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1- Introduction 

Green bonds  (GBs) are an essential tool to raise capital and invest in projects that generate 

benefits for the environment. Typically, these bonds finance projects such as renewable 

energy, green buildings, clean transportation, or sustainable land use, among others. Since 

the first green bond was issued by the World Bank in 2007 and the European Investment 

Bank in 2008, there has been substantial growth in the green bond market, with issuance 

worth $939 billion in 2023, up 3% on the same period last year. It’s not a record – that was 

in 2021 when issuance reached $1.1 trillion. The green bond market has grown 

significantly with over 50 countries issuing green bonds.  However, questions are being 

raised regarding the risk of investing in GBs compared to conventional bonds. As the 

urgency to combat climate change grows, effective risk management strategies are crucial, 

especially in green markets.  Nevertheless, given the series of extreme events that have 

occurred in the global financial market since the early 1980s, such as the Latin American 

Debt Crisis, the Dot Com Bubble, and the recent COVID-19 pandemic-induced market 

crash. Consequently, assessing risk in extreme conditions would be crucial in this case.  

While current methodologies offer an understanding of extreme risk modeling for GBs, 

there is a gap in using Monte Carlo simulations to develop a risk assessment tool to 

efficiently capture extreme behavior without compromising the accuracy of the model. 

This thesis seeks to build a Monte Carlo framework focused on the tail behavior of GB 

returns. By applying a semi-parametric methodology to model the distribution tails and 

resulting detailed tails not just normal distributions. This would enhance the simulation's 

ability to model extreme risks accurately. 

The research considers both the traditional and the modified Geometric Brownian Motion 

model to simulate extreme events. At first, I will consider customizing the Monte Carlo 

simulation for extreme events, incorporating a non-Gaussian distribution such as the 

student t-distribution with heavier tails and incorporating time-varying volatility. 

Moreover, I study the effect of Montecarlo with a particle filtering approach. The thesis’s 

findings will have advanced the role of Monte Carlo Simulation in modeling extreme risk, 

providing better simulation to capture extreme events like COVID-19. By employing 

various modeling techniques and indices, the study provides insights into the extreme risk 

landscape in green markets and offers valuable implications for policymakers, and 

investors. Monte Carlo with t-distribution and volatility assumption by GARCH in both 

indexes led to a robust estimation of VaR and ES and can beat other methods in this study. 

 



2- Literature review 

Green bonds (GBs) have become increasingly popular in bond markets as they are utilized 

by authorities for environmentally friendly projects. GBs play a crucial role in mitigating 

environmental risks by offering policy instruments that incentivize sustainable investments 

and activities. These bonds, along with futures markets, provide mechanisms to share risks, 

create incentives for private enforcement of environmental contracts, and channel capital 

towards green projects, ultimately reducing pollution and promoting sustainability(Smith, 

2022). Despite the advantages of GBs in promoting green investments, concerns have been 

raised regarding the risks associated with investing in them compared to conventional 

bonds. Research has focused on analyzing volatility dynamics, spillover effects on 

conventional bonds, and factors affecting the relationship between green and conventional 

bonds. Studies indicate that while conventional bonds may offer higher returns on average, 

the differences can be explained by bond properties. GBs have shown positive impacts on 

various aspects like announcement returns, environmental and operating performance, and 

attracting long-term investors. While GBs demonstrate superior financial convenience, 

issues related to risk assessment through measures like Value-at-Risk (VaR) need to be 

explored further.(Tsoukala & Tsiotas, 2021) 

Value at risk (VaR) is a statistical measure that outlines the potential financial loss a 

company, portfolio, or position could face within a certain timeframe. It was first 

introduced by JP Morgan in 1994. For example, if a portfolio has a daily VaR of $1 million 

at the 99% confidence level, it means there's only a 1% chance that the portfolio's losses 

will exceed $1 million on any given day under normal market conditions. VaR has become 

a fundamental component of risk management, offering a straightforward way to estimate 

potential losses over a specified period at a given confidence level. Calculating VaR, 

despite its apparent simplicity, is quite complex. There are three primary approaches for 

calculating:  

1. Parametric: It assumes that asset returns follow a roughly normal distribution.  

2. Non-parametric: This approach doesn't rely on parameter assumptions and includes 

historical simulation, which uses past data to forecast potential future losses. 

3. Semi-parametric: This approach blends elements of both non-parametric and parametric 

methods. Notable semi-parametric methods include the Filtered Historical Simulation 

(Barone‐Adesi et al., 1999), the CaViaR method by (Engle & Manganelli, 2004), and 

methods based on the Extreme Value Theory. 

Empirical studies, such as those referenced by (Abad et al., 2014), suggest that methods 

based on the Extreme Value Theory and the Filtered Historical Simulation are particularly 

effective for forecasting VaR. The Block Maxima and Peaks-Over-Threshold methods are 



two prominent EVT-based modeling approaches, employing the GEV and GPD limit 

distributions, respectively(Gumbel, 1958). The Block Maxima method involves 

segmenting data into blocks and using the maximum loss from each to fit a Generalized 

Extreme Value (GEV) distribution. This approach is validated by the Fisher–Tippett–

