
Faculty of Science

Symbolically Solving Two-Strategy
Evolutionary Games in Python

Bachelor Thesis

Rinske Oskamp

Mathematics
Supervisor:

Dr. Artem Kaznatcheev
Utrecht University

June 13, 2024

Abstract

This thesis presents a tool for symbolically solving two-strategy evolutionary games.
Evolutionary games are relevant in various application fields such as mathematical on-
cology, biology and economics. To develop this tool, the underlying mathematics of two-
strategy evolutionary games were thoroughly examined, and the mathematical software
system SageMath was addressed. Combining mathematical framework with SageMath’s
functionality, we created a program capable of symbolically solving evolutionary two-
strategy games. In addition to the mathematical background and an introduction to
SageMath, this thesis also includes a profound explanation of the code and examples of
the application of the tool. Future directions for extending the tool to three-strategy
games are also explored.

i

CONTENTS ii

Contents
1 Introduction 1

2 Two-strategy evolutionary games 2
2.1 Replicator dynamics . 2
2.2 The possible regimes . 3
2.3 Solving a general game . 3
2.4 Go vs. Grow . 6

2.4.1 Constructing the payoff matrix . 6
2.4.2 Solving the Go vs. Grow game . 7

3 An introduction to SageMath 11
3.1 SageMath tutorial . 11

4 Solving two-strategy games with SageMath 14
4.1 Input . 14
4.2 Output . 14
4.3 Customisation options in the code . 15

4.3.1 Variables . 15
4.3.2 Axis titles . 15
4.3.3 Colours and titles of the regimes . 16

4.4 Overview of the code . 16
4.5 In-Depth Explanation of the code . 17

4.5.1 Declaring input . 17
4.5.2 Calculation of key values . 17
4.5.3 Determining conditions for each regime 18
4.5.4 Plotting . 20
4.5.5 Case: equilibrium independent of p 24

5 Case studies of using code 26
5.1 General game presenting as U vs. V . 26
5.2 Go vs. grow game . 27

6 Future directions 30

7 Conclusion 31

A Code 33

1 INTRODUCTION 1

1 Introduction
One of the numerous applications of mathematics is in evolutionary game theory (EGT).
EGT is a field that researches the interaction between organisms with different strategies or
characteristics [1]. Unlike classic game theory, where participants choose the most optimal
strategy, the strategies or traits in EGT are inherent to the organisms [1]. One significant
application of EGT is in oncology, where cancer dynamics can be effectively described by
evolutionary games. This field has contributed to the optimisation of adaptive cancer ther-
apies [2]. Adaptive therapies adjust the medication doses based on the current state of the
tumour, rather than following a predetermined schedule.

Gaining insight into these evolutionary games is achieved by investigating the behaviour
of the game and how this behaviour changes when parameters are adjusted. There exist
programming tools to help do this numerically for three-strategy games [3][4]. By numer-
ically, we refer to demonstrating the behaviour of the game using specific numerical input
values. In this thesis, we will develop a tool to solve such evolutionary games symbolically.
This tool would visualise the regions the game presents certain behaviours, depending on the
parameters of the game. This creates insight on the effect of these parameters.

Although EGT was originally developed in biological context, it now has applications in
various fields such as economics and sociology. While we use an example from mathematical
oncology in this thesis, the tool also can be applied on evolutionary games in different disci-
plines.

For this thesis project, we focused on solving two-strategy games. These describe dynamics,
where there are two interacting populations. We developed a program that symbolically
solves these evolutionary two-strategy games. We began by examining the mathematical
foundations of these games. In Chapter 2, we will discuss how two-strategy games are math-
ematically solved and what it means to solve a game. We will analyse a general game and
provide an example of an evolutionary game that describes cancer dynamics. To implement
the code, we used SageMath, a software system that operates with a Python interface. Chap-
ter 3 provides an introduction to SageMath, describing its functionalities and capabilities. In
Chapter 4, we combine the concepts from the previous chapters to symbolically solve evolu-
tionary two-strategy games using SageMath. We will explain our approach and the workings
of the code. Subsequently, in Chapter 5 we will demonstrate how the code solves specific
two-strategy games, using examples from Chapter 2. In the final chapter, Chapter 6, we will
discuss potential future directions. We will briefly explore the possibility of extending the
code to solve three-strategy games.

2 TWO-STRATEGY EVOLUTIONARY GAMES 2

2 Two-strategy evolutionary games
In this chapter, we will examine two-strategy evolutionary games. We will explore what
an evolutionary game is in biological and mathematical context. We will explain how to
construct two-by-two payoff matrices for a game, what it means to solve a game symbolically
and the methods used to do so. This will be done trough a general game and trough an
example of an evolutionary game from oncology.

2.1 Replicator dynamics

Consider an environment with two populations, A and B. Let NA and NB denote the number
of individuals in each population, where p = NA

NA+NB
. We use wA and wB to describe the

offspring production rates for each population. The change in offspring can be described by
the following equations:

dNA

dt
= wANA, (1)

dNB

dt
= wBNB. (2)

We are interested in examining the change in the proportion p of population A:

dp

dt
=

d

dt

[
NA

NA +NB

]
. (3)

From the quotient rule follows [5]:

dp

dt
=

dNA

dt
(NA +NB)−NA

d
dt
[NA +NB]

(NA +NB)2
(4)

=
dNA

dt

NA +NB

−
NA

d
dt
[NA +NB]

(NA +NB)2
(5)

=
wANA

NA +NB

− NA

NA +NB

wANA + wBNB

NA +NB

. (6)

Recall p = NA

NA+NB
and thus (1− p) = NB

NA+NB
, so follows

= wAp− p(wAp+ (1− p)wB) (7)
= p(1− p)(wA − wB). (8)

We define ṗ = p(1− p)(wA − wB) as the replicator dynamics.

The interaction between population A and population B can be interpreted as a game,
where A and B are different strategies and wA and wB are the payoff functions for these
strategies. Such a game is called an evolutionary game.

2 TWO-STRATEGY EVOLUTIONARY GAMES 3

2.2 The possible regimes

The replicator dynamics of an evolutionary game can exhibit different behaviours on the
interval p ∈ (0, 1). The system described by ṗ can increase or decrease at different sections
of the interval. In games with two strategies these behaviours come down to four situations,
which we will call dynamic regimes. These regimes are visualised in Figure 1. In this figure
an increase of the system is shown by an upward pointing arrow, while a decrease is shown
by a downward pointing arrow.

In the left most regime the first strategy is stable. In biological context this means that
eventually the proportion of the first population will become one, so the second population
will die out. In the second regime in Figure 1 the second strategy is stable, so the first
population will eventually die out. In the third regime of Figure 1 both of the strategies are
unstable. This would mean the two populations would find stability with a proportion of
p = p∗ ∈ (0, 1) for the first population. In the last regime of Figure 1 both of the strategies
could become stable and the dynamics bifurcate around a proportion of p∗.

p = p∗

p = 0

p = 1

First strategy
stable

Second strategy
stable

Both strategies
unstable

Both strategies
stable

Figure 1: The four possible dynamic regimes in two-strategy evolutionary games. The open
dots present unstable point and the black dots present stable points. The arrow defines if
the system, described by the replicator dynamics, increases or decreases.

2.3 Solving a general game

The simplest form of the replicator dynamics ṗ is when wA and wB are constant, then ṗ
describes exponential growth. We will look into what happens when wA and wB are linear.
We define wA and wB based on functions R, S, T and F .

wA = pR + (1− p)S, (9)
wB = pT + (1− p)F. (10)

We can denote these as a matrix: M =
(
R S
T F

)
. As mentioned in Section 2.1, this matrix

can be interpreted as a payoff matrix for a game, where wA and wB are the payoff functions
for each strategy. We can assume R > F [6]. If we take a closer look we see that there are
only two interesting variables. We can subtract F from every element without changing the
structure of the game. In practice, this would mean that each time the game is played, it

2 TWO-STRATEGY EVOLUTIONARY GAMES 4

collects an entry fee F for both players [6]. Next, we can rescale the matrix by dividing by
R− F , this once again has no effect on the structure of the game.(

R S
T F

)
=

(
R− F S − F
T − F 0

)
(11)

=

(
1 S−F

R−F
T−F
R−F

0

)
. (12)

We introduce two new variables, U = S−F
R−F

and V = T−F
R−F

. This results in a general matrix(
1 U
V 0

)
. (13)

The payoff functions for each strategy are given by wA = p + (1 − p)U and wB = pV ,
with p the proportion of population A. recall the replicator dynamics are defined by ṗ =
p(1 − p)(wA − wB). We want to determine when each of the regimes explained in Section
2.2 occurs. It is apparent that the system increases when ṗ is positive and wA > wB. The
system decreases when wA < wB. Before we look into this, we will first examine for which
value of p there is an equilibrium.

