kernel. It will contain scheduled operations and call the runtime to execute
them during the execution.

35

3.12 Modifications

Compared to the original Accelerate and Accelerate-LLVM, we have
made a few modifications to those libraries. We added element size (or
length) for buffers (shown in Listing 18), so that new buffer types looks like:

1 data Buffer e = Buffer Int (UniqueArray (ScalarArrayDataR e))
2 type Buffers e = Distribute Buffer e
3 data MutableBuffer e = MutableBuffer Int (UniqueArray (ScalarArrayDataR e))
4 type MutableBuffers e = Distribute MutableBuffer e

Listing 31. Modified buffer types.

To make them compatible and work with other components, we also modified
the functions that use them. Their length fields are filled when allocating
new buffers, since only at this point can we know how many elements will
be put inside each buffer. These modifications are important for the Vulkan
backend because when the array indexing takes place in PreOpenExp, there
is neither information about the length of the array (only buffer indices) nor
is it possible to get such one in runtime. Indexed arrays are transferred to
the remote (device) memory using their lengths.

4 The Vulkan backend

The main research goal of this thesis is to discover the possibility of
implementing a Vulkan backend for Accelerate. As elaborated in Figure 3, a
backend of the new pipeline should have support for the process within the
right yellow, except that scheduling is automatically done by Accelerate’s
scheduler. This means a functional Vulkan backend is necessary to conduct
desugaring, compiling, and executing internal IRs. The most important part
of this process is to generate and compile GLSL code for each array com-
putation since they are coded in higher order, whereas GLSL is a first-order
programming language.

To run an Accelerate program, there are a few steps for the Vulkan
backend to do. For starters, program-level PreOpenAcc (which is the “Named”
IR) is desuagred into array-level PreOpenAcc (namely the Operation IR) us-
ing backend-specific operations. Then, Operation IRs are fused into clustered
IRs (or Partitioned IRs), in which the fusion’s behavior is controlled by im-
plemented instances of the fusion class. Specifically, fusion not only combines
multiple backend-specific operations as a whole but also tries to eliminate un-
necessary array allocations. However, it is beyond the scope of this thesis
and won’t be enabled nor included in this thesis; thus, each Partitioned IR

36

only contains individual operations. After that, a code generator takes these
IRs to generate GLSL codes individually. These codes then are compiled into
SPIR-V codes. Furthermore, global and local Vulkan contexts (also known
as objects or resources) are created with the SPIR-V code. At this point,
backend operations are replaced with Vulkan kernels (shown in Listing 34,
a customized data type) containing local contexts. Finally, these IRs are
automatically scheduled and executed by a runtime of the Vulkan backend.
When executing them, both the local context and shared global context are
called.

The full implementation of the Vulkan backend can be found in GitHub
repository largeword/accelerate-vulkan [38]. The Vulkan-Haskell bind-
ing we use is expipiplus1/vulkan [22], which is maintained by a few Vulkan
developers. It has good support for all the core functionalities of Vulkan from
version 1.0 to 1.3, as well as almost all the extensions. We thus choose this
one among all Vulkan-Haskell bindings.

4.1 Backend-specific operations

The first step that happens on the backend level is to desugar or trans-
form the Accelerate program (program-level PreOpenAcc) into a series of
backend-specific operations. These operations are dialects used to build the
array computation on the hardware, which are extremely hardware- and
platform-dependent. Furthermore, the operation set is different on differ-
ent devices since various hardware has diverse implementations of the same
array computation. For instance, a permutation of the program level can
be desugared into a single backend-specific permutation, or decomposed into
the combination of multiple array additions, productions, and other basic
operations.

When creating the backend-specific operation set, we are actually de-
signing array computation dialects on the hardware. Thus, we need to con-
sider the overhead of conducting each computation on the hardware, as well
as the difficulty of the device code generation for each dialect.

4.1.1 Vulkan operations

The PreOpenAcc (shown in Listing 30) takes a backend-specific opera-
tion type as its first type parameter – op. Then constructor Exec wraps such
an operation set as its first argument. As such, we have made Vulkan-specific
operations like:

1 data VulkanOp t where
2 VkGenerate :: VulkanOp (Fun ’ (sh -> t)

37

3 -> Out sh t
4 -> ())
5 VkPermute :: VulkanOp (Fun ’ (e -> e -> e)
6 -> Mut sh ’ e
7 -> Fun ’ (sh -> PrimMaybe sh ’)
8 -> In sh e
9 -> ())

Listing 32. Vulkan-specific operations.

VulkanOp does not contain any value in constructors; instead, it exposes
type parameters to guarantee such safeties for argument types (mentioned in
Listing 26). Each constructor is parameterized over different types:

• VkGenerate marks the operation of Generate (presented in Listing 29).
Fun’ (sh -> t) reflects the generating function in Generate, which
takes an index in the type of the shape and gives a scalar value in the
type of t. Parameterized over the same modifying mode Out (shown
in Listing 27), Out sh t marks a write-only buffer containing elements
of scalar type t, which is of shape sh.

• VkPermute is parameterized over a more complex type; it is correspond-
ing to Permute (presented in Listing 29). Fun’ (e -> e -> e) types
a combination function that takes two arguments in the same type and
returns a value. It elaborates on how the original and given values are
combined to update the permuted array. Then Mut sh’ e explicitly
tells that the permuted array argument is of type Arg env (Mut sh’
e) from Listing 26, which is the mutable buffer. In sh e works sim-
ilarly to the mutable buffer type, which constrains the source input
type. Fun’ (sh -> PrimMaybe sh’) guarantee the permutation func-
tion type, which maps the shape of the source (input) array to maybe
the shape of the default (permuted) array that is taken as a mutable
buffer. This mapping process reflects how each element from the input
array is related to the destination array or is just simply dropped.

4.1.2 Desugaring

After having the backend operation set, according to the compiler
pipeline (as shown in Figure 3), we need to desugar the program-level PreOpenAcc
(“Named” IR, shown in Listing 29) into the array-level one (Operation IR,
shown in Listing 30), and use VulkanOp to represent all the array compu-
tations. Thankfully, in module Data.Array.Accelerate.Trafo.Desugar,
functions are implemented to automatically desugar all program-level oper-
ations into Operation IRs, except for array computations. Implementation

38

of desugaring Generate and Permute among all array computations is the
minimal requirement.

Though apart from Generate and Permute, other array computations
(Map, Scan, Fold, etc.) are accommodated in the program-level IR (i.e.
PreOpenAcc), they can be all desugared and represented by those two op-
erations. That’s why we only defined those two operations in the backend
operation set.

To make the desugaring function work, implementing the instance
DesugarAcc VulkanOp is necessary, but only the function mkGenerate and
mkPermute are required as mentioned before. Though implementing more
such desugaring functions for corresponding array computations can improve
the parallelism and utilize the Vulkan device better, they are optional and
won’t be included in the thesis.

1 instance DesugarAcc VulkanOp where
2 mkGenerate :: Arg env (Fun ’ (sh -> t))
3 -> Arg env (Out sh t)
4 -> OperationAcc VulkanOp env ()
5 mkGenerate f aOut = Exec VkGenerate (f :>: aOut :>: ArgsNil)
6

7 mkPermute :: Arg env (Fun ’ (e -> e -> e))
8 -> Arg env (Mut sh’ e)
9 -> Arg env (Fun ’ (sh -> PrimMaybe sh ’))

10 -> Arg env (In sh e)
11 -> OperationAcc VulkanOp env ()
12 mkPermute combF aMut idxF aIn = Exec VkPermute (combF
13 :>: aMut
14 :>: idxF
15 :>: aIn
16 :>: ArgsNil)

Listing 33. Desugaring surface programs.

As elaborated in Listing 33, the function mkGenerate and mkPermute
are defined. Since constructor Exec of Listing 30 accommodates backend op-
erations and typed arguments, we can simply wrap the matching VulkanOp
constructor and chained input arguments with Exec to complete the desug-
aring. This will tell the runtime to execute such operations on the Vulkan
device during the execution.

Unlike Soest’s thesis [50] about implementing a TensorFlow backend
for Accelerate, where he desugared Generate and Permute into more basic
operations, we halted this journey at a different point. This is because Ten-
sorFlow combines all array computations as a whole compute graph, resulting
in no data transfer and execution overhead in between, and separating higher-
order operations at the desugaring can save much work for later stages, while
Vulkan executes each operation individually. Thus, we hope to wrap as many
operations as possible within one kernel (or backend-specific operation). The
downside, however, is the increasing work for code generation.

39

In general, during the process of lowering “Named” IRs into Operation
IRs, we only need to interact with instance DesugarAcc VulkanOp imple-
menting the function mkGenerate and mkPermute at minimal.

4.2 Vulkan kernels

After desugaring into Operation IR, we now obtain array computations
represented in Vulkan-specific operations. Compared to executable Vulkan
kernels, these operations are merely high-level representations of low-level
device codes. Thus, we need to compile each representation into separate
Vulkan executable objects, namely Vulkan kernels, to form Kernel IR re-
flected in Figure 3.

1 data VulkanKernel env where
2 VkKernel ::
3 { kernelId :: {-# UNPACK # -} !UID
4 -- Contains the shapes of all buffers.
5 , kernelShapes :: [Idx env Int]
6 -- Contains input buffer args.
7 , kernelInArgs :: [Exists (VulkanArg env)]
8 -- Contains mutable buffer args.
9 , kernelMutArgs :: [Exists (VulkanArg env)]

10 -- Contains output buffer args.
11 , kernelOutArgs :: [Exists (VulkanArg env)]
12 -- Store pre -built local Vulkan objects.
13 , kernelResources :: Lifetime (LocalVulkanResources env)
14 -- Store scalars to compute the number of threads.
15 , kernelThreads :: [Idx env Int]
16 }
17 -> VulkanKernel env

Listing 34. Vulkan kernels.

During the code generation and compilation stage, VulkanKernel data
are built for each individual Vulkan operation (of type VulkanOp). Though
the generation and permutation operations work differently, their kernel can
be contained by the same data type. Presented in Listing 34, each field of
the record notation has a specific purpose:

• kernelId uniquely identifies a kernel by containing a UID.

• kernelShapes contains a list of de Bruijn indices parameterized over
the kernel environment env, which is related to integer scalars repre-
senting dimensional numbers of all array arguments.

• kernelInArgs, kernelMutArgs, and kernelOutArgs are Vulkan argu-
ments (explained in Listing 35), which obtain both scalars and buffers
in the same list eliminated the type parameter (either a or Buffer a)
by Exists. They contain the items that are taken and used by the

40

computation. Each field records a list of such items classified by its
access mode (as shown in Listing 27).

• Since each Vulkan kernel builds an executable Vulkan object with sup-
plementary context, kernelResources is such the field to contain these
data. In between, Lifetime is a finalizer (introduced in §4.2.2) type
managing the local context LocalVulkanResources (introduced in §4.2.2),
which uses the garbage collection to automatically recycle non-shared
resources.

• The threads field kernelThreads marks how many threads will be
launched to execute the current kernel. Since the thread number is
usually set according to the shape of one of the array arguments, we
here use a list to contain all dimensional numbers reflecting the shape.
Thus, the actual number is the multiplication among all the scalars in
the list.

1 newtype VulkanArg env a = VulkanArg (GroundVar env a)

Listing 35. Vulkan arguments.

To contain buffers and scalars that are called by the Vulkan kernel, we have
VulkanArg (shown in Listing 35). It is parameterized over ground types,
meaning that it can represent both buffer and scalar elements. VulkanArg
(Var (GroundRbuffer st) idx) is a buffer argument for the kernel, where
st is the scalar type and idx is the de Bruijn index for the current variable
pointing to the position in the environment. Similarly, VulkanArg (Var
(GroundRscalar st) idx) means a scalar argument.

The overall steps for making Vulkan kernels are generating GLSL code,
creating a Vulkan global context, compiling GLSL code, and building a
Vulkan local context. Spawning a kernel for the permutation is more complex
than that of the generation.

4.2.1 Compiling to GLSL

During the compiling stage, our goal is to compile PreOpenExp (the
definition can be found in module Data.Array.Accelerate.AST.Exp) type
data into the concrete GLSL code. PreOpenExp is at a lower level com-
pared to the array-level PreOpenAcc, which contains element-wise compu-
tations rather than array-wise ones. It does not show up alone; usually, it
comes with a typed environment containing local bindings. PreOpenFun re-
cursively nests multiple ELeftHandSide (introduced in Listing 21) and one

41

PreOpenExp as a function, which guides to build a suitable environment to
compile the PreOpenExp.

A complete GLSL snippet consists of headers (including the standard
version and enabled extensions), local thread declarations, buffer bindings
(inlets), and a main body. Though expressions compiled from PreOpenExp
are the most important part of the main body, to make it work, we need to
query the global index for the current thread and bind results from expres-
sions to buffers at the end.

We have made several customized data types to aid the compiling pro-
cess.

1 newtype VarName t = VarName String
2 type VarNameTup t = TupR VarName t
3 type VarNameEnv env = Env VarName env

Listing 36. Variable names.

VarName (in Listing 36) stores a unique name for a variable, and its type pa-
rameter t can be used to type variable references in PreOpenExp. VarNameTup
and VarNameEnv build a tuple of variable names and an environment sepa-
rately.

