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Abstract

Accurately estimating biomass in forestry systems is important for eval-

uating carbon offsets. Traditional methods of manual measurement are

labor-intensive, costly, and use considerable resources. This research ex-

plores the potential of high-resolution optical remote sensing as a more

cost-effective and easily available data source.

Current deep learning and machine learning techniques face challenges

due to the limited availability of data and the complexity of labeling satel-

lite imagery. Typically, these studies rely on high-resolution data (10m-

30m), which may not be optimal for biomass monitoring, with very few

exploring super-high-resolution satellite data.

Additionally, existing studies often employ either pixel-to-pixel segmen-

tation or deep learning (DL) methodologies. Pixel-to-pixel approaches are

limited as they fail to capture the surrounding of each datapoint. Mean-

while, DL methods are data-intensive, often impractical due to the scarcity

of ground truth data and the laborious, sometimes inaccurate process of

manual labeling.

This study proposes a novel vegetation segmentation technique that re-

quires minimal labeling. We developed a texture-based machine learning

segmentation approach which uses Local Binary Pattern and Random For-

est, and which achieved up to 95% accuracy on 4-classes segmentation.

We also showed that this approach outperforms UNET, as well as that in-

corporating outcomes of this segmentation in the feature set significantly

improves biomass estimation.

Keywords: Remote sensing, vegetation segmentation, biomass estimation,

random forest, texture features
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1. Introduction

Humanity faces a crucial moment in its fight against climate change, marked

by various challenging aspects, including the increased levels of CO2 in

the Earth’s atmosphere [1]. This increase in atmospheric CO2, primarily

attributed to the burning of fossil fuels and deforestation, is a significant

driver of global warming and climate change [1]. In this situation, the

amount of carbon stored in forests and other natural ecosystems becomes

crucial for reducing the effects of climate change. These stocks act as natural

carbon sinks, absorbing CO2 from the atmosphere and thereby helping to

balance the global carbon budget. However, the effective management and

preservation of these carbon stocks necessitate a reliable method of super-

vision and monitoring [2]. It is here that Artificial Intelligence (AI) can play

a transformative role. By applying AI in conjunction with advanced remote

sensing technologies, we can not only enhance our understanding of carbon

stock dynamics but also improve the accuracy and efficiency of monitoring

these vital resources. This thesis explores the innovative integration of AI

with high-resolution optical imagery to develop robust, scalable, and cost-

effective methodologies for carbon stock assessment, thereby contributing

to the broader efforts of combating climate change and ensuring a sustain-

able future.

1.1 Carbon Stocks and Their Monitoring

Carbon stocks refer to the quantity of carbon held within various ecosys-

tems, such as forests, soil, and oceans. In the context of climate change,

these stocks play a crucial role [2]. Forests, for example, act as carbon sinks

by absorbing carbon dioxide (CO2) from the atmosphere through photosyn-

thesis and storing it in the form of biomass in trees and soil. This natural

process of carbon sequestration is vital for regulating atmospheric CO2 lev-
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1.1 Carbon Stocks and Their Monitoring

els, one of the primary greenhouse gases contributing to global warming

[1]. The maintenance and enhancement of these carbon stocks are therefore

essential in mitigating the adverse effects of climate change, as they directly

influence the global carbon balance.

Building upon the concept of carbon stocks, carbon offset projects are

instrumental in increasing these stocks, thereby playing a key role in cli-

mate change mitigation. These projects, which include forestry initiatives,

renewable energy developments, and energy efficiency improvements, are

designed to either sequester additional CO2 or reduce emissions. By cap-

turing or preventing the release of carbon emissions, carbon offset projects

not only contribute to increasing carbon stocks but also provide a means for

companies and individuals to balance out their own carbon footprints. This

approach promotes a shift towards more sustainable and environmentally

responsible practices in both business operations and daily life.

Forestry projects, in particular, are a cornerstone of carbon offset ini-

tiatives. They focus on either preserving existing forests or planting new

ones, both of which are vital in sequestering carbon dioxide from the at-

mosphere [3]. These projects not only help in reducing the concentration

of greenhouse gases, but also contribute to biodiversity conservation, water

resource management, and the provision of livelihoods for local commu-

nities [3]. However, the success of forestry projects depends on accurate

measurement and monitoring of biomass, which is where the challenge lies

[3].

One of the types of forestry projects uses agroforestry - incorporating

trees/shrubs into farming systems, and therefore allowing for the produc-

tion of trees and crops or livestock from the same piece of land in order

to obtain economic, ecological, environmental and social benefits as dis-

cussed by the authors [4]. This types of forests present an even more com-

plex scenario for biomass prediction, as vegetation complexity makes mon-

itoring and quantifying biomass in these systems particularly challenging.

The variability in species, tree densities, and the interplay with agricultural

crops complicates the data collection process, necessitating more sophisti-
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Introduction

cated and adaptable monitoring techniques [5] .

