
WISB399 Bachelorscriptie (ECTS 7.5)

The Consequences of Gödel’s Incompleteness

Theorems for the Consistency of Mathematics

H. (Harm) Verheggen (ID: 6903967)
Supervisor: Dr. J. (Jaap) van Oosten

Utrecht University

June 19, 2024

Preface

I would like to state a few things regarding this bachelor thesis. First, I assume
that readers know common terms and definitions found in most preliminary
courses of mathematical logic. Second, most results that are given without proof
can be found in Van Oosten’s lecture notes of Basic Computability Theory [6].
These notes form the skeleton for this text, hence including each proof with
rigorous detail would make the whole too bloated. Naturally, results not stated
in Van Oosten’s will be referenced to their respective material.

I also would like to take a moment to thank the people who have supported
me while I worked on my bachelor thesis. First, I want to express gratitude
towards my parents for their endless love and encouragement. Without you I
could not have gone to Utrecht University in the first place. Then there is my
caring brother, who is always interested in how I am doing and what my current
work entails. Additionally, I would like to thank fellow student Mohammed El
Badaoui for taking time out of his busy schedule to provide useful criticism and
sitting through my long ramblings. Finally, I want to acknowledge my thesis
supervisor Dr. Jaap van Oosten for his pleasant collaboration and sage advice.
Needless to say, I am responsible for any remaining errors.

i

Introduction

In 1931, Kurt Gödel (1906-1978) presented two theorems in an Austrian scientific
journal. These were known as the first and second incompleteness theorem;
together referred to as Gödel’s Incompleteness Theorems. The theorems were
a response to the Principia Mathematica (PM), which was a monumental work
consisting of three volumes by Bertrand Russell and Alfred North Whitehead.
The goal of PM was to formulate a system of axioms and rules of reasoning
within which all of the mathematics known at the time could be stated and
proved. Quite an ambitious goal, but it had some flaws.

The first flaw was revealed after Gödel assumed that PM satisfied a property
he called ω-consistency (“omega-consistency”). Under the assumption that PM
is ω-consistent, Gödel showed with his first incompleteness theorem that PM
is incomplete, meaning that there exists a sentence in the language of PM that
can neither be proved nor disproved within PM itself. We call such a sentence
independent of PM. The second incompleteness theorem says that if PM is
consistent – meaning that there is no sentence that can be both proved or
disproved – then PM cannot prove its own consistency.

To provide some technical details, Gödel did actually carry out his arguments
in a different system he called P. Regardless, it was clear that his two theorems
were also applicable to PM. Another detail worth noting is the property of
ω-consistency. This is a stronger property than consistency, and has additional
flavour. However, J. Barkley Rosser proved in 1936 that the weaker assumption
of consistency was enough to conclude that PM is incomplete.

Today, Gödel’s Incompleteness Theorems are commonly used for formal
systems within which a “certain amount of arithmetic” can be expressed and
some “basic rules of arithmetic” can be proved. To state this more explicitly,
any system whose language includes the language of elementary arithmetic
and which has a fair amount of induction is one that meets the condition.
Interestingly, the incompleteness theorems are also applicable to systems with
sentences that do not directly state anything regarding natural numbers but
rather refer to mathematical objects that can be used to represent the natural
numbers.

For this thesis it is our aim to explore this more modern usage of Gödel’s
Incompleteness Theorems. To provide an overview, in Chapter 1 we will study
a special family of functions known as primitive recursive functions. Roughly
speaking, a primitive recursive function can be computed by a computer program
whose loops are all for-loops. These will be relevant in Chapter 2 where we talk
about the formal system of Peano Arithmetic (PA). It is within this same chapter
that we learn that every primitive recursive function can be represented in PA
by something called a ∆1-formula, which will be crucial in the construction
of the incompleteness theorems. Then, in Chapter 3, we will construct and
discuss Gödel’s Incompleteness Theorems. In particular, we will see that PA is
incomplete and that it does not prove its own consistency. Finally, Chapter 4
will be more philosophical as we review some consequences and misconceptions
of Gödel’s work.

ii

Contents

Preface i

Introduction ii

1 Primitive Recursion 1
1.1 Primitive Recursive Functions and Relations 1
1.2 Pairing Functions and Coding . 7

2 Peano Arithmetic 13
2.1 Basic Properties of PA . 13
2.2 Some Elementary Number Theory in PA 15
2.3 Recursive Functions Represented in PA 16

3 Gödel’s Incompleteness Theorems 21
3.1 Gödel’s Coding of Formulas and Diagonalization 21
3.2 The First Incompleteness Theorem 23
3.3 The Second Incompleteness Theorem 26

4 Consequences of the Incompleteness Theorems 28
4.1 Paris-Harrington Theorem . 28
4.2 Hilbert’s Program . 29
4.3 Some Misconceptions about Gödel’s theorems 30

Conclusion 32

References 33

iii

1 Primitive Recursion

The proof for the first incompleteness theorem makes use of a special family of
functions called primitive recursive functions. Reason for our interest in these
functions has to do with Gödel’s arithmetization of formal languages, or Gödel
coding. Using this method, Gödel was able to assign natural numbers to the
terms, formulas, and – even – proofs of a formal language. This was crucial for
his proofs of the incompleteness theorems.

For that reason we will concentrate on the theory that surrounds primitive
recursive functions. And because natural numbers are important, we assume in
this chapter that each variable stands for a member of the set N = {0, 1, 2, . . .}
with its usual addition (+) and multiplication (·).

For reference, we have used Van Oosten [6], Smoryński [5], and Boolos,
Burgess & Jeffrey [1].

1.1 Primitive Recursive Functions and Relations

When studying mathematics, one frequently encounters expressions that use
variables, like x2 or ex. In both of these we speak of a number that varies on a
variable x and a function that takes x as an input. However, we would like to
be more precise when describing expressions in order to avoid ambiguity. For an
example on where ambiguity might occur, take x + y. This can be interpreted
in several ways. We will mention a few below:

a) A natural number (i.e. a constant).

b) A function that takes a 2-tuple (x, y) to give a number (i.e. of the form
N2 → N).

c) A function that takes a 2-tuple (y, x) to give a number (i.e. of the form
N2 → N).

d) A function that takes a 3-tuple (x, y, z) but only applies x and y to give a
number (i.e. of the form N3 → N).

e) A function that only takes x and has y as a parameter to give a number
(i.e. of the form N → N).

The following definition helps us to distinguish between these interpretations.

Definition 1.1. Let x⃗ be a sequence of variables x1 · · ·xk which may occur
in an expression F . Then λx⃗.F denotes the function which takes the k-tuple
x1 · · ·xk and outputs F (x1, . . . , xk).

Example. Using Definition 1.1, we can, respectively, reformulate the previous
interpretations of x+y as: (a) x+y; (b) λxy.x+y; (c) λyx.x+y; (d) λxyz.x+y;
and (e) λx.x+ y.

1

Remark. In Definition 1.1 we used something called the λ-notation. This λ
is there to specify that we are dealing with a function. Nevertheless, we will
sometimes provide an expression of the form F (x⃗) without λ-notation and still
call it a function if there is no ambiguity at play.

With a formal definition of functions at hand we will now discuss primitive
recursive functions.

Definition 1.2. We call a function primitive recursive if it can be constructed
by finitely many steps using the following rules:

F1). The zero function Z = λx.0 is primitive recursive.

F2). The successor function S = λx.x+ 1 is primitive recursive.

F3). The projection function P k
i = λx1 . . . xk.xi is primitive recursive.

F4). If G1, . . . , Gl : Nk → N and H : Nl → N are primitive recursive, then so is
F : Nl → N defined from G1, . . . , Gl and H by composition:

F (x⃗) = λx⃗.H(G1(x⃗), . . . , Gl(x⃗))

F5). If G : Nk → N and H : Nk+2 → N are primitive recursive, then so is
F : Nk+1 → N defined from G and H by primitive recursion:

F (0, x⃗) = G(x⃗)

F (y + 1, x⃗) = H(y, F (y, x⃗), x⃗)

Remark. A special case occurs in (F5) for k = 0. In this scenario we assume
that H : N2 → N is a primitive recursive function and that there exists a n ∈ N
such that F : N → N defined by

F (0) = n

F (y + 1) = H(y, F (y))

is also primitive recursive. However, note that we have not yet shown that any
natural number can be given by a primitive recursive function. This will be
done in the next example.

The functions Z, S and P k
i together form what we will call basic functions.

One may observe that these basic functions are, on their own, limited in their
capability to construct other functions. We would need more tools in order to
do this. Fortunately, this is where rules (F4) and (F5) come in, for they allow
us to combine the basic functions into new primitive recursive functions. Thus,
intuitively speaking, we may view rules (F1)-(F3) as the “building blocks” and
rules (F4) and (F5) as the “cement.”

Examples. In the following we will give a list of several primitive recursive
functions. These were taking from Example 8.3 in Smoryński ([5], p. 59). It
will be shown that these are indeed primitive recursive.

2

a). The constant function Ck
n = λx1 . . . xk.n, for any n ∈ N.

b). The addition function A = λxy.x+ y.

c). The multiplication function M = λxy.x · y.

d). The exponentiation function E = λxy.xy.

e). The predecessor function λx.pd(x), which is defined by pd(0) = 0, and
pd(x) = x− 1 if x > 0.

f). The cut-off subtraction function λxy.x−̇y, which is defined by x−̇y = x−y
if x ≥ y, and x−̇y = 0 if x < y.

g). The signum function λx.sg(x), which is defined by sg(0) = 0, and
sg(x) = 1 if x > 0.

h). The signum complement function λx.sg(x), which is defined by sg(0) = 1,
and sg(x) = 0 if x > 0.