1 newtype ExpString t = ExpString String
2 type ExpStringTup t = TupR ExpString t
3 type ExpStringEnv env = Env ExpString env

Listing 37. Compiled expressions.

Similarly, we have made ExpString (in Listing 37) to store a compiled expres-
sion of PreOpenExp, and AInstr (in Listing 38) is for the array instruction.
The first field of AInstr is the unique name of a called buffer or scalar vari-
able; the second one is a Vulkan argument that is parameterized over an
external buffer environment.

1 data AInstr benv t = AInstr String (VulkanArg benv t)
2 type AInstrEnv benv = PartialEnv (AInstr benv) benv

Listing 38. Compiled array instructions.

Then to contain self-defined and manually implemented functions (as listed
in Table 1), we have made the following ordered map type. Its key is the
function name and the value is the function definition.

1 type FuncMap = OMap String String

Listing 39. Function maps

To keep counting variables and give a unique name for each variable, we have
made a type synonym type VarCount = Int, which will be put in the state
for functions that depend on it.

42

In the following paragraphs, we will introduce steps to compile PreOpenExp
into GLSL code, but due to the page limitation, we won’t include the full
implementation here. Those who might be interested can refer to the GitHub
repository largeword/accelerate-vulkan [38] under the folder Compile in
our implementation.

Data types As elaborated in §3.3, we have many scalar types in Accelerate.
Each of them has a corresponding value type in GLSL, and we have imple-
mented the support for all scalar types except for the VectorScalarType.

1 integralTypeToString :: IntegralType a -> String
2 integralTypeToString t = case t of
3 TypeInt -> case bytesElt (TupRsingle (SingleScalarType (NumSingleType

(IntegralNumType TypeInt)))) of
4 4 -> error "32-bit GHC not supported , default Int should be Int64"
5 8 -> "int64_t"
6 s -> error "Int size " ++ show s ++ "-bit not supported"
7 TypeInt8 -> "int8_t"
8 TypeInt16 -> "int16_t"
9 TypeInt32 -> "int32_t"

10 TypeInt64 -> "int64_t"
11 TypeWord -> case bytesElt (TupRsingle (SingleScalarType (NumSingleType

(IntegralNumType TypeWord)))) of
12 4 -> error "32-bit GHC not supported , default UInt should be UInt64"
13 8 -> "uint64_t"
14 s -> error "UInt size " ++ show s ++ "-bit not supported"
15 TypeWord8 -> "uint8_t"
16 TypeWord16 -> "uint16_t"
17 TypeWord32 -> "uint32_t"
18 TypeWord64 -> "uint64_t"
19

20 floatingTypeToString :: FloatingType a -> String
21 floatingTypeToString t = case t of
22 TypeHalf -> "float16_t"
23 TypeFloat -> "float32_t"
24 TypeDouble -> "float64_t"

Listing 40. Compiling scalar types.

Listing 40 shows how to compile each scalar type to a corresponding
type in GLSL. The two exceptions here are TypeInt and TypeWord. In most
environments, default integer and unsigned integer types are set to 64-bit
lengths, but in GPUs, they are 32-bit. Thus, to make the length of data
types on the host side consistent with that of the device, we enforce the
default integer and unsigned integer on the host side explicitly converted to
their 64-bit version on the device side and throw an error if they are not of
64-bit on the host.

Enabled extensions Native GLSL only supports a small set of function-
alities and types. Adding extensions on the top level of the code enables
the compiler to provide more flexibility and customized features for Vulkan

43

shaders. In the Vulkan backend, we enable all these extensions for each
shader:

• ARB_separate_shader_objects, which provides more flexibility and
modularity in shader management of Vulkan;

• EXT_nonuniform_qualifier, which introduces dynamic buffer index-
ing, i.e. accepting ordinary integers as indexing numbers rather than
constants;

• EXT_shader_explicit_arithmetic_types, which extend the range of
supported data types for the shader;

• EXT_shader_atomic_int64, which allows atomic operations to take
64-bit integers;

• EXT_shader_atomic_float, which allows atomic operations to support
single-precision (32-bit) and double-precision (64-bit) floating-point num-
bers. However, it only works for atomicAdd, atomicExchange, atomicLoad,
and atomicStore.

Although they are the minimal requirement for the backend, not all of them
are supported on any device. After enabling extensions in the GLSL code,
we are required to also enable corresponding features in the logical device
creation information of Vulkan to support such extensions. Before then,
these features should be checked whether they are supported on the target
device or not.

Global indices Within the GLSL code, we are required to set the local
thread number for a working group, which can be fixed or dynamically given
similar to buffer inlets. We can launch multiple working groups for the same
shader to have more threads. Both generation and permutation take an
index as the source for the computation, which makes it important to query
a unique global index for each thread and then bind it to the compilation
environment for later use. To achieve this, we first query the index by:

1 const int64_t globalID = int64_t(dot(vec3(gl_GlobalInvocationID),
2 vec3(1,
3 gl_NumWorkGroups.x,
4 gl_NumWorkGroups.y *
5 gl_NumWorkGroups.x)));

Listing 41. Computing global index.

44

Since the index type in Accelerate is denoted by a 64-bit integer, we follow
the same principle here.

Under some cases, the linearized globalID would be more useful if
it is unfolded into multi-dimensional indices. Thus, we have made such a
function:

1 compileFromIdx :: ShapeR t
2 -> String
3 -> VarCount
4 -> (String , String , VarNameTup t, VarNameTup t, VarCount)

Listing 42. Unfolding the global index.

Given a shape representation, a prefix string, and a variable number,
compileFromIdx returns a GLSL buffer inlet string, a statement to disassem-
ble the global index, a tuple for variable names of multi-dimensional indices,
a tuple for variables of dimensional numbers matching the shape representa-
tion, and an updated variable counting number. It executes two steps inside:
First, creating buffer inlets to get each dimensional number according to
ShapeR; Second, using modulos and integer divisions to recursively unfold
the global index.

1 layout(set = 0, binding = 0, std430) buffer Dim0 { int64_t outDim0; };
2 layout(set = 0, binding = 1, std430) buffer Dim1 { int64_t outDim1; };
3 layout(set = 0, binding = 2, std430) buffer Dim2 { int64_t outDim2; };

Listing 43. Buffer inlets from compileFromIdx.

Supposing calling compileFromIdx to generate three indices for a three-
dimensional array, where each of them matches a dimensional index, Listing
43 and Listing 44 show the buffer inlets and expressions statements sepa-
rately. Each scalar buffer in Listing 44 represent a dimensional number for
the array.

1 const int64_t outIdx2 = (globalID) % outDim2;
2 const int64_t outIdx1 = ((globalID) / outDim2) % outDim1;
3 const int64_t outIdx0 = (((globalID) / outDim2) / outDim1) % outDim0;

Listing 44. Unfolding indices from compileFromIdx.

After having these indices from the VarNameTup, we can then either
push them to the environment or pass them to another function for further
processing. For the former, the function makeEnv (as shown in Listing 45)
takes a set of left-hand-sides and a typed tuple of variable names to build a
new environment from an empty one recursively.

1 makeEnv :: LeftHandSide ScalarType t () env
2 -> VarNameTup t
3 -> VarNameEnv env
4 makeEnv lhs idx = go Empty lhs idx
5 where go :: VarNameEnv env

45

6 -> LeftHandSide s t env env ’
7 -> VarNameTup t
8 -> VarNameEnv env ’
9 go env (LeftHandSideWildcard _) _

10 = env
11 go env (LeftHandSideSingle _) (TupRsingle varName)
12 = Push env varName
13 go env (LeftHandSidePair lhs1 lhs2) (TupRpair v1 v2)
14 = go (go env lhs1 v1) lhs2 v2
15 go _ _ _ = error $ "Tuple types do not match"

Listing 45. Making environments.

Compiling called buffers Buffers are called in two ways: direct calls and
indirect calls. The former involves the data constructor ArgArray of Arg
(as shown in Listing 26), where buffers are introduced with VkGenerate or
VkPermute in the Partitioned IR. To generate GLSL code declaring buffer
inlets, we have made the following function:

1 compileAddBufferArgs :: TypeR t -> String -> VarCount -> (String ,
2 VarNameTup t,
3 VarCount)

Listing 46. Declaring buffer inlets for GLSL code.

Given a type representation of SoA, a prefix, and a variable count,
compileAddBufferArgs returns a buffer inlets statement, a tuple of bound
buffers’ names, and a new variable count, which does a similar job to
compileFromIdx. To fill one of the buffer arguments fields for the Vulkan
kernel, we have built:

1 argBuffers :: Arg env (m sh e) -> [Exists (VulkanArg env)]

Listing 47. Compiling buffer arguments.

argBuffers takes an array argument and flattens its tuple of ground variables
into a list of VulkanArg constructor. As for indirect calls of buffers, they
come from array instructions (or array indexing). They are compiled to both
the GLSL code and buffer arguments at the same time by recursing through
AInstrEnv and only taking PPush-constructed values. Thus, we have made
function compileAInstrEnv as follow:

1 compileAInstrEnv :: AInstrEnv benv
2 -> Int
3 -> (String , [Exists (VulkanArg benv)], Int)

Listing 48. Compiling array instructions.

46

Compiling regular expressions In PreOpenExp (the definition can be
found in module Data.Array.Accelerate.AST.Exp), there are different con-
structors handling local bindings, variable references, indices slicing, indices
conversions, flow-controls, primitive scalar operations, etc. To compile them
into statements and expressions coded in GlSL, we have made a function
compileStatement (as presented in Listing 49). Given a data of type PreOpenExp
parameterizing over ArrayInstr benv (as shown in Listing 25), it would re-
turn a tuple of GLSL statements and compiled expressions.

1 compileStatement :: VarNameEnv env
2 -> PreOpenExp (ArrayInstr benv) env t
3 -> State (VarCount , FuncMap , AInstrEnv benv)
4 -- return (Statement , TupR Expression)
5 (String , ExpStringTup t)

Listing 49. Compiling PreOpenExp

Inside compileStatement, various pattern-matching cases handle con-
structors of the element-wise operation:

• The Let constructor introduces a local binding to the environment for
the body expression given a ELeftHandSide (mentioned in Listing 21)
and a bound expression. The bound expression should be compiled
first, giving a statement and a tuple of compiled expressions. Then,
the tuple and the left-hand-side are taken to update the original vari-
able environment. This process is done by the function compileLhs,
which declares and binds expressions to new variables, and then re-
cursively pushes new variables to the environment according to the
left-hand-side. After that, it will return a statement for variable dec-
larations and a new environment. Finally, the body expression can be
compiled by recursively calling compileStatement with the new en-
vironment. For instance, the expression let x = i+1 in x*x is com-
piled to int64_t e0_let = (1L) + (outIdx0); returning (e0_let)
* (e0_let) as the expression.

• Evar stands for a variable reference containing a ExpVar. Thus, we
can simply get a de Bruijn index from it and project the index to the
environment fetching the name of the referenced variable.

• Constructor Foreign builds a backend-specific function, which is not
used throughout Accelerate pipelines. The easy way to compile it is to
call the function rebuildNoArrayInstr to recover a PreOpenFun from
its fallback function. In the first step, its input expression is compiled
and bound to newly declared variables. Then given new variables and
the left-hand-side from PreOpenFun, function compileFun would push

47

them to an empty environment and use it to recursively compile the
PreOpenExp from PreOpenFun.

• For tuples, Pair constructs a pair of scalar expressions. The same
environment should be used to compile them individually and then
wrap their returned results as a pair. Nil is also a tuple constructor.
It represents an empty tuple without any expression or value.

• SIMD operators are provided specifically for VectorType, so they are
not included in our implementation for the reason mentioned in §3.3.

• For array indices manipulations, we have IndexSlice and IndexFull.
The former slices an array into a sub-array by returning the sliced
indices. The latter rebuilds the full shape from sliced indices. To
implement such operations, we only need to type with constructors in
SliceIndex data type of module Data.Array.Accelerate.Array.
Representation and use the type construction there.

• ToIndex and FromIndex mark indices linearization and reverse lin-
earization. Given a shape representation, a shape of the array, and
multi-dimensional indices, ToIndex is supposed to calculate a linearized
index. For example, we have an array of shape (d0, d1, . . . , dn) and
multi-dimensional indices (i0, i1, . . . , in), they should be compiled to a
new index in compliance with the equation ((((0) ·d0+ i0) ·d1+ i1) . . .) ·
dn + in. As for FromIndex, it is compiled in the same way as how
compileFromIdx converts the global index shown in Listing 44.

• The Case constructor identifies case-switches with its first argument as
the condition. To compile it, we declare new variables to catch returns
from each branch. Then, we regularly compile each case and the default
case. Finally, the switch statement resembles all the branches where
each branch has a returned variable binding statement. The return for
the whole case expression is a tuple of returned variables.

• Condition expression – Cond is a simplified version of Case, so it can
be compiled in the same way. For example, we have an expression
ifThenElse (i == 5) (i*i) (mod i 5); it is compiled to the follow-
ing GLSL code.

