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Abstract

Gestures are the non-verbal part of the communication that accompanies

speech to convey meaning to the audience. By this means gesture genera-

tion has been an open topic for research for several years. In recent years,

with the advancements in deep learning algorithms and the development

of larger datasets, generating natural human gestures enhanced signifi-

cantly. However, because of the idiosyncratic, non-periodic, and diversity

of human motions, still generated gestures suffer from the semantic rel-

evancy with the input speech. In this thesis, we will focus on the seman-

tic grounding problem and develop non-deterministic machine learning

methods that can also tackle this problem. The method is expected to gen-

erate semantic motions for both arms, fingers, and torso. In the end, the

method will be evaluated both objectively and subjectively with respect to

ground truth and state-of-the-art methods.
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1. Introduction

1.1 Introduction

David McNeill [1] describes gestures as symbols that have been used to

show meaning with hands. They can be used to emphasize the spoken con-

text [2], make them more clear [3], or even enhance the expression of that in-

formation [4][5]. Further researches show that accompanying gestures with

speech can increase the persuasion, credibility, and concentration of the au-

dience [6][3]. Other than that, gestures can show understanding when hu-

mans are talking to non-human characters [7]. So, we can conclude gestures

are essential to have a natural and lively speech [4][2] and because of that

researchers started to synthesize gestures for non-human characters.

Synthesized gestures usually have been used for digital characters [4][5],

humanoid robots [5], or human-machine interaction [3]. They can be used

in animation [4], film [2][4], game industry [5][2], or even for educational

purposes [4]. Their ability to enhance communication can benefit all of

these businesses. However, these synthesized gestures should be natural

and aligned with the context to affect the audience properly.

When it comes to generating gestures from speech that are semantically

aligned with each other different challenges come along the way. For exam-

ple, there is a lack of a large dataset consisting of a wide range of gestures

from different cultures [8][9]. This is because creating an accurate motion-

captured dataset requires a lot of investment and human labor and pose

estimation from videos is not highly accurate yet [10]. In addition, while

capturing these gestures, everyone has some random movements that add

some kind of noise to the actual gesture data [5].On the other hand, there is

a large variety of gestures that need to be processed and generated which

makes it hard to use either rule-based or data-driven approaches [5].
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Introduction

Also, still, the nature of gestures is ambiguous [6] and it is even hard

to find a pattern for them intuitively. The other hurdle is that the dynamic

pattern of different human parts is not the same [3] and different variances

of their movement make the training more complex. Furthermore, human

gestures can be influenced by various factors that cannot be extracted from

only speech [6]. For example, the environment that the speech is given and

the objects that the speaker is pointing at. In addition, different people use

different gestures to describe the same phenomena and it makes it harder

for models to find a general pattern for everyone [6][10].

Finally, semantic cues are hard to find because their nature is still am-

biguous, and gestures and speech are not temporarily aligned well [4]. Also,

beat cues are easier to find because of the alignment of the frequency of the

audio and body movement, so deep-learning models are more inclined to

learn from them, and less attention will be on semantic cues [4].

In this research, we try to apply contrastive learning to extract under-

lying semantic alignment between the context or transcript of the speeches

and the gestures. Also, because of the idiosyncratic nature of the gestures

we combine the speaker’s identity with contrastive learning to learn the

speaker’s gesture style rather than giving it as an input to the model. More-

over, we explore non-deterministic approaches such as diffusion models as

they showed promising results in the other generative fields, like image,

video, mesh, and even general motion generation.
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2. Related Works

In this section, we briefly explain the definition of gesture and its kinds

through the lens of linguistics 2.1, then we explore the history of gesture

generation and the techniques and algorithms that were acquired 2.2, fol-

lowed by a deep dive into deep learning algorithms and their usage in co-

speech gesture generation 2.3 and the main challenges and concerns 2.4.

Further, we discuss some of the key elements like encoders and datasets

that have been used previously in this line of research 2.5.

Nyatsanga et al. [11] provided a survey about gesture generation that

covers most of the history of this topic. They categorized the previous ap-

proaches, based on the input they have used, like text, audio, text and audio,

and other modalities like speaker identity and personality [12]. We also rec-

ommend reading that to understand the importance of different modalities

in this topic.

However, like many other research, we categorize them based on the

algorithms they have used. From the higher view, we can categorize gesture

generation algorithms into two main categories, rule-based methods, and

data-driven methods, where the data-driven approach itself can be seen as

statistical, motion graph, and machine learning approaches.

In the following, we define each category and some of their sub-categories

and discuss some of the examples that used that algorithm for gesture gen-

eration. Later, we explain the nature of the gestures, and the mutual con-

cerns we observed in these examples, and we will finish this section with a

survey on some of the datasets and tools that are used in this research area.
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2.1 Gestures

McNeill [1] says during the speech, the hands of the speaker are not hands

moving in the space anymore. But, they are symbols that come with the

speech to convey meanings. Then, he proposes four types of gestures, iconic,

metaphoric, deictic, and beat. Iconic gestures depict concrete objects while

metaphoric gestures are the ones that show abstract things. Deictic gestures

are the ones we use to point at something, and beat gestures are the ones

that come with the rhythm of the speech.

Neff et al. [13] propose two new categories called self-adaptors for the

gestures that depict the emotional or personality traits of the speaker, and

emblems which are conventional gestures that represent a word [14].

Beat gestures usually accompany the speech and because of their align-

ment with the audio the generation of them is easy and already solved by

different methods. However, the other types of gestures, which we call se-

mantically aligned gestures, are more sparse and contextual making them

harder to be extracted from the speech and generated by deep learning mod-

els. As a result, generating semantically aligned gestures is still an open

topic to research, and in this research, we are going to focus on improving

their generation.

2.2 History of gesture generation

In this section, we explain the history of gesture generation and the algo-

rithms that have been used for this purpose. We start with rule-based al-

gorithms that have a longer history and describe how gesture generation

evolves with new advances in computer science and deep learning. A brief

description of each algorithm and some examples from each of them have

been provided.
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2.2 History of gesture generation

2.2.1 Rule-based approach

In the rule-based approach, an expert models different scenarios and map-

pings between speech and related gestures. This approach needs human

labor, and the transition between gestures can be unnatural as usually the

end states are modeled and transitions are calculated naively. The number

of variations is limited, and it is hard to scale because each of the variations

should be generated and mapped manually which needs not only human

labor but also some experience. However, it is really communicative and

usually semantically relevant in a limited domain because they are specifi-

cally designed to behave in a certain manner [11][15][12].

The rule-based approach can be seen as a classification task to choose the

optimum pre-recorded motion from a database, while the early data-driven

approaches tend to generate motions as a regression and later probabilistic

end-to-end task [16][17]. One of the earliest works using this method was

done by Cassell et al. [18] in 1998. They introduced a framework to gener-

ate context-related hand gestures, facial animation, and intonation between

humanoid characters.

2.2.2 Data-driven approach

In contrast to the rule-based approach that relies on pre-defined rules, the

data-driven approach finds its way through data and the patterns that can

be found among that. We can categorize the data-driven approach into some

sub-categories like statistical, motion graph, and deep learning approach.

In the following, we discuss each of these sub-categories briefly, and then

in section 2.3 we dive deeper into the deep learning approach which is the

state-of-the-art method.

2.2.2.1 Statistical approach

In comparison to the rule-based approach, where an expert connects ges-

tures to speech, in the statistical approach some computation is done to find

a direct or probabilistic relation between the speech and the occurrence of

the gesture [12].
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One of the earliest works on this approach has been done by Kipp [14]

who made a profile for an individual from the annotated co-speech dataset.

His model was able to generate gestures for this person based on their pro-

file. This profile is about the conditional probability of the occurrence of a

gesture along the input text [11].

This approach can be scaled better than the rule-based approach as sta-

tistical analysis can be done on different data and generate different results.

However, in comparison to the deep learning approach, it is more depen-

dent on the human and their ability to analyze the data.

2.2.2.2 Motion graph

Although deep neural networks can find some deeper connections between

the audio, transcript, and gestures, using a low dimensional latent space

made them less sensitive to high-frequency motion details. On the other

hand, motion graph algorithms have shown higher fidelity in generating

these kinds of motions.

The core idea of the motion graph is to generate a graph of the mapping

of gestures and audio in a high-dimensional space where each node repre-

sents a motion clip and each edge represents the cost of transition from each

node to the adjacent one. The best gesture at each sequence can be found

by evaluating these cost values with different algorithms like KNN [19] or

reinforcement learning [20] in this space [21].

2.2.2.3 Deep learning algorithm

After showing great results in other generative domains, deep learning al-

gorithms were acquired in gesture generation. In comparison to previous

approaches, deep learning algorithms need more data to be trained on.

However, they need less human effort to process and find the underlying

patterns [6].

Kopp [22] argues that using deep learning algorithms has improved the

generated results regarding naturalness. However, the communicative part

or the semantic connection between speech and gestures might not be as

8



2.3 Deep learning algorithms

good as the previous approaches [11].

Early attempts led to natural gestures that were aligned with the rhythm

of the speech however the semantic relation was not pretty well[2]. One

of the reasons is that for deep learning models finding rhythmic cues from

audio is easier than finding the semantic cues and the models are more in-

clined to learn from them [4]. The inclination is because of the distribution

of these cues. While rhythmic cues are distributed all over the speech, se-

mantic cues are more sparse. So, because the semantic cues do not follow

a clear pattern, they are harder to find by deep learning models, and some-

times they are considered noise.

Later, the focus moved to the semantics of the generated gestures which

is harder and still an open topic to research [23][8]. In this research, we

focus on enhancing the semantics of the synthesized gestures by using deep

learning models.

2.3 Deep learning algorithms

Different deep-learning algorithms have been developed for generating pur-

poses which are also used by researchers for generating co-speech gestures.

Sometimes these researchers focused on a specific algorithm, and some-

times they combined some of them. Here is a list of some of the main gen-

erative algorithms and the papers that used them:

• RNN [12]

• LSTM [24][25][10][26]

• GAN [6][27][28]

• Autoencoders [29][30][31][32][26]

• Transformers [33][27][8][34]

• Diffusion models [16][35][5][7][36][37]
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2.3.1 RNN

Recurrent neural networks [38] are some kinds of neural networks that have

been designed for modeling sequential data. They have a loop in their ar-

chitecture that helps the model at each sequence to use the memory of the

previous sequences and find a pattern in sequential data. However, the tra-

ditional RNNs suffer from the problem of vanishing the gradient where the

gradient becomes so small in long-term dependencies and makes the train-

ing difficult for the model.

Ferstl et al. [12] tried to generate gestures from speech using an RNN

algorithm that was designed to find patterns in human gesture sequences.

They proposed that transfer learning can be helpful in this case because of

the complexity that comes with the multi-modality nature of the problem.

So, they trained a model on the gesture-to-gesture dataset to find a pat-

tern between motion sequences first and then used that model for training

a speech-to-gesture model. However, the general motion joint movement

distribution is completely different than gestures, and motion movements

are not necessarily linked with speech.