Proof. (a) Note that the functions Z, S, P k
1 are primitive recursive. Use these

to define for any n the function

Ck
n(x1, . . . , xk) = Sn(Z(P k

1 (x1, . . . , xk)))

where Sn is defined by S0 = P 1
1 , and Sn = S(Sn−1) for n > 0. Using

composition we see that Sn is primitive recursive for any n ∈ N, hence Ck
n is

primitive recursive.
(b) According to Definition 1.2(F5), primitive recursion in

A(x, 0) = x+ 0 = x = P 1
1 (x)

A(x, y + 1) = A(x, y) + 1 = S(A(x, y)) = S(P 3
2 (y,A(x, y), x))

is applied to the wrong variable. Instead, define B(y, x) = A(x, y) and do
primitive recursion on y, or do

A(0, y) = P 1
1 (y)

A(x+ 1, y) = S(P 3
2 (x,A(x, y), y))

(c) Using primitive recursion and the addition function A, we can compute
M(0, y) = 0 · y = 0 = Z(y), and

M(x+ 1, y) = (x+ 1) · y
=M(x, y) + y

= A(M(x, y), y)

= A(P 3
2 (x,M(x, y), y), P 3

3 (x,M(x, y), y))

3

(d) Observe: define B(y, x) = E(x, y). Then B(0, x) = 1 = S(Z(x)), and

B(y + 1, x) = x ·B(y, x)

=M(x,B(y, x))

=M(P 3
3 (y,B(y, x), x), P 3

2 (y,B(y, x), x))

(e) Observe: pd(0) = 0, and pd(x+ 1) = x = P 2
1 (x, pd(x)).

(f) Observe: define B(y, x) = x−̇y. Then B(0, x) = x = P 1
1 (x), and

B(y + 1, x) = pd(B(y, x)) = pd(P 3
2 (y,B(y, x), x))

(g-h) Observe: sg(x) = 1−̇x and sg(x) = 1−̇sg(x)

This showcased a multitude of primitive recursive functions. But we can
also compare natural numbers and see if any relations between them can be
formally computed. This question can be tackled after introducing the following
definition.

Definition 1.3. We call R a k-ary relation if it is a subset of Nk. We write
R(x) if and only if x ∈ R, and ¬R(x) if and only if x ̸∈ R. Then χR : Nk → N
is the characteristic function of the k-ary relation R if the following holds:

χR(x⃗) =

{
0 if R(x)

1 if ¬R(x)

Furthermore, we call R primitive recursive if its characteristic function is
primitive recursive.

Remark. As Smoryński points out ([5], p. 61), this characteristic function is
unusual compared to the one we commonly see in mathematics. He states that
in Recursion Theory it is normal to swap out the roles of 0 and 1 such that
0 stands for “truth” and 1 for “falsehood.” Smoryński argues that 0 is more
noticeable among the natural numbers when doing recursion and, thus, deserve
the honour to play the role of truth.

Examples. a) Consider the absolute difference function λxy.|x − y|. A quick
check for

|x− y| = x−̇y + y−̇x

shows that it is primitive recursive. Now, we may wonder whether the
equality relation

eq = {(x, y) | x = y}

is primitive recursive. To see that this is indeed the case, we can infer that its
characteristic function yields χeq(x, y) = 0 if x = y, and χeq(x, y) = 1 if x ̸= y.
Since |x− y| = 0 when x = y, and |x− y| > 0 for x ̸= y, we can use the signum
function sg to find χeq(x, y) = sg(|x − y|). Because this is a composition of
primitive recursive functions, we conclude that the equality relation is primitive
recursive.

4

b) Let the ordering relation be given by

leq = {(x, y) | x ≤ y}

To show that this is primitive recursive, verify χleq(x, y) = sg(x−̇y).

The next theorem covers some additional methods for constructing primitive
recursive functions and relations.

Theorem 1.4.

i) If the function F : Nk+1 → N is primitive recursive, then so are

λx⃗z.
∑
y<z

F (x⃗, y)

λx⃗z.
∏
y<z

F (x⃗, y)

λx⃗z.(µy < z.F (x⃗, y) = 0)

The last of these is said to be defined by bounded minimization, and it
produces the least y < z such that F (x⃗, y) = 0; if such a y < z does not
exist, it outputs z.

ii) If R and S are primitive recursive k-ary relations, then so are R∩S, R∪S,
R− S, and Nk −R.

iii) If R is a primitive recursive k + 1-ary relation, then so are

R∃ = {(x⃗, z) | ∃y < z.R(x⃗, y)}
R∀ = {(x⃗, z) | ∀y < z.R(x⃗, y)}

Proof. (i) This is shown in Van Oosten ([6], p. 36).
(ii) Observe:

χR∩S = λx⃗.sg(χR + χS(x⃗))

χR∪S = λx.χR(x⃗) · χS(x⃗)

χNk−R = λx.sg(χR(x⃗))

χR−S = χR∩(Nk−S)

(iii) Observe:

χR∃ = λx⃗z.
∏
y<z

χR(x⃗, y)

χR∀ = λx⃗z.sg

(∑
y<z

χR(x⃗, y)

)

5

The next proposition is an appetizer for a larger theorem. It introduces a
way to define primitive recursive functions using “cases.”

Proposition 1.5. [Definition by Cases] If G1, G2, H : Nk → N are primitive
recursive functions, then so is F : Nk → N defined by

F (x⃗) =

{
G1 if H(x⃗) = 0

G2 if H(x⃗) ̸= 0

Proof. We can verify

F (x⃗) = G1(x⃗)sg(H(x⃗)) +G2(x⃗)sg(H(x⃗))

This result can be extended for any number of pairwise disjoint cases. This
is stated by Boolos & Jeffrey ([1], p. 74), which we have modified in our own
terms below.

Theorem 1.6. [General Definition by Cases or GDC] Let R1, . . . , Rn ⊂ Nk

be primitive recursive relations such that Ri ∩ Rj = ∅ for all i ̸= j. Suppose
that G1, . . . , Gn : Nk → N are primitive recursive functions. Then the function
F : Nk → N defined by

F (x⃗) =


G1(x⃗) if R1(x⃗)

...

Gn(x⃗) if Rn(x⃗)

is also primitive recursive.

Proof. We have

F (x⃗) =

n∑
i=1

mult(Gi(x⃗), χRi
(x⃗))

SinceR1, . . . , Rn are primitive recursive relations, it follows that χR1
, . . . , χRn

are also primitive recursive functions. Hence, for each 1 ≤ i ≤ n, the function
mult(Gi(x⃗), χRi(x⃗)) is primitive recursive. Using the addition function A to
summarize all mult(Gi(x⃗), χRi(x⃗)) shows that F is primitive recursive.

The next corollary makes GDC a bit more flexible.

Corollary 1.6.1. Let R1, . . . , Rn ⊂ Nk be primitive recursive relations such
that Ri ∩ Rj = ∅ for all i ̸= j. Suppose that G1, . . . , Gn, Gn+1 : Nk → N are
primitive recursive functions. Then the function F : Nk → N defined by

F (x⃗) =


G1(x⃗) if R1(x⃗)

...

Gn(x⃗) if Rn(x⃗)

Gn+1(x⃗) else

is also primitive recursive.

6

Proof. Here the case “else” means Rn+1(x⃗), where Rn+1 = Nk−(R1∪ . . .∪Rn).
Per Theorem 1.4(ii) we infer via induction that R1 ∪ . . . ∪ Rn is primitive
recursive, hence Rn+1 is a primitive recursive relation. Then applying GDC
completes the proof.

1.2 Pairing Functions and Coding

Although the encoding of formal languages becomes more important in Chapter
3, we will do some initial groundwork in this section. We do this now because we
want to encode sequences of natural numbers into natural numbers in such a way
that valuable operations, like taking the length of the sequence or finding its i-th
component, are primitive recursive in their codes. To provide an example, given
the code of a term t and a formula φ, which are, respectively, denoted by ⌜t⌝ and
⌜φ⌝, there exists a primitive recursive function such that F (⌜φ⌝, ⌜t⌝) = ⌜φ[t/v]⌝.
Regardless, for our first order of business we consider pairing functions.

Definition 1.7. A function f : N2 → N is called a pairing function if it is
bijective. If f is a pairing function, then we say that f(x, y) codes the pair
(x, y).

The pairing function we will focus primarily on is the diagonal enumeration
function or Cantor pairing function, which is given by

λxy.j(x, y) =
1

2
(x+ y)(x+ y + 1) + x =

(x+ y)2 + 3x+ y

2

So, j(0, 0) = 0, j(0, 1) = 1, j(1, 0) = 2, etc. For a visual perspective, view
Figure 1 on the next page. Using this figure we can immediately see that j is
a pairing function, for we can apply a combinatorial argument to say that each
element (x, y) ∈ N2 gets paired with a unique number z ∈ N. Furthermore, we
can demonstrate that j is primitive recursive.

Theorem 1.8. The Cantor pairing function j is primitive recursive.

Proof. Define the function T = λx.x(x+1)
2 . Then T (x + y) + x = j(x, y). Use

primitive recursion and compute T (0) = 0 and T (x+1) = T (x) + S(x). Hence,
T is primitive recursive, meaning j is primitive recursive via composition.

Notice for all x, y ∈ N that x, y ≤ j(x, y). This is convenient, for it allows
us to define the projection functions

j1(z) = µx ≤ z.[∃y ≤ z.j(x, y) = z]

j2(z) = µy ≤ z.[∃x ≤ z.j(x, y) = z]

for all z ∈ Z. Therefore, j1 finds the smallest x ≤ z such that a y ≤ z
exists with the property j(x, y) = z, and j2 does the same but with the roles
between x and y swapped. Playing around with these functions shows that the
word “projection” is suitable, since we can quickly verify j1(j(x, y)) = x and
j2(j(x, y)) = y for all x, y ∈ N.

7

(0, 0)

(0, 1)

(1, 0)

(0, 2)

(1, 1)

(2, 0)

(0, 3)

(1, 2)

(2, 1)

(3, 0)

...

. .
.

. .
.

. .
.

. . .

Figure 1: A visualization of the Cantor pairing function.

Additionally, we can demonstrate j(j1(z), j2(z)) = z for all z ∈ N, and that
j1, j2 are primitive recursive functions. We provide a sketch instead of a proof:
for the first part, simply by looking at Figure 1 we can infer j(j1(z), j2(z)) = z
for all z ∈ N since j is bijective. To see that j1 and j2 are primitive recursive,
use primitive recursion. The result follows by using Figure 1, again, since it
shows where “you go” in the computation based on previous results.