1.2 Carbon Measurements Methodologies

Traditional methods for measuring carbon stocks, particularly in forest ecosys-

tems, have primarily relied on field-based techniques, among which allome-

try stands out as an important approach [6]. Allometry in ecological context

refers to the study and measurement of the relative growth of a part of an

organism in relation to the entire organism. In forestry, this concept is ap-

plied to understand and quantify the relationship between the size of a tree

(usually measured as diameter at breast height, diameter at breast height

(DBH), wood density, and height) and its biomass, which in turn indicates

the amount of carbon stored [7].

The allometric approach involves developing equations that relate eas-

ily measured tree parameters, like DBH and height, to more difficult-to-

measure attributes, such as total biomass. These allometric equations are de-

rived from detailed measurements of a sample of trees, which typically in-

volve cutting them down and weighing each component (trunks, branches,

leaves, and roots) to calculate their total biomass [7]. Once these equations

are established, they can be applied to standing trees, allowing for the esti-

mation of biomass and carbon stocks without the need for destructive sam-

pling. The development of these equations, however, requires extensive

fieldwork and can be specific to tree species and ecological zones, thus ne-

cessitating the creation of different equations for different forest types.

1.2.1 Sampling and Allometry in Practice

In the practical implementation of carbon offset projects, field sampling

plays a crucial role. Typically, a team of field researchers and foresters is de-

ployed to a designated area, often demarcated into several plots, to conduct

detailed tree measurements [8]. The number of plots can vary significantly

depending on the size of the area and the project’s objectives, but the aim is

to ensure a representative sample of the entire area. In each plot, the team

measures a specific number of trees, which is determined based on statisti-
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cal sampling techniques to achieve an accurate representation of the forest’s

overall biomass [8].

The process involves recording the species, as well as measuring the

DBH and, in some cases, the height of each selected tree. The number of

trees measured in each plot can range from a few dozen to several hundred,

again depending on the project’s scope and the forest’s density [8]. These

measurements are then used to estimate the biomass for each sampled tree

using allometric equations, as previously discussed.

Extrapolation is a key step in this process. The collected data from the

sampled plots are extrapolated to estimate the total biomass of the larger

area. This extrapolation is based on statistical methods that account for the

variability in tree sizes, species, and densities across the entire project area.

By using these representative samples and careful extrapolation, researchers

can estimate the total carbon stock of the forest without needing to measure

every tree individually. This method provides a balance between accuracy

and efficiency, enabling the practical assessment of large forest areas for car-

bon offset projects.

One significant drawback of the standard sampling/allometry approach

is the challenge in data acquisition. As mentioned previously, most allo-

metric equations are based on tree species, height, and DBH, necessitating

manual sampling. This typically involves a team of foresters traveling to

selected areas to collect the data. This is hardly a scalable solution; it in-

fluences both the quantity and quality of the data samples collected. To

simplify the process and reduce costs, measurements are often taken at the

forest’s edge or near roads. These locations, however, may not be represen-

tative of the entire forest plot, potentially leading to biased or less accurate

assessments of the forest’s biomass and carbon stock.

1.2.2 The Potential of Remote Sensing

Remote Sensing involves the acquisition of information about an object or

area from a distance, typically from aircraft or satellites, making it a non-

intrusive and efficient method for environmental monitoring. Since tradi-
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Figure 1.1: An example of LiDAR pointcloud, captured over a forest [14].

tionally biomass data collection has been a manual, labor-intensive process

fraught with methodological inaccuracies and high costs, and there is a need

for developing a less time-consuming and less prone to errors approach, Re-

mote Sensing technology emerges as a promising alternative. A number of

studies has proven successful estimation of biomass using this type of data

[9] [10] [11].

1.2.2.1 LiDAR

Light Detection and Ranging (LiDAR) technology has become a cornerstone

in the field of biomass assessment due to its ability to generate precise three-

dimensional point clouds. A LiDAR point cloud is a collection of data points

in space produced by a laser scanner. These points collectively form a de-

tailed representation of the scanned area, capturing the contours and struc-

tures of the environment with high accuracy [12]. In the context of forest

biomass, LiDAR’s ability to measure the height and structure of trees is par-

ticularly valuable. Tree height is a critical parameter in biomass estimation

as it correlates strongly with the overall mass of the tree. This direct rela-

tionship between tree height and biomass allows for accurate calculations

of the carbon stock within a forested area [11] [13].

However, despite its precision, LiDAR technology comes with signifi-

cant costs. The requirement for specialized equipment and aerial platforms,

typically aircraft or drones, adds to the expense. Furthermore, operating
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and interpreting LiDAR data requires skilled personnel, which further lim-

its its accessibility and widespread use. These factors make LiDAR a less

feasible option for frequent or large-scale biomass monitoring, especially in

resource-limited settings.

1.2.2.2 Optical Data

High-resolution optical imagery, as provided by platforms like SkySat satel-

lites, offers a more accessible alternative for biomass monitoring. The pri-

mary advantage of this type of data lies in its wide availability, comprehen-

sive coverage, and relative affordability [15]; moreover, satellites nowadays

capture a wide range of light spectrum - from which especially near-infrared

band is helpful for vegetation monitoring [16].