2.3.2 LSTM

LSTM [39] is one kind of recurrent network that came to address the van-

ishing gradient problem in the traditional one. In LSTM architecture each

sequence has three gates that decide to remember or forget the previous

memory from the previous sequences and have a constant error through

the time. These features help LSTM to find patterns in longer sequential

data. Although LSTM has been designed to model sequential data, its de-

terministic nature makes it not suitable for modeling human gestures which

is non-deterministic.

Shlizerman et al. [40] tried to find the correlation between the body joints

of a pianist or violinist and music using the LSTM algorithm. Later, Wang

et al. [25] used the LSTM algorithm for generating both the speech and ges-

ture from the text input. However, generating rhythmic aligned gestures

without using the audio can be challenging and very dependent on the text-
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to-voice algorithm.

Liu et al. [10] developed a multi-modal LSTM network that uses audio,

text, emotions, speaker identity, and facial blend weights as inputs to syn-

thesize gestures. Their model showed good results for that time, however,

the deterministic nature of the LSTM algorithms prevents them from gener-

ating diverse gestures.

2.3.3 GAN

Generative adversarial networks are a framework consisting of two models

that are trained together. The goal of the first model is to generate data from

the inputs and the goal of the second model is to predict whether the given

input is real or fake [41].

Because of the coherency between the gesture and speech content, speech

audio, personality, and environment, Yoon et al. [6] designed an end-to-end

co-speech gesture generation model that uses GAN architecture and audio,

text, and speaker identity as input to generate more expressive gesture mo-

tions. Their model was the first of the kind that used these three modalities

at the same time and showed the importance of each of these modalities

in gesture generation. Inspired by them, we also use these modalities with

some tweaks in interpreting them.

Habibie et al. [28] first tried to generate the facial and gesture motion at

the same time using an adversarial network. But, new research [34] showed

that generating hand and other body parts separately can enhance the re-

sults, because of the different distribution of their joints. So, combining face

and body generation might not be the best idea.

All in all, GAN models are hard to train, because they suffer from mode

collapse, and they might not be generalized to produce good results for un-

seen data [5][7]. Mode collapse is assigned to the GAN models when the

generator focuses on a subset of data and fails to capture the full diversity

of the dataset. While the discriminator increasingly learns to distinguish

the real and fake data. As a result, the generator is more inclined to gen-

erate the samples that have already been learned and neglect the ones that
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have already been forgotten.

2.3.4 Autoencoders

Autoencoders are some type of neural networks that consist of encoders

that encode the input into a compressed latent space, and decoders that can

generate the outcome from the latent space. Autoencoders can be very use-

ful in dimensionality reduction, feature extraction, and noise reduction [42].

These abilities convinced us to instead of working on raw motion data, train

a type of autoencoder first, and work on the latent version of the gesture

motions.

Kucherenko et al. [29] used this technique to generate gestures from

speech. First, they trained an encoder to encode the motions into a latent

space, and a decoder to generate gestures from the latent space. Then, they

trained another encoder to encode speech into the same latent space, so they

can generate gestures from them using the same decoder. They also eval-

uated different lengths for latent space and the use of different features of

speech for co-speech gesture generation. They found out that mel-frequency

cepstral coefficients perform the best for Co-speech generation which later

has been used in different researches in this topic.

Taylor et al. [31] explored the use of autoencoders along with normalized

flow to generate gestures for both speaker and listener. Normalizing flow

has a better capacity to estimate the latent space than regular Gaussian.

Li et al. [30] proposed separating the latent space into shared code and

motion-specific code can be beneficial because of the one-to-many nature

of the gestures. However, using only audio can suffer from extracting the

semantic cues.

Yi et al. [43] attempted to generate facial expressions and gestures using

VQ-VAE. [44] VQ-VAE is a type of autoencoder that instead of encoding

data into a continuous space, uses a quantized codebook and instead of a

pre-defined distribution of data, learns it through the training.

Because the VQ-VAE models are more interpretable than VAE models
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and are less likely to suffer from posterior collapse, we decided to use a VQ-

VAE model to convert gesture motion sequences into latent space. Posterior

collapse happens when the decoder ignores some parts of latent variables

are mostly relies on the other parts. This problem can decrease the effective-

ness of the auto-encoder and its efficiency.

2.3.5 Transformers

Transformer [45] architecture was invented to deal with low-performance

and temporal dependency of the recurrent neural networks. In this archi-

tecture, using the attention mechanism, sequential data can be processed in

parallel. In addition, by using multi-head attention, the relation between

each sequence and further sequences can be found more easily.

Ahuja et al. [33] pointed to the relationship between the sub-words and

the gesture. They wanted to know how different intonations for a specific

text can change the gesture. Thus, they used transformers to find the rela-

tions between sub-words in language and acoustics.

Because of the cross-modality nature of the gesture synthesis, Pang et

al. [8] came up with the idea of using transformer encoder-decoder with

early and intermediate modality fusion. Also, they acquired an intra-modal

pre-training strategy to deal with the limited data available for training on

this topic.

After the invention of transformers by Google, OpenAI introduced Gen-

erative pre-trained transforms [46] that are the basis of current large lan-

guage models. The authors showed that pre-training on large un-labeled

data using transformers and fine-tuning that later for task-specific prob-

lems can improve the outcomes. Zhang et al. [34] very recently used this

technique for semantically aligned gesture generation.

Using a GPT-based algorithm they generate rhythm-aware gestures. Then,

they retrieve related semantically aligned gestures from a pre-defined dataset

and combine it with the rhythm-aligned gesture. They made a dataset con-

taining the most common semantic gestures for this purpose. This model

showed state-of-the-art results regarding semantic alignment. However,
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LLM models are pretty large and hard to train. In addition, their retriev-

ing approach is deterministic and hard to scale.

2.3.6 Diffusion models

Diffusion models [47] have shown high-quality and diverse results in other

generative domains, like image generation [48] and video generation [49].

These models consist of two phases where in the first phase or forward

phase, the model gradually adds noise to the data until the data turns into

a Gaussian noise. In the second phase, the model learns to do the process in

reverse and turns the Gaussian noise into the original samples. By learning

these transitions the model will be able to generate new results based on

different distributions of the data.

Alexanderson et al. [16] made one of the first attempts to use audio in-

put with diffusion models for generating gesture and dance motions. They

used conformers [50] to extract the local and global features from the au-

dio. Conformers are a mixture of transformers that are good for extracting

global interactions and CNNs that are suitable for extracting local features.

Conformers showed better results than transformers and CNNs individu-

ally for the speech recognition tasks. In addition, they used classifier-free

guidance to control the intensity of the style they wanted to apply. Fur-

thermore, they did research on using products of expert diffusion models

and their use case in motion generation. Relying only on audio made their

results good in rhythm alignment but poor in semantics.

Ao et al. [35] proposed a diffusion-based method that instead of us-

ing limited style embedding from labels or using single modality like sam-

ple motions, uses a CLIP-guided [51] mechanism to extract the style from

different modalities such as text, video, and motions to generate stylized

gestures. Also, they argue that because of the ambiguous and many-to-

many nature of gestures, synthesized results lead to mean gesture motions.

So, they used contrastive learning and a temporal aggregation mechanism

on a latent space of gesture-transcript and body-joint embedding to avoid

mean gesture motions and generate semantically aligned gestures. Further-
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more, they proposed a self-supervising approach to alleviate the limited la-

beled data in this field. This approach might be the closest approach to our

method, with the difference that we use contrastive learning on audio and

style as well as the transcripts.

Zhi et al. [23] came up with a two-step gesture generation idea consisting

of a Semantic-Aligned Gesture generator and a Rhythm-Aligned Gesture

generator. The SAG part includes an auto-encoder that is trained with two

losses. The reconstruction loss calculates the distance between ground truth

and the generated gesture, and a CLIP loss measures the distance between

the encoded gesture sequence and encoded transcripts using a pre-trained

CLIP model. They also used an N-layer MLP network instead of a simple

denoiser in their diffusion architecture. They believe that this idea can en-

hance the quality of the outputs regarding temporal consistency. While an-

alyzing the code of this paper, we realized that for contrastive learning they

only considered the cosine similarity of two sets, while it has been proved

that considering positive and negative samples can improve the outcome of

contrastive similarity loss. [52].

In contrast to previous research that used static data and conditions,

and was guided by pre-trained models and CLIP, Zhu et al. [7] proposed

a more challenging method called DiffGesture, where both gesture and au-

dio are sequential and audio-gesture mapping is implicit. They used an

audio-gesture transformer to find a correlation between speech and gesture

and proposed a Diffusion Gesture Stabilizer to solve the temporal distance

between audio and motion. Because of the random noise in the diffusion

models, temporal consistency is an issue in these models. Zhu et al. [7] by

annealing the noise tried to control this randomness to get more consistent

results. However, this variance control can result in less diverse outcomes.

Deichler et al. [17] also acquired CLIP guidance to find a semantic be-

tween motion, text, and audio. Although they achieved the highest hu-

man likeness and speech appropriateness rating at the GENEA conference

in 2023 we believe using the concatenation of audio and transcript embed-

dings in contrastive learning might not be a good idea as their distribution
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is completely different. So, in our model, we implemented three separate

contrastive losses for getting the similarity of gesture and audio, transcript,

and style.

Chen et al. [36] tried to generate facial expressions and gestures at the

same time to keep the coherency between them. Their approach can be con-

sidered as a holistic approach that generates body and face at the same time.

We considered this paper for comparison to see if our discrete generative

model that generates hand and other body parts separately can outperform

these holistic approaches or not.

Although diffusion models have shown high-quality and diverse results

in this field still generated results are not aligned semantically well with

the context of the speech. And, although training of diffusion models is

more stable than the GAN models, these kinds of models are computation-

ally heavy, and training them or getting inferences from them needs more

computational power in comparison to the other generative methods, like

GANs and VAEs.

2.4 Concerns and Challenges

2.4.1 Type of input

Deep learning algorithms for generating co-speech gestures can be cate-

gorized by the type of inputs they use to generate the appropriate ges-

tures [11]. Generally, they use audio, text, or some other non-communicative

modalities like the personality, emotion, or face of the speaker [3] or some-

times a combination of some of them to generate gestures.

Early models focused on the audio and got rhythmic aligned results from

the prosody of the speech. However, they were not semantically aligned be-

cause of the limitation in the information extracted from the audio. Some

others focused on the text and while they were better at the semantic cues,

they could not find the rhythm of the speech very well. Recent research

combined these two modalities to grasp the benefits of both of them to syn-

thesize more natural and semantically aligned gestures [11][6][4][53].

16



2.4 Concerns and Challenges

In this research, we are going to use both audio and transcript and will

try to find their relation with the gestures in the latent space. Also, because

of the idiosyncratic nature of gestures, we are going to interpret the gesture

style using contrastive learning. In the next section, we discuss the previous

attempts that have been made in this case.