Now we have a bijective function that codes a pair of natural numbers into
a natural number. But for future endeavours it would be ideal if we had a
bijective function Nm → N for any m ≥ 1 that codes tuples (x1, . . . , xm) of
natural numbers into natural numbers. Fortunately, we can do that by using
the Cantor pairing function j. This is done by the following.

Definition 1.9. For m ≥ 1, define the Cantor m-tuple function jm : Nm → N
in the following manner:

j1(z) = z

jm+1(x1, . . . , xm, xm+1) = j(jm(x1, . . . , xm), xm+1)

In addition, its i-th projection function jmi : N → N, where 1 ≤ i ≤ m,
satisfies

jm(jm1 (z), . . . , jmm(z)) = z

for each z ∈ N, and is given by:

j11(z) = z

jm+1
i (z) =

{
jmi (j1(z)) if 1 ≤ i ≤ m

j2(z) if i = m+ 1

8

Remark. Note for m = 1 that jm+1(x, y) = j(x, y), and jm+1
1 (z) = j1(z) and

jm+1
2 = j2(z). So, for m = 1 we get j and its projections back. Moreover, for
each m ≥ 1 we see that jm is bijective since it is recursively defined by j.

Like the Cantor pairing function j and its projection functions j1, j2, the
function jm and its projections jmi are primitive recursive. This is stated, among
other things, in the following lemma.

Lemma 1.10.

i) jmi (jm(x1, . . . , xm)) = xi, for all 1 ≤ i ≤ m.

ii) The functions jm and jmi are primitive recursive.

Proof. (i) We do induction on m. Thus, start with m = 1. Then we must have
i = 1, meaning j11(z) = z. Next, suppose the statement holds for all 1 ≤ i ≤ m
for some arbitrary m. Then we need to check for m+ 1 if the statement holds
for all 1 ≤ i ≤ m+ 1. If 1 ≤ i ≤ m, then

jm+1
i (jm+1(x1, . . . , xm, xm+1)) = jmi (j1(j

m+1(x1, . . . , xm, xm+1)))

= jmi (j1(j(j
m(x1, . . . , xm), xm+1))))

= jmi (jm(x1, . . . , xm))

= xi

If i = m+ 1, then

jm+1
i (jm+1(x1, . . . , xm, xm+1)) = j2(j

m+1(x1, . . . , xm, xm+1))

= j2(j(j
m(x1, . . . , xm), xm+1))

= xm+1

(ii) First do jm. Intending to do induction, let m = 1. Then it is clear
that jm(z) = j1(z) = z is primitive recursive. Next, suppose jm is primitive
recursive for some arbitrary m. Then

jm+1(x1, . . . , xm, xm) = j(jm(x1, . . . , xm), xm+1)

is a composition of primitive recursive functions, hence it is primitive recursive.
For jmi , observe for m = 1 that i = 1 and thus jmi (z) = j11 = z, which is
primitive recursive. If m > 1, note that jmi (z) = j2((j1)

k(z)) where j1 is
iterated k-times with k = |m − i − 1|. Thus, it is a composition of primitive
recursive functions, making it primitive recursive. Using Definition by Cases
completes the proof.

Now we know that for every m ≥ 1 the function jm is bijective, and that
jm and jmi are primitive recursive. This means we can encode any m-tuple
or sequence (x1, . . . , xm) of natural numbers into a natural number. We will
denote such an encoding by the function ⟨x1, . . . , xm⟩, which we will call the
code of the sequence. In particular, the empty sequence (−) will have the code
⟨ ⟩. We shall make this precise in the next definition.

9

Definition 1.11. [Code of the Sequence] Let ⟨ ⟩ = 0 denote the code of the
empty sequence, and for m > 0 we have the code of the sequence

⟨x0, . . . , xm−1⟩ = j(m− 1, jm(x0, . . . , xm−1)) + 1

Remark. Observe that the code of the sequence is primitive recursive since it
is a composition of primitive recursive functions. Furthermore, a sharp reader
may have noticed that we start counting at 0 instead of 1. As Van Oosten states
([6], p. 40), this is conventional when coding arbitrary sequences, and it is also
more consistent with the natural numbers that start at 0.

Previously we saw that the coding of the Cantor pairing function j was
unique. This is also the case for the code of the sequence.

Lemma 1.12. For every y ∈ N, either y = 0 or there exists a unique m > 0
and sequence ⟨x0, . . . , xm−1⟩ such that y = ⟨x0, . . . , xm−1⟩.

Proof. The case y = 0 is evident. Therefore, let y > 0. Observe that j and jm

produce unique solutions for their input values since they are bijective. Then
j(m − 1, jm(x0, . . . , xm−1)) is a composition of bijective functions, hence it is
bijective. The function ⟨x0, . . . , xm−1⟩ is simply that function but shifted by
1, which makes it bijective. Because of all this, each sequence (x0, . . . , xm−1)
corresponds with a unique number among

{j(m− 1, 0) + 1, j(m− 1, 1) + 1, . . .}

This set is equivalent to

{j(0,m), j(m, 0), j(m, 1), . . .}

with the same ordering. Using this list, we see that for each y > 0 there exists
a unique m > 0 and sequence (x0, . . . , xm−1) such that y = ⟨x0, . . . , xm−1⟩.

Now that we are able to assign codes for any arbitrary sequence of finite
length, we may consider operations on sequences.

Definition 1.13. The function lh(x) gives the length of the sequence with code
x, and is given by

λx.lh(x) =

{
0 if x = 0

j1(x− 1) + 1 if x > 0

The functions (x)i gives the i-th element of the sequence with code x if
0 ≤ i ≤ lh(x), and 0 otherwise, and is given by

λx.(x)i =

{
j
lh(x)
i+1 (j2(x− 1)) if x > 0 and 0 ≤ i < lh(x)

0 else

These new functions are primitive recursive and possess some neat properties.

10

Theorem 1.14. The functions λx.lh(x), λx.(x)i are primitive recursive. In
addition, we have (⟨ ⟩)i = 0 and (⟨x0, . . . , xm−1⟩)i = xi, and for all x ∈ N:
either x = 0 or x = ⟨(x)0, . . . , (x)lh(x)−1⟩.

Proof. To show that lh(x) and (x)i are primitive recursive, see that each case
is given by a primitive recursive function and relation, and that the cases are
pairwise disjoint. The result then follows from Corollary 1.6.1.

For the other properties, we first compute (⟨ ⟩)i = (0)i = 0, and

(⟨x0, . . . , xm−1⟩)i = (j(m− 1, jm(x0, . . . , xm−1)) + 1)i

= j
lh(x)
i+1 (j2(j(m− 1, jm(x0, . . . , xm−1)))

= jmi+1(j
m(x0, . . . , xm−1))

= xi

For the last part, case x = 0 is clear. Thus, assume x > 0. Then by
Lemma 1.12 there is a unique m > 0 and sequence (x0, . . . , xm−1) such that
x = ⟨x0, . . . , xm−1⟩. Using our previous computation implies (x)i = xi for each
i, which yields the desired result.

Alongside finding the length or i-th component of a sequence, we can consider
putting sequences after each other. This can be done with the following function.

Definition 1.15. Let λxy.x ⋆ y denote the concatenation function with x and
y being codes of sequences. It is given by the scheme:

⟨ ⟩ ⋆ y = y

x ⋆ ⟨ ⟩ = x

⟨(x)0, . . . , (x)lh(x)−1⟩ ⋆ ⟨(y)0, . . . , (y)lh(y)−1⟩ = ⟨(x)0, . . . , (x)lh(x)−1, (y)0, . . . , (y)lh(y)−1⟩

As might be expected, this function is primitive recursive.

Theorem 1.16. The concatenation function is primitive recursive.

Proof. We first define the composition function λxy.x ◦ y, which is given by
x ◦ y = x ⋆ ⟨y⟩. To show that this is primitive recursive, consider two cases:
x = 0 and x = ⟨(x)0, . . . , (x)lh(x)−1⟩, which follows from Theorem 1.14. We find

λxy.x ◦ y =

{
⟨y⟩ if x = 0

⟨(x)0, . . . , (x)lh(x)−1, y⟩ if x > 0

Using Definition by Cases we infer that this is primitive recursive. Next,
define the function F with the scheme:

F (0, x, y) = x

F (w + 1, x, y) = F (w, x, y) ◦ (y)w

Each clause in the scheme is primitive recursive, hence via primitive recursion
we infer that F is primitive recursive. Finally we put x⋆y = F (lh(y), x, y), which
is primitive recursive by composition.

11

We end this chapter with course-of-values recursion. This method allows us
to define F (y+1, x⃗) directly in terms of all its previous values F (0, x⃗), . . . , F (y, x⃗).

Definition 1.17. Let G : Nk → N and H : Nk+2 → N be functions. The
function F : Nk+1 → N defined by the clauses

F (0, x⃗) = G(x⃗)

F (y + 1) = H(y, jy+1(F (0, x⃗), . . . , F (y, x⃗)), x⃗)

is defined from G and H by course-of-values recursion

Using this definition we introduce the following theorem, the proof of which
is given in Van Oosten ([6], p. 42).

Theorem 1.18. Suppose G : Nk → N and H : Nk+2 → N are primitive
recursive functions and F : Nk+1 → N is defined fromG andH by course-of-values
recursion. Then F is primitive recursive.

12

2 Peano Arithmetic

As was explained in the introduction, we will show that PA is incomplete
and that it does not prove its own consistency using Gödel’s Incompleteness
Theorems. For that reason we will study PA and its properties. In particular,
it will be revealed that a lot of elementary number theory can be carried out in
PA.

For reference, this chapter uses Van Oosten [6] and Smoryński [5].

2.1 Basic Properties of PA

We focus on PA as a system of first-order logic, which is a theory of the language
LPA = {0, 1;+, ·} where 0, 1 are constants, and +, · are binary function symbols
satisfying the following axioms:

� ∀x¬(x+ 1 = 0).

� ∀xy(x+ 1 = y + 1 → x = y).

� ∀x(x+ 0 = 0).

� ∀xy(x+ (y + 1) = (x+ y) + 1).

� ∀x(x · 0 = 0).

� ∀xy(x · (y + 1) = (x · y) + x).

� ∀x⃗[(φ(0, x⃗) ∧ ∀y(φ(y, x⃗) → φ(y + 1, x⃗))) → ∀φ(y, x⃗)].

The last axiom considers formulas φ(y, x⃗) in LPA. Axioms of this form
are called induction axioms. The set of all induction axioms is called the
induction scheme. This would produce an infinite amount of axioms, which
are all contained in PA. This is crucial to note, for that would mean there are
no finite LPA-theories which have the same models as PA.

Interestingly, the set of natural numbers N together with the elements 0 and
1, and the usual addition (+) and multiplication (·), is a model of PA. We call
this the standard model of PA, and denote it by N . However, there are also
non-standard models of PA. To provide a popular example: define for every
n ∈ N a term n of LPA by recursion: 0 = 0 and n+ 1 = n + 1. Observe that
this is not the identity function, for 3 = (((0 + 1) + 1) + 1). The terms n are
what we call numerals, and they are something we will use later. Next, let c be
a new constant of LPA, and consider the language LPA ∪ {c} with the theory

{axioms of PA} ∪ {¬(c = n) | n ∈ N}

Every finite subset of this theory can be interpreted in N. Hence, using
the Compactness Theorem, we can infer that this is a consistent theory and
therefore it has a model M , which has a non-standard element cM .

Even though PA is given by quite simple axioms, the theory is surprisingly
strong. However, it is precisely because of its strength that it comes with the

13

weakness of being incomplete. Since it is our goal to reach the incompleteness
theorems, we will develop some elementary number theory in PA. We start with
a proposition that considers basic addition and multiplication. These properties
can be proven via (double) induction.

Proposition 2.1.

i) PA ⊢ ∀x(x = 0 ∨ ∃y(x = y + 1)).

ii) PA ⊢ ∀xyz(x+ (y + z) = (x+ y) + z).

iii) PA ⊢ ∀xy(x+ y = y + x).

iv) PA ⊢ ∀xyz(x+ z = y + z → x = y).

v) PA ⊢ ∀xyz(x · (y · z) = (x · y) · z).

vi) PA ⊢ ∀xy(x · y = y · x).

vii PA ⊢ ∀xyz(x · (y + z) = (x · y) + (x · z)).

viii) PA ⊢ ∀xyz(¬(z = 0) ∧ x · z = y · z → x = y).

Just like in ordinary elementary number theory, in PA we can formulate
ordering of numbers. We will write x < y for the formula ∃z(x+ (z + 1) = y).
Alongside this abbreviation we shall use ∃x < yφ and ∀x < yφ for ∃x(x < y∧φ)
and ∀x(x < y → φ), respectively. Additionally, we write x ≤ y for x = y∧x < y
and x ̸= y for ¬(x = y). The following two lemmas (Lemma 2.2 & 2.3) will use
this new notation.

Lemma 2.2. [Least Number Principle or LNP]

PA ⊢ ∃wφ(w) → ∃y(φ(y) ∧ ∀x(x < y → ¬φ(x))))

Remark. We can read this statement as follows: for any formula φ, if there
exists a w such that φ(w), then there is a y such that φ(y) and for all x < y we
have ¬φ(x). Then the name “Least Number Principle” is suitable, for y can be
viewed as the “least number” such that φ(y) holds in PA.

Lemma 2.3. [Principle of Well-Founded Induction or PWFI]

PA ⊢ ∀w(∀v < wψ(v) → ψ(w)) → ∀wψ(w)

Remark. Said differently: if for any w the statement ∀v < wψ(v) → ψ(w)
holds, then ψ(w) holds for any w. This is intuitively clear, for if the first part
is given then w < w + 1 would imply ψ(w) → ψ(w + 1).

14

2.2 Some Elementary Number Theory in PA

We embark on our journey of elementary number theory in PA with Euclidean
Division.

Theorem 2.4. [Division with remainder]

PA ⊢ ∀xy(y ̸= 0 → ∃ab(x = a · y + b ∧ 0 ≤ b < y))

In addition, PA proves that such a and b are unique.

Remark. In Theorem 2.4, we call b the remainder of x on division by y, and
a is the integer part of x divided by y.

We introduce some extra notation:

x|y ≡ ∃z(x · z = y)

irred(x) ≡ ∀v ≤ x(v|x→ v = 1 ∨ v = x)

prime(x) ≡ x > 1 ∧ ∀yz(x|(y · z) → x|y ∨ x|z)

In order to introduce another function symbol to PA, observe

PA ⊢ ∀xy∃!z((z = 0 ∧ x < y) ∨ x = z + y)

Then we may add the subtraction function symbol− to the language, alongside
the axiom

∀xy((x < y ∧ x− y = 0) ∨ (x = y + (x− y)))

This symbol is necessary for the proof of Bézout’s Theorem, which is given
in Van Oosten ([6], p. 62). With this stated, we describe some properties of
primes in PA.

Proposition 2.5.

i) PA ⊢ ∀x(x > 1 → (irred(x) ↔ prime(x)))

ii) PA ⊢ ∀x(x > 1 → ∃v(prime(v) ∧ v|x))
Remark. Proposition 2.5 is the conjunction of Propositions 4.4 and 4.5 from
Van Oosten ([6], p. 59). This was done in order to make things more compact.

We will now define the least common multiple and greatest common divisor
between two numbers. The greatest common divisor in particular will be
useful to prove Bézout’s Theorem for PA, which is crucial for Gödel’s coding
of sequences in PA.

To define the least common multiple, let x, y ≥ 1. It is clear that x|(x · y)
and y|(x · y). Then by LNP there would exist a least w > 0 such that x|w and
y|w. We denote this least w as lcm(x, y). From our definition it follows that
lcm(x, y) ≤ x · y. Using Euclidean Division we write x · y = a · lcm(x, y) + b
with 0 ≤ b < lcm(x, y). We see that x|b and y|b would yield a contradiction if
b > 0 due to the minimality of lcm(x, y). Hence, x · y = a · lcm(x, y) with a
unique a. This a we will denote by gcd(x, y). If we write lcm(x, y) = y · z, we
infer x · y = gcd(x, y) · y · z and gcd(x, y)|x. In a similar fashion, we can see that
gcd(x, y)|y. Finally, we say that x and y are relatively prime if gcd(x, y) = 1.

15

Theorem 2.6. [Bézout’s Theorem in PA]

PA ⊢ ∀xy ≥ 1∃a ≤ y, b ≤ x(a · x = b · y + gcd(x, y))

Suppose we have a sequence of numbers x0, . . . , xn−1. We will define a
number m = max(x0, . . . , xn−1n)!. Since xi < m · (i + 1) + 1 for all i, the
Chinese Remainder Theorem as provided by Smoryński ([5], p. 44) says we find
a unique a such that

a ≡ xi mod (m · (i+ 1) + 1)

Indeed, for each i ̸= j the numbers m · (i + 1) + 1 and m · (j + 1) + 1 are
relatively prime. Otherwise, we would have a prime p that divides both. But
then it would also divides their difference m · (j − i). And since p is prime, it
follows that p divides m but also m · (i+ 1) + 1, which causes a contradiction.
That said, denote a by the pair (a,m). We will say that this codes the sequence
x0, . . . , xn−1 in PA.

The next theorem considers three important properties of coding sequences
in PA. The first of these says that every x has a sequence that starts with x.
The second mentions that each sequence can be extended. The third and final
property is a technical condition which will be needed later. Before we state the
theorem, let rm(x, y) denote the remainder of x on division by y, and (a,m)i
denotes rm(a,m · (i+ 1) + 1).

Theorem 2.7. [Properties of Sequences in PA]

i) PA ⊢ ∀x∃am((a, 0)0 = x)

ii) PA ⊢ ∀xyam∃bn(∀i < y((a,m)i = (b, n)i) ∧ (b, n)y = x)

iii) PA ⊢ ∀ami((a,m)i ≤ a)

2.3 Recursive Functions Represented in PA

In the previous section we have seen that many parts of elementary number
theory can be done in PA. For the following, we will show that primitive
recursive functions can be represented in PA. This will be important for the
Diagonalization Lemma (Lemma 3.2) in Chapter 3, which will be used in the
construction of the first incompleteness theorem. Our method of representing
functions in PA will be discussed shortly. But first, we provide some definitions.

Definition 2.8. Let φ,ψ, χ, κ be LPA-formulas. We say that φ is a ∆0-formula
if all quantifiers are bounded in φ and it is of the form ∀x < t or ∃x < t,
where t is a term not containing x. If so, ψ is called a Σ1-formula if it is of the
form ∃y1 . . . ytφ. Then χ(x1, . . . , xk) is called a ∆1-formula if both χ and ¬χ
are equivalent to some ψ, and κ is called a Π1-formula when it is of the form
∀y1 . . . ytψ. In all these cases, we write φ ∈ ∆0, ψ ∈ Σ1, χ ∈ ∆1, and κ ∈ Π1.

16

An important property of Σ1-formulas we will consider here is known as
Σ1-Completeness. It says that all closed Σ1-formulas or Σ1-sentences which are
true in the standard model N are provable in PA and vice versa. Before we give
this theorem, recall the definition of numerals as described on page 13 and view
the following lemma.