wA = wB, (14)
p+ (1− p)U = pV, (15)

p =
U

U + V − 1
. (16)

We denote this equilibrium value by p∗ = U
U+V−1

. Next, we will determine the conditions
under which ṗ will be positive or negative. As we have stated, ṗ is positive when wA > wB.

wA > wB, (17)
p+ (1− p)U > pV, (18)
p(U + V − 1) > U. (19)

This inequality has two solutions. The conditions under which ṗ is positive are:(
U + V < 1, p >

U

U + V − 1
= p∗

)
, (20)(

U + V > 1, p <
U

U + V − 1
= p∗

)
. (21)

In the same way we can determine that ṗ is negative under the following conditions:

(U + V > 1, p < p∗), (22)
(U + V < 1, p > p∗). (23)

2 TWO-STRATEGY EVOLUTIONARY GAMES 5

As mentioned earlier, p is the proportion of population A, so 0 < p < 1. For the third
and fourth regime in Figure 1 the equilibrium p∗ lies in this interval. Therefore, we need to
determine for which values of U and V p∗ lies within or outside this interval. For 0 ≤ p∗ ≤ 1,
there are two solutions:

(U ≥ 0, V ≥ 1), (24)
(U ≤ 0, V ≤ 1). (25)

p∗ < 0 and p∗ > 1 also have two solutions each. For p∗ < 0 these are

(U > 0, U + V < 1), (26)
(U < 0, U + V > 1). (27)

For p∗ > 1 these are

(U > 0, V < 1, U + V > 1), (28)
(U < 0, V > 1, U + V < 1). (29)

In our general game, we observe that the regime where both strategies are unstable, emerges
when ṗ is positive while p < p∗ and when ṗ is negative when p > p∗. This corresponds with
the third regime in Figure 1; the system decreases at the top where p > p∗ and increases at
the bottom where p < p∗. In this case 0 ≤ p∗ ≤ 1 must hold. We saw ṗ > 0 while p < p∗

holds when U + V > 1 (21) and ṗ < 0 while p < p∗ holds when U + V < 1 (23), lastly U ≥ 0
and V ≥ 1 (24) or U ≤ 0 and V ≤ 1 (25) must hold for 0 ≤ p∗ ≤ 1. These restrictions
combined result in the red area in figure 2.

We move on to the next regime, where both of the strategies are stable. For this regime
ṗ > 0 when p > p∗ and ṗ < 0 when p < p∗. This corresponds with the fourth regime in
Figure 1, and with equations (20) and (22). For this strategy 0 ≤ p∗ ≤ 1 also must hold so
U ≥ 0 and V ≥ 1 (24) or U ≤ 0 and V ≤ 1 (25) apply again. These restrictions combined
result in the blue area in figure 2.

In the third regime ṗ always stays positive for all p in the interval (1, 0). If ṗ is depen-
dent on p this means that besides ṗ > 0, either p > p∗ (20) and p∗ < 0 (26,27) or p < p∗

(21) and p∗ > 1 (28, 29). This can be visualised by imagining the black dot in the third
regime in Figure 1 lays above p = 1 or the open dot in the last regime lays below p = 0.
The mentioned restrictions combined result in the green area in figure 2. Note that this are
actualy two distinct area’s; above and below the U + V = 1 line.

The last regime we explore is when the second strategy is stable. The restrictions of this
regime can be determined similarly to the previous regime. This results in the yellow area of
Figure 2. This are again two distinct area’s.

2 TWO-STRATEGY EVOLUTIONARY GAMES 6

U

V

U = 0

U + V = 1

V = 1 Figure 2: In this image it is
shown when the four regimes,
from Figure 1 occur for the gen-
eral U vs. V game. Green corre-
spond to the first regime, yellow
to the second, red to the third
and blue to the fourth. The
grey lines denote the different
area’s.

2.4 Go vs. Grow

We will examine a specific evolutionary cancer game known as the “Go vs. Grow” game. In
this context, the environment represents a tumor containing two types of cancer cells: cells
capable of autonomous growth (AG) and cells with invasive characteristics (INV), enabling
movement to different locations. In a medical context, these are cancer cells that either grow
rapidly or have the potential to metastasise.

2.4.1 Constructing the payoff matrix

Two key parameters define this game: c represents the cost for movement for invasive (INV)
cells, while b represents the maximum payoff attainable by a tumour cell under ideal condi-
tions where resources like space or nutrients are limitless and not shared. We assume these
payoffs are both non zero.

To construct the payoff matrix we analyse the outcomes when two cells interact. When
two invasive cells encounter each other, one cell remains in place while the other relocates
to alternative resources. The stationary cell receives a payoff of b, while the moving cell
receives a payoff of b− c. It is assumed each cell has an equal probability of either remaining
stationary or moving. Consequently, the payoff resulting from the interaction of two invasive
cells is the average between the payoff for staying b and the payoff for moving b − c. When
two growth cells interact, they must share the available resources, resulting in a payoff of 1

2
b.

If a growth cell encounters a invasive cell, the invasive cell will seek new resources with a
payoff of b−c, the growth cell will have a payoff of b. This analysis yields the following payoff
matrix, with INV representing the first strategy and AG representing the second strategy [7].

(INV AG

INV 1
2
b+ 1

2
(b− c) b− c

AG b 1
2
b

)
. (30)

2 TWO-STRATEGY EVOLUTIONARY GAMES 7

We can simplify this matrix by rescaling, dividing every component by b. Note that we have
assumed b ̸= 0. This results in a more simple matrix, and shows that the most important
parameter of the game is the ratio between c and b.

(INV AG

INV 1− 1
2
c
b

1− c
b

AG 1 1
2

)
. (31)

2.4.2 Solving the Go vs. Grow game

To solve the Go vs. Grow game we start by formulating the payoff functions wgo and wgrow.

wgo = p

(
1− 1

2

c

b

)
+ (1− p)

(
1− c

b

)
(32)

=
1

2

c

b
p− c

b
+ 1, (33)

wgrow = p+ (1− p)
1

2
(34)

=
1

2
p+

1

2
. (35)

We determine for which value of p there is an equilibrium.

wgo = wgrow, (36)
1

2

c

b
p− c

b
+ 1 =

1

2
p+

1

2
, (37)

p

(
1

2

c

b
− 1

2

)
= −1

2
+

a

b
, (38)

p =
2c− b

c− b
. (39)

We denote this equilibrium value as p∗ = 2c−b
c−b

. Next, we look at the conditions for wgo >
wgrow.

1

2

c

b
p− c

b
+ 1 >

1

2
p+

1

2
, (40)

p

(
1

2

c

b
− 1

2

)
>

c

b
− 1

2
, (41)

p

(
c− b

2b

)
>

c

b
− 1

2
, (42)

p

(
c− b

2b

)
>

2c− b

2b
. (43)

Note that for b = c, the inequality is non valid, so we assume b ̸= c. Let us first consider the
case where b > 0:

p(c− b) > 2c− b. (44)

2 TWO-STRATEGY EVOLUTIONARY GAMES 8

If c > b, the inequality can be solved as follows:

p >
2c− b

c− b
= p∗. (45)

If c < b, p < p∗ follows. We now assume b < 0; then follows:

p(c− b) > 2c− b. (46)

Which has solutions p < p∗ for c > b and p > p∗ for c < b. To summarise, wgo > wgrow has
four solutions:

(b > 0, c > b, p > p∗), (47)
(b < 0, c < b, p > p∗), (48)
(b > 0, c < b, p < p∗), (49)
(b < 0, c > b, p < p∗). (50)

Similarly, we can determine the solutions for wgrow > wgo. This inequality also has four
solutions:

(b > 0, c < b, p > p∗), (51)
(b < 0, c > b, p > p∗), (52)
(b > 0, c > b, p < p∗), (53)
(b < 0, c < b, p < p∗). (54)

We will now determine for which constrictions on b and c the different dynamic regimes occur.
Recall Section 2.2 for an explanation of the four regimes.

First, we state when only the Go strategy is stable. This happens when wgo > wgrow over the
whole interval p ∈ (0, 1). For the conditions (47) and (48) this would mean p∗ < 0, because
then p > p∗ always holds for p ∈ (0, 1).

p∗ < 0, (55)
2c− b

c− b
< 0, (56)(

b > 0,
b

2
< c < b

) ∨ (
b < 0, b < c <

b

2

)
. (57)

Note these solutions for p∗ < 0 contradict with (47) and (48). The situation where the
equilibrium lies under zero does not occur. However, this regime also could occur when (49)
and (50) hold, while p∗ > 1.

p∗ > 1, (58)
2c− b

c− b
> 1, (59)

(b > 0, c > b)
∨

(b > 0, c < 0)
∨

(b ≤ 0, c > 0)
∨

(b ≤ 0, c < b). (60)

2 TWO-STRATEGY EVOLUTIONARY GAMES 9

If we combine these restrictions with (49) and (50), we find that the Go strategy is stable
and the Grow strategy is unstable for (c < b, b > 0, c < 0) or (c > b, b < 0, c > 0). Note
c < b and c > b are implied by the other restrictions. This corresponds with the green area
below in Figure 3a.