2.4.2 Gesture style

Because each person performs the gestures differently many papers applied

speaker identity in their gesture generation algorithm so their method can

learn about different styles. However, because of the ambiguity of the rela-

tionship between the speaker and the gesture, different papers used differ-

ent approaches to analyze that. Ao et al. [35] categorize these approaches

into label-based and example-based groups.

In the label-based approaches, each sample is annotated with a label

that specifies the style of that gesture. These labels can be as simple as a

number [6], specifying the emotion [10], or describing a posture [54]. The

problem with this approach is the limitation in the variety of labels and the

difficulty of adding a new one.

On the other hand, example-based approaches can extract a style from a

sample and mimic that to generate new samples with the same style. These

samples can be a gesture sequence [32] or a video clip [3]. Although this

approach is more flexible in the variety of styles, sometimes it is hard to

judge whether the generated results are aligned with the example or not.

Zhi et al. [23] considered an id for each speaker that is converted to an

embedding vector s which is learned through reparametrization. Also, they

argued that because of the idiosyncratic nature of the gestures, they used

the Kullback–Leibler divergence [55] to regularize the distribution. How-

ever, there are some downfalls with using KL in these situations like high

sensitivity to discrepancies and mode collapse that can cause problems with

unseen styles and learning from all styles respectively.

Ao et al. [35] proposed an approach that using CLIP guidance can ex-

tract the style from different modalities like text prompt, video, and gesture
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motions. They add the extracted style using adaptive instance normaliza-

tion(AdaIN) [56] to their latent diffusion model. AdaIN simply tries to make

the mean and variance of the generated results equal to the style sample.

In contrast to Ao et al. [35] was trying to find a relation between gesture

and other modalities, we propose the idea of finding gestures within the

gestures and in relation to the audio and context of the speech. So, in this

project, using contrastive learning we try to make the style of the samples

from one speaker close to each other while making them as far as possible

to the style of the other speakers.

Also, in contrast to the label-based approaches where the style is as-

signed to the gestures, here we learn the style through the samples of the

speakers.

2.4.3 Semantic motion synthesis

Nyatsanga et al. [11] argue that generating semantically aligned gestures

depends on the input modalities. Audio input can be useful for extracting

the beat cues and temporal alignment, while text transcripts are more useful

for extracting semantics.

We can categorize the previous methods that tried to use text and find a

relation between that modality and gesture, into two main categories: con-

trastive methods and GPT-based methods. [17] While the contrastive ap-

proaches come from a task-specific point of view, the GPT-based methods

usually come from a task-agnostic point of view. Also, while the contrastive

approach focuses on the similarity of the joint embeddings, the GPT-based

approach focuses on the patterns and probabilities. Here we brought some

examples from both categories.

Liu et al. [3] used contrastive learning to find a correlation between the

high-level audio feature and transcript to benefit from the linguistic cues

that come with transcripts. They considered the embeddings of the tem-

porally aligned high-level audio features and transcript as positive and the

high-level audio features from the other clips as negative. They also did not

want to lose the low-level and mid-level audio features, so they added those
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features as negative similarities.

Followed by Liu et al. [3], Ao et al. [35] used Contrastive Learning Im-

age Pre-training [51] to align the latent representation of transcript and ges-

tures, so that gestures can have the underlying meaning of transcript. CLIP

method lately showed great results related to coupling the unlabeled images

and captions. So, they thought it could also work on gesture and transcript

as well.

Jiang et al. [57] proposed that we can see motions as a language as it usu-

ally semantically couples with the text. They introduced MotionGPT which

applies language modeling on both motion and text in a unified manner.

Later, Zhang et al. [34] tried to use LLMs and GPT models to find the

semantics from the transcript text. Their model works mainly on under-

standing the concept using the LLMs and retrieving the proper semantic

gesture from the pre-recorded dataset. So, it still has some limitations about

the diversity of the results, especially about different languages and cultures

that use different kinds of gestures.

The research is going on in both of these categories at the moment. How-

ever, in this research, we use the contrastive approach because of its compu-

tational simplicity in comparison to LLMs, its compatibility with diffusion

models that have shown great results in the generative domain, and its sup-

port for multi-modalities.

2.4.4 Temporal consistency

As deep learning methods usually generate gesture motions frame by frame

or in short sequences and merge them in the end, providing temporal con-

sistency between these frames or sequences is necessary. Early models fo-

cused on recurrent neural networks solved this problem using the auto-

regressive manner of these types of networks and seed pose, while newer

methods focused on diffusion models did different tricks. In this section,

we present some of these ideas.

Yoon et al. [6] using a gated neural network architecture generated two-
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second motion clips using a feature vector from three modalities of audio,

text, and speaker identity in addition to the seed pose. Seed pose is the four

last frames from the previous clip that come with the other feature vectors

to help the model with temporal consistency. Liu et al. [3] followed the

same approach and tried to find the spatial-temporal dependency using a

bidirectional GRU network.

When diffusion models showed great results in image generation re-

searchers decided to use them in gesture generation as well. However,

in contrast to recurrent neural networks, diffusions are not autoregressive

which makes it harder for them to keep the temporal consistency in gesture

generation.

Zhu et al [7] came up with two ideas to deal with temporal consistency

in the diffusion model. First, they added a transformer to capture the long-

term audio-gesture temporal dependency. Then, they added a new module

called Diffusion Gesture Stabilizer that by gradually annealing down the

noise discrepancy helped to remove the temporal inconsistency between

synthesized sequences.

Inspired by Zhu et al. [7], Ji et al. [58] introduced C2G2 to enhance the

temporal inconstancy of the previous diffusion approach. In contrast to Zhu

et al. [7] which was trying to solve the temporal consistency only in the

sampling part, C2G2 used cross-frame attention in their VQ-VAE to capture

temporal cues in the latent space of the gesture samples.

On the other hand, Zhi et al. [23] used an MLP-based network as the

denoiser of their diffusion model, and added the timestep embedding in

addition to other modalities to the inputs. Each MLP block in this architec-

ture consists of one fully connected layer for temporal alignment and one

fully connected layer for spatial alignment.

Ao et al. [35] proposed an auto-regressive latent diffusion model. This

model in addition to speech content and style prompts is guided by the

previously generated motion.

Mughal et al. [37] came up with the idea of temporal latent representa-
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tion. In this idea, they split a long sequence of motion into some chunks and

encode them separately, but using only one decoder, they try to decode the

concatenation of the encoded chunks into the origin motion sequence.

In this research, we follow the auto-regressive approach and use the em-

beddings of the last four frames of the previous sequence to guide our dif-

fusion model. We train a linear layer during the training of our diffusion

models to encode the last four frames of the previous sequence into a vector

with a size of 512.

2.5 Materials

2.5.1 Contrastive learning approach

Contrastive learning is a machine-learning technique that is usually used

for unsupervised or self-supervised learning. The basis of this technique is

to learn representations by contrasting the positive and negative pairs. Pos-

itive pairs are the ones that are related to each other, and negative pairs are

the non-related ones. For example, in our training, we expect the samples of

the gestures of one speaker to share the same style and be different from the

others. So, the samples of the same speaker are positive, and the samples

from the other speakers are negative pairs.

In recent years, contrastive language image pre-training [51] became so

popular as it showed great results for image captioning by learning from

unlabeled image data. The CLIP model learns the similarities in images and

related text and by contrasting them to the other images and texts. This suc-

cess convinced the other researchers to use this technique in other domains.

We can see contrastive learning in co-speech gesture generation as well.

Ao et al. [35], Deichler et al. [17], and Liu et al. [3] are some of these attempts.

They tried to find similarities in the representation of audio and text, or text

and gesture to find semantic cues from the text.

In this research, we use contrastive learning to find similarities between

the audio, text, and gesture styles. During our data analysis, we realized the
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difference between the distribution of the embeddings of audio and text. So,

in contrast to Deichler et al. [17] that used the concatenation of the represen-

tations of audio and text, we calculate the contrastive loss of these modali-

ties separately each with a specific part of the gesture representation.

2.5.2 Dataset

In this section, two main approaches that have been used to collect gesticu-

lar data have been presented. After explaining each approach, some of the

well-known ready datasets have been analyzed and reviewed.

Regarding data collection, there are two approaches. Extracting body

poses and facial expressions can be done in a pseudo approach(Pose esti-

mation [8]) from the in-the-wild videos [59][28][6] or in the motion capture

lab by recording the position of body joints [60][61][12]. Although the first

approach is cheaper and faster which makes it more suitable for creating

large datasets, the second approach is much more accurate because of the

several cameras capturing the subject from different angles and can be con-

trolled in the laboratory environment [10].

It is also worth mentioning that early models used to work with datasets

containing the 3D joint positions in Cartesian coordinates, while the latest

models usually use the normalized direction vector of the body joints. [16]

We performed an investigation on the currently available datasets con-

taining gesture motions, the way they have been collected, and what modal-

ities they support. The results can be seen in Table 2.1.

In Table 2.1 we can see some of the best existing Speech-gesture datasets

regarding the size of the data, number of participants, and diversity in

modalities. As we can see BEAT [10] has a relatively large size, various

number of speakers, and supports different modalities. Also, this dataset

concludes high-quality fingers which is rare in the existing datasets.

On the other hand, TED [62] has a larger size and more speakers, but,

it only concludes 2D positions of the body joints without fingers. PATS

dataset [33] also is very large, but regarding the diversity of the speakers,
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Name Size Nr
of sp

Mot. format Modalities fg Dialogue?

BEAT 76h 30 3d joint rot. Ges, Audio,
Text, Gest.
properties,
Emotion

yes Both

TED Gesture 97h 1,776 3d joint dir. Ges, Audio no Monolog

TED Expressive 97h 1,776 3d joint dir. Ges, Audio yes Monolog

Talking With
Hands GENEA
Extension

20h 17 3d joint rot. Ges, Audio,
Text

yes Dialogue

PATS 250h 25 2d coords. Ges, Audio,
Text

No Monolog

Gesture-Speech
Dataset

5h 2 3d joint rot. Ges, Audio yes Monolog

Trinity Speech-
Gesture I GE-
NEA Extension

6h 1 3d joint rot. Ges, Audio,
Text

No Monolog

SaGa 280m 1 3d joint rot. Ges, Audio,
Text, Ges.
properties

No Dialogue

Table 2.1: Speech-gesture datasets. "Nr of sp" stands for number of speakers,
"Mot. format" stands for motion format, "fg" stands for supporting fingers, and
"Dialogue?" specifies if conversations were held as dialogue, monologue, or both

it has fewer speakers in comparison to BEAT and TED which makes it hard

to grasp different kinds of gestures that different people use for conveying

the same meanings. Talking with hands [9], Gesture-speech [63], and Trin-

ity [64] are also high-quality datasets that are relatively small.

In this research, we use the TED Expressive and BiGe datasets as diffu-

sion models and contrastive learning is data-hungry and needs large datasets.