Lemma 2.9.

i) (PA ⊢ n+m = k) ⇐⇒ n+m = k for all n,m, k ∈ N
ii) (PA ⊢ n ·m = k) ⇐⇒ n ·m = k for all n,m, k ∈ N
iii) (PA ⊢ n < m) ⇐⇒ n < m for all n,m, k ∈ N
iv) PA ⊢ ∀x(x < n↔ x = 0 ∨ . . . ∨ x = n− 1) for all n > 0

Proof. (i) We do double induction, starting on m. So, first put m = 0. Then
we need to show (PA ⊢ n + 0 = k) ⇐⇒ n = k. By the definition of numerals
we get PA ⊢ n+ 0 = n, hence we must demonstrate (PA ⊢ n = k) ⇐⇒ n = k.
For this, we do induction on k. For k = 0, it is clear that (PA ⊢ n = 0) ⇐⇒
n = 0 since PA ⊢ n = 0 = 0. Now assume that the statement holds for some
arbitrary k. Then we need to show (PA ⊢ n = k + 1) ⇐⇒ n = k + 1. But
(PA ⊢ n = k + 1 = k + 1) ⇐⇒ n = k + 1 since (PA ⊢ n = k) ⇐⇒ n = k by
induction hypothesis. Now, assume (PA ⊢ n +m = k) ⇐⇒ n +m = k holds
for some arbitrary m. We need to show it also holds for m+ 1. This is indeed
the case, for (PA ⊢ n +m+ 1 = n +m + 1 = k + 1) ⇐⇒ n +m + 1 = k + 1
per induction hypothesis.

(ii) We do induction on m. Thus, let m = 0. Per one of the axioms of PA
we we know PA ⊢ n ·0 = n ·0 = 0. From this we infer (PA ⊢ k = 0) ⇐⇒ k = 0.
Next, suppose (PA ⊢ n ·m = k) ⇐⇒ n ·m = k for some arbitrary m. Need to
check for m+1. Observe PA ⊢ n ·(m+ 1) = n ·m+n ·1 = k+n. Per (i) and the
induction hypothesis we conclude (PA ⊢ n · (m+ 1) = k + n) ⇐⇒ n · (m+ 1)
= k + n.

(iii) Just like with (ii), we do induction on m. For m = 0, the statement
(PA ⊢ n < m) ⇐⇒ n < m holds vacuously since PA ⊢ ∀x¬(x + 1 = 0) and
because there exists no n ∈ N such that n < 0. For the remainder, suppose
(PA ⊢ n < m) ⇐⇒ n < m holds for some arbitrary m. Then we need to check
if it is the same for m+1. But PA ⊢ n < m+ 1 = m+1, and by our induction
hypothesis we have n < m in PA if and only if n < m. Since m < m + 1, we
infer the desired result.

(iv) Finally, we must show PA ⊢ ∀x(x < n↔ x = 0 ∨ . . . ∨ x = n− 1). This
will be done via induction on n. For n = 0 the statement holds vacuously. Next,
suppose the above statement holds for some n ∈ N. Then we need to check if it
also does for n+1. First, assume x < n+ 1 = n+1. Then x < n or x = n. For
x < n we use the induction hypothesis to infer x = 0, x = 1, . . ., or x = n− 1.
Hence, x = 0 ∨ . . . ∨ x = n. The converse direction is evident.

Using Lemma 2.9 we can infer via induction on the LPA-term t(x1, . . . , xk)
with variables x1, . . . , xk the following: if tN is the interpretation of t in N , as

17

a function Nk → N, then for each n1, . . . , nk ∈ N we have

PA ⊢ t(n1, . . . , nk) = tN (n1, . . . , nk)

This property along with Lemma 2.9 will help us to prove Σ1-Completeness.

Theorem 2.10. [Σ1-Completeness in PA] Let φ ∈ ∆0 (or φ ∈ Σ1) be a formula
with free variables x1, . . . , xk, and n1, . . . , nk ∈ N. Then

PA ⊢ φ(n1, . . . , nk) ⇐⇒ N |= φ[n1, . . . , nk]

Proof. We first start with induction on ∆0-formulas. For the atomic formulas,
these follow from our work in Lemma 2.9.

Next, assume φ,ψ ∈ ∆0 to be formulas with free variables x1, . . . , xk and
n1, . . . , nk ∈ N such that

PA ⊢ φ(n1, . . . , nk) ⇐⇒ N |= φ[n1, . . . , nk]

PA ⊢ ψ(n1, . . . , nk) ⇐⇒ N |= ψ[n1, . . . , nk]

Then we need to show that the theorem holds for φ∧ψ,φ∨ψ,φ→ ψ,∀x < tφ,
and ∃x < tφ. Firstly, these are all ∆0 since φ and ψ are; this can be shown via
induction.

For φ ∧ ψ, this is true in N if and only if both of them are true in N .
By induction hypothesis we find proofs for both φ and ψ in PA, which holds
precisely when their conjunction has a proof in PA.

Checking φ ∨ ψ, this is true in N if and only if either one of them is true in
N . By induction hypothesis we get proofs for either φ or ψ in PA, which holds
precisely when their disjunction has a proof in PA.

Next is φ → ψ. This is true in N if and only if either ¬φ or ψ are true in
N . By induction hypothesis, either ¬φ or ψ is provable in PA, which precisely
holds when φ→ ψ is provable in PA.

Then there is ∀x < tφ, whose x is a bounded variable. Note that this is
equivalent to ∀x(x < t→ φ(x)). Then use PA ⊢ t(n1, . . . , nk) = tN (n1, . . . , nk)

in conjunction with PA ⊢ ∀x(x < t↔ x = 0 ∨ . . . ∨ x = tN − 1) to find

PA ⊢ ∀x < tφ↔ φ(0) ∧ . . . ∧ φ(tN − 1)

From this we infer

N |= ∀x < tφ ⇐⇒ N |= φ(0) ∧ . . . ∧ φ(tN − 1)

⇐⇒ PA ⊢ φ(0) ∧ . . . ∧ φ(tN − 1)

⇐⇒ PA ⊢ ∀x < tφ

Finally, we have ∃x < tφ which has a x that is a bound variable. Remember
that this is equivalent to ∃x(x < t ∧ φ(x)). Then in a similar fashion as the
previous case, we have

PA ⊢ ∃x < tφ↔ φ(0) ∨ . . . ∨ φ(tN − 1)

18

We use this to conclude

N |= ∃x < tφ ⇐⇒ N |= φ(0) ∨ . . . ∨ φ(tN − 1)

⇐⇒ PA ⊢ φ(0) ∨ . . . ∨ φ(tN − 1)

⇐⇒ PA ⊢ ∃x < tφ

For the last part, we show that the statement holds for any Σ1-formula.
To do this, let φ ∈ Σ1 and ψ ∈ ∆0 such that φ ≡ ∃xψ, which is enough to
prove the theorem. Since N is a model of PA, we know PA ⊢ φ =⇒ N |= φ
automatically. For the converse direction, since ψ ∈ ∆0 we find

N |= φ =⇒ N |= ∃xψ(x)
=⇒ ∃n.N |= ψ(n)

=⇒ ∃n.PA ⊢ ψ(n)
=⇒ PA ⊢ ∃xψ(x)
=⇒ PA ⊢ φ

Remark. In particular, the equivalence in Theorem 2.10 does not hold for
negations of Σ1-formulas.

Before stating that every primitive recursive function is Σ1-represented in
PA, we need the following two definitions (Definition 2.11 & 2.12).

Definition 2.11. Let R ⊂ Nk be a k-ary relation. A LPA-formula φ(x1, . . . , xk)
of k free variables is said to represent R (numeralwise) if for all n1, . . . , nk ∈ Nk

we have

R(n1, . . . , nk) =⇒ PA ⊢ φ(n1, . . . , nk) and

¬R(n1, . . . , nk) =⇒ PA ⊢ ¬φ(n1, . . . , nk)

Let F : Nk → N be a k-ary function. A LPA-formula φ(x1, . . . , xk, z) of k+1
free variables represents F (numeralwise) if for all n1, . . . , nk ∈ N we have

PA ⊢ φ(n1, . . . , nk, F (n1, . . . , nk)) and

PA ⊢ ∃!zφ(n1, . . . , nk, z)

Finally, we say that a relation or function is Σ1-represented if there is a
Σ1-formula representing it.

Definition 2.12. A function F : Nk → N is called provably recursive in PA if
it is represented by a Σ1-formula φ(x1, . . . , xk, z) for which

PA ⊢ ∀x1 . . . xk∃!zφ(x1, . . . , xk, z)

These definitions are necessary for the next theorem.

19

Theorem 2.13. Every primitive recursive function is Σ1-represented in PA.

Remark. To prove this theorem, one would need Theorem 4.13 of Van Oosten
([6], p. 66), which states that every primitive recursive function is provably
recursive. Furthermore, Theorem 2.13 is a slight modification of Theorem 4.14
of Van Oosten ([6], p. 67), for it talks about total recursive functions instead
of primitive recursive functions. These so-called total recursive functions are
a family of more general functions in which primitive recursive functions are
contained. Therefore, we can safely use this alternate formulation.

We close this chapter with a result which will be essential in Chapter 3.

Theorem 2.14. For every primitive recursive function F : Nk → N, there is a
∆1-formula φF (x1, . . . , xk+1) which represents F such that

PA ⊢ ∀x1 . . . xk∃!xk+1φF (x1, . . . , xk+1)

Remark. Proving Theorem 2.14 requires some paperwork and would probably
detract from the thesis if we were to write it all out. For that reason we will not
provide the proof, but know that it requires us to check each rule in Definition
1.2 and that Theorem 2.13 will be helpful in this endeavour.

20

3 Gödel’s Incompleteness Theorems

Now that we have developed the necessary theory for primitive recursion and
PA, we can finally discuss Gödel’s Incompleteness Theorems.

For reference, we have used Van Oosten [6].

3.1 Gödel’s Coding of Formulas and Diagonalization

We already did some initial groundwork regarding coding in Chapter 1. Here
we will continue with what we have done so far. In particular, remember the
coding of sequences as defined in Definition 1.11, which is primitive recursive.
We will use this to encode any LPA-formula φ with a number denoted by ⌜φ⌝.
This will be done in such a way that all desired operations on formulas are
translated into primitive recursive functions on codes.