Gnedenko theorem, which states that GEVD is the only potential asymptotic distribution 

for block maxima extreme values. (McNeil, 1998), presenting it as a three-parameter 

model. 
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On the other hand, the Peaks-Over-Threshold (POT) method selects data points exceeding 

a predefined threshold, fitting them to a Generalized Pareto Distribution (GPD). Initially 

proposed by (Balkema & De Haan, 1974) and later refined by in 1975, this method focuses 

solely on the tail of the distribution, potentially offering a more tailored analysis. However, 

the choice of the threshold is crucial, as it significantly influences the parameter estimates 

of GPD and subsequently the final risk estimates, particularly in smaller samples. This 

decision represents a trade-off between bias and the variance of the estimators. The density 

function of GDP is: 
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(McNeil & Frey, 2000) introduced a novel approach that integrates EVT with volatility 

models, termed conditional EVT, further expanding the toolkit for risk assessment in 

financial modeling. Except EVT, the Parametric approach can be refined like the VaR-x 

methodology presented by (Huisman et al., 1998) offers an enhanced approach to 

estimating VaR by accounting for the fat tails in asset return distributions. This method 

employs the Student's t-distribution, which has a flexible shape parameter (degrees of 

freedom) that can adjust for the tail thickness of the distribution. The tail index, derived 

from extreme value theory, is used to set the degrees of freedom, thereby directly 

incorporating the empirical tail behavior of asset returns into the VaR estimation. 

In a recent study on this subject,(Zhuo et al., 2023) designed an extreme risk model for 

green bonds (GB) and the clean energy sector. They examined the extreme risk associated 

with GB and Global Clean Energy (GCE) indexes from 2012 to 2020, employing Value at 

Risk (VaR) and Expected Shortfall (ES) as risk assessment indicators. The researchers 



trained their models on data from periods with lower extreme risk events to validate their 

ability to predict potential extreme risks, notably during the COVID-19 episode. They 

excluded the ongoing Russia-Ukraine war from their analysis due to its unpredictable 

duration and impact, which complicates market recovery analysis post-extreme events. 

During the COVID-19 pandemic, the GCE index showed significant volatility, with VaR 

and ES indices varying between 2 to 10%. Conversely, the GB index remained relatively 

stable, with VaR and ES figures between 1-3%. To address this gap, they developed 

traditional rolling time window models, GARCH models with different parameter 

estimates, and semiparametric models for GCE and GB to measure extreme risk. The GAS, 

GARCH-FZ, and hybrid models leverage (Patton et al., 2019) statistical decision theory, 

incorporating semiparametric models for dynamic ES and VaR to improve the accuracy 

and robustness of their predictions. Semi-parametric models were employed to enhance the 

precision and stability of VaR and ES estimates for GBs and the GCE index. Identifying 

breakpoints is also deemed crucial for accurately understanding and modeling financial 

time series, though it adds complexity to the model creation process. They emphasized the 

importance of employing advanced statistical theory and Brownian motion to improve the 

prediction of extreme risks. 

2-1- Monte Carlo 

The simplest Monte Carlo (MC) method for estimating VaR over a one-day horizon at a 

specific significance level involves simulating N draws from the distribution of returns for 

the next day. The 99% VaR is determined by identifying the N/100th element after sorting 

the simulated one-day returns. MC is an algorithmic technique in finance that leverages 

randomness to forecast a multitude of potential outcomes in complex, uncertain systems. 

It generates random values from a probability distribution and performs calculations on 

these values to estimate outcomes that might be challenging or impossible to determine 

through conventional algebraic or numerical methods. 

In finance, MC simulation is crucial for modeling asset prices, especially under the 

assumption that daily asset returns follow a normal distribution. By creating a probability 

distribution based on historical data for an asset's expected return and volatility, MC can 

produce numerous potential future price paths. While a single simulation provides limited 

information, aggregating multiple simulations offers a robust model for potential stock 

price movements, reflecting the widely accepted random walk hypothesis in financial 

theory.(Shonkwiler, 2013) 

(Jascha, 2015) employed MC simulation with an exponentially weighted moving average 

to enhance the modeling process. To simulate the unpredictable nature of stock prices, 

volatility is combined with a Wiener process, a continuous-time stochastic process derived 

from Brownian motion that resembles a random walk. Geometric Brownian Motion 



(GBM) is a preferred model for asset price simulation, defined by a differential equation 

where the incremental change in asset price depends on a deterministic drift component 

and a random volatility component. Practically, simulating GBM requires iterative 

computation, integrating both the deterministic drift and the random shocks induced by 

volatility over various iterations and time frames. This process produces a distribution of 

potential future asset prices, assisting investors and analysts in evaluating the likelihood of 

different price outcomes. 

While normal, and lognormal are commonly used in financial modeling, other distributions 

like Student's t, skewed Student's t, generalized t, and generalized error distribution (GED) 

are also applied. Despite the mathematical elegance of modeling financial prices or 

logarithms following Brownian motion, researchers (Fama, 1963) have noted challenges 

in fitting real financial data to these models, advocating for the use of non-Gaussian or 

skewed distributions to better model return distributions. 

2-2- Improvements in Montecarlo 

Despite some criticisms of the statistical methods underpinning these findings, the normal 

distribution continues to be of practical interest specially when we want to focus on mean 

of sample. (De Domenico et al., 2023) have proposed various alternative distributions to 

better align with observed data, including: 

alternative distributions are proposed to better fit the empirical data: 

Truncated Lévy Distribution: It is used to model asset price fluctuations, particularly 

effective in an intermediate range, and decays exponentially beyond it. This distribution 

can capture the heavy tails observed in financial data but includes an exponential cut-off 

to ensure a realistic decay in extreme events. 

Student’s t-Distribution: This distribution accommodates heavy tails and has a shape 

parameter (degrees of freedom) that influences its tail behavior. In the context of high-

frequency returns, it can replicate the observed power-law behavior of extreme movements. 

q-Gaussian Distribution: It is a generalization of the normal distribution and is an important 

concept in the field of non-extensive statistical mechanics, a theory developed by 

Constantino Tsallis and useful for derivative pricing in fat tail conditions. 

Modified Weibull Distribution: This is proposed to describe the behavior of empirical log 

returns, especially in the tails. It features a stretched exponential behavior for large 

variations, offering a different approach to capturing tail risk in financial data. 



The Student's t-distribution is a popular model for asset returns due to its flexibility over 

the normal distribution, particularly in capturing heavier tails. Its degrees of freedom 

parameter, when reduced, results in fatter tails, thus offering a closer fit to the empirical 

distribution of asset returns. In this thesis I want to focus on this alternative and discuss it 

more on methodology section. 

While GBM assumes a continuous path for price movements with fluctuations modeled 

through a normal distribution of returns, it fails to account for the abrupt and sizable price 

changes seen in real markets. Recognizing these limitations, (Merton, 1976) introduced the 

model, an extension of the GBM model that incorporates jumps to reflect sudden 

significant movements in stock prices. The Merton Jump Diffusion (JD) model introduces 

a jump component to the traditional GBM framework. This enhancement allows the model 

to incorporate sudden and significant changes in stock prices, reflecting more realistic 

market behavior. The JD model modifies the GBM equation by adding a jump term and 

applying weights to the mean and standard deviation offers a more precise prediction model 

for short-term periods (1 month) compared to using non-weighted parameters. The 

weighted method in this study is not an accurate method but sequential MC is new method 

that can be useful in this case it makes the model more complicated. The revised version 

of the Sequential Monte Carlo (SMC) framework, as developed by (Neslihanoglu & Date, 

2019), is a groundbreaking enhancement in the efficiency of estimating extreme quantiles, 

especially relevant for dynamic systems and time series analysis. The effectiveness of this 

updated SMC method is proven in its application to the Cox–Ingersoll–Ross (CIR) model, 

showcasing its potential in financial risk management by adeptly identifying extreme 

quantiles of interest rates. Unlike conventional MC methods that rely on fixed distributions, 

the modified SMC adapts its estimations to meet specific requirements, particularly 

focusing on tail quantiles.  



3- Methodology 

Monte Carlo has a similarity to historical simulation. The main difference is that the 

simulation uses instead of observed changes in the market factors. 

The data of GBs and GCE will be downloaded from FactSet as time series data for the 

study period. I will calculate daily log returns using these daily indexes. Then use the first 

n-day daily return to calculate the mean standard deviation as normal parameters for the 

first attempt. After that, I use them to generate 10000 synthetic returns scenarios for the 

next day and compare 1-day VaR with 95, 99, and 99.9% confidence intervals with actual 

data 

I can use the latest n-day means and standard deviation for the next day repeat it for the 

coming days and compare them together. 

The distinctive method that I want to test in this thesis is how to relax normal simplification 

in stochastic terms and use non-gaussian distribution for generating synthetic returns. MC 

is a time-consuming approach but it is straightforward and needs to be modified in time of 

rising extreme events. 

3-1- Simulating with normal GBM 

Bt  is Brownian motion (a Wiener process) , dBt are increments of a Wiener process that is 

a random term in the equation and never becomes negative. The price of an asset moving 

with a drift and a shock. The is a random amount of volatility that acts on the stock’s price. 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑣𝑆𝑡𝑑𝐵𝑡 

𝑑𝐵𝑡 ∼ 𝑁(0, 𝑑𝑡) 

ln 𝑆𝑡 = [𝜇 −
1

2
𝜎2] 𝑡 + 𝜎𝐵𝑡 

Firstly, I will model typical GBM under normal distribution assumption. The simulations 

depicted were generated by the following algorithm. Inputs are: starting price S0, period of 

the study T in years, volatility σ in per square root year, and drift μ in per year 

Here is the algorithm: 



 inputs: 𝑆0, 𝑇, 𝜇, 𝜎
Δ𝑡 = 1/365.0 ▹ 1 day time increments in years 

𝑛 = 𝑇/Δ𝑡 ▹  number of Δ𝑡 steps in time 𝑇
 for 𝑡 = 1,… , 𝑛
𝑍𝑡 ∼ 𝑁(0,1)

Δ𝑆𝑡 = 𝑆𝑡−1(𝜇Δ𝑡 + 𝜎√Δ𝑡𝑍𝑡)

𝑆𝑡 = 𝑆𝑡−1 + Δ𝑆𝑡; 
 endfor 

▹  the last 𝑆𝑡 is 𝑆𝑇

 

Before introducing my suggestions for enhancement of MC, I should declare that because 

there is no mean reverting term in GBM and each iteration is independent of the former 

one, in the long run, it can generate extreme synthetic situation however in reality returns 

of assets is a time series that has an autocorrelation that can revert back the values to its 

mean but GBM has not such term. We need this modification for short-term analysis.   

3-2- Simulating GBM with fat-tail distribution 

For studying with fat tail distribution it has a single parameter known as degree of 

freedom(DOF), 𝑣 in the following equation. The t probability density function is: 

𝑓𝜃(𝑦𝑡) =
1

√𝜋(𝑣 − 2)

Γ (
𝑣 + 1
2

)

Γ (
𝑣
2)

𝑒−
𝑦𝑡
2 (1 +

𝑦𝑡
2𝑒−𝑥𝑡

𝑣 − 2
)

−
𝑣+1
2

 

Γ(𝑧) = ∫  
∞

0

𝑡𝑧−1𝑒−𝑡𝑑𝑡 

As DOF tends to infinity the t distribution tends to the standard normal density. I use the 

(Bailey, 1994) method for sampling from the t-distribution, the following algorithm: 

 repeat 

U ∼ U(0,1); U = 2U − 1;  uniform on − 1 to 1
V ∼ U(0,1); V = 2V − 1;  a point in the sqr. 

 until W = U2 + V2 <= 1
C = U2/W; R = 𝜈(𝑊−2/𝜈 − 1)

T = √𝑅𝐶
 if ( U ∼ U(0,1) < .5 ) 

 return T
 else 

 return − T

 



3-3- Time-varying volatility 

The second fundamental change we make to the Monte Carlo methodology is that volatility 

is not constant over time. Volatility has its volatility, and highly volatile periods cluster 

together. In other words, if we have a very volatile period in the market, such as covid 

outbreak period, the subsequent period will not automatically normalize it. As I intend to 

generate more extreme events using the simulation, I decided it was reasonable to 

incorporate it. There are numerous methodologies to model this characteristic, technically 

referred to as heteroskedasticity. The one used in this thesis is GARCH. 

My idea is that the algorithm I mentioned above doesn’t change, I just need to update 

volatility in each time 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜖𝑡−1

2 + 𝛽1𝜎𝑡−1
2  

This is the GARCH(1,1) model that can be used to forecast volatility in trained time I will 

define the coefficients and then after each iteration, I need to update volatility. The new 

method for Monte Carlo is proposed by the RiskMetrics group, and the paper about that is 

work presented this method. No paper verifies this method, so when relaxing the normal 

distribution in GBM, I work on time-varying volatility in GBM and check whether it has 

meaningful results or not. Time-varying volatility makes the SDE of GBM unsolvable with 

analytical methods but numerical methods still may be useful. The last one is the t-

distribution and time-varying volatility to check the combination. 

3-4- Particle filtering Algorithm 

Particle filtering, also known as Sequential Monte Carlo (SMC) methods, is particularly 

useful for non-linear and non-Gaussian state-space models. Here, I outline the 

methodology used, drawing on the framework established by(Kitagawa & Sato, n.d.). The 

particle filtering algorithm approximates the filtering and smoothing density functions 

using a large number of particles, which can be considered independent realizations from 

the distributions. The process involves several steps: 

Initialization: 

Generate 𝑁 initial particles {𝑋0
(𝑖)
}
𝑖=1

𝑁

 from the initial state distribution 𝑝(𝑋0). 

Prediction: 

For each particle 𝑋𝑡−1
(𝑖)

, generate a predicted state 𝑋𝑡
(𝑖)

 using the state transition model 𝐹𝑡 

and system noise 𝑉𝑡 : 



𝑋𝑡
(𝑖)
= 𝐹𝑡(𝑋𝑡−1

(𝑖)
, 𝑉𝑡

(𝑖)
) 

This yields 𝑁 predicted particles {𝑋𝑡
(𝑖)
}
𝑖=1

𝑁

. 

Update (Weighting): 

Compute the importance weight 𝑤𝑡
(𝑖)

 for each predicted particle based on the likelihood of 

the observed data 𝑌𝑡 : 

𝑤𝑡
(𝑖)
= 𝑝(𝑌𝑡 ∣ 𝑋𝑡

(𝑖)
) 

Normalize the weights: 

𝑤̃𝑡
(𝑖)
=

𝑤𝑡
(𝑖)

∑  𝑁
𝑗=1  𝑤𝑡

(𝑗)
 

Resampling: 

Resample 𝑁 particles from the current set {𝑋𝑡
(𝑖)
, 𝑤̃𝑡

(𝑖)
}
𝑖=1

𝑁

 according to their normalized 

weights. This step helps to focus computational resources on the most promising particles 

and discard those with low weights. 

Iteration: 

Repeat the prediction, update, and resampling steps for each time step 𝑡 in the data series. 

 

Significance test of the result 

I will simulate it in a daily interval for a forecasting period but the number of iterations is 

a variable that can be started from example from 1000 to 100000 

Convergence check: I want to ensure that adding more iterations does not significantly 

change the outcome. If results keep fluctuating with more iterations, it might indicate that 

the simulation has not yet converged and more iterations are needed. 

Backtesting plays a crucial role in validating VaR and ES models. Various loss functions, 

such as Kupiec and Lopez’s loss function are utilized for this purpose. Kupiec’s POF test 

is an unconditional test method used for backtesting VaR models to determine their 

accuracy in predicting financial losses over time. This test assesses the VaR model's 

effectiveness by counting the number of violations and comparing them against 

predetermined confidence levels. It serves as a benchmark to evaluate the performance of 



a VaR model, particularly in detecting where the model under risk. Lopez's loss function 

is a density forecast test that focuses on the distance between observed returns and 

forecasted VaR values when a breach occurs. (Zhang & Nadarajah, 2018a). 

  



4- Empirical study 

4-1- Data collection 

I selected the S&P Global Clean Energy and S&P Green Bond Index as our core data 

sources  .The S&P Green Bond Index is designed to track the global green bond market. 

S&P GB index includes bonds that are labeled "green" by the Climate Bonds Initiative 

(CBI) and meet the specific criteria outlined in the Eligibility Criteria and Sub-Index 

Rules.   The S&P Global Clean Energy Index is designed to measure the performance of 

companies in global clean energy-related businesses from both developed and emerging 

markets, with a target constituent count of 100 . 

The study period: The dataset covers a period of 10 years, from 2012 to 2021. Daily return 

of S&P GCE and S&P GB from January 1, 2012, to December 31, 2021. The sample period 

is from 1 January 2012 to 31 December 2016 and the forecast time is from 1 January 2017 

to 31 December 2021. This period includes the significant market event of the COVID-19 

pandemic. The indices are represented in Figure 1, showing the time series data for the 

specified period. All data was collected from FactSet. 

 

 

Figure1- Green Bond (GB) index times series from 2017 to 2022(left) – Log return time series(right) 

 

 

Figure2- The Global Clean Energy (GCE) index times series from 2017 to 2022(left) – Log return time series(right) 



The summary statistics for each index are provided in Table 1. This includes the mean, 

standard deviation, t-distribution parameters (degrees of freedom, location, and scale), 

skewness, and kurtosis. 

 

  GB GCE 

Mean 0.000 0.000 

Standard Deviation 0.002 0.012 

T-Distribution DF 3.0 6.5 

T-Distribution Loc 0.000 0.000 

T-Distribution Scale 0.001 0.010 

Skewness -0.514 -0.133 

Kurtosis 8.142 1.025 

 

Table1 – statistical summary for daily return distribution 

 

It is necessary to test the non-normality hypothesis, which is more realistic for financial 

data compared to a normal distribution. Figures 2 and 3 show the leptokurtic shape of log-

return distribution for the GB and GCE indices, respectively. These figures highlight the 

presence of fat tails in the data, which normal distributions fail to capture accurately. 

Given the presence of leptokurtic distributions, I replaced the normal distribution with a t-

distribution to better capture tail events. The t-distribution is a more realistic assumption 

for modeling the extreme values observed in financial markets. The red line in fig3,4 shows 

the normal distribution, If both sets of quantiles came from the same distribution, we should 

see the points forming a roughly straight line. 



 

Figure3- Global Clean Energy index – log return distribution in-sample period(left) – QQ plot of distribution (right) 

 

 

Figure4- Green Bond index – log return distribution in-sample period(left) – QQ plot of distribution (right) 

 

4-2- GBM with Student’s t-distribution 

The GBM model, which incorporates both a deterministic drift term and a stochastic 

random shock term, is widely used to simulate the future price paths of financial assets. As 

discussed in methodology, GBM is a model for modeling asset value and use Montecarlo 

as a common way for solving this stochastic Markov process. In this part, I focus on random 

shock generation. the method builds a distribution of potential future values. simulation is 

based on a chosen probability distribution, like the normal distribution or any other 

distribution. Since I want to capture tail events I have chosen a t-distribution with a fixed 

degree of freedom of 3 was used for the random shock. Maximum Likelihood Estimation 

(MLE) methods are employed to estimate the parameters of the model, including the 

location parameter, scale parameter, and degrees of freedom (DOF). As indicated in Table 



1, the DOF is a crucial parameter in this study and is highly sensitive to the initial guess in 

the MLE method. During the estimation process, it was observed that the DOF frequently 

fell within the range of 3 to 6. A fixed value of 3 was selected for the DOF to maintain a 

conservative approach. 

VaR is calculated by identifying the worst-case losses at a specific confidence level, such 

as the 5th percentile. To estimate the 1-day VaR and ES at a 95% confidence level, Monte 

Carlo simulations were employed. For each step, 100,000 random trials were generated to 

capture the potential price movements.  In volatile markets, the accuracy of simulations 

tends to decrease over longer time horizons. The model assumptions were recalibrated 

using both daily and 14-day time horizons to address this. This recalibration aimed to assess 

the effectiveness of the model under different temporal conditions.  The study aims to 

provide insights into the trade-offs between responsiveness and accuracy in VaR and ES 

estimation by comparing the results from these two recalibration frequencies. (Denoted by 

1-d and 14-d) 

4-3- Forecasting volatility 

For the volatility, we can assume that this is the same as the standard deviation of historical 

return in a specific rolling window. My basic assumption is that it equals to one-year 

standard deviation. However, it can be refined to more realistic volatility closer to the 

market condition. It seems that it has a contradicts to GBM approach with the random walk 

assumption incorporated with an autoregressive assumption of GARCH volatility but when 

I look at the initial guess for volatility in conventional GBM we need to assume volatility 

based on the historical volatility of the market or any other way. So this is acceptable to 

estimate volatility of market based on GARCH and then apply random shock to it. In (A 

New Monte Carlo Simulation Methodology) presented this approach. 

Volatility in the out-of-sample one-step ahead recursive window forecast is used to 

consider the GARCH: 

𝐸[𝜎̂𝑡
2 − V] = (𝛼̂0 + 𝛽̂1)⁡𝑬[𝜎̂𝑛+𝑡−1

2 − ⁡𝑉] 

At time T, all historical values of 𝜀𝑇
2  and 𝜎̂𝑇

2  are known. In a one-step-ahead forecast, 𝜀𝑇is 

observable as it is the most recently estimated residual in the GARCH model. To forecast 

volatility for the n-step-ahead period (T+n), we need the 𝜀𝑇+n that is utilized in the forecast. 

This process continues up to the last observation in the out-of-sample period. There are 

ways to update parameters: fixed rolling and recursive. The fixed rolling employs a fixed 

window of data to re-estimate the parameters, while the recursive window uses an 

expanding window. Predictions from the previous period are used to forecast the next 

period, and the data window for parameter re-estimation expands as the model forecasts 



the next day. There is no agreement on which one is better except for the computation time 

in the long period. In figures 5,6 volatility in the out-of-sample period from 2017 to 2021 

is illustrated for both indices.  