Also, there are a decent amount of methods trained on the TED-related

datasets, which makes it easier for benchmarking. However, because of the

noise in these datasets, we faced some challenges.

2.5.2.1 Pose estimation

There are several researches to extract the position of the body joints from

the in-the-wild videos. Early researchers aimed to do this in 2D using Open-

pose [65] like PATS [33], Speech-Gesture [59], and TED [62]. However, these
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2D data were not able to completely guide the virtual 3D characters. So,

researchers tried to extract 3D estimation of the body joints [28]. Because of

the automatic nature of the process, the pose estimation approach is much

cheaper and more scaleable than the motion capture approach [10], but

sometimes not accurate and contains some noise as a result.

2.5.2.2 TED Gesture

The TED dataset [62] is one of the largest pose-estimated datasets. TED is

a conference where people talk about their ideas. The videos of these talks

and transcripts are available online to the public. So, Yoon et al. generated

a dataset using OpenPose [65] from these videos. OpenPose is an algorithm

that can extract 2D human poses from videos. The initial version was cre-

ated from 1295 videos with an average length of 13 minutes. After resam-

pling the videos to 15 fps, they selected about 12.9% of the shots where an

informative body skeleton could be extracted from the shots using some

algorithms. Also, they aligned the transcripts with the video timestamps

using Gentle Library [66].

Finally, 52.7h data was gathered which contains the direction vector of

10 body joints, audio, and aligned English transcripts. Later, they added 471

additional videos to this dataset and using a 3D human pose estimator [67]

converted 2D positions into 3D. Finally, The duration of the dataset was

increased to 97h.

2.5.2.3 TED Expressive

While the TED Gesture dataset is relatively large and has diverse gesture

styles from different people, the pose estimation algorithm that has been

used to extract the body joints is not state-of-the-art anymore. So, Liu et

al. [3] used ExPose [68] to extract 3D human body joints. Using this pose

estimator they managed to extract 13 upper body joints and 30 finger joints

which is more expressive than the TED Gesture skeletons. Furthermore,

they converted these 43 3D coordinated into unit direction vectors which

helps to minimize the effect of different body sizes. As the authors didn’t

mention anything more about data mining, we can guess they used the
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same 1,766 videos that have been used to create the TED Gesture dataset.

2.5.2.4 BiGe

Hendric Voß and Stefan Kopp [22] also aimed to create a more diversi-

fied gesture dataset that supports full-body skeletons and fingers. So, in

addition to the videos from the TED channel, they included videos from

TEDx which concludes videos from other languages than English. In to-

tal, they collected 4327 videos with their transcripts with a total length of

1021 hours. Next, they modified the Yoon et al. [62] pipeline to extract 3D

body joints, split them into clips, and select the shots of interest. For pose

estimation they used AlphaPose [69], VideoPose [67], MediaPipe [70], and

FastPose [71] to extract 59 3D full-body joints. In the end, from 2756, 54.360

shots were selected with an average length of 17 seconds to shape a dataset

with a total duration of about 260h.

In comparison to TED Gesture and Expressive datasets, this dataset has

more samples and uses better pose-estimation algorithms for extracting more

body joints. However, the spectrogram of the audio is not provided by de-

fault in this dataset. Another difference in these datasets is that TED Gesture

and Expressive annotated the words by their start and end time in seconds,

while the BiGe dataset annotated them with the start and end frame num-

ber.

Unfortunately, due to the fire accident at their university, some parts of

this dataset have been lost.

2.5.2.5 SaGa

SaGa [72] is another pose-estimated dataset that was created from 25 direction-

giving dialogues in the lab. They used three synced cameras to capture the

router, the follower, and both of them at the same time. The result contains

280 minutes of video material, 4961 gestures, and 39,435 words.

SaGa classified gestures into eight categories: Indexing, placing, shap-

ing, drawing, posturing, sizing, counting, and hedging. Also, they consid-

ered the morphology of the handshape, wrist position, back of hand orien-
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tation, palm, and the movements of each of them.

They also provided the transcript of the speeches and categorized each

clause into four categories: Landmark position description, landmark con-

struction description, landmark property description, and naming a land-

mark. At the moment, SaGa is one of the best datasets regarding annotation,

but it is in the German language.

2.5.2.6 Motion capture

Some other datasets are generated in the lab using motion capture equip-

ment and players wearing special suits. Some of these datasets even used

professional actors or directors to control the expressiveness of the gestures.

Trinity [12], Talking with hands [9], and BEAT [10] are examples of motion-

captured datasets. They are more accurate and have predefined themes and

speech texts [10], but much smaller than the pose estimated datasets, which

makes them not useful for data-hungry algorithms [8].

2.5.2.7 BEAT

BEAT is one of the largest motion-captured datasets at the moment. This

dataset consists of body expressions and transcripts of 30 speakers, which

were annotated in 8 different emotional categories. The total duration of this

dataset is 76 hours which contains 2500 topic-segmented sequences. Actors

used 4 different languages and talked in pairs which made it possible to use

this dataset for training the speaker characters as well as the listeners [10].

2.5.3 Encoders

As encoders play a significant role in extracting the features from the input

modalities, in this section a brief description of a couple of them has been

presented.
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2.5.3.1 Text encoders

2.5.3.2 BERT

In 2019, Devlin et al. [73] introduced BERT or bidirectional encoder repre-

sentation from transformers which using masked language modeling (MLM)

was able to make a deep bidirectional representation from an input text.

Before that, language models were doing the pre-training in two different

approaches. Radford et al. [46] did the pre-training in a unidirectional way

from left to right on unlabeled data and fine-tuned the model for specific

tasks. Peters et al. [74] did the pre-training separately in left to right and

right to left, then used them as features for another model for a specific

task.

However, in the BERT model, some parts of the input text are masked

and the model learns to predict these masked words from the information

on the left and right side of them. This bidirectional attention helps the

model to grasp a better understanding of the context and generate better

representations.

2.5.3.3 Audio encoders

2.5.3.4 Wav2Vec2

Wav2Vec2 [75] was invented by a team from Facebook for speech recogni-

tion purposes. They realized that learning the generalized representation of

speeches from some un-labeled speech audio and fine-tuning that with lim-

ited transcribed audio can increase the accuracy in speech recognition tasks

in comparison to semi-supervised methods.

Regarding the architecture, a couple of Temporal Convolutional layers

have been used to encode a sequence of raw audio into a latent space Z .

Then, Transformers find the contextual relations of the encoded audio from

the entire sequence to encode them into a contextual latent representation

C. Also, during self-supervised learning, the encoded features Z are dis-

cretized into a finite codebook using product quantization. They used a

contrastive loss to help find the true quantized speech representation given
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a contextual representation c, and a diversity loss to help using all the code-

book.

2.5.3.5 HuBERT

Inspired by BERT [73] and Wav2Vec2 [75], Hsu et al. [76] made an audio

representation using mask prediction technique. In contrast to text input

which is discrete, audio is continuous and needs to be classified or con-

trasted against other negative samples. Also, in contrast to computer vision

classification tasks where each image is a unit by itself, input audio can con-

tain different sounds at the same time and can’t be labeled as an instance.

So, to overcome these limitations related to audio, in the HuBERT archi-

tecture, the audio is clustered using K-Means and an index of a codebook

will be assigned to each cluster. Then, some parts of the audio are masked

and the model learns to predict the indices of the masked part. The cluster-

ing iteratively gets better by the latent representation learned from the mask

prediction and clustering and predicting the mask part improve each other

simultaneously.

The HuBERT encoder showed better or equal results to Wav2Vec2 in the

speech recognition tasks and was widely used in the co-speech gesture gen-

eration. [76]

2.5.3.6 Data encoder

2.5.3.7 Data2Vec

In contrast to the prior works that tried to generate a latent representation

from a single modality, Baevski et al. [77] invented a general approach to

conclude three modalities of text, audio, and image. Although they have

used different encoders and masking strategies for different modalities, the

learning regime for latent representation is the same for all three modalities.

In this architecture, after building contextual representations of the full

input as the target (teacher), a masked version of the input will be encoded

(student). The goal of the training is to predict the representation of the

whole input based on the encoded representation of the masked input while
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the weights of the teacher are updated by the weights of the student.

In comparison to the prior models, Data2Vec learns more about the con-

text of the modalities, as it predicts the representation of the whole input,

while the BERT or Wav2Vec2 only predicts the masked tokens during the

pre-training.

We used this encoder because of its unified approach to different modal-

ities that could be helpful in our model that works with similarities. Also,

this encoder showed good results regarding the contextual feature extrac-

tion that is helpful for generating semantic gestures.

2.6 Evaluation

2.6.1 Objective Evaluation

Although different metrics have been developed to evaluate generated ges-

tures, still evaluating human likeness and semantic relatedness of the results

is not accurately possible [10]. One of the reasons is the idiosyncratic and

non-periodic nature of gestures that leads to different gestures for the same

speech from different people or even the same person in different environ-

ments or different inner conditions like emotions [11]. However, researchers

trying to compare the generated body joints to the ground truth.

Liu et al. [10] introduced the Semantic Relevance Gesture Recall that in-

stead of using L1 or L2, it calculates the probability of the position of the

correct body joints. In their subjective experiment, they asked the partic-

ipants to rate the generated and ground truth gesture animation based on

diversity and attractiveness. In this experiment, the results from SRGR were

closer to the collected results than the results from L1 distance.

DSRGR = λΣ
1

T × J

T

∑
t=1

J

∑
j=1

1[∥pj
t − p̂j

t∥2 < δ] (2.1)

Where 1 is the indicator function and T, J is the set of frames and number
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of joints. Also, δ is the threshold. However, different people use different

gestures for the same subject, or even the same person might perform differ-

ent gestures for the same speech in different situations. So, evaluating the

semantic alignment based on the location of the joints might not be a good

solution.

Another metric for finding how aligned is the generated gestures with

the speech is BeatAlign. [78] This metric is a Chamfer distance between the

audio and gesture beats.

BC =
1
n

n

∑
i=1

exp(−
∀tj

x ∈ Bx∥ti
x − tj

y∥2

2σ2 )

Where Bx = {ti
x} are kinematic beats, By = {tj

y} are audio beats, and σ is

a parameter to normalize sequences based on fps.

Heusel et al. introduced Fréchet Inception Distance (FID) which has

been generally used for evaluation of the general motions [79][80]. Yoon

et al. [6] introduced Freshet Gesture Distance which is an adoption of FID

for gesture motions. In this metric, the Gaussian mean and covariance of

the latent features of the generated gestures are calculated.

FGD(X, X̂) = ∥µr − µg∥2 + Tr(Σr + Σg − 2(ΣrΣg)
1/2) (2.2)

where µr and Σr are the first and second moments of the latent feature dis-

tribution Zr of real human gestures X, and µg and σg are the first and second

moments of the latent feature distribution Zg of generated gestures X [6].

We also calculate the MAE of the ground truth and generated gestures

in the latent space.