We assume that in our language LPA we have a countable list of variables
v0, v1, Adding < as a primitive symbol of LPA, we consider the following
coding scheme:

0 1 v + · = < ∧ ∨ → ¬ ∀ ∃
0 1 2 3 4 5 6 7 8 9 10 11 12

Given any term t, we define its code ⌜t⌝ by recursion on t: ⌜0⌝ = ⟨0⟩;
⌜1⌝ = ⟨1⟩; ⌜vi⌝ = ⟨2, i⟩; ⌜t+ s⌝ = ⟨3, ⌜t⌝, ⌜s⌝⟩; and ⌜t · s⌝ = ⟨4, ⌜t⌝, ⌜s⌝⟩.

Similarly, we can define the codes for formulas: ⌜t = s⌝ = ⟨5, ⌜t⌝, ⌜s⌝⟩;
⌜t < s⌝ = ⟨6, ⌜t⌝, ⌜s⌝⟩; ⌜φ ∧ ψ⌝ = ⟨7, ⌜φ⌝, ⌜ψ⌝⟩; ⌜φ ∨ ψ⌝ = ⟨8, ⌜φ⌝, ⌜ψ⌝⟩;
⌜φ→ ψ⌝ = ⟨9, ⌜φ⌝, ⌜ψ⌝⟩; ⌜¬φ⌝ = ⟨10, ⌜φ⌝⟩; ⌜∀viφ⌝ = ⟨11, i, ⌜φ⌝⟩; and ⌜∃viφ⌝
= ⟨12, i, ⌜φ⌝⟩.

Since the code of sequences is primitive recursive, it is immediately clear
that the above mentioned codes are primitive recursive in their arguments.
Having done this work, we continue with the second main idea of Gödel – the
Diagonalization Lemma. To arrive at this point, we need the following first.

Lemma 3.1. There is a primitive recursive function Sub such that

Sub(x, y, i) =

{
⌜φ[s/vi]⌝ if y = ⌜φ⌝ and x = ⌜s⌝

0 else

Proof. We first verify that the properties “x codes a term”, “y codes a formula”,
and “vi is free in formula φ and variables s are not bound in φ when s is
substituted for vi” are primitive recursive. If these are indeed primitive recursive,
then the property “y codes a formula φ and x codes a term vi and vi is free in
formula φ and variables s are not bound in φ when s is substituted for vi” is
primitive recursive in x, y, i via intersection of primitive recursive relations. We
then conclude the proof by Definition on Cases to show that Sub is primitive
recursive.

To start, we show that “x codes a term” is primitive recursive. Let χt be
the characteristic function of this property. Using recursion on codes of terms

21

we have χt(x) = 0 if and only if

x = ⟨0⟩ ∨ x = ⟨1⟩
∨ ∃i < x(x = ⟨2, i⟩)
∨ ∃ij < x(χt(i) = χt(j) = 0 ∧ x = ⟨3, i, j⟩)
∨ ∃ij < x(χt(i) = χt(j) = 0 ∧ x = ⟨4, i, j⟩)

Since each of ⟨0⟩, ⟨1⟩, ⟨3, i, j⟩, ⟨4, i, j⟩ is primitive recursive by the property of
codes of sequences, we infer that χt is primitive recursive. Hence, the property
“x codes a term” is primitive recursive.

Next is “y codes a formula”. We denote its characteristic function by χf .
Via recursion on formulas, we have χf (y) = 0 if and only if

∃ij < y(χt(i) = χt(j) = 0 ∧ y = ⟨5, i, j⟩)
∨∃ij < y(χt(i) = χt(j) = 0 ∧ y = ⟨6, i, j⟩)
∨∃ij < y(χf (i) = χf (j) = 0 ∧ y = ⟨7, i, j⟩)
∨∃ij < y(χf (i) = χf (j) = 0 ∧ y = ⟨8, i, j⟩)
∨∃ij < y(χf (i) = χf (j) = 0 ∧ y = ⟨9, i, j⟩)
∨∃i < y(χf (i) = 0 ∧ y = ⟨10, i⟩)
∨∃ij < y(i = ⟨2, i⟩ ∧ χf (j) = 0 ∧ y = ⟨11, i, j⟩)
∨∃ij < y(i = ⟨2, i⟩ ∧ χf (j) = 0 ∧ y = ⟨12, i, j⟩)

Using a similar argument as before, we see that “y codes a formula” is
primitive recursive.

Finally, we demonstrate that “vi is free in formula φ and variables s are
not bound in φ when s is substituted for vi” is primitive recursive. This is
actually the conjunction of two properties, namely “vi is free in formula φ” and
“variables s are not bound in φ when s is substituted for vi.” Showing that
both are primitive recursive reveals that “vi is free in formula φ and variables
s are not bound in φ when s is substituted for vi” is primitive recursive by
intersection.

Let χb be the characteristic function for “vi is bound by φ.” We then have
χb(vi, φ) = 0 if and only if φ has the form of one of the following formulas:
∀viψ; ∃viψ; ψ ∧ κ with vi bound in either ψ or κ; ψ ∨ κ with vi bound in either
ψ or κ; ψ → κ with vi bound in either ψ or κ; or ¬ψ with vi bound in ψ. Each
of these can recursively be given by a code of a formula, hence χb is primitive
recursive by course-of-values recursion. Since “vi is free by φ” is its negation, it
also is primitive recursive.

For “variables s are not bound in φ when s is substituted by vi,” let χs

be its characteristic function. Then χs(s, vi, φ) = 0 if and only if χb(vi, s) = 0
implies χb(vi, φ) = 0. This is a composition of primitive recursive functions,
hence χs is primitive recursive making “variables s are not bound in φ when s
is substituted by vi” primitive recursive.

22

In order to prove the first incompleteness theorem, Gödel created a class
of sentences that are independent of PA, meaning they cannot be proved or
disproved in PA. These are famously known as Gödel sentences, and they
more-or-less say “I am not provable.” We use the Diagonalization Lemma to
prove that these sentences are indeed independent of PA.

Lemma 3.2. [Diagonalization Lemma] For any LPA-formula φ with free variable
v0, there exists a LPA-formula ψ with the same free variables as φ except for v0
such that

PA ⊢ ψ ↔ φ[⌜ψ⌝/v0]

Moreover, if φ ∈ Π1 then ψ can be chosen to be Π1 too.

Remark. In literature, the Diagonalization Lemma is sometimes referred to as
the “self-reference lemma.” However, even though this might heuristically be
useful, it can also be quite misleading. To better paint the picture on what we
mean, note that the lemma says that there is a provable equivalence between
ψ and φ[⌜ψ⌝/v0], but the lemma does not claim that ψ and φ[⌜ψ⌝/v0] are the
same.

3.2 The First Incompleteness Theorem

Just like the coding of terms and formulas, we can encode proofs in PA via
natural numbers. Here is an overview of our coding scheme:

Ass 0 ∨I−r 5 ∀E 10 ⊥ 15
∨I 1 ∨I−l 6 ∃I 11 ¬¬ 16

∧E−r 2 →E 7 ∃E 12
∧E−l 3 →I 8 ¬I 13
∨E 4 ∀I 9 ¬E 14

The coding of these proof trees is done by induction: basic assumption trees
with conclusion φ are denoted by the code ⟨0, ⌜φ⌝⟩; suppose we have trees
D1, D2 with conclusion φ,ψ, respectively; the tree resulting from D1 and D2 by
∧I is ⟨1, ⌜D1⌝, ⌜D2⌝, ⌜φ∧ψ⌝⟩, with ⌜D1⌝ the code of D1 and similarly for D2; If
D2 results from D1 by ∧E−r, meaning the root of D1 is labelled by φ∧ψ and the
root of D2 is labelled as ψ, then ⌜D2⌝ = ⟨2, ⌜D1⌝, ⌜ψ⌝⟩. Something similar is
done for ∧E−l but 2 is replaced with 3; If D4 is the result from trees D1, D2, D3

by ∨E, meaning the root of D1 labelled as φ ∨ ψ, D2 and D3 have χ as their
labelled root, and D4 also has this root, whereby in D2 all the assumptions of
φ have been discharged and in D3 all the assumptions of ψ are discharged, then
we say ⌜D4⌝ = ⟨4, ⌜D1⌝. ⌜D2⌝, ⌜D3⌝, ⌜χ⌝⟩.

The remainder is quite extensive to write out, but we hope the process is clear
to the reader: the length of ⌜D⌝ is n+ 2 where n is the number of “branches”
from the root of D. In particular, this n is always n ≤ 3. Furthermore, the
first element of the string of D is always the number that is associated with the
operation that is applied to D, and the last element is the label of the root of

23

D. With this logic, we can – with some time – recover the tree D from its code
⌜D⌝.

Naturally, the coding of proof trees is also primitive recursive in their arguments.
With that in mind, we will define some additional functions and explain why
these are primitive recursive.

Definition 3.3. Let OA (open assumption), NDT (natural deduction tree),
and Ax (axiom) be given by the following:

� OA(x): gives the code for the set of undischarged assuptions of D given
⌜D⌝.

� NDT(x, y): y is the code of a formula and x is the code of a correct natural
deduction tree with root labelled by the formula coded by y.

� Ax(x): x is the code of an axiom of PA or the predicate logic (i.e. axioms
governing the equality sign =: u = u; u = v ∧ v = w → u = w; and
t = s ∧ φ[t/u] → φ[s/u]).

Lemma 3.4. The functions OA, NDT, and Ax are primitive recursive.

We give a sketch instead of a proof: writing out OA would involve checking
the construction steps for proof trees. Doing so would reveal that OA is primitive
recursive by course-of-values recursion and composition of primitive recursive
functions. A similar proof would follow for NDT. Finally, Ax is the characteristic
function of the set of codes of all axioms of PA and the predicate calculus. Each
case is pairwise disjoint and primitive recursive, making Ax primitive recursive
by Definition of Cases.

We use these new functions to define a new predicate Prf(x, y). It can be
read as follows: “y is the code of a formula, and x is the code of the correct proof
in PA of the formula coded by y.” The next definition states this precisely.