1 int64_t e0_condRtn;
2 if (bool(uint8_t ((5L) == (outIdx0)))) {
3 e0_condRtn = (outIdx0) * (outIdx0);
4 } else { e0_condRtn = (outIdx0) % (5L); }

48

In the condition part of the if-statement, multiple type conversions nest
with each other. This is because in Accelerate, PrimBool is declared as
Word8, and logical functions only accept boolean values, so we explicitly
convert it to avoid type-mismatch errors for such variables. Moreover,
in GLSL, a Word8 variable cannot take a boolean value or vice versa.
To not introduce extra complex analysis while preserving the consistent
type of Accelerate expressions, we convert the result back to Word8 for
every logical operation and convert the argument to a boolean for every
condition function.

• The value recursion – While describes a while-loop, which has a con-
dition function, an updating function, and an initialization expression.
The first two arguments are of type PreOpenFun and will be compiled
in the same way as Foreign given the initialization expression as the
input.

• Constant values can be determined during compile-time. Const is di-
rectly integrated into the expression, while PrimConst needs to be cal-
culated manually per scalar type.

Table 1. Mapping all Accelerate primitive operations to GLSL functions (based
on Soest [50, Table 1]). Unless stated explicitly, GLSL functions support all integer
types (Int8, Int16, Int32, Int64, and their unsigned versions), or all floating-point
types (Float16, Float32, Float64), or both, depending on original operations.

Operation Accelerate Constructor GLSL Function

addition, multiplication;
subtraction, negation;
absolute, sign

PrimAdd, PrimMul;
PrimSub, PrimNeg;
PrimAbs, PrimSig

+, *;
-, -;
abs, sign

integer division truncated to 0;
reminder;
simultaneous quot and rem

PrimQuot;
PrimRem;
PrimQuotRem

implemented manually
supporting all integers

integer division;
modulo;
simultaneous div and mod

PrimIDiv;
PrimMod;
PrimDivMod

/;
%;
\x,y→(x/y, x%y)

bitwise and, or;
xor, not

PrimBAnd, PrimBOr;
PrimBXor, PrimBNot

&, |;
^, ~

bitwise shift left, shift right;
rotate left, rotate right

PrimBShiftL, PrimBShiftR;
PrimBRotateL, PrimBRotateR

≪, ≫;
implemented manually
supporting all integers

49

Table 1 Continued. Mapping all primitive operations to GLSL functions.

Operation Accelerate Constructor GLSL Function

bitwise count ones;
count leading zeros;
count trailing zeros

PrimPopCount;
PrimCountLeadingZeros;
PrimCountTrailingZeros

binCount;
bit-length − findMSB;
findLSB;
their 64-bit versions are
implemented manually

floating-point division;
reciprocal fraction

PrimFDiv;
PrimRecip

/;
\x→1/x;
double-precision is
not supported

sine, cosine, tangent PrimSin, PrimCos, PrimTan sin, cos, tan;
double-precision is
not supported

arc sine,
cosine,
tangent,
2-argument tangent

PrimAsin,
PrimAcos,
PrimAtan,
PrimAtan2

asin,
acos,
atan,
atan;
double-precision is
not supported

hyperbolic sine,
cosine,
tangent

PrimSinh,
PrimCosh,
PrimTanh

sinh,
cosh,
tanh;
double-precision is
not supported

arc-hyperbolic sine,
cosine,
tangent

PrimASinh,
PrimACosh,
PrimAtanh

asinh,
acosh,
atanh;
double-precision is
not supported

exponent, logarithm;
square-root, power;
logarithm-base

PrimExpFloating, PrimLog;
PrimSqrt, PrimFPow;
PrimLogBase

exp, log;
sqrt, pow;
\x,y→log(y)/log(x);
double-precision is
not supported

50

Table 1 Continued. Mapping all primitive operations to GLSL functions.

Operation Accelerate Constructor GLSL Function

round;
floor;
ceil;
truncate to 0

PrimRound;
PrimFloor;
PrimCeil;
PrimTruncate

round;
floor;
ceil;
trunc

isNaN, isInfinite PrimIsNan, PrimIsInfinite isnan, isinf

<, >;
≤, ≥;
=, ̸=

PrimLt, PrimGt;
PrimLtEq, PrimGtEq;
PrimEq, PrimNEq

<, >;
<=, >=;
==, !=

maximum, minimum PrimMax, PrimMin max, min

logical and, or, not PrimLAnd, PrimLOr, PrimLNot &&, ||, !

Haskell’s fromIntegral,
and toFloat

PrimFromIntegral,
PrimToFloating

type conversions

• Primitive scalar operations (of type PrimFun, partially shown in Listing
8) are represented in the first order so that they can be directly trans-
formed into GLSL code. As shown in Table 1, though most operators
have a direct matching function, and the rest can be implemented man-
ually, some mathematical functions, such as exponent, power, square
root, and trigonometric operators, don’t have any support for double-
precision floating-point numbers, nor do there exist magic extensions
allowing to extend such functions. Those functions that are called and
implemented manually are stored in FuncMap. In general, we map al-
most all primitive operations to GLSL functions except for those that
don’t support double-precision floating-points.

• Array instruction – ArrayInstr contains two types of instructions
(introduced in Listing 25), where they all represent the operation of
fetching elements from an external independent environment, namely
the buffer environment (benv) that stores all buffers and scalars and
shows up during the execution. The first one is the indexing instruction
(Index), which means that given a linearized index, it should return
an element from the desired buffer, i.e. array indexing. To achieve this,
we first look into the AInstrEnv, checking whether the called buffer
is there or not. If it is missing, we can simply add it there with a
unique name. The next step is to append the indexing operator to the

51

end of the buffer name. The second one is the parameter instruction
(Parameter), which directly returns the desired scalar value from the
external buffer environment.

• ShapeSize marks the calculation of the length for a given shape rep-
resentation and expressions to get dimensional numbers. The way to
implement it is quite straightforward. We just need to multiply all
returned values from expressions together.

• Unlike other operations, Undef marks an undefined value (thrown by
an undefined behavior) rather than a kind of operation. The purpose
of its existence is to enable the program to continue when encountering
undefined behaviors, and it is supposed to be overwritten by other
values. Thus, it can be any value as long as it won’t cause a runtime
error.

• For bits reinterpretations, GLSL has direct support on all the type cast-
ing for such operations. In our implementation, there are no more than
a large number of pattern-matching cases. Note that the conversion
can only be operated on two types with the same bit length.

Compiling combination expressions The combination expression is only
used in permutations. It tells the backend how to update each position of
a buffer given an old value and a new one. However, this kind of update is
not thread-safe, meaning that multiple threads may update the same piece
of memory at the same time, causing data races. The general way to solve
this, is either using atomic operations or using a spinlock to do the thread
synchronization.

In the Vulkan backend, we implemented three ways to compile combi-
nation expressions, and they are presented below. In theory, the first solution
provides the best performance, while the last one has the worst efficiency.

1. We try to compile expressions using matching atomic operations. GLSL
natively supports atomicAdd, atomicAnd, atomicOr, atomicXor,
atomicMin, and atomicMax for 32-bit integers and unsigned integers.
To allow 64-bit integers, single- and double-precision floating-point
numbers, extra extensions are required (mentioned in §4.2.1). That
limits us to only compile addition, logical operations, and min-max
expressions.

2. Combination expressions are compiled to lock-free loops using
atomicCompSwap if regular atomic operations do not support a certain

52

type or a complex expression. atomicCompSwap compares a specific
element in the buffer to a compared value, and swaps the element with
a candidate value, then returns the original element regardless of the
outcome of the comparison. It avoids data races. The compiling steps
are: first, we declare new variables storing original values from both the
default array and source array, and then we declare a compared variable
containing the original value from the default array. The next step is to
compile the expression in the same way as that for PreOpenExp. Finally,
we call atomicCompSwap to update the array and catch its returned
value. If the return matches the compared value, the update succeeds;
otherwise, we should keep looping from the first step. Considering the
following example:

1 let xs = fromList (Z:.100) [100..] :: Array (Z :. Int) Int32
2 permute (*) (fill (I1 100) 1) (\(I1 i) -> Just_ (I1 i)) (use xs)

The combination expression in the above example is multiplication,
where there is no direct matching atomic operation. It is compiled into
a lock-free loop following the aforementioned procedure:

1 int32_t e2_CASin;
2 int32_t e3_CASin;
3 int32_t e4_CAScomp;
4 do {
5 e2_CASin = permBuff2[uint32_t(globalID)];
6 e3_CASin = mutBuff3[uint32_t(e1_mutIdx)];
7 e4_CAScomp = e3_CASin;
8 e3_CASin = atomicCompSwap(mutBuff3[uint32_t(e1_mutIdx)],
9 e4_CAScomp ,

10 (e2_CASin) * (e3_CASin));
11 } while (e3_CASin != e4_CAScomp);

In the above code snippet, mutBuff3 is the default array, and permBuff2
is the xs. From line 1 to line 7, temporary variables are declared and
bound. From line 8 to line 10, atomicCompSwap are called to update
mutBuff3 with the combination expression as its third argument. The
result of it is bound to e3_CASin for later checking the update.

Since single- and double-precision floating-point numbers have the same
bit lengths as Int32 and Int64, inspired by Hamuraru [28], they can
be cast to those two types while preserving the bit pattern to utilize
the same lock-free loop. Buffer inlets for single- and double-precision
arrays are declared in Int32 and Int64, and then we involve bits rein-
terpretations in the compilation steps of ordinary lock-free loops. Here
is an example:

1 let xs = fromList (Z:.100) [100..] :: Array (Z :. Int) Float
2 permute (*) (fill (I1 100) 1) (\(I1 i) -> Just_ (I1 i)) (use xs)

53

Both the source and default arrays are of type Float, which is not sup-
ported by atomicCompSwap, but with the type casting, we can compile
it into:

1 float32_t e2_CASin;
2 float32_t e3_CASin;
3 float32_t e4_CAScomp;
4 do {
5 e2_CASin = permBuff2[uint32_t(globalID)];
6 e3_CASin = uintBitsToFloat(mutBuff3[uint32_t(e1_mutIdx)]);
7 e4_CAScomp = e3_CASin;
8 e3_CASin = uintBitsToFloat(
9 atomicCompSwap(

10 mutBuff3[uint32_t(e1_mutIdx)],
11 floatBitsToUint(e4_CAScomp),
12 floatBitsToUint ((e2_CASin) * (e3_CASin))));
13 } while (e3_CASin != e4_CAScomp);

In the above code snippet, mutBuff3 is of type uint32_t, but the com-
bination expression is supposed to operate on a different type. Thus,
on the sixth, eighth, eleventh, and twelfth lines, bits reinterpretations
are called to ensure the correctness of both the type and the value.

3. If the bit-length of a type is not accepted by atomicCompSwap, the very
last option is to compile the expression into a loop with a spinlock.
Unlike the lock-free loop, the spinlock requires an additional buffer
to document the lock state for each position of the default array. As
such, the buffer needs to be initialized as unlocked on the top level of
the shader. Then, within the loop, each thread would check the state
of the target position and keep waiting until it’s idle. After acquiring
permission to access that position, the buffer will be locked and updated
by the current thread. Finally, after finishing operations, the thread
would unlock the buffer. Considering the same example from the last
compiling option, xs is containing Int16 now. The program is compiled
into:

1 bool keepWaiting = true;
2 while (keepWaiting) {
3 if (atomicCompSwap(
4 lock[uint32_t ((0) * mutDim1 + permIdx0)], 0, 1) == 0) {
5 int16_t e2_mutBuff = mutBuff3[uint32_t(e1_mutIdx)];
6 mutBuff3[uint32_t(e1_mutIdx)] = (e0_permBuff) * (e2_mutBuff);
7 memoryBarrier ();
8 keepWaiting = false;
9 atomicExchange(lock[uint32_t ((0) * mutDim1 + permIdx0)], 0);

10 }
11 }

In the above code example, lock is of the type 32-bit integer. The
fourth line linearizes indices of buffer lock. Within the if-statement,

54

the sixth line updates the protected buffer directly. Then, on the ninth
line, atomicExchange is called to unlock the current position.

For the third way, there is a function – glslInitSpinLock in module
Data.Array.Accelerate.Vulkan.Kernel to generate spinlock initialization
code given the lock length and the initial value.

4.2.2 Vulkan context

After generating a complete GLSL code from the Partitioned IR, exe-
cutable Vulkan objects should be built from it for the next step. Recalling
the Vulkan programming model introduced in §2.3.2, all Vulkan objects are
classified into the global context and the local context according to their
visibility across all Vulkan kernels. The former is shared and visible for all
kernels, while each kernel has its own local Vulkan context.

During compile-time, both the global context and all local contexts
will be initialized. There is only one global context exists per application,
and it will be shared across multiple local contexts. As shown in Listing 50,
it is represented as a record notation containing a Vulkan instance, possible
debugger, physical device, logical device, memory allocator, components re-
lated to descriptors, items about commands, execution queue, and a fence.
In general, since all Vulkan pipelines and shaders are created with the help
of the global context, it must be initialized on the top level of the kernel
compilation. In addition, one can enable the debugging functionality by
uncomment lines with the keyword “debug” or “validation” in the function
createInstance of the module Vulkan.Runtime in our implementation.