We will now examine the dynamic where only the Grow strategy is stable. This happens
when wgrow > wgo over the whole interval p ∈ (0, 1). We apply the same method as above.
First, we combine solutions (51) and (52) with p∗ < 0, we find conditions b > 0, b

2
< c < b

and b < 0, b < c < b
2
. Thereafter we combine (53) and (54) with p∗ > 1 and find b > 0, c > b

and b < 0, c < b. These four regions corresponds with the yellow area below in Figure 3b.

Lastly, we examine the dynamics with mixed strategies. When wgo > wgrow for p < p∗,
while wgrow > wgo for p > p∗, there is a stable point in the equilibrium p = p∗. This happens
exactly when b > 0 and c < b (49, 51) or when b < 0 and c > b (50, 52). In addition, p∗ has
to lie in the interval (0, 1). First, we consider p∗ < 1:

p∗ < 1, (61)
2 c
b
− 1

c
b
− 1

< 1, (62)

2c− b < c− b, (63)

(b > 0, 0 < c < b)
∨

(b < 0, b < c < 0). (64)

Considering p∗ > 0 as well, we obtain the following constraints for a and b, such that
0 < p∗ < 1:

(b > 0, 0 < c <
b

2
)
∨

(b < 0,
b

2
< c < 0) (65)

We can conclude that there is a stable point in the equilibrium for b > 0 and 0 < c < b
2

and
for b < 0 and b

2
< c < 0. This corresponds with the red area in Figure 3c.

c

b

(a) The area’s where the
Go strategy is stable.

c

b

(b) The area’s where the Grow
strategy is stable.

c

b

(c) The area’s where neither of the
strategies is stable and there is a
stable point in p = p∗.

Figure 3: The three occurring regimes of the Go vs. Grow game.

2 TWO-STRATEGY EVOLUTIONARY GAMES 10

c

b

-2 -1 0 1 2

2

1

-2

-1

Figure 4: This image shows the regime plot for the Go vs. Grow game. The red area
corresponds with the regime where both the Grow and Go strategy are unstable and there
is a stable point in p = p∗. The Go cells are evolutionary stable in the green area and the
Grow cells are evolutionary stable in the yellow area.

The final regime we will address, is the regime where both strategies are stable and the regime
bifurcates around p = p∗. For this regime wgrow > wgo for p < p∗, while wgo > wgrow for
p > p∗, both have to hold. This comes down to b > 0 and c > b (47, 53) or b < 0 and c < b
(48, 54). But, for this regime p∗ also has to be in the interval (0, 1). The inequalities that
define p∗ < 1 (64) are in contradiction with the conditions for wgrow > wgo for p < p∗, while
wgo > wgrow for p > p∗. We can conclude that in the Go vs. Grow game there are only three
regimes. This result forms the dynamic regime plot in Figure 4.

3 AN INTRODUCTION TO SAGEMATH 11

3 An introduction to SageMath
The goal of this project was to develop a Python tool for symbolically solving two-strategy
games. To achieve this, it was evident that we would need mathematical libraries. The most
well-known and widely used mathematical library is Numpy. However, we quickly realised
Numpy was insufficient for our project because it cannot solve equations symbolically. The
next step was to explore Sympy, a library for symbolic mathematics. With Sympy, we were
able to solve certain game matrices. However, Sympy is only able to solve inequalities in a
single variable. This meant a program using Sympy could just be used to solve game matrices
dependent on a single variable. The matrices from Chapter 2, could not be solved using this
program. We continued seeking a way to preform more advanced calculations. In this search,
we discovered SageMath. SageMath provided the necessary computational power to solve
two-strategy games involving multiple variables.

SageMath proved to be a very powerful and useful mathematical software system. It inte-
grates various existing open-source packages such as Sympy, Numpy, SciPy, and Matplotlib
into a single interface [8]. Each of these packages, along with many others, has its own
strengths but also certain limitations. By combining their strong aspects, SageMath be-
comes an exceptionally powerful mathematical tool.

SageMath excels in symbolic mathematics, offering extensive support for solving equations
and inequalities, simplifying expressions, and performing symbolic integration and differen-
tiation. For this thesis project, we primarily utilised its capabilities to solve equations and
systems of inequalities.

3.1 SageMath tutorial

In this section, we will explore the features of SageMath by some examples. Sagemath works
via the Python interface, so it mostly uses the usual Python commands. It uses “=” for
assignment and “==”, “>”, “<”, “<=” and “>=” for comparison, just like in Python. Some
basic mathematical operations could look something like this:

1 sage: a = 2+3
2 5
3 sage: b = (2 + 4)/sqrt(7)
4 6/7*sqrt(7)

We will now discuss some functions provided by SageMath that are relevant for solving two-
strategy evolutionary games. In almost every program where algebra or calculus are being
used, the expand function proves to be useful. This function expands the brackets of an
expression. In context of two-strategy games, this would be used, among other things, to
define payoff functions. To calculate these functions it is necessary to first define relevant
variables. Defining the payoff functions from the Go vs. Grow game from Section 2.4 in code
would result in the lines below. To ensure 1

2
is treated as an exact value and not as 0.5 we

define a variable h for a half.

3 AN INTRODUCTION TO SAGEMATH 12

5 sage: c, b , p = var('c b p')
6 sage: h = Integer(1)/Integer(2)
7 sage: w_go = p*(1-h*c/b)+(1-p)*(1-c/b)
8 sage: w_go = w_go.expand()
9 1/2*c*p/b - c/b + 1

10 sage: w_grow = p*1+(1-p)*h
11 sage: w_grow = w_grow.expand()
12 1/2*p + 1/2

SageMath has a solve function to solve equations. This function takes two arguments: the
equation you want solved and the variables for which you seek the solutions. If no value is
provided to which the equation should be equal, it is solved for zero. Applying this method
to solve the equation wgo = wgrow (37) from our “Go to Grow” game yields the following
result:

13 sage: solve(w_go==w_grow, p)
14 [p == (b - 2*c)/(b - c)]

The output of this solve function is a list with all the solutions of the equations. SageMath
can also solve much more complex equations, but these are not relevant for this project.
What is relevant, however, is solving inequalities. This works more or less the same as
solving equations. We will apply this to inequalities p∗ < 0 and wgo > wgrow from Section
2.4.2 of last chapter.

15 sage: c, b , p, u, v = var('c b p u v')
16 sage: solve(1/2*c/b*p-c/b+1>1/2*p+1/2, p)
17 [[0 < b, -b*p + c*p + b - 2*c > 0], [b < 0, b*p - c*p - b + 2*c > 0]]
18 sage: solve(u/(u+v-1)<0, u, v)
19 [[-u + 1 < v, u < 0], [v < -u + 1, 0 < u]]

The output for the solve function is again a list with all the solutions of the inequality.
All restrictions of a single solution are compiled into a list; thus, the output is a list of
lists. For both equations and inequalities SageMath is also able to solve systems of multiple
conditions. In case of the “Go vs Grow” game you could be interested in multiple conditions
like wgo > wgrow and p∗ < 0 from Section 2.4.2.

20 sage: solve([1/2*c/b*p-c/b+1>1/2*p+1/2, (2*c/b-1)/(c/b-1)<0], b,c)
21 [[c < b, b < 2*c, 0 < c, -b*p + c*p + b - 2*c > 0],
22 [2*c < b, b < c, c < 0, b*p - c*p - b + 2*c > 0]]

In this thesis project, we have frequently discussed matrices. Therefore, it is useful to examine
how SageMath can perform calculations on matrices.

3 AN INTRODUCTION TO SAGEMATH 13

23 sage: Go_Grow = Matrix([[1/2*b+1/2*(b-c), b-c], [b, 1/2*b]])
24 sage: M = Matrix([[2, 0], [1, 3]])
25 sage: Go_Grow + M
26 [b - 1/2*c + 2 b - c]
27 [b + 1 1/2*b + 3]
28 sage: Go_Grow * M
29 [3*b - 2*c 3*b - 3*c]
30 [5/2*b 3/2*b]

The examples provided above have hopefully given a clear understanding of what SageMath
can do. In the next chapter, we will apply these functions to symbolically solve two-strategy
evolutionary games.

4 SOLVING TWO-STRATEGY GAMES WITH SAGEMATH 14

4 Solving two-strategy games with SageMath
In this chapter, we will demonstrate how the SageMath functions discussed in Chapter 3 can
be utilised to symbolically solve two-strategy evolutionary games. By solving, we refer to
generating a plot that visually represents the regions in which the game exhibits a particular
dynamic regime. In addition to generating this plot, it is also possible to obtain important
values and calculations like discussed in Chapter 2. For instance, the equilibrium value p∗ or
the replicator dynamics ṗ from an input game, can easily be retrieved.