Definition 3.5. Define Prf using the following equivalence:

Prf(x, y) ↔ NDT(x, y) ∧ ∀z ∈ OA(x)Ax(z)

The predicate Prf is crucial for proving the first incompleteness theorem.
Note in particular it says that if x is the code of a correct proof of the formula
that y codes, that there exists a natural deduction tree where all assumptions
that are undischarged are axioms of PA or of the predicate calculus.

Lemma 3.6. Prf is primitive recursive.

Proof. From its definition we can see that Prf is the composition of primitive
recursive functions, hence it itself is primitive recursive.

Since NDT, Ax and Prf are all primitive recursive, we infer via Theorem 2.14
that they can be represented by ∆1-formulas. Respectively, we denote these by
NDT,Ax, and Prf. Then the following lemma is straight-forward.

24

Lemma 3.7.

i) PA ⊢ φ =⇒ PA ⊢ ∃xPrf(x, ⌜φ⌝)

ii) PA ⊢ ∀xy(Prf(x, ⌜φ→ ψ⌝) ∧ Prf(y, ⌜φ⌝) → Prf(⟨7, x, y, ⌜ψ⌝⟩, ⌜ψ⌝))

Proof. (i) Let PA ⊢ φ. Then there exists a proof of φ in PA, hence there exists
a legit proof tree D with conclusion φ. Suppose ⌜D⌝ = x. Since D is a proof
tree, we know ∀z ∈ OA(x)Ax(x) and NDT(x, ⌜φ⌝). This implies Prf(x, ⌜φ⌝),
which is represented by Prf(x, ⌜φ⌝). Since Prf ∈ Σ1, we infer PA ⊢ Prf(n, ⌜φ⌝)
by Σ1-Completeness. Thus, PA ⊢ ∃xPrf(x, ⌜φ⌝).

(ii) Suppose in PA we have Prf(x, ⌜φ→ ψ⌝) and Prf(y, ⌜φ⌝) for some arbitrary
x and y. Then there exists a legit proof tree for φ → ψ and a legit proof tree
for φ. Using implication-elimination (i.e. →E) produces a new correct natural
deduction tree with undischarged assumptions consisting only of axioms of PA or
the predicate logic. This new tree is represented by Prf(⟨7, x, y, ⌜ψ⌝⟩, ⌜ψ⌝).

Remark. We introduce some abbreviation: let □φ denote ∃xPrf(x, ⌜φ⌝). Then
Lemma 3.7 can be reformulated as:

D1) PA ⊢ φ =⇒ PA ⊢ □φ

D2) PA ⊢ □(φ→ ψ) ∧□φ→ □ψ

Using this we can finally state the first incompleteness theorem.

Theorem 3.8. [Gödel’s First Incompleteness Theorem] Apply the Diagonalization
Lemma to the formula ¬∃xPrf(x, v0) to obtain a Π1-sentence G, such that

PA ⊢ G↔ ¬□G

Then G is independent of PA.

Remark. The statement G ↔ ¬□G can be read as “G if and only if G is not
provable in PA.” Alternatively, it can roughly be viewed as “I am not provable”
or “this statement is not provable.” Formulations like these can be compared to
liar’s paradoxes like “I am not true” or “this statement is not true.” However,
it’s important to note that G↔ ¬□G is formulated in a mathematical language
while the liar’s paradoxes are found in ordinary languages. Therefore, even
though they share some similarities, they are not the same.

As is shown in Van Oosten ([6], p. 78), to prove this theorem we first explain
that G can be chosen as Π1 since Prf ∈ ∆1. From that point onwards, we would
either assume G or ¬G is provable in PA. If G is provable, we then perceive □G
by (D1) hence ¬G is provable by our choice of G. But this would mean that
G ∧ ¬G is provable in PA, which is absurd. A similar argument occurs when
we assume ¬G is provable with one exception: when inferring □G in PA we say
that □G is true in N by Σ1-Completeness. Then G would be provable in PA,
which again leads to an absurdity. Since G cannot be proved or disproved in
PA, we say that G is independent of PA.

25

3.3 The Second Incompleteness Theorem

The second incompleteness theorem asserts, more or less, that “PA does not
prove its own consistency.” More formally stated: PA ̸⊢ ¬□ ⊥. Reading ¬□ ⊥
as the sentence expressing the consistency of PA, we will abbreviate it as ConPA.
Using (D2), we can infer PA ⊢ □ ⊥→ □ψ for any ψ. Therefore, we will find
PA ⊢ G→ ConPA. For the remainder of this chapter we will see

PA ⊢ G↔ ConPA

which will immediately imply the second incompleteness theorem. For this,
we need a third rule:

D3) PA ⊢ □φ→ □□φ

But first, let us see that it yields what we want.

Theorem 3.9. For any operation □ satisfying (D1)-(D3) and any G such that
PA ⊢ G↔ ¬□G, we have

PA ⊢ G↔ ConPA

Like the first incompleteness theorem, the proof is rather short. The direction
PA ⊢ G → ConPA is shown via PA ⊢⊥→ G and (D1)-(D2) to infer the result
PA ⊢ □ ⊥→ □G. The converse direction requires (D3); by (D2) and the
assumption G on PA we find PA ⊢ □G → □(¬□G). Combining this with
(D3) applied to G on PA gives PA ⊢ ¬G → □G → □ ⊥. By contrapositivity
we get PA ⊢ ConPA → G and complete the proof. As was stated before, this
immediately proves the second incompleteness theorem.

Corollary 3.9.1. [Gödel’s Second Incompleteness Theorem]

PA ̸⊢ ConPA

The rule that we want to prove, (D3), is in fact a consequence of a more
general theorem. We give this theorem below.

Theorem 3.10. [Formalized Σ1-Completeness in PA] For every Σ1-sentence φ
in PA we have

PA ⊢ φ→ □φ

The proof of this theorem is far from trivial. It will require the next and
final major result (Lemma 3.11) of this thesis. To formulate it, we assume the
language LPA is augmented by the function symbols ⟨·, . . . , ·⟩, lh, (·)i for the
manipulation of sequences. We will also take the primitive recursive function
n→ ⌜n⌝ and represent it by the function symbol T ; and want function symbols
Sf and St that satisfy

Sf (y, x) =

⌜φ[s0/v0, . . . , sk−1/vk−1]⌝ if y = ⌜φ⌝, lh(x) = k, and si = ⌜(x)i⌝
for each i < k

0 else

St(y, x) =

⌜t[s0/v0, . . . , sk−1/vk−1]⌝ if y = ⌜t⌝, lh(x) = k, and si = ⌜(x)i⌝
for each i < k

0 else

26

Just like before, we are allowed to assume that PA proves the recursions on
these functions. With that said, we will state the necessary lemma.

Lemma 3.11. For every ∆0-formula φ(v0, . . . , vk−1) we have:

PA ⊢ ∀x0 . . . xk−1(φ(x⃗) → ∃yPrf(y, Sf (⌜φ⌝, ⟨T (x0), . . . , T (xk−1)⟩)))

The proof of this lemma is derived by Lemmas 5.9, 5.10, and 5.11 from Van
Oosten ([6], p. 83-85). Now we can prove Theorem 3.10.

Proof of Theorem 3.10. Assume φ ∈ Σ1. Then there exists a ψ ∈ ∆0 such that
PA ⊢ φ↔ ∃x0 . . . xk−1ψ. By Lemma 3.11 we have

PA ⊢ ∀x0 . . . xk−1(ψ(x⃗) → ∃yPrf(y, Sf (⌜ψ⌝, ⟨T (x0), . . . , T (xk−1)⟩)))

Hence

PA ⊢ ∃x0 . . . xk−1ψ(x⃗) → ∃yPrf(y, Sf (⌜ψ⌝, ⟨T (x0), . . . , T (xk−1)⟩))

→ ∃yPrf(y, Sf (⌜∃x0 . . . xk−1ψ(x⃗)⌝, ⟨T (x0), . . . , T (xk−1)⟩))

This can be rewritten to

PA ⊢ φ→ ∃yPrf(y, Sf (⌜φ⌝, ⟨T (x0), . . . , T (xk−1)⟩))

By the definition of Sf , this is equivalent to

PA ⊢ φ→ □φ

27

4 Consequences of the Incompleteness Theorems

Now that we have a better understanding of the incompleteness theorems we
consider their use and abuse. First we talk about a concrete application of
the theorems; the Paris-Harrington Theorem. Second we state an important
consequence to another proposal for the foundation of mathematics, Hilbert’s
Program. Finally we make a distinction between the mathematical and ordinary
usage of “incompleteness” and “consistency” and discuss how one might apply
the incompleteness theorems incorrectly.

In order to write this chapter, we have used a Wikipedia article [7], Moerdijk
& Van Oosten [4], Zach [8], Hilbert [3], and Franzén [2].

4.1 Paris-Harrington Theorem

First we consider a concrete application of Gödel’s Incompleteness Theorems,
the Paris-Harrington Theorem. It states that a certain combinatorial principle
in Ramsey Theory is not provable in PA even though PA can express it. The
principle in question is the strengthened finite Ramsey theorem, which is a
statement about colorings and natural numbers. It says the following:

“For any positive integers n, k,m, such that m ≥ n, one can find
N with the following property: if we color each of the n-element
subsets of S = {1, 2, 3, . . . , N} with one of the k colors, then we can
find a subset Y of S with at leastm elements, such that all n-element
subsets of Y have the same color, and the number of elements of Y
is at least the smallest element of Y .”

(Taken from the Wikipedia article Paris-Harrington theorem [7].)

To make this more intuitive, let us briefly explain Ramsey’s theorem: say we
had a large set of objects and wanted to color them differently. No matter how
we color these objects, if we have enough of them we will find a group of objects
with the same color. To provide an example, suppose we have a group of people
at a big party. We ask whether pairs of people have shaken hands or not. We
can think of each handshake as being either a “yes” (they have shaken hands)
or a “no” (they have not shaken hands). Denote “yes” by green and “no” by
red. According to Ramsey’s Theorem, if the party is big enough we will find a
smaller group of people where either everyone has shaken hands with each other
(all “yes”, so all green), or no one has shaken hands with each other (all “no”,
so all red). Now, the strengthened finite Ramsey theorem extends this idea to
any finite number of colors.