1 data GlobalVulkanResources = GlobalVkResources
2 { inst :: Instance
3 , debugExt :: Maybe DebugUtilsMessengerEXT
4 , phys :: PhysicalDevice
5 , dev :: Device
6 , allocator :: Allocator
7 , descriptorPool :: DescriptorPool
8 , descriptorSetLayout :: DescriptorSetLayout
9 , descriptorSet :: DescriptorSet

10 , pipelineLayout :: PipelineLayout
11 , cmdPool :: CommandPool
12 , cmdBuffer :: CommandBuffer
13 , queue :: Queue
14 , fence :: Fence
15 }

Listing 50. Global Vulkan context.

Local context, on the other hand, is dedicated per kernel. It is built
given a complete GLSL code and the global context. As presented in Listing
51, LocalVulkanResources only contains compute pipelines and shaders,

55

where pipelines are the actual parts enclosing the shader that will be exe-
cuted. Moreover, pipelines and shaders consume hardware resources, which
need to be freed after execution.

Specifically, LocalVulkanResources has the field initSpinLock, which
may contain a pipeline to initialize the spinlock buffer on the device and a
tuple of metadata. This field is special, which is only used when permuting
arrays in some cases. Under the situation, the same position in the mutable
buffer may be updated by multiple threads at the same time during permu-
tation; this field tells whether we need a spinlock and the tuple contains the
length and initial value that such a lock should have. Recalling the Vulkan
kernel (as shown in Listing 34), the first element of the tuple is a list of
scalars, where the actual number should be the multiplication of them for a
similar reason of kernelThreads. And the second one is the initial value. If
the lock is not used, this field would remain Nothing.

1 data LocalVulkanResources env = LocalVkResources
2 { pipeline :: Pipeline
3 , shader :: ShaderModule
4 , initSpinLock :: Maybe (Pipeline , ShaderModule , ([Idx env Int], Int32))
5 }

Listing 51. Local Vulkan context.

Though both global and local contexts are external objects, they are
registered to the garbage collection (GC) with finalizers. As such, no extra
work is required to manage such objects, and the GC can prevent memory
leaks. Note that GC is not guaranteed to be triggered before exiting the
program, so Vulkan may complain about not cleaning up resources.

Initializations Initializing global and local contexts is trivial and follows
the same steps according to §2.3.2. We have made function createGlobalResources
in module Data.Array.Accelerate.Vulkan.Vulkan.Runtime to create a
GlobalVulkanResources given the maximum buffer number that a pipeline
can take. This number is important since all pipelines are built based on
the same pipelineLayout, and Vulkan resources are pre-allocated according
to it. In our implementation, we just guess a large enough number for it.
As shown in Listing 52, using unsafePerformIO, we can initialize the global
context at any point with createGlobalResources. Note that NOINLINE
should be attached to this stateful operation to avoid multiple Vulkan object
creations.

1 {-# NOINLINE vkGlobalResources #-}
2 vkGlobalResources :: Lifetime GlobalVulkanResources
3 vkGlobalResources = unsafePerformIO $ do
4 vkGlobal <- createGlobalResources 50
5 lt <- newLifetime vkGlobal

56

6 -- Add finalizer.
7 addFinalizer lt $ do
8 destroyGlobalResources vkGlobal
9 pure lt

Listing 52. Making global Vulkan contexts.

To create LocalVulkanResources, we have made function compileGLSL
and createLocalResources to compile the GLSL code and initialize the con-
text respectively in the same module. The third argument of the function
createLocalResources is a maybe type for the GLSL code, which is used
to build the spinlock initializing pipeline.

Additionally, since the local thread number is determined dynami-
cally, when creating shaders this information should be given using the
SpecializationMapEntry from the Vulkan-Haskell binding, which is sim-
ilar to a buffer inlet.

Finalizers To register Vulkan contexts to the GC, each of them should have
a finalizer, which deletes the context and deallocates the memory. Lifetime
in Accelerate is an exposed interface for accessing the registered object. After
creating a Vulkan context, the function newLifetime should be called to
register and generate a Lifetime for it. Then, a finalizing function should
be attached to it by calling addFinalizer. After accessing the Lifetime, the
function touchLifetime should be called to keep it alive until here. When
a Lifetime object has not been touched anymore, GC would step in and
clean it up at a suitable time. However, it is possible that GC may never be
called during the whole life cycle of a program, which Vulkan would complain
about. Currently, there is no mechanism to automatically force triggering
GC before the program exits, so the user can either manually performGC [24,
§System.Mem], or ignore the segmentation fault and other Vulkan-related
errors.

As an example, Listing 52 draws details of making a global context
and attaching a finalizer. A finalizing function (destroyGlobalResources)
for the global context consists of many freeing or destroying operations for
objects nested in the global data type. The order of executing such operations
is the opposite of the order of creation. Similarly, we have made function
destroyLocalResources for local contexts. Note that local ones must be
purged before the global one.

4.2.3 Making kernels

We have made the VulkanKernel instance for class IsKernel with the
implementation of the function compileKernel to compile clustered opera-

57

tions into Vulkan kernels.
Listing 53 depicts restoring singleton operations from clustered oper-

ations, where fusion is disabled. From line 2 to line 6, a custom operation
data type is defined to bypass the type checker and reflect Vulkan-specific op-
erations. The function compileKernel runs two checks first: the operation
enclosure check and the bit-length check. The 18th line represents the for-
mer check; it peeks inside the clustered operations checking the existence of
Vulkan-specific operations. From line 19 to line 25, the byte sizes of Int and
Word are checked to ensure the default length is 8 bytes. This is important
since data transfer and GLSL code generation take 8 bytes as default for Int
and Word; bit-length mismatch may result in strange values. If both checks
pass, a singleton operation will be restored by applySingletonCluster and
passed to compileOperation (defined in Listing 54) with operation argu-
ments.

1 -- Create a custom data type to bypass the type checker.
2 data WhichOp = GenerateOp | PermuteOp
3 -- Map the operation.
4 peekOp :: forall args. VulkanOp args -> WhichOp
5 peekOp VkGenerate = GenerateOp
6 peekOp VkPermute = PermuteOp
7

8 instance IsKernel VulkanKernel where
9 type KernelOperation VulkanKernel = VulkanOp

10 type KernelMetadata VulkanKernel = NoKernelMetadata
11

12 compileKernel :: forall env args. Env AccessGroundR env
13 -> Data.Array.Accelerate.AST.Partitioned.Clustered
14 (KernelOperation VulkanKernel) args
15 -> Args env args
16 -> VulkanKernel env
17 compileKernel _ (Clustered clst bclst) clstArgs
18 | Just _ <- peekSingletonCluster peekOp clst
19 = case (bytesElt (TupRsingle (SingleScalarType
20 (NumSingleType
21 (IntegralNumType TypeInt)))),
22 bytesElt (TupRsingle (SingleScalarType
23 (NumSingleType
24 (IntegralNumType TypeWord))))) of
25 (8, 8) -> applySingletonCluster (compileOperation uid)
26 clst
27 clstArgs
28 _ -> error "Only supports 64-bit integers as default"
29 where uid = hashOperation (Clustered clst bclst) clstArgs

Listing 53. Compiling kernels.

Generation When pattern matching over VkGenerate for the function
compileOperation, its typed arguments are given. The goal for this case is
to create a VulkanKernel from the input arguments. As shown in Listing
54, body is of type PreOpenExp and outBuf is constructed by ArgArray of

58

data type Arg (as shown in Listing 26). Steps for making a VulkanKernel
include:

1 compileOperation :: forall env a. UID
2 -> VulkanOp a
3 -> Args env a
4 -> VulkanKernel env
5 compileOperation uid VkGenerate args@(ArgFun (Lam lhs (Body body))
6 :>: outBuf@(ArgArray m
7 (ArrayR sh t)
8 gv
9 gvb)

10 :>: ArgsNil)

Listing 54. Compiling generations.

1. Processing the global index. The output array might be a multi-
dimensional one, so as mentioned in §4.2.1, the global index needs to be
unfolded and multi-dimensional indices are taken to build a compiling
environment for body with lhs.

2. Compiling the scalar expression. body is of type PreOpenExp. With the
newly built environment, it can be compiled by the procedure as stated
in §4.2.1 giving a GLSL statement and a tuple of returned expressions.

3. Compiling called buffers. During the compilation, external buffers may
be called. These buffers with the buffer argument gvb are compiled into
GLSL buffer inlets according to §4.2.1. Then, returned expressions are
bound to buffer arguments.

4. Creating a LocalVulkanResources. Resembling all the parts we com-
piled before, we have a complete GLSL code now. In the same way as
Listing 52, local Vulkan contexts are created (depicted in Listing 55),
whose input is the complete GLSL code.

1 spirvCode = unsafePerformIO $ compileGLSL glslCode
2 vkObjects = unsafePerformIO $ do
3 vkLocal <- withLifetime vkGlobalResources (\ vkGlobal ->

createLocalResources vkGlobal spirvCode Nothing)
4 lt <- newLifetime vkLocal
5 addFinalizer lt $ do
6 withLifetime vkGlobalResources (‘destroyLocalResources ‘

vkLocal)
7 pure lt

Listing 55. Making local Vulkan contexts.

After finishing the above steps, now we have everything to fill the
VulkanKernel record notation. kernelID is given as UID. The kernel shape
only contains the shape of outBuf, which is gv. The kernel input arguments

59

are called buffers of array indexing. The mutable argument is empty. As
such, the spinlock field of the local Vulkan context is also empty. The output
argument is just gvb. The kernel resource is the built local Vulkan context
vkObjects. The thread number is the same as the kernel shape, since each
position of outBuf should only be handled by one thread.

Permutation Permutation can be seen as the extension of generation since
they share parts of the compilation. As illustrated in Listing 56, VkPermute
has more complex arguments, where combLhs1 binds an element from the
source buffer aIn and combLhs2 binds a value from the default buffer aMut.
combBody and permBody are the combination expression and index permu-
tation expression respectively. aMut and aIn stand for the default (mutable)
array and source (input) array. We can compile this operation by:

1 compileOperation uid VkPermute args@(ArgFun fun@(Lam combLhs1
2 (Lam combLhs2
3 (Body combBody)))
4 :>: aMut@(ArgArray m
5 (ArrayR sh t)
6 gv
7 gvb)
8 :>: ArgFun (Lam permLhs (Body permBody))
9 :>: aIn@(ArgArray m’

10 (ArrayR sh ’ t’)
11 gv’
12 gvb ’)
13 :>: ArgsNil)

Listing 56. Compiling permutations.

1. Compiling permBody in the same way as compiling a regular expression
of generation.

2. Adding a check for indices. The returned expression of the last step is a
tuple with type (Int,((),sh)), where its first element marks whether
to exit or continue permuting the default array. If the integer is zero,
the current thread should exit and do nothing; otherwise, continue to
the next step with sh that represents the updating target position of
the default array.

3. Compiling the combination expression. The compilation environment
is made by pushing the source element and default element (indexing
into the default array using sh) to an empty environment. As described
in §4.2.1, the combBody is compiled by trying three different ways with
the built environment.

60

Finally, we can make a VulkanKernel for the current operation. Again,
the kernel ID is given as UID. The kernel shapes contain that for both aMut
and aIn, which are gv and gv’ in this case. The input arguments are indexed
arrays and aIn (gvb’). The mutable argument is just the aMut (gvb). The
output argument is empty. Similar to the generation, given a complete GLSL
code we can make the local Vulkan context from it. Because all the positions
in the source array are supposed to be accessed once, the thread number for
permutation is the length of the source array, i.e. the gv’.

4.3 Execution

The execution stage presented in Figure 3 involves data inlet and trans-
fer, environment creation, and scheduled operation execution. The last one
contains array-level operations of type SeqSchedule (introduced in §3.11).
The executable Vulkan kernels inside it will be executed by the function
compute from the Vulkan runtime.

We have made VulkanElement data type to store a pair of ordinary
Accelerate’s buffers or scalars and their remote Vulkan buffers. So that ordi-
nary buffers can be reused to reduce the overhead of allocating new buffers
and freeing old buffers. Though ordinary Accelerate’s buffers are related
to remote Vulkan buffers, there is no data transfer in between unless the
SeqSchedule operation performs a computation on the host side, or requires
returns.

1 data VulkanElement a where
2 Scalar ’ :: ScalarType a
3 -> a
4 -> Lifetime ((Vk.Buffer , Allocation , AllocationInfo), Ptr ())
5 -> VulkanElement a
6 Buffer ’ :: ScalarType a
7 -> (Buffer a)
8 -> Lifetime ((Vk.Buffer , Allocation , AllocationInfo), Ptr ())
9 -> VulkanElement (Buffer a)

10

11 type VulkanElements = TupR VulkanElement
12 type VulkanEnv = Env VulkanElement

Listing 57. Vulkan elements for execution.

Listing 57 depicts two data constructors Scalar’ and Buffer’ to con-
tain scalars and buffers respectively. Their third field is a tuple containing a
Vulkan buffer object managed by GC. The pointer inside the tuple exposed
an interface to access the remote memory. VulkanElements wraps multiple
VulkanElement into a tuple. VulkanEnv builds the execution environment
for SeqSchedule operations.

61

4.3.1 Vulkan runtime

Vulkan runtime provides support for Vulkan operations including mem-
ory management, data transfer, and Vulkan kernel execution.

Buffers and memory We created a function createBufferInfo to sim-
plify the buffer allocation and allocate multiple buffers once. Listing 58 shows
that in the 17th line, the function VMA.createBuffer is called with the byte
size, buffer usages, allocation-create flags, memory usages, and memory prop-
erties to allocate a new buffer. This process may fail due to insufficient mem-
ory space. Thus, in the 28th line, we try to perform GC to clean unreachable
Vulkan buffers and then try to allocate the buffer again, if it fails. Apart from
that, the 15th line checks whether the current byte size is zero and skips the
creation if that’s the case.

1 createBufferInfo :: Allocator
2 -> [Int]
3 -> BufferUsageFlags
4 -> AllocationCreateFlags
5 -> MemoryUsage
6 -> MemoryPropertyFlags
7 -> IO [(Buffer , Allocation , AllocationInfo)]
8 createBufferInfo _ [] _ _ _ _ = pure []
9 createBufferInfo allocator

10 (x:xs)
11 buffUsage
12 alloCreateFlag
13 memUsage
14 memProp = do
15 (buffer , allocation , allocationInfo) <- if x >= 1 then do
16 catch @IO @VulkanException (
17 VMA.createBuffer allocator
18 zero { size = fromIntegral x
19 , usage = buffUsage
20 }
21 zero { flags = alloCreateFlag
22 , usage = memUsage
23 , requiredFlags = memProp
24 }
25)
26 $ _ -> do
27 say "Failed to create Vulkan buffer , trying to perform GC"
28 performGC
29 VMA.createBuffer allocator
30 zero { size = fromIntegral x
31 , usage = buffUsage
32 }
33 zero { flags = alloCreateFlag
34 , usage = memUsage
35 , requiredFlags = memProp
36 }
37 else do
38 say "Warning: buffer size less than 1, skipping this creation"
39 pure (zero , zero , zero)
40 rest <- createBufferInfo allocator
41 xs

62

42 buffUsage
43 alloCreateFlag
44 memUsage
45 memProp
46 return $ (buffer , allocation , allocationInfo) : rest

Listing 58. Vulkan buffer allocations

One of the most confusing parts of Vulkan is the flags for buffer creation.
To have proper buffers, we need to set buffer usage flags [55, §12.1. Buffers],
allocation create flags, memory usages, memory properties [4, §Memory al-
location]. Buffer usage flags mark the buffer storage type and its copying
permissions; allocation create flags specify the access pattern; memory us-
ages are flags to set whether the buffer is accessed frequently by the host or
the device; memory properties set the memory location and its visibility.

Data transfer Data transfer in Vulkan is quite flexible. Halladay [26, 27]
studied five ways to transfer data. In general, there is no best practice to
achieve this; each combination of hardware and software has different optimal
flags and ways to perform data transfer.

Since all the Vulkan buffers in our implementation are allocated in the
device memory, the most efficient way to transfer the data is to keep them
mapped to the host and directly access them. They will be unmapped only
before deconstructions. Copying data between Vulkan buffers and Accelerate
buffers relays on the pointer, and the array peeking and poking function
from the module Foreign.Marshal.Array [24]. Though we only present the
implementation of transferring buffers in Listing 59, scalars are treated in
the same way since they can be seen as size-one buffers.

1 newtype Ptr ’ a = Ptr ’ (Ptr (ScalarArrayDataR a))
2

3 copyBufferToPtr :: ScalarType a
4 -> Buffer a
5 -> Ptr ’ a
6 -> IO ()
7 copyBufferToPtr (SingleScalarType (st :: SingleType a’))
8 (Buffer size ua)
9 (Ptr ’ destPtr)

10 | SingleDict <- singleDict st
11 , SingleArrayDict <- singleArrayDict st
12 = do
13 withUniqueArrayPtr ua $
14 \srcPtr -> copyArray (destPtr :: Ptr a) srcPtr size
15

16 copyPtrToBuffer :: ScalarType a
17 -> Buffer a
18 -> Ptr ’ a
19 -> IO ()
20 copyPtrToBuffer (SingleScalarType (st :: SingleType a’))
21 (Buffer size ua)
22 (Ptr ’ srcPtr)

63

23 | SingleDict <- singleDict st
24 , SingleArrayDict <- singleArrayDict st
25 = do
26 withUniqueArrayPtr ua $
27 \destPtr -> copyArray destPtr (srcPtr :: Ptr a) size

Listing 59. Data transfer.

In the above code snippet, the first step for both transfer directions is to
get a pointer to the Accelerate buffer by using withUniqueArrayPtr. Then
copyArray shows up to copy data between pointers to Accelerate buffers and
Vulkan buffers. After pushing data to the remote memory and before copying
data back to the host, flushAllocation and invalidateAllocation from
the Vulkan-Haskell binding are called separately to clean up the cache and
make the change take effect.

Conducting computations To run each local Vulkan context, we have
made the function compute, which is defined as:

1 compute :: GlobalVulkanResources
2 -> LocalVulkanResources
3 -> VulkanEnv env ’
4 -> Env (Idx env ’) env
5 -> [Exists (VulkanArg env)]
6 -> [Exists (VulkanArg env)]
7 -> [Exists (VulkanArg env)]
8 -> Int
9 -> IO ()

Listing 60. Kernel execution.

In the above code snippet, compute takes both the global and local objects
as the input. It is given two environments: the first one contains all Vulkan
elements (i.e., buffers and scalars), some of which may not be used by the
kernel; the second one is which the kernel parameterized over during com-
pilation, where it contains de Bruijn indices for querying concrete Vulkan
elements from the first environment. Instead of creating a sub-environment
of the first one, we can save some memory space and overhead by having
a separate indices environment. Then the three lists of VulkanArg contain
input, mutable, and output Vulkan arguments. As shown in Listing 35, the
GroundVar inside the VulkanArg data type constructs a de Bruijn index,
which can be used to query a new index from the second environment for
fetching a Vulkan element from the first environment. In the last place of the
function compute, the thread number is given to execute the kernel. Because
data interaction happens in the IO state rather than returning explicitly, the
return of compute is nothing.

The main steps for executing a Vulkan context include:

64

1. Projecting de Bruijn indices twice to fetch Vulkan elements. As men-
tioned above, the first projection maps the GrundVar of Vulkan argu-
ments to the second input environment (of type Env (Idx env’) env)
of compute to have new indices. Then the projection happens again to
query concrete Vulkan elements (Vulkan buffers and scalars) from the
first given environment (of type VulkanEnv env’) using new de Bruijn
indices.

2. Creating temporary Vulkan buffers and copying mutable buffers to
them. For permutations, mutable buffers are the updated target but
they might also be indexed in scalar expressions. Elements from ar-
ray indexing should remain the same during the execution per kernel.
Thus, when executing permutation kernels, array updates only happen
on temporary buffers, while mutable buffers remain the same. After ex-
ecution, new values from temporary buffers are copied back to mutable
buffers.

3. Binding all the buffers to the descriptor set. Since shaders access buffers
via the descriptor set, one important step is to bind buffers to the
descriptor set. Note that each buffer has a unique binding number
that corresponds with the buffer inlet of generated GLSL code during
compilation.

4. Pushing commands to the command buffer. We need to start the com-
mand buffer first to make it in the recording state, then push commands
(including the possible spinlock initialization, mutable buffer copying,
and kernel dispatch) to it and end the recording.

5. Submitting the command buffer to the compute queue and waiting
for the fence. After the submission, the device would start execution
immediately. After that, we need to wait until the fence is reached,
which marks either the finish of the execution or errors.

6. Cleaning up. At this point, both the fence and command buffer should
be reset to prepare for the next run. Temporary buffers need to be
freed.

Some utilities of the runtime are inspired by expipiplus1’s compute example
[22].

4.3.2 Scheduling and execution

When running the Accelerate program with run @Vulkan ..., Ker-
nel IR will be automatically scheduled sequentially. Each operation will be

65

transformed into constructors of SeqSchedule data type. Inspired by Soest
[50], we have made similar structures to execute sequential-scheduled Vulkan
kernels.

The execution module starts from the instance for Execute class, which
describes the step to execute SequentialSchedule that contains VulkanKernel
(introduced in Listing 34).

1 instance Execute SequentialSchedule VulkanKernel where
2 executeAfunSchedule :: GFunctionR t
3 -> SequentialSchedule VulkanKernel
4 ()
5 (Scheduled SequentialSchedule t)
6 -> IOFun (Scheduled SequentialSchedule t)
7 executeAfunSchedule gf ss = executeVulkanElementsIOFun gf $
8 executeSequentialSchedule Empty ss

Listing 61. Implementation of instance Execute SequentialSchedule VulkanKernel.

As shown in Listing 61, two functions are chained to execute SequentialSchedule.
The first one – executeVulkanElementsIOFun interacts with Accelerate’s in-
put and output, which convert Accelerate buffers to and from Vulkan buffers.
Receiving an ordinary buffer or a scalar value, executeVulkanElementsIOFun
makes a VulkanElement data wrapped by a Lifetime and triggers the data
transfer. Then, this data is given to executeSequentialSchedule for exe-
cuting scheduled operations. After that, returned buffers and scalars from
those operations are pushed to a MVar stack [24, §Control.Concurrent.MVar],
where results from the computation are awaiting to be taken by other Accel-
erate components.

The second function of Listing 61 is executeSequentialSchedule,
which takes Vulkan buffers to recursively build an execution environment
and calls executeSeqSchedule (defined in Listing 62) with the typed envi-
ronment to conduct the computing, i.e. SeqSchedule. Usually, the execution
of SeqSchedule returns a tuple of VulkanElement data, so the second func-
tion is also responsible for triggering data copying from the remote memory
to local buffers and wrapping them in a tuple handled by the first function.

To run SeqSchedule operations, we have made the following function:
1 executeSeqSchedule :: VulkanEnv env
2 -> SeqSchedule VulkanKernel env t
3 -> IOFun (VulkanElements t)

Listing 62. Executing SeqSchedule.

It pattern-matches over constructors of SeqSchedule:

• Exec: To execute a Vulkan kernel, Exec not only contains the ker-
nel but also carries indices to build a sub-environment. Instead of
slicing the original Vulkan environment, we choose to make a specific

66

environment for storing these indices. Then we called the function
executeKernel with the whole Vulkan environment and the indices
environment (their usage is described in §4.3.1).

1 executeKernel :: VulkanEnv env
2 -> Env (Idx env) env ’
3 -> VulkanKernel env ’
4 -> IOFun (VulkanElements ())
5 executeKernel env env ’ kernel = do
6 let st = SingleScalarType (NumSingleType
7 (IntegralNumType
8 TypeInt))
9 let sh’ = map (\idx ->

10 Exists (VulkanArg (Var (GroundRscalar st) idx)))
11 (kernelShapes kernel)
12 let threads ’ = product $
13 map (\idx ->
14 let (Scalar ’ _ s _)
15 = prj ’ (prj ’ idx env ’) env in s)
16 (kernelThreads kernel)
17 withLifetime vkGlobalResources
18 (\ vkGlobal ->
19 withLifetime
20 (kernelResources kernel)
21 (\vkLocalObj ’ ->
22 compute vkGlobal
23 vkLocalObj ’
24 env
25 env ’
26 (sh ’ ++ kernelInArgs kernel)
27 (kernelMutArgs kernel)
28 (kernelOutArgs kernel)
29 threads ’))
30 touchVulkanArgs env env ’ $ sh’
31 ++ kernelInArgs kernel
32 ++ kernelMutArgs kernel
33 ++ kernelOutArgs kernel
34 touchLifetime (kernelResources kernel)
35 touchLifetime vkGlobalResources
36 return TupRunit

Listing 63. Executing kernels.

As shown in Listing 63, executeKernel first wraps the shape indices
as Vulkan scalars to have sh’. Then the thread number is fetched
by multiplying all the scalars together. After that, compute from the
Vulkan runtime is called and it keeps updated values in the buffer.
Finally, Vulkan buffers and contexts are touched to keep them alive.

• Return: This constructor asks us to build and return a tuple from
the environment, given ground variables. Usually, Return is used to
pick desired buffers from the environment and return special point-
ers to them wrapped in a tuple. We can simply use mapTupR with
index projection to build such a tuple. After that, returned pointers

67

might be used to copy data back to the host by the function that calls
executeSeqSchedule, i.e. executeSequentialSchedule.

• Compute: Since not all computations can be executed on the Vulkan
device, this constructor marks an expression that is supposed to be
calculated on the host side. To achieve this, the function evalExp from
the Accelerate interpreter is called. Its first argument is the expression,
and this second argument is a function that handles array instructions.
As such, we have made the following function:

1 evalArrayInstr :: VulkanEnv env
2 -> ArrayInstr env (s -> t)
3 -> s
4 -> IO t
5 evalArrayInstr env (Index (Var _ idx)) i
6 = case prj ’ idx env of
7 Scalar ’ {} -> error "evalArrayInstr: Index impossible"
8 b@(Buffer ’ st _ _) -> do
9 b’ <- returnVulkanElement b

10 pure $ indexBuffer st b’ i
11 evalArrayInstr env (Parameter (Var _ idx)) _
12 = case prj ’ idx env of
13 Scalar ’ _ e _ -> pure e
14 Buffer ’ {} -> error "evalArrayInstr: Parameter impossible"

Listing 64. Executing array instructions.

evalArrayInstr pattern-matches over ArrayInstr’s constructors. For
array indexing, it first queries the buffer and copies the data back
to the ordinary buffer. Then, it accesses that buffer with a built-in
Accelerate function. For parameters, since all scalars within Accelerate
are immutable, the value can be simply returned.