Unlike LiDAR, high-resolution optical imagery is two-dimensional, pro-

viding detailed visual information about the surface but lacking direct data

on the height and three-dimensional structure of vegetation. This absence

of height information poses a challenge in accurately assessing biomass,

as height is a key component in biomass estimation [17]. However, stud-

ies show the additional spectral information (e.g., the aforementioned NIR

band) may be just as important in biomass monitoring [18].

Recent advancements in remote sensing technologies have significantly

bolstered our capabilities in biomass estimation using high-resolution opti-

cal data. However, these methods often exhibit a degree of specialization

that limits their broader applicability. For instance, algorithms developed

for temperate forests might not perform as well in tropical or boreal ecosys-

tems due to distinct structural and phenological differences. This special-

ization can hinder the scalability of these methods, making it challenging to

apply them to larger and more diverse forest stands.

One promising approach to overcome this drawback is to focus on canopy

segmentation methods. Knowledge about tree canopy size and shape, com-

bined with the information about the species and allometry, may be suffi-

cient to estimate the biomass: e.g, recent methodologies have shown promise

in linking tree crown dimensions, potentially observable in two-dimensional
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imagery, to biomass [19].

Another important indicator of biomass, photosynthetic activity, is pos-

sible to asses using optical data. Through the analysis of color variations

and patterns in the imagery, it is possible to infer the health and productivity

of vegetation, which are closely tied to biomass. These advancements sug-

gest that high-resolution optical imagery could potentially match the accu-

racy of LiDAR (which does not indicate photosynthetic activity) in biomass

prediction, while offering the benefits of lower costs and greater accessibil-

ity. This potential makes high-resolution optical data a promising avenue

for efficient and cost-effective biomass monitoring, especially in extensive

and frequent applications.

Choosing an appropriate AI method may also pose a challenge. Convo-

lutional Neural Networks, especially models such as YOLO [20], or SAM

[21], have gained a lot of popularity in recent years and seem to be an ob-

vious choice for a segmentation (or instance segmentation) task. Unfortu-

nately, these models have not been trained on satellite imagery, and show

low performance when utilized for this type of data. There exist of course

other models and architectures more suitable for the task, however these are

not free from limitations: they are usually utilizing a specific dataset, such

as SpaceNet [22] or specific type of satellite imagery - usually Landsat or

Sentinel2 [23]. Moreover, the segmentation is usually performed on human

infrastructure (roads, buildings), with very limited vegetation classes (often

just ’vegetation’).

A very significant limitation of satellite data is high variability between

satellites, difficulty in labelling the data, and, therefore, lack of datasets suit-

able for training a Machine Learning model. Due to variability in vegetation

between ecosystems, different sun angle in distinct places on Earth, and in-

consistent satellite imagery properties in images captured by unassociated

satellites, it is often the case that the algorithm would need to be retrained

for each individual use. This is an obvious obstacle for using Deep Learning

models which often require a significant number of learning examples.

On the other hand, using a simpler ML model usually relies on pixel-by-
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pixel segmentation. In vegetation segmentation, this may be problematic, as

single pixels of multiple vegetation classes may have the exact same proper-

ties. What is actually crucial for the task to succeed, is to consider the context

(the surroundings) of the pixel. This approach is, however, uncommon and

not sufficiently explored in research yet.

1.3 Project Goal & Research Question

The primary objective of this project is to develop a new biomass estimation

methodology using optical imagery, which would surpass existing solutions

in three key aspects: accuracy, versatility, and efficiency. It aims to deliver

more precise biomass estimations across a diverse range of ecosystems and

significantly reduce the dependency on extensive ground truth data, which

is a common limitation in current approaches. The proposed process en-

compasses three distinct stages:

• Developing and Validating Vegetation Segmentation Mask: This ini-

tial step involves creating a vegetation segmentation mask using su-

per high-resolution optical imagery (Pleiades Neo, 0.5m resolution).

This classification mask is crucial for the subsequent stages.

• Biomass Estimation Using Vegetation Segmentation, with LiDAR-derived

biomass as a label: this step involves using Machine Learning in order

to estimate biomass values, with the use of remote sensing data and

segmentation mask derived in the previous step.

The ultimate goal is for this methodology to serve as a baseline, which

would be later fine-tuned in order to use cheaper, more accessible high-

resolution imagery (such as Sentinel-2 with 10m resolution). This adapta-

tion aims to apply the developed techniques to a wider range of satellite

data sources.

Following this objective, the research questions that emerge are:

• What texture functions can be used in order to achieve at least 90%

accuracy on the 4-classes canopy segmentation task? and

• Can the texture features in combination with random forest exceed the
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performance of popular segmentation methodologies for small datasets?

• Does the use of canopy segmentation input increases the biomass es-

timation accuracy, in comparison to a traditional method using raw

satellite imagery as input?

12



2. Literature Review

In this section, we provide a literature overview of existing research on

biomass monitