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Abstract

Holonomy groups are Lie groups associated to Ehresmann connections on surjective
submersions. Elements of the holonomy groups are generated via parallel transport along
loops in the base manifold. The Ambrose-Singer theorem relates the Lie algebras of these
holonomy groups to the curvature of the connection.

The theory of holonomy fits naturally inside the framework of Lie groupoids and
Lie algebroids. A Lie groupoid is a generalisation of a Lie group, and its infinitesimal
counterpart is a Lie algebroid. In contrast with the Lie group-Lie algebra correspondence,
not every Lie algebroid is integrable to a Lie groupoid. Besides an extensive discussion of
basic groupoid and algebroid theory, we discuss this integrability problem. We focus on
the case of transitive algebroids acting freely on surjective submersions.

We also discuss in detail the theory of transitive algebroids and the associated Atiyah
sequences. We assign notions of connections and curvature to transitive algebroids, and
show that for integrable transitive algebroids, these notions correspond to principal bundle
connections and curvature.

Mackenzie ([Mac05]) first described holonomy as a branch of Lie groupoid theory. In
this thesis, we follow a slightly different approach, initialized by Crainic. We show that
the bundle of Lie algebras of the holonomy groups together with the tangent bundle of
the base manifold, form a Lie algebroid. This algebroid acts on the surjective submersion
and is integrable. Using its groupoid integration, we attempt to prove the Ambrose-
Singer theorem again. Although our proof is still missing an important step, the approach
described in this thesis gives more insight into the theory of holonomy and connections. We
show that under certain conditions on the connection, the original surjective submersion
is isomorphic to a fibered product over a principal bundle. This is a strong result which
is not evident from the classical approach.
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1 Introduction

This thesis combines two subjects from differential geometry, namely holonomy and Lie alge-
broids, in an attempt to give more insight into the Ambrose-Singer theorem on holonomy groups.

In 1952, Ambrose and Singer stated and proved a theorem on holonomy for principal bundles
in [AS53]. Holonomy groups are Lie groups arising from parallel transport along connections, for
example on principal bundles. In their paper, Ambrose and Singer proved that these groups are
indeed Lie groups, computed the identity component of these Lie groups, and most importantly
gave a description of their Lie algebras, all in the context of principal bundles. The core idea of
the theorem is that holonomy arising from a connection is generated by the curvature associated
to that connection.

Holonomy groups encode information about the connection that they come from; for ex-
ample, the holonomy groups are trivial if and only if the connection is flat. But holonomy
groups can also encode information about the manifolds involved; for certain Riemannian man-
ifolds with a Levi-Civita connection, Berger’s classification of holonomy classifies all possible
holonomy groups, simultaneously classifying possible structures on the base manifold. This is
one example where holonomy is an interesting object of study in differential geometry. The
study of holonomy groups, including the Ambrose-Singer theorem, is discussed extensively in
the important book ‘Foundations of differential geometry’ by Kobayashi and Nomizu [KN96].

The other subject that this thesis is concerned with is the theory of Lie groupoids and
Lie algebroids. Groupoids were first introduced by Brandt, and their smooth version (which
we now call Lie groupoids) by Ehresmann in the 1950’s. Groupoids can be interpreted as a
generalisation of groups: while a group is endowed with a binary operation defined on all pairs
of group elements, for a groupoid this operation is only partially defined.

A generalisation of Lie groups of course asks for a generalisation of Lie algebras. The cor-
responding notion of Lie algebroids, together with the Lie theory for groupoids and algebroids,
was first developed by Pradines in the 1960’s. At first, Pradines believed that every Lie alge-
broid was integrable to a Lie groupoid, similar to the Lie algebra-Lie group correspondence.
However, this was proved to be false when Almeida and Molino found the first example of a
non-integrable Lie algebroid. After that, more and more work was done in this field, resulting
for example in the extensive description of groupoids by Mackenzie in [Mac87]. This book
focused mainly on locally trivial groupoids and algebroids.

New interest in the subject arose when Weinstein, Karasëv and Zakrzewski (independently)
saw the need for a general integrability theory of Lie algebroids arising in Poisson geometry. It
had already been observed that a Poisson structure induces an algebroid, the cotangent alge-
broid. The new observation was that symplectic realisations of Poisson structures correspond
to symplectic integrations of these cotangent algebroids. Since symplectic groupoids are not
necessarily locally trivial, the focus shifted to finding integrability conditions for general Lie
algebroids. This shift is also reflected by the theory discussed in Mackenzie’s second book on
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groupoids and algebroids ([Mac05]), which has more focus on the general case than his first
book.

The integrability problem of Lie algebroids was clearly not a simple generalisation of that of
Lie algebras, as examples of non-integrable Lie algebroids had been found. For certain classes
of Lie algebroids (for example, algebroids arising from foliations), the integrability problem was
positively solved. Finally, the most general answer to this problem was introduced in [CF11],
where Crainic and Fernandes give conditions for any Lie algebroid to be integrable.

Moving back to the subject of this thesis, we look for a relationship between holonomy and
algebroids. A relationship between these subjects is also discussed by Mackenzie in his second
book. His observation is that holonomy groups arising from a connection should be viewed
inside groupoid theory. He constructs a groupoid that naturally contains the holonomy groups,
and by computing the corresponding algebroid he proves the original Ambrose-Singer theorem.

This ‘groupoid point of view’ also formed the basis for a talk by Marius Crainic, in memory
of Mackenzie. The notes based on this talk look for a relationship between holonomy and al-
gebroids as well, but from a slightly different perspective than Mackenzie. However, the notes
were never finished, and the goal of this thesis is to give a correct, detailed account of the ideas
presented there.

Part I of this thesis will be an overview of Lie groupoid and Lie algebroid theory. We will
focus on the integrability of transitive Lie algebroids by giving an overview of the conditions
introduced in [CF11] and proving an integrability theorem for transitive algebroids that admit
a free algebroid action.

In Part II, we will discuss the general theory of connections, holonomy, and the Ambrose-
Singer theorem. The Ambrose-Singer theorem was originally stated for principal bundles, and
many texts on the subject of holonomy also focus on this case. We will generalise to proper
fibrations in this thesis.

Finally in Part III, the theory developed on groupoids and algebroids will be applied to
the discussion on holonomy. Associated to a connection, we will find a transitive algebroid,
and show it is integrable. Then using this algebroid and its integration, we will attempt to
prove the Ambrose-Singer theorem again. At the very least, we will gain additional insight into
the structure of the original fibration and the connection. We will prove that the fibration is
isomorphic to a fibered product over a principal bundle, and that the original connection is
equivalent to a connection on this principal bundle.
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Part I

Groupoids and algebroids
We begin by discussing some generalities on (Lie) groupoids and Lie algebroids. We will start in
Section 2 with groupoids and Lie algebroids, and discuss morphisms, homotopies, integrability
and actions.

In Section 3, we discuss one specific example of a groupoid, namely the general linear
groupoid. We compute its algebroid, and see that this example is closely related to groupoid
and algebroid representations, just as in the classical case of Lie group and Lie algebra repre-
sentations.

In Section 4, we discuss connections. Here we focus on a specific kind of algebroid, namely
transitive algebroids, and define connections and curvature. We will see that this is closely
related to connections on princpal bundles.

We will return to these concepts in Part III, where we use the theory of transitive algebroids
and algebroid actions to discuss holonomy. The general linear groupoid/algebroid discussed in
Section 3 can be considered as a detailed example and this section is less important for the rest
of the thesis.

2 (Lie) groupoids and Lie algebroids

As the name groupoid suggests, a groupoid can be interpreted as a generalization of a group. A
group is a set of objects with a binary operation that is defined for any pair of group elements.
In a groupoid, this binary operation is only defined for certain pairs of elements. The definition
of a groupoid that we use in this thesis will be stated in terms of category theory terminology,
but it is equivalent to this intuitive way of generalising groups.

Groups also have a smooth version, namely Lie groups, and Lie groups come with a Lie
algebra. Similarly, we can define Lie groupoids, and define the corresponding Lie algebroid.
The Lie algebroid will be a natural extension of Lie algebras.

This section is based mostly on [CF11], [CFM21] and [Mei17]. More or less detailed de-
scriptions and examples can be found there. Basically all of the theory discussed in Part I is
also discussed in [Mac05], which includes many detailed examples. Mackenzie’s work is very
important for this thesis, but the notation is very different. Our notation is much more alike
the first three sources, so we will mainly refer to those.

2.1 Groupoids

The shortest definition of a groupoid is:

Definition 2.1. A groupoid is a small category in which all arrows are invertible.
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We expand this definition, and fix notation for the structure maps involved.

Definition 2.2. A groupoid G ⇒ M consists of a set of objects M , a set of arrows G, and
the following five structure maps:

1. s : G → M and t : G → M , the source and target map (giving the source and target of
an arrow).

2. m : G ×M G → G, denoted m(g, h) = gh, the multiplication map. Here G ×M G denotes
the set of composable arrows:

G ×M G := { (g, h) | s(g) = t(h) } ⊂ G × G.

3. u : M → G, the unit map sending x ∈ M to the unit arrow 1x.

4. i : G → G, the inversion map, sending an arrow g to its inverse denoted i(g) = g−1.

These maps satisfy the following axioms:

1. For g and h composable arrows, t(gh) = t(g) and s(gh) = s(h).

2. For g, h and k pairwise composable arrows, (gh)k = g(hk).

3. For an arrow g with source x and target y, and 1x, 1y the corresponding identity arrows,
1yg = g = g1x.

4. For an arrow g from x to y, gg−1 = 1y and g−1g = 1x.

An arrow g ∈ G is interpreted as an arrow between two points in M , starting at its source
s(g) and pointing to its target t(g). We will use the notation g : s(g) → t(g), or simply
g : x → y, indicating that x is the source of g and y the target.

We can now list the first examples of groupoids. The first two can be considered ‘extreme
cases’; the first groupoid is determined solely by a group, and the second is determined by a
set.

Example 2.3. A group G is the same thing as a groupoid over a single point G ⇒ {·}. The
space of arrows of this groupoid is the set of group elements. The source and target maps are
trivial, and the other structure maps encode the group structure.

Example 2.4. Given a setM , the pair groupoid is denotedM×M ⇒ M , and it is the groupoid
containing a unique arrow between any pair of points in M . The set of arrows is thus M ×M .
The source map is projection onto the second coordinate and the target map is projection on
the first. The reason for this seemingly backwards notation, is that the multiplication map is
now very straightforward. Consider the composable arrows (z, y) and (y, x) drawn below:

z y x
(z,y) (y,x)
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The multiplication map simply ‘contracts’ the point y:

m((z, y), (y, x)) = (z, x),

resulting in an arrow from x to z as expected. Finally, the unit map sends x to (x, x), and the
inversion map sends (y, x) to (x, y).

Example 2.5. Given a group G which is acting on a set M , we define the action groupoid
G × M ⇒ M . The space of arrows is G × M , with source map s(g, x) = x and target map
t(g, x) = gx. The multiplication map is m((h, gx), (g, x)) = (hg, x), the unit sends x to (e, x)
(e being the identity in G) and the inversion sends (g, x) to (g−1, gx).

To investigate other properties of these groupoids, we will need the following notions. The
source fiber of G at a point x ∈ M is s−1(x), its preimage under the source map. Similarly,
the target fiber of G at x ∈ M is t−1(x).

A group G comes with a binary operation G×G → G, which can be seen as an action of G
on itself. In the case of a groupoid, such a multiplication map G × G → G is not well-defined,
as not all arrows are composable. We have to define the left and right action of a groupoid
element on the groupoid using the source and target fibers, in order to make it well-defined.
To that end, let g ∈ G be an arrow from x to y. Then for any arrow h ∈ t−1(x), the pair (g, h)
is composable and we define left multiplication by g as

Lg : t
−1(x) → t−1(y), h 7→ gh.

For an arrow k ∈ s−1(x), the pair (k, g) is composable and we define right multiplication by g
as

Rg : s
−1(y) → s−1(x), k 7→ kg.

Using the source and target fibers, we also define orbits and isotropy groups.

Definition 2.6. Given a groupoid G ⇒ M and a point x ∈ M , the isotropy group at x is

Gx := s−1(x) ∩ t−1(x) = { g ∈ G | s(g) = t(g) = x }.

The orbit through x is

Ox := t(s−1(x)) = s(t−1(x)) = { y ∈ M | ∃g ∈ G s.t. s(g) = x, t(g) = y }.

The orbit set M/G of the groupoid is the collection of orbits. Equivalently, it is a quotient of
M , where two points are identified if they lie in the same orbit:

M/G := {Ox | x ∈ M } = M/ ∼G .

The isotropy group at x has a clear group structure, where the unit arrow 1x is the identity,
and composition of arrows gives the group operation. Note the groupoid multiplication is
well-defined on Gx × Gx.
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Example 2.7. For the group over a point G ⇒ {·}, the isotropy group and orbit are defined at
only one point, the basepoint. The isotropy group is G, as all arrows have the basepoint as
source and target. The orbit is the basepoint itself, and the orbit space contains one element.

Example 2.8. Consider the pair groupoid M ×M ⇒ M over a set M , and a point x ∈ M . By
definition, there is a unique arrow between any pair of points; this implies there can only be
one arrow in Gx, which must be the unit 1x. The orbit at x is M , as there is an arrow between
any two points in M , and again the orbit space contains one element.

We see again that these examples are the two extreme cases of groupoids; the first has the
largest possible isotropy groups, and an orbit with only one element, while the second has the
smallest possible isotropy groups and the largest possible orbits.

In the next example, we see that the isotropy groups and orbits of groupoids are indeed a
natural extension of the isotropy groups and orbits from group theory.

Example 2.9. For the action groupoid G×M ⇒ M , the isotropy group at a point x ∈ M is

Gx = { (g, x) ∈ G×M | x = gx }

and this agrees with the isotropy group arising from the group action of G on M . Similarly,
the orbit is

Ox = { gx | g ∈ G }

which agrees with the group action orbit.

We now introduce morphisms of groupoids. Since we defined groupoids as certain categories,
a morphism is simply a functor of categories. In more detail:

Definition 2.10. A morphism of groupoids from G ⇒ M to H ⇒ N is a pair of maps
(Φ, ϕ), where Φ : G → H is a map of arrows, ϕ : M → N is a map of objects, such that they
are compatible with all the structure maps. Explicitly, they satisfy:

� An arrow g : x → y in G is mapped by Φ to an arrow Φ(g) : ϕ(x) → ϕ(y).

� For g, h ∈ G composable arrows, Φ(gh) = Φ(g)Φ(h).

� For x ∈ M , Φ(1x) = 1ϕ(x).

� For g ∈ G, Φ(g−1) = Φ(g)−1.

Definition 2.11. A subgroupoid of a groupoid G ⇒ M is a groupoid H ⇒ N together with
an injective groupoid morphism i : H → G.

We now introduce two more examples of groupoids. The first one is a subgroupoid of the
pair groupoid. The second example, the gauge groupoid, will play a central role in the theory
of transitive groupoids.
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Example 2.12. Consider a submersion µ : M → N . This gives rise to the submersion
groupoid, denoted M ×µ M ⇒ M . The set of objects is M , and the set of arrows is

M ×µ M := { (x, y) | µ(x) = µ(y) }.

This is a subgroupoid of the pair groupoid, with i : M ×µ M → M ×M the obvious inclusion.
The structure maps of the submersion groupoid are simply those of the pair groupoid, restricted
to M×µM . The isotropy groups of the submersion groupoid are still trivial. The orbit through
a point x ∈ M is precisely the fiber Mµ(x) = µ−1(µ(x)).

Example 2.13. Let G be a Lie group, and pr : P → M a principal G-bundle. Consider the pair
groupoid P × P ⇒ P . By quotienting the pair groupoid by the G-action, we find the gauge
groupoid:

G := (P × P )/G ⇒ P/G = M.

The equivalence relation on P × P is given by (p, q) ∼ (pg, qg) for g ∈ G. The source map of
this groupoid is s([p, q]) = pr(q) and the target map is t([p, q]) = pr(p). Since the fibers of a
principal bundle are G-torsors, these maps are well-defined. The unit above x is [(p, p)] where
p is any element in Px (again this is well-defined as all such (p, p) lie in the same equivalence
class). The inversion map is [(p, q)] 7→ [(q, p)].

To compute the isotropy groups of the gauge groupoid, let x ∈ M . Then Gx consists of all
arrows with source and target x:

Gx = (Px × Px)/G = { [(p, q)] | pr(p) = pr(q) = x }.

Fix a point p0 in Px. Then any class in Gx can be written as [(p0, p0g)] for some g ∈ G, since
Px is a G-torsor. We see

Gx = { [(p0, p0g)] | g ∈ G } ∼= G,

so for gauge groupoids, all isotropy groups are isomorphic to G.
From the fact that the pair groupoid P ×P has one orbit (namely P ), we see that the gauge

groupoid also has one orbit, which is M .

Definition 2.14. A groupoid is called transitive if it has one orbit.

So far, M and G have been sets. In this thesis, we will consider mostly smooth groupoids.

Definition 2.15. A Lie groupoid is a groupoid G ⇒ M with a smooth structure on M and
G, and where s and t are submersions and all structure maps are smooth.

Remark 2.16. 1. All smooth manifolds in this thesis are assumed to be second countable
and Hausdorff. The only exception is the space of arrows of a groupoid G, which is
not required to be Hausdorff. For example, a regular foliation of a manifold induces a
groupoid that is already non-Hausdorff, and this is not a very extreme case at all (this
example will be discussed in Section 2.8). The source and target fibers in G will always be
Hausdorff due to the source and target map being submersions, so we will not encouter
many issues with this. For more detail on this and the precise way to handle this we refer
to Chapter 13 in [CFM21].
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2. The condition that s and t are submersions implies that the set of composable arrows
G ×M G is a submanifold of G × G by the submersion theorem. This shows that it makes
sense to impose that m is a smooth map.

3. The condition that both s and t are submersions is actually redundant. If either s or t is
a submersion, it already follows that the other one is as well, since they are related via
the inversion map.

Finally, for Lie groupoids we will use the following facts. For the proof, we refer to Theorem
5.4 of [MM03].

Proposition 2.17. For a Lie groupoid G, the following hold.

� The unit map u : M → G is an embedding.

� The orbits Ox ⊂ G for x ∈ M are immersed submanifolds.

� The isotropy groups Gx ⊂ G are Lie groups.

Recall that a transitive groupoid is a groupoid with a single orbit. For transitive Lie
groupoids, we have the following useful characterisation.

Proposition 2.18. Any transitive Lie groupoid is a gauge groupoid.

Proof. Let G → M be a transitive groupoid. Fix some point x ∈ M , consider s−1(x) ⊂ G. By
transitivity, the restriction of the target map t : s−1(x) → M is surjective, and since G is a Lie
groupoid, t is a submersion. Furthermore, Gx acts on s−1(x) by composition of arrows. We find
that s−1(x) → M is a principal Gx-bundle.

From the principal bundle s−1(x), we can form a gauge groupoid. We claim that this gauge
groupoid is isomorphic to the original groupoid G:

G ∼= (s−1(x)× s−1(x))/Gx =: Ggauge.

First define the mapping G → Ggauge. Let g ∈ G be an arrow g : y → z. Since G is transitive,
there exists some arrow h : x → z. Now define

G → Ggauge, g 7→ [(h, hg−1)].

Note both h and hg−1 lie in s−1(x). It is easily checked that this map commutes with the
groupoid structures.

Next define the inverse mapping Ggauge → G by [(h, g)] 7→ hg−1. Both h and g have source
x, thus h and g−1 are composable. Again, it is easily checked that this map commutes with
the group structure, and is an inverse to the map defined above.
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2.2 The Lie algebroid of a Lie groupoid

A natural question to ask after defining Lie groupoids is whether there is a corresponding in-
finitesimal version, similar to the Lie algebra of a Lie group. This is the notion of Lie algebroids.
We will introduce Lie algebroids from this perspective by ‘differentiating’ Lie groupoids, in a
similar manner as one does for Lie groups. However, there is one big difference: not all Lie
algebroids are integrable to (or come from) a Lie groupoid. Still, to define them, it is natural
to start from this perspective of differentiating Lie groupoids.

We first recall the procedure that describes the Lie algebra of a Lie group, and then imitate
this for the case of Lie groupoids. Let G be a Lie group. Then the underlying vector space of
its Lie algebra is g = TeG, the tangent space at the identity. The Lie bracket on g is deter-
mined by identifying TeG with Xinv(G), the space of right-invariant vector fields on G. This
identification works as follows: a vector field X ∈ Xinv(G) is mapped to X(e) ∈ TeG, and a
vector v ∈ TeG determines a vector field X which is defined by Xg = deRg(v). This mapping
is an isomorphism. The vector fields on G are naturally equipped with a Lie bracket, and the
right-invariant vector fields are closed under the bracket. So by this identification we find a Lie
bracket on TeG, making it into a Lie algebra, specifically the Lie algebra g of G.

We now start with a Lie groupoid G ⇒ M , and we want to define its Lie algebroid in a
similar way. The first step in defining g was taking the tangent space at the identity element.
However, in a groupoid, there is not a single identity element; for every x ∈ M , there is a unit
1x. This suggests that we should consider not a vector space, but a vector bundle over M . We
expect that the fiber above x of this vector bundle will be T1xG.

We then look for an identification with right-invariant vector fields, i.e., vector fields invari-
ant under right translation. Here the second issue comes up; right translation for groupoids
is only defined on the source fibers. This suggests that instead of fibers T1xG, we should only
consider vectors that are tangent to the source fibers, so T1xs

−1(x). With this motivation,
we define the underlying vector bundle of the Lie algebroid of G. We will use the notation
T sG := Ker(ds) ⊂ TG.

Definition 2.19. For a groupoid G ⇒ M , the vector bundle associated to its Lie algebroid is
A → M , defined by

A := T sG|M = u∗(T sG).

Here, when we write |M , we identify M with its embedding u(M) ⊂ G.
The Lie bracket of an algebroid will be defined on its space of sections Γ(A). We will define

this by identifying Γ(A) with certain right-invariant vector fields on the groupoid, a notion that
we have to introduce first. To this end, consider first any arrow h : y → z in G. Then T s

hG
is just the tangent space to s−1(y) at h. Recall that for an arrow g : x → y, we have defined
Rg : s

−1(y) → s−1(x), so by taking the differential at h ∈ s−1(y) we find a map

dhRg : Ths
−1(y) → Thgs

−1(x).

9



This is equivalently written as
dhRg : T

s
hG → T s

hgG.

Then a vector field X ∈ X(G) is right-invariant tangent to the source fibers, if Xhg = dhRg(Xh)
for composable arrows h and g. The space of such vector fields is denoted Xs

inv(G). Note that
this space is closed under the Lie bracket, following from the same argument that shows the
right-invariant vector fields on Lie groups are closed under the Lie bracket.

Lemma 2.20. There is a 1-1 correspondence between Γ(A), the sections of the associated vector
bundle A of a groupoid G, and the right-invariant vector fields on G tangent to the source fibers
Xs

inv(G).

Proof. Let α ∈ Γ(A), and define pointwise the vector field αR
g = d1t(g)Rg(αt(g)). This is clearly

smooth. It is right-invariant by the following computation:

αR
h g = d1t(hg)Rhg(αt(hg))

= dhRg(d1t(h)Rh(αt(h)))

= dhRg(α
R
h ).

It is also tangent to the source fibers from the following computation, where we set k :=
Rg

(
1t(g)

)
:

dks
(
d1t(g)Rg(αt(g))

)
= dk (s ◦Rg)

(
αt(g)

)
= 0,

since s ◦Rg is the constant map s−1(t(g)) → M , h 7→ s(g).
In the other direction, let X ∈ Xs

inv(G), and let g be an arrow from x to y. Note that Rg(1y)
is well-defined. We have that

Xg = d1yRg(X1y),

so the vector field X is fully determined by its values at the unit arrows. Now defining a section
α ∈ Γ(A) by αx = X1x , we clearly have a 1-1 correspondence Γ(A) ≃ Xs

inv(G).

Definition 2.21. The Lie bracket on A → M is induced by the correspondence Γ(A) ≃ Xs
inv(G):

[α, β]R = [αR, βR].

With this, all steps in the procedure of finding the Lie algebra of a Lie group are imitated
for Lie groupoids. However, an additional element is needed to define Lie algebroids. This
final element is the anchor map, which is a vector bundle map ρ : A → TM . The anchor map
should always be related to the Lie bracket via a Leibniz rule, described in Proposition 2.23.
We first give some intuition on how to interpret the anchor. Consider that we now have
two vector bundles over M : the tangent bundle TM , and the algebroid A. The algebroid
can be interpreted as carrying information of a certain structure over M , for example the
infinitesimal data encoding a groupoid. In other words, A can be interpreted as ‘alternative
tangent directions’ on M , that are relevant to the structure of interest. The anchor map
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translates these to actual tangent directions. For example, the anchor map corresponding to
an action groupoid will be precisely the infinitesimal Lie algebra action (see Example 2.28).
With this interpretation in mind, we now define the anchor of a Lie algebroid of a Lie groupoid,
which will be induced by the target map.

Definition 2.22. The anchor map of A → M is the vector bundle map ρA : A → TM given
by the restriction of dt : TG → TM to A = T sG|M ⊂ TG.

Proposition 2.23. The following Leibniz rule holds for the anchor map: for all α, β ∈ Γ(A)
and f ∈ C∞(M),

[α, fβ] = f [α, β] + Lρ(α)(f)β.

Proof. In the computation, we will use the following property for f ∈ C∞(M) and β ∈ Γ(A),
with βR the vector field as in Lemma 2.20:

(fβ)Rg = d1t(g)Rg((fβ)t(g)) = f(t(g))d1t(g)Rg(βt(g)), so we have (fβ)R = (f ◦ t)βR.

We now use the identification Γ(A) ∼= Xs
inv(G), and then apply the usual Leibniz rule for the

Lie bracket of vector fields to find:

[α, fβ]R = [αR, (fβ)R]

= [αR, (f ◦ t)βR]

= (f ◦ t)[αR, βR] + LαR(f ◦ t)βR

= (f [α, β])R + LαR(f ◦ t)βR.

We now compute LαR(f ◦ t) seperately as a function of G. Let g ∈ G, then

LαR(f ◦ t)(g) = dg(f ◦ t)αR(g)

= dt(g)f(dgt(α
R(g)))

= dt(g)f(ρ(α))t(g)

= Lρ(α)(f)(t(g)).

All together, we have
[α, fβ]R = (f [α, β])R +

((
Lρ(α)(f)

)
◦ t
)
βR

which indeed implies
[α, fβ] = f [α, β] +

(
Lρ(α)(f)

)
β.

Proposition 2.24. The induced map on the space of sections ρ : Γ(A) → X(M) is a Lie algebra
morphism.

11



These two properties will hold for any Lie algebroid. For the algebroid associated to a
groupoid, the Leibniz rule follows from the identification Γ(A) ∼= Xs

inv(G), but for general Lie
algebroids this condition has to be imposed in the definition. The fact that the anchor map
is a Lie algebra morphism follows from the Jacobi identity for the Lie bracket, combined with
the Leibniz rule. Since this property will hold in general, we postpone the proof to the general
case in Proposition 2.30.

Gathering all the intermediate steps, we can finally define fully the Lie algebroid of a Lie
groupoid.

Definition 2.25. Given a Lie groupoid G ⇒ M , its Lie algebroid is the vector bundle A =
T sG|M → M , together with the Lie bracket on its space of sections induced by Γ(A) ∼= Xs

inv(G),
and with the anchor map ρ = dt|A : A → TM .

The algebroid of a Lie groupoid G will also be denoted by Lie(G).
Example 2.26. Consider the Lie group over a point G ⇒ {pt}. There is one point in the base,
so the vector bundle A becomes simply a vector space. Since s−1(pt) = G, this vector space is
TeG. The Lie bracket is simply the usual bracket of the Lie algebra of G, and the anchor map
is 0. This example shows that indeed Lie algebroids are a generalisation or extension of the
usual Lie algebras corresponding to Lie groups.

Example 2.27. Consider the pair groupoid M × M ⇒ M . In this case, A will be a vector
bundle over M . To compute the fiber Ax for x ∈ M , we consider the source fiber s−1(x). This
is precisely M × {x}, as all possible pairs in M ×M are connected by a unique arrow in the
pair groupoid. Taking the tangent space to s−1(x) at the unit above x, we find

Ax = T(x,x)(M × {x}) ∼= TxM,

and we see that the associated vector bundle of the pair groupoid is the tangent bundle. To
find the Lie bracket on its space of sections Γ(A), we have to compute the right-invariant vector
fields on M ×M that are tangent to the source fibers. We claim that Xs(M ×M)inv ∼= X(M).

Consider a vector field X ∈ Xs(M × M)inv. Let h : y → z be an arrow, also denoted
h = (z, y). Denote Xh = X(z,y) = (X1

(z,y), X
2
(z,y)). Since X is tangent to the source fibers, we

must have X2
(z,y) ∈ Ty{y}. We see that the second component of source-tangent vector fields

is always trivial, and we can write X(z,y) = (X1
(z,y), 0(z,y)). Next, to describe right-invariance,

consider an arrow g : x → y. This induces right translation

Rg : M × {y} → M × {x}

and, since hg is composable,

dhRg : TzM × Ty{y} → TzM × Tx{x}.
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Applying this to Xh yields

dhRg(Xh) = dhRg(X
1
(z,y), 0(z,y)) = (X1

(z,y), 0(z,x)).

Being right-invariant then translates to the following condition:

(X1
(z,y), 0(z,x)) = (X1

(z,x), 0(z,x)), i.e., X1
(z,y) = X1

(z,x) ∀x, y, z ∈ M.

In other words, the first component of X(z,y) only depends on z, and the second component is
always zero. We find an isomorphism Xs(M ×M)inv ∼= X(M), which also endows Γ(A) ∼= TM
with the usual Lie bracket of vector fields on M .