MAE =
1
M

M

∑
j=1

∣∣rj − gj
∣∣ (2.3)
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Where M is the number the length of latent space, and rj and gj are the jth

elements of the real and generated latent vectors.

During this research, we realized the high impact of hand joints on this

metric while the body joints might be more important in the naturalness and

semantic grounding of the gestures. Because of the high number of joints

in the hands, the latent gesture vectors are also more influenced by these

joints. This issue will be more critical when it comes to training on the TED

expressive dataset where because of the pose estimation algorithm that has

been used for creating this dataset, there is so much noise in the hand joints.

Finally, we have a diversity metric that measures how each model can

generate diversified gestures regarding the position of the body joints. To

compute this we find the average Euclidean distance between the features of

all possible motion sequences. In this project, we considered 500 of the gen-

erated samples F1 = [ f1, f2, ..., f500] and shuffled it to have F2 = [ f ′1, f ′2, ..., f ′500].

diversity =
1

500

500

∑
i=1

M

∑
j=1

∣∣∣ fij − f ′ij
∣∣∣ (2.4)

2.6.2 Subjective Evaluation

Although some metrics have been developed to evaluate the generated ges-

tures, they can not examine human perception which is critical in this sub-

ject. So, subjective evaluation usually comes along with objective evaluation

in this field [10][11]. One of the subjective evaluation approaches is matched

vs mismatched inspired by the Turing test. In this test, one gesture is gener-

ated for a target speech and one gesture is generated for another one. Then,

participants are asked to choose which gesture is matched with the target

speech. In another scenario, the participants are asked to choose which ges-

ture is generated and which one has been recorded [81].
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3.1 Research questions

After investigations on previous works that have been done to synthesize

co-speech gestures, we realized that still there is a gap in synthesizing se-

mantically aligned gestures. So, the goal of this research is to explore:

• How semantically aligned gestures can be generated?

• Whether using contrastive learning for generating co-speech gestures

can help to enhance semantic alignment in comparison to the state-of-

the-art methods?

• How semantic alignment of the gestures can be evaluated? What are

the appropriate subjective and objective evaluation metrics?

• Are existing gesture datasets sufficient for generating semantically grounded

gestures? How that aspect can be analyzed?

Therefore the main goal of the project is to generate realistic, temporally

and semantically aligned gestures from the speech. Previously we observed

that using CLIP-based methods can improve the quality of the generated

motions from text [57], so we decided to use contrastive learning for ges-

ture synthesis. Also, we want to know how we can evaluate the semantic

alignment of the gestures. In the end, we examine whether we have enough

data to generate semantically aligned gestures that can be interpreted by

different people from different nations.
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4.1 TED Expressive dataset

We ran an analysis on the TED Expressive dataset to gain an overview of

the data distribution in this dataset. As recent papers showed, modeling

the hand and body separately can enhance the results, so we analyzed them

solely and combined them as a whole gesture. Also, the embeddings of au-

dio and transcripts of samples encoded by the data2vec pre-trained model

were added to the dataset to see whether we could find a correlation be-

tween these modalities and gestures, or not.

In the figure 4.1, we can see the distribution of normalized direction vec-

tors of hand and body joints separately. This figure shows the difference in

the distribution of movement of hand and body joints as the shape of the

distribution, scale, and the maximum and minimum in each direction are

different. Also, in contrast to body distribution which is smooth and evenly

distributed, the distribution of the hand shows some anomalies and gaps

in some spaces which is an indicator of the noise in this part. The pose es-

timation algorithm used for this dataset does not show promising results

in the hand joints, and it can be observed both in the distribution of data

and the visualized videos from the dataset. In addition, we compared the

sequences of body and hand joint direction vectors consisting of 34 frames

with each other. In the figure 4.2, we can see that when the (34, 126) and

(34, 33) vectors of body and hand sequences respectively are mapped into

2D space using PCA, their distributions are different. These differences in

the distribution of the normalized direction vector of hand and body joints

convinced us to model them separately and combine the generated results.

In the next step, we analyzed the distribution of audio and transcript

embeddings and compared them with the distribution of direction vectors
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Figure 4.1: Scatter plot of the distribution of normalized direction vectors of hand
and body joints in the TED Expressive dataset

Figure 4.2: 2D visualization of the distribution of body and hand joints direction
vectors in 34 frame sequences
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Figure 4.3: Visualization of the distribution of audio and transcript embeddings
using PCA

of hand and body joint sequences. In the figure 4.3, we can see the distri-

bution of audio and transcript embeddings has a huge distance, and while

audio embeddings are concentrated in the middle, transcript embeddings

spread around.

By observing this distance between the embeddings of these two modal-

ities, we realized that using the concatenation of audio and transcript em-

beddings in contrastive learning like [17] might not be a good idea as the

embedding of gestures cannot easily get closer to two completely different

embeddings.

We also compared the audio and transcript embeddings with the hand

and body direction vector sequences, but we did not observe many similar-

ities that show the importance of contrastive learning in this subject. Pair-

wise visualization of the comparison of these modalities can be seen in the

figures 4.4, 4.5, 4.6, and 4.7.
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Figure 4.4: Visualization of the distribution of text embeddings and body joint
sequences using PCA

Figure 4.5: Visualization of the distribution of audio embeddings and body joint
sequences using PCA
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Figure 4.6: Visualization of the distribution of text embeddings and hand joint
sequences using PCA

Figure 4.7: Visualization of the distribution of audio embeddings and hand joint
sequences using PCA
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Figure 4.8: Scatter plot of the distribution of normalized direction vectors of hand
and body joints in the BiGe dataset

4.2 BiGe dataset

We ran the same analysis on the BiGe dataset and almost got the same re-

sults which can be because of the same approach (pose estimation) that has

been acquired to create these datasets and the same origin of videos. The

distributions of the direct vector of hand and body joints are neither the

same nor similar to the distribution of audio and transcript embeddings.

However, there are some differences. The first one is the order of joints

in each sample sequence. While the body joints in the BiGe dataset come

first and hand joints are located on the following indexes, the location of

body joints in the TED Expressive dataset is not this simple and needs to be

masked with the index numbers.

The other difference is the scale of dimensions in the direction vector of

body and hand joints in these two datasets. While the x, y, and z vary mostly

between −1.5 and 1.5 in the TED Expressive dataset, in the BiGe dataset,

dimensions of hand joints vary between −0.04 and 0.04, and dimension of

body joints between −0.1 and 0.1. This difference in the dimensions of body

and hand joints can emphasize on the importance of modeling and training

them separately.
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5.1 Problem Formulation

Given an audio speech, the transcripts, and the speaker identity, we want to

generate realistic, diverse, and semantically aligned gestures. The training

audio, timestamp-aligned transcripts with paddings, and gestures are cut

into clips with a sliding window. For each N-frame clip, all modalities are

encoded to features. Audio A = [a1, ..., an], gesture G = [g1, ..., gn], transcript

T = [t1, ..., tn].

gi ∈ R3J where J is the total joint number. The training objective is to

generate a motion clip(M) by giving audio(A) and related transcripts(T). At

the inference stage, generated motion clips from audio and transcripts are

smoothly connected to create realistic, temporally, and semantically aligned

gestures.

5.2 Data pre-processing

We followed the data pre-processing method of previous researchers like

Zhu et al. [7] and Voß et al. [82] to create some sequence samples from TED

Expressive and BiGe datasets. In this process, each sample in the dataset

that contains the joint direction vectors, audio, transcript, and some infor-

mation about the video will be split with a stride of 10 into some sequences

with 34 frames(15 fps).

We cache these sequences that contain the normalized joint direction, au-

dio of that timestamp, and spoken words within that sequence, in addition

to the embeddings of audio and transcripts for speeding up the process.

For using audio and transcript of the speeches we need to convert them

into latent space. We used pre-trained data2vec [77] encoders and tokeniz-
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ers for this purpose. Encoding the audio is pretty straightforward, and

using embeddings layer of pre-trained ” f acebook/data2vec − audio − base −
960h” checkpoint of the Data2VecAudioForXVector model we can get a vec-

tor with the size of 512 from the audio.

The process of converting the transcripts into the latent space is more

complicated. One of the reasons is that the number of words in each sam-

ple is varied based on the speed of the speech and the pauses in between.

So, after finding the related words in that sample, they are concatenated

so that during the encoding we can grasp the underlying information that

comes within the relation of words that come together. Then, using the

AutoTokenizer they are converted to IDs and after adding some padding to

unify the length of them, they can be encoded by the data2vec text model.

We take the output of the last hidden layer of the pre-trained ” f acebook/data2vec−
text − base” checkpoint of the Data2VecTextModel. The length of this out-

put is 768 which is converted into 512 by a linear layer we train during the

training of the VQ-VAE model.

5.3 Model

We found that models that tried to use text as input gained higher scores

regarding the semantics compared to the models that only used audio for

gesture generation [11]. So, in contrast to Zhu et al. [7], which used ini-

tial pose, timestamp, and audio as the inputs, we use the transcript of the

speeches as well to generate more semantically aligned gestures.

Also, to make a connection between these different modalities, like the

previous researches [35] [17] [23], we used a contrastive loss. However, with

some considerations that we believe can improve the impact of this tech-

nique. These considerations are: specifying a specific place in the latent ges-

ture vector to be aligned with the audio, transcript, and style of the speaker.

And, using contrastive loss separately for each modality and their related

part in the latent gesture vector.

Furthermore, gestures are idiosyncratic, and different people might make
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Figure 5.1: An overview of our methodology. Step 1 is about training a VQ-VAE
model that is guided by a contrastive loss. Step 2 is about training a latent diffu-
sion model conditioned on audio, transcript, and seed pose embeddings that gen-
erate latent gesture representations. Step 3 is about inferencing. Using the trained
diffusion model, codebook, and decoder, we can generate gesture sequences from
the speech. bs, nbFr, and nbJd are batch size, number of frames, and number of
joint direction vectors respectively.

different gestures for the same speech. Or even one person can perform

different gestures for the same speech in different situations [11]. In this

research, we considered one speaker almost keeping the same style of ges-

ture for the short duration of their speech. So, for the emphasis on the id-

iosyncratic nature of the gestures, different IDs for different speakers were

considered. Then, using contrastive loss we tried to make the latent gesture

vector of the same speaker closer to each other and make the latent gesture

vector of different speakers as far as possible.

Here, we want to know whether using contrastive learning separately

on audio, transcript, and gesture style can improve the generation results

regarding the naturalness and semantics or not.

5.3.1 Model Architecture

Our model consists of two parts. The first part makes a codebook of latent

representation of the gesture motions using the VQ-VAE [44] algorithm that
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is guided by a contrastive loss. In the second part, we train a latent diffusion

model conditioned on the embeddings of audio, transcripts, and seed pose.

Finally, using the codebook we learned in the first step, we will decode the

generated latent representations to the gesture sequences. The overview of

this method can be seen in figure 5.1.