To bring this back to Gödel’s Incompleteness Theorems, the Paris-Harrington
theorem roughly says that the strengthened finite Ramsey theorem is unprovable
in PA. This was done by showing that if the theorem was in fact provable
in PA, then PA would be able to prove its own consistency. But this would
contradict the second incompleteness theorem, hence the strengthened finite
Ramsey theorem is not provable in PA. This means that the Paris-Harrington

28

theorem describes a true statement about integers that could be stated in the
language of arithmetic but is unprovable in PA.

4.2 Hilbert’s Program

Remember from the introduction we talked about the Principia Mathematica
or PM. It was first published in 1910-1913 in three volumes, and tried to reduce
mathematics to a single formal system of axioms and rules of reasoning. As
we have stated, it has been shown that PM is incomplete if we assume it is
consistent. Furthermore, PM cannot prove its own consistency. However, this
phenomenon is not unique to PM, for Gödel’s Incompleteness Theorems are
applicable to other systems; one of which we will discuss here.

In the early 1920s, David Hilbert (1862-1943) had his own proposal for the
foundation of mathematics. This proposal became known as Hilbert’s Program
(HP). In HP, Hilbert attempts to formalize mathematics in axiomatic form,
along with a proof that this axiomatization is consistent. The proof in particular
was planned to be carried out by something Hilbert referred to as “finitary
methods.” According to Hilbert, a finitary method considers a restriction
on mathematical thought to those objects which are, supposedly, “intuitively
present as immediate experience prior to all thought,” and methods of reasoning
about those objects do not require the introduction of abstract concepts that
appeal to, in particular, completed infinite totalities. Simply put, we can view
the word “finitary” in this context as simple or constructive.

Using such a method, Hilbert made a distinction between two mathematical
worlds, namely the actual world of finite things and the ideal world of infinitary
abstractions. With this he proposed the construction of a logical system capable
of describing the actual world, which includes a proof in the ideal world. To
make things more explicit, let us denote this logical system by S along with
the theory of PA, since it can be seen as the theory of those truths that can
be established by finitary methods. Furthermore, we can safely assume that
the ideal world is represented by the system ZF(C), which is the set theory of
Zermelo-Fraenkel (along with the axiom of choice). We can then interpret HP
with the following formulation from Moerdijk & Van Oosten ([4], p. 119):

� The weak version states that PA proves the consistency of ZF(C).

� The strong version states that ZF(C) is conservative1 over PA, and hence
that PA is complete.

Now things start to get interesting. Remember from Chapter 3 that the
first incompleteness theorem implies that PA is incomplete. Hence, the strong
version of HP is refuted. Moreover, PA is a subsystem of ZF(C), so the consistency
of ZF(C) would imply the consistency of PA. But the second incompleteness
theorem says that PA cannot prove its own consistency. Thus, the weak version
of HP is also refuted by Gödel.

1Conservative means that ZF(C) ⊢ φ implies PA ⊢ φ for every PA-sentence φ.

29

It is generally accepted – but not universally – that Gödel’s work has shown
that HP cannot be carried out. Nevertheless, even if there exists no finitary
consistency proof of arithmetic, the question of finding a consistency proof
remains. For that reason HP has been revised, and it continues to be influential
in the philosophy of mathematics.

4.3 Some Misconceptions about Gödel’s theorems

Gödel’s work has attracted much attention ever since the incompleteness theorems
were first published, both from mathematicians and non-mathematicians alike.
And its popularity has not dwindled in the last few decades, as can be seen
by the numerous discussion boards and podcasts found on the internet. These
discussions can be found in logic, mathematics, physics, computing or philosophy,
but also extend to politics, religion, psychology and so much more.

As might be expected, many of these references to the incompleteness theorems
outside of the field of formal logic turn out to be nonsensical and based on some
big misunderstanding or gross process of free association (for example, “Gödel’s
Incompleteness Theorems show that a prove of God does not exist,” or “all
information in science is incomplete and self-referential.”). The aim of this
section is to high-light a few of these examples and discuss the limits of Gödel’s
Incompleteness Theorems.

From what we have learned, the incompleteness theorems talk about the
consistency and completeness of formal systems. These terms have a technical
sense in logic, but they have various senses in ordinary languages. Because of
this, many applications outside of mathematics are wrong. We provide a few
examples from Franzén ([2], p. 77):

� Religious people claim that all answers are found in the Bible or in whatever
text they use. That means the Bible is a complete system, so Gödel seems
to indicate it cannot be true. And the same may be said of any religion
which claim, as they all do, a final set of answers.

� As Gödel demonstrated, all consistent formal systems are incomplete and
all complete formal systems are inconsistent. The U.S. Constitution is a
formal system, after a fashion. The Founders made the choice of incompleteness
over inconsistency, and the Judicial Branch exists to close that gap of
incompleteness.

� Gödel demonstrated that any axiomatic system must be either incomplete
or inconsistent, and inasmuch as Ayn Rand’s philosophy of Objectivism
claims to be a system of axioms and propositions, one of those two conditions
must apply.

These examples can be viewed as “incomplete” or “inconsistent” in the
ordinary sense. Like, say, the Bible does not state whether or not Moses had a
cold on his 18th birthday. Hence, the Bible is “incomplete.” And a legal system
can be seen as “inconsistent” since there will always be actions and procedures

30

about the law that contradict each other, hence the need for courts and legal
decisions.

However, Franzén correctly points out that these misstate the incompleteness
theorems. For one, the formal system must be able to formalize a certain amount
of arithmetic. Needless to say, the Bible, U.S. Constitution, and Ayn Rand’s
Objectivism are no sources of arithmetical theorems. Second, are our examples
formal systems? In an ordinary sense, perhaps. However, a formal system
in mathematical terms is characterized by a formal language, a set of axioms
in that language, and a set of formal inference rules which together with the
axioms determine a set of theorems of the system. Our examples do not have
this capability, hence cannot be applied to Gödel’s Incompleteness Theorems.

31

Conclusion

Gödel’s Incompleteness Theorems represent a pivotal moment in the history
of mathematics and logic, reshaping our understanding of formal systems and
their limitations. As we have seen, the first incompleteness theorem shows that
if PA is consistent, then there exists a sentence that cannot be proven within
PA itself. The second incompleteness extends this result by demonstrating that
PA is a system that cannot prove its own consistency. In particular, these two
results hold for any formal system capable of expressing elementary arithmetic.

The publication of these theorems shifted the paradigm of mathematical
thought. Personally, before I undertook this thesis, I believed that any statement
about mathematics could be proved or disproved given enough time. I was
merely concerning myself with the thought if a given statement was true or
false. The idea of true unprovable statements seemed alien, just like it did to
Hilbert who famously said: “Wir müssen wissen, wir werden wissen” (We must
know, we will know). However, Gödel’s work challenges the dream of complete
formulation for formal systems capable of expressing basic arithmetic, for there
exist statements about arithmetic that are true (or false) but unprovable within
those systems. Thus, Gödel draws a clear line between truth and provability.

But we do not need to view this as a defeat. Rather, we can allow Gödel’s
work to humble us in our ongoing quest of mathematical and logical understanding.
His theorems remind us that while formal systems are powerful tools, they
are ultimately constrained by the very structures they seek to illuminate. In
moving forward, instead of viewing mathematics as a monolithic entity with
only one correct and true foundation on which it depends, we could study
numerous axiomatic systems on a sliding scale of very weak systems to large
cardinal axioms in set theory. In doing so, we could raise many more interesting
questions.

In closing, this thesis aimed to provide a clear overview of Gödel’s Incompleteness
Theorems, highlighting their importance and ongoing relevance. The exploration
of these ground-breaking results affirms the dynamic and ever-evolving nature
of mathematical logic, encouraging future inquiry and discovery.

32

References

[1] George S. Boolos, John P. Burgess & Richard C. Jeffrey. Computability and
Logic: Fifth Edition, Cambridge University Press, 2007.

[2] Torkel Franzén. Gödel’s Theorem: An Incomplete Guide to its Use and
Abuse, 2005.

[3] David Hilbert. Über das Unendliche (On the Infinite), English translation by
Erna Putnam and Gerald J. Massey from Mathematische Annalen (Berlin)
vol. 95, 1926.

[4] Ieke Moerdijk & Jaap van Oosten. Sets, Models, and Proofs, Springer
Undergraduate Mathematics Series, 2018.

[5] Craig Smoryński. Logical Number Theory 1: An Introduction, Springer
Berlin, Heidelberg, 1991.

[6] Jaap van Oosten. Lecture notes for the course Basic Computability
Theory, 1993, revised 2013. Available at https://webspace.science.uu.
nl/~ooste110/syllabi/compthmoeder.pdf.

[7] Wikipedia, the Free Encyclopedia. Paris-Harrington theorem, available at
https://en.wikipedia.org/wiki/Paris%E2%80%93Harrington_theorem.
Consulted on May 20th, 2024.

[8] Richard Zach. Hilbert’s Program, available at https://plato.stanford.

edu/entries/hilbert-program/. Consulted on April 2nd, 2024.

33

https://webspace.science.uu.nl/~ooste110/syllabi/compthmoeder.pdf
https://webspace.science.uu.nl/~ooste110/syllabi/compthmoeder.pdf
https://en.wikipedia.org/wiki/Paris%E2%80%93Harrington_theorem
https://plato.stanford.edu/entries/hilbert-program/
https://plato.stanford.edu/entries/hilbert-program/

	Preface
	Introduction
	Primitive Recursion
	Primitive Recursive Functions and Relations
	Pairing Functions and Coding

	Peano Arithmetic
	Basic Properties of PA
	Some Elementary Number Theory in PA
	Recursive Functions Represented in PA

	Gödel's Incompleteness Theorems
	Gödel's Coding of Formulas and Diagonalization
	The First Incompleteness Theorem
	The Second Incompleteness Theorem

	Consequences of the Incompleteness Theorems
	Paris-Harrington Theorem
	Hilbert's Program
	Some Misconceptions about Gödel's theorems

	Conclusion
	References