To demonstrate how the code can be used and how the code works we begin by explain-
ing the required format for the code input. Next, we describe the output the code produces.
We also specify which values in the code can be adjusted to customise it. Then, we explain
how the code works, first providing an overview and then detailing the entire code step by
step. The complete code can be found in Appendix A.

4.1 Input

The input consists of four expressions, R, S, T and F , each dependent on a maximum of
two variables, a and b. Which together form a matrix

(
R S
T F

)
, like described in Section 2.3.

These expressions are requested when you run the code. Alternatively, they can be defined
directly in the code on lines 84-87. Make sure the input lines that are not used are removed
or commented-out. The allowed input expressions are of the form:

λax + γby or λax × γby, (66)

with λ, γ ∈ R and x, y ∈ {−1, 0, 1}.

4.2 Output

The output of the code will be a plot with a on the x axis and b on the y axis. This plot shows
the different regions in which different dynamic regimes occur. The form of the output is a
.png image which is saved on the user’s computer. In the plot the regimes are labelled one to
four, these correspond with the regimes described from left to right in Figure 1 in Section 2.2.
The first regime is coloured green and refers to the regime where the first strategy is stable.
The second regime is coloured yellow and refers to the regime where the second strategy is
stable. The third regime is coloured red and refers to the regime where both strategies are
unstable. The last regime is coloured blue and refers to the regime where both strategies are
unstable.

To ensure the output file is saved correctly the user has to adjust line 283 of the code
to the correct location and file name.

282 #Change to the correct location and name
283 P.save("<location>/<file_name>.png")

4 SOLVING TWO-STRATEGY GAMES WITH SAGEMATH 15

Figure 5: The output plot generated by the code when provided with the Go vs. Grow game
matrix from Section 2.4 as input.

In Section 2.4 we solved the Go vs. Grow game. The output that is generated for this input
game is presented in Figure 5. In Section 5.2, we will discuss how this image is generated.

4.3 Customisation options in the code

In the code, there are various variables that can be adjusted to customise the program. We
will go through these variables and examine the effects they have.

4.3.1 Variables

In the current code, the main variables provided for solving the game are a and b. It is
possible to have the input expressions depend on other variable names, this can be done as
follows: Start by defining your variable names as SageMath variables by changing a and b to
your variables in the following code line.

70 a, b, p = var('a b p')

In the remainder of the code a and b are frequently used as parameters in functions for solving
or plotting. Instead of modifying all instances, it is much faster and easier to simply add
“a = your_first_variable” and “b = your_second_variable” after declaring the input in lines
77 to 87. Note that the intermediate solutions will still contain a and b instead of the custom
variables.

4.3.2 Axis titles

If the variables are adjusted, it may also be logical to change the axis titles. This can be
easily done by adjusting the variables in lines 90 and 91.

89 #Adjust to variable names
90 x_titel = "c"
91 y_titel = "b"

4 SOLVING TWO-STRATEGY GAMES WITH SAGEMATH 16

The axis titles can be further customised in lines 273 and 274. Here, you can adjust the
position and font size.

273 tx = text(x_titel, (scale+0.2,-0.5), fontsize=13)
274 ty = text(y_titel, (0.2,scale+0.2), fontsize=13)

4.3.3 Colours and titles of the regimes

For the regime plot the following colours provided by SageMath are used: “Forestgreen”,
“Yellow”, “Tomato” and “Royalblue”. The colours can be customised by modifying the colour
for the plot. Adjusting the colour for the plotted region is done by changing the value for
incol. Modifying the colour for the legend can be done by changing the value for color. For
the first regime, the colour is defined in lines 242 and 246. The lines for the remaining regimes
can be found in Appendix A. SageMath offers dozens of named colours [9] and the ability to
define custom colours [10].

240 #First Regime
241 for sol in plotlist1:
242 P += region_plot(sol, (a,-scale,scale),(b,-scale,scale), incol = 'tomato',
243 bordercol='black')
244

245 #Add a dummy plot for the legend
246 P += line([(0,0)], color='tomato', legend_label='First regime')

In the same line as the colour for the legend, the title of the respective regime can also be
adjusted by modifying legend_label.

4.4 Overview of the code

In this section, we will give a brief overview of the structure of the code. The first step
is to define the input functions of the game we want to solve and convert them into Sage
expressions (Section 4.5.1). Next, important values such as the payoff functions and the
equilibrium value are calculated (Section 4.5.2), recall Chapter 2 for the definition of these
values. The equilibrium value of the game may or may not depend on p. The code first
handles the case where the equilibrium is not dependent on p. In this scenario, only two
regimes are possible. The code determines for which restrictions on a and b each of the
two regimes occur and plots the corresponding area’s with the appropriate colours (Section
4.5.5). For the remaining cases, where the equilibrium does depend on p, the code identifies
the restrictions on a and b for which the game exhibits each regime. These conditions are
placed in a list (Section 4.5.3). Before we plot these conditions, we need to apply some
functions to prepare the lists for plotting. Finally, the four regimes are plotted with a and b
on the x and y axes (Section 4.5.4).

4 SOLVING TWO-STRATEGY GAMES WITH SAGEMATH 17

4.5 In-Depth Explanation of the code

In this section we will give an in-dept explanation of all of the steps mentioned in the previous
Section 4.4.

4.5.1 Declaring input

The first step of declaring the input is defining the game variables as Sage variables, as
explained in Section 3.1. For the variables of the input game, we will use a and b. In
addition we need to define the variable p, which is the proportion of the first strategy as
defined in Chapter 2.

70 a, b, p = var('a b p')

Next, we declare a, b, p ∈ R. This is important for solving equations and inequalities later
on. This is done using the assume function provided by Sagemath.

73 assume(a, 'real')
74 assume(b, 'real')
75 assume(p, 'real')

We move on to declaring the actual input game matrix. This is done by declaring the four
elements of the matrix in separate expressions. The allowed form of the input functions is
given in Section 4.1. The input can be requested while running the program (lines 78-81) or
directly in the code (lines 84-87), as mentioned before in Section 4.1. In principle, SageMath
treats input as symbolic expressions by default, but to ensure this we use the function SR().

77 # Define R, S, T, and F as Sage functions with input
78 R_expr = SR(input("Enter the function for R(a,b): "))
79 S_expr = SR(input("Enter the function for S(a,b): "))
80 T_expr = SR(input("Enter the function for T(a,b): "))
81 F_expr = SR(input("Enter the function for F(a,b): "))
82

83 # Define R, S, T, and F as Sage functions in code
84 R_expr = SR(<expr>)
85 S_expr = SR(<expr>)
86 T_expr = SR(<expr>)
87 F_expr = SR(<expr>)

4.5.2 Calculation of key values

In the next section of the code, the key values of the game are calculated. These values include
the payoff functions for both strategies, the potential equilibrium point and the equation for

4 SOLVING TWO-STRATEGY GAMES WITH SAGEMATH 18

the replicator dynamics ṗ.

The payoff functions w1 = pR + (1 − p)S and w2 = pT + (1 − p)F are defined for each
player in lines 95 and 96. Because the difference between w1 and w2 is frequently used to
describe the direction of the system, we define diff_w = w1 − w2 in line 101. Using this
variable, we define ṗ in lines 103 and 104. Although the replicator dynamics ṗ is not used
further in the code, it remains an important expression for the game. Therefore, it is defined
to allow the user to retrieve it. To simplify the expressions for w1, w2 and ṗ, we use the
expand function provided by SageMath, explained in Section 3.1.

95 w_1 = p*R_expr + (1 - p) * S_expr
96 w_2 = p*T_expr + (1 - p) * F_expr
97

98 w_1 = w_1.expand()
99 w_2 = w_2.expand()

100

101 diff_w = w_1 - w_2
102

103 p_dot = p*(p-1)*(diff_w)
104 p_dot = p_dot.expand()

We continue by calculating the potential equilibrium value of the game. We calculate w1 = w2

by using the solve function provided by SageMath. The output of this solve function is a list
of solutions, we named this list p_star_list.

106 p_star_list = solve(diff_w, p)

Note that this list will contain a maximum of one element, because R, S, T and F are non-
quadratic. If this list is empty, this implies there is no solution, or the equilibrium does not
depend on p. The next part of the code addresses this last case. We will discuss this later
in Section 4.5.5. This part of the code utilises simpler versions of code components that will
be explained in the following sections.

4.5.3 Determining conditions for each regime

Next, we will discuss the part of the code that determines restrictions for a and b. These
restrictions indicate when each of the regimes appear. Recall Section 4.2 for the distinction
of the four regimes. We will compile a list of the restrictions for each regime.