Chen et al. [83] emphasized the importance of using motion latent space

instead of raw motion data for generating general motions because of the

computational complexity of working on the raw data and noise in the

datasets.

So, in this step, we try to train a VQ-VAE model to represent raw gestures

as tokens in a latent space. For this means, we adopted the architecture of

T2M-GPT [80] one of the state-of-the-art methods in motion generation, and

modified it to our needs.

This VQ-VAE model consists of an encoder, quantizer, and decoder where

the encoder E gets a sequence of gesture motions g = g0, ..., gN where N is

the length of the sequence, and turns them into a latent vector Lg = l0, ..., lM

where M is the length of the latent vector. At the same time, the decoder D
learns to generate gestures g from the quantized version of the latent vec-

tor Lg. These encoder and decoder consist of some 1D convolutional layers,

ReLu activations, and residual connections. The number of layers L can be

changed depending on the temporal down-sampling we want. The diagram

of this architecture can be seen in the figure 5.3.

We added a normalization layer at the end of the encoder and normal-

ized the latent gesture vectors to stabilize the training and help the diffusion

model to predict them in the next step. An evaluation on the performance

of this decision is presented in the section 6.1.3.

To train this model, we use three loss functions to monitor reconstruc-

tion Lr, commitment Lc, and contrastive loss Lcontrastive. The recreation loss

checks if the output of the decoder is close to the input of the encoder. The

commitment loss encourages the encoder to stay close to the chosen code-

book index. And, the contrastive loss tries to align the gesture embeddings

with the audio and transcript embeddings as well as the style of the gestures
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of the same speaker.

LV = Lr + αLc + βLcontrastive (5.1)

Where α and β control the weight of commitment and contrastive loss. We

specified α as the 0.1 of the best Lr we got without that, and β as 0.5 of the

best Lr we got without the Lcontrastive. Also, for the Lr, we tried L2 and

L1smooth and realized L1smooth works better in this training.

Lr = ||x −D(e)]||22 (5.2)

Lc = ||sg[e]− E(x)||22 (5.3)

Where sg is a stop-gradient operation that prevents gradient from being

applied to its arguments, and e is the selected codebook.

Lcontrastive = L1contrastive + L2contrastive + (L3contrastive + L4contrastive)/2

(5.4)

Where L1contrastive calculates the contrastive loss between the transcript em-

beddings and first latent gesture vector, L2contrastive calculates the contrastive

loss between the audio embeddings and second latent gesture vector, and

L3contrastive and L4contrastive calculate the contrastive loss between the third

and fourth gesture latent vectors of different samples.

For this training, we set the number of residual blocks L to three, and

the size of the embeddings to 512 which leads to four vectors with a length

of 512. There is a trade-off in the number of residual blocks as when we

increase them, we will have latent gesture vectors with lower dimensions

that can be generated easier by our diffusion model, but at the same time,

43



Method

more information will be lost as we are decreasing the size of the latent

space. So, we tried two, three, and four as the number of residual blocks that

led to eight, four, and two gesture latent vectors respectively, and realized

two latent vectors with the size of 512 might not contain enough information

that we need. So, during the recreation using the decoder, there were some

dissimilarities with the ground truth. On the other hand, eight latent gesture

vectors are so much to predict by our diffusion model.

So, we chose three residual blocks to have four gesture latent vectors

after encoding. One of these vectors was considered to contain the audio-

related cues, the other one to contain the transcripts cues, and the last two

for style-related cues. For this means, we used the contraSim [52] algorithm

and the data2vec [77] audio and text encoders.

During our data analysis, we realized that the audio embeddings and

transcript embeddings for the same samples from the data2vec encoders

are not close to each other. So, in contrast to Deichler et al. [17] that used the

concatenation of these embeddings in their contrastive algorithm, we used

these two embeddings separately with different gesture latent vectors.

Using the contraSim [52] algorithm, we tried to make the first latent ges-

ture vectors of the samples similar to transcribe embeddings and the second

latent gesture vector close to audio embeddings. Also, we tried to make the

third gesture latent vector of the samples of the same speaker close to each

other while as far as possible from the samples of the other speakers. So,

that we can learn the gesture style of speakers in that latent gesture vector.

We did the same thing as the third gesture latent vector on the fourth latent

gesture vector.

The benefit of this way of approaching gesture style is that this style is

learned instead of forced into the model by an external modality, and as

far as we know, it is novel in this area of research. The limitation of this

approach is its dependency on the high number of samples. So, it would

not be beneficial to train on the datasets with a limited number of speakers.
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Figure 5.2: The encoder of the VQ-VAE model converts the gesture sequences into
four vectors with the size of 512. We used the contrastive loss to align the first two
with the transcript and audio embeddings. The other vectors are aligned with the
latent vectors of the other samples from the same speaker to depict the style of the
gestures of that speaker. bs, nbFr, and nbJd are batch size, number of frames, and
number of joint direction vectors respectively.

L = ∑
i∈I

−1
|P(i)| log

∑p∈P(i) exp(zi · zp/τ)

∑n∈N(i) exp(zi · zn/τ)
(5.5)

The formula 5.5 is our contrastive loss formula inspired by the contraSim

paper [52] where P(i) and N(i) are the positive and negative samples, and

zp and zn the normalized embeddings of positive and negative samples re-

spectively. τ is the temperature that for the audio and transcript was consid-

ered 0.01 and for the style as one. Lower values of τ increase the magnitude

of these scaled dot products, while higher values decrease them.

As studies showed before, using EMA [44] for the embedding loss and

codebook reset techniques can improve the training of VQ-VAE models [80].

Regarding the calculation of EMA, we consider ni
t as the number of vectors

in E(x), ei as the codebook index, and λ as the decay factor between 0 and

1. So, we have:

Ni
t := Ni

(t−1) ∗ λ + ni
t(1 − λ) (5.6)

mi
(t) := mi

(t−1) ∗ λ + Σj
ni

tE(x)i,j
t(1 − λ) (5.7)
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×  L
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Figure 5.3: The architecture of the VQ-VAE model. The L shows the number of
repetitions of convolutional 1D and residual block in that place. What is inside the
residual blocks can be seen on top of the figure.

ei
t :=

mi
t

Ni
t (5.8)

Codebook reset refers to resetting inactive codebook indices to make them

active and use the maximum capacity of the codebook. For this means,

followed by T2M-GPT [80], we update the less frequently used codebook

indices with a random value:

Ci = ui · Ci + (1 − ui) · Ri (5.9)

Where Ci is the i-th code in the codebook, ui is the usage indicator, and Ri is

a new random vector.

After training the VQ-VAE model, we need a latent diffusion model [84][35]

that is conditioned on audio and transcribe embeddings, in addition to seed

pose to generate latent gesture vectors. Then, using the quantizer and de-

coder of the VQ-VAE model we can convert the generated latent gesture

vectors into gesture direction vectors.
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Figure 5.4: The structure of the denoiser of the latent diffusion model. It consists
of some Down-sampling, Up-sampling, and Self-attention blocks that were pre-
sented on the sides. The timestamp is encoded using a positional encoder and is
added to the conditions. Then, the summation is added to the Linear layer of the
Down-sampling and Up-sampling blocks.

5.3.2 Latent Diffusion Model

Assuming q(x) is an unknown density distribution of x, to construct a diffu-

sion model upon x, in the first phase or forward phase, we need a Markov-

chain q(xn|x0) for n ∈ [1, ..., N] that constantly adds Gaussian noise to x0

so that q(xN, x0) has an approximately standard normal distribution. In the

second phase, the model is trained to generate observations based on the

noise. This process is called denoising or reversing which starts from xn,

x ∈ [1, ..., N], and at each step noise is gradually removed until step 1.

Assuming at each step zero-mean Gaussian noise is added to the previ-

ous step:

q(xn|xn−1) = N (xn;
√

1 − αnxn−1, αnI) (5.10)

Where N is a multivariate Gaussian density function at step xn, n ∈ 1, ..., N,
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and α is a constant variable for enhancing the reverse phase.

When the noise added in step n is relatively small, we can assume the re-

verse distribution is also Gaussian:

p(xN) = N (xN; 0, I) (5.11)

p(xn−1|xn) = N (xn−1; µ(xn, n), Σ(xn, n)) (5.12)

Where N is a multivariate Gaussian density function at step xn−1, µ is the

mean, and Σ is a scaled identity matrix. Then, if we assume β = 1 − α, and

β̂ = ΠN
n=0βn, the noisy gesture xn at step n can be written as:

q(xn|x0) = N (xn;
√

β̂nx0, (1 − β̂n)I) (5.13)

In sampling, we can learn the mean(µ) by:

µθ(xn, n) =
1√
βn

(xn −
αt√

1 − β̂n

ϵθ(xn, n)) (5.14)

Where ϵ is the real noise and ϵ(xn, n) is the predicted noise.

Our latent diffusion model works with a U-Net [85] that consists of some

down-sampling, up-sampling, and self-attention [45] blocks. The down-

sampling part is like a convolution network consisting of some convolution

layers, max poolings, and activation layers trying to decrease the spatial in-

formation and increase the number of extracted features. The up-sampling

is the opposite and using up-sampling layers tries to create the output using

the extracted features. Details of this model can be seen in figure 5.4.

Furthermore, we used an attention mechanism to extract the temporal
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relations that come with all of our sequential input modalities. In our self-

attention block, we used a multi-head attention module to focus on different

parts of the sequence at the same time.

MultiHead(Q, K, V) = [head1, . . . , headh]W0

where headi = Attention(QWQ
i , KWK

i , VWV
i )

To guide this diffusion model, we use a condition vector shaped by con-

catenation of audio and transcript embeddings and another vector with the

length of 512 that is trained simultaneously to encode the last 4 frames of the

previous sample as a seed pose. We use seed pose to improve the temporal

consistency between the generated gestures.

The condition vector is added to the positional encoded timestamp and

is fed to our U-Net network at the last layer of Down-sampling and Up-

sampling blocks. Our objective here is that our diffusion model would

be able to generate those latent gesture vectors that became similar to au-

dio and transcript embeddings, using the guidance of embedding of these

modalities.

Inspired by Mughal et al. [37], at each iteration, with a probability of 0.1,

randomly we set one of the condition vectors equal to zero so that the model

can learn from all of the conditions.

The loss function of our diffusion model is the distance of the predicted

latent vector to the latent gesture vector coming from the encoder of our

VQ-VAE model. We used l1 smooth for calculating this distance. Also, for

the validation, using the quantizer and decoder of the VQ-VAE model we

convert the predicted latent vectors to the joint direction vectors and com-

pare them to the ground truth.
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6.1 Model selection

6.1.1 Embedding alignment

During the data analysis, we realized the difference between the distribu-

tion of the direction vector of the hand joints and other body parts. So, we

decided to separate their training and train one VQ-VAE and latent diffu-

sion model for each of them. Later we can combine the results and create

the whole generated upper-body. This decision increased the training time

to almost double, but the FGD of reconstruction with our VQ-VAE models

was decreased to almost half.