• Alet: Local bindings for arrays are similar to those for scalar expres-
sions. As presented in Listing 65, the first step is to execute the bound
scheduled operations. Next, push returned values into the Vulkan en-
vironment recursively according to the left-hand-side. Then, execute
the body operation with the new environment.

1 executeSeqSchedule env (Alet lhs _ bnd body) = do
2 newVars <- executeSeqSchedule env bnd
3 let env ’ = updateEnv env lhs newVars
4 executeSeqSchedule env ’ body

Listing 65. Array local bindings.

• Alloc: Allocating a new buffer requires the scalar type and the buffer
length. Although the scalar type is given explicitly, the length should be
computed from the shape representation and expression variables. As
such, we make getSize to calculate the buffer size. As listed in Listing

68

66, it recursively projects indices to the environment for dimensional
numbers and then multiplies them together to have the buffer length
measured in element count.

1 getSize :: VulkanEnv env -> ShapeR sh -> ExpVars env sh -> Int
2 getSize _ ShapeRz _ = 1
3 getSize env (ShapeRsnoc shr) (TupRpair sh (TupRsingle (Var _ idx)))
4 = if n <= 0 then 0
5 else getSize env shr sh * n
6 where Scalar ’ _ n _ = prj ’ idx env
7 getSize _ _ _ = error "getSize: Impossible"

Listing 66. Computing array sizes.

• Use: Lifting an ordinary buffer to the Vulkan buffer consists of two
steps: first, creating a Vulkan buffer using createBufferInfo; second,
calling copyBufferToPtr to copy data from the buffer to the Vulkan
buffer.

• Unit: Unit aims to lift a scalar value to the Vulkan buffer, which is a
special case of Use with only one element. Thus, we make an ordinary
buffer first to capture such a scalar. Then, the buffer is lifted to Vulkan
in the same way.

• Acond: As shown in Listing 67, array-level flow controls execute the
scheduled operation of either the true branch or false branch. This
depends on the results from executing the condition, which is of type
PrimBool but can be converted to an ordinary boolean value by toBool.

1 executeSeqSchedule env (Acond (Var _ idx) tExp fExp)
2 = if toBool cond then
3 executeSeqSchedule env tExp
4 else executeSeqSchedule env fExp
5 where (Scalar ’ _ cond _) = prj ’ idx env

Listing 67. Array flow-controls

• Awhile: Array-level while-loops keep executing the body operation
until the condition check fails. We have made such a function to execute
the loop:

1 executeAwhile :: VulkanEnv env
2 -> SeqScheduleFun VulkanKernel env (t -> PrimBool)
3 -> SeqScheduleFun VulkanKernel env (t -> t)
4 -> VulkanElements t
5 -> IOFun (VulkanElements t)
6 executeAwhile env
7 cond@(Slam condLhs (Sbody condBody))
8 body@(Slam expLhs (Sbody expBody))
9 xs

10 = do

69

11 -- Check condition.
12 (TupRsingle condVar) <- executeSeqSchedule (updateEnv env
13 condLhs
14 xs)
15 condBody
16 condVar ’ <- returnVulkanElement condVar
17 -- If true , continue the loop.
18 if toBool condVar ’ then do
19 xs ’ <- executeSeqSchedule (updateEnv env expLhs xs) expBody
20 executeAwhile env cond body xs’
21 -- If false , return values.
22 else return xs
23 executeAwhile _ _ _ _ = error "executeAwhile: Impossible"

Listing 68. Array while-loops

executeAwhile takes Vulkan elements as the initial values. Then it
binds them to the environment and executes the body to get the con-
dition. After that, the condition is used to judge whether breaking the
loop and returning values, or updating the value and looping along the
body expression.

5 Evaluation and discussion

To answer the third research question and explore the limitation of the
Vulkan backend, we pick the Multigrid Method, Naive N-body, and FlashAt-
tention from the CFAL-bench [15] as benchmarks. Though CFAL has many
other testing items, only these three support both the old and new pipeline
of Accelerate.

5.1 Experiments

Throughout all the tests, we use the same testing environment:

• CPU: 2x Intel Xeon Platinum 8260L 24C48T @2.40GHz

• GPU: NVIDIA GeForce RTX 3090 24GB

• RAM: 12x 32GB DDR4 @2933MHz

• Operating System: Ubuntu 22.04

• GPU Driver: 550.90

• Vulkan: 1.3.277

70

• CUDA: 11.8

• LLVM: 15.0

• GHC: 9.2.5

• GCC: 12.3

The CPU backend (modified based on commit 165a9e7 of Accelerate-
LLVM [7]) and the Vulkan backend were tested under the Accelerate new
pipeline (modified based on commit 55e0dfd of Accelerate [6]), while the
PTX backend was benchmarked in the old pipeline. Both the CPU backend
and the PTX backend are evaluated with and without fusion. Fusion is
enabled by default for the CPU and PTX backend, so we have to disable
it manually. For PTX, disabling fusion is simple. One way to do it, is by
adding the following lines to the cabal project file:

1 package accelerate
2 flags: +debug

and running the executable program with extra flags +ACC -fno-fusion
-ACC. For the CPU backend, it is slightly difficult as the new pipeline is still
in development. However, setting mkGraph _ _ _ = mempty and finalize
= finalizeNoFusion, making

1 labelLabelledArg vars l (L x@(ArgArray In (ArrayR shr _) _ _) y)
2 = LOp x y (vars M.! InDir l, rank shr)
3 labelLabelledArg vars l (L x@(ArgArray Out (ArrayR shr _) _ _) y)
4 = LOp x y (vars M.! OutDir l, rank shr)
5 labelLabelledArg _ _ (L x y)
6 = LOp x y (0,0)

in the instance MakesILP NativeOp in the file Native/Operation.hs of
Acclerate-LLVM should do the work. For the Vulkan backend, fusion is not
implemented.

Since the compilation of the primitive scalar expression does not sup-
port double-precision floating-point numbers for all the operations, we have
changed all these numbers for three benchmarks into single-precision floating-
point numbers.

5.1.1 Naive N-body simulations

N-body simulations model the interactions between a large number of
particles, such as the influence of gravity on stars or molecules in fluids. The
naive implementation refers to the simplest implementation of N-body sim-
ulations, where the gravitational force is the only force that affects particles.

71

Figure 4. Results of N-body simulations.

This benchmark tests the raw computational power and efficiency of handling
a large number of floating-point operations.

Figure 4 and Table 3 (in the Appendix) illustrate the testing results
of N-body simulations. The Vulkan backend keeps its advantage in smaller
scalars, while after 1500, its performance is worse than the PTX backend.
This means it cannot maintain a consistently lower mean execution time com-
pared to the PTX backend and also the CPU backend with fusion. Though
its execution time increases rapidly after 1500, its performance remains com-
petitive and consistently better than the CPU backend without fusion. As
for the standard deviation, PTX backend and CPU backend with fusion have
a quite narrow execution time distribution. Though the standard deviation
of execution time increases along with the input size for the Vulkan backend,
it does not change a lot compared to the CPU backend without fusion.

5.1.2 Multigrid methods

The multigrid method is used to solve partial differential equations
(PDEs) on multiple levels of grid resolutions. This benchmark tests the
memory hierarchy performance including local cache efficiency and access
patterns across different level of the memory hierarchy.

As shown in Figure 5 and Table 4 (in the Appendix), the Vulkan back-
end has the lowest mean time and standard deviation in most cases compared

72

Figure 5. Results of Multigrid Method.

to all other backends. Moreover, its performance is significantly better for
larger input sizes and more iteration steps. The CPU backend without fusion
is still the slowest and most unstable one in all testing cases.

5.1.3 FlashAttention

FlashAttention is an optimized implementation of the attention mech-
anism, which is used in transformer models of artificial intelligence. This
benchmark tests how well a backend can handle the computation and mem-
ory access patterns.

The testing results are shown in Figure 6 and Table 5 (in the Ap-
pendix), n and d are the sizes of the attention layer. The tile size m for all
these three backends is 16384, except that the Vulkan backend on the spec-
ification (n=2048, d=64) and (n=2048, d=128) uses the tile size 8192. In
general, we ran tests on different input sizes, which are the combination of n
and d, with different tile sizes ranging from 8 to 16384, then chose the best
result among all tile sizes for each input size on individual backends.

From the figure and table, we can tell that the Vulkan backend shows
competitive performance, outperforming the CPU and PTX backends with-
out fusion. They perform similarly in all cases for the mean execution time,
but the standard deviation of the CPU backend with no fusion is still the
worst among all. For larger input sizes, Vulkan’s performance is closer to

73

Figure 6. Results of FlashAttention. Test results for Vulkan backend on input size
(n=2048, d=64) and (n=2048, d=128) use the tile size m=8192; others use m=16384.

CPU with fusion but still slightly lags behind.

5.1.4 Discussion

From the experiment results, we can observe that in most cases, the
Vulkan backend provides very competitive performance even compared to the
PTX backend. Specifically, in the multigrid method testing, our implemen-
tation outperforms all other backends in most cases. However, in the naive
N-body simulation, the execution time of Vulkan increases linearly, while the
PTX backend holds a constant time and remains lower than that of Vulkan.
Due to the lack of comparative studies, we are not aware of the factor that
makes the Vulkan backend significantly outperform the PTX backend in the
multigrid method testing. For example, whether this strength comes from
the low overhead of launching and executing Vulkan shaders, or it is caused
by aggressive fast-math optimizations [16, §Analysis] (discussed in §5.2).

Moreover, we have discovered that the impact of fusion is great enough
to eliminate the advantage brought by massive parallel hardware, i.e., the
GPUs. Regardless of backends and benchmarks, implementations benefit
significantly from the fusion that reduces the execution time by minimizing
the overhead of multiple kernel launches and improving data locality.

What’s interesting is that the execution time of the CPU backend seems

74

to vary greatly on the same benchmark and the same specification, i.e., the
standard deviation is pretty high, while this situation does not happen for
the PTX backend. This may be due to the CPU frequency being adjusted
in a wide range more dynamically when executing a large number of small
unfused kernels compared to the GPU, resulting in the computing speed
varying as well.

5.2 Limitations

Though the Vulkan backend performs competitively with the PTX
backend, some limitations in both the Vulkan and our implementation cannot
be overlooked. There are also some disadvantages to using Vulkan for GPU
computing instead of rendering, which are hard to overcome and compensate
for.

Extension supports The greatest limitation comes from the uneven ex-
tension supports across all hardware vendors. Vulkan takes Spir-V code as
its low-level representation to build shaders. However, it only supports 32-bit
integers and 32-bit single-precision floating-point numbers by default. Extra
data types are introduced via enabling extensions that are not widely sup-
ported by vendors. This could increase the complexity of the code generation
for a Vulkan backend since unsupported types and operations are required
to be handled differently.

Moreover, some operations are extended by enabling certain exten-
sions, while their support is various on different platforms. For example,
EXT_shader_atomic_float introduces support for single- and double-precision
floating-point numbers operated on atomic addition – atomicAdd, while their
support on atomic min and max operations – atomicMin and atomicMax is
enabled by a separate extension – EXT_shader_atomic_float2. However, no
NVIDIA GPU supports the latter currently, while most recent AMD GPUs
support both. Thus, to increase the compatibility across various platforms,
the latter extension is not enabled in our implementation. When running
such operations on AMD GPUs, their implementations are the same as that
of NVIDIA GPUs, i.e. using a lock-free loop or a spinlock, which limits the
performance. Or we can generate GLSL code to enable such extensions and
utilize those native operations, which could fully exploit AMD GPUs but
would increase the complexity of development.

Limited data types on instructions Currently, there is no such exten-
sion that provides support for operating complex mathematical functions on

75

double-precision floating-point numbers, including exponent, power, trigono-
metric, and logarithm. This is because most GPUs don’t have specific double-
precision instruction units to compute such functions. Though some GPUs,
e.g. recent NVIDIA and AMD GPUs, have the capability to conduct com-
plex double-precision floating-point mathematical operations, to maintain
the cross-platform feature and due to non-technical reasons, native supports
or extra extensions are not included in Vulkan. Manually implementing such
functions for not-supported hardware would require a considerable amount
of work, and the performance may not be good.

In comparison, all modern x86 architecture CPUs have full instruction
units to support complex mathematical functions, which also happen to be
more transparent internally than GPUs. Thus, many scientific libraries for
CPUs can achieve such tasks. For NVIDIA GPUs that support CUDA, there
is no gap for supporting single- and double-precision types on those opera-
tions [18, §6. Double Precision Mathematical Functions], though it could be
slow when dealing with double-precision numbers.