We start by retrieving the value of p∗ from the list p_star_list. In this point in the code we
already determined this list has exactly one element, refer to Section 4.5.5 for the case where
the list is empty. This element is of the form p == value, so we can retrieve the value of p
by taking the right side of first element of the list.

4 SOLVING TWO-STRATEGY GAMES WITH SAGEMATH 19

143 p_star = p_star_list[0].rhs()

Next, we solve the inequalities needed to define the different regimes. To determine when the
system decreases or increases, we solve w1 − w2 < 0 and w1 − w2 > 0 for p. these solutions
are saved in the lists down, for decrease, and up, for increase. The other relevant inequalities
are (p > p∗, 0 < p∗ < 1), (p < p∗, 0 < p∗ < 1), p∗ > 1 and p∗ < 0, whose solutions are saved
in the lists pGp_star, pSp_star, p_starG1 and p_starS0, respectively. All these conditions
are solved similar. In Chapter 2 we explained why these inequalities are relevant.

146 down = solve(diff_w < 0, p)
147 up = solve(diff_w > 0, p)
148

149 pGp_star = solve([p>p_star, p_star>0, p_star<1],a,b)
150 pSp_star = solve([p<p_star, p_star>0, p_star<1],a,b)
151 p_starG1 = solve([p_star>1],a,b)
152 p_starS0 = solve([p_star<0],a,b)

We start with four empty lists for the four regimes, to which we will add the solutions of
applicable inequalities. In Section 2.2, we explained when each of the regimes occur. The
inequalities that for each regime have to satisfy are:

• Regime 1: The system increases while p∗ > 1 and p < p∗ or the system increases while
p∗ < 0 and p > p∗.

• Regime 2: The system decreases while p∗ > 1 and p < p∗ or the system decreases while
p∗ < 0 and p > p∗.

• Regime 3: The system decreases while p > p∗ or the system increases while p < p∗. For
this regime p∗ lies in the interval (0,1), so 0 < p∗ < 1.

• Regime 4: The system decreases while p < p∗ or the system increases while p > p∗. For
this regime p∗ lies in the interval (0,1), so 0 < p∗ < 1.

For every regime, we go through the restrictions of the lists down, up, pGp_star, pSp_star,
p_starG1 and p_starS0 that apply. For instance, in the first regime, we determine when
both w1 − w2 > 0 and p∗ > 1 hold. This is done by first using a for loop to iterate through
the solutions of up and p_starG1 (lines 161 and 162). Then, the solve function is used to
combine these restrictions on a and b with the additional restriction p < p∗, into a single
solution (line 163). If there is at least one solution (i.e., the list is not empty) and this
solution is not already in the list of the current regime, we add it to the list (lines 165 to
167). For the first regime we repeat this for the other case, where p∗ < 0 and p > p∗ (lines
168 to 174). The code lines below demonstrate this for the first regime. The other regimes
have similar code lines with different restrictions, which can be found in lines 176 to 219 in
Appendix A.

4 SOLVING TWO-STRATEGY GAMES WITH SAGEMATH 20

161 for elem in up:
162 for sol in p_starG1:
163 eq = sol + elem + [p<p_star]
164 solution = solve(eq, a, b)
165 if solution != []:
166 if solution not in regime1:
167 regime1.append(solution)
168 for elem in up:
169 for sol in p_starS0:
170 eq = sol + elem + [p>p_star]
171 solution = solve(eq, a, b)
172 if solution != []:
173 if solution not in regime1:
174 regime1.append(solution)

4.5.4 Plotting

We now have obtained four lists with the correct restrictions for the corresponding regime.
Before we can plot these we need to perform some operations on them. We start by cleaning
up the list, for this we constructed a cleanup_list function consisting of three parts. Since
the solve function outputs a list of lists, each solution is placed in an unnecessary extra list.
To remove these, we created a simple line that directly adjusts the list.

5 def cleanup_list(regime_list) : #cleans up list before plotting
6

7 #removes dubbel list (brackets) around elements
8 regime_list = [sol for sublist in regime_list for sol in sublist]

The second part of the cleanup_list function ensures that every element of the list is in the
same form, meaning each inequality should be expressed as a function of b. Therefore, we
solve each element for b and return it to the list. We could not perform this step earlier, as
restrictions depending solely on a might have been lost. We use two extra lists q and l to
ensure only the restrictions that form a solution together are placed in a list together. In line
15 we take the first element of the first list of the solution, this is allowed because we solve
single elements for b, so the solve function in this line always outputs a list of a single list
with one element.

10 #Get everything in a "b=" form
11 q=[]
12 for sol in regime_list:
13 l = []
14 for elem in sol:
15 l.append(solve([elem],b)[0][0])

4 SOLVING TWO-STRATEGY GAMES WITH SAGEMATH 21

16 q.append(l)
17

18 regime_list = q

The final part of the cleanup_list function addresses the issue where SageMath occasionally
leaves contradictory conditions in its list of solutions. This could result in pairs such as
2p + b > 0 and −2p − b > 0, which obviously have no solutions. Therefore, we remove
solutions from the list if they are identical except for a factor of -1. We iterate through
the list and compare every element of each solution. If contradictions are found, the entire
solution is added to a helplist. Thereafter, all of the solutions in this helplist are removed
from the regime_list. Lastly, the cleaned-up regime list is returned.

20 #removes contradictions
21 helplist = []
22

23 for sol in regime_list:
24 for i in range(len(sol)-1):
25 for j in range(i + 1, len(sol)):
26 if sol[i] == -1 * sol[j]:
27 helplist.append(sol)
28

29 for sol in helplist:
30 regime_list.remove(sol)
31 return regime_list

To plot the four regimes we construct a plot list from each cleaned up list. This is done by a
plotlist function. The function plotlist takes two parameters, the regime list and a list with
the relations within these regime list. This relations list shows every inequality as a tuple
with the decomposed relations. The inequality 1 + a > b would be shown as a tuple of the
form (1 + a, ’gt’, b). The reason why this list is necessary will be addressed later on in this
section. In lines 44 to 51, this list is created by the function relations_list, which takes the
regime list. We iterate through the elements of each solution and form a tuple with the left
side, the operator, and the right side of the inequality. This tuple is then added to the list
of relations.

44 def relations_list(regime_list): #returns a list of decomposed relations
45 relations_list = []
46 for sol in regime_list:
47 relations = []
48 for elem in sol:
49 relations.append((elem.lhs(), get_operator(elem), elem.rhs()))
50 relations_list.append(relations)
51 return(relations_list)

4 SOLVING TWO-STRATEGY GAMES WITH SAGEMATH 22

As we see in line 49, we use a get_operator function. The get_operator function uses the
build-in SageMath function operator(), but makes the output more aesthetic and easier to
read.

34 def get_operator(x): #pretty output for operator
35 if x.operator() == operator.lt:
36 return "lt"
37 elif x.operator() == operator.gt:
38 return "gt"
39 elif x.operator() == operator.eq:
40 return "eq"
41 else:
42 return "zero"

We will now examine how the function plotlist works. This function begins with a empty
plot list to which we will add the necessary inequalities. The function iterates through the
inequalities of every solution in the constructed relations list (lines 55 to 57). Note that by the
cleanup_list function, we ensured the inequalities are solved for b. By iterating through the
relations rather than the regime list itself, we can check for isolated a or b in the inequality.
All such inequalities are added to the plot list per solution (lines 58 to 61). Each solution
also includes restrictions for p, relating p∗ to p, 0 and 1. These restrictions where used in
composing the lists for the regimes. By the definition of the regimes in Section 4.5.3, we
already know these constraints for each regime, allowing us to ignore them when composing
the plot lists. Once all solutions have been processed, the complete plot list is returned.

53 def plotlist(relations_list, regime_list): #returns the plot list for a regime
54 plot_list = []
55 for i in range(len(relations_list)):
56 sol = []
57 for j in range(len(relations_list[i])):
58 eq = relations_list[i][j]
59 if (a in eq) or (b in eq):
60 sol.append(regime_list[i][j])
61 plot_list.append(sol)
62 return plot_list

We apply all the aforementioned functions to get everything in order for the plot.

222 #Cleanup lists
223 regime1 = cleanup_list(regime1)
224 regime2 = cleanup_list(regime2)
225 regime3 = cleanup_list(regime3)
226 regime4 = cleanup_list(regime4)
227

4 SOLVING TWO-STRATEGY GAMES WITH SAGEMATH 23

228 #Extract a List of Decomposed Relations
229 relations1 = relations_list(regime1)
230 relations2 = relations_list(regime2)
231 relations3 = relations_list(regime3)
232 relations4 = relations_list(regime4)
233

234 #Composes plot lists
235 plotlist1 = plotlist(relations1, regime1)
236 plotlist2 = plotlist(relations2, regime2)
237 plotlist3 = plotlist(relations3, regime3)
238 plotlist4 = plotlist(relations4, regime4)

For the actual plot we iterate through the plot list of every regime and add every region to
the graphics P . This is done by the SageMath function region_plot. We provide this function
with the inequalities that denotes the area to be filled, the boundaries on the axis for both
axis, the colour for the area, and the colour for the boundaries given by the inequality. For
the boundaries on the axis, which determine how large the plot is going to be, we defined a
parameter scale in line 65. Since the region plot function does not support adding a legend,
we use a dummy plot consisting of a line with length zero to add the colour and title to the
legend. The colours in the legend will be shown by a short line segment, unfortunately it is
not possible to get the legend to present squares of the colours.