Also, we monitored the distribution of the first and second latent gesture

vectors and compared them to the transcript and audio embeddings. We

realized that the contrastive loss helps the distribution of these vectors to be

close to each other and makes the prediction of them easier for our diffusion

model.

Figure 6.1 shows the comparison of two L1contrastives. At the beginning

of the training, the first latent gesture vectors were concentrated in the mid-

dle around (0, 0), and L1contrastive is relatively higher than epoch 321. The

higher loss value shows that positive pairs are not close to each other and

negative pairs are not far from themselves and we can see that in the visual-

ization as well. When the latent gesture vectors spread more and got closer

to the transcript embeddings the L1contrastive was also decreased.

We can also see the different L2contrastive and its relation with the distri-

bution of second latent gesture vectors and audio embeddings. The higher

the L2contrastive is the lower the similarity of these embeddings.

Two points should be mentioned about the contrastive losses here. First,
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Epoch 1 

L1contrastive = 7.5093

Epoch 321

L1contrastive = 7.2102

Figure 6.1: Visualization of the distribution of first latent gesture vectors and tran-
script embeddings before and after training using PCA on the validation set.

Epoch 1 

L2contrastive = 7.8324

Epoch 321

L2contrastive = 7.3834

Figure 6.2: Visualization of the distribution of second latent gesture vectors and
audio embeddings before and after training using PCA on the validation set.

the difference between the density of the left samples to the right samples in

figure 6.2 and 6.1 is because of the data distributed parallel training on the

left samples. DDP is a way of training one model on multiple GPUs to speed

up the process. In this method, training samples are divided between the

GPUs, and after each epoch, the results from all the GPUs are aggregated

together.

Second, there are some scenarios where the embeddings of two modali-

ties look closer to each other, but the contrastive loss shows a higher value.

This is a result of the emphasis of this loss on being contrastive rather than

only focusing on the similarity. So, the reason for the higher loss could be
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because of the close distance of the negative pairs.

6.1.2 Contrastive loss

After finishing the implementation of all modules, we ran an experiment to

see the effect of each contrastive loss. We first trained two default models

with all the features that we introduced for body and hand, then disabled

the L1contrastive, L2contrastive, L3contrastive, and Lcontrastive individually to mea-

sure the impact of each, none, and all of them at the same time, on the re-

sults.

We trained the models on the BiGe dataset. For the VQ-VAE models, we

trained them for 500 epochs with the initial learning rate of 2e − 4, batch

size of 1024, and the learning scheduler on epochs [100, 200, 300, 400] with

a gamma 0.5. We set the number of residual blocks to three, and the depth

of the Resnet1D in there to six. For the codebook, we considered 512 in-

dices with the length of 512 and for the EMA, we set the µ to 0.99. For the

reconstruction loss, we used l1 smooth, and the β of contrastive loss was

considered equal to 5e − 7. The temperature of the contrastive loss τ of the

audio and transcript was set to 0.01, and for the style, we set it to one.

These values are coming from the many tries and errors we made during

this research. But, as training and testing different values for each of these

for a certain amount of epoch to compare scientifically requires so much

time and resources, we considered that for future works.

These settings were also considered for the other variations, and the

comparison is based on the best FGD we observed during these 500 epochs

on the validation set. The variations in this experiment are: without L1contrastive,

without L2contrastive, without L3contrastive, and without Lcontrastive where in

each of them we set the value of that loss to zero and we do not use that for

backpropagation.

In table 6.1, we can see the results of our experiment on the absence of

contrastive loss functions. As it can be seen, our default model achieved the

best performance regarding the FGD, L1contrastive, L2contrastive, and L3contrastive

with excluding all the contrastive losses led to the worst performance. These
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Exp FGD↓ MAE↓ Div↑ PPL↓ L1 ↓ L2 ↓ L3 ↓

w/o L1contrastive 0.103 5.762 50.27 388.05 None 7.64 226.75

w/o L2contrastive 0.104 5.66 52.52 382.86 7.48 None 229.89

w/o L3contrastive 0.123 5.95 52.46 356.72 7.49 7.67 None

w/o Lcontrastive 0.12 6.05 43.96 366.62 None None None

default 0.09 5.81 50.76 310.44 7.2 7.38 89.27

Table 6.1: Impact of different contrastive losses on our VQ-VAE body model
trained on the BiGe dataset. Exp, FGD, MAE, Div, and PPL are experiment name,
freshet gesture distance, mean absolute error on the latent space, diversity, and
perplexity respectively.

results highlight the importance of contrastive learning in maintaining di-

versity and accuracy in the training of the VQ-VAE model for gesture gen-

eration.

The lowest perplexity in the default model shows confidence in our model

in its predictions. While the perplexity in the absence of L1contrastive is the

highest that shows the importance of text modality in the confidence of our

VQ-VAE body model.

Exp FGD↓ MAE↓ Div↑ PPL↓ L1 ↓ L2 ↓ L3 ↓

w/o L1contrastive 0.72 10.79 45 391.61 None 8.52 228.34

w/o L2contrastive 0.71 10.74 45.72 396.05 7.47 None 242.68

w/o L3contrastive 0.72 10.91 51.05 385.51 7.47 7.65 None

w/o Lcontrastive 0.73 10.8 47.33 396.1 None None None

default 0.75 10.99 48.87 391.90 7.47 7.72 243.72

Table 6.2: Impact of different contrastive losses on our VQ-VAE hand model. Exp,
FGD, MAE, Div, and PPL are experiment name, freshet gesture distance, mean
absolute error on the latent space, diversity, and perplexity respectively.

We did the same experiment to generate hand gestures and got different

results that can be seen in table 6.2. Based on the table, L3contrastive has the

highest impact on the results where excluding that resulted in the highest

diversity, and lowest perplexity, L1contrastive, and L2contrastive. It is probably

because of the noise coming from the pose-estimation algorithm on the hand

joints.

Also, excluding all the contrastive losses led to slightly better perfor-
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mance based on the FGD and MAE than the default model, but misalign-

ment of latent gesture vectors with the audio, transcript, and style will lead

to worse accuracy in the predictions of the diffusion model. Because our

diffusion model is guided by audio, transcript, and seed pose, so predicting

similar latent vectors is easier.

After training the VQ-VAE models for hand and body, they were used

to train the latent diffusion models. We trained each of the variations for

200 epochs with a validation every 20 epochs and saved the best check-

point monitoring the lowest FGD. The validation of diffusion models takes

so much time, so to speed up the process in our limited time we increased

the interval. Otherwise, it is not recommended.

The initial learning rate was considered equal to 2e − 4, and batch size

equal to 1024, with the learning scheduler on 100th epoch and gamma equal

to 0.5. The number of diffusion steps was set to 100 with a linear beta sched-

uler.

Exp FGD↓ MAE↓ Div↑

w/o L1contrastive 7.29 24.40 53.63

w/o L2contrastive 4.97 22.42 52.21

w/o L3contrastive 9.69 24.39 55.22

default 4.32 21.43 54.21

Table 6.3: Impact of different contrastive losses on our diffusion body model
trained on the BiGe dataset. Exp, FGD, MAE, and Div are experiment name,
freshet gesture distance, mean absolute error on the latent space, and diversity.

Table 6.3 shows the results of the best checkpoint after training our dif-

fusion model for 200 epochs on the VQ-VAE body models of previous ex-

perience. From this table, we can conclude the importance of contrastive

guidance in training the VQ-VAE body model as our default model showed

the best performance regarding the FGD, MAE, and diversity.

Table 6.4 shows the results of the best checkpoint after training our dif-

fusion model for 200 epochs on the VQ-VAE hand models of previous ex-

perience. From this table, we can conclude the importance of contrastive

guidance in training the VQ-VAE hand model as our default model showed
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Exp FGD↓ MAE↓ Div↑

w/o L1contrastive 6.93 28.78 45.67

w/o L2contrastive 5.72 28.62 52.51

w/o L3contrastive 5.73 29.63 48.63

default 5.26 28.43 52.65

Table 6.4: Impact of different contrastive losses on our diffusion hand model
trained on the BiGe dataset. Exp, FGD, MAE, and Div are experiment name,
freshet gesture distance, mean absolute error on the latent space, and diversity.

the best performance regarding the FGD, MAE, and diversity. However, in

comparison to the body model, the experiment on the hand model showed

less significant difference and the performance is worse in general than the

body model.

6.1.3 Normalization

We also did another experiment to see the effect of normalization on the

latent gesture vectors. In this case, we excluded the normalization layer

and value normalization of the outputs of our encoder and tested its im-

pact on the reconstruction of the VQ-VAE and prediction of the diffusion

model. During this experiment, we realized that although the performance

of our VQ-VAE increases predicting the latent gesture vectors in infinite

numbers is much harder for our diffusion model and the overall perfor-

mance is worse than when we normalize the latent gesture vectors.

For this experience, we ran the diffusion training for 500 epochs for our

default model with and without the normalization.

Exp FGD↓ MAE↓ Div↑ PPL↓ L1 ↓ L2 ↓ L3 ↓

w/o norm 0.06 5.57 50.07 327.82 7.5 7.74 200

default 0.09 5.81 50.76 310.44 7.2 7.38 89.27

Table 6.5: Impact of normalization on our VQ-VAE body model trained on the
BiGe dataset. Exp, FGD, MAE, Div, and PPL are experiment name, freshet gesture
distance, mean absolute error on the latent space, diversity, and perplexity respec-
tively.

In table 6.5, 6.6, 6.7, and 6.8 we can observe that despite better FGD re-

sults in the VQ-VAE models without normalization, the final results could
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Exp FGD↓ MAE↓ Div↑ PPL↓ L1 ↓ L2 ↓ L3 ↓

w/o norm 0.48 10.53 51.17 329.57 7.49 7.68 208.4

default 0.75 10.99 48.87 391.90 7.47 7.72 243.72

Table 6.6: Impact of normalization on our VQ-VAE hand model trained on the
BiGe dataset. Exp, FGD, MAE, Div, and PPL are experiment name, freshet gesture
distance, mean absolute error on the latent space, diversity, and perplexity respec-
tively.

Exp FGD↓ MAE↓ Div↑

w/o norm 5.46 17.04 44.03

default 2.82 19.24 55.36

Table 6.7: Impact of normalization on our diffusion body model trained on the
BiGe dataset. Exp, FGD, MAE, and Div are experiment name, freshet gesture dis-
tance, mean absolute error on the latent space, and diversity.

Exp FGD↓ MAE↓ Div↑

w/o norm 6.79 27.84 46.3

default 4.73 27.25 51.67

Table 6.8: Impact of normalization on our diffusion hand model trained on the
BiGe dataset. Exp, FGD, MAE, and Div are experiment name, freshet gesture dis-
tance, mean absolute error on the latent space, and diversity.

be worse as a result of larger domain that our diffusion model should pre-

dict. These results were even worse when we did the same experiment on

the TED expressive dataset.