 

 

Figure 5 - GB rolling volatility prediction out-of-sample 

 

 

Figure 6 - GCE rolling volatility prediction out-of-sample 

 



4-4- VaR estimation 

In this study, I developed and compared 10 different methods to evaluate the impact of 

incorporating GARCH and t-distribution within a Monte Carlo simulation framework. For 

each day in the forecast period, I conducted simulations to generate potential future price 

paths based on the estimated volatility. Each day, I reported the 5th percentile of the 

simulated return distribution, representing the VaR. Additionally, the ES was calculated to 

provide a more comprehensive risk measure, capturing the expected loss in the worst-case 

scenarios. To enhance the accuracy and responsiveness of the Monte Carlo simulations, I 

recalibrated the model parameters at two different frequencies: daily (1-day recalibration) 

and bi-weekly (14-day recalibration). bi-weekly recalibration updates the model 

parameters every 14 trading days. This less frequent recalibration smooths out short-term 

market noise and focuses on medium-term trends. While this approach may not capture 

rapid market changes as quickly as daily recalibration, it reduces the computational burden 

and the potential for overfitting to short-term fluctuation, I will discuss the particle filtering 

approach to overcome overfitting. 

 

Figure 7- 1-day VaR 95% CL out of sample period with normal and student’s t and fixed volatility for GCE 

 



 

Figure 8- 1-day VaR 95% CL out of sample period with normal and student’s t and volatility with GARCH for GCE 

 

VaR in Montecarlo simulation with a rolling window approach responds to shocks 

ineffectively, resulting in a delayed dampening of the shock effect. In contrast, Montecarlo 

with the GARCH(1,1) model with the same rolling window immediately responds to 

fluctuations and dampens the effect more promptly. 

4-5- Monte Carlo with Particle filtering 

Particle filtering, also known as Sequential Monte Carlo (SMC) methods, provides a 

framework for estimating the subsequent distribution of state variables in dynamic systems. 

This approach is particularly useful for financial applications(Nkemnole & Abass, 2019). 

The particle filter method sequentially updates and resamples particles representing 

possible future states of the system, incorporating observed data to refine the predictions. 

In this study, I employed Monte Carlo simulations integrated with particle filtering instead 

of the conventional MC approach. The particle filter adjusts the weights of the particles 

based on observed data and then resamples to generate a new set of particles according to 

their weights of deviation from the observed price. This method enhances the ability to 

capture extreme events and handle the intrinsic uncertainty of financial markets. After the 

prediction of simulated price, two steps were added before the next step generation  



- Weighting: Adjust the weights of the particles based on observed data. The weighting 

step is essential for updating the particle filter based on new observed data. Here’s a 

detailed explanation of the weighting approach used in this study: For each particle, 

calculate the likelihood of the observed price given the predicted price of that particle. This 

likelihood is computed using a probability density function (PDF) that describes the 

distribution of the predicted prices. Common choices include the normal distribution and 

the t-distribution, depending on the characteristics of the financial data. 

The weight of each particle is proportional to this likelihood. Mathematically, the weight 

𝑤𝑖 of particle i is given by: 

 

𝑤𝑖 = PDF⁡( observed_price ∣  predicted_price ⁡𝑖 )  

The PDF used can be the normal distribution 𝒩(𝜇, 𝜎) or the t-distribution 𝑡(𝜇, 𝜎, 𝜈) on the 

model's assumptions about the distribution of returns. 

After calculating the weights, they are normalized to sum up to 1. This normalization 

ensures that the weights represent a valid probability distribution. 

𝑤𝑖 =
𝑤𝑖

∑  
𝑛particles 

𝑗=1
 𝑤𝑗

 

- Resampling: Generate a new set of particles by sampling from the current particles, with 

replacement, according to their weights. Based on the normalized weights, particles are 

resampled with replacement. Particles with higher weights have a higher probability of 

being selected multiple times, while particles with lower weights are less likely to be 

chosen. This process effectively discards particles that poorly predict the observed price 

and focuses on those that align well with the observed data. 

The new set of particles replaces the old set, and each particle is assigned an equal weight 

after resampling. This equal weighting ensures that the resampling step starts afresh 

without bias from the previous weights. This method emphasizes the intrinsic uncertainty 

of the market. Compared to simple recalibration with observed prices, particle filtering 

offers significant advantages: 

Uncertainty Handling: Particle filtering explicitly accounts for the uncertainty inherent in 

financial markets by propagating a diverse set of particles through the model. Each particle 

represents a possible future price path, allowing the model to capture a wide range of 

outcomes, including extreme events in the tails of the distribution. 

Avoiding Overfitting: Simple resampling with exact market prices can lead to overfitting, 

where the model becomes too closely aligned with past data and loses its predictive power. 



Figure 10 and Figure 11 illustrate the predicted bands using the particle filtering approach. 

The graphs show that the prediction bands become wider when using particle filtering 

compared to conventional methods. This widening of the bands indicates an increased level 

of uncertainty in the predictions, which is a significant feature of the particle filtering 

approach. 