241 for sol in plotlist1:
242 P += region_plot(sol, (a,-scale,scale),(b,-scale,scale), incol = 'tomato',
243 bordercol='black')
244

245 #Add a dummy plot for the legend
246 P += line([(0,0)], color='tomato', legend_label='First regime')

These code lines are repeated for every regime. For the regimes, we used the colours provided
by SageMath: “Forestgreen”, “Yellow”, “Tomato” and “Royalblue”, in that order.

The final step for the plot is to add the axis titles, set the legend options and save the
image. Which is done in the following code lines. In the last line 283, the user has to adjust
the location and file name.

272 #Axis labels
273 tx = text(x_titel, (scale+0.2,-0.5), fontsize=13)
274 ty = text(y_titel, (0.2,scale+0.2), fontsize=13)
275 P += tx
276 P += ty
277

278 # Enable legend
279 P.set_legend_options(loc='upper right', back_color=(0.8, 0.8, 0.8),

4 SOLVING TWO-STRATEGY GAMES WITH SAGEMATH 24

280 shadow=False, handlelength=0.1, markerscale=5, font_size=12)
281

282 #Change to the correct location and name
283 P.save("<location>/<file_name>.png")

4.5.5 Case: equilibrium independent of p

In this last section, we handle the case where the equilibrium is not dependent on p. This
case is a simplified version of the rest of the code because only two regimes are possible: one
where the first strategy is stable and one where the second strategy is stable.These will be
referred to as the “First regime” and the “Second regime”, to maintain consistency with the
rest of the code.

As previously mentioned in Section 4.5.2, we consider the case where p_star_list is empty,
and thus begin by verifying this in line 108. Subsequently, we calculate the equilibrium as a
function of a and b in lines 109 and 110. This ensures that the game is handled correctly if
the equilibrium depends only on one of these variables. If the equilibrium depends on both
both a and b or only on a, the list a_star will not be empty. The code handles this case first.
If a_star is empty, but b_star is not, this case is addressed in a similar manner, as outlined
in lines 127 to 141 in Appendix A.

108 if p_star_list==[]:
109 a_star = solve(diff_w, a)
110 b_star = solve(diff_w, b)
111 if a_star!=[]:

Since there are only two regimes, we only need to calculate when the system increases or
decreases. We do this by solving when the difference between w1 and w2 is greater than
or less than zero. Because we are solving for only one inequality, the previously discussed
functions cleaunup_list, relations_list and plotlist from Section 4.5.4, are not necessary. We
plot the solutions for an increasing system in green and the solutions for a decreasing system
in yellow. following the same method as in Section 4.5.4.

113 down = solve(diff_w < 0, a)
114 up = solve(diff_w > 0, a)
115 for sol in up:
116 P += region_plot(sol, (a,-scale,scale),(b,-scale,scale),
117 incol = 'forestgreen', bordercol='black')
118

119 P += line([(0,0)], color='forestgreen', legend_label='First regime')
120

121 for sol in down:
122 P += region_plot(sol, (a,-scale,scale),(b,-scale,scale),

4 SOLVING TWO-STRATEGY GAMES WITH SAGEMATH 25

123 incol = 'yellow', bordercol='black')
124

125 P += line([(0,0)], color='yellow', legend_label='Second regime')

We have now explained the purpose and functionality of each section of the code. The
complete code can be found in Appendix A.

5 CASE STUDIES OF USING CODE 26

5 Case studies of using code
In the previous chapter, Chapter 4, we have discussed the code to symbolically solve two-
strategy games. In this chapter we are going to apply this program to the games discussed
in Chapter 2. In the first section we will show the plot which is generated when provided
input from the general game from Section 2.3. We will focus on customising this plot using
the variables U and V . In the second section we will discuss the Go vs. Grow game from
Section 2.4. For this input game we will discuss the intermediate solutions, as well as the
final plot.

5.1 General game presenting as U vs. V

We first recall the general matrix for the general game from Section 2.3(
1 U
V 0

)
. (67)

We adjust the code like explained in Section 4.3 to solve for U and V . We begin by replacing
a and b with U and V in line 70 which defines the SageMath variables. We also declare
U, V ∈ R in lines 73 and 74 of the code.

70 U, V, p = var('a b p')
71

72 #a,b and p are real numbers
73 assume(U, 'real')
74 assume(V, 'real')
75 assume(p, 'real')

Next we define our input expressions in the code and add a = U and b = V .

84 R_expr = SR(1)
85 S_expr = SR(U)
86 T_expr = SR(V)
87 F_expr = SR(0)
88

89 a=U
90 b=V

Lastly, we rename the axis titles to U and V in lines 90 and 91.

92 x_titel = "U"
93 y_titel = "V"

This input and customisation result in the plot shown in Figure 6.

5 CASE STUDIES OF USING CODE 27

Figure 6: The output plot generated by the program when provided with the U vs. V
representation of a general game matrix as input.

5.2 Go vs. grow game

In this section we will examine how the code generated a plot from the payoff matrix from
Section 2.4: (

1− 1
2
c
b

1− c
b

1 1
2

)
. (68)

To run this example, we begin by defining the input expressions R, S, T and F . Note that
we use the variable name a instead of c, as in Section 2.4. To ensure the game is solved
symbolically, we transform the input expressions to symbolic expressions by the function
SR(). We also define an additional variable h = 1

2
, this ensures the output to be exact.

77 # Define R, S, T, and F as Sage functions in code
78 h = Integer(1)/Integer(2)
79 R_expr = SR(1-h*a/b)
80 S_expr = SR(1-a/b)
81 T_expr = SR(1)
82 F_expr = SR(h)

The payoff functions and the equilibrium point of this game are defined in Section 2.4. For
c = a these are:

wgo =
1

2

a

b
p− a

b
+ 1. (69)

wgrow =
1

2
p+

1

2
. (70)

p∗ =
2a− b

a− b
(71)

The payoff functions correspond to w1 and w2 in the code, respectively. When retrieved from
the code, w1 has output ap

2 b
− a

b
+1 and w2 has output 1

2
p+ 1

2
. These are equivalent to payoff

5 CASE STUDIES OF USING CODE 28

functions defined above. When asked for p∗ the code returns 2 a−b
a−b

, we observe once more
this corresponds to our calculated value. In Section 2.4 we determined the constrictions for
the four possible regimes. Recall that we determined the last regime does not occur. The
restrictions for the first regime where:

(b > 0, a < 0), (72)
(b < 0, a > 0). (73)

The restrictions for the second regime where:(
b > 0,

b

2
< a < b

)
, (74)(

b < 0, b < a <
b

2

)
, (75)

(b > 0, a > b), (76)
(b < 0, a < b). (77)

Lastly, the restrictions for the third regime where:(
b > 0, 0 < a <

b

2

)
, (78)(

b < 0,
b

2
< a < 0

)
. (79)

In the code these constrictions are placed in lists. The output for the list for the first regime
is

regime1 =
[
[a > 0, b < 0,−ap+ bp+ 2 a− b > 0,−ap+ bp+ 2 a− b > 0] ,

[a < 0, b > 0, ap− bp− 2 a+ b > 0, ap− bp− 2 a+ b > 0]
]
.

In these solutions the last two elements of each solution are equivalent to p > p∗ or p < p∗.
These inequalities are removed before plotting by the function plotlist, explained in Section
4.5.4. The remaining inequalities correspond with our calculates inequalities (72) and (73).
The output for the second regime is

regime2 =
[
[b < a, b > 0,−ap+ bp+ 2 a− b > 0,−ap+ bp+ 2 a− b > 0] ,

[a < b, b < 0, ap− bp− 2 a+ b > 0, ap− bp− 2 a+ b > 0] ,

[b < 2 a, a < b, b > 0,−ap+ bp+ 2 a− b > 0,−ap+ bp+ 2 a− b > 0] ,

[b < a, 2 a < b, b < 0, ap− bp− 2 a+ b > 0, ap− bp− 2 a+ b > 0]
]
.

For this regime the elements depending on p also denote p > p∗ or p < p∗. The remaining
constrictions corresponds with (74), (75), (76) and (77). The output for the third regime is

regime3 =
[
[a > 0, 2 a < b, b > 0,−ap+ bp+ 2 a− b > 0] ,

[b < 2 a, a < 0, b < 0, ap− bp− 2 a+ b > 0] ,

[b < 2 a, a < 0, b < 0,−ap+ bp+ 2 a− b > 0] ,

[a > 0, 2 a < b, b > 0, ap− bp− 2 a+ b > 0]
]
.