Instruction precisions Interestingly, when coding the shader for Vulkan
in GLSL, though common mathematical operators support single-precision
decimals, their executing results may not be as accurate as those of CUDA,
where PTX is the low-level representation of the CUDA language.

Table 2. Unit in the last place (ULP) errors of single-precision floating-point instructions
[17, §13. Mathematical Functions],[55, §Precision of Individual Operations]. ULP error
ranges of CUDA in the table are only for NVIDIA GPUs realised after 2014, and in
Vulkan, GLSL is of version 4.50.

Instruction CUDA Vulkan

addition 0 0
subtraction 0 0
multiplication 0 0
division ≤2 ≤2.5
exponent ≤2 ≥3
logarithm ≤1 ≤3
power ≤4 ≥3
square-root ≤1 ≤4.5
arc-tangent ≤2 ≤4096

Table 2 shows the instruction errors measured in units in the last place
(ULPs). The smaller it is, the more accurate the result is. Allowing larger
ULP errors means more aggressive fast-math optimizations can be employed

76

to execute instructions faster. We can find that although both CUDA and
Vulkan can provide error-free results from addition, subtraction, and multi-
plication, in other cases, Vulkan tolerates greater errors. Nevertheless, CUDA
has a flag to disable all fast-math optimizations providing more accurate re-
sults that are nearly error-free, while Vulkan does not have that option at
all. For CPUs, modern mainstream x86 ones can execute those instructions
with errors less than 1 ULP when disabling fast math, and unlike GPUs’
proprietary ecosystems, there are many open-source compilers built for x86
CPUs providing the option to disable fast math.

Programs built with CUDA language are compiled into PTX code and
even lower-level representations. Though Table 2 only shows the situation
when coding in CUDA instead of PTX, the idea is the same since CUDA
code will be transformed to PTX.

Moreover, double-precision floating numbers are only required to be
as accurate as single-precision numbers [55, §Precision and Operation of
SPIR-V Instructions], which means some Vulkan drivers simply downcast
the precision to compute and convert the result back. This does not en-
sure the double-precision worsening the case for using Vulkan to conduct
high-precision scientific computations.

The implementation of Vulkan backend There are a few spots in the
current implementation that can be improved in future work. The first one
is the Vulkan buffer management. All involved data is pushed to the Vulkan
device memory during runtime, yet with the increasing computation scale
it is possible to exceed the maximum device memory when keeping all the
data there. Though they are managed by GC and will be freed if they are
not used anymore, the smarter way is to use the least recently used (LRU)
caching mechanism [47], i.e. only keep the newest data in the remote memory
and transfer the old data to the device when it is called.

Secondly, the generated GLSL code from our implementation lacks
boundary checks in the array-indexing operation. Since there is no built-in
way to throw and catch an error during the execution of Vulkan shaders, we
discard the boundary check for array access, resulting in possible undefined
behaviors. However, extra buffers can be bound to shaders to catch runtime
errors, and custom runtime utilities can receive such buffers and handle those
errors.

Thirdly, Accelerate’s default integer type is 64-bit, but operating on
this type for Vulkan devices requires extra computing resources and en-
abling additional extensions since the default integer type for them is 32-
bit. Though users can explicitly define arrays of Int32 and convert Int64 to

77

Int32 for speeding up computations, operations related to indices are always
operated under Int64 since it is the only indices type of Accelerate. Implicit
conversions or modifications of Accelerate indices can relax this issue, but
more work and complex analysis are required.

6 Conclussion

This thesis has explored the development of a Vulkan backend for Ac-
celerate, with the goal of expanding its GPU acceleration to more platforms.
In this project, we have successfully implemented an OpenGL Shading Lan-
guage (GLSL) code generator, a backend runtime, and other modules. As an
alternative to CUDA, Vulkan does provide suitable APIs to execute host-side
and device-side operations, including memory management, data transfer,
and kernel execution.

The experimental evaluations show that compared to the PTX back-
end, our Vulkan backend is a competitive player in most cases and signifi-
cantly outperforms the no-fusion CPU backend, proving its effectiveness and
potential. All these results reveal a unique option for executing array com-
putations using a cross-platform and high-performance library.

Despite the promising results, the limitations of the Vulkan backend are
also significant. Due to the uneven support for external GLSL extensions on
various platforms, achieving more portability for our implementation could
be difficult. Apart from that, certain data types are not supported by ad-
vanced mathematical operations. Even though they are supported by other
functions, the computing results are not as accurate as that of the PTX
backend. Future work could focus on the refinement and optimization of the
backend to ensure broader compatibility and portability.

As mentioned in §2.3.2, developing a Vulkan program is extremely ver-
bose since Vulkan exposes various low-level details and has a large number
of configurable flags. To have great efficiency, developers need to do more
work in optimizations. In addition, there is no best practice for building a
Vulkan program. Various hardware architectures and Vulkan flags influence
the performance differently. In other words, the best practice is to use a
profiler to optimize the program per device.

“Every pit holds the promise of a mighty tree”, so does the Vulkan.
Though it is still young and immature, we just have to let it grow.

78

References

[1] AccelerateHS. Accelerate: High-performance parallel arrays for Haskell.
https://github.com/AccelerateHS/accelerate. 2024. (Visited on
08/05/2024).

[2] AccelerateHS. LLVM backends for the Accelerate array language. https:
//github.com/AccelerateHS/accelerate-llvm. 2024. (Visited on
08/05/2024).

[3] achirkin. vulkan-api: Low-level low-overhead vulkan api bindings. https:
//github.com/achirkin/vulkan. 2021. (Visited on 08/05/2024).

[4] AMD. Vulkan Memory Allocator (Version 3.1.0). https://gpuopen-
librariesandsdks.github.io/VulkanMemoryAllocator/html/. (Vis-
ited on 07/07/2024).

[5] Mike Bailey. “Introduction to the Vulkan graphics api”. In: SIGGRAPH
Asia 2018 Courses. 2018, pp. 1–225.

[6] David van Balen. Accelerate: High-performance parallel arrays for Haskell.
https://github.com/dpvanbalen/accelerate. 2024. (Visited on
08/05/2024).

[7] David van Balen. LLVM backends for the Accelerate array language.
https://github.com/dpvanbalen/accelerate-llvm. 2024. (Visited
on 08/05/2024).

[8] Stefan Berghofer and Christian Urban. “A head-to-head comparison
of de Bruijn indices and names”. In: Electronic Notes in Theoretical
Computer Science 174.5 (2007), pp. 53–67.

[9] Lars Bergstrom and John Reppy. “Nested data-parallelism on the GPU”.
In: Proceedings of the 17th ACM SIGPLAN international conference on
Functional programming. 2012, pp. 247–258.

[10] Guy E Blelloch. NESL: a nested data parallel language. Carnegie Mellon
University, 1992.

[11] Guy E Blelloch. Nested Data-Parallelism and NESL. https://www.
cs.cmu.edu/~scandal/cacm/node4.html. (Visited on 05/19/2024).

[12] Guy E Blelloch and Gary W Sabot. “Compiling collection-oriented lan-
guages onto massively parallel computers”. In: Journal of parallel and
distributed computing 8.2 (1990), pp. 119–134.

79

https://github.com/AccelerateHS/accelerate
https://github.com/AccelerateHS/accelerate-llvm
https://github.com/AccelerateHS/accelerate-llvm
https://github.com/achirkin/vulkan
https://github.com/achirkin/vulkan
https://gpuopen-librariesandsdks.github.io/VulkanMemoryAllocator/html/
https://gpuopen-librariesandsdks.github.io/VulkanMemoryAllocator/html/
https://github.com/dpvanbalen/accelerate
https://github.com/dpvanbalen/accelerate-llvm
https://www.cs.cmu.edu/~scandal/cacm/node4.html
https://www.cs.cmu.edu/~scandal/cacm/node4.html

[13] Manuel M T Chakravarty, Gabriele Keller, Sean Lee, Trevor L. Mc-
Donell, and Vinod Grover. “Accelerating Haskell array codes with mul-
ticore GPUs”. In: DAMP ’11: The 6th workshop on Declarative Aspects
of Multicore Programming. ACM, 2011.

[14] Gang Chen, Guobo Li, Songwen Pei, and Baifeng Wu. “High perfor-
mance computing via a GPU”. In: 2009 First International Conference
on Information Science and Engineering. IEEE. 2009, pp. 238–241.

[15] Department of Computer Science at the University of Copenhagen.
CFAL-bench. https://github.com/diku- dk/CFAL- bench. 2024.
(Visited on 07/30/2024).

[16] University of Copenhagen. Comparing the performance of OpenCL,
CUDA, and HIP. https://futhark- lang.org/blog/2024- 07-
17-opencl-cuda-hip.html. 2024. (Visited on 08/08/2024).

[17] NVIDIA Corporation. CUDA C++ Programming Guide (Release 12.5).
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.
pdf. 2024. (Visited on 07/30/2024).

[18] NVIDIA Corporation. CUDA Math API Reference Manual (Release
12.6). https://docs.nvidia.com/cuda/pdf/CUDA_Math_API.pdf.
2024. (Visited on 08/05/2024).

[19] Nicholas J Curtis, Kyle E Niemeyer, and Chih-Jen Sung. “Using SIMD
and SIMT vectorization to evaluate sparse chemical kinetic Jacobian
matrices and thermochemical source terms”. In: Combustion and Flame
198 (2018), pp. 186–204.

[20] Olivier Danvy. “Folding left and right over Peano numbers”. In: Journal
of Functional Programming 29 (2019), e6.

[21] Prashanta Kumar Das and Ganesh Chandra Deka. “History and evo-
lution of GPU architecture”. In: Emerging Research Surrounding Power
Consumption and Performance Issues in Utility Computing. IGI Global,
2016, pp. 109–135.

[22] expipiplus1. vulkan: Bindings to the Vulkan graphics API. https://
github.com/expipiplus1/vulkan. 2024. (Visited on 08/02/2024).

[23] Massimiliano Fatica. “CUDA toolkit and libraries”. In: 2008 IEEE Hot
Chips 20 Symposium (HCS). 2008, pp. 1–22. doi: 10.1109/HOTCHIPS.
2008.7476520.

80

https://github.com/diku-dk/CFAL-bench
https://futhark-lang.org/blog/2024-07-17-opencl-cuda-hip.html
https://futhark-lang.org/blog/2024-07-17-opencl-cuda-hip.html
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Math_API.pdf
https://github.com/expipiplus1/vulkan
https://github.com/expipiplus1/vulkan
https://doi.org/10.1109/HOTCHIPS.2008.7476520
https://doi.org/10.1109/HOTCHIPS.2008.7476520

[24] Andy Gill and Oregon Graduate Institute of Science and Technol-
ogy. base-4.20.0.1: Core data structures and operations. https : / /
hackage.haskell.org/package/base- 4.20.0.1. 2024. (Visited
on 08/05/2024).

[25] Peter N. Glaskowsky. NVIDIA’s Fermi: the first complete GPU com-
puting architecture. https://www.nvidia.com/content/pdf/fermi_
white_papers/p.glaskowsky_nvidia’s_fermi-the_first_complete_
gpu_architecture.pdf. 2009. (Visited on 07/01/2024).

[26] Kyle Halladay. Comparing Uniform Data Transfer Methods in Vulkan.
https://kylehalladay.com/blog/tutorial/vulkan/2017/08/13/
Vulkan-Uniform-Buffers.html. 2017. (Visited on 07/30/2024).

[27] Kyle Halladay. Improving Vulkan Breakout. https://kylehalladay.
com/blog/tutorial/vulkan/2017/08/30/Vulkan-Uniform-Buffers-
pt2.html. 2017. (Visited on 07/30/2024).

[28] ANCA HAMURARU. Atomic operations for floats in OpenCL – im-
proved. https : / / streamhpc . com / blog / 2016 - 02 - 09 / atomic -
operations-for-floats-in-opencl-improved/. 2016. (Visited on
08/05/2024).

[29] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor,
Sebastian Berg, Nathaniel J Smith, et al. “Array programming with
NumPy”. In: Nature 585.7825 (2020), pp. 357–362.

[30] W Daniel Hillis and Guy L Steele Jr. “Data parallel algorithms”. In:
Communications of the ACM 29.12 (1986), pp. 1170–1183.

[31] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler.
“A history of Haskell: being lazy with class”. In: Proceedings of the
third ACM SIGPLAN conference on History of programming languages.
2007, pp. 12–1.

[32] Intel. Intel Intrinsics Guide (Version 3.6.9). https://www.intel.
com/content/www/us/en/docs/intrinsics-guide/index.html.
2024. (Visited on 08/05/2024).

[33] Intel. SPIR-V: Default Interface to Intel Graphics Compiler for OpenCL
Workloads. https://www.intel.com/content/dam/develop/external/
us/en/documents/spirv-for-publishing.pdf. (Visited on 07/04/2024).

[34] Gabriele Keller, Manuel MT Chakravarty, Roman Leshchinskiy, Simon
Peyton Jones, and Ben Lippmeier. “Regular, shape-polymorphic, par-
allel arrays in Haskell”. In: ACM Sigplan Notices 45.9 (2010), pp. 261–
272.

81

https://hackage.haskell.org/package/base-4.20.0.1
https://hackage.haskell.org/package/base-4.20.0.1
https://www.nvidia.com/content/pdf/fermi_white_papers/p.glaskowsky_nvidia's_fermi-the_first_complete_gpu_architecture.pdf
https://www.nvidia.com/content/pdf/fermi_white_papers/p.glaskowsky_nvidia's_fermi-the_first_complete_gpu_architecture.pdf
https://www.nvidia.com/content/pdf/fermi_white_papers/p.glaskowsky_nvidia's_fermi-the_first_complete_gpu_architecture.pdf
https://kylehalladay.com/blog/tutorial/vulkan/2017/08/13/Vulkan-Uniform-Buffers.html
https://kylehalladay.com/blog/tutorial/vulkan/2017/08/13/Vulkan-Uniform-Buffers.html
https://kylehalladay.com/blog/tutorial/vulkan/2017/08/30/Vulkan-Uniform-Buffers-pt2.html
https://kylehalladay.com/blog/tutorial/vulkan/2017/08/30/Vulkan-Uniform-Buffers-pt2.html
https://kylehalladay.com/blog/tutorial/vulkan/2017/08/30/Vulkan-Uniform-Buffers-pt2.html
https://streamhpc.com/blog/2016-02-09/atomic-operations-for-floats-in-opencl-improved/
https://streamhpc.com/blog/2016-02-09/atomic-operations-for-floats-in-opencl-improved/
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/dam/develop/external/us/en/documents/spirv-for-publishing.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/spirv-for-publishing.pdf

[35] Gabriele Cornelia Keller. “Transformation-based implementation of nested
data parallelism for distributed memory machines”. PhD thesis. Tech-
nische Universität Berlin, 1999.

[36] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for
lifelong program analysis & transformation”. In: International sympo-
sium on code generation and optimization, 2004. CGO 2004. IEEE.
2004, pp. 75–86.

[37] LLVM. User Guide for NVPTX Back-end. https://llvm.org/docs/
NVPTXUsage.html. (Visited on 03/20/2024).

[38] Xinliang Lu. accelerate-vulkan. https://github.com/largeword/
accelerate-vulkan. 2024. (Visited on 08/05/2024).

[39] Simon Marlow, Simon Peyton Jones, and Wolfgang Thaller. “Extending
the Haskell foreign function interface with concurrency”. In: Proceedings
of the 2004 ACM SIGPLAN Workshop on Haskell. 2004, pp. 22–32.

[40] Ricardo Marroquim and André Maximo. “Introduction to GPU Pro-
gramming with GLSL”. In: 2009 Tutorials of the XXII Brazilian Sympo-
sium on Computer Graphics and Image Processing. IEEE. 2009, pp. 3–
16.

[41] Trevor L McDonell, Manuel MT Chakravarty, Vinod Grover, and Ryan
R Newton. “Type-safe runtime code generation: accelerate to LLVM”.
In: ACM SIGPLAN Notices 50.12 (2015), pp. 201–212.

[42] Trevor L McDonell, Manuel MT Chakravarty, Gabriele Keller, and Ben
Lippmeier. “Optimising purely functional GPU programs”. In: ACM
SIGPLAN Notices 48.9 (2013), pp. 49–60.

[43] NVIDIA. NVIDIA GPU microarchitecture. https://www.ece.lsu.
edu/koppel/gp/notes/set-nv-org.pdf. 2023. (Visited on 05/19/2024).

[44] NVIDIA Corporation. PTX ISA (Release 8.5). https://docs.nvidia.
com/cuda/pdf/ptx_isa_8.5.pdf. 2024. (Visited on 07/04/2024).

[45] Michael Oneppo. “HLSL shader model 4.0”. In: ACM SIGGRAPH 2007
courses. 2007, pp. 112–152.

[46] John D Owens, Mike Houston, David Luebke, Simon Green, John E
Stone, and James C Phillips. “GPU computing”. In: Proceedings of the
IEEE 96.5 (2008), pp. 879–899.

[47] Junseok Park, Hyunkyong Choi, Hyokyung Bahn, and Kern Koh. “Buffer
Caching Algorithms for Storage Class RAMs”. In: International Jour-
nal of Computers 3.1 (2009), pp. 41–52.

82

https://llvm.org/docs/NVPTXUsage.html
https://llvm.org/docs/NVPTXUsage.html
https://github.com/largeword/accelerate-vulkan
https://github.com/largeword/accelerate-vulkan
https://www.ece.lsu.edu/koppel/gp/notes/set-nv-org.pdf
https://www.ece.lsu.edu/koppel/gp/notes/set-nv-org.pdf
https://docs.nvidia.com/cuda/pdf/ptx_isa_8.5.pdf
https://docs.nvidia.com/cuda/pdf/ptx_isa_8.5.pdf

[48] Jon Peddie. The History of the GPU-Eras and Environment. Springer
Nature, 2023.

[49] Amanda K Sharp. Memory Layout Transformations. https://www.
intel.com/content/www/us/en/developer/articles/technical/
memory-layout-transformations.html. 2019. (Visited on 07/30/2024).

[50] Lars van Soest. Compiling Second-Order Accelerate Programs to First-
Order TensorFlow Graphs. https://studenttheses.uu.nl/handle/
20.500.12932/44636. 2023. (Visited on 03/20/2024).

[51] Stephan Soller. GPGPU origins and GPU hardware architecture. https:
//nbn-resolving.org/urn:nbn:de:bsz:900-opus4-45000. 2011.
(Visited on 03/20/2024).

[52] Robert Strzodka. “Abstraction for AoS and SoA layout in C++”. In:
GPU computing gems Jade edition. Elsevier, 2012, pp. 429–441.

[53] The Accelerate Team. accelerate-1.3.0.0: An embedded language for ac-
celerated array processing. https://hackage.haskell.org/package/
accelerate-1.3.0.0/docs/Data-Array-Accelerate.html. 2020.
(Visited on 08/05/2024).

[54] The Khronos Vulkan Working Group. SPIR-V Specification. https:
//registry.khronos.org//SPIR-V/specs/unified1/SPIRV.pdf.
2024. (Visited on 07/04/2024).

[55] The Khronos Vulkan Working Group. Vulkan 1.3 - A Specification
(with all registered extensions). https://registry.khronos.org/
vulkan/specs/1.3-extensions/html/vkspec.html. 2024. (Visited
on 06/24/2024).

[56] Jeyarajan Thiyagalingam, Olav Beckmann, and Paul HJ Kelly. “An
exhaustive evaluation of row-major, column-major and Morton layouts
for large two-dimensional arrays”. In: Performance Engineering: 19th
Annual UK Performance Engineering Workshop. University of War-
wick Coventry, UK. 2003, pp. 340–351.

[57] Richard Vuduc and Jee Choi. “A brief history and introduction to
GPGPU”. In: Modern Accelerator Technologies for Geographic Infor-
mation Science (2013), pp. 9–23.

83

https://www.intel.com/content/www/us/en/developer/articles/technical/memory-layout-transformations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-layout-transformations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-layout-transformations.html
https://studenttheses.uu.nl/handle/20.500.12932/44636
https://studenttheses.uu.nl/handle/20.500.12932/44636
https://nbn-resolving.org/urn:nbn:de:bsz:900-opus4-45000
https://nbn-resolving.org/urn:nbn:de:bsz:900-opus4-45000
https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html
https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html
https://registry.khronos.org//SPIR-V/specs/unified1/SPIRV.pdf
https://registry.khronos.org//SPIR-V/specs/unified1/SPIRV.pdf
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html

Appendix

Table 3. Mean time of each backend tested on N-body simulations with standard deviation
in the parenthesis, lower is better.

Mean Time and Standard Deviation (ms)

Scale Z CPU PTX Vulkan
With fusion No fusion With fusion No fusion No fusion

500 20.35 (1.091) 221.5 (11.09) 8.956 (0.7241) 62.79 (2.342) 20.86 (4.418)
1000 33.13 (1.024) 202.0 (46.07) 9.549 (0.9729) 90.80 (7.916) 43.60 (19.12)
1500 48.24 (2.329) 386.2 (81.47) 9.544 (0.9057) 103.8 (9.819) 92.17 (12.43)
2000 66.36 (2.358) 469.0 (117.9) 9.336 (0.5844) 100.9 (17.95) 130.1 (14.26)
2500 83.38 (4.741) 513.0 (126.6) 9.775 (1.288) 102.4 (10.97) 215.5 (39.57)
3000 99.00 (3.328) 669.4 (162.3) 9.671 (1.295) 105.9 (5.258) 312.7 (68.93)
3500 117.1 (3.286) 793.4 (153.9) 10.44 (1.252) 106.2 (4.738) 390.4 (57.28)
4000 128.1 (7.566) 829.5 (208.6) 11.05 (1.016) 110.8 (7.335) 424.8 (46.38)

Table 4. Mean time of each backend tested on Multigrid Method with standard deviation
in the parenthesis, lower is better.

Mean Time and Standard Deviation (ms)

Spec CPU PTX Vulkan
With fusion No fusion With fusion No fusion No fusion

n=128, iter=4 384.1 (119.3) 1234 (891.9) 358.8 (15.73) 529.9 (29.45) 283.7 (15.07)
n=128, iter=8 635.5 (43.45) 1527 (312.8) 726.7 (22.84) 976.0 (12.52) 330.0 (6.531)
n=128, iter=16 1218 (31.64) 2889 (493.5) 1419 (31.90) 1918 (113.7) 451.0 (18.58)
n=128, iter=32 2418 (28.49) 5367 (151.0) 2870 (74.90) 3926 (24.41) 669.0 (29.44)
n=128, iter=64 4785 (37.31) 10780 (342.5) 5635 (31.20) 7745 (11.90) 1095 (53.57)
n=128, iter=128 9613 (22.87) 20820 (118.3) 11320 (132.0) 15470 (143.5) 1956 (90.63)
n=256, iter=4 772.2 (10.57) 2375 (811.9) 798.0 (48.12) 1577 (23.70) 2107 (20.38)
n=256, iter=8 1551 (7.988) 4055 (769.8) 1590 (96.92) 2968 (73.80) 2460 (10.74)
n=256, iter=16 3113 (112.7) 7497 (409.5) 3138 (86.11) 5758 (82.22) 3147 (27.12)
n=256, iter=32 6144 (89.98) 13870 (81.82) 6248 (219.3) 11490 (154.8) 4530 (31.41)
n=256, iter=64 12140 (106.7) 27140 (142.0) 12640 (415.4) 22670 (147.0) 7341 (22.28)
n=256, iter=128 23030 (19.15) 52220 (380.0) 25320 (121.2) 44980 (265.5) 12880 (52.27)

84

Table 5. Mean time of each backend tested on FlashAttention with standard deviation in
the parenthesis, lower is better. Test results for Vulkan backend on input size (n=2048,
d=64) and (n=2048, d=128) use the tile size m=8192; others use m=16384.

Mean Time and Standard Deviation (ms)

Input Size CPU PTX Vulkan
With fusion No fusion With fusion No fusion No fusion

n=512, d=64 69.42 (2.743) 439.4 (74.10) 27.06 (3.200) 496.7 (12.23) 123.6 (14.32)
n=512, d=128 194.1 (15.27) 788.5 (157.9) 52.31 (3.420) 1048 (21.97) 225.2 (7.242)
n=1024, d=64 154.3 (7.474) 1049 (393.0) 53.08 (1.885) 1407 (26.07) 277.5 (30.28)
n=1024, d=128 257.1 (12.34) 2191 (352.6) 127.8 (2.462) 2787 (77.66) 488.0 (33.68)
n=2048, d=64 290.6 (20.30) 3170 (1059) 154.2 (18.92) 2915 (55.63) 960.8 (32.96)
n=2048, d=128 922.7 (21.82) 6383 (1522) 353.7 (7.687) 6307 (63.66) 1909 (102.7)
n=4096, d=64 1075 (48.56) 7762 (4154) 440.4 (16.10) 7762 (202.0) 3950 (21.21)
n=4096, d=128 3681 (94.66) 18960 (6839) 1095 (12.90) 17070 (247.6) 7959 (26.38)

85

	Abstract
	Introduction
	Array programming
	Data parallelism
	GPU computing and its eco-systems
	Accelerate
	Dilemma and a way out
	Research questions

	Preliminaries
	Data parallelism models
	SIMD
	SIMT

	Accelerate
	Compiler pipelines
	Programming model

	Vulkan
	Programming model on the device side
	Programming model on the host side
	Vulkan-Haskell bindings

	Haskell
	ADTs
	GADTs
	Record notation

	Inside Accelerate
	Tuples
	Environments
	Scalar types
	Primitive types
	Buffers
	Variables
	Shapes
	Arrays
	Arguments
	Program terms
	Array terms
	Modifications

	The Vulkan backend
	Backend-specific operations
	Vulkan operations
	Desugaring

	Vulkan kernels
	Compiling to GLSL
	Vulkan context
	Making kernels

	Execution
	Vulkan runtime
	Scheduling and execution

	Evaluation and discussion
	Experiments
	Naive N-body simulations
	Multigrid methods
	FlashAttention
	Discussion

	Limitations

	Conclussion
	References