 

Figure 9- Simple Monte Carlo Simulation - 5th to 95th Percentile Prediction Band for GCE with Daily Updated 

Parameters 

 

Figure 10- Monte Carlo Simulation with Particle Filtering - 5th to 95th Percentile Prediction Band for GCE with Daily 

Updated Parameters 



 

Figure 11- 1-day VaR 95% CL out of sample period with particle filtering Monte Carlo approach 

  



5- Analysis and Results 

The analysis employs various statistical methods to model extreme risks and assesses the 

accuracy and reliability of these models using backtesting techniques. The objective is to 

identify which methods provide the most accurate predictions for extreme events in the 

financial markets represented by these indices. While the entire period is initially 

presented, the focus then shifts to the period from 2020 to the end of 2021, capturing the 

impact of the COVID-19 outbreaks and their recovery post-event prolonged to the end of 

2021.  

5-1- Kupiec POF test 

Backtesting is a set of procedures used to verify the actual losses observed are matched 

with what I expected. The Kupiec-POF test represents the widely used test for assessing 

the reliability of these risk models in process of backtesting. If the model passes the Kupiec 

test, it means the number of exceptions is consistent with the expected number based on 

the confidence level. The test is concerned whether the reported VaR is violated than 

𝛼⁡percent of time(Zhang & Nadarajah, 2018b). The test statistic is 

𝑃𝑂𝐹 = 2ln⁡ [(
1 − 𝛼̂

1 − 𝛼
)
𝑛−𝐼(𝛼)

(
𝛼̂

𝛼
)
𝐼(𝛼)

]

𝛼̂ =
1

𝑛
𝐼(𝛼)

𝐼(𝛼) =∑  

𝑛

𝑡=1

𝐼𝑡(𝛼),

 

The test statistic value is obtained from the chi-square distribution with 1 degree of 

freedom. Where n denotes the number of observations, the test statistic indicates that if the 

proportion of VaR violations is exactly equal to 100α percent, the POF test value will be 

zero, showing no evidence of inadequacy in the underlying VaR model. However, as the 

proportion of VaR violations deviates from α percent, the POF test statistic increases, 

providing growing evidence that the proposed VaR model either consistently understates 

or overstates the portfolio’s actual risk level. As show in table 2, For a 95% confidence 

level, we expect approximately 25.2 exceedances out of the total sample size. 

This is a very simple test that shows us when I forecast the volatility term with GARCH 

model (t-distribution) it makes the model more conservative and overestimate the VaR. 

normal distribution in Montecarlo simulation with GARCH volatility forecasting can be 

consistent. Particle filtering slightly changed the number of exceedances and made the 

model in this period a bit conservative comparing one method. The Simple GARCH(1,1) 

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=7065


model is known for its reliability in estimating the volatility of assets, especially assets that 

exhibit high levels of volatility, such as GCE. This model is particularly effective because 

it captures time-varying volatility by considering both past returns and past forecast errors. 

However, in the case of GB, the GARCH(1,1) model faced challenges. Specifically, during 

extreme conditions, the exceedance levels can violate the established thresholds but the 

level of exceedance is lower than the historical approach. 

 

 

Table 2 - Kupiec POF test 

 

5-2- Lopez magnitude loss function 

Lopez (1998, 1999) introduced a method to measure the distance between observed returns 

and the forecasted VaR (α) when a violation occurs. loss function accounts for the total 

number of violations and the squared distance from the corresponding VaR. By utilizing 

this loss function, we gain a better insights into the performance of their VaR models and 

assess their ability to capture and estimate market risk accurately. Results in ascending 



order are shown in table 3. GCE is more volatile than GB so particle filtering helps slightly 

to better match the actual return. 

Lopez function(Zhang & Nadarajah, 2018b): 

𝐿𝑡(𝑥𝑡, VaR𝑡⁡(𝛼)) = {
1 + [𝑥𝑡 − VaR𝑡⁡(𝛼)]

2,     𝑥𝑡 ≤ VaR𝑡
0,     𝑥𝑡 > VaR𝑡

 

𝐿̂ =
1

𝑛
∑  

𝑛

𝑡=1

𝐿𝑡(𝑥𝑡, VaR𝑡⁡(𝛼)) 

 

Table 3 – Lopez loss function (𝛼 = 0.05) 

 

The loss function can reveal the inefficiency of certain methods, such as GARCH (1,1) and 

all methods that assume a normal distribution. Even when the number of exceedances is 

similar across these methods, the loss function highlights how far the predicted returns 

deviate from the actual returns. The lowest loss values are observed for the GBM-GARCH-

t-1d-SMC and GBM-GARCH-t-1d models (0.014), indicating that these models perform 

well in capturing the return dynamics of GB. t-distribution-based models are effective for 

both. However, incorporating GARCH in GCE needs to be estimated with the t-distribution 

to achieve optimal performance and reliability. 

 



5-3 Unconditional Test by Acerbi and Szekely 

Acerbi showed that ES can in practice be jointly elicited with VaR. The test by (Acerbi & 

Szekely, 2014) is designed to evaluate the accuracy of risk models in predicting extreme 

losses in a financial portfolio. The test focuses on the Expected Shortfall. This test 

evaluates whether the ES predictions from a model match the observed extreme losses in 

a given dataset. Returns simulated under the null hypothesis that the risk model accurately 

predicts ES and VaR.  

The  unconditional test is sensitive to the magnitude and number of exceedances in the 

unconditional test, losses are scaled by the expected number of exceedances, given a 

significance level (α) and estimation window (T). The null and alternative hypotheses are 

defined as: 

𝐻0: 𝐸𝑆𝛼,𝑡
𝑢𝐹 = 𝐸𝑆𝛼,𝑡, ∀𝑡  

The observed Expected Shortfall (ES) is consistent with the Expected Shortfall predicted 

by the risk model.  

𝐻1: 𝐸𝑆𝛼,𝑡
𝑢𝐹 ≥ 𝐸𝑆𝛼,𝑡∀𝑡 

 

The observed Expected Shortfall (ES) is not consistent with the Expected Shortfall 

predicted by the risk model. 

The Acerbi-Szekely method provides a rigorous approach to backtesting ES by comparing 

the observed ES with a benchmark distribution derived from simulations to estimate the 

distribution of the ES statistic under the null hypothesis. This involves generating a large 

number of simulated return paths and calculating the ES for each path. In table 4, you can 

find the result with 5% significance level all models with rolling window estimation of 

volatility even along with t-distribution reject the null hypothesis and are inconsistent in 

this study. 



 

Table 4 - Acerbi and Szekely test (𝛼 = 0.05) 

Incorporating these tests in Table 5 shows five methods that pass the test and significantly 

estimate VaR. 

 GB GCE 

POF Loss Acerbi POF Loss Acerbi 

GBM-RW-n-1d 20 7 0.638 28 11 0.6189 

GBM-RW-t-1d 13 4 0.0036 19 5 0.0113 

GBM-RW-n-14d 23 9 0.2226 30 13 0.2528 

GBM-RW-t-14d 13 5 0.0004 19 6 0.0028 

GBM-RW-n-1d-SMC 23 8 0.4922 29 12 0.5681 

GBM-RW-t-1d-SMC 13 3 0.0034 19 4 0.0173 

GBM-garch-n-1d 30 12 1 12 9 1 

GBM-garch-t-1d 13 2 0.9909 2 2 0.7434 

GARCH(1,1) 27 10 1 12 7 0.9997 

GBM-garch-n-14d 30 11 0.9188 20 10 0.9221 

GBM-garch-t-14d 17 6 0.1478 4 3 0.2373 

GBM-garch-n-1d-SMC 31 13 1 12 8 1 

GBM-garch-t-1d-SMC 12 1 0.9953 1 1 0.8875 

RW 1-y 31 14 0.9115 37 14 0.8534 
 

Table 5 – Aggregating all tests – loss function numbered in order from 1-14 

 



6- Discussion and conclusion 

In this study, I developed a framework to assess extreme risks associated with S&P Green 

Bonds (GB) and Global Clean Energy (GCE) using Monte Carlo simulations enhanced 

with advanced statistical models. By applying Value at Risk (VaR) and Expected Shortfall 

(ES) as key risk indicators, I evaluated the performance and stability of these measures 

with three statistical tests. 

The VaR with t-distribution and GARCH for GB fluctuated between 0.1% and 1.7%, while 

for GCE it ranged from 1.6% to 15.2%. Although I did not investigate the specific causes 

of these shocks, it is evident that the GCE market was significantly impacted by the 

COVID-19 outbreak. 

The Monte Carlo simulation approach was used with several assumptions. Based on the 

Efficient Market Hypothesis (EMH), market prices evolve according to a random walk and 

are unpredictable. The Monte Carlo simulation utilizes Geometric Brownian Motion 

(GBM) to generate random future states. I modified two conventional assumptions 

regarding the shock and volatility terms in GBM. Then, I applied particle filtering to Monte 

Carlo simulations to capture extreme risk events. By shifting from a normal to a t-

distribution, I aimed to fit a more realistic distribution of returns. This adjustment decreased 

the exceedance level to match the 95% confidence level, reducing it from 28 in two years 

with a normal distribution to 19 with a t-distribution in GBs. Additionally, I incorporated 

the volatility term, another impactful factor in GBM, by fitting a GARCH model to sample 

data. This further decreased the exceedance level from 28 in two years to 12. However, 

incorporating both modifications led to an overestimation of VaR with 95% CL. On the 

other hand, particle filtering did not significantly affect the results. The Acerbi test also 

highlighted the importance of forecasting volatility with GARCH, which outperformed all 

other models. When examining all models, particle filtering Monte Carlo with GARCH 

and t-distribution provided the most accurate results based on exceedance and loss function 

tests, with only one exceedance in GCE and 12 in GB, and the lowest loss value. However, 

in the Acerbi test, the simple Monte Carlo method produced more consistent results. 

Considering the methods from various perspectives, in terms of both VaR and ES, the 

simple Monte Carlo with GARCH and t-distribution also demonstrated more consistent 

performance. 

The time horizon for simulation is another factor examined in this research. Parameters 

need to be updated frequently to reflect changing market conditions. During normal 

conditions, price movements remain within a predictable range, allowing simulations to 

rely on initial parameters. However, there is no evidence that in a volatile market, 

parameters need frequent updating. This is why modeling with a two-week updating 



frequency underestimates risk compared to daily updates. It is not the goal of this research 

to find the optimal time horizon, but this can be studied in future research. 

If the ultimate goal is to develop a framework for modeling extreme risk, these models 

should be tested on other asset classes to enhance Monte Carlo simulation accuracy. 

Additionally, exploring other types of distributions could provide further improvements. 

Future research could benefit from using Generalized Geometric Brownian Motion 

(gGBM), which can incorporate memory effects and capture more complex asset 

dynamics. This approach addresses GBM's limitations in capturing sudden jumps in asset 

prices and its assumption that price changes are independent and identically 

distributed.  the crucial role of gGBM in handling structural changes. These models are 

usually used for option pricing and require a strong knowledge of stochastic calculus. 

Furthermore, future research should focus on external factors such as macroeconomic 

indicators and geopolitical events that influence market behavior. 
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