5 CASE STUDIES OF USING CODE 29

Note this list contains each of the restrictions (78) and (79) twice, this is because the are
added once for wgo −wgrow > 0, p < p∗ and once for wgo −wgrow < 0, p > p∗. In Section 2.4
is shown that these pairs of inequalities have the same solution. We can conclude the output
of this regime corresponds with our mathematically derived values (78) and (79). The output
for the last regime is

regime4 = [] .

We found that the last regime does not occur, so it is correct that the list for regime 4 is empty.

Subsequently, the code will plot these identified regions, resulting in the dynamic regime
plot shown in Figure 7. Note that the line b = a is plotted because it is a boundary of the
different regions that together form the second regime.

Figure 7: The output plot generated by the code when provided with the Go vs. Grow game
matrix from Section 2.4 as input.

6 FUTURE DIRECTIONS 30

6 Future directions
In the preceding chapters, we explored evolutionary two-strategy games and demonstrated
the application of SageMath in solving these games symbolically. In future projects this code
could be expanded to solve three-strategy games. Three-strategy games introduce additional
complexity due to the increased number of variables, requiring more creativity to produce
meaningful two-dimensional plots.

A three-strategy game can be visualised as a triangle with each of the three strategies located
at a corner as shown in Figure 8. Each corner represent the situation where the corresponding
strategy has a proportion of one, i.e., makes up the entire population. The edges between
two corners represent the behaviour of the game when only those two strategies are present,
functioning like a two-strategy game like seen in Section 2.2. The middle of the triangle,
however, can exhibit more complex behaviours. It is possible for two three-strategy games to
have the exact same behaviours on the edges, while the middle presents totally different be-
haviours. For a deeper understanding of the mathematics involved in solving three-strategy
games, please refer to the article by Bomze [11].

Second strategy Third strategy

First strategy

Figure 8: Visualisation of a three-strategy game. The corners refer to the state of the game
where the proportion of the corresponding strategy is equal to one.

The first step in solving a three-strategy game is to solve the two-strategy games occurring
on the edges. The code described in Chapter 4 is already able to solve these subgames. For
a future project this intermediate solutions could be combined to solve the three-strategy
game symbolically. As mentioned in the Introduction 1, there already exist programming
tools to solve three-strategy games numerically [3][4]. However, we are especially interested
in solving games symbolically, This creates more insight in the effects of the parameters in
the game. Unfortunately, writing this code was not in scope of the current project.

There are many relevant three-strategy evolutionary games for which a symbolic solver could
be helpful. One of these games is the “Go vs. Grow. vs. Gly” game [12] [13], which is an
extension of the game discussed in Section 2.4. Other dynamics within oncology that can
be described by evolutionary three-strategy games include the dynamics of Tumor-Stroma in
multiple myeloma [14] or dynamics in metastatic castrate-resistant prostate cancer [15].

7 CONCLUSION 31

7 Conclusion
In this thesis, we developed a tool to symbolically solve two-strategy evolutionary games
by combining mathematical theory with programming in SageMath. Although we primarily
discussed two-strategy evolutionary games in a biological context, the tool could be used for
two-strategy evolutionary games in all the application fields. The input for the tool are four
expressions of the form λax + γby or λax × γby which together form a game matrix

(
R S
T F

)
.

The output of the program is a plot with a and b on the axis, that shows the regions where
different dynamic regimes occur.

To develop this tool we began by exploring the mathematics involved in solving two-strategy
games. We explored how an environment with two populations can be described as an evo-
lutionary game and which equations and values are important. We discussed what it means
to solve such a game symbolically and how this is accomplished. This was demonstrated
through a general game and a example from mathematical oncology.

Following this, we introduced SageMath. Through a brief tutorial, we covered the functions
provided by SageMath which are important for solving two-strategy evolutionary games,
providing the necessary tools to understand the final code. In this code, we symbolically
solve two-strategy evolutionary games, by handling input, calculating key values, determin-
ing conditions for the different regimes and finally, plotting the results. Using examples we
illustrated how this code can be used to symbolically solve two-strategy evolutionary games.

In future projects, this thesis could be extended to three-strategy games. We provided a
brief insight on these games and the potential future directions of this project.

In conclusion, this thesis has not only provided a practical tool for symbolically solving two-
strategy games but also offered insight into the mathematical background and the practical
applications.

REFERENCES 32

References
[1] B. Wölfl, H. te Rietmole, M. Salvioli, A. Kaznatcheev, F. Thuijsman, J. S. Brown,

B. Burgering, and K. Staňková, The contribution of evolutionary game theory to under-
standing and treating cancer (2021).

[2] M. Gluzman, J. G. Scott, and A. Vladimirsky, Optimizing adaptive cancer therapy:
dynamic programming and evolutionary game theory (2020).

[3] J. West, Y. Ma, A. Kaznatcheev, and A. Anderson, Isomatrix: a framework to visualize
the isoclines of matrix games and quantify uncertainty in structured populations. (2020).

[4] I. Mirzaev, D. Williamson, and J. G. Scott, Isomatrix: a framework to visualize the
isoclines of matrix games and quantify uncertainty in structured populations. (2018).

[5] A. Kaznatcheev, Two conceptions of evolutionary games: reductive vs effective (2017).

[6] A. Kaznatcheev, Space of cooperate-defect games, URL https://egtheory.wordpress.
com/2012/03/14/uv-space/.

[7] A. Kaznatcheev, J. G. Scott, and D. Basanta, Edge effects in game-theoretic dynamicsof
spatially structured tumours (2015).

[8] Sagemath, URL https://www.sagemath.org/.

[9] List of named colors, URL https://matplotlib.org/stable/gallery/color/named_
colors.html.

[10] 2d graphics: Colors, URL https://doc.sagemath.org/html/en/reference/
plotting/sage/plot/colors.html.

[11] I. M. Bomze, Lotka-volterra equation and replicator dynamics: A two-dimensional clas-
sification (1983).

[12] A. Kaznatcheev, Warburg effect and evolutionary dynamics of
metastasis, URL https://egtheory.wordpress.com/2013/07/08/
warburg-effect-and-evolutionary-dynamics-of-metastasis/.

[13] D. Basanta, M. Simon, H. Hatzikirou, and A. Deutsch, Evolutionary game theory eluci-
dates the role of glycolysis in glioma progression and invasion.

[14] J. Sartakhti, M. Manshaei, S. Bateni, and M. Archetti, Evolutionary dynamics of tumor-
stroma interactions in multiple myeloma (2021).

[15] J. Zhang, J. J. Cunningham, J. S. Brown, and R. A. Gatenby, Integrating evolutionary
dynamics into treatment of metastatic castrate-resistant prostate cancer (2017).

https://egtheory.wordpress.com/2012/03/14/uv-space/
https://egtheory.wordpress.com/2012/03/14/uv-space/
https://www.sagemath.org/
https://matplotlib.org/stable/gallery/color/named_colors.html
https://matplotlib.org/stable/gallery/color/named_colors.html
https://doc.sagemath.org/html/en/reference/plotting/sage/plot/colors.html
https://doc.sagemath.org/html/en/reference/plotting/sage/plot/colors.html
https://egtheory.wordpress.com/2013/07/08/warburg-effect-and-evolutionary-dynamics-of-metastasis/
https://egtheory.wordpress.com/2013/07/08/warburg-effect-and-evolutionary-dynamics-of-metastasis/

A CODE 33

A Code

1 from sage.all import *
2

3 #-------Functions--
4

5 def cleanup_list(regime_list) : #cleans up list before plotting
6

7 #removes dubbel list (brackets) around elements
8 regime_list = [sol for sublist in regime_list for sol in sublist]
9

10 #Get everything in a "b=" form
11 q=[]
12 for sol in regime_list:
13 l = []
14 for elem in sol:
15 l.append(solve([elem],b)[0][0])
16 q.append(l)
17

18 regime_list = q
19

20 #removes contradictions
21 helplist = []
22

23 for sol in regime_list:
24 for i in range(len(sol)-1):
25 for j in range(i + 1, len(sol)):
26 if sol[i] == -1 * sol[j]:
27 helplist.append(sol)
28

29 for sol in helplist:
30 regime_list.remove(sol)
31 return regime_list
32

33

34 def get_operator(x): #Makes the output for operator more manageable
35 if x.operator() == operator.lt:
36 return "lt"
37 elif x.operator() == operator.gt:
38 return "gt"
39 elif x.operator() == operator.eq:
40 return "eq"
41 else:
42 return "zero"

A CODE 34

43

44 def relations_list(regime_list): #Returns a list of decomposed relations
45 relations_list = []
46 for sol in regime_list:
47 relations = []
48 for elem in sol:
49 relations.append((elem.lhs(), get_operator(elem), elem.rhs()))
50 relations_list.append(relations)
51 return(relations_list)
52