Finally, the anchor map is given by the differential of the target map. The target map is
projection onto the first coordinate: t : M ×M → M , t(y, x) = y. Its differential restricted to
A is

d(x,x)t : TxM × Tx{x} → TxM, (v, 0) 7→ v

and we see that the anchor ρ : A ∼= TM → TM is the identity map. So the algebroid of the
pair groupoid is precisely the tangent bundle.

Example 2.28. Consider now the action groupoid G ×M ⇒ M . To compute the fibers of the
associated vector bundle, we compute the source fiber above x ∈ M .

s−1(x) = { (g, y) | s(g, y) = x } = { (g, x) | g ∈ G } ∼= G.

We see that each fiber of A is isomorphic to the Lie algebra g of G.
To compute the bracket, we consider the space of sections Γ(A) ∼= Γ(g × M). We see

f ∈ Γ(A) is equivalent to a smooth map f : M → g × M such that f(x) = (v, x) for some
v ∈ g: we see Γ(A) ∼= C∞(M ; g). Each f ∈ C∞(M ; g) is identified with a right-invariant vector
field fR on G×M by

fR(g, x) = d1gxRg(f(gx)),

and at g = 1x we see
fR(1x, x) = d(e,x)Re(f(x)).

Now the bracket on Γ(A) is defined by

[f, g]A(x) = [fR, gR]g(1x).

For constant functions (denoted c1 and c2), we can take 1x into the bracket to find

[c1, c2]A(x) = [d(e,x)Re(c1(x)), d(e,x)Re(c2(x))]g = [c1(x), c2(x)]g.

In general, by writing any section as the sum of constant sections and applying the Leibniz
rule, we find the following Lie bracket on Γ(A):

[f, g]A(x) = [f(x), g(x)]g + (Lρ(f(x))g)(x)− (Lρ(g(x))f)(x). (1)
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Finally the anchor map simply encodes the infinitesimal action, as the target map t : G×M →
M encodes the group action and ρ = dt|A.

In this example, we could have also started with a Lie algebra action, which is a Lie algebra
morphisma : g → X(M). This gives rise to an algebroid by defining the vector bundle g×M →
M , with anchor ρ = a and with the bracket on its space of sections Γ(g × M) ∼= C∞(M ; g)
defined by Equation (1). This algebroid is called the action algebroid associated to the Lie
algebra action a. It follows that the action algebroid associated to a Lie algebra action is
precisely the algebroid associated to the action groupoid of the integrating Lie group action.

In Section 3, we will discuss another example of a groupoid and a large part of the chaper
is devoted to computing its algebroid. Then in Section 4 we will compute the algebroid of the
gauge groupoid.

2.3 Lie algebroids

In the previous section we have introduced the Lie algebroid of a Lie groupoid, but Lie algebroids
can (and do) also exist without a groupoid. From the discussion in the previous section, we
already have a natural notion of Lie algebroids.

Definition 2.29. A Lie algebroid over a manifold M is a vector bundle A → M , together
with a Lie bracket [·, ·]A on the space of sections Γ(A) and a vector bundle map ρ : A → TM
called the anchor map, such that the following Leibniz rule holds:

[α, fβ] = f [α, β] + Lρ(α)fβ ∀α, β ∈ Γ(A), f ∈ C∞(M).

From this definition, it follows that the anchor map is a Lie algebra morphism.

Proposition 2.30. For any Lie algebroid A → M , the anchor map on the space of sections
ρ : Γ(A) → X(M) is a Lie algebra homomorphism:

ρ([α, β]A) = [ρ(α), ρ(β)].

Proof of Proposition 2.24 and Proposition 2.30. To prove this identity, we apply the Leibniz
rule and the Jacobi identity to the term [[α, β]A, fγ]A (for α, β, γ ∈ Γ(A)):

[[α, β]A, fγ]A =f [[α, β]A, γ]A + Lρ([α,β]A)fγ (by Leibniz)

[[α, β]A, fγ]A =[[α, fγ]A, β]A + [[fγ, β]A, α]A (by Jacobi)

=[f [α, γ]A, β]A + [Lρ(α)fγ, β]A − [f [β, γ], α]A − [Lρ(β)fγ, α]A (by Leibniz)

=− f [β, [α, γ]A]A − Lρ(β)f [α, γ]A − Lρ(α)f [β, γ]A − Lρ(β)

(
Lρ(α)f

)
γ+

f [α, [β, γ]]A + Lρ(α)f [β, γ] + Lρ(β)f [α, γ]A + Lρ(α)

(
Lρ(β)f

)
γ

=f([α, [β, γ]A]A − [β, [α, γ]A]A) + L[ρ(α),ρ(β)]fγ

=f([[α, β]A, γ]A) + L[ρ(α),ρ(β)]fγ
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Comparing the first and the last lines of this computation, we see

Lρ([α,β]A)fγ = L[ρ(α),ρ(β)]fγ

which implies indeed
ρ([α, β]A) = [ρ(α), ρ(β)].

We also have a natural notion of integrable algebroids. Morphisms of Lie algebroid will be
discussed later, but the idea of this definition should be clear.

Definition 2.31. A Lie algebroid A → M is called integrable if there exists some groupoid
G ⇒ M such that the Lie algebroid of G is isomorphic to A.

In Section 2.6 we will give an overview of the theory on integrability of Lie algebroids,
developed in detail in [CF11].

We have already seen a few examples of integrable algebroids in the previous section, as
those examples all came from groupoids. We will now shortly describe an example coming from
Poisson geometry. The details of this example are not important for this thesis. The example is
included to show a situation where the algebroid first shows up, and the corresponding groupoid
is then sougth after. This example was already mentioned in the introduction: the search for
symplectic realizations lead to the search for symplectic groupoids integrating the algebroid
defined below. A thourough introduction into Poisson geometry can be found in [CFM21],
where this relation to algebroids and groupoids is also extensively discussed.

Example 2.32. Let (M,π) be a Poisson manifold. That is, M is a manifold with a Poisson
bracket {·, ·} : C∞(M) × C∞(M) → C∞(M). In order to study this additional structure, the
bracket is often encoded in a bivector denoted π:

π : Ω1(M)× Ω1(M) → Ω1(M) such that {f, g} = π(df, dg).

Associated to π, there is an induced map π#:

π# : T ∗M → TM, α 7→ iα(π).

And using these two maps, we find a Lie bracket on T ∗M as follows:

[α, β]π = Lπ#(α)(β)− Lπ#(β)(α)− d(π(α, β)).

These objects all come from the original Poisson bracket on C∞(M), but in this formulation,
it can be shown that T ∗M is a Lie algebroid with Lie bracket [·, ·]π and π# as anchor. This is
called the Poisson algebroid or cotangent algebroid.

As mentioned before, finding symplectic realisations of the Poisson structure now cor-
responds to finding a symplectic groupoid (for the definition of a symplectic groupoid, see
[CFM21]) integrating the Poisson algebroid.
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Moving back to general algebroids, we study the anchor map ρ : A → TM in more detail.
Specifically, consider for x ∈ M the kernel Ker(ρx) ⊂ Ax.

Lemma 2.33. The kernel Ker(ρx) ⊂ Ax has a well-defined Lie bracket induced from [·, ·]A.

Proof. Let α, α′, β, β′ in Γ(A) such that α(x) = α′(x) ∈ Ker(ρx) and β(x) = β′(x) ∈ Ker(ρx).
We want to prove that for the bracket [·, ·]A on Γ(A),

[α, β]A(x) = [α′, β′]A(x).

It suffices to compute the brackets in a neighbourhood U around x. Choose a local frame
{e1, . . . , er} of A|U . Write the sections in terms of this frame, for y ∈ U :

α(y) =
r∑

i=1

ai(y)e
i(y),

and similarly α′, β and β′ are determined by coordinate functions a′i, bi and b′i.
Then we compute the term [α′, β′]A(x) in these coordinates. We will apply the Leibniz rule

many times, resulting in terms of the form Lρ(α)(f); however, since all sections α, α′, β, β′ are
in Ker(ρx), after evaluating at x all these extra terms will vanish. So, we can ignore these terms
in the computation and we find

[α′, β′]A(x) =

(
r∑

i=1

b′i[α
′, ei]

)
(x)

=

(
r∑

i=1

r∑
j=1

b′ia
′
j[e

j, ei]

)
(x)

=
r∑

i=1

r∑
j=1

b′i(x)a
′
j(x)[e

j, ei](x)

=
r∑

i=1

r∑
j=1

bi(x)aj(x)[e
j, ei](x)

= [α, β]A(x).

Here we used that α′(x) = α(x) and β′(x) = β(x), which implies their coordinate functions
also agree at the point x.

We see that the bracket [·, ·]A induces a well-defined bracket on the kernel Ker(ρx).

Definition 2.34. The isotropy Lie algebra at x ∈ M is gx(A) := Ker(ρx) with the Lie
bracket from the previous lemma.

The name suggests that this Lie algebra should be related to the isotropy groups in the
integrable case, which we see in the following lemma.
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Lemma 2.35. Let G be a groupoid with connected source fibers and algebroid A. Then for each
x ∈ M , the isotropy Lie algebra gx(A) is the Lie algebra of the isotropy Lie group Gx.

Proof. The isotropy group is Gx = s−1(x)∩ t−1(x). The identity element is 1x, so its Lie algebra
is given by T1x(s

−1(x) ∩ t−1(x)). The isotropy Lie algebra is the kernel of the map

ρx : Ax → TxM, where Ax = T1xs
−1(x).

Since the anchor is ρx = d1xt, this is precisely the Lie algebra of Gx.

Besides the kernel of the anchor, we are also interested in the image of the anchor. The
results mentioned here will not be proven in detail; we refer to [CF11] for a more extensive
discussion. At each point x ∈ M , we have Im(ρx) ⊂ TxM , and together these form a distribution
on M . If the dimension of these subspaces is constant, the algebroid is called regular.

This distribution induced by the anchor map also defines a foliation of M , where the leaves
are called the orbits of the algebroid. A leaf O of this foliation is a maximal immersed
submanifold of M , such that TxO = Im(ρx) for all points x ∈ O. The intepretation of these
leaves, is that a leaf contains points that you can reach if you were to move by directions provided
by the anchor map. A Lie algebroid is called transitive if the anchor map is surjective. In
that case, the algebroid has one orbit.

If the algebroid is integrable, its orbits are related to those of the groupoid:

Proposition 2.36. Let G be a groupoid with connected source fibers, and let A be its algebroid.
Then the orbits of G coincide with the orbits of A.

For a proof, see for example [CF11].

Corollary 2.37. Let G be a groupoid with connected source fibers. If G is transitive, then its
algebroid is transitive as well.

Proof. If G is transitive, it has precisely one orbit. With source-connected fibers, this orbit
will be the entire base M . By the previous proposition, its algebroid A → M will have one
orbit, M , as well. Then it follows that for any x ∈ M , we have TxM = Im(ρx), so indeed ρ is
surjective and A is transitive.

2.4 Morphisms of Lie algebroids

Morphisms of Lie algebroids are suprisingly difficult to formulate. Intuitively, they should be
vector bundle maps that preserve the anchor map and the Lie bracket. However, vector bundle
maps do not necessarily induce a map of sections, while the Lie brackets are defined on these
sections. This makes it difficult to formulate the last condition. Of course, there is an ‘easy’
case where we do find an induced map of sections, if we consider two Lie algebroids over the
same base manifold.
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Definition 2.38. A Lie algebroid morphism between two Lie algebroids A → M and
B → M over the same base manifold, is a vector bundle map

Φ : A → B

such that ρB ◦ Φ = ρA and Φ([α, β]A) = [Φ(α),Φ(β)]B for all α, β ∈ Γ(A).

In this case, Φ induces a map of sections simply by composition. Compatibility with the
anchor is expressed nicely in the following diagram, which should be commuatitive:

A B

TM

Φ

ρA
ρB

When we consider two general algebroids A → M and B → N , there are several approaches
to define morphisms. We discuss here two of them. The first one gives a seemingly unnatural
condition, but does not require additional definitions. The second one requires additional
theory, namely defining Lie algebroid cohomology, but the definition of Lie algebroid morphisms
becomes quite natural.

For yet another description of Lie algebroid morphisms, we refer to [Mei17], where a vector
bundle map Φ : A → B is a Lie algebroid morphism if its graph is a sub Lie algebroid of the
product A×B (which of course first requires one to prove that A×B → M×N is an algebroid
itself).

Approach one: pullback vector bundle.

This approach is taken for example in [CF11]. First we define morphisms in general, then
we specify what compatibility means in this sense.

Definition 2.39. A Lie algebroid morphism between Lie algebroids A → M and B → N
is a vector bundle map Φ : A → B covering a map ϕ : M → N that is compatible with the
anchor, so

dϕ ◦ ρA = ρB ◦ Φ,
and compatible with the Lie brackets in the sense explained below.

Again, compatibility with the anchor is expressed as the following diagram being commu-
tative.

A B

TM TN

Φ

ρA ρB

dϕ

To define compatibility with the brackets, consider the pullback vector bundle ϕ∗B → M . Then
for any section α ∈ Γ(A), the map Φ(α) := Φ◦α is a section of this pullback bundle Φ∗B. And

18



for any section α′ ∈ Γ(B), the map ϕ∗(α′) := α′ ◦ ϕ is again a section of the pullback bundle
Φ∗B.

We can now express for any αi ∈ Γ(A), the induced section Φ(αi) as a finite linear combi-
nation

Φ(αj) =
n∑

i=1

f i
jβ

j
i ◦ ϕ

for f i
j ∈ C∞(M) and βj

i ∈ Γ(B). Then the compatibility of Φ with the Lie brackets is expressed
as the condition

Φ ◦ [α1, α2] =
n∑

i=1

LρA(α1)(f
i
2)β

2
i ◦ ϕ−

n∑
i=1

LρA(α2)(f
i
1)β

1
i ◦ ϕ+

n∑
i,j=1

f i
1f

j
2 [β

1
i , β

2
j ] ◦ ϕ.

Approach two: cohomology.

This second approach is discussed in [CFM21]. Here it is developed specifically for the
algebroid of a Poisson structure, but in general this approach takes the following form. We first
define Lie algebroid cohomology. Let A → M a Lie algebroid, and define the space of k-forms
on A by

Ωk(A) = Γ(ΛkA∗) = {ω : Γ(A)× · · · × Γ(A) → C∞(M) | ω alternating and C∞(M)-linear }.

This comes with a differential dA : Ωk(A) → Ωk+1(A), defined by the usual Koszul-type formula:

(dAω)(a0, .., ak) =
k∑

i=0

(−1)iLρ(ai)(ω(a0, .., âi, .., ak)) +
∑
i<j

(−1)i+jω([ai, aj]A, a0, .., âi, .., âj, .., ak)

for ω ∈ Ωk(A) and ai ∈ Γ(A). The square of this map is 0, which can be proven by a
straightforward computation. With these definitions, one can define Lie algebroid cohomology
classes in the usual way.

The complex and differential defined above can also be used to define algebroid morphisms.
Note that a vector bundle map Φ : A → B induces a map of forms Φ∗ : Ω•(B) → Ω•(A) by

(Φ∗ω)(a1, . . . , ak) = ωϕ(x)(Φ(a1), . . . ,Φ(ak)).

Using this, we can formulate an alternative (but equivalent) definition of morphisms of Lie
algebroids:

Definition 2.40. A Lie algebroid morphism between Lie algebroids A → M and B → N
is a vector bundle map Φ : A → B covering a map ϕ : M → N such that the induced map on
forms Φ∗ : Ω•(B) → Ω•(A) is a cochain map, i.e., it satisfies dAΦ

∗ = Φ∗dB.

Note that this definition also implies compatibility with the anchor as before.
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Remark 2.41. If the two algebroids in question are the tangent bundle, and we want to define
a Lie algebroid morphism between TM → M and TN → N , compatibility with the anchor
implies

dϕ ◦ ρA = ρB ◦ Φ =⇒ dϕ = Φ

as the anchor of the tangent bundle is the identity. We see that in this specific case, a Lie
algebroid morphism is forced to be the differential of some map ϕ : M → N .

Finally, groupoid morphisms induce morphisms of their Lie algebroids (Theorem 13.38 in
[CFM21]):

Lemma 2.42. Let Ψ : G → F be a morphism of groupoids. Then this induces a morphism
Φ : Lie(G) → Lie(F) of their algebroids, where Φ is the differential of Ψ restricted to Lie(G).

2.5 Path homotopy in Lie algebroids

In this section we discuss homotopies of paths in Lie algebroids. This will be an important
ingredient when looking for the integration of an algebroid in the next section. The discussion
here closely follows [CF11].

Recall that a path homotopy in a manifold M between two paths γ0 and γ1, is a map
γϵ(t) : [0, 1]× [0, 1] → M from γ0 to γ1 such that γϵ(0) and γϵ(1) are constant. We now try to
mimic this definition for an algebroid A to define A-path homotopies. We first define general
paths in an algebroid A → M .

Definition 2.43. An A-path above a path γ in M is a map a : [0, 1] → A such that

ρ ◦ a(t) = dγ

dt
(t).

A homotopy between two A-paths should be some variation aϵ(t) of A-paths, with a condi-
tion at time t = 0 and t = 1. However, since a(t) represents (via the anchor map) the time-t
derivative of the base-path γϵ(t), we should not require that aϵ(0) or aϵ(1) is constant; we would
like to impose that the ϵ-derivative of γϵ(t) is constant. We thus introduce an additional map,
the variation in the ϵ-direction:

V ar(ϵ, t) : [0, 1]× [0, 1] → A, such that ρ ◦ V ar(ϵ, t) =
dγϵ(t)

dϵ
.

The requirement on path-homotopies in M that it is constant at time 0 and 1, translates for
A-path homotopies to the condition that V ar(ϵ, 0) = V ar(ϵ, 1) = 0. There are several ways to
define/compute this variation, all of which are equivalent.

For the first approach, we choose a connection on A. Ignoring the algebroid structure of A
for a second, and simply viewing it as a vector bundle over M , we choose a connection

∇ : X(M)× Γ(A) → Γ(A),
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which is C∞(M)-linear in the first component and satisfies the Leibniz rule in the second.
Associated to this connection, we define the torsion.

T∇ : Γ(A)× Γ(A) → Γ(A), (a, b) 7→ ∇ρ(a)(b)−∇ρ(b)(a)− [a, b]A.

Fixing a connection, the following differential equation admits a solution. We call this the
homotopy equation: {

∇ dγ
dϵ
(aϵ(t))−∇ dγ

dt
(bϵ(t)) = T∇(aϵ(t), bϵ(t))

bϵ(0) = 0.
(2)

Then we define the variation V (ϵ, t) to be the solution b(ϵ, t) of the homotopy equation. It is
independent of the chosen connection. The differential equation requires already V ar(ϵ, 0) = 0,
so the only remaining condition for aϵ(t) to be an A-path homotopy is that bϵ(t) is 0 at time
t = 1.

For shorter notation, we will sometimes denote terms like ∇ dγ
dt
(a) by d

dt
a.

Definition 2.44. An A-path homotopy (or A-homotopy) between two A-paths a0(t) and
a1(t) is a variation of A-paths aϵ(t) : [0, 1]×[0, 1] → A above a homotopy of the base paths γϵ(t),
such that b(ϵ, 1) = 0, where b(ϵ, t) is the solution of the homotopy equation (Equation (2)).

The second approach to defining the variation V ar(ϵ, t) is by time-dependent sections.
Choose a section of A, depending on ϵ and t, denoted ξϵ(t) : M → A, with the property

ξϵ(t)(γϵ(t)) = aϵ(t).

Then, the following differential equation has a solution{
d
dϵ
ξϵ(t)− d

dt
βϵ(t) = [ξϵ(t), βϵ(t)]A

βϵ(0) = 0

and this solution corresponds to b(ϵ, t) found above (Proposition 3.15 in [CF11]). Thus, aϵ(t) is
an A-path homotopy if and only if βϵ(1) = 0 for all ϵ. This approach will not be used explictily
in the rest of this thesis.

Remark 2.45. An A-path can equivalently be defined as a Lie algebroid morphism Φ : TI → A
(where I is the interval on which the A-path is defined). Such a morphism can always be
written as Φ = a(t)dt for a(t) : [0, 1] → A an A-path as defined above. With this expression we
see that this is equivalent to the first definition of A-paths. From this perspective, an A-path
homotopy is equivalent to a (regular) homotopy of Lie algebroid morphisms

aϵ(t)dt+ bϵ(t)dϵ : T (I × I) → A,

where a and b correspond to the variations defined above. For this perspective, we refer to
[CFM21], where this is discussed in Chapter 10 for the algebroid of a Poisson structure. This
construction however generalizes to all algebroids.
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Lemma 2.46. Let aϵ(t) a variation of A-paths. Then bϵ(t) is a solution of the homotopy
equation (Equation (2)) if and only if the following holds for all ξ ∈ Γ(A∗):

d

dϵ
(ξ(a))− d

dt
(ξ(b)) = dAξ(a, b). (3)

Proof. We prove this lemma by showing that the equations are locally equivalent, so in a
neighbourhood of any point (ϵ̃, t̃). To write these equations in local coordinates, consider
x ∈ M and a neighbourhood U ⊂ M around x with local coordinates x1, . . . , xm. Choose a
local frame of A|U , denoted by

{ e1, . . . , ek}.
Then in some neighbourhood V around (ϵ̃, t̃) (specifically, a neighbourhood such that γϵ(t) ∈ U)
we write

aϵ(t) =
∑
i

αi(ϵ, t)e
i

bϵ(t) =
∑
i

βi(ϵ, t)e
i

for coordinate functions αi(ϵ, t), βi(ϵ, t) ∈ C∞(V ).
To make the equations more readable, we will introduce the following notation. Denote by

E ∈ X(M) the vector field on M which has as integral curves
(
dγ
dϵ

)
. Denote by T ∈ X(M) the

vector field with integral curves
(
dγ
dt

)
.

Consider now a connection ∇ on A. Locally, a connection can be described by a connection
matrix (ωj

i )
j
i of 1-forms on M , such that for α =

∑
i αie

i ∈ Γ(A|U):

∇X(α) =
∑
i

αi

∑
j

ωj
i (X)ei +

∑
i

LXαie
i.

Now consider the homotopy equation. Recall that the torsion is defined as

T∇(a, b) = ∇ρ(a)b−∇ρ(b)a− [a, b]A.

The first two terms in this expression correspond to the terms on the left hand side, as ρ(b) =
dγ/dϵ = Eγϵ(t) and ρ(a) = dγ/dt = Tγϵ(t). It will not be necessary to compute the local
coordinate functions of [a, b]A, so we will write this bracket locally as

[a, b]A =
∑
i

Cie
i.

We can now rewrite the homotopy equation in its local version:∑
i

αi(ϵ, t)
∑
j

ωj
i (E)ei+

∑
i

LE(αi(ϵ, t))e
i −
∑
i

β(ϵ, t)
∑
j

ωj
i (T )e

i −
∑
i

LT (βi(ϵ, t))e
i

= −1

2

∑
i

Cie
i.
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Since the collection {ei}i form a local frame, this equation holds if and only if it holds for every
component ei, i.e., if and only if for every i ∈ {1, . . . , k} we have

αi(ϵ, t)
∑
j

ωj
i (E) + LE(αi(ϵ, t))− β(ϵ, t)

∑
j

ωj
i (T )− LT (βi(ϵ, t)) = −1

2
Ci. (4)

Furthermore, as the solution bϵ(t) was independent of the chosen connection, this holds for all
connections, i.e., for all 1-forms ωj

i ∈ Ω1(M).

Now consider the equation introduced in the lemma. To give a local form, we consider
sections ξ ∈ Γ(A∗). The local frame on A induces a dual local frame on A∗, denoted

{ e1, . . . , ek }

and in this frame we can write

ξ =
∑
i

ξiei, ξi ∈ C∞(U).

Then for a section α ∈ Γ(A), which is locally written as α =
∑

i αiei, we find

ξ(α) =
∑
i

ξi
∑
j

αjδ
j
i =

∑
i

ξiαi.

Now consider the term dAξ(a, b). Using the definition of dA (a Koszul-type formula), we see

dAξ(a, b) = Lρ(a)(ξ(b))− Lρ(b)(ξ(a))− ξ([a, b]A).

Since ξ(a) and ξ(b) are just smooth functions on V , their derivatives are given by the Lie
derivative:

d

dϵ
(ξ(a)) = LE(ξ(a)).

Again, since ρ(a) = T and ρ(b) = E, the first two terms of dAξ(a, b) correspond to the terms
on the left hand side of Equation (3), and we can rewrite that equation to

LE

(∑
i

ξiαi

)
− LT

(∑
i

ξiβi

)
= −1

2

∑
i

ξiei(
∑
j

Cje
j).

On the left hand side, we can apply the Leibniz rule. On the right hand side, we use the fact
that ei and ei are dual bases to find that this is equivalent to:∑

i

(
ξiLE(αi) + LE(ξ

i)αi

)
−
∑
i

(
ξiLT (βi) + LT (ξ

i)βi

)
= −1

2

∑
i

ξiCi.
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Again, this should hold for any section ξ, so for any set of coordinate functions { ξi }i, from
which we find Equation (3) holds if and only if for all i ∈ {1, . . . , k}, ξi ∈ C∞(U):

ξiLE(αi) + LE(ξ
i)αi − ξiLT (βi) + LT (ξ

i)βi = −1

2
ξiCi.

What we should prove now is the following. Assuming that the usual homotopy equation holds
for all connections, consider some section ξ ∈ Γ(A∗). We have to show that Equation (3) holds
for ξ, by choosing a connection matrix that reduces Equation (4) to the equation we want to
prove.

In the other direction, assuming that Equation (3) holds for all sections ξ ∈ Γ(A∗), consider
a connection ∇ on A. Then we have to prove that by the right choice of ξ, Equation (3) induces
the homotopy equation w.r.t. ∇.

Comparing the local expressions of either equation, we see that they already look quite alike.
The only terms that are left to show correspond, are LE(ξ

i)αi on one hand, and αi

∑
j ω

j
i (E)

on the other hand. By writing both the Lie derivative and the 1-forms in local coordinates
on M , it follows that the free choice of ξi and ωj

i allows one to always find a correspondence
described above, proving the lemma.

Lemma 2.46 will be useful in Section 2.7.
We now discuss a few examples of A-homotopies, by considering cases where aϵ(t) and bϵ(t)

described above are co-linear in some sense. In that case, the torsion T∇ will be zero, and the
homotopy equation (Equation (2)) is simpler.

Example 2.47. Let a(t) be an A-path above γ : [0, 1] → M . Consider now any reparametrization
function of the form:

χ : [0, 1]× [0, 1] → [0, 1] such that χ(ϵ, 0) = 0, χ(ϵ, 1) = 1.

Then γ(χ(ϵ, t)) gives a homotopy from the path γ(χ(0, t)) to the path γ(χ(1, t)). We can now
define a variation of A-paths above this homotopy, denoted aϵ(t). This should satisfy

ρ ◦ aϵ(t) =
dγ(χ(ϵ, t))

dt
=

∂χ(ϵ, t)

∂t

dγ(t)

dt
.

We see that the choice

aϵ(t) =
∂χ(ϵ, t)

∂t
a(χ(ϵ, t))

satisfies this relation. Furthermore, we can now quickly find a solution of Equation (2) by
choosing

bϵ(t) =
∂χ(ϵ, t)

∂ϵ
a(χ(ϵ, t)).

We see that, since partial derivatives of χ(ϵ, t) commute, both sides of Equation (2) are zero.
We conclude that aϵ(t) is an A-path homotopy if and only if bϵ(1) = 0.

24



An important consequence of this example is the reparametrization of A-paths. Consider
a reparametrization function τ : [0, 1] → [0, 1], by which we mean an isomorphism such that
τ(0) = 0 and τ(1) = 1. Assume that τ has derivatives vanishing at the endpoints. Then the
reparametrization of an A-path a : [0, 1] → A is aτ (t) := τ ′(t)a(τ(t)). This reparametrization
procedure will be important to concatenate A-paths in a smooth manner later on, for which it
is important that the original path is homotopic to the reparametrized path.

Corollary 2.48. With the above notation, a(t) and aτ (t) are A-path homotopic.

Proof. This is a specific instance of the example above, where χ(ϵ, t) = (1−ϵ)t+ϵ τ(t). Choosing
aϵ(t) and b(ϵ, t) as in the example above, we find the variation of A-paths given by

aϵ(t) = (1− ϵ+ ϵ τ ′(t)) a((1− ϵ)t+ ϵ τ(t)),

bϵ(t) = (−t+ τ(t))a((1− ϵ)t+ ϵτ(t)).

Indeed we have a0(t) = a(t) and a1(t) = aτ (t), and this is a solution of Equation (2) satisfying
bϵ(1) = 0. This shows that aϵ(t) is an A-path homotopy from a(t) to aτ (t).

2.6 Lie algebroid integrability

As we have already mentioned, not all algebroids are integrable. We refer to [CF11] for some
examples of non-integrable Lie algebroids. Furthermore, [CF11] gives the first extensive dis-
cussion on the integrability of general Lie algebroids, introducing the monodromy groups that
control integrability. We give here an overview of the steps in this construction, leaving out
the proofs. Specifically, we construct the Weinstein groupoid, which is the candidate for the
groupoid integrating a given algebroid. This candidate groupoid can always be constructed,
but the integrability problem considers whether this groupoid has a smooth structure. We state
the theorem that determines when this smooth structure exists, which is proven in Chapter 4
of [CF11].

In order to integrate Lie algebroids, it is natural to first consider the case of integration of
Lie algebras, and then to try and extend this procedure. In the case of Lie algebras, we have
the famous third Lie theorem:

Theorem 2.49. Every finite-dimensional Lie algebra is isomorphic to the Lie algebra of a Lie
group.

There are several proofs, and in our case it is interesting to consider the proof by Duistermaat
and Kolk [DK00], also discussed in [CF11]. This proof explicitly constructs the integrating
group G. First we observe the following about the Lie algebra g of a Lie group G. Consider
the space of paths in G starting at the identity:

P (G) := { g : [0, 1] → G | g is smooth, g(0) = e }.
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Define an equivalence relation on this set by g ∼ g′ if they are homotopic paths (where the
homotopy preserves the endpoints). Furthermore P (G) admits a group structure; multiplication
is given by path concatenation, where we first apply some smoothening procedure on the
endpoints of paths (which ensure the result is again smooth). Now it is true that

G̃ := P (G)/ ∼

is the simply-connected Lie group integrating g.
However, one can recover this group solely from information in g. Consider the space of

paths in g:
P (g) = { g : [0, 1] → g | g is smooth }.

Any path in P (G) induces also an element in P (g), and this allows us to give P (g) an equivalence
relation as well, even independently from P (G) (again see [CF11] for the details). Then it
follows that G(g) := P (g)/ ∼ is a topological group which, if g is integrable, is precisely the
simply-connected Lie group integrating g. The point is that, as groups,

G̃ =
{G-paths}

G-path homotopy
∼=

{g-paths}
g-path homotopy

= G(g),

and it can be shown that the latter group always has a smooth structure. This is the outline of
the proof that every Lie algebra is integrable to a Lie group G(g). In the case of Lie algebroids,
we can follow an analogous procedure to construct a groupoid associated to an algebroid. How-
ever, it is not true that this groupoid will always have a smooth structure.

To extend the procedure to algebroids, again we first consider the case where G is a groupoid
with associated algebroid A. A G-path is a map g : [0, 1] → G such that for a certain point
x ∈ M , g(0) = 1x and for all t ∈ [0, 1], s(g(t)) = x. In words, it is a path that starts at a
unit and stays inside one source fiber. Denote by P (G) the space of G-paths. Denote by ∼ the
equivalence relation on P (G) that is induced by smooth homotopies with fixed endpoints. It
holds that

G̃ := P (G)/ ∼
is a Lie groupoid with 1-connected source fibers integrating A. The structure maps of this
groupoid follow from those of G: the source of a class of G-paths [g(t)] is the source of the
arrow g(0), and the target is the target of the arrow g(1). The multiplication in this groupoid
is induced by path concatenation: if g1(t) and g2(t) are composable, their concatenation is

g2 · g1(t) =

{
g1(t) 0 ≤ t ≤ 1

2

g2(t)
1
2
≤ t ≤ 1

.

This concatenation is not necessarily smooth, but it holds that any G-path is homotopic to one
with vanishing derivatives with the endpoints, and choosing such representatives does give a
smooth concatenation. Furthermore, this groupoid always has a smooth structure.
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Similarly to the case of Lie algebras, we now consider how this descends to paths in the
algebroid. It follows (with some computations, see [CF11]) that G-paths ‘descend’ to A-paths,
and G-path homotopies ‘descend’ to A-path homotopies.

Furthermore, for A-paths, we find a concatenation procedure as well. Let a1(t), a2(t) A-
paths such that π(a1(1)) = π(a2(0)) (with π : A → M). We call these paths composable,
however it is not true that a1(1) = a2(0). In order to make their composition smooth, we
consider a reparametrization τ : [0, 1] → [0, 1] with derivatives vanishing at the endpoints.
Define then aτi (t) = τ ′(t)ai(τ(t)). By Corollary 2.48, the paths aτi and ai are A-homotopic, and
we can choose these reparametrized representatives to define:

a2 · a1(t) = aτ2 · aτ1(t) =

{
2aτ1(2t) 0 ≤ t ≤ 1

2

2aτ2(2t− 1) 1
2
≤ t ≤ 1

. (5)

We form the following quotient:

G(A) := {A-paths}
A-path homotopy

,

and with this concatenation this has the structure of a groupoid. The other structure maps are
clear. Now it follows that, as topological groupoids, we have again

G̃ =
{G-paths}

G-path homotopy
∼=

{A-paths}
A-path homotopy

= G(A),

and G(A) is the candidate for the source-connected groupoid integrating A. This groupoid is
called the Weinstein groupoid. We see that the problem of integrating A reduces to finding a
smooth structure on the Weinstein groupoid. If it admits a smooth structure, then it is unique
in the following sense (Theorem 2.16 from [CF11]):

Theorem 2.50. If an algebroid A is integrable, there exists a unique groupoid integrating A
with 1-connected source fibers.

It follows that this groupoid has to be the Weinstein groupoid.

We will now discuss the condition for integrability of A. This condition is expressed using
monodromy groups. To define monodromy groups, we consider first the case of a Lie groupoid
G and its Lie algebroid A. Assume G has 1-connected source fibers, so by the previous theorem
we may assume G = G(A). Consider now at x ∈ M the identity componenent of the isotropy
group, G0

x(A). This is a connected Lie group integrating the isotropy Lie algebra gx(A). On
the other hand, we can construct Gx := G(gx(A)), the simply-connected integration of this Lie
algebra (by the usual Lie group-Lie algebra correspondence). There are now two Lie groups

integrating the same Lie algebra. Then there exists a discrete subgroup Ñx ⊂ Gx such that

G0
x(A)

∼= Gx/Ñx.
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This group, Ñx, is called the monodromy group at x.
Now we wish to define the monodromy groups in the case where G(A) is not known to have

a smooth structure. In that case, G(A)0x is not necessarily a Lie group, so the above procedure
does not work. We still consider the isotropy groups of G(A). We can describe the isotropy
group at x by

G(A)x =
{A-paths covering a loop in Ox based at x }

A-path homotopies
.

The identity component G(A)0x of this group is found by considering only A-loops above con-
tractible loops in the orbit Ox based at x.

We can now construct two short exact sequences. The first one uses a map Gx(A) → π1(Ox)
sending a class of A-homotopies to the class of its base-path homotopy in the fundamental
group π1(Ox), giving the sequence

0 → Gx(A)
0 ↪→ Gx(A) → π1(Ox) → 0.

Second, using the anchor map ρ restricted to A|Ox we construct

0 → gOx → A|Ox → TOx → 0.

From these sequences, it is possible to find a map ∂x : π2(Ox) → G(gx) such that the following
sequence is exact:

· · · → π2(Ox)
∂x−→ G(gx) → Gx(A) → π1(Ox).

This map ∂x : π2(Ox) → G(gx) is called the monodromy morphism at x, and its image

Im(∂x) = { [a] ∈ G(gx) | a is A-homotopic to 0x }

is the monodromy group at x, denoted Ñx(A). The fact that the image is defined by this
set of elements in G(gx) follows from the definition of ∂x, see [CF11]. It then follows that

Gx(A)
0 ∼= G(gx)/Ñx(A). From intersecting Ñx(A) with the identity component of the center

of G(gx), we find a smaller group Nx(A), and with this group we have the following result on
integrability of Lie algebroids (Theorem 4.1 in [CF11]).

Theorem 2.51. A Lie algebroid A is integrable ⇐⇒ the Weinstein groupoid G(A) has a
smooth structure ⇐⇒ all Nx(A) are locally uniformly discrete.

We see that the image of this monodromy map is the crucial ingredient in determining
whether an algebroid is integrable. In the case that A is a transitive algebroid, the condition
for integrability reduces to:

Theorem 2.52. A transitive Lie algebroid A is integrable if and only if all Im(∂x) is discrete.

Furthermore, if A is transitive and integrable, the Weinstein groupoid G(A) is also transitive
(as the orbits of A and G(A) coincide).
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2.7 Actions of groupoids and algebroids

In this section we discuss groupoid and algebroid actions, and the relationship between the two.
In Part III, we will consider a free action of a transitive algebroid. For this reason, this section
focuses on the transitive case as well.

Let G be a groupoid over a manifold M .

Definition 2.53. A (left) G-space is a surjective submersion pr : N → M together with a
map

G ×M N = { (g, p) ∈ G ×N | s(g) = pr(p) } → N

denoted (g, p) 7→ gp such that

1. pr(gp) = t(g)

2. g(hp) = (gh)p

3. 1pr(p)p = p.

An action of G on a surjective submersion pr : N → M is a map satisfying these properties
and such that, additionally, each g ∈ G induces a diffeomorphism Ns(g) → Nt(g).

Definition 2.54. An action of a Lie algebroid A → M on a surjective submersion pr : N → M
is a Lie algebra morphism a : Γ(A) → X(N ) such that

1. a(fα) = pr∗(f)a(α), ∀f ∈ C∞(M), α ∈ Γ(A)

2. dppr(a(α)p) = ρ(α)pr(p), ∀p ∈ N .

Note that the first condition is equivalent to a being a vector bundle map a : pr∗A → TN .
The second condition can be summarized as a being compatible with the anchor map. An
algebroid action is called free if the map a is fiberwise injective. This means that for each
p ∈ N , the following map is injective:

ap : Apr(p) → TpN .

Lemma 2.55. An action of a groupoid G ⇒ M on pr : N → M induces an algebroid action
of A := Lie(G) on N .

Proof. Let p ∈ N , x = pr(p). Consider right translation by p on the groupoid, arising from the
groupoid action:

Rp : s
−1(x) → N , g 7→ gp.

Consider the differential of this map, at the unit arrow 1x:

d1xRp : T1xs
−1(x) = Ax → TpN .
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This defines an algebroid action a : Γ(A) → X(N ) where α ∈ Γ(A) is mapped to the vector
field X ∈ X(N ), such that for p ∈ Nx, Xp = d1xRp(α(x)).

Since this is defined by the differential of a smooth map, it is automatically a vector bundle
morphism (satisfying condition (1)). To see that a is compatible with the anchor map, note
that by the first condition on groupoid actions, we have pr ◦ Rp = t. Then we find the second
condition for algebroid actions:

dppr(a(α)p) = dppr(d1xRp(α(x))) = d1x(pr ◦Rp)(α(x)) = d1xt(α(x)) = ρ(α(x)).

Conversely, starting with an algebroid action, we can construct an action of its Weinstein
groupoid. This groupoid action can only be smooth when the algebroid is integrable. But even
without integrability, the induced action of the Weinstein groupoid will always be a well-defined
set-theoretical action. We will use this set-theoretical action later on. In the integrable case, we
have the following lemma, which holds only for complete actions. In the proof we will explain
what this completeness condition entails.

Lemma 2.56. For an integrable algebroid A, with G the integration with 1-connected source
fibers, and a complete (in the sense defined below) algebroid action a : Γ(A) → X(N ), there
exists a unique groupoid action of G on N that induces a.

Proof. First note that we may assume G = G(A), the Weinstein groupoid, by Theorem 2.50.
To define the action of G, we consider g ∈ G, with representative A-path g = [a]. Denote the
base-path of a : [0, 1] → A by γ : [0, 1] → M . Note γ(0) = s(g) and γ(1) = t(g) (which follows
from the construction of the Weinstein groupoid). We now look for an appropriate isomorphism
Nγ(0) → Nγ(1) induced by [a]. This map is defined with the following procedure, that we also
call “A-parallel transport”:

Actg : Nγ(0) → Nγ(1),

Actg(u0) = u(1), where u(t) is the solution of{
d
dt
u(t) = au(t)(a(t)),

u(0) = u0.

We will also denote this action by [a] · u0 = u(1). We call an algebroid action complete if
this transporting procedure is defined, i.e., if the solution u(t) exists for t ∈ [0, 1]. Under this
assumption, this defines an action of G on N . It satisfies the first condition of groupoid actions
as

pr([a] · u0) = pr(u1) = γ(1) = t(g).

The second condition holds because transporting along a concatenation of paths is the same
as first transporting along the first path, and then along the second path. For the third con-
dition, note that a unit 1pr(p) acts by transporting along a constant path, which induces the
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identity map. Finally, each map Actg is an isomorphism with the action of [a−1] as its inverse.
Smoothness of these actions follows by a general theorem on the solutions of such ODE’s, see
Appendix 1 in [KN96].

It remains to show that this action is well-defined, i.e., A-homotopic paths induce the
same A-parallel transport. So, assume a0 and a1 are A-homotopic paths, connected by the
A-homotopy aϵ(t). We use the characterisation of A-homotopies of Lemma 2.46. Then for the
solution bϵ(t) of the homotopy equation and for any ξ ∈ Γ(A∗), the following holds:

d

dϵ
(ξ(a))− d

dt
(ξ(b)) = dAξ(a, b).

Now consider any one-form θ ∈ Ω1(N ), and consider the pullback form a∗θ := θ ◦a. This is
a section in Γ(A∗), so we know that the following holds:

d

dϵ
(a∗θ(a))− d

dt
(a∗θ(b)) = dAa

∗θ(a, b).

We can rewrite this identity to

d

dϵ
(θ(a(a)))− d

dt
(θ(a(b))) = dθ(a(a),a(b)).

Now note that we have by construction of u(t): du(t)
dt

= a(a(t)). Finally, the following identity
holds in general for one-forms θ and paths u(t) on N :

d

dϵ

(
θ

(
du(t)

dt

))
− d

dt

(
θ

(
du(t)

dϵ

))
= dθ

(
du(t)

dt
,
du(t)

dϵ

)
.

From this we conclude that we must have a(b) = du(t)
dϵ

. Since bϵ(1) = 0, we find that duϵ

dϵ
(1) = 0,

so uϵ(1) is constant. Since [aϵ] acts by mapping to uϵ(1), we see all aϵ(t) induce the same action
on N .

As an extension of this lemma, we find another characterisation of A-homotopies if addi-
tionally the algebroid action is free.

Lemma 2.57. Let A → M an algebroid with a free, complete algebroid action a : Γ(A) →
X(N ). Then a variation aϵ(t) between two A-paths is an A-homotopy if and only if their induced
A-parallel transport maps on N agree.

Proof. Consider the proof of the previous lemma again. We have already proven that A-
homotopic paths induce the same A-parallel transport. Assume now that we have a variation
of A-paths aϵ(t) such that for all ϵ, aϵ(t) induce the same parallel transport. Denote by bϵ(t) the
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solution to the homotopy equation (Equation (2)). By Lemma 2.46 combined with the proof
above, we see that the following holds:

a(bϵ(t)) =
duϵ(t)

dt
.

Since all parallel transports agree, all uϵ(1) are equal. Since a is injective, we see that bϵ(1) = 0.
Indeed, the variation aϵ(t) is an A-homotopy.

The groupoid action defined in Lemma 2.56 is not necessarily free. The following corollary
gives an instance where this does hold. We assume here already the result of Proposition 2.61,
where we will show that the image of an algebroid action Im(a) ⊂ TN gives a regular foliation
of N . This implies that points in the same leaf of this foliation can be connected via the action
of some A-path.

Corollary 2.58. Let A → M an algebroid and N → M a surjective submersion. Consider
a free, complete algebroid action a : Γ(A) → X(N ) and the induced foliation of N . If the
leaves of this foliation are simply connected, then the groupoid action of the Weinstein groupoid
defined in Lemma 2.56 is also free.

Proof. Consider two arrows g, h ∈ G(A) that act identically. Take two representative A-paths
a0(t) and a1(t) of g and h respectively. Let γ0(t) be the basepath of a0(t). For any point v in the
fiber Nγ0(t), the A-paths a0(t) and a1(t) induce by parallel transport the paths u0(t) and u1(t)
in N , with initial point v and final point [a0] · v = [a1] · v. These paths lie inside a single leaf
of the foliation on N induced by a. Since this leaf is simply-connected, we can find a leafwise
homotopy between u0(t) and u1(t) in N . From this leafwise homotopy we can find a variation
of A-paths between a0(t) and a1(t). By the previous lemma, this variation is an A-homotopy,
as a0(t) and a1(t) act identically on N .

Restricting our attention to actions of transitive groupoids, we find that these are equivalent
to certain Lie group actions on manifolds. Recall that by Proposition 2.18, any transitive Lie
groupoid G is isomorphic to a gauge groupoid induced by a principal bundle. The structure
group of this principal bundle is the isotropy group of G, denoted G, which is independent
of basepoint. Groupoid actions of G are characterised by group actions of G by the following
lemma.

Lemma 2.59. If G is transitive, with isotropy groups G, then there is a 1-1 correspondence
between manifolds pr : N → M with a G-action, and manifolds F with a G-action.

Proof. Since G is transitive, it is a gauge groupoid induced by the principal G-bundle s−1(x) →
M , where G = Gx, independent of x ∈ M .

First, consider any surjective submersion pr : N → M with a G-action. Let x ∈ M , and
define F = Nx. Since G is the isotropy group Gx, it consists of arrows g : x → x. Since we have
a groupoid action, each g ∈ Gx induces an isomorphism Nx → Nx. This is the G-action on F .
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Consider now a manifold F with a G-action. The desired manifold N is defined by

N = P ×G F, where (p, f) ∼ (pg, fg) for p ∈ P, f ∈ F, g ∈ G.

Recall that the projection of P onto M is the target map; the projection pr : N → M is defined
as pr([(p, f)]) = t(p).

Note that each fiber of N is isomorphic to F . To see this, fix for any y ∈ M a point in its
fiber py ∈ Py (this will be some arrow from x to y). Any other point in the fiber Py can now
be written as p′ = pyg for some g ∈ G. Then the fiber of N above y can be rewritten as

Ny = { [pyg, f ] | g ∈ G, f ∈ F }.

Note that [pyg, f ] ∼ [py, fg
−1], and by the G-action on F , fg−1 is equal to some f ′ ∈ F . We

find
Ny = { [py, f ] | f ∈ F } ∼= F,

indeed all fibers of N are isomorphic to F .
We now define the G-action on N . Let g ∈ G, denoted by g = [(p, q)] where p ∈ Py and

q ∈ Pz (so g is an arrow from y to z). Using the fixed point py ∈ Py, there exists some h ∈ G
such that g = [(py, qh

−1)]. Using the fixed point pz ∈ Pz, there exists also some k ∈ G such
that qh−1 = pzk. Now we define the action of g, which should be a mapping Ny → Nz; since
all fibers are isomorphic to F , we should define an isomorphism g : F → F . Let f ∈ F ∼= Ny,
and define g · f = fk.

Remark that this definition could also be written more explicitly in the following way. Let
g ∈ G as above, let [(py, f)] be an element of Ny as above. The action can be written explicitly
as g · [(py, f)] = [(pz, fk)] where k ∈ G such that pzk = qh−1. From this description it is clear
that we have defined a map from Ny to Nz.

We now show that this satisfies the groupoid action axioms. The first and third requirements
are immediate by the construction. Associativity can be proven by using the fixed element pi
in each fiber to explicitly write down the resulting action; but from our initial description it
should be clear that the groupoid action is induced entirely from the group action of G on F ,
from which it also inherits these required properties. Finally, this also shows that each g ∈ G
induces an isomorphism of fibers (as the group action on F is already an isomorphism).

It remains to show that this correspondence is 1-1. It is clear that starting with a manifold
F , then defining N as above, and taking the fiber Nx with induced action returns the original
manifold F with its G-action. We focus on the other direction; starting with pr : N → M with
a G-action, we find F = Nx with a G-action, and construct N ′ = P ×GNx. Then the following
mappings give an isomorphism between N and N ′:

N ′ → N , [(g, p)] 7→ gp,

N → N ′, p 7→ [(h, h−1p)] where h ∈ G is an arrow from x to pr(p).
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After fixing a point in every fiber of P , it is a tedious but straightforward check that these
maps are well-defined, commute with the G-action and are inverses. This proves that the
correspondence given above is indeed 1-1.

These last three lemmas can be summarized in the diagram below. A groupoid action of G
always induces an action of its algebroid A. The reverse direction, pictured as a dotted arrow,
holds if A is integrable with G the integration with 1-connected source fibers. Finally if G is
transitive, groupoid actions are equivalent to group actions of its isotropy groups.

(
manifolds F with
an action of G

) (
manifolds N with
an action of G

) (
infinitesimal action

of A on N

)
G transitive

Finally from this diagram and the proof of Lemma 2.59 we find the following strong result.

Corollary 2.60. Let A be an integrable transitive Lie algebroid and pr : N → M a surjective
submersion. Let ⊣ : Γ(A) → X(N ) be a free and complete algebroid action. Then there exists
an isomorphism

N ∼= P ×G Nx

where G is the isotropy group Gx(A) of the Weinstein groupoid of A and P = s−1(x) a principal
G-bundle.

Proof. By the dotted arrow in the diagram, or equivalently by Lemma 2.56, there exists a
groupoid action of the Weinstein groupoid G(A) on pr : N → M that induces a. Since A is
transitive, the Weinstein groupoid is transitive as well. Then the groupoid action is equivalent
to a group action of its isotropy group G := Gx(A) on the fiber Nx by Lemma 2.59. This
correspondence is 1-1, and the proof of this lemma gives the desired isomorphism

N ∼= P ×G Nx,

where P = s−1(x) is a principal G-bundle.

2.8 Free actions and integrability

In this section we show that the existence of a free action of a transitive algebroid forces it to
be integrable. To prove this result, we first introduce the foliation algebroid induced by a free
algebroid action. Then we consider the monodromy groupoid, which integrates this foliation
algebroid. Using this monodromy groupoid we show that the original algebroid is integrable as
well.

Consider a free algebroid action a : Γ(A) → X(N ). The image of this action lies in TN ,
and gives a foliation on N , called the orbit foliation of the action.
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Proposition 2.61. If the action a : Γ(A) → X(N ) is free, the orbit foliation Fa = Im(a) ⊂
TN is a regular foliation.

Proof. Clearly Im(a) ⊂ TN defines a distribution, which is smooth as a is smooth. We prove
that this distribution is involutive, i.e., closed under the Lie bracket. In order to show this,
consider a : pr∗A → TN as a vector bundle map (of vector bundles over N ), which is by
assumption injective. So, restricting the codomain to Fa we find an isomorphism

a : pr∗A
∼−→ Fa.

This also induces an isomorphism on the space of sections

a : Γ(pr∗A)
∼−→ Γ(Fa).

Any section α ∈ Γ(A) induces a section pr∗α := α ◦ pr ∈ Γ(pr∗A). For just these sections it
is easy to prove they are closed under the Lie bracket, but these do not give all sections in
Γ(pr∗A). An arbitrary section α ∈ Γ(pr∗A) can be written as

α =
k∑

i=1

fipr
∗(αi), fi ∈ C∞(N ), αi ∈ Γ(A).

A section β of Fa is then by the isomorphism above generally written as

β =
∑
i

fia(αi), fi ∈ C∞(N ), αi ∈ Γ(A).

where a is interpreted again as a map a : Γ(A) → X(N ).
Now using this general description of sections, we can check that Fa is involutive. Using

the Leibniz rule for Lie brackets of vector fields, we compute the Lie bracket of two general
sections of Fa:[∑

i

fia(αi),
∑
j

gja(βj)

]
=
∑
i,j

[fia(αi), gja(βj)]

=
∑
i,j

(
gj [fia(αi),a(βj)] + Lfia(αi)(gj)a(βj)

)
=
∑
i,j

(
figj [a(αi),a(βj)] + Lfia(αi)(gj)a(βj)− gjLa(βj)(fi)a(αi)

)
=
∑
i,j

figja([αi, βj]) +
∑
i,j

Lfia(αi)(gj)a(βj)−
∑
i,j

gjLa(βj)(fi)a(αi).

In the last line, we used the fact that a is a Lie algebra morphism. We find that this is again
a section of Fa, as it is a linear combination of terms fia(αi), so indeed the image of a is an
involutive distribution.
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Then by Frobenius’ theorem, this corresponds to a foliation ofN . The leaves of this foliation
are determined by their tangent spaces, which in turn are determined by Fa: for L a leaf in
the foliation, and p ∈ L, we have

TpL = {a(α)(p) ∈ TpN | α ∈ Γ(A) }.

In general, a regular foliation of N can be seen as a sub-algebroid of the tangent bundle TN .
By Frobenius’ theorem, a regular foliation is equivalent to an involutive distribution F ⊂ TN .
Involutivity implies F is closed under the Lie bracket of vector fields on TN , which allows us
to endow F with a Lie bracket. The anchor map ρ : F → TN is simply the inclusion map. The
previous lemma shows that a free algebroid action a : Γ(A) → X(N ) gives rise to a regular
foliation of N , which can be seen as an algebroid Fa → N .

Consider now any foliation F of N , viewed as an algebroid, and consider the Weinstein
groupoid integrating it. This groupoid is defined by equivalence classes of F -paths. In this
case, the Weinstein groupoid can be described by considering leafwise paths on N , up to
leafwise homotopies, as the leaves of N are precisely the orbits of the algebroid F . From this
viewpoint, the resulting groupoid is also called the monodromy groupoid over N , defined
by

Mon(N ,F) =
leafwise paths

leafwise homotopy
⇒ N .

For a class [u(t)] ∈ Mon(N ,F) the source and target maps are given by s([u]) = u(0),
t([u]) = u(1). The unit map sends p to the class of the constant path at p; the inversion sends
[u(t)] to [u(t)−1] and the multiplication is determined by concatenation of paths.

Theorem 2.62. Let F → N be an algebroid arising from a foliation of N . Then the groupoid
Mon(N ,F) is smooth, hence all algebroids of this type are integrable.

For the proof of this theorem, and a more detailed discussion of integrations of foliation
algebroids, we refer to [Phi87]. Combining the last theorem with Proposition 2.61, we find an
additional integrability theorem for transitive algebroids with free actions.

Theorem 2.63. If A is a transitive algebroid with a free and complete algebroid action on a
surjective submersion N → M , then A is integrable.

Proof. Following Section 2.6, we construct the Weinstein groupoid G(A) as the candidate for
the integration, and we look for a smooth structure on this groupoid.

By Proposition 2.61, we know that the free action induces a foliation on N , which can be
integrated to the monodromy groupoid

Mon(N ,Fa) ⇒ N ,

and it is known that this is a smooth groupoid.
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On the other hand, the algebroid action induces a groupoid action of G(A) on N → M . We
do not know whether G(A) is smooth, but the construction in Lemma 2.56 does always provide
a set-theoretical action. With this we can construct the set-theoretical action groupoid

G(A)×N ⇒ N

which is smooth if and only if G(A) is smooth.
We now prove that this action groupoid is isomorphic to the monodromy groupoidMon(N ,Fa).

This provides a smooth structure on the action groupoid, which in turn implies that the Wein-
stein groupoid G(A) is smooth.

To define the isomorphism, recall that an arrow in the action groupoid is a pair (g, p) where
g ∈ G(A) and p ∈ N such that s(g) = pr(p). The groupoid action of G(A) on N → M was
defined in Lemma 2.56 by so-called A-parallel transport, and evaluating this at time t = 1.
Here, we consider the A-parallel transport itself. Let a(t) be a representative of g, so an A-path
above γ : [0, 1] → M . Then we denote by τa(t) : Nγ(0) → Nγ(t) the path on N found by solving
the differential equation

τa(t)(u0) = u(t), where u(t) is the solution of{
d
dt
u(t) = au(t)(a(t))

u(0) = u0.

Now define the map

Φ : G(A)×N → Mon(N ,Fa)

Φ([a], p) = [τa(t)(p)].

By construction this map commutes with all structure maps. Note that it covers the map
Id : N → N .

In the other direction, consider a class [u(t)] ∈ Mon(N ,Fa). Thus u(t) is a path in N ,
such that for all time t, we have

d

dt
u(t) ∈ Fa(u(t)) = Im(a)u(t).

Now just as in the proof of Proposition 2.61, we can identify Im(a) with the pullback bundle
pr∗A over N . Then at any time t, we have

d

dt
u(t) ∈ (pr∗A)u(t) ∼= Apr(u(t)).

Now define the map

Ψ : Mon(N ,Fa) → G(A)×N

Ψ([u(t)]) =

([
d

dt
u(t)

]
, u(0)

)
.
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By the identification that we made above, this maps indeed into G(A)×N , and again it is an
easy check to see it commutes with the structure maps.

We still have to show these maps are well-defined. First note that Φ and Ψ are inverses to
eachother, which is easily checked. These maps represent the motto

“G(A) gives speeds of paths in N , and N has the initial points.

Then Mon(N ,Fa) contains the entire paths in N .”

The algebroid action ensures that on both sides, we find paths that stay inside the leaves of
Fa. Showing that Ψ and Φ are well-defined now boils down to showing that leafwise homotopic
paths on N correspond to A-homotopic paths via a. We see that this is basically the content
of Lemma 2.57, which requires the assumption that the algebroid action is free and complete.

Now that we have shown the isomorphism

Mon(N ,Fa) ∼= G(A)×N ,

we see that the smooth structure on the monodromy groupoid induces a smooth structure on
the Weinstein groupoid G(A), and indeed A → M is an integrable algebroid.

3 The general linear groupoid and representations

In this section we discuss one example of a groupoid, namely the general linear groupoid of
a vector bundle. This example is closely related to the theory of groupoid and algebroid
representations. We will first define the general linear groupoid. Then we discuss groupoid
representations, and show that a representation is the same thing as a groupoid morphism to
the general linear groupoid.

We will then define algebroid representations. We want to discuss how algebroid represen-
tations are then the same thing as an algebroid morphism to the algebroid of the general linear
groupoid. In order to prove this, we first have to compute the algebroid of the general linear
groupoid. This section is devoted completely to this example. It is not explicitly used in the
rest of the thesis, but it is a nice introduction to the theory in Section 4.

Definition 3.1. Let M be a manifold, and E → M a vector bundle over M . The general
linear groupoid of E is the groupoid GL(E) ⇒ M , with base space M and arrow space

GL(E) = { (y, A, x) | A : Ex → Ey linear isomorphism, x, y ∈ M }

with the following structure maps:

� source map s(y, A, x) = x,

� target map t(y, A, x) = y,

� unit map u(x) = (x, Id, x) with Id the identity map on Ex,
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� inverse map i(y, A, x) = (x,A−1, y),

� composition m((z,B, y), (y, A, x)) = (z,BA, x) with BA composition of maps.

It is straightforward to check that this definition satisfies the groupoid axioms. This
groupoid is transitive, as any two fibers admit an isomorphism between them. Furthermore,
the isotropy group at x ∈ M is given by

GL(E)x = { (x,A, x) | A : Ex → Ex is a linear isomorphism } ∼= Aut(Ex).

3.1 Groupoid and algebroid representations

The general linear groupoid can be seen as the standard example of a representation of a
groupoid.

Definition 3.2. A representation of a groupoid G ⇒ M is a vector bundle π : F → M
together with an action map

µ : G ×M F → F

where G ×M F = {(g, e) ∈ G × F | s(g) = π(e)}, such that the following hold:

(i) π(µ(g, e)) = t(g),

(ii) µ(g, µ(h, e)) = µ(gh, e),

(iii) µ(g,−) : Fs(g) → Ft(g) is a linear isomorphism.

The collection of representations is denoted Rep(G).
Example 3.3. On the general linear groupoid GL(E), one finds a very straightforward example
of a representation by taking the vector bundle E → M and defining the action map by
µ((y, A, x), v) = A(v) where v ∈ Ex. The axioms of the representation encode precisely the
fact that A is a linear isomorphism between fibers.

Since the structure of a groupoid representation and the general linear groupoid are so sim-
ilar, we can view this as the ‘standard example’ of a groupoid representation, which motivates
the following lemma.

Lemma 3.4. For a groupoid G ⇒ M , a representation E ∈ Rep(G) is the same thing as a
groupoid morphism G → GL(E).

Proof. Given a representation E ∈ Rep(G) with action map µ, we define a groupoid morphism
ϕ : G → GL(E) by ϕ(g) = (t(g), µ(g,−), s(g)). From the axioms in Definition 3.2 it follows that
this is a morphism to GL(E), commuting with the structure maps. Given a groupoid morphism
ϕ : G → GL(E) we make E into a representation by defining the map µ : G ×M E → E,
µ(g, v) = A(v) where ϕ(g) = (t(g), A, s(g)). Again the properties of groupoid morphisms make
this into an action map. Clearly this is a 1-1 correspondence.
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Example 3.5. For the general linear groupoid GL(E), the identity map GL(E) → GL(E)
induces the standard representation introduced in Example 3.3.

Remark 3.6. A groupoid representation can be seen simply as a groupoid action on a vector
bundle. From Lemma 2.55, we know that this induces an algebroid action on the vector
bundle as well. On the other hand, we will now introduce algebroid representations. It is not
immediately clear how these are related to the infinitesimal versions of groupoid actions that
we find from Lemma 2.55. This relationship will be discussed in Section 3.3.

Definition 3.7. Let A → M be a Lie algebroid. A representation of a Lie algebroid A is
a vector bundle E → M with a bilinear map ∇ : Γ(A) × Γ(E) → Γ(E), (α, s) 7→ ∇α(s), such
that for all f ∈ C∞(M), α, β ∈ Γ(A) and s ∈ Γ(E),

(i) ∇fα(s) = f∇α(s),

(ii) ∇α(fs) = f∇α(s) + Lρ(α)(f)(s),

(iii) ∇[α,β](s) = ∇α∇β(s)−∇β∇α(s).

A map ∇ satisfying item (i) and (ii) is called an A-connection on E → M . An A-connection
satisfying item (iii) is called flat. With this terminology, an algebroid representation is a vector
bundle with a flat A-connection. For A = TM we find the usual notion of connections on
vector bundles.

The obvious question is now how a groupoid representation might induce a representation
of its algebroid. Consider E ∈ Rep(G) and A = Lie(G). Consider a section α ∈ Γ(A), which we
can identify with the right-invariant vector field αR on G. Corresponding to this vector field,
there is a flow on G. We define the map Φα

x(t) : M × R → G by, for x ∈ M , flowing along this
vector field starting at the unit 1x:

Φα
x(t) := ϕt

αR(1x).

Lemma 3.8. For any t at which the flow of αR is defined, Φα
x(t) ∈ G is an arrow from x to

ϕt
ρ(α)(x) (i.e., the flow of αR covers the flow of ρ(α)).

Proof. It is clear that Φα
x(t) is an arrow in G. We want to compute its source and target. From

the definition of αR, we have an explicit expression for the speed of Φα
x(t):

d

dt
Φα

x(t) = αR
Φα

x (t)
= d1t(Φα

x (t))
RΦα

x (t)

(
αt(Φα

x (t))

)
.

This is a map into TG, giving the speed of Φα
x(t). We want to consider the target map t : G → M .

The differential is a map dt : TG → TM . Applying this differential to the speed of Φα
x(t) gives,

using the chain rule:

dΦα
x (t)t

(
d1t(Φα

x (t))
RΦα

x (t)

(
αt(Φα

x (t))

))
= d1t(Φα

x (t))

(
t ◦RΦα

x (t)

) (
αt(Φα

x (t))

)
= d1t(Φα

x (t))
(t)
(
αt(Φα

x (t))

)
since t ◦Rg = t,

= ρt(Φα
x (t))

(
αt(Φα

x (t))

)
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where the last step follows as the differential dt restricted to A is precisely the anchor map ρ.
Now we have found that the composition t ◦Φα

x(t), giving the target of Φα
x(t), is a map into

M with differential ρ(α). This implies indeed that

t ◦ Φα
x(t) = ϕt

ρ(α)(x).

Now for the source of Φα
x(t), we can do a similar computation, applying ds to the speed of Φα

x(t).
We use the identification s = t ◦ i. After applying the chain rule, we use that t ◦ i ◦Rg = s(g),
which is a constant map for fixed t:

dΦα
x (t)(t ◦ i)

(
d1t(Φα

x (t))
RΦα

x (t)

(
αt(Φα

x (t))

))
= d1t(Φα

x (t))

(
t ◦ i ◦RΦα

x (t)

) (
αt(Φα

x (t))

)
= d1t(Φα

x (t))
s(Φα

x(t))
(
αt(Φα

x (t))

)
since t ◦Rg = t,

= 0.

This implies that s ◦ Φα
x(t) is constant, and since at t = 0, Φα

x(0) = 1x, we have for all t that
s ◦ Φα

x(t) = x indeed.

Now consider the inverse arrow (Φα
x(t))

−1. This is an arrow from y := ϕt
ρ(α)(x) to x, meaning

it can act on vectors in E that are in the fiber Ey. Finally note that for any section s ∈ Γ(E),
s(y) lies in this fiber, and applying the arrow (Φα

x(t))
−1 gives a vector in Ex. Thus, it makes

sense to define the following map ([CF11], Corollary 2.34):

Lemma 3.9. Let E ∈ Rep(G) with action map µ and A = Lie(G). Then E is also a represen-
tation of A, with the A-connection ∇ : Γ(A)× Γ(E) → Γ(E) defined by

∇α(s)(x) =
d

dt

∣∣∣∣
t=0

µ((Φα
x(t))

−1, s(ϕt
ρ(α)(x))).

We have already argued that this is a well-defined map of sections. It remains to show
that this satisfies the three properties in Definition 3.7. However, from this expression it is
quite difficult to prove property (iii). What we will do instead is apply this construction to the
groupoid GL(E). We then compute the algebroid of GL(E) using this map. After that, it will
follow naturally that this construction works for any groupoid.

3.2 The algebroid of the general linear groupoid

Consider the general linear groupoid GL(E). Its algebroid will be denoted gl(E). It is quite
difficult to compute this algebroid directly. Using the map ∇ defined above, we will prove that
its space of sections Γ(gl(E)) is isomorphic to the space of derivations on E. First we will
define derivations, and see that they actually admit the structure of a space of sections of a Lie
algebroid.
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Definition 3.10. For a vector bundle E → M , a derivation is a pair (D, V ) whereD : Γ(E) →
Γ(E) is a linear map of sections and V ∈ X(M) is a vector field, satisfying the following Leibniz
rule:

D(fs) = fD(s) + LV (f)(s) for all f ∈ C∞(M), s ∈ Γ(E).

V is called the symbol of D. The space of derivations is denoted Der(E).

Lemma 3.11. Assume E is not the zero vector bundle. Then any derivation (D, V ) is uniquely
determined by the linear map D : Γ(E) → Γ(E).

Proof. Suppose vector fields V and V ′ are both symbols satisfying the Leibniz rule for D. Then
we find

LV ′(f)(s) = LV (f)(s), ∀f ∈ C∞(M), s ∈ Γ(E).

Consider this expression for a neighbourhood around some point x ∈ M . We can always find
a section s of E such that s(x) is nonzero. Then the above equation shows that V and V ′

agree at the point x. Since this can be done around any point, we find that V and V ′ are the
same vector field. Each linear map D : Γ(E) → Γ(E) admits a unique symbol making it into
a derivation.

As a result of this lemma, we will often refer to derivations simply by the linear map D. We
describe the associated symbol of D by the symbol map σ : Der(E) → X(M), σ(D) = V .

Lemma 3.12. The space Der(E) has a Lie bracket given by the commutator of maps, with the
symbol induced by the usual Lie bracket of vector fields, i.e.:

[(D1, V1), (D2, V2)] := (D1 ◦D2 −D2 ◦D1, [V1, V2]).

Proof. Clearly the commutator is again a linear map of sections. We check that this commutator
satisfies the Leibniz rule. Let f ∈ C∞(M), s ∈ Γ(E).

(D1 ◦D2 −D2 ◦D1)(fs) =D1(fD2(s) + LV2(f)(s))−D2(fD1(s) + LV1(f)(s))

=fD1 ◦D2(s) + LV1(f)D2(s) + LV2D1(s) + LV1 ◦ LV2(f)(s)

− fD2 ◦D2(s)− LV2(f)D1(s)− LV1(f)D2(s)− LV2 ◦ LV1(f)(s)

=f(D1 ◦D2 −D2 ◦D2)(s) + (LV1 ◦ LV2 − LV2 ◦ LV1)(f)(s)

=f(D1 ◦D2 −D2 ◦D2)(s) + L[V1,V2](f)(s)

This shows that indeed the commutator is again in Der(E), and that the Lie bracket of vector
fields [V1, V2] is the symbol of this commutator.

This lemma also shows that the symbol map σ : Der(E) → X(M) is a Lie algebra morphism.
We see that Der(E), equipped with this Lie bracket and the anchor map σ, has the structure
of the space of sections of a Lie algebroid. We will prove that this is isomorphic to the sections
of gl(E).
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Theorem 3.13. Let E → M a vector bundle. Consider the groupoid GL(E) and its algebroid
gl(E). Then Γ(gl(E)) ∼= Der(E) as Lie algebras, and the anchor ρ of gl(E) corresponds to the
symbol map σ.

The proof follows from a sequence of lemmas. First we prove that the map defined in
Lemma 3.9 is a Lie algebra morphism for A = gl(E), and that this map commutes with the
symbol and anchor maps. Then, we will construct a commutative diagram of short exact
sequences involving gl(E) and Der(E). Finally, we use this diagram to prove the theorem.

Lemma 3.14. Consider the groupoid GL(E) and its algebroid gl(E). Then the construction
of Lemma 3.9 defines a Lie algebra morphism

∇ : Γ(gl(E)) → Der(E)

that commutes with the anchor map ρ and the symbol map σ.

Proof. Applied to the groupoid GL(E), Lemma 3.9 defines a map ∇ : Γ(gl(E))×Γ(E) → Γ(E)
by

∇α(s)(x) =
d

dt

∣∣∣∣
t=0

µ((Φα
x(t))

−1, s(ϕt
ρ(α)(x))).

Here µ is the action map as in Example 3.3, the standard action of GL(E) on E. We can
interpret ∇ as a map ∇ : Γ(gl(E)) → Der(E). We have to prove a few things. First of all, to
be a Lie algebra morphism, this has to be a linear map. This property corresponds to item (i)
in Definition 3.7. We consider the following expression:

∇fα(s)(x) =
d

dt

∣∣∣∣
t=0

µ((Φfα
x (t))−1, s(ϕt

ρ(fα)(x))).

First note that we have ρ(fα) = fρ(α) for f ∈ C∞(M). Then it is a general property of the

flow that ϕt
fρ(α)(x) = ϕ

f(x)t
ρ(α) .

For the term Φfα
x (t), recall that (fα)R = (f ◦ t)αR (with t the target map). From the same

general flow property we find ϕt
(f◦t)αR(1x) = ϕ

(f◦t)(1x)t
αR (1x) = ϕ

f(x)t

αR (1x).

Now we apply a change of coordinates t → t/f(x), so d/dt → f(x)d/dt, to find indeed
∇fα(s) = f∇α(s).

Second, for α ∈ Γ(gl(E)), ∇α should satisfy the Leibniz rule. Note this is equivalent
to property (ii) of algebroid representations (Definition 3.7). We prove this by the following
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computation, where we use the product rule in line 3, and then the fact that µ(1x, s(x)) = s(x).

∇α(fs) =
d

dt

∣∣∣∣
t=0

µ((Φα
x(t))

−1, (fs)(ϕt
ρ(α)(x)))

=
d

dt

∣∣∣∣
t=0

f(ϕt
ρ(α)(x))µ((Φ

α
x(t))

−1, s(ϕt
ρ(α)(x)))

=

(
d

dt

∣∣∣∣
t=0

f(ϕt
ρ(α)(x))

)
µ(1x, s(x)) + f(x)

d

dt

∣∣∣∣
t=0

µ((Φα
x(t))

−1, s(ϕt
ρ(α)(x)))

= Lρ(α)(f)(s)(x) + f∇α(s)(x).

From this computation, we also see that indeed σ ◦ ∇ = ρ.

Finally, to be a Lie algebra morphism, this map has to commute with the brackets. Since
this is a local propety, this follows with a proof in local coordinates.

Lemma 3.15. We have the following commutative diagram of short exact sequences, where σ
is the symbol map, and ρ is the anchor of A.

Γ(End(E)) Der(E) X(M)

Γ(gl(E))

j

i σ

∇
ρ

Proof. We have to prove that both rows are exact, and that all maps commute. We have al-
ready proven commutativity on the right side, σ ◦ ∇ = ρ.

We start with exactness in the top row. Consider the space Der(E). Choose any vector bun-
dle connection ∇E on E. Then any derivation can be written as (∇E

X+A,X), where X ∈ X(M)
and A is a C∞(M)-linear map of sections. The Leibniz rule for vector bundle connections and
the fact that A is linear implies that the symbol of this derivation is X. We can find such an
derivation for any vector field X, showing that σ is surjective. On the other hand, the kernel
of σ contains precisely those derivation that are C∞(M)-linear, i.e. have symbol 0. By viewing
these derivation as maps sending x ∈ M to a linear map Ex → Ex, we see that these form
the sections of the endomorphism bundle End(E). By this construction the top row is a short
exact sequence.

For the bottom row we follow a similar procedure. Since GL(E) is transitive, gl(E) is as
well, so ρ is surjective. Now consider for any x ∈ M the kernel Ker(ρx). This is the isotropy
Lie algebra at x, which we know is the Lie algebra of the isotropy group at x. Recall that the
isotropy group is GL(E)x ∼= Aut(Ex). Then its Lie algebra is Ker(ρx) ∼= End(Ex), and indeed
we find on the level of sections Γ(Ker(ρ)) ∼= Γ(End(E)). The map j is simply the composition
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of this isomorphism with the inclusion Ker(ρ) ↪→ A. By construction, this sequence is then
exact.

It remains to show that the left triangle is commutative. Let T ∈ Γ(End(E)). So, T is
a map T : M → End(E) such that at any point x ∈ M , Tx : Ex → Ex. Now consider the
inclusion j(T ) ∈ Γ(A). We aim to show ∇ ◦ j(T ) = i(T ). We prove this pointwise, using the
definition of ∇. Let s ∈ Γ(E) and x ∈ M .

∇j(T )(s)(x) =
d

dt
|t=0µ((Φ

j(T )
x (t))−1, s(ϕt

ρ(j(T ))(x)))

=
d

dt
|t=0µ((Φ

j(T )
x (t))−1, s(x)).

Here we used that j(T ) lies in the kernel of ρ. Since Φ
j(T )
x (T ) covers the flow of ϕt

j(T )(x), and

the latter is the constant path at x, we see that Φ
j(T )
x (t) will at any time t be an arrow from

x to x. So, it is a path in the isotropy group GL(E)x, which is isomorphic to Aut(Ex). Note

that Φ
j(T )
x (t) is determined by the flow of the vector field j(T )R. We see that we only consider

the values of j(T )R at arrows g ∈ GL(E)x ∼= Aut(Ex). For such g, we find then

j(T )Rg = d1t(g)Rg(j(T )(x)) = d1xRg(j(T )(x))

and since 1x in Aut(Ex) is simply the identity morphism, we find the usual Lie group-Lie
algebra correspondence here. Combined with the fact that for GL(E), the action µ is simply
application of the linear morphism, we find

∇j(T )(s)(x) = T (x)(s(x))

and the left triangle commutes as well.

Using this diagram, we can now prove that ∇ : Γ(gl(E)) → Der(E) is an isomorphism.

Proof of Theorem 3.13. To show that ∇ is an isomorphism, it remains to prove it is bijective.
We use commutativity of the diagram above to show this.

First it is injective; suppose s is a section of A that is in the kernel of ∇. Then σ ◦ ∇(s) =
σ(0) = 0, and by commutativity we must have ρ(s) = 0. That means s has some preimage
a ∈ Γ(End(E)) such that j(a) = s. By commutativity of the left triangle then i(a) = ∇(s) = 0,
and since i is injective, we find a = 0. Since s = j(a), we also have s = 0. So, the map ∇ has
kernel zero and it must be injective.

For surjectivity, consider some derivation D. Since the anchor map is surjective, there is
some section s of A such that ρ(s) = σ(D). Now consider ∇(s) = D′, which is not necessarily
equal to D, but by commutativity it does have the same symbol as D. So D−D′ ∈ Ker(σ) and
by exactness there is some a ∈ Γ(End(E)) such that i(a) = D−D′. Now by commutativity of
the left triangle, ∇(j(a)) = D − D′, and we conclude ∇(j(a) + s) = D, i.e. we have found a
preimage of D and thus ∇ is surjective.
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We now move to the proof of Lemma 3.9, which stated that any groupoid representation
E on G induces a representation on its algebroid A. We have seen that it holds specifically
for GL(E) with the standard action map and its algebroid gl(E). In general, we first have the
following lemma.

Lemma 3.16. A representation on a Lie algebroid A → M is equivalent to a Lie algebra
morphism

∇ : Γ(A) → Der(E)

which commutes with the anchor and symbol map (so σ ◦ ∇ = ρ).

Proof. Recall Definition 3.7: a Lie algebroid representation is a vector bundle E → M with a
map

∇ : Γ(A)× Γ(E) → Γ(E).

We can also interpret ∇ as a map

∇ : Γ(A) → Der(E).

Property (i) in Definition 3.7 is equivalent to this being a linear map. Property (ii) is equivalent
to the Leibniz rule for derivations, where ρ(α) is the symbol of ∇α. Property (iii) is equivalent
to ∇ preserving the brackets, which combined with being a linear map, is equivalent to being
a Lie algebra morphism.

Proof of Lemma 3.9. Consider E ∈ Rep(G) with action map µ and Lie algebroid A = Lie(G).
By Lemma 3.4, this representation on G is equivalent to a groupoid morphism F : G → GL(E).
By Lemma 2.42, this induces an algebroid morphism F : A → gl(E). Then via the induced
map on sections, F : Γ(A) → Γ(gl(E)) ∼= Der(E), we find by the previous lemma that this is
equivalent to a representation of E on the algebroid A.

Denote by ∇st : gl(E) → Der(E) the isomorphism defined in Lemma 3.14, and denote by
µst the standard action map of GL(E) on E. Then the representation induced on A by the
procedure described above, is a map ∇ : Γ(A)× Γ(E) → Γ(E) defined by

∇α(s)(x) = (∇st ◦ F )(α)(s)(x)

= ∇st
F◦α(s)(x)

=
d

dt

∣∣∣∣
t=0

µst

((
ϕt
(F◦α)R(1x)

)−1

, s(ϕt
ρ(F◦α)(x))

)
.

For the flow, note the following:
ϕ(F◦α)R = F(ϕαR).

Now F corresponds to the original action µ of G on E. Furthermore, since the map Γ(A) →
Der(E) commutes with the anchor map, we find

∇α(s)(x) =
d

dt

∣∣∣∣
t=0

µ
((

ϕt
αR(1x)

)−1
, s(ϕt

ρ◦α(x))
)
,

which is precisely the connection constructed in Lemma 3.9.
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3.3 Relating algebroid representations to infinitesimal actions

Let G a groupoid with algebroid A. A groupoid representation of G is basically a groupoid
action µ on a vector space E. This induces on one hand an algebroid representation in the
form of a flat A-connection ∇ on E as seen in Lemma 3.9. On the other hand, by Lemma 2.55
this induces an algebroid action a : Γ(A) → X(E). Here we shows the relationship between
the induced connection ∇ and the induced action a.

First of all, let’s recall how the induced action a is defined. We basically revisit the proof
of Lemma 2.56, writing it in the notation we use for representations. Let E ∈ Rep(G) with
moment map µ. Then for any p ∈ E, µp acts on the source fiber s−1(π(p)) by

µp : s
−1(π(p)) → E, µp(g) = µ(g, p).

We denote π(p) = x. Taking the differential of this map at the unit 1x ∈ s−1(x), we find a map
on the fiber of A above x:

d1xµp : T1xs
−1(x) = Ax → TpE.

Then on the level of sections, we find the induced infinitesimal action

a : Γ(A) → X(E), a(α)(p) = (d1π(p)
µp)(απ(p)).

We find an equivalent description by revisiting the map Φα
x(t) defined before for α ∈ Γ(A):

Φα
x(t) = ϕt

αR(1x).

From Lemma 3.8 we know that at any time t, this gives an arrow in G from x to ϕt
ρ(α)(x).

This means that Φα
x(t) is an arrow acting by µ on the fiber Ex. Furthermore this flow encodes

precisely the infinitesimal action on E induced by α, so equivalently the action is described by

a : Γ(A) → X(E), a(α)(p) =
d

dt

∣∣∣∣
t=0

Φα
π(p)(t) · p. (6)

From this formula we find a third description of the infinitesimal action: a(α) is a vector field
on E with flow ϕt

a(α)(p) = Φα
π(p)(t) · p = ϕt

αR(1π(p)) · p.

In order to relate this infinitesimal action to the induced A-connection (the induced algebroid
representation) ∇, we have to consider the dual vector bundle E∗. We first show that this dual
is again a groupoid representation.

Lemma 3.17. For any representation E of G, the dual vector bundle E∗ is also a representation
of G in a natural way.
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Proof. Let µ denote the moment map of the representation E. Let (g, ξ) ∈ G ×M E∗ and let
v ∈ Et(g). Then we define µ′ : G ×M E∗ → E∗ by

µ′(g, ξ)(v) = ξ(µ(g−1, v)). (7)

We just have to check that this satisfies the three properties in Definition 3.2.
First of all, µ(g−1, ·) is a map that takes elements in Et(g) since µ is a moment map. Then

we know µ(g−1, ·) ∈ Es(g) which is a valid argument for ξ. This proves that the map µ′ is
well-defined, and also shows that µ′(g, ξ) ∈ E∗

t(g), which is the first property of moment maps.
Using the fact that µ is a moment map, we can compute the second property:

µ′(g, µ′(h, ξ))(v) = µ′(h, ξ)(µ(g−1, v))

= ξ(µ(h−1, µ(g−1, v)))

= ξ(µ(h−1g−1, v))

= µ′(gh, ξ)(v).

Finally to show that µ′(g, ·) is an isomorphism we construct an explicit inverse. Define
µ′′(g, ·) : E∗

t(g) → E∗
s(g) using the fact that µ(g−1, ·) has an inverse, by

µ′′(g, η)(v) = η(µ−1(g−1, v)).

Then we see indeed

µ′′(g, µ′(g, ξ))(v) = µ′(g, ξ)(µ−1(g−1, v))

= ξ(µ(g, µ−1(g−1, v))) = ξ(v)

and

µ(g, µ′′(g, η))(v) = µ′′(g, η)(µ(g−1, v))

= η(µ−1(g−1, µ(g−1, v))) = η(v).

Because of this lemma, for any representation E ∈ Rep(G), we can consider E∗ ∈ Rep(G)
and the induced infinitesimal action a : Γ(A) → X(E∗). This is of course directly related to
the infinitesimal action of E. In order to relate this to ∇, we introduce some notation.

Let s ∈ Γ(E). We want to express that this induces a function on E∗ by evaluating at s.
To express this, we define the function fs ∈ C∞(E∗) by

fs(ξ) = ξ(s ◦ π(ξ)). (8)

Using these functions, we get to the main statement of this section.

Lemma 3.18. Let E ∈ Rep(G), A = Lie(G). The infinitesimal action a : Γ(A) → X(E∗) is
related to the A-connection (as from Lemma 3.9) by

La(α)(fs) = f∇α(s).
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Proof. We just do the computation, using the infinitesimal action as in Equation (6) (which
describes the flow of the vector field a(α)).

La(α)(fs)(ξ) =
d

dt
|t=0fs ◦

(
ϕt
a(α)(ξ)

)
=

d

dt
|t=0fs ◦

(
ϕt
αR(1π(ξ)) · ξ

)
then using the definition of fs, and since ϕt

αR(1π(ξ)) · ξ ∈ E∗
ϕt
ρ(α)

(π(ξ)),

=
d

dt
|t=0

(
ϕt
αR(1π(ξ)) · ξ

) (
s(ϕt

ρ(α)(π(ξ)))
)

then using the moment map on E∗ as in Equation (7),

=
d

dt
|t=0ξ

((
ϕt
αR(1π(ξ))

)−1 · s(ϕt
ρ(α)(π(ξ)))

)
= ξ(∇α(s)(π(ξ)))

= f∇α(s)(ξ).

Remark 3.19 (Outlook for the coming chapter). In this chapter, we have discussed in detail the
general linear groupoid GL(E), alongside the theory of groupoid and algebroid representations.
This is similarly to the theory of Lie groups and Lie algebroids, where the general linear group
and group representations are related in a similar manner.

However for the next chapter, we will focus on a different aspect of the theory that we have
already developed here. In order to characterise the algebroid of GL(E), we have constructed
an isomorphism Γ(gl(E)) ∼= Der(E). To construct this, we made use of the following sequence
(the bottom part of the diagram in Lemma 3.15):

Γ(End(E)) Γ(gl(E)) X(M).
j ρ

We saw that Γ(End(E)) ∼= Γ(Ker(ρ)), and this is a short exact sequence because ρ is surjective.
In this case, Γ(End(E)) and X(M) also fitted into a short exact sequence around Der(E), which
gave a nice characterisation of gl(E). But even in general, any transitive algebroid A can fit
into such a sequence:

Ker(ρ) A TM.
ρ

This is called an Atiyah sequence, and the next chapter will be devoted entirely to such se-
quences associated with transitive algebroids.

4 Transitive and Atiyah algebroids

In this section we will study transitive algebroids. The study of general linear groupoids and
algebroids in the previous section gave rise to a notion of representations of groupoids and
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algebroids. Similarly, the study of transitive algebroids will give rise to a natural notion of
connections on algebroids.

We will see that integrable transitive algebroids always come from principal bundles. Con-
nections on principal bundles will induce a natural notion of connections on these integrable
algebroids. This will be discussed in Section 4.2. For non-integrable transitive algebroids, there
is no associated principal bundle, but the notion of connections and curvature can be extended
in a natural way. This general notion of connections will be introduced in Section 4.1. In
Section 4.3 we will revisit how this forms a natural extension of the principal bundle case.

Transitive algebroids naturally come with a short exact sequence, discussed already in Re-
mark 3.19. These sequences are called Atiyah sequences. As a preparation for Part II and
Part III, we will also discuss Atiyah sequences arising from fibrations in Section 4.4.

4.1 Abstract Atiyah algebroids

Consider a transitive Lie algebroid A → M with anchor ρ. Since ρ is surjective, A is regular,
and the isotropy Lie algebras Ker(ρx) form a Lie algebra bundle overM , see for example Section
10.2 in [Mei17]. This Lie algebra bundle will be denoted g(A). Then since ρ is surjective, we
can form the following short exact sequence.

Definition 4.1. Given a transitive Lie algebroid A → M with anchor ρ, its abstract Atiyah
sequence is the following short exact sequence:

0 g(A) A TM 0
ρ

.

Using this sequence, we can introduce a notion of connections on transitive Lie algebroids.

Definition 4.2. Given a transitive Lie algebroid A → M , a connection is a right splitting of
the Atiyah sequence, i.e., a map σ : TM → A such that ρ ◦ σ = idTM .

The curvature of a connection σ is the 2-form Ωσ ∈ Ω(M ; g(A)) defined by

Ωσ(X, Y ) = [σ(X), σ(Y )]A − σ([X, Y ]).

Lemma 4.3. Ωσ is indeed a g(A)-valued form.

Proof. We have to check that ρ composed with this two-form is zero. We use the fact that ρ
preserves Lie brackets, and that ρ ◦ σ = idTM to find for any X, Y ∈ X(M):

ρ(Ωσ(X, Y )) = ρ([σ(X), σ(Y )]A)− ρ ◦ σ([X, Y ])

= [ρ ◦ σ(X), ρ ◦ σ(Y )]− [X, Y ]

= [X, Y ]− [X, Y ] = 0.

In words, the curvature measures the failure of σ to preserve Lie brackets. This corresponds
to the interpretation of curvature in the case of principal connections. We will now discuss
transitive algebroids that are integrable, and we will see that connections in this case really
come from principal bundle connections.
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4.2 Principal bundles and classical Atiyah sequences

Let pr : P → M be a principal G-bundle. For principal bundles we know that quotienting by
G gives the base manifold: P/G ∼= M . We expect that the quotient TP/G is then a vector
bundle over M . This is actually a specific instance of a more general result:

Lemma 4.4. Given a principal G-bundle pr : P → M and a G-equivariant vector bundle
πE : E → P , the quotient E/G is a vector bundle over M .

Proof. Let [p, v] ∈ E/G, so p ∈ P and v ∈ Ep. We define the projection map πE : E/G → M
as πE([p, v]) = pr(p). This is well-defined as [p, v] ∼ [q, w] implies q = pg for some g ∈ G, and
pr(pg) = pr(p). Since pr is a projection map, it follows that πE is smooth and surjective.

The fact that E/G is smooth follows from the G-action. The action of G on P is free and
proper. The same holds for the action on E, making E/G into a smooth manifold.

Local triviality follows from combining local sections of P → M with local frames of E → P ;
the composition gives a local frame of the vector bundle E/G → M .

Finally consider the fibers; for x ∈ M , choosing a point p0 ∈ Px allows us to write

(E/G)x = π−1
E (x) = {[p0, v]|v ∈ Tp0E} ≃ Tp0E

which shows that the fibers are linear vector spaces, and we conclude that E/G is a vector
bundle over M .

Corollary 4.5. A = TP/G → M is a vector bundle over M with projection π([p, v]) = pr(p).

As the notation suggests, we want to make this vector bundle into an algebroid over M .
This requires us to define a bracket on its space of sections and endow it with an anchor map.
To define the bracket, we consider the G-invariant vector fields on P , denoted X(P )G:

X(P )G = {X ∈ X(P ) | X(pg) = dpRg(X(p))∀p ∈ P, g ∈ G }.

Note that these vector fields are automatically projectable vector fields, because pushforwards
are only defined for projectable vector fields. Since the Lie bracket commutes with pushforwards
of projectable vector fields, this space is closed under the Lie bracket. Now this induces a Lie
bracket on the space of sections of the algebroid A = TP/G by the following lemma:

Lemma 4.6. Γ(A) ∼= X(P )G.

Proof. We prove this lemma by explicitly constructing the map between these two spaces. First
let s : M → TP/G be a section of A. Consider the pullback bundle pr∗(TP/G) over P , with
fibers pr∗(TP/G)p = (TP/G)π(p) for p ∈ P . As we saw before, this implies that the fiber
pr∗(TP/G)p is isomorphic to TpP . In words, this pullback bundle first quotients TP by G, but
then by taking the pullback we remove this quotient again; we see that the pullback bundle is
isomorphic to TP → P .
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Now a smooth section s : M → TP/G induces a section s′ : P → pr∗(TP/G) ≃ TP , i.e. a
vector field on P . Explicitly, this is defined as s′(p) = (p, s(pr(p))). The corresponding vector
field is defined as p 7→ vp, where vp is a representative such that (p, vp) ∈ s(pr(p)) as a class in
TP/G. Since pr(p) = pr(pg), we have that (p, vp) ∼ (pg, vpg), i.e.,

X(pg) = vpg = dpRg(vp) = dpRg(X(p)).

We see indeed that this vector field on P is G-invariant.

For the inverse map, let X ∈ X(P )G. Let x ∈ M and fix p0 ∈ Px. Define s : M → TP/G by
s(x) = [(p0, X(p0))]. Since X(p0) ∈ Tp0P , this represents a class in TP/G, and since pr(p0) = x
it lies in the fiber above x. To show this is well-defined, consider a different point in the fiber
q0 ∈ Px. Then for some g ∈ G, q0 = p0 · g. Now since X is a G-invariant vector field on P , we
have that X(q0) = dp0Rg(X(p0)), so (p0, X(p0)) ∼ (q0, X(q0)), and this section is well-defined.

Finally it is obvious that these operations are inverse to each other and we have an isomor-
phism ϕ : Γ(TP/G)

∼−→ X(P )G.

Next we want to endow A → M with an anchor map ρ : A → TM . The projection
pr : P → M induces the differential dpr : TP → TM . This induces a well-defined vector
bundle map dpr : TP/G → TM . To see that this is well-defined, let v ∈ TpP and w ∈ TqP
such that v ∼ w. That is, there exists an element g ∈ G such that q = pg. Then using the fact
that pr ◦Rg = pr we have that

dqpr(w) = dqpr(dpRg(v)) = dp(pr ◦Rg)(v) = dppr(v).

Hence dpr is well-defined on the quotient TP/G. This will be the anchor map of A:

ρ := dpr : A → TM.

Definition 4.7. The Atiyah algebroid associated to a principal G-bundle P
pr−→ M is the

vector bundle A = TP/G → M with bracket induced by Γ(A) ∼= X(P )G and anchor map dpr.

Since pr is a submersion, dpr is surjective, hence this algebroid is transitive. This allows us
to construct the following short exact sequence.

Definition 4.8. The classical Atiyah sequence corresponding to the Atiyah algebroid of a
principal G-bundle P

pr−→ M is the short exact sequence

0 Ker(dpr) TP/G TM 0
dpr

. (9)

Similar to Section 4.1, we have the following notion of connections on Atiyah algebroids.

Definition 4.9. A connection on an Atiyah algebroid is a splitting of the classical Atiyah
sequence, i.e., a map σ : TM → A such that dπ ◦ σ = idTM .
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In the case of Atiyah algebroids, connections on the algebroid are completely determined
by principal bundle connections. This correspondence is described in the following lemma due
to Atiyah.

Lemma 4.10. Principal bundle connections on a principal G-bundle P → M are in 1-1 cor-
respondence with connections on the Atiyah algebroid TP/G → M .

This result becomes immediate after a basic discussion of principal bundle connections.

Connections on principal bundles

Principal bundle connections are often described in several equivalent ways. We will show
here that these descriptions all arise from a short exact sequence associated to the principal
bundle. First we construct this sequence.

Consider the G-action on P , A : P × G → P . Pointwise (for p ∈ P )this action can be
written as a map Ap : G → P . Since the fibers of P are G-torsors, Ap maps back into Ppr(p) and
is a diffeomorphism of this fiber. Associated to the action A, there is an induced infinitesimal
action a : g → X(P ). Pointwise, the infinitesimal action is simply the differential of Ap, and is
also an isomorphism:

ap = deAp : g
∼−→ TpPpr(p) ⊂ TpP.

Consider now dpr : TP → TM . The kernel of this map is formed by the collection of vectors
that are tangent to the fibers of pr. This space is denoted

T v
p P := TpPpr(p) = Ker(dppr).

Combining this with the isomorphism ap : g → TpPpr(p), we can construct a pointwise short
exact sequence:

0 → g
ap−→ TpP

dppr−−→ Tpr(p)M → 0. (10)

By attaching g to every point in P , we construct P × g, fitting into a short exact sequence of
bundles over P :

0 → P × g
a−→ TP

dpr−−→ pr∗TM → 0.

Short exact sequences can admit splittings. We describe splittings of sequences in three equiv-
alent ways, given in the lemma below. See [Hat02] (p. 147) for a more detailed discussion on
splittings of short exact sequences.

Lemma 4.11 (Splitting lemma.). For a short exact sequence

0 A B C 0i p

the following are equivalent:

1. A right splitting, i.e., a map q : C → B such that p ◦ q = idC;
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2. A left splitting, i.e., a map j : B → A such that j ◦ i = idA;

3. An isomorphism ϕ : B → A⊕ C such that ϕ ◦ i is the natural inclusion of A into A⊕ C
and ϕ−1 ◦ p is the natural projection of A⊕ C onto C.

We now describe the usual notions of principal bundle connections, and show that they are
simply splittings of Equation (10) with a G-invariance condition.

First, a principal connection is often described as a vector subbundle H ⊂ TP that is
horizontal, so such that ∀p ∈ P , TpP = Hp ⊕ T v

p P , and that is G-invariant, so such that
Hpg = dpRg(Hp) for p ∈ P and g ∈ G. So a connection is a choice that allows us to talk about
horizontal vectors.

Second, a principal connection can be described as a g-valued 1-form on P , denoted ω ∈
Ω1(P ; g). This should satisfy ω(a(v)) = v, and be G-invariant. Pointwise, this acts is a map
ωp : TpP → g.

Third, a principal connection is given by a horizontal lifting map, denoted h : X(M) →
X(P ). This should satisfy dπ ◦ h = id (so pointwise, dpπ(h(X)p) = Xπ(p)), and should be
G-invariant in the sense that Im(h) ⊂ X(P )G.

These three descriptions are related by H = Im(h) = Ker(ω). We see that they correspond
to the three descriptions of a splitting of a short exact sequence, where we additionally have a G-
invariance condition. The splitting lemma stated above already claims that these descriptions
are equivalent, but for our purposes it is nice to see explicitly how a horizontal subbundle
H ⊂ TP induces a horizontal lifting map h : X(M) → X(P )G.

Lemma 4.12. A horizontal subbundle H ⊂ TP induces a map h : X(M) → X(P )G such that
dπ ◦h = id and Im(h) = H.

Proof. Let X ∈ X(M). We aim to define h(X) ∈ X(P )G, hence we want to assign for any p ∈ P
a vector h(X)p ∈ TpP . Denote x = pr(p). Note that dppr|Hp : Hp → TxM is an isomorphism
by the splitting lemma above. We define

h(X)p :=
(
dppr|Hp

)−1
(Xx) ∈ Hp ⊂ TpP.

From the G-invariance of H, it follows that the resulting vector field h(X) is also G-invariant.
The constructed mapping h maps into X(P )G, and has as image H.

With this lemma, we have a 1-1 corresondence between subbundles H and lifting maps h,
the two descriptions of connections that we use most in this thesis. We now move to the proof
of Lemma 4.10.

Proof of Lemma 4.10. Recall that a connection on the Atiyah algebroid is a splitting of the
Atiyah sequence, which is a map h : X(M) → Γ(TP/G) such that dπ ◦h = id. Recall that we
identified Γ(TP/G) ≃ X(P )G. Then by the discussion above, we see that this is equivalent to
a principal bundle connection on P .
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4.3 Integrable and non-integrable transitive algebroids

In Section 4.2, we have seen that principal bundles induce transitive algebroids, and princi-
pal bundle connections induce a natural notion of connections on these transitive algebroids.
These connections took the form of a splitting of the classical Atiyah sequence. This notion of
connection can be naturally extended to general transitive algebroids that do not come from
principal bundles, which was introduced in Section 4.1. In this section, we discuss the integra-
bility of transitive algebroids. We show that integrable transitive algebroids always come from
principal bundles. Then using this fact, we can argue that principal connections are the only
sort of connection that can induce some notion of connection on algebroids, further endorsing
the definitions in Section 4.1. These statements break down into a few lemma’s.

Lemma 4.13. The Atiyah algebroid associated to a principal G-bundle pr : P → M is precisely
the algebroid of the gauge groupoid (P × P )/G ⇒ M .

Proof. To prove this, we compute the algebroid associated to the gauge groupoid and see that
we find the Atiyah algebroid TP/G → M . To find the vector bundle A → M associated to
G = (P × P )/G, we determine its fibers

Ax = d1xs
−1(x).

Fix for any x ∈ M one point in its fiber px ∈ Px. We will use these basepoints to work with
homotopy classes. We can now compute the fiber of A above x:

Ax = T[px,px] ({ [(q, px)] | q ∈ P })
∼= (TpxP × Tpx{px}) / ∼

where ∼ is the equivalence relation induced by the G-action. We see indeed A = TP/G. With
a similar computation using fixed basepoints in each fiber, it follows that

Xs
inv ((P × P )/G) ∼= X(P )G,

so the Lie bracket on the Atiyah algebroid agrees with the bracket on the algebroid of the gauge
groupoid. Finally, for both algebroids the anchor is defined as the differential of the projection
map. We see that the Atiyah algebroid induced by a principal bundle P → M is the algebroid
of the gauge groupoid of P → M .

We now also have an alternative proof for Corollary 2.37:

Corollary. Let G be a groupoid with connected source fibers. If G is transitive, then its algebroid
is transitive as well.

Proof. We know by Proposition 2.18 that a transitive groupoid G is isomorphic to a gauge
groupoid for some principal bundle P → M . Then the algebroid of G is isomorphic to the
Atiyah algebroid TP/G → M , which transitive as its anchor ρ = dpr is surjective.
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Corollary 4.14. Any integrable transitive algebroid is the Atiyah algebroid induced by a prin-
cipal bundle.

Proof. Let A be an integrable transitive algebroid. Then its Weinstein groupoid G(A) is tran-
sitive as well, and integrates A. Since G(A) is transitive, it is isomorphic to the gauge groupoid
of some principal bundle P → M . Then A must be isomorphic to the induced Atiyah algebroid
TP/G → M by Lemma 4.13.

The point of this section is to show the following. Any transitive algebroid that is also
integrable, is actually an Atiyah algebroid by this corollary, and connections on the algebroid are
naturally induced by principal bundle connections by Lemma 4.10. These integrable transitive
algebroids sit inside a larger class of transitive algebroids. For general transitive algebroids,
the notions of connection can be extended naturally as we have discussed. Moreover, since the
only groupoids integrating transitive algebroids are gauge groupoids, there is no other natural
notion of connection around on our groupoids than principal bundle connections.

Example 4.15. As an application of this theory, we consider again the case introduced in Sec-
tion 3. Consider a vector bundle E → M , and the induced general linear groupoid GL(E) ⇒ M
consisting of tuples (y, A, x) where x, y ∈ M and A : Ex → Ey a linear isomorphism. We have
considered its Lie algebroid gl(E), and proven that its space of sections is isomorphic to the
space of derivations on E: Γ(gl(E)) ∼= DO(E).

In order to prove this, we used our first example of a classical Atiyah sequence:

Γ(End(E)) → Γ(gl(E)) → X(M).

Since any two points inM admit an isomorphism between their fibers in E, the groupoid GL(E)
is transitive. This also implies its algebroid gl(E) is transitive, and this sequence is indeed exact.
Now there is some principal bundle over M , for which the induced gauge groupoid is GL(E),
and for which the space of sections of the induced Atiyah algebroid is Der(E). Of course this
principal bundle is the frame bundle of E. We now make this more explicit.

The principal bundle associated to a transitive groupoid is found by considering the source
fiber at some fixed base point x ∈ M . We have

s−1(x) = { (y, A, x) | y ∈ M, A : Ex → Ey a linear isomorphism },

and its fiber at y is precisely

s−1(x)y = { (y, A, x) | A : Ex → Ey a linear isomorphism }.

Its structure group is the isotropy group at x:

Gx = { (x,A, x) | A : Ex → Ex a linear isomorphism },

which acts by arrow composition. This boils down to composition of the linear isomorphisms.
Then we have an isomorphism of groupoids:

GL(E) ∼= s−1(x)× s−1(x)/Gx.
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On the other hand, associated to the vector bundle E → M , there is a principal bundle Fr(E),
the frame bundle. Its fiber at y is

Fr(E)y = {A | A : Rk → Ey a linear isomorphism },

and its structure group is
GLk(R) = {M | M : Rk → Rk },

where k is the rank of the vector bundle E. This acts on the frame bundle by matrix multipli-
cation.

Now since E is a vector bundle of rank k, we can choose an isomorphism ϕ : Ex → Rk.
With this identification, we find that the principal Gx-bundle s

−1(x) is isomorphic to the frame
bundle Fr(E).

This also gives another description of the algebroid gl(E); we see that this is the Atiyah
algebroid

gl(E) = (T Fr(E))/GLk(R).

We see that Section 3 was an example of the theory developed in this chapter, but the ad-
ditional vector bundle structure allowed us to develop the theory of groupoid and algebroid
representations as well.

Considering connections, recall that vector bundle connections on E are in 1-1 correson-
dence with principal connections on Fr(E). This implies that a connection on the Atiyah
algebroid gl(E) is the same thing as a vector bundle connection on E. Note that these connec-
tions are really different objects than the A-connections ∇ that we associate to an algebroid
representation of A, even though we use the same symbol.

4.4 Atiyah sequence of a proper fibration

In Part II and Part III we will consider proper fibrations, and principal bundles will form
the ‘base example’ of the developed theory. We first define what we understand by proper
fibrations, and then we define a sequence for these spaces that behaves like the Atiyah sequence
associated to principal bundles.

Definition 4.16. A proper fibration is a surjective submersion pr : N → M that is addi-
tionally a proper map.

Remark 4.17. � These conditions imply that a proper fibration is always a locally trivial
fibration by Ehresmann’s lemma.

� We assume properness to force completeness of certain vector fields, which we will make
more precise below.

Definition 4.18. Given a proper fibration pr : N → M , an Ehresmann connection is one
of two equivalent descriptions:
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� a horizontal subbundle H ⊂ TN ;

� a horizontal lifting map h : X(M) → X(N ).

These descriptions are related by Im(h) = H.

By properness of pr, vector fields in the image h(X(M)) are complete, which will be a
crucial property in Section 5.

Recall the classical Atiyah sequence (Equation (9)) associated to a principal bundle. We
now construct a similar sequence associated to a proper fibration. At any point p ∈ N , we can
construct a short exact sequence of vector spaces:

0 → T v
pN → TpN → Tpr(p)M → 0,

where T v
pN denotes the vectors at p tangent to the fibers of pr. On the level of sections, we

find a sequence of vector bundles over N :

0 → Xv(N ) → Xproj(N ) → X(M) → 0,

where Xproj(N ) denotes the projectable vector fields. These are vector fields X ∈ X(N ) for
which there exists X ′ ∈ X(M) such that dppr(Xp) = X ′

pr(p) for all p ∈ N .

We now want to interpret this last sequence as a sequence of vector bundles over M , in
order to have any similarity to the classical Atiyah sequences. This forces us to deal with the
following infinite-dimensional vector bundles:

� Xv → M with fibers Xv
x := X(Nx), vector fields on the fiber Nx tangent to the fiber.

Sections of this vector bundle are precisely vertical vector fields on N :

Γ(Xv) = Xv(N ).

� Xproj → M with fibers Xproj
x := Xproj(Nx), vector fields on the fiber Nx which are pro-

jectable. Sections of this vector bundle are projectable vector fields on N :

Γ(Xproj) = Xproj(N ).

These give rise to a short exact sequence of vector bundles over M :

0 → Xv → Xproj → TM → 0.

On the level of sections, we find a sequence of infinite-dimensional vector bundles overM , which
we call the Atiyah sequence associated to the fibration:

0 → Xv(N ) → Xproj(N ) → X(M) → 0.
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In this description, an element V ∈ Xv(N ) is a section of the bundle Xv → M , and for any
x ∈ M , Vx ∈ X(Nx) is a vector field such that

Vx(p) := Vp ∈ TpNx, ∀p ∈ Nx.

Comparing this sequence to the Atiyah sequence of a principal bundle, we observe that in
the Atiyah sequence, the middle term is actually an algebroid over M . In the case of a fibration,
it is not clear whether the same is true. In Proposition 7.1, we will see that (under additional
assumptions) there is a finite-dimensional subsequence which does have an algebroid over M
as the middle term.
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Part II

Holonomy and the Ambrose-Singer
theorem
In this part, we introduce holonomy groups and state the Ambrose-Singer theorem. We will
first introduce holonomy for principal bundles, and discuss several properties of these groups.
Then we generalize to proper fibrations. In both cases, we fix a connection, which allows us to
lift paths from the base manifold to paths in fibers. Elements of the holonomy group are then
found by lifting along loops in the base. These groups will also have a smooth structure. The
Lie algebra of the holonomy groups will be determined entirely by the curvature of the chosen
connection. This is the statement of the Ambrose-Singer theorem. This theorem was originally
stated for principal bundles, but can be generalized to surjective submersions. For the classical
proof of this theorem, we refer to [AS53] or [KN96]. In this thesis we will not focus on this
classical proof; instead, we will take a different viewpoint using algebroids in Part III, from
which we try to prove the theorem and gain other insights.

5 Holonomy groups

In this chapter, we follow mostly the description in the book of Kobayashi and Nomizu ([KN96]).

5.1 Holonomy group of a principal bundle

Consider a principal G-bundle pr : P → M (with a right G-action on P ) with a connection
h : X(M) → X(P )G, corresponding to a horizontal subbundle H ⊂ TP . A horizontal curve
is a curve u(t) in P , such that for all times t its speed is a horizontal vector, i.e., u̇(t) ∈ Hu(t).
The path γ(t) := pr ◦ u(t) on M is called the base path of u.

Starting from a path γ in M , we can lift γ to a horizontal path u in P using the connection
h. For any initial point u0 in the fiber at γ(0), the horizontal path is determined by the ODE:{

du
dt
(t) = hu(t)

(
dγ
dt
(t)
)

u(0) = u0.
(11)

It is well-known that this admits a unique solution, see for example Proposition 3.1 in Chapter
2 in [KN96]. We say that γ admits a unique lift to a horizontal curve u in P . Now we can
define parallel transport on principal bundles.

Definition 5.1. Parallel transport on P along γ with respect to the connection h is the
mapping τγ : Pγ(0) → Pγ(1) that sends u0 ∈ Pγ(0) to u(1), where u(t) is the unique horizontal
lift of γ (i.e., the solution to Equation (11)).
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When discussing holonomy groups, we will use the following properties of parallel transport
maps.

Lemma 5.2. The parallel transport map commutes with the G-action: for p ∈ Px, g ∈ G and
γ a path from x to y, we have that τγ(pg) = τγ(p)g.

Proof. Denote by up(t) the solution of Equation (11) for u(0) = p, and by upg(t) the solution
for u(0) = pg. Then we see that at time t = 0, upg(0) = up(0)g. Consider now at any time t
the differential of up(t)g = Rg(up(t)), which is by the chain rule:

dup(t)Rg

(
dup(t)

dt

)
= dup(t)Rg

(
hup(t)

(
dγ

dt

))
= hup(t)g

(
dγ

dt

)
.

Here we used the fact that h maps to right-invariant vector fields. We see that this is equal to
the speed of the path upg(t), thus by uniqueness of ODE’s those paths agree at any time t.

Lemma 5.3. The parallel transport map τγ : Pγ(0) → Pγ(1) is a diffeomorphism of G-torsors.

Proof. It clearly has an inverse given by τγ−1 . By the last lemma, it commutes with the G-action
on both fibers. Smoothness follows from a general theorem on ODE’s, stating that equations
of the form of Equation (11) have a smooth solution, see Appendix 1 in [KN96].

Note that when γ is a loop based at x ∈ M , the parallel transport map is a diffeomorphism
of Px. Now we come to the definition of holonomy groups. To compose elements in these groups,
we have to work with piecewise differentiable loops γ in the base. Note that for piecewise smooth
loops, Equation (11) admits a piecewise smooth solution, and Lemma 5.2 and Lemma 5.3 still
apply (see also Chapter 2, Section 3 in [KN96]).

Definition 5.4. The holonomy group based at x is the collection of parallel transport maps
τγ where γ is a piecewise differentiable loop based at x:

Holhx = { τγ : Px → Px | γ a loop based at x }.

The restricted holonomy group is defined by restricition our attention to contractible loops:

Holh,0
x = { τγ : Px → Px | γ a contractible loop based at x }.

Lemma 5.5. Holhx is a group, and Holh,0
x is a subgroup of Holhx .

Proof. The constant loop at x induces a constant parallel transport map, which is the identity
element and is in both groups. The group operation is concatenation of paths downstairs, which
is again piecewise smooth. Inverse elements are found by transporting along the inverse of the
base path. Since concatenation and inverses of contractible loops remain contractible, Holh,0

x

is a subgroup.
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We now study the dependence of Holhx on the basepoint x. First of all, we remark that for
principal bundles, holonomy groups are often introduced with basepoints in P , for example in
[KN96]. We will now introduce this viewpoint as well. Choosing a basepoint p ∈ Px in P , we
use the fact that Px is a G-torsor. For any element τγ ∈ Holhx , we have τγ(p) ∈ Px. Then there
exists an element g ∈ G such that τγ(p) = pg. This allows us to define holonomy groups with
basepoints in P as follows:

Definition 5.6. The holonomy group based at p ∈ P is defined as

Holhp = { g ∈ G | τγ(p) = pg for some piecewise smooth loop γ based at pr(p) }.

The restricted holonomy group based at p ∈ P is defined as

Holh,0
p = { g ∈ G | τγ(p) = pg for some contractible piecewise smooth loop γ based at pr(p) }.

Lemma 5.7. These are subgroups of G: Holh,0
p ≤ Holhp ≤ G.

Proof. Both groups contain the identity element e, obtained from taking the parallel transport
along the constant path at pr(p). If g, h ∈ Holhp , then they are ‘induced’ by loops γg and γh,

and it is easy to check that the concatenation γg ◦ γh induces hg ∈ Holhp , and the inverse path

γ−1
g induces g−1 ∈ Holhp . The same holds for Holh,0

p , and by the same argument as above this
is closed under these operations (and thus a subgroup itself).

Now the following two statements hold for these groups. We assume here that M is path-
connected, and otherwise this holds for any path component of M .

� For all p ∈ Px, there is an isomorphism Holh(,0)
x

∼= Holh(,0)
p .

� For any p, q ∈ P , there is an element g ∈ G such that Holh(,0)
p = g−1Holh(,0)

q g.

Together, these statements imply that holonomy groups are independent of basepoints (in M
or P ), up to isomorphisms and conjugation. We now prove these two statements.

Lemma 5.8. For any p ∈ Px, the (restricted) holonomy groups based at x and p are isomorphic.

Proof. To prove this lemma, we first rewrite the holonomy group Holhx based at x in the following
way. We know that the maps τγ : Px → Px are diffeomorphisms of G-torsors, and τγ(p) = pg
for some g ∈ G. We can rewrite the parallel transport map as a map τ ′γ : Px → G mapping p
to g ∈ G such that τγ(p) = pg, and the holonomy group based at x is equivalent to

Holhx
∼= { τ ′γ : Px → G | p · τ ′γ(p) = τγ(p) ∀p ∈ Px }.

Now it is clear by construction that the group Holhp is determined by evaluating all maps

τ ′γ at the point p, giving an explicit mapping from Holhx to Holhp .
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In the other direction, suppose the group Holhp is known. This means that for any piecewise
differentiable loop γ, we know one value of the map τ ′γ, namely the value at p. Then by
Lemma 5.2, the value at any other point q = pg ∈ Px is determined as well by τ ′γ(q) = τ ′γ(p)g.

So we can recover Holhx entirely from Holhp as well, and we have found a bijection between these
two groups.

For the restricted holonomy groups we find a bijection in precisely the same way. Finally it
should be clear from the discussion above (for example the proof Lemma 5.7) that the group
structures agree, and we conclude that these bijections are group isomorphisms.

In order to prove the second statement, we look at yet another description of holonomy
groups. This description is used in, for example, [AS53]. We define an equivalence relation on
P by saying p ∼ q if p and q can be joined by a horizontal curve (a piecewise differentiable
curve in P with speeds in H). Then the holonomy group based at p ∈ P is defined as:

Holhp = { g ∈ G | p ∼ pg }.

It is straightforward to check that this is precisely the holonomy group at p defined above.
The advantage of this description is that we can now easily compare holonomy groups with
basepoints in different fibers. We assume here that M is path-connected, and otherwise, the
following holds for each path component.

Let p, q ∈ P and consider the points pr(p) and pr(q) in M . Since M is path-connected there
is a path γ from pr(p) to pr(q). Parallel transport along this path maps p to some point in the
fiber of pr(q), so for some g ∈ G, p ∼ qg.

Lemma 5.9. With this element g, Holhp = g−1Holhq g.

Proof. Suppose h ∈ Holhq , so q ∼ qh. We need to prove g−1hg ∈ Holhp . Using Lemma 5.2, we
find the following sequence of equivalences:

pg−1hg ∼ qhg ∼ qg ∼ p

where we used the equivalences q ∼ pg−1, qh ∼ q and qg ∼ p in that order. This shows that
g−1hg ∈ Holhp . The other direction follows with a similar computation.

The same lemma holds for the reduced holonomy groups. Combining this lemma with
Lemma 5.8, we find the promised result:

Corollary 5.10. When M is path-connected, the (reduced) holonomy group is independent of
basepoint in M or P , up to isomorphisms and/or conjugation.

Remark 5.11. In the literature, holonomy groups are most often defined with basepoints in P .
This approach has the big advantage that one can use the inherited group structure of G. In
our case, we want to generalise to proper fibrations. For proper fibrations, there is no natural
group structure and the description of holonomy groups with basepoints in the fibers is not
insightful at all. For this reason, we also focus on basepoints in M when describing holonomy
groups of principal bundles.
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5.2 Holonomy groups of proper fibrations

Consider now a proper fibration pr : N → M (see Definition 4.16), and fix an Ehresmann
connection given by a horizontal subbundle H ⊂ TN . Recall that this can also be seen as a
horizontal lifting map h : X(M) → X(N ), such that dpr ◦ h is the identity map. Clearly h

maps into projectable vector fields on N . Pointwise, hp : Tpr(p)M → TpN maps v to the unique
vector in Hp such that dppr(hp(v)) = v. Using this lifting map we can define parallel transport
for proper fibrations similarly to the principal bundle case. Throughout we will assume curves
to be piecewise differentiable.

Definition 5.12. Let γ be a piecewise differentiable curve in M . Parallel transport along γ
with respect to the connection h is the map τγ : Nγ(0) → Nγ(1), mapping u0 ∈ Nγ(0) to u(1)
where u(t) is the unique solution of the differential equation{

du
dt
(t) = h

(
dγ
dt
(t)
)
,

u(0) = u0.

Remark 5.13. For this definition, it is important that pr is a proper map. We can view γ(t)
as an integral curve of some vector field X on the base. Then the horizontal lift u(t) can
be interpreted as an integral curve of the lifted vector field h(X). We say the connection is
complete if this solution exists on the entire interval [0, 1], i.e., if the lifted vector field h(X)
is complete. Choosing X compactly supported, we see that properness of the map pr ensures
completeness of the connection, and the horizontal lift is well-defined on the interval [0, 1].

Lemma 5.14. For any curve γ on M , the parallel transport map τγ : Nγ(0) → Nγ(1) is a
diffeomorphism.

Proof. The proof is similar to that of Lemma 5.3. By smoothness of solutions of such ODE’s,
proven in Appendix 1 of [KN96], it follows that all such maps are smooth, and the inverse of
τγ is given by parallel transport along the inverse path τγ−1 .

Definition 5.15. The holonomy group based at x is the collection of parallel transport maps
τγ where γ is a piecewise differentiable loop based at x:

Holhx = { τγ : Px → Px | γ a loop based at x }.

The restricted holonomy group is defined by restricition our attention to contractible loops:

Holh,0
x = { τγ : Px → Px | γ a contractible loop based at x }.

The holonomy group has a natural group structure, and the restricted holonomy group is a
subgroup of it, with the same proof as for Lemma 5.5.

Lemma 5.16. For any two points x and y in a path component of M , the holonomy groups
Holhx and Holhy are isomorphic.
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Proof. Consider a path γ in M such that γ(0) = x and γ(1) = y. Note that the parallel
transport τγ : Nx → Ny induces a map by conjugation

τCγ : Diff(Ny) → Diff(Nx), ϕ 7→ τ−1
γ ◦ ϕ ◦ τγ.

This is clearly smooth, and conjugation with the inverse γ−1 gives the inverse map, so this is
an isomorphism. This maps the holonomy group based at x to the holonomy group based at
y, from which we conclude these are isomorphic.

A big difference with the previous section is that it is not very interesting to talk about
holonomy groups based at points in N ; these do not inherit a natural group structure from
N , so this does not add new insights. We do have in both cases the important property
that the holonomy groups are independent of basepoints (in M). This suggests that, once we
assume they are Lie groups, their Lie algebras should also be in some sense independent of base
points. This motivates some choices that we make in the next chapter, where we introduce the
candidate for this Lie algebra.

6 The classical Ambrose-Singer theorem

Finally in this chapter we discuss the classical Ambrose-Singer theorem. We have already
mentioned that this theorem is about the Lie algebras of the holonomy groups. We first
introduce the candidate for this Lie algebra, which is the holonomy Lie algebra. We do this
immediately for the general case of surjective submersions, but of couse this covers principal
bundles as well.

6.1 The holonomy Lie algebra

Recall that the holonomy group is defined for a given connection h : X(M) → X(N ). We can
associate to this connection the notion of curvature, which measures the failure of h to preserve
Lie brackets and is defined as follows:

Definition 6.1. The curvature associated to a connection h : X(M) → X(N ) is the map

Ω : X(M)× X(M) → Xv(N ), (X, Y ) 7→ h([X, Y ])− [h(X),h(Y )].

Lemma 6.2. The curvature Ω maps to projectable vector fields on N .

Proof. Let X, Y ∈ X(M). Applying dpr to Ω(X, Y ) gives

dpr (Ω(X, Y )) = dpr ◦h([X, Y ])− dpr[h(X),h(Y )].

Since dpr ◦h = id and the pushforward of pr commutes with Lie brackets of projectable vector
fields, we find

dpr (Ω(X, Y )) = [X, Y ]− [X, Y ] = 0.
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Pointwise, the curvature gives a map

Ωx : TxM × TxM → X(Nx).

We are now interested in the image of this map Im(Ωx) ⊂ X(Nx). The moral of the Ambrose-
Singer theorem is that this image tells us what happens infinitesimally when doing parallel
transport along loops based at x, i.e., this image is the Lie algebra of Holhx .

However, simply defining these Lie algebras as Im(Ωx) gives rise to a problem. Recall
Lemma 5.16 (or, in the case of principal bundles, Corollary 5.10), where we saw that holonomy
groups at different basepoints are isomorphic under the conjugation map τCγ . This suggests
that the corresponding Lie algebras at different basepoints should also be isomorphic under
parallel transport maps. Taking this into account, we can define the holonomy Lie algebras.

Let γ be any path in M starting at x. Then τγ induces a map of vector fields, by ‘pulling
back’ vector fields on the fiber at γ(1) to the fiber at x:

τ ∗γ : X(Nγ(1)) → X(Nγ(0)),

τ ∗γ (X)(p) = dτγ(p)τ
−1
γ (X(τγ(p))).

Using this map, we can ‘pull back’ the image of the curvature at any point y back to x (as
Im(Ωy) ⊂ X(Ny)). This defines the holonomy Lie algebra at x:

Definition 6.3. The holonomy Lie algebra at a point x, denoted holhx , is defined by the
span of all transported images τ ∗γ (Im(Ωγ(1))) where γ is a path in M starting at x.

We see that in any path-connected neighbourhood U ⊂ M , for any points x, y ∈ U and γ
a path from x to y it follows that

τ ∗γ : holhx → holhy

is an isomorphism. This has resolved the issue we had before, where holonomy Lie algebras at
different basepoints could be different from eachother. Additionally, these isomorphisms give
in some sense a local trivialization

holh|U ∼= U × holhx

where we consider holh as a bundle over M , with fiber holhx at x.
Recall the description of Xv(N ) as the space of sections of the infinite-dimensional vector

bundle Xv → M introduced in Section 4.4. Assuming that each holhx is finite-dimensional, we
can define a space of sections

Γ(holhx ) := { s ∈ Xv(N ) | s(x) ∈ holhx ∀x ∈ M }.

This is clearly a C∞(M)-module. Furthermore, by covering M by a finite number of connected
charts it can be shown this is a finitely generated projective module, which by Swan’s theorem
implies we get a vector bundle holh → M . Together with the local trivializations and the
following lemma, it is a locally trivial bundle of Lie algebras.
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Lemma 6.4. For any point x, the holonomy Lie algebra holhx is a Lie subalgebra of X(Nx).

It is possible to prove this lemma directly, but since the proof will arise naturally inside the
proof of 7.1, we postpone it until then.

6.2 The Ambrose-Singer theorem

Finally we can discuss the statement of the Ambrose-Singer theorem. In [AS53], this theorem
is proven for principal bundles, and we start by stating the version for principal bundles.

Theorem 6.5. Let P → M a principal G-bundle endowed with a connection h. Then

1. Each group Holhx is a Lie group with identity component Holh,0
x ;

2. The Lie algebra of Holhx is holhx .

In this thesis, we focus on proper fibrations, for which we can state a more general version
of this theorem. In our discussion, we will discuss holonomy from the viewpoint of algebroids.
In order to this, we need an additional assumption on the connection.

Definition 6.6. A holonomic connection on a proper fibration pr : N → M is a connection
h such that each holonomy Lie algebra holhx ⊂ X(Nx) is finite-dimensional, and consists of
vector fields that are either nowhere vanishing or trivial.

Remark 6.7. Let P → M be a principal G-bundle with a connection h. Then h is G-invariant,
from which it immediately follows that elements of holhx are either nowhere vanishing or trivial.
We see that principal bundle connections automatically satisfy this condition.

In Proposition 7.1 it will become apparant why we need this condition. We can now state
the generalised version of the Ambrose-Singer theorem.

Theorem 6.8. Let h be a holonomic connection on a fibration pr : N → M . Then

1. Each group Holhx is a Lie group, with identity component Holh,0
x ,

2. The Lie algebra of Holhx is holhx ,

3. There exists a principal Holhx -bundle P → M such that there is an isomorphism between
N → M and P ×Holhx

Nx → M ,

4. There exists a principal connection on P that induces the original connection h.

Recall that in Section 4, we constructed the Atiyah sequences of princpal bundles and
of fibrations. We already hinted at the fact that the sequence of a fibration will contain a
subsequence that is due to some algebroid (which we will prove in Proposition 7.1). With this
subsequence, the situation looks a lot like the principal bundle case, which is further endorsed
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by items 3 and 4 in this theorem. These items suggest as well that the situation for proper
fibrations with holonomic connections is very closely related to the principal bundle case.

We now explain why we will not discuss the classical proof here, but take a different ap-
proach. We have shown that (if M is path-connected) all holonomy groups are isomorphic,
independent of basepoint. In the classical discussion of the Ambrose-Singer theorem this is
neglected. Mackenzie in [Mac05] has initiated the idea that holonomy should be discussed in
the context of transitive groupoids; the holonomy groups are simply the isotropy groups of a
transitive groupoid (recall that in a transitive groupoid, indeed all isotropy groups are isomor-
phic). Proving the Ambrose-Singer theorem then comes down to computing the algebroid of
this groupoid.

In Mackenzie’s approach, it is proven that the holonomy groups are Lie groups, and then a
holonomy groupoid is constructed with these groups as isotropy groups. Then he proves that
the algebroid of this groupoid has as isotropy algebra the holonomy Lie algebra. We will revisit
this approach in Section 8.2. In the coming chapter, we take a different approach. Starting
with the holonomy Lie algebras, we will see that an algebroid arises in a very natural way. We
will call this the Ambrose-Singer algebroid. Then we consider the Weinstein groupoid of this
algebroid, and attempt to compute its isotropy groups. The goal is to prove that the isotropy
groups are isomorphic to the holonomy groups.

68



Part III

Relating the Ambrose-Singer theorem
to algebroids
In this final part, we combine the theory of holonomy with the theory of groupoids and alge-
broids. This ‘new perspective’ is due to Mackenzie in [Mac05], and describes holonomy groups
as the isotropy groups of a transitive groupoid. As we have mentioned, we will take a different
approach than that of Mackenzie.

First, we will show that a holonomic connection h on a proper fibration N → M induces an
algebroid, which we will call the Ambrose-Singer algebroid. This algebroid will have the bundle
holh as its isotropy Lie algebra. Furthermore, this will be a transitive algebroid with a free
action, forcing it to be integrable. We consider its integration, and attempt to prove that its
isotropy groups are isomorphic to the holonomy groups, which will prove the Ambrose-Singer
theorem.

Besides discussing this classical result, we will be able to prove item 3 and 4 of the generalised
Ambrose-Singer theorem (Theorem 6.8), showing that N is isomorphic to the fibered product
of a principal bundle.

7 Re-interpreting the holonomy Lie algebra in the the-

ory of algebroids

We consider, as before, a proper fibration pr : N → M endowed with a connection h. Recall
that the curvature of this connection gives rise to a Lie algebra holhx at every point in M . We
first show that if the connection is holonomic, we can construct a transitive Lie algebroid which
is integrable and acts on pr : N → M . Then we consider path homotopies for this algebroid,
which we use to analyse its Weinstein groupoid with induced groupoid action.

7.1 The Ambrose-Singer algebroid Ah

Proposition 7.1. Let h be a connection on a proper fibration N → M . The following are
equivalent:

� h is a holonomic connection;

� there exists a transitive Lie algebroid A → M with a free action a : Γ(A) → X(N), such
that the image h(X(M)) lies inside Im(a).
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Moreover, in this case there exists a smallest such algebroid denoted Ah, and the isotropy bundle
of this algebroid is precisely holh. This is the Ambrose-Singer algebroid.

Proof. First, suppose such an algebroid A with free action a exists. The freeness of this action
has a few consequences. First of all, since a is fiberwise injective, it is injective, hence we can
view it as an inclusion a : Γ(A) ↪→ Xproj(N ).

Next, for any x ∈ M we consider the isotropy Lie algebra gx = Ker(ρx) ⊂ Ax. The action
of A restricts to

ax : gx → X(Nx),

v 7→ X

where Xp = ap(v) (for p ∈ Nx) .

From dpr ◦ a = ρ it follows that this does map gx to vector fields tangent to the fiber at x.
We now claim that this map is an inclusion as well. The kernel of this map consists of v ∈ gx
such that for all p ∈ Nx, ap(v) = 0. Since the action is assumed to be fiberwise injective,
this implies v = 0. Hence the restriction ax : gx → X(Nx) is injective and can be seen as an
inclusion.

Lastly, from the discussion above we see that if ax(v) is zero at any point p ∈ Nx, it already
follows from injectivity of ap that v is 0. In other words, the action a sends gx to vector fields
that are either nowhere vanishing, or the 0-vector field.

We can now use these inclusions to construct the following commutative diagram.

0 Γ(g) Γ(A) X(M) 0

0 Xv(N ) Xproj(N ) X(M) 0

a

ρ

a =

h

dpr

h

(12)

Note that since h(X(M)) ⊂ Im(a), we can draw the map h in the upper sequence as
well. Furthermore, the diagram commutes; in the left square, we just have commutativity of
inclusions, and in the right square we find that the Lie algebroid action property dpr ◦a = ρ
induces commutativity.

Now we consider the inclusion gx ↪→ X(Nx) and recall that the holonomy group holhx also
lives in X(Nx). We will show that holhx ⊂ gx, and since the latter is finite-dimensional, we then
conclude holhx is also finite-dimensional. To prove this inclusion, recall that holhx is spanned by
all h-parallel transported images of the curvature (see Definition 6.3), so we aim to show that
these lie in gx.

First of all, consider the curvature itself:

Ω(X, Y ) = h([X, Y ])− [h(X),h(Y )], where X, Y ∈ X(M).
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Since h maps into Γ(A) and Γ(A) is closed under the bracket, Ω(X, Y ) lives in Γ(A); further-
more, since ρ is a Lie algebra morphism and ρ ◦ h = id, we find Ωx(Xx, Yx) ∈ gx. To generate
other elements in holhx , we need to transport these terms with h-parallel transport. We claim
that h-parallel transport restricted to terms in g corresponds with the parallel transport of a
certain connection on the vector bundle g → M . First, we define this connection as follows,
using the notation [·, ·]A for the Lie bracket on sections of A:

∇h : X(M)× Γ(g) → Γ(g), ∇h
X(ξ) = [h(X), ξ]A for X ∈ X(M), ξ ∈ g.

It is straightforward to check that this defines a connection using the fact that ρ([h(X), ξ]) =
[ρ◦h(X), ρ(ξ)] = [X, 0] = 0 (so it indeed maps back into g). Now we have the following lemma,
the proof of which we postpone.

Lemma 7.2. The h-parallel transport on the fibration pr : N → M restricted to vectors coming
from the inclusions gx ⊂ X(Nx), is equivalent to the ∇h-parallel transport on the vector bundle
g → M .

By this lemma, it is immediately clear that the h-transported images of any Ωx(Xx, Yx) stay
inside g. This generates all elements of the holonomy Lie algebra, so we conclude holhx ⊂ gx,
and thus the holonomy Lie algebra is finite dimensional. Since we saw above that gx is included
in X(Nx) by nowhere vanishing vector fields only, the same holds for holhx , and it follows that
h is a holonomic connection.

In the other direction, suppose that h is a holonomic connection, i.e., each holhx is finite-
dimensional and consists of nowhere vanishing vector fields. We construct an algebroid A with
a free action on N . There are two requirements already; the image of the action should contain
the image of h, and its isotropy Lie algebra must contain holh. We construct immediately the
smallest possible algebroid satisfying all conditions, which will be the Ambrose-Singer algebroid
Ah. From the two requirements just mentioned, the smallest possible algebroid is defined by
the condition

Γ(Ah) = Γ(holh)⊕h(X(M)).

This is a direct sum, as the holonomy Lie algebras are generated by the curvature and sit in
the space of vertical vector fields on N . This also defines Ah as a vector bundle, by

Ah = holh ⊕ TM.

Note that h(X(M)) is identified with X(M), as h is injective. The anchor map is projection
onto the second coordinate:

ρ : Ah → TM, ρ(ξ,X) = X.

We see that the isotropy Lie algebra of Ah is indeed g = holh, showing that Ah is the smallest
possible algebroid satisfying all conditions.
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It remains to define a Lie bracket on the space of sections and a free algebroid action.
We first define the action, as it gives an additional condition on the Lie bracket. There is a
straightforward choice for this action:

a : Γ(Ah) = Γ(holh)⊕h(X(M)) → Xproj(N )

(ξ,h(X)) 7→ ξ +h(X)

where the vector field on the right is determined pointwise by

(ξ +h(X))p = (ξ ◦ pr(p))p +h(X)p ∈ TpNpr(p) ⊕Hp.

This action satisfies dpr ◦a = ρ and its image contains h(X(M)). To show that it is fiberwise
injective, take p ∈ Nx and consider ap. If ap(ξ,h(X)) = 0, then both h(X)p and (ξ(pr(p)))p
must be 0. By injectivity of h, we see X = 0. By assumption, ξ is either nowhere vanishing
or the zero-vector field, so it must be the latter: ξ = 0. It follows that this action is fiberwise
injective.

Finally this action is required to be a Lie algebra morphism, which induces a condition
on the Lie bracket on Γ(Ah). This condition is written in the equation below. Note that the
brackets on the right hand side are the usual brackets of vector fields on N or M , and on the
left hand side we have the bracket on Ah that is to be defined.

a ([(ξ,h(X)) , (η,h(Y ))]) = [a (ξ,h(X)) ,a (η,h(Y ))]

= [ξ +h(X), η +h(Y )]

= [ξ, η] + [ξ,h(Y )] + [h(X), η] + [h(X), h(Y )]

= [ξ, η] +∇h
X(η)−∇h

Y (ξ)− Ω(X, Y ) +h([X, Y ])

Here we use again the notation from the discussion above: ∇h
X(ξ) = [h(X), ξ] (and later we

will see that this still defines a connection, endorsing this notation). The last term of this
expression clearly lives in h(X(M)). We define the bracket on Γ(Ah) then as follows:

[·, ·] : Γ(Ah)× Γ(Ah) → Γ(Ah),

[(ξ,h(X)), (η,h(Y ))] =
(
[ξ, η] +∇h

X(η)−∇h
Y (ξ)− Ω(X, Y ), h([X, Y ])

)
.

(13)

With this definition the action a is immediately a Lie algebroid morphism. It remains to show
that this is a well-defined Lie bracket, first of all by showing that the first component indeed
lies in Γ(holh) and then proving that it is a Lie bracket. We show now that the first four terms
of the expression above all lie in Γ(holh).

� First of all, the terms Ω(X, Y ) lie in Γ(holh) by construction.

� Next, consider the terms ∇h
X(η) and ∇h

Y (ξ). Recall that the Lie bracket can be described
by

∇h
X(η) := [h(X), ξ] =

d

dt

∣∣∣∣
t=0

(dϕt
h(X))

−1(ξ),
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where ϕt
h(X) is the flow on N along the vector field h(X). This flow is precisely the

map giving h-parallel transport along integral curves of X. Recall that the holonomy
Lie algebra is invariant under parallel transport: this implies that for ξ ∈ Γ(holh), we
have (dϕt

h(X))
−1(ξ) ∈ Γ(holh), which then must hold for its differential as well. So, for

ξ ∈ Γ(holh), all expressions of the form [h(X), ξ] = ∇h
X(ξ) are again in Γ(holh).

� Finally, consider the term [ξ, η]. By applying the Jacobi identity to the previous result, it
follows that holh is invariant under the operations [[h(X),h(Y )], ξ], and then also under
the operations [Ω(X, Y ), ξ]. Since these terms generate the holonomy Lie algebra, we
have now shown that the holonomy Lie algebra is indeed closed under the Lie bracket, so
a Lie subalgebra of X(Nx).

This proves that the map [·, ·] given above is well-defined (maps back into Γ(Ah) = Γ(holh)⊕
h(X(M))). Additionally, the last point in this list also proves Lemma 6.4:

Lemma. For any x ∈ M , the holonomy Lie algebra holhx is a Lie subalgebra of X(Nx).

Next, we prove the usual properties of the Lie bracket. Bilinearity, antisymmetry and the
Jacobi identity are all inherited from the Lie brackets that we use to define it, which can be
proven with some straightforward computations.

The final property it needs to satisfy, and which is a bit more difficult to check, is the
Leibniz rule with respect to the anchor map. Let f ∈ C∞(M). Under the identification
Γ(A) ∼= a(Γ(A)), we consider the induced map f̃ := f ◦ pr ∈ C∞(N ). Then we consider the
expression

[(ξ,h(X)), f̃(η,h(Y ))]

using Equation (13). This gives five terms, which we discuss seperately. Note that all these
terms are defined using regular Lie brackets of vector fields, allowing us to apply the regular
Leibniz rule.

� The first term is [ξ, f̃η]. We note that f̃ is constant on the fibers of N . This implies
Lξ(f̃) = 0, because ξ is a vector field tangent to the fibers (as for each x ∈ M , ξ(x) ∈
X(Nx)). By the usual Leibniz rule, we find [ξ, f̃η] = f̃ [ξ, η].

� For the second term, we see ∇h
X(f̃η) = [h(X), f̃η] = f̃ [h(X), η] + Lh(X)(f̃)η.

� For the third term, we see −∇h
fY (ξ) = −[f̃h(Y ), ξ] = −f̃ [h(Y ), ξ]+Lξ(f̃). We have seen

Lξ(f̃) = 0, so we find −∇h
fY (ξ) = −f̃ [h(Y ), ξ].

� For the fourth term, using the definition of the curvature form we find

−Ω(X, fY ) = −f̃Ω(X, Y )−h(LX(f)Y ) + Lh(X)(f̃)h(Y ).

Of these three terms, the last two are clearly horizontal, so they should end up in the
second component. All other terms that we have found so far are by our discussion above
still in Γ(holh).
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� For the final term we find h([X, fY ]) = f̃h([X, Y ])+h(LX(f)Y ). Combining everything
we find

[(ξ,h(X)), f̃(η,h(Y ))] =(f̃ [ξ, η] + f̃ [h(X), η] + Lh(X)(f̃)η − f̃ [h(Y ), ξ]− f̃Ω(X, Y ),

−h(LX(f)Y ) + Lh(X)(f̃)h(Y ) + f̃h([X, Y ]) +h(LX(f)Y ))

=f̃ [(ξ,h(X)), (η,h(Y ))] + (Lh(X)(f̃)η,Lh(X)(f̃)h(Y ))

=f̃ [(ξ,h(X)), (η,h(Y ))] + Lρ(ξ,h(X))(f̃)(η,h(Y ))

Recall that the anchor map ρ was projection onto the second coordinate.

Taken together, these computations prove that the Leibniz rule holds for our bracket, finishing
the proof. Items 2 and 3 of the above list also prove that ∇h is in fact a vector bundle
connection:

Lemma 7.3. On the vector bundle holh → M , there is a connection denoted ∇h defined by

∇h : X(M)× Γ(holh) → Γ(holh), ∇h
X(ξ) = [h(X), ξ]. (14)

This finishes the proof of Proposition 7.1. We now prove Lemma 7.2.

Proof of Lemma 7.2. Consider the h-parallel transport on N along a curve γ. We choose a
compactly supported vector field X on M that has γ as an integral curve. Note that X being
compactly supported implies it is complete. The parallel transport along γ is precisely the flow
ϕt
h(X) on N . The induced parallel transport of tangent vectors to N is the differential of this

flow, so for ξ ∈ Γ(g), h-parallel transport is given by dϕt
h(X)(ξ).

Now consider the introduced connection ∇h
X(ξ) = [h(X), ξ]A on the vector bundle g → M .

Since a is a Lie algebra morphism, this is equivalent to the usual Lie bracket [h(X), ξ] on
X(N ). Recall that this bracket measures the change of ξ along the flow of h(X), which can be
described as

[h(X), ξ] =
d

dt
|t=0(dϕ

t
h(X))

−1(ξ).

Now we claim that the map dϕt
h(X) is precisely the map giving ∇h-parallel transport on g → M .

We need to prove that this map gives a path in Γ(g), that it covers γ and that it is ∇h-parallel.
First of all we show that for ξ ∈ Γ(g) ⊂ Xv(N ), dϕt

h(X)(ξ) remains in Γ(g). We know that

the bracket [h(X), ξ] does map back into Γ(g), and from the expression above, we see that this
bracket gives the infinitesimal version of the path dϕt

h(X)(ξ). From this, we can conclude that

this path itself also maps back into Γ(g).
Consider now its base path; on N , dϕt

h(X)(ξ) covers the path ϕt
h(X), and from pr ◦ ϕt

h(X) =

ϕX ◦ pr we see that it covers γ on M (since γ is an integral curve of X).
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Finally the path needs to be ∇h-parallel. To see that this is true, consider v ∈ g, which
corresponds to a(v) on N . We compute the ∇h-differential of the flow dϕt

h(X)(a(v)):

∇h
γ̇(t)(dϕ

t
h(X)(a(v)))(γ(t)) = [h(X), dϕt

h(X)(a(v))]γ(t)

=
d

dt
|t=0(dϕ

t
h(X))

−1(dϕt
h(X))(a(v))(γ(t))

= 0.

Indeed this path dϕt
h(X) is ∇h-parallel, showing it is precisely the ∇h-parallel transport on g,

which is thus the same as h-parallel transport on N .

Corollary 7.4. The Ambrose-Singer algebroid Ah is integrable.

Proof. This follows immediately from Theorem 2.63, as we have an algebroid with a free alge-
broid action.

From now on, we will assume that the connection h is a holonomic connection, allowing us
to talk about the Ambrose-Singer algebroid. Since this algebroid is integrable and is endowed
with a free algebroid action, the Weinstein groupoid G(Ah) admits an action on pr : N → M
as well by Lemma 2.56.

We now shortly recall the construction of this induced groupoid action. The action of an
arrow g ∈ G(Ah) is determined by first taking a representative Ah-path a (so g = [a]). Then
a(a(t)) lies in TN and gives the speed of a certain curve u(t) in N . The groupoid action
induced by g now maps u0 ∈ N to u(1), where u(t) is the curve in N with speed a(a(t)) and
initial point u(0) = u0. The following proposition shows that, in the case of the action of Ah,
the groupoid action is related to parallel transport w.r.t. the connection h.

Proposition 7.5. Given any curve γ : [0, 1] → M , its parallel transport τγ : Nγ(0) → Nγ(1) is

equivalent to the groupoid action induced by the class/arrow
[
h
(
dγ
dt

)]
∈ G(Ah).

Proof. The proof follows by comparing the differential equations that are involved in either
parallel transport or the groupoid action. Consider a curve γ : [0, 1] → M . Let u0 ∈ Nγ(0).
Then h-parallel transport along γ, applied to u0, is determined by solving{

d
dt
u(t) = h

(
dγ
dt

)
,

u(0) = u0

and parallel transport maps u0 to u(1). Here, the algebroid has not come into play, and h is
simply a map h : X(M) → X(N ).

On the other hand, since Ah = holh ⊕ h(TM), h
(
dγ
dt

)
defines an Ah-path above γ. Here

we interpret h as a map into Γ(A), by Diagram 12. This Ah-path in turn represents a class
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in the Weinstein groupoid G(Ah). The action of this groupoid is determined by solving, for
u0 ∈ Nγ(0), {

d
dt
u(t) = a

(
h
(
dγ
dt

))
,

u(0) = u0

and u0 is mapped to u(1).
Now by commutativity of Diagram 12 it follows that the two differential equations defined

above on N are precisely the same, and indeed parallel transport along γ agrees with the
groupoid action of

[
h
(
dγ
dt

)]
.

In order to relate this groupoid action to the holonomy group, we restrict our attention to
the isotropy group Gx(A

h). This restriction induces a group homomorphism denoted

Φ : Gx(A
h) → Diff(Nx).

Claim 7.6. The image Φ(Gx(A
h)) ⊂ Diff(Nx) is precisely the holonomy group Holhx .

The fact that the image contains the holonomy group is immediately clear by the previous
proposition. To prove the other inclusion, we have to show that any element of the isotropy
group Gx(A

h) is mapped to an element of Holhx . It suffices to show that any Ah-path above a
loop in the base is Ah-homotopic to some Ah-path that is mapped to an element of Holhx (i.e.,
that is acting by h-parallel transport along some loop). In order to do this, we need to discuss
Ah-homotopies in more detail.

Remark 7.7. Claim 7.6 is not proven yet in this thesis. In the next section, we work towards a
possible geometric construction to prove this, but it is incomplete. The difficulty can be seen as
the essence of the Ambrose-Singer theorem; showing that elements of the holonomy Lie algebra
holhx generate elements of the holonomy groups Holhx .

In Section 8, we give a few ideas on how to further solve this problem. But even without
proving the Ambrose-Singer theorem from this approach, we will see in Section 7.3 how our
approach gives more insight than the classical discussions of holonomy concerning the structure
of the fibration N → M . These results endorse Mackenzie’s ideas that holonomy should be
viewed in the context of groupoids, as groupoid theory can encompass their (global) properties
in a natural way that the classical discussion does not.

7.2 Ah-homotopies

In order to understand the Weinstein groupoid of Ah, defined as

G(Ah) =
Ah-paths

Ah-path homotopies
,

we aim to understand Ah-homotopies in more detail. We have already discussed general alge-
broid homotopies in Section 2.5, and we now develop this theory further for the Ambrose-Singer
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algebroid:
Ah = holh ⊕ TM.

We can decompose elements (and paths) in Ah into a ‘vertical’ part lying in holh and a ‘hori-
zontal’ part lying in TM . For an Ah-path a(t) above a basepath γ in M we will write

a(t) = (av(t), ah(t)).

Recall that the anchor of Ah is simply projection onto the second coordinate. Combined with
the condition that ρ ◦ a(t) should give the speed of the base path γ, we find the following
condition:

ah(t) =
dγ

dt
(t).

Hence, in general an Ah-path can always be written as

a(t) =

(
V (t),

dγ

dt
(t)

)
,

where γ(t) is the base path and V (t) is a path in holh such that V (t) ∈ holhγ(t).

Next we consider a variation of Ah paths,

aϵ(t) =

(
Vϵ(t),

dγϵ
dt

(t)

)
,

above a path-homotopy γϵ(t) in M . In order for this to be an Ah-path homotopy, we have to
compute the variation V arϵ(t) defined in Section 2.5. We consider the solution to Equation (2),
which will be of the form

bϵ(t) =

(
Wϵ(t),

dγϵ
dϵ

(t)

)
,

where Wϵ(t) is again a path in holh, such that Wϵ(t) ∈ holhγϵ(t). Here bϵ(t) is found by solving

the following differential equation, with ∇ any TM -connection on Ah:{
∇ dγ

dϵ
aϵ(t)−∇ dγ

dt
bϵ(t) = T∇(aϵ(t), bϵ(t))

bϵ(0) = 0.
(15)

By definition, aϵ(t) is an Ah-homotopy if and only if bϵ(1) = 0. However, this condition may
be reduced to one depending only on V , W and γ.

Proposition 7.8. The variation aϵ(t) is an Ah-homotopy if and only if for the solution Wϵ(t)
of {

∇h
dγ
dϵ

Vϵ(t)−∇h
dγ
dt

Wϵ(t) = − [Vϵ(t),Wϵ(t)]− Ω
(
dγ
dt
, dγ
dϵ

)
Wϵ(0) = 0

(16)

it holds that Wϵ(1) = 0.
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Proof. We consider Equation (15), and reduce it to Equation (16). First consider the boundary
conditions bϵ(0) = 0 and bϵ(1) = 0. The horizontal part of bϵ(t) (i.e., the TM -part) is known
to be dγ

dϵ
. Since γϵ(t) is a path homotopy in M , γϵ(0) and γϵ(1) are constant, and the horizon-

tal parts of bϵ(0) and bϵ(1) are thus forced to be 0. The two boundary conditions reduce to
Wϵ(0) = 0 and Wϵ(1) = 0.

Next, recall that the solution bϵ(t) to Equation (15) is independent of the connection ∇ on
Ah. We can choose explicitly a connection on Ah to simplify the equation. By Lemma 7.3, we
have a connection ∇h on holh, given by

∇h : X(M)× Γ(holh) → Γ(holh), ∇X(ξ) = [h(X), ξ].

On TM , we choose any Levi-Civita connection, denoted ∇LC : X(M) × X(M) → X(M).
Combined, this gives a connection ∇ on Ah, defined by:

∇ : X(M)× Γ(Ah) → Γ(Ah)

∇Y (ξ,X) = (∇h
Y (ξ),∇LC

Y (X)).

Consider now two general sections a = (ξ,X), b = (η, Y ) ∈ Γ(Ah). Using the definition of the
bracket on Γ(Ah) in Equation (13), we compute the torsion:

T∇(a, b) = ∇ρ(a)(b)−∇ρ(b)(a)− [a, b]

= ∇X(η, Y )−∇Y (ξ,X)− [(ξ,X), (η, Y )]

= (∇h
X(η)−∇h

Y (ξ)− [ξ, η]−∇h
X(η) +∇h

Y (ξ)− Ω(X, Y ), ∇LC
X (Y )−∇LC

Y (X)− [X, Y ])

= (−[ξ, η]− Ω(X, Y ), 0).

Note that the horizontal part vanishes, because any Levi-Civita connection is torsion-free.
Moving back to Ah-homotopies, we can now simplify Equation (15). We compute the left hand
side for the chosen connection:

∇ dγ
dϵ
aϵ(t)−∇ dγ

dt
bϵ(t) =

(
∇h

dγ
dϵ

Vϵ(t)−∇h
dγ
dt

Wϵ(t), ∇LC
dγ
dϵ

(
dγ

dt

)
−∇LC

dγ
dt

(
dγ

dϵ

))
.

The horizontal part is the Lie bracket
[
dγ
dϵ
, dγ
dt

]
(again because the Levi-Civita connection is

torsion free), and since these vector fields commute, the horizontal part is 0. Combining the
above expression with the expression we found for the torsion, we see that aϵ(t) is an Ah-
homotopy if and only if for the solution Wϵ(t) of{

∇h
dγ
dϵ

Vϵ(t)−∇h
dγ
dt

Wϵ(t) = − [Vϵ(t),Wϵ(t)]− Ω
(
dγ
dt
, dγ
dϵ

)
Wϵ(0) = 0

(17)

it holds that Wϵ(1) = 0.
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We now consider how, starting from a homotopy γϵ(t) in M , we may construct an Ah-
homotopy covering it. The naive guess turns out to be too restrictive, as shown in the example
below.

Example 7.9. Consider any path homotopy γϵ(t) inM . Then we can find a variation of Ah-paths
covering this homotopy by

aϵ(t) =

(
0,

dγϵ(t)

dt

)
.

To check whether this is an Ah-homotopy, we have to solve Equation (16) for Wϵ(t) with
Vϵ(t) = 0. We find:

∇h
dγ
dt

Wϵ(t) = Ω

(
dγ

dt
,
dγ

dϵ

)
[
h

(
dγ

dt

)
,Wϵ(t)

]
=

[
h

(
dγ

dt

)
,h

(
dγ

dϵ

)]
−h

([
dγ

dt
,
dγ

dϵ

])
=

[
h

(
dγ

dt

)
,h

(
dγ

dϵ

)]
.

This suggests the solution Wϵ(t) = h
(
dγ
dϵ

)
, but Wϵ(t) should be a ‘vertical’ path in holh, which

this is certainly not. We see that in general, this variation need not be an Ah-homotopy.

In order to find an Ah-homotopy, we have to add a vertical component to the variation.

Lemma 7.10. Given a homotopy γϵ(t) in M , the following variation of Ah-paths is an Ah-
homotopy covering the base homotopy: (

Vϵ(t),
dγϵ(t)

dt

)
where

Vϵ(t) = −τ (0,ϵ)γ

∫ ϵ

0

τ (ϵ̃,0)γ

(
Ω

(
dγ

dt
,
dγ

dϵ̃

))
dϵ̃.

Proof. Consider a general variation ofAh-paths given by
(
Vϵ(t),

dγϵ(t)
dt

)
. We assume that Vϵ(0) =

0. We aim to choose this vertical component Vϵ(t) in such a way that Wϵ(t) = 0 solves
Equation (16). Then the boundary conditions are automatically satisfied.

In order to find the component Vϵ(t) satisfying this, we solve Equation (16) for Wϵ(t) = 0.
This comes down to solving

d

dϵ
Vϵ(t) = −Ω

(
dγ

dt
,
dγ

dϵ

)
. (18)

Recall that Vϵ(t) will be a path in holh, which is invariant under parallel transport. This implies
that there exists for all (ϵ, t) a term

Vγ0(t)(ϵ, t) ∈ holhγ0(t)
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such that
Vϵ(t) = τ (0,ϵ)γ

(
Vγ0(t)

)
.

Note that we use here parallel transort along the coordinate ϵ, so along the path from γ0(t) to
γϵ(t) in M for constant t. We use the notation τγ both for the parallel transport on N , and for
the induced transport on TN ; it should be clear from context which one is meant.

With this description, consider the left hand side of the equation to solve:

d

dϵ
Vϵ(t) = ∇h

dγ
dϵ

Vϵ(t)

=

[
h

(
dγ

dϵ

)
, τ (0,ϵ)γ

(
Vγ0(t)(ϵ, t)

)]
=

d

dt̃

∣∣∣∣
t̃=0

(
dϕt̃

h( dγ
dϵ )

)−1 (
dϕt

h( dγ
dϵ )

) (
Vγ0(t)(ϵ, t)

)
= τ (0,ϵ)γ

[
h

(
dγ

dϵ

)
, Vγ0(t)(ϵ, t)

]
= τ (0,ϵ)γ

(
d

dϵ
Vγ0(t)(ϵ, t)

)
.

Here we used the fact that parallel transport along γϵ(t) with respect to ϵ is equivalent to the
flow of h

(
dγ
dϵ

)
. Since this vector field commutes with itself, the flows commute and we can take

the term τ
(0,ϵ)
γ out in front.

Now solving Equation (18) for Vϵ(t) we find:

d

dϵ
Vϵ(t) = −Ω

(
dγ

dt
,
dγ

dϵ

)
⇐⇒ τ (0,ϵ)γ

(
d

dϵ
Vγ0(t)(ϵ, t)

)
= −Ω

(
dγ

dt
,
dγ

dϵ

)
⇐⇒ d

dϵ
Vγ0(t)(ϵ, t) = −τ (ϵ,0)γ Ω

(
dγ

dt
,
dγ

dϵ

)
⇐⇒ Vγ0(t)(ϵ, t) = −

∫ ϵ

0

τ (ϵ̃,0)γ

(
Ω

(
dγ

dt
,
dγ

dϵ̃

))
dϵ̃

⇐⇒ Vϵ(t) = −τ (0,ϵ)γ

∫ ϵ

0

τ (ϵ̃,0)γ

(
Ω

(
dγ

dt
,
dγ

dϵ̃

))
dϵ̃.

The following result is now immediate, by evaluating at ϵ = 0 and ϵ = 1:

Corollary 7.11. Given a path-homotopy γϵ(t) in M , the following Ah-paths are Ah-homotopic:(
0,

dγ0(t)

dt

)
∼
(
V1(t),

dγ1(t)

dt

)
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where

V1(t) = −τ (0,1)γ

∫ 1

0

τ (ϵ,0)γ

(
Ω

(
dγ

dt
,
dγ

dϵ

))
dϵ

= −
∫ 1

0

τ (ϵ,1)γ

(
Ω

(
dγ

dt
,
dγ

dϵ

))
dϵ.

If the base homotopy is the contraction of a loop, we have an even stronger result.

Corollary 7.12. Let γϵ(t) be a contraction of a contractible loop γ0(t) based at x0, where
γ1(t) = constx0. Then the following paths are Ah-homotopic, with V1(t) ∈ holhx0

as before:(
0,

dγ0(t)

dt

)
∼ (V1(t), 0x0) .

In this discussion we have now encountered two specific types of Ah-paths; paths that are
purely horizontal or purely vertical. Note that any path that is purely vertical, will have as
basepath a single point in M , and will thus be a path within one fiber of holh. We will denote
these paths as follows:

1. For γ : [0, 1] → M , we set gγ :=
(
0, dγ(t)

dt

)
2. For v : [0, 1] → holhx0

, we set hv := (v, 0x0).

With this notation, the statement of Corollary 7.12 can be rephrased as gγ0 = hV1 , with V1 as
above.

Lemma 7.13. With the same notation, the following holds for concatenation of Ah-paths,
where v is a path in holhx0

and γ a path in M starting at x0:

gγ · hv =

[(
τ 0,tγ (vτ (t)),

dγ

dt

)]
.

Proof. Denote by a0(t) the left hand side of this equation, and by a1(t) the right hand side.
Then using Equation (5) to make the concatenation of Ah-paths explicit, it is straightforward
to check that the following is a variation of Ah-paths:

a(ϵ, t) =

((2− ϵ)vτ (2t), 0) if t ≤ 1−ϵ
2(

(2− ϵ)τ t
γ( 2t

ϵ+1
+ϵ−1)

(vτ ( 2ϵ
1+ϵ

(t− 1) + 1)), 2
ϵ+1

dγ
dt

(
2t
ϵ+1

+ ϵ− 1
))

if t ≥ 1−ϵ
2

.

The solution to the differential equation in Equation (16) is

W (ϵ, t) =

{
ϵ2+3ϵ
1−ϵ

t(2− ϵ)vτ (2t) if t ≤ 1−ϵ
2(

ϵ+1
2

− t
1+ϵ

)
(2− ϵ)τ t

γ( 2t
ϵ+1

+ϵ−1)
(vτ ( 2ϵ

1+ϵ
(t− 1) + 1)) if t ≥ 1−ϵ

2

.
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which is also straightforward to check. Furthermore, W (ϵ, 1) = 0, which proves that aϵ(t) is an
Ah-homotopy. In Appendix A we give a more detailed proof, where we show in detail how this
homotopy is constructed and how Equation (16) can be solved.

Corollary 7.14. Any Ah-path a(t) can be decomposed as a(t) ∼ gγ · hv, for γ the base-path of
a(t) and v(t) some path in holhγ(0).

Proof. Consider an Ah-path above a path γ, denoted

a(t) =

(
av(t),

dγ

dt

)
.

Define the path v(t) ∈ holhγ(0) such that

av(t) = τ (0,t)γ (v(t)),

which is possible as the holonomy Lie algebras are invariant under parallel transport. Now by
Lemma 7.13 we have indeed

a(t) ∼
(
τ 0,tγ (v(t)),

dγ

dt

)
∼ gγ · hv.

Now we turn to Claim 7.6. Recall that we found a group homomorphism Φ : Gx(A
h) →

Diff(Nx) induced by the groupoid action of G(Ah). The claim is that the image of this group
homomorphism is precisely Holhx . In order to prove this, it suffices to show that any Ah-path
above a loop is Ah-path homotopic to an Ah-path that acts like parallel transport along a loop
in the base.

Consider an Ah-path a(t) : [0, 1] → Ah above a loop γ based at x. By Corollary 7.14, this
can be decomposed as a(t) ∼ gγ · hv. The first part, gγ, acts on Nx as h-parallel transport
along γ by Proposition 7.5. It remains to show that hv for some v(t) : [0, 1] → holhx also acts
by parallel transport along some loop λ in M . We see that the proof of Claim 7.6 has been
reduced to proving the following claim:

Claim 7.15. For any path v(t) : [0, 1] → holhx , there is a loop λ in M such that any of the
following equivalent statements hold:

� Φ([v(t)]) = τλ;

� Ah-parallel transport along v(t) is equivalent to h-parallel transport along λ;

� hv ∼ gλ.
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From Corollary 7.12, we find one possible way to prove this last claim. It suffices to find a
contractible loop λ based at x, with contraction λϵ(t), such that

v(t) ∼ V1(t) =

∫ 1

0

τ
(ϵ,1)
λ

(
Ω

(
dλ

dt
,
dλ

dϵ

))
dϵ. (19)

By Corollary 7.12, this implies hv ∼ gλ as desired.
The challenge is to find this loop λ for a given path v(t) : [0, 1] → holhx . It is unclear whether

this loop even admits an explicit expression, or can only be found as the limit of a sequence of
approaching loops. We will discuss this problem further in Section 8.1.

7.3 Proper fibrations as fibered products of principal bundles

From the groupoid action of G(Ah) on pr : N → M , we can deduce that this proper fibration
actually comes from a principal bundle. In general, principal bundles give rise to fibrations in
the following way.

Lemma 7.16. Let P → M be a principal G-bundle, and let F be a smooth manifold with a
G-action. Then

P ×G F → M

is a locally trivial fibration with fibers F .
Furthermore, if h is a principal bundle connection on P , then this induces also an Ehres-

mann connection on the fibration P ×G F .

In this section, we prove a result in the other direction, related to items 3 and 4 of the
Ambrose-Singer theorem as stated in Theorem 6.8. The precise statement of that theorem is
discussed in Section 7.4, and the proof of that statement depends on Claim 7.6. But even
without assuming Claim 7.6, we can prove the following:

Proposition 7.17. Let pr : N → M be a proper fibration endowed with a holonomic connection
h. Then for any x ∈ M , there exists a Lie group G and a principal G-bundle P → M such
that

N → M ∼= P ×G Nx → M,

and P admits a principal bundle connection inducing h.

Proof. The result follows by collecting a few lemmas from the discussion of groupoid actions
and the discussion of connections on Atiyah algebroids.

First of all, from Proposition 7.1 we find the integrable, transitive Ambrose-Singer algebroid
Ah with an algebroid action on N . This induces a groupoid action of G(Ah) on pr : N → M .
By Lemma 2.59, this is equivalent to a Gx(A

h)-action on Nx, independent of the point x ∈ M .
Recall that the Weinstein groupoid of a transitive algebroid is also transitive, hence G(Ah) is
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isomorphic to a gauge groupoid. Denote now by G the isotropy group Gx(A
h), and denote by

P → M the principal G-bundle s−1(x) → M . In Lemma 2.59 we have proven the isomorphism

N ∼= (P ×Nx)/G,

which proves the first part of our proposition.
Furthermore, we know that Ah is transitive and integrable, so it must be the Atiyah alge-

broid associated to P → M . We have seen in Diagram 12 that the connection h on N → M
can also be seen as a connection on the algebroid Ah. By Lemma 4.10, this is equivalent to a
principal bundle connection on P → M .

We remark that this proof does not depend on the structure of Ah at all. We can write a
more general version, for which the same proof applies:

Lemma 7.18. Let P → M be a principal G-bundle and N → M a surjective submersion with
a connection h. Assume the gauge groupoid associated to P is endowed with a groupoid action
on pr : N → M , inducing an infinitesimal action a : TP/G → X(N ). If Im(a) ⊂ h(X(M)),
then there is an isomorphism

N ∼= (P ×Nx)/G,

and the connection h is induced by a principal bundle connection.

7.4 The holonomy groupoid

In this section we discuss a second groupoid integrating Ah besides the Weinstein groupoid.
The reason is that even if Claim 7.6 is proven, it is not clear yet how this proves the Ambrose-
Singer theorem. The action of G(Ah) on N is not necessarily free, so the isotropy group Gx(A

h)
will not be isomorphic to Holhx . We now consider a different groupoid that also integrates Ah,
but has precisely the holonomy groups Holhx as its isotropy groups.

To find this other groupoid, we consider again the algebroid action a : Γ(Ah) → X(N ) and
the induced foliation of N , determined by the distribution Fa = Im(a) ⊂ TN . We have seen
that the Weinstein groupoid G(Ah) is smooth because of the isomorphism

G(Ah)×N ∼= Mon(N ,Fa).

We can look for other groupoids for which a similar isomorphism exists. We can search in two
directions;

� On the left hand side, we look for quotients H ⇒ M of G(Ah) ⇒ M that still act on N ,
allowing us to construct the action groupoid H×N ⇒ N .

� On the right hand side, we look for groupoids integrating the foliation algebroid Fa.
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The latter, groupoids integrating a regular foliation, are discussed in detail in [Phi87] and
[MM03]. The paper by Phillips describes the ‘holonomic imperative’; the monodromy groupoid
is the largest smooth groupoid integrating a foliation, and the holonomy groupoid is the small-
est. The importance of the holonomy groupoid explains the name ‘holonomic imperative’, but
a second reason for the naming convention is that the smooth structure on the monodromy
groupoid can be constructed with germs of holonomy diffeomorphisms. These same germs
are needed to construct the holonomy groupoid, and we will now make more precise how this
groupoid is constructed.

We follow the description in [MM03]. First recall the notion of germs of locally defined
diffeomorphisms. Let K and R be manifolds, and x ∈ K and y ∈ R any points. A germ of
maps from x to y is an equivalence class of maps from opens around x to opens around y, such
that x is mapped to y. Two such maps f : U → V and f ′ : U ′ → V ′ are equivalent if there is
an open W ⊂ U ∩ U ′ around x such that f |W = f ′|W .

Let U be an open around x and V an open around y, then it follows that any map f : U → V
such that f(x) = y determines a germ, which we will denote by germx(f). We will focus here
on germs of diffeomorphisms, i.e., germs of maps f : U → V such that f is a diffeomorphism.
These germs form a group under composition of maps. Using the notion of germs, we consider
paths in our foliated manifold, and assign to them a notion of ‘holonomy’:

Definition 7.19. For any leafwise path u(t) : p → q in a foliation manifold (N ,F), let T and
S be transversals to the foliation at p and q respectively. The holonomy of u is a germ of a
diffeomorphism denoted

hol(u) = holT,S(u) : (T, p) → (S, q),

defined by the construction below.

Consider a leafwise path u : p → q and transversals T at p and S at q, i.e., submanifolds of
N that are transversal to the leaves of N . We can interpret the holonomy of u as a map from
T to S which draws leafwise paths in N , ‘horizontal’ to u. To define this, we distinguish two
cases.

1. If there is a foliation chart U of F such that the path u(t) lies entirely in U , we define
the holonomy as follows. Find a neighbourhood V of p such that V ⊂ U where we can
define a function f : V → S, such that

� f(p) = q

� for any p′ ∈ V , f(p′) and p′ lie in the same plaque of U .

Choose V small enough to ensure that f is a diffeomorphism onto its image, and define

holS,T (u) = germx(f).

This definition is independent of choice of U and f . Note that if v(t) is another leafwise
path between p and q lying entirely in U , then holS,T (u) = holS,T (v).
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2. If there is no chart U of F containing the entire path u(t), we proceed as follows. Choose
a sequence of foliation charts U1, . . . , Uk which together cover u(t), by which we mean

ui := u

([
i− 1

k
,
i

k

])
⊂ Ui, for all i ∈ {1, . . . , k}.

Choose a sequence of transversals T = T0, T1, . . . , Tk−1, Tk = S at points in the intersection
of these charts (i.e., Ti is a transversal at some point pi ∈ Ui ∩ Ui+1). Then within each
chart Ui, we can do the procedure described above with respect to Ti−1 and Ti. Composing
the holonomies from all charts, we define

holS,T (u) = holTk,Tk−1(uk) ◦ · · · ◦ holT1,T0(u1).

Again, this definition is independent of the sequence Ui.

The above procedure assigns a notion of holonomy to any leafwise path in N . This has the
following properties (see [MM03] for more details):

� It is associative; for u : p → q and v : q → r with T , S, R transversals at p, q and r, we
have

holT,R(v ◦ u) = holS,R(v) ◦ holT,S(u).

� Leafwise homotopic paths have the same holonomy.

� Holonomy defines an equivalence relation on the space of leafwise paths in N , where paths
u : p → q and v : p → q have the same holonomy if for a transversal T at p,

holT,T (v−1u) = Id.

� The above equivalence relation is also well-defined on the space of homotopy classes of
leafwise paths in N , denoted ∼hol.

The last item is an important conclusion, as it allows us to finally define the holonomy groupoid:

Definition 7.20. The holonomy groupoid of a foliated manifold (N ,F) is the quotient

Hol(N ,F) = Mon(N ,F)/ ∼hol .

This groupoid is always smooth. In both [MM03] and [Phi87] the reader can find a con-
struction of the smooth structure on the holonomy groupoid and the monodromy groupoid.
Both smooth structures are constructed using the holonomies of paths defined above, which is
one part of the ‘holonomic imperative’.

The other part of this concept is that the holonomy groupoid is the smallest possible smooth
groupoid integrating a foliation, while the monodromy groupoid is the largest one. Furthermore,
any other smooth integration will ‘sit between’ the monodromy and holonomy groupoids. This
is made more precise in the following statement, which is the main theorem of [Phi87]:
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Theorem 7.21. Let (N ,F) be a foliated manifold, and denote by R the equivalence relation
on N where (p, q) ∈ R if and only if p and q lie in the same leaf. Let G ⇒ N be a Lie groupoid
such that the map (s, t) : G → R is surjective.

If there is a surjective groupoid morphism Mon(N ,F) → G such that the following diagram
commutes

Mon(N ,F) G

R

then there is a unique surjective groupoid morphism G → Hol(N ,F) such that the following
diagram commutes:

Mon(N ,F) Hol(N ,F)

G

R

Moreover, if (s, t) : G → R is an immersion, the map G → Hol(N ,F) is an isomorphism.

We now move back to our goal in this chapter. We are looking for a groupoid integrating
Ah, whose isotropy groups are precisely Holhx , and which still acts on N . We have seen that
these groupoids are closely related to groupoids integrating the foliation Fa, for which the
theory above applies. To find our desired groupoid, it makes sense to simply take a quotient of
the Weinstein groupoid G(Ah) where we quotient out classes that have the same action on N .
Clearly, the resulting groupoid will still act on N .

Definition 7.22. Let Ah be the Ambrose-Singer algebroid, and denote by τa the Ah-parallel
transport on N induced by an Ah-path a(t). The holonomy groupoid of Ah relative to N
is defined by

HolN (Ah) =
Ah-paths a : [0, 1] → Ah

a0 ∼ a1 iff τa0 = τa1
.

With this definition we get to the main statement of this section, proving finally the
Ambrose-Singer theorem under the assumption that Claim 7.6 holds;

Theorem 7.23. Let pr : N → M be a proper fibration with a holonomic connection h. Then
the holonomy groupoid of Ah relative to N , HolN (Ah), has the following properties:

� It is a smooth groupoid over M , integrating Ah.

� Its isotropy groups are the holonomy groups Holhx .
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� The s-fiber at x is a principal Holhx -bundle, denoted Px.

From these properties, we conclude that:

� The Lie algebra of Holhx is holhx , the isotropy Lie algebra of Ah at x.

� There is an isomorphism

N → M ∼= Px ×Holhx
Nx → M,

and the connection h is equivalent to a principal bundle connection on P → M .

Proof sketch. For the first part, we look at the correspondence of groupoids above. Since
HolN (Ah) still acts by Ah-parallel transport (the action is even free), we can construct the
action groupoid HolN (Ah) × N ⇒ N . The first part of the theorem then follows from the
lemma:

Lemma 7.24. The groupoid HolN (Ah)×N ⇒ N is smooth.

The fact that this groupoid is smooth should follow with the same proofs for the holonomy
and monodromy groupois over N , using the holonomy of leafwise paths. However, the details
of this proof are beyond the scope of this thesis.

The second part follows if Claim 7.6 is assumed. By that claim, the image of the action of
Gx(A

h) is the holonomy group. Since HolN (Ah)x is constructed by quotienting out elements
with the same action, it follows that it is precisely the holonomy group.

The third item follows from the second, as HolN (Ah) is transitive.
The fourth part of this theorem is the statement of the Ambrose-Singer theorem. The

isotropy groups of HolN (Ah) are the holonomy groups Holhx , and they integrate the isotropy
Lie algebras which are precisely holhx .

Finally, the last part follows from simply applying Lemma 7.18. Since HolN (Ah) still acts
on N and its isotropy groups are the holonomy groups, we find the desired isomorphism.

8 Outlook

In this chapter we discuss possible future directions of this project. Of course, the main open
question at this point is how to prove Claim 7.6 or Claim 7.15. Since the Ambrose-Singer is
true by the ‘classical’ proof, we know they hold, but proving this from the groupoid perspective
has been difficult. One possibility is applying the ‘classical’ proof techniques to these claims,
which we discuss in Section 8.1. Another approach could be to follow the construction of
Mackenzie, who also proved the Ambrose-Singer theorem using groupoid theory. We discuss
this in Section 8.2.

Next, in Section 8.3 we look back to the proof that the Ambrose-Singer algebroid is in-
tegrable. This required a strong result on the integrability of foliation algebroids (in other
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words, the fact that monodromy groupoids are smooth). We show how one could prove the
integrability of Ah without using this result, additionally giving more insight into the groupoid
action of G(Ah). Finally, in Section 8.4 we discuss how the current framework can be applied
more generally in the discussion of algebroid connections.

8.1 Applying classical methods

We return here to Claim 7.6, the claim that the image of the action Φ : Gx(A
h) → Diff(Nx)

is precisely the holonomy group Holhx . First we explain why we believe this claim to be true,
then we give a possible method of proving this claim via a proof of Claim 7.15.

We are using this claim to prove the Ambrose-Singer theorem from a new perspective, but
of course this theorem is already proven in [AS53]. Acknowledging that this theorem holds, we
find that the claim follows for the identity components of the groups involved. We will now
make this more precise.

We focus on the identity component Gx(A
h)0 of the isotropy group. The action Φ reduces

to an action on this subgroup. On the other hand, recall the identification

Gx(A
h)0 = G(holhx )/Im(∂x).

Hence there is a surjective map from G(holhx ) to Gx(A
h)0. At the same time, G(holhx ) is the

simply connected Lie group integrating holhx , while Hol
h
x is another Lie group integration. Then

there is also a surjection from G(holhx ) to Holh,0
x . All together, we find a commutative diagram:

Gx(A
h)0 Diff(Nx)

G(holhx ) Holh,0
x

Φ

from which we conclude that Φ(Gx(A
h)0) = Holh,0

x .
Now that the idea of why this claim should hold is clear, we move on to possible proofs.

Recall that the claim is proven if we find a proof for Claim 7.15. Given any path v(t) : [0, 1] →
holhx , we want to find a loop λ in M inducing the same parallel transport as v(t). As mentioned
before, it is possible that this loop exists, but admits no explicit expression. To prove that at
least this loop exists, we can look for a contractible loop satisfying Equation (19). We search
for a way to write v(t) as a path through Im(Ω) with varying basepoints. Then at each point,
we describe λ as a sequence of lasso’s. These lasso’s are small rectangular loops that lie in
one coordinate chart. In that chart, we can do computations and prove that Equation (19)
holds locally. By taking the limit of this lasso-approximation, we find the desired loop λ. This
technique is similar to the techniques used in the classical proof of the Ambrose-Singer theorem,
which makes it likely that this would work.
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8.2 Mackenzie’s approach

In [Mac05], Mackenzie gives a detailed discussion of transitive groupoids and path liftings, re-
sulting in an alternative proof to the Ambrose-Singer theorem in his Theorem 6.4.20 (which
is even stronger than Ambrose-Singer). In this section, we give an outline of this discussion,
mostly of Chapters 6.3 and 6.4 in [Mac05]. We will translate the notation that Mackenzie uses
to the notation used in this thesis. We first give a short summary of the entire procedure.

Starting with a Lie groupoid G ⇒ M and a connection on its algebroid, one can define a
holonomy subgroupoid of G using ‘parallel transport’ in G along the algebroid connection. The
algebroid of this holonomy groupoid is generated by the curvature of the connection.

Starting with a principal G-bundle P → M with a connection, we can apply this procedure
to the gauge groupoid G associated to P . It follows that in this case, the isotropy groups of the
holonomy groupoid are precisely the holonomy groups. By computing the algebroid of G, the
classical Ambrose-Singer theorem is recovered.

In order to apply this approach in the general case of proper fibrations, one has to find a rela-
tionship between the isotropy groups of the holonomy groupoid and the holonomy groups. This
relationship is more difficult to find, and requires a correct choice of ‘ambient groupoid’. By
ambient groupoid, we mean the groupoid of which the holonomy groupoid forms a subgroupoid.

We will now make this a bit more precise. Consider a Lie groupoid G ⇒ M . Denote by
P(M) the space of paths on M , and by P(G) the space of G-paths. Recall that a G-path is a
path g(t) : [0, 1] → G such that for some x ∈ M , g(0) = 1x and for all t ∈ [0, 1], g(t) ∈ s−1(x).
The following is Definition 6.3.1 in [Mac05].

Definition 8.1. A path connection on G ⇒ M is a lift Σ : P(M) → P(G) such that:

� Σ(γ)(0) = 1γ(0);

� Σ(γ)(t) ∈ t−1(γ(t));

� Lifting commutes with reparametrizations;

� If γ is smooth at time t, then Σ(γ) is smooth at time t;

� If γ, γ′ ∈ P(M) such that
dγ

dt
(t′) =

dγ′

dt
(t′)

for some time t′, then also
dΣ(γ)

dt
(t′) =

dΣ(γ′)

dt
(t′).

Path connections correspond to algebroid connections defined in Definition 4.2 by the fol-
lowing lemma (Theorem 6.3.5 in [Mac05]):
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Lemma 8.2. Path connections Σ : P(M) → P(G) on a groupoid G ⇒ M are in 1-1 correspon-
dence with connections σ : TM → A on A = Lie(G).

This correspondence is determined by

d

dt
Σ(γ)(t0) = dRΣ(γ)(t0)

(
σ

(
d

dt
γ(t0)

))
, γ ∈ P(M).

The curvature of an algebroid connection σ is a 2-form measuring the failure of σ to preserve
Lie brackets. The corresponding notion for path connections is called holonomy.

Definition 8.3. The holonomy of a path γ ∈ P(M) is the arrow γ̂ := Σ(γ)(1) ∈ G.

Using these holonomies, we construct a subgroupoid of G.

Definition 8.4. The holonomy subgroupoid associated to Σ is defined by

Θ = Θ(Σ) := { γ̂ | γ ∈ P(M) } ⊂ G.

For any x ∈ M , the holonomy group at x is defined as the isotropy group of the holonomy
groupoid:

Θx = { γ̂ | γ a loop at x }.

Note that any lift Σ(γ)(t) lies entirely in Θ by choosing reparametrizations. By Theorem
6.3.19 in [Mac05], Θ is actually a Lie subgroupoid of G. The main step in the proof of this
theorem is showing that the isotropy groups of Θ are Lie groups.

The next step is to compute the Lie algebroid of Θ. Let A be the Lie algebroid of the
ambient groupoid G. Denote by g(A) the isotropy Lie algebra bundle of A. Define g(A)σ to be
the least sub-Lie algebra bundle of g(A) such that

� Rσ(X, Y ) ∈ g(A)σ for all X, Y ∈ TM , and

� (ad ◦ σ)(Γ(g(A)σ)) ⊂ Γ(g(A)σ).

Here, Rσ : TM × TM → g(A) is the curvature

Rσ(X, Y ) = σ([X, Y ])− [σ(X), σ(Y )],

and ad : A → Der(g(A)) is the adjoint representation (see Definition 5.2.16 in [Mac05]) deter-
mined by

ad(X)(V ) = [X, V ], X ∈ Γ(A), V ∈ Γ(g(A)).

After defining g(A)σ, we can find a subalgebroid of A denoted Aσ which has g(A)σ as its isotropy
Lie algebra, and which contains the image σ(TM). This algebroid Aσ is defined by its space
of sections:

Γ(Aσ) = {X ∈ Γ(A) | X − σ ◦ ρ(X) ∈ Γ(g(A)σ) }.
Theorem 6.4.20 in [Mac05] states:
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Theorem 8.5. The algebroid of the holonomy Lie groupoid Θ is precisely the algebroid Aσ.

This concludes our summary of the Mackenzie’s theory. We will now discuss how this relates
to the classical Ambrose-Singer theorem, and to our Ambrose-Singer algebroid. Mackenzie also
discusses how the Ambrose-Singer theorem for principal bundles can be recovered in 6.4.21.
In our discussion we start with the algebroid Aσ of Θ, which we claim corresponds to the
Ambrose-Singer algebroid Ah. We give here an idea of the relationship between our work and
Mackenzie’s, but the proof details have to be worked out.

Lemma 8.6. Let h be a holonomic connection on a proper fibration. Denote by σ the induced
connection on the Ambrose-Singer algebroid Ah by Equation (12). The isotropy Lie algebra
bundle g(A)σ defined above is precisely the holonomy Lie algebra bundle holhx .

Proof sketch. The first condition, that Rσ(X, Y ) lies in g(A)σ, corresponds to the construction
of holh as the collection of images of the curvature. The second condition is precisely what is
stated in Lemma 7.3.

Lemma 8.7. The algebroid Aσ is precisely the Ambrose-Singer algebroid Ah.

Proof sketch. Since Aσ is defined as having isotropy Lie algebra holh and containing σ(TM) ∼=
TM , we see that this corresponds to the Ambrose-Singer algebroid Ah = holh ⊕ TM .

In order to prove the Ambrose-Singer theorem, it remains to show that the isotropy groups
of the holonomy groupoid Θ are precisely the holonomy groups Holh. In the case of principal
bundles, this can be done using the gauge groupoid.

Let P → M a principal G-bundle with a connection h. Consider the gauge groupoid
(P × P )/G and the Atiyah algebroid TP/G. The connection h induces a connection on the
Atiyah algebroid, which we denote by σ. We remark that for principal bundles, the Ambrose-
Singer algebroid Ah = holh ⊕ TM will lie inside the Atiyah algebroid. This is due to G-
invariance of the principal bundle connection h, by which we find that X(M) is identified with
h(X(M)) ⊂ X(P )G.

The connection σ on TP/G is equivalent to a path connection Σ on the gauge groupoid.
Consider any loop γ in M based at a point x. We want to relate the following notions:

� h-parallel transport along γ: τγ : Px → Px,

� The holonomy element γ̂ := Σ(γ)(1) ∈ (P × P )/G.

Lemma 8.8. Denote γ̂ = [(p, q)] for some p, q ∈ Px. Then the two notions given above are
related by

τγ(p) = q.

Proof sketch. Recall that the holonomy element γ̂ is determined via the path lifting Σ, which
is determined by the differential equation

d

dt
Σ(γ)(t) = dRΣ(γ)(t)

(
σγ(t)

(
d

dt
γ(t)

))
.
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On the other hand, h-parallel transport along γ is determined by solving the differential equa-
tion

d

dt
u(t) = hγ(t)

(
d

dt
γ(t)

)
.

The connections h and σ are the same maps (see their relationship in Lemma 4.10). Fur-
thermore, both of these notions are G-invariant, from which we see they are equivalent and
τγ(p) = q if γ̂ = [(p, q)].

Corollary 8.9. The isotropy groups of Θ are Θx = Holhx .

Proof. The isotropy groups Θx are determined by holonomy (in the sense of Definition 8.3) of
loops in the base, which by the previous lemma corresponds to the h-parallel transport along
that loop. We see that the holonomy groups Holhx are recovered.

By this corollary and Lemma 8.6, we find that Mackenzie’s approach provides a proof for the
Ambrose-Singer theorem for principal bundles as we now find

Lie(Holhx ) = Lie(Θx) = gx(A
σ) = gx(A

h) = holhx .

Of course, our discussion here hides a lot of details around the theorems of Mackenzie, including
the proof that the isotropy groups Θx are Lie groups.

Unfortunately it is not as straightforward to generalise this discussion to proper fibrations.
The algebroid Aσ will still be the Ambrose-Singer algebroid, but it becomes difficult to prove
a result similar to Corollary 8.9 for proper fibrations. For principal bundles, we chose the
gauge groupoid as ambient groupoid, which made it easy to relate elements of that groupoid
to holonomy. For proper fibrations, we would like to take the Weinstein groupoid G(Ah) as
ambient groupoid, and find holonomy subgroupoid Θ = HolN (Ah). However, in this discussion
the same issue comes up that we couldn’t solve in Claim 7.6: proving that the isotropy groups
of HolN (Ah) are the holonomy groups Holhx .

In conclusion, this alternative approach does not immediately resolve the problems raised in
Section 7, but further examination of these techniques might give more insight into a geometric
proof of the Ambrose-Singer theorem. Besides that, other authors have build upon the frame-
work of Mackenzie, and their techniques might prove useful as well. We will see an example of
this in Section 8.4.

8.3 A different approach to integrability of the Ambrose-Singer al-
gebroid

In this section, we consider again the result of Corollary 7.4; the algebroid Ah is integrable. We
have proven this using the free action of Ah on N → M . This action induced on one hand an
action groupoid G(Ah)×N , and on the other hand a monodromy groupoid Mon(N , Im(a)).
An isomorphism between these groupoids forced G(Ah) to be smooth. This proof relies on the
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fact that monodromy groupoids over foliated manifolds are smooth. In this section, we discuss
the integrability of Ah without using this strong result.

Consider the algebroid action a : Γ(A) → X(N ) and the induced action of the Weinstein
groupoid G(Ah). Restricting this action to the identity component of any isotropy group, we
find an action of Gx(A

h)0 on the fiber Nx. Now recall that

Gx(A
h)0 ∼= G(holhx )/Im(∂x).

It holds that the groupoid action of Gx(A
h)0 is equivalent to a group action of G(holhx ) which

is trivial on Im(∂x). The following lemma defines this group action.

Lemma 8.10. Interpret a path a(t) : [0, 1] → holhx ⊂ X(Nx) as a time-dependent vector
field on Nx. Consider the induced isotopy ϕt

a. Then the following defines a well-defined group
homomorphism, which is trivial on Im(∂x):

φ : G(holhx ) → Diff(Nx), φ([a]) = ϕ1
a.

Proof sketch. First, we recall what we mean by isotopy of a time-dependent section, described
in Chapter 6 in [CdS01]. An isotopy of Nx is a map ϕt(p) : Nx ×R → Nx such that ϕ0 = IdNx

and each ϕt : Nx → Nx is a diffeomorphism. A time-dependent vector field vt on Nx induces
an isotopy by

dϕt

dt
= vt ◦ ϕt.

We discuss first how to show this group homomorphism is well-defined. Consider two holhx -
paths a(t) and b(t) which are holhx -homotopic. This means that there exist variations aϵ(t) and
bϵ(t) of paths in holhx such that a0(t) = a(t), a1(t) = b(t), and

da

dϵ
− db

dt
= [a, b] and bϵ(0) = bϵ(1) = 0.

Interpreting these variations as time-dependent vector fields again, and computing their iso-
topies, it follows that ϕ1

a = ϕ1
b . Furthermore, concatenation of holhx -paths commutes with

composition of flows (isotopies), from which we conclude φ is a well-defined group homomor-
phism.

To prove that this is trivial on Im(∂x), recall that this image is precisely the collection
of classes [a] ∈ G(holhx ) such that a is Ah-homotopic to 0x. The proof that the action is
well-defined also holds for Ah-homotopies, and we see that ϕ1

a = ϕ1
0x = Id.

Lemma 8.11. The kernel of the action φ is a discrete subgroup of G(holhx ).

This lemma has to be proven, hiding the difficult details of the desired result:

Corollary 8.12. The Ambrose-Singer algebroid Ah is integrable.
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Proof. By Theorem 2.52, the (transitive) algebroid Ah is integrable if and only if each Im(∂x)
is discrete. By Lemma 8.10, Im(∂x) lies in Ker(φ), which is assumed to be discrete.

Furthermore, we have (even without assuming Lemma 8.11) a relationship between this
action and the holonomy group:

Lemma 8.13. The image of φ : G(holhx ) → Diff(Nx) contains the reduced holonomy group
Holh,0

x .

Proof sketch. Consider any element τ ∈ Holh,0
x . We may assume τ arises from parallel transport

along a contractible loop γ0. Then the following defines a path in G(holhx ):

a(ϵ)(τγϵ(p)) =

(
d

dϵ
τγϵ

)
(p),

which satisfies ϕ1
a = τ . To show that this is indeed a path in holhx , one can prove the following

formula:
d

dϵ
τγϵ(p) = (τγϵ)∗

(∫ 1

0

(τ t,0γϵ )∗

(
Ω

(
dγ

dϵ
,
dγ

dt

))
(p)dt

)
.

The image of the curvature form lies in the holonomy Lie algebra, which is invariant under
parallel transport. Thus this expression stays inside the holonomy Lie algebra.

Finally, we show that this group action is indeed related to the groupoid action of the
Weinstein groupoid.

Lemma 8.14. The following two actions of Gx(A
h)0 on Nx are equivalent:

� The action induced by φ : G(holhx ) → Diff(Nx)

� The restriction of Φ : Gx(A
h) → Diff(Nx)

Proof. Let g ∈ Gx(A
h)0 with a representative A-path a(t) : [0, 1] → holhx . a(t) induces two

actions on N . Both actions are defined by construction of a path in N and evaluating at t = 1.
The first path is denoted ϕt and satisfies

dϕt

dt
= a(t) ◦ ϕt.

The second path is denoted u(t) and satisfies

du(t)

dt
= au(t)(a(t)) = a(t) ◦ u(t).

Here we used the definition of the action of the Ambrose-Singer algebroid in Proposition 7.1.
Since these differential equations are the same, the two actions of a(t) agree.
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With this lemma, the proof of Lemma 8.13 follows immediately from Claim 7.6. But on the
other hand, we can now view the theory developed in Section 7 from a different perspective.
Starting with this group action of G(holhx ) on N , we have shown that this action is well-defined
on Gx(A

h)0. If one can prove that the image of this induced action is precisely Holh,0
x , this forms

(part of) the proof of Claim 7.6. Then, this group action can be generalised to the groupoid
action introduced in Section 7.

8.4 Application to algebroid connections

In this section, we consider a generalisation of the notion of connections, and see whether
this generalisation can fit inside our framework as well. We focus on a specific generalisation,
namely algebroid connections, introduced in this form by Fernandes in [Fer02]. So far, we have
considered horizontal connections on proper fibrations pr : N → M . We defined a connection
as a lifting map, lifting tangent vectors on M to tangent vectors on N , or on the level of vector
fields:

h : X(M) → Xproj(N ).

We will call this situation the ‘covariant case’. Now let A → M be an algebroid, and recall the
definition of an algebroid action (Definition 2.54). This is a vector bundle map a : A → TN ,
which is a Lie algebra morphism on the level of sections:

a : Γ(A) → Xproj(N ).

Interpreting A as an alternative tangent bundle, we can interpret an algebroid action as a
generalisation of a connection. We remove the assumption that a : Γ(A) → Xproj(N ) is a
Lie algebra morphism; after all, connections h : X(M) → Xproj(N ) in general do not commute
with the Lie brackets. This leads to the following definition, which is Definition 2.1 from [Fer02]
generalised to proper fibrations.

Definition 8.15. Let A → M be a Lie algebroid and pr : N → M a proper fibration. Consider
the pullback vector bundle pr∗A → N . An A-connection is a vector bundle map

hA : pr∗A → TN

which commutes with the anchor, i.e.,

dpr ◦hA = ρ.

In the case of principal G-bundles, we additionally require hA to be G-invariant.

Remark 8.16. This definition can be related to different concepts defined in this thesis:

� The covariant case can be recovered by considering the algebroid TM → M . That
is, throughout this thesis we have discussed holonomy induced by TM -connections on
pr : N → M .
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� If an A-connection is additionally a Lie algebra morphism, we call it flat. Flat A-
connections are precisely the algebroid actions defined in Definition 2.54.

� If N → M is a vector bundle with a flat A-connection, we recover the notion of repre-
sentations introduced in Definition 3.7.

To any A-connection we can associate a curvature form. Similar to the covariant case, this
measures the failure of the connection to preserve Lie brackets.

Definition 8.17. Let hA an algebroid connection. The associated curvature is

Ω : Γ(A)× Γ(A) → Xv(N ),

Ω(α, β) = hA([α, β]A)− [hA(α),hA(β)].

For any x ∈ M , this induces a pointwise map

Ωx : Ax × Ax → Xv(Nx).

In order to generalise holonomy and the Ambrose-Singer theorem, we define parallel trans-
port with respect to an A-connection.

Definition 8.18. Given an A-path a(t), parallel transport along a(t) with respect to the A-
connection hA is the map

τa : Nγ(0) → Nγ(1)

transporting u0 to u(1), where u(t) is the curve in N and the solution of the ODE{
d
dt
u(t) = hA

u(t)(a(t)),

u(0) = u0.

Remark 8.19. If the connection is flat, this parallel transport is precisely the transport that we
used to define an action of the Weinstein groupoid G(A) on N .

Using parallel transport, we can define holonomy induced by an A-connection:

Definition 8.20. The A-holonomy group at x ∈ M is defined as

Holh
A

x = { τa | a(t) an A-path covering a loop }.

The reduced A-holonomy group is defined by considering only contractible loops in the
base.

Note that loops in the base must be contained in a leaf of the algebroid foliation.
Finally we can generalise the Ambrose-Singer theorem. This is Theorem 2.1 from [Fer02].

Here we state a version for proper fibrations:
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Theorem 8.21 (Ambrose-Singer-Fernandes theorem.). Let hA an A-connection on a proper

fibration N → M . The Lie algebra of the holonomy group Holh
A

x is the linear span of

� τ ∗a (Im(Ωγ(1))) for any A-path a(t) covering γ(t) on M such that γ(0) = x, and

� τ ∗a (h
A(α)) for α ∈ Ker(ργ(1)).

Compared to the classical case, the holonomy Lie algebras pick up an extra term. In words,
we find a sum of the ‘classical’ holonomy Lie algebras and the isotropy Lie algebra of A. In
the case of the tangent Lie algebroid TM → M , we see that the isotropy Lie algebra is trivial,
hence the classical Ambrose-Singer theorem is recovered for TM -holonomy.

Fitting this theory into our framework, we turn to Proposition 7.1, and construct the
Ambrose-Singer algebroid for A-connections. The Ambrose-Singer algebroid in the covariant
case was defined as the direct sum of holh and TM , where TM was identified with the im-
age h(TM) of the connection. In the case of A-connections, the image of the connection hA

is identified with the algebroid A, and the Ambrose-Singer algebroid for the connection hA,
denoted AS, is:

AS = holh
A ⊕ A

with anchor map ρAS(v, a) = ρA(a). The isotropy Lie algebra of this algebroid is clearly

g(AS) = holh
A ⊕ g(A)

which agrees with the Ambrose-Singer-Fernandes theorem stated above.

Finally, one can wonder if this can be generalised to other connections. An example of
a result in this direction is a paper by Crampin and Saunders ([CS12]). This paper discusses
holonomy of nonlinear connections, specifically for Landsberg spaces in Finsler geometry. Using
the groupoid approach of Mackenzie, they prove a version of the Ambrose-Singer theorem for
those spaces.
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A Homotopy for concatenation of Ah-paths

In this appendix, we give the full proof of Lemma 7.13:

Lemma. Let γ : [0, 1] → M with γ(0) = x0, and let v : [0, 1] → holhx0
. Denote induced Ah-paths

by

gγ :=

(
0,

dγ

dt

)
, hv := (v, 0x0).

Then for their concatenation, the following holds:

gγ · hv =

[(
τ 0,tγ (vτ (t)),

dγ

dt

)]
.

Proof. This lemma is of course easily proven by checking that the provided variation of Ah-
paths satisfies all conditions. In this appendix however we choose to show how to construct
such a homotopy.

We construct the homotopy aϵ(t) such that a0(t) is the left hand side of the equation and
a1(t) is the right hand side. First we have to compute in detail what concatenation of Ah-paths
is, using Equation (5), and compute the base-paths of either side.

a0(t) =

{
(2vτ (2t), 0x0) if t ≤ 1

2

(0, 2dγ
dt
(2t− 1)) if t ≥ 1

2

with basepath

γ0(t) =

{
x0 if t ≤ 1

2

γ(2t− 1) if t ≥ 1
2

and

a1(t) =

(
τ 0,tγ (vτ (t)),

dγ

dt

)
with basepath

γ1(t) = γ(t)

Now to find an Ah-homotopy, we take three steps; we first define a homotopy of their base-
paths, then we define a variation above this homotopy, and then we prove that the variation
is actually a homotopy. For the homotopy of base-paths, there is a clear candidate, which we
denote by γ̃(ϵ, t) to easily distinguish it from the original base path γ.

γ̃(ϵ, t) =

{
x0 if 0 ≤ t ≤ 1−ϵ

2

γ
(

2t
ϵ+1

+ ϵ− 1
)

if 1−ϵ
2

≤ t ≤ 1

It is easy to check that this is indeed a homotopy between γ0(t) and γ1(t).
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We now move on to define the variation of Ah-paths a(ϵ, t). Its horizontal part has to be
the speed of γ̃. This splits into two cases, just like γ̃. The vertical part can be chosen any way
we want, as long as it maps to the correct fibers. We define a(ϵ, t) here as general as possible,
and will explore then the conditions that suggest what the vertical terms should be.

a(ϵ, t) =

{
(V (ϵ, t), 0) if 0 ≤ t ≤ 1−ϵ

2(
U(ϵ, t), 2

ϵ+1
dγ
dt

(
2t
ϵ+1

+ ϵ− 1
))

if 1−ϵ
2

≤ t ≤ 1

This comes with the following conditions on V and U :

V (ϵ, t) ∈ holhx0
, U(ϵ, t) ∈ holh

γ( 2t
ϵ+1

+ϵ−1).

Furthermore, from the condition a(0, t) = a0(t) we find that we should have

U(0, t) = 0, V (0, t) = 2vτ (2t)

and from the condition a(1, t) = a1(t) we find

U(1, t) = τ 0,tγ (vτ (t)).

The other suggested condition for V (1, 0) is actually a specific case of the following; at the
‘middle point’ t = (1 − ϵ)/2, the terms U and V should agree, and we find the more general
condition

V

(
ϵ,
1− ϵ

2

)
= U

(
ϵ,
1− ϵ

2

)
.

This condition ensures that the resulting path is continuous. Since any continuous A-path is
homotopic to a reparametrized smooth version, it is enough to impose continuity.

Any functions U(ϵ, t) and V (ϵ, t) satisfying these conditions would make a(ϵ, t) into a varia-
tion. We now consider when it is an Ah-homotopy, which will add further conditions on V (ϵ, t)
and U(ϵ, t).

In order to make this variation into a homotopy, we have to solve the following equations
for W (ϵ, t), where W (ϵ, t) is a path above γ̃:

∇h
dγ̃
dϵ

V (ϵ, t)−∇h
dγ̃
dt

W (ϵ, t) = − [V (ϵ, t),W (ϵ, t)]− Ω(dγ̃
dt
, dγ̃
dϵ
) if 0 ≤ t ≤ 1−ϵ

2

∇h
dγ̃
dϵ

U(ϵ, t)−∇h
dγ̃
dt

W (ϵ, t) = − [U(ϵ, t),W (ϵ, t)]− Ω(dγ̃
dt
, dγ̃
dϵ
) if 1−ϵ

2
≤ t ≤ 1

W (ϵ, 0) = 0

(20)

After solving this, the variation is a homotopy if and only if W (ϵ, 1) = 0. In this computation,
we can take this as an additional condition on the system that we are solving.
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These equations can already be simplified quite much when we consider what the base
homotopy γ̃ actually is. It is a reparametrization of the path γ, where we stay at the intial
point x0 for a certain amount of time and then speed through the rest of the path. This means
that the derivatives w.r.t. t and ϵ actually point in the same direction. More explicitly, we can
just compute them. For 0 ≤ t ≤ (1− ϵ)/2, both derivatives are 0. For 1−ϵ

2
≤ t ≤ 1, we find:

dγ̃

dt
(ϵ, t) =

2

ϵ+ 1

dγ

dt

(
2t

1 + ϵ
+ ϵ− 1

)
dγ̃

dϵ
(ϵ, t) =

(
−2t

(1 + ϵ)2
+ 1

)
dγ

dt

(
2t

ϵ+ 1
+ ϵ− 1

)
.

This means that the curvature forms in Equation (20) will be 0. Furthermore, as both deriva-
tives are zero for 0 ≤ t ≤ (1 − ϵ)/2, the connection terms in the first equation vanish as well,
leaving for the first equation only:

[V (ϵ, t),W (ϵ, t)] = 0 for 0 ≤ t ≤ 1− ϵ

2
. (21)

For the second equation, we can plug in the computed derivatives and the definition of the
connection ∇h to find for 1−ϵ

2
≤ t ≤ 1:

− [U(ϵ, t),W (ϵ, t)] =

(
1− 2t

(1 + ϵ)2

)[
h

(
dγ

dt

(
2t

ϵ+ 1
+ ϵ− 1

))
, U(ϵ, t)

]
−

2

ϵ+ 1

[
h

(
dγ

dt

(
2t

ϵ+ 1
+ ϵ− 1

))
,W (ϵ, t)

]
.

(22)

We are now in the following situation: we want to find paths V (ϵ, t), U(ϵ, t) and W (ϵ, t) that
satisfy all the above conditions. Then the variation a(ϵ, t) is indeed a homotopy. Now that we
have gathered all conditions, we start solving the system.

We start by choosing a solution for W (ϵ, t). Recall that this should be above γ̃ as well, so
a decomposition into the cases around t = (1 − ϵ)/2 makes sense. Note that Equation (21)
suggests that for low t, W should be colinear with V . For high t, Equation (22) is simplified if
W is colinear with U . This motivates the following choice for W (ϵ, t), where f, g ∈ C∞(I × I)
are to be determined:

W (ϵ, t) =

{
f(ϵ, t)V (ϵ, t) if 0 ≤ t ≤ 1−ϵ

2

g(ϵ, t)U(ϵ, t) if 1−ϵ
2

≤ t ≤ 1
.

From the condition W (ϵ, 0) = 0 we find that either f(ϵ, 0) = 0 or V (ϵ, 0) = 0. From the
condition W (ϵ, 1) = 0 we find that either g(ϵ, 1) = 0 or U(ϵ, 1) = 0. Besides, we require that
the two cases agree at t = (1 − ϵ)/2. Since we imposed that U and V agree at this point, we
find that we should have

f

(
ϵ,
1− ϵ

2

)
= g

(
ϵ,
1− ϵ

2

)
.
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Now clearly Equation (21) is satisfied with this definition. For Equation (22), we see that
the bracket on the left hand side is 0, and the remaining condition is((

1− 2t

(1 + ϵ)2

)
− 2

ϵ+ 1
g(ϵ, t)

)[
h

(
dγ

dt

(
2t

ϵ+ 1
+ ϵ− 1

))
, U(ϵ, t)

]
= 0.

This gives the following solution for the function g(ϵ, t):

g(ϵ, t) =
ϵ+ 1

2
− t

1 + ϵ
.

Note that it is not possible to satisfy the condition g(ϵ, 1) = 0. It follows that we must have
U(ϵ, 1) = 0 in order to satisfy W (ϵ, 1) = 0.

To solve for f(ϵ, t), note that we have two known points: we would like to satisfy the
condition f(ϵ, 0) = 0, and we have that f and g should agree on the midpoint t = (1 − ϵ)/2.
From this it is easy to find f as a linear function of t, and we have for W :

W (ϵ, t) =

{(
ϵ2+3ϵ
1−ϵ

t
)
V (ϵ, t) if t ≤ 1−ϵ

2(
ϵ+1
2

− t
1+ϵ

)
U(ϵ, t) if t ≥ 1−ϵ

2

.

Since we have satisfied W (ϵ, 0) = 0 with this choice of f(ϵ, t) we do not need to require
V (ϵ, 0) = 0.

It remains to solve for U(ϵ, t) and V (ϵ, t) with the following conditions:

1. U(ϵ, t) ∈ holh
γ( 2t

ϵ+1
+ϵ−1)

2. U(0, t) = 0

3. U(1, t) = τ
(0,t)
γ (vτ (t))

4. U(ϵ, 1) = 0

5. V (ϵ, t) ∈ holhx0

6. V (0, t) = 2vτ (2t)

7. V
(
ϵ, 1−ϵ

2

)
= U

(
ϵ, 1−ϵ

2

)
.

We remark that condition 4 is only needed to make the solution an Ah-homotopy, and the other
conditions are imposed to construct a well-defined variation of Ah-paths.

These requirements suggest the following solutions, where f, h ∈ C∞(I × I) and g, k re-
paremetrizations of (ϵ, t) are to be determined:

V (ϵ, t) = f(ϵ, t)vτ (g(ϵ, t))
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U(ϵ, t) = h(ϵ, t)τ t
γ( 2t

ϵ+1
+ϵ−1)(v

τ (k(ϵ, t))).

In this way, conditions 1 and 5 are automatically satisfied. Note that between t = 0 and
t = (1 − ϵ)/2, the path γ(ϵ, t) is constantly x0, and the parallel transport map is simply the
identity map in this time interval. The remaining conditions now all induce conditions on these
functions f, g, h, k:

� Condition 2 implies that either h(0, t) = 0, or k(0, t) is 0 or 1. Note that vτ is the
reparametrized path, which is 0 at its endpoints.

� Condition 3 implies that h(1, t) = 1 and k(1, t) = t.

� Condition 4 implies that h(ϵ, 1) = 0 or k(ϵ, 1) is 0 or 1, similar to condition 2.

� Condition 6 implies that f(0, t) = 2 and g(0, t) = 2t.

� Condition 7 implies that at t = (1 − ϵ)/2, the functions f and h should agree, and the
functions g and k should agree.

First of all, we let f(ϵ, t) = h(ϵ, t) = 2 − ϵ. This satisfies f(0, t) = 2, h(1, t) = 1, and makes
f and h agree at t = (1 − ϵ)/2. Then we define g(ϵ, t) = 2t, which satisfies the only explicit
condition on g: g(0, t) = 2t. What remains is to find k(ϵ, t) with the conditions

� k(0, t), k(ϵ, 1) ∈ {0, 1},

� k(1, t) = t,

� k(ϵ, (1− ϵ)/2) = 1− ϵ

The last condition comes from the requirement g(ϵ, (1− ϵ)/2) = 1− ϵ. The solution is given by

k(ϵ, t) =
2ϵ

1 + ϵ
(t− 1) + 1.

This finishes the proof. To summarize, the final Ah-homotopy is given by

a(ϵ, t) =

((2− ϵ)vτ (2t), 0) if 0 ≤ t ≤ 1−ϵ
2(

(2− ϵ)τ t
γ( 2t

ϵ+1
+ϵ−1)

(vτ ( 2ϵ
1+ϵ

(t− 1) + 1)), 2
ϵ+1

dγ
dt

(
2t
ϵ+1

+ ϵ− 1
))

if 1−ϵ
2

≤ t ≤ 1
.

The solution to the differential equation in Equation (20) is

W (ϵ, t) =

{
ϵ2+3ϵ
1−ϵ

t(2− ϵ)vτ (2t) if 0 ≤ t ≤ 1−ϵ
2(

ϵ+1
2

− t
1+ϵ

)
(2− ϵ)τ t

γ( 2t
ϵ+1

+ϵ−1)
(vτ ( 2ϵ

1+ϵ
(t− 1) + 1)) if 1−ϵ

2
≤ t ≤ 1

and since this satisfies W (ϵ, 1) = 0, we have a homotopy between a0(t) and a1(t), which shows

gγ · hv =

[(
τ 0,tγ (vτ (t)),

dγ

dt

)]
.
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