6.1.4 EMA

Based on the previous finding in training the VQ-VAE models, we used

EMA to update the codebook and set it equal to 0.99 like the Zhang et al. [80]

T2M-GPT model. As a result, the codebook is mainly relying on the previ-

ous findings and less likely to change suddenly by new values. However,

after analyzing the utilization of the codebook, we realized that some in-

dices are used much more than others, and some indices are used very un-

likely. So, we put the µ variable in the test to see whether a lower value

could help the utilization of the codebook and increase the performance of

our models or not.
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Codebook utilization with µ = 0.99 Codebook utilization with µ = 0.618

Figure 6.3: Hand mode codebook utilization with µ = 0.99 and 0.618. We can see
fewer spikes when µ = 0.618 which resembles better utilization of the codebook.

For testing the effect of µ, the VQ-VAE model was trained for body and

hand with the same setup except for the µ value which was considered

equal to 0.618.

Exp FGD↓ MAE↓ Div↑ PPL↓ L1 ↓ L2 ↓ L3 ↓

µ = 0.618 0.11 5.6 50.71 391.86 7.47 8.02 212.64

default 0.09 5.81 50.76 310.44 7.2 7.38 89.27

Table 6.9: Impact of decreasing the µ value on training of our VQ-VAE body
model on the BiGe dataset. Exp, FGD, MAE, Div, and PPL are experiment name,
freshet gesture distance, mean absolute error on the latent space, diversity, and
perplexity respectively.

After training the VQ-VAE body model with a lower µ value, we did

not observe a significant improvement in the metrics, and the results even

turned a bit worse regarding the contrastive losses and perplexity. So, we

did not continue training a diffusion model for the body based on the mod-

ified VQ-VAE model.

Exp FGD↓ MAE↓ Div↑ PPL↓ L1 ↓ L2 ↓ L3 ↓

µ = 0.618 0.76 10.68 51.37 404.63 7.46 7.67 220.06

default 0.75 10.99 48.87 391.90 7.47 7.72 243.72

Table 6.10: Impact of decreasing the µ value on training of our VQ-VAE hand
model trained on the BiGe dataset. Exp, FGD, MAE, Div, and PPL are experiment
name, freshet gesture distance, mean absolute error on the latent space, diversity,
and perplexity respectively.

In contrast to the body, after modification on the µ value, the metrics
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showed better results for our VQ-VAE hand model. The contrastive losses

were decreased by this modification and the diversity was increased. So, we

trained a diffusion model based on this modification for our hand model.

Exp FGD↓ MAE↓ Div↑

µ = 0.618 4.17 27.38 47.56

default 4.73 27.25 51.67

Table 6.11: Impact of decreasing the µ value on our diffusion hand model trained
on the BiGe dataset. Exp, FGD, MAE, and Div are experiment name, freshet ges-
ture distance, mean absolute error on the latent space, and diversity.

After training the diffusion model on top of the modified VQ-VAE hand

model, we saw that the FGD and diversity values were decreased. The fall

of the FGD value is positive and we thought the drop in the diversity value

could be a result of fewer unwanted unnatural movements that generated

hands sometimes have. So, this model was chosen over the default model

for the evaluation.

6.1.5 Codebook size

We ran another experiment to see the effect of codebook size on our model.

Our idea was that fewer codebook indices could help our diffusion model

predict the right ones as the probability of randomly choosing them in-

creases. However, there is a limit on decreasing the size of the codebook

cause the VQ-VAE model itself should be able to recreate the gestures from

this codebook as well.

So, to test the effect of codebook size, we trained our VQ-VAE body

model for 100 epochs with different numbers of codebook indices. The re-

sults can be seen in the table 6.12. Although we decreased the number of

indices, the FGD did not increase much. Also, except the L3 ↓, the L1 ↓
and L2 ↓ did not change so much either. More importantly, the perplexity

showed a correlation with the number of codebook indices means the lower

the number of codebook indices the higher the confidence of our VQ-VAE

model.

As a result, we tried to test our diffusion model with the output of the
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model with 128 codebook indices as well.

NrCB FGD↓ MAE↓ Div↑ PPL↓ L1 ↓ L2 ↓ L3 ↓

128 0.16 6.03 53.7 85.34 7.36 7.50 inf

256 0.12 5.34 52.84 163.30 7.36 7.48 inf

512 0.11 5.772 54.41 304.07 7.20 7.39 88.68

1024 20.71 21.67 45.34 807.25 7.46 7.69 247.74

Table 6.12: Impact of decreasing the number of codebook indices on the training
of our VQ-VAE body model on the BiGe dataset. NrCB, FGD, MAE, Div, and PPL
are the number of codebook indices, freshet gesture distance, mean absolute error
on the latent space, diversity, and perplexity respectively.

Our diffusion model with fewer codebook indices showed better results

than our default model with the 512 codebook indices regarding the FGD

and MAE. This result proves our hypothesis that fewer codebook indices

can be beneficial as the diffusion model has a better chance of choosing the

right indices.

NrCB FGD↓ MAE↓ Div↑

128 1.87 18.48 52.78

512 2.82 19.24 55.36

Table 6.13: Impact of decreasing the number of codebook indices on our diffu-
sion body model trained on the BiGe dataset. NrCB, FGD, MAE, and Div are the
number of codebook indices, freshet gesture distance, mean absolute error on the
latent space, and diversity.

Unfortunately due to the time limitation, we could not continue this ex-

periment on the hand model and update our complete model with the re-

sults coming from this experiment. So, the final model is still the default

model with the 512 codebook indices.

6.2 Benchmarking

For benchmarking, the default VQ-VAE body model and VQ-VAE hand

model with the µ = 0.618 were chosen for our diffusion training. We con-

tinued the training until the validation loss converged, and selected the best

model based on the lowest FGD. The validation loss over training the diffu-
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sion body and hand model can be seen in the figure 6.4 and 6.5. Also, the

best validation results are presented in the table 6.14.

Figure 6.4: Validation loss during the training of diffusion body model on the
BiGe dataset.

As it can be seen in the figure 6.4 the diffusion body model was trained

smoothly and the validation loss decreased gradually. However, the diffu-

sion hand model was struggling a bit and some fluctuations can be seen in

its validation loss in figure 6.5.

Exp FGD↓ MAE↓ Div↑

body 1.93 15.78 49.22

hand 4.65 27.03 50.07

Table 6.14: Best validation metrics of training the diffusion body and hand model
on the BiGe dataset. Exp, FGD, MAE, and Div are experiment name, freshet ges-
ture distance, mean absolute error on the latent space, and diversity.

Figure 6.5: Validation loss during the training of diffusion hand model on the
BiGe dataset.
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6.2.1 DiffGesture

For benchmarking, we chose Zhu et al. [7] DiffGesture model because of

three reasons. First, it has been published almost recently and it uses dif-

fusion models. Second, it has been used for benchmarking by other recent

papers that show its reproducibility and importance in this field of research.

Third, this model only uses audio as input and we can observe the effect of

the transcript on the semantic alignment by comparing our model to their

model.

So, we updated their public source code to support the BiGe dataset and

trained their model for 500 epochs, with the same configuration that they

proposed in their GitHub repository. The learning rate of 5e − 4, hidden

size 300, latent dimension 128, and diffusion hidden dimension of 512 were

used in this training.

6.2.2 Quantitative evaluation

We ran a quantitative evaluation on both models based on the test set of

the BiGe dataset. The results can be seen in the table 6.15. Despite we used

our default model which was not our best model based on the experiments,

still our model showed better results compared to the DiffGesture model.

Higher diversity in the DiffGesture model is a result of the noise and unnat-

ural gestures that this model produces after training on the BiGe dataset.

Exp FGD↓ MAE↓ Div↑

DiffGesture 6.86 43.62 63.76

ours 5.10 33.46 53.93

Table 6.15: Quantitative evaluation on the test set of the BiGe dataset. Exp, FGD,
MAE, and Div are experiment name, freshet gesture distance, mean absolute error
on the latent space, and diversity.

6.2.3 Qualitative evaluation

As long as there is no proper quantitative metric to evaluate the naturalness

and semantic alignment of the gestures, usually, a qualitative evaluation
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should be done to examine the performance of a method. For this means,

we generated some videos by our model and DiffGesture from the test set

of the BiGe dataset.

When the results are close together, a survey can be done to ask people

about the quality of the generated results. However, the results from the

DiffGesture model are marginally worse than our method in this experience.

There is so much noise in their results and the human posture does not look

natural most of the time. So, we can say for sure that our results achieved

better performance than DiffGesture in this case.

Some pictures from the generated videos have been provided in fig-

ure 6.6. As we can see, our model can generate gestures that are semanti-

cally aligned with the words in the speech and they are close to the ground

truth. However, DiffGesture generated completely different gestures that

sometimes are not even natural.

Regarding the comparison with the ground truth, the results from our

model do not conclude high-frequency movements and the body moves

slowly from one gesture to another. This could be a result of generating the

rhythm align and semantic align gestures at the same time. Because the se-

mantic align gesture would not happen all along the video and when there

are no semantic cues the model tends to generate mean direction vectors to

reduce the error.
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Ours DiffGesture Ground truth

Love

Including

Picking up

I

Figure 6.6: The comparison of our model to DiffGesture for generating semanti-
cally aligned gestures
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7. Conclusion

In this thesis, we explored the challenges and advancements in co-speech

gesture generation using deep learning methods. Our approach focused on

addressing the semantic grounding problem to improve the human likeness

and contextual relevance of generated gestures. Through extensive exper-

imentation and analysis, we developed models that demonstrate improve-

ments in generating semantically aligned gestures.

Our contributions include showing the effectiveness of contrastive learn-

ing in the domain of co-speech gesture generation. While previous researchers

used contrastive learning in their co-speech gesture generations, as far as

we know, no published paper has used contrastive learning to find cues in

audio, transcripts, and especially style simultaneously.

Also, we pointed out the difference in the modeling of hand and body

joints and the different characteristics they show during gesture generation.

While we started this research one VQ-VAE and diffusion model was con-

sidered for the whole body, after doing the data analysis we found out about

the different distributions of the movements of these parts and decided to

separate their training. Further experiments showed the benefits of this de-

cision and opened new opportunities for optimizing the model for that spe-

cific part.

Furthermore, we realized that current metrics might not be suitable for

evaluating the generated gestures. The high number of joints in the hand

makes the FGD metric so sensitive to this part, while the other body parts

have more influence on the naturalness and context alignment of the ges-

tures.

In conclusion, our research has made meaningful progress in the field

of co-speech gesture generation. The developed models offer a solution

for generating natural and contextually relevant gestures, which can be ap-

64



plied in various domains such as digital characters, humanoid robots, and

human-computer interactions. Future work can build on these findings by

exploring more about different codebooks for rhythm-aligned and semantic-

aligned gestures, refining the models, and exploring the learning of similar-

ity measures.
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