53 def plotlist(relations_list, regime_list): #Returns the plot list for a regime
54 plot_list = []
55 for i in range(len(relations_list)):
56 sol = []
57 for j in range(len(relations_list[i])):
58 eq = relations_list[i][j]
59 if (a in eq) or (b in eq):
60 sol.append(regime_list[i][j])
61 plot_list.append(sol)
62 return plot_list
63

64 #Needed for plotting
65 scale = 3
66 # Initialize the main plot
67 P = Graphics()
68

69 #-------Declaring input---
70 a, b, p = var('a b p')
71

72 #a,b and p are real numbers
73 assume(a, 'real')
74 assume(b, 'real')
75 assume(p, 'real')
76

77 # Define R, S, T, and F as Sage functions with input
78 R_expr = SR(input("Enter the function for R(a,b): "))
79 S_expr = SR(input("Enter the function for S(a,b): "))
80 T_expr = SR(input("Enter the function for T(a,b): "))
81 F_expr = SR(input("Enter the function for F(a,b): "))
82

83 # Define R, S, T, and F as Sage functions in code
84 R_expr = SR(<expr>)
85 S_expr = SR(<expr>)
86 T_expr = SR(<expr>)
87 F_expr = SR(<expr>)

A CODE 35

88

89 #Adjust to variable names
90 x_titel = "c"
91 y_titel = "b"
92

93 #-------Calculation of Key Values---
94

95 w_1 = p*R_expr + (1 - p) * S_expr
96 w_2 = p*T_expr + (1 - p) * F_expr
97

98 w_1 = w_1.expand()
99 w_2 = w_2.expand()

100

101 diff_w = w_1 - w_2
102

103 p_dot = p*(p-1)*(diff_w)
104 p_dot = p_dot.expand()
105

106 p_star_list = solve(diff_w, p)
107

108 if p_star_list==[]: #-------Case: eqiulibrium independent of p-------
109 a_star = solve(diff_w, a)
110 b_star = solve(diff_w, b)
111 if a_star!=[]:
112

113 down = solve(diff_w < 0, a)
114 up = solve(diff_w > 0, a)
115 for sol in up:
116 P += region_plot(sol, (a,-scale,scale),(b,-scale,scale),
117 incol = 'forestgreen', bordercol='black')
118

119 P += line([(0,0)], color='forestgreen', legend_label='First regime')
120

121 for sol in down:
122 P += region_plot(sol, (a,-scale,scale),(b,-scale,scale),
123 incol = 'yellow', bordercol='black')
124

125 P += line([(0,0)], color='yellow', legend_label='Second regime')
126

127 if b_star!=[]:
128

129 down = solve([(diff_w < 0)], b)
130 up = solve([diff_w > 0], b)
131 for sol in up:
132 P += region_plot(sol, (a,-scale,scale),(b,-scale,scale),

A CODE 36

133 incol = 'forestgreen', bordercol='black')
134

135 P += line([(0,0)], color='forestgreen', legend_label='First regime')
136

137 for sol in down:
138 P += region_plot(sol, (a,-scale,scale),(b,-scale,scale),
139 incol = 'yellow', bordercol='black')
140

141 P += line([(0,0)], color='yellow', legend_label='Second regime')
142 else:
143 #-------Determining conditions for each regime---------------------------------------
144 p_star = p_star_list[0].rhs()
145

146 down = solve(diff_w < 0, p)
147 up = solve(diff_w > 0, p)
148

149 pGp_star = solve([p>p_star, p_star>0, p_star<1],a,b)
150 pSp_star = solve([p<p_star, p_star>0, p_star<1],a,b)
151 p_starG1 = solve([p_star>1],a,b)
152 p_starS0 = solve([p_star<0],a,b)
153

154 regime1 = []
155 regime2 = []
156 regime3 = []
157 regime4 = []
158

159

160 #First Regime
161 for elem in up:
162 for sol in p_starG1:
163 eq = sol + elem + [p<p_star]
164 solution = solve(eq, a, b)
165 if solution != []:
166 if solution not in regime1:
167 regime1.append(solution)
168 for elem in up:
169 for sol in p_starS0:
170 eq = sol + elem + [p>p_star]
171 solution = solve(eq, a, b)
172 if solution != []:
173 if solution not in regime1:
174 regime1.append(solution)
175

176 #Second Regime
177 for elem in down:

A CODE 37

178 for sol in p_starG1:
179 eq = sol + elem + [p<p_star]
180 solution = solve(eq, a, b)
181 if solution != []:
182 if solution not in regime2:
183 regime2.append(solution)
184 for elem in down:
185 for sol in p_starS0:
186 eq = sol + elem + [p>p_star]
187 solution = solve(eq, a, b)
188 if solution != []:
189 if solution not in regime2:
190 regime2.append(solution)
191

192 #Third Regime
193 for elem in down:
194 for sol in pGp_star:
195 solution = solve(sol + elem, a,b)
196 if solution != []:
197 if solution not in regime3:
198 regime3.append(solution)
199

200 for elem in up:
201 for sol in pSp_star:
202 solution = solve(sol + elem, a, b)
203 if solution != []:
204 if solution not in regime3:
205 regime3.append(solution)
206

207 #Fourth Regime
208 for elem in up:
209 for sol in pGp_star:
210 solution = solve(sol + elem, a, b)
211 if solution != []:
212 if solution not in regime4:
213 regime4.append(solution)
214 for elem in down:
215 for sol in pSp_star:
216 solution = solve(sol + elem, a, b)
217 if solution != []:
218 if solution not in regime4:
219 regime4.append(solution)
220

221 #-------Plotting---
222 #Cleanup lists

A CODE 38

223 regime1 = cleanup_list(regime1)
224 regime2 = cleanup_list(regime2)
225 regime3 = cleanup_list(regime3)
226 regime4 = cleanup_list(regime4)
227

228 #Extract a List of Decomposed Relations
229 relations1 = relations_list(regime1)
230 relations2 = relations_list(regime2)
231 relations3 = relations_list(regime3)
232 relations4 = relations_list(regime4)
233

234 #Composes plot lists
235 plotlist1 = plotlist(relations1, regime1)
236 plotlist2 = plotlist(relations2, regime2)
237 plotlist3 = plotlist(relations3, regime3)
238 plotlist4 = plotlist(relations4, regime4)
239

240 #First Regime
241 for sol in plotlist1:
242 P += region_plot(sol, (a,-scale,scale),(b,-scale,scale), incol = 'forestgreen',
243 bordercol='black')
244

245 #Add a dummy plot for the legend
246 P += line([(0,0)], color='forestgreen', legend_label='First regime')
247

248 #Second Regime
249 for sol in plotlist2:
250 P += region_plot(sol, (a,-scale,scale),(b,-scale,scale), incol = 'yellow',
251 bordercol='black')
252

253 #Add a dummy plot for the legend
254 P += line([(0,0)], color='yellow', legend_label='Second regime')
255

256 #Third Regime
257 for sol in plotlist3:
258 P += region_plot(sol, (a,-scale,scale),(b,-scale,scale), incol = 'tomato',
259 bordercol='black')
260

261 #Add a dummy plot for the legend
262 P += line([(0,0)], color='tomato', legend_label='Third regime')
263

264 #Fourth Regime
265 for sol in plotlist4:
266 P += region_plot(sol, (a,-scale,scale),(b,-scale,scale), incol = 'royalblue',
267 bordercol='black')

A CODE 39

268

269 #Add a dummy plot for the legend
270 P += line([(0,0)], color='royalblue', legend_label='Fourth regime')
271

272 #Axis labels
273 tx = text(x_titel, (scale+0.2,-0.5), fontsize=13)
274 ty = text(y_titel, (0.2,scale+0.2), fontsize=13)
275 P += tx
276 P += ty
277

278 # Enable legend
279 P.set_legend_options(loc='upper right', back_color=(0.8, 0.8, 0.8),
280 shadow=False, handlelength=0.1, markerscale=5, font_size=12)
281

282 #Change to the correct location and name
283 #P.save("<location>/<file_name>.png")

	Introduction
	Two-strategy evolutionary games
	Replicator dynamics
	The possible regimes
	Solving a general game
	Go vs. Grow
	Constructing the payoff matrix
	Solving the Go vs. Grow game

	An introduction to SageMath
	SageMath tutorial

	Solving two-strategy games with SageMath
	Input
	Output
	Customisation options in the code
	Variables
	Axis titles
	Colours and titles of the regimes

	Overview of the code
	In-Depth Explanation of the code
	Declaring input
	Calculation of key values
	Determining conditions for each regime
	Plotting
	Case: equilibrium independent of p

	Case studies of using code
	General game presenting as U vs. V
	Go vs. grow game

	Future directions
	Conclusion
	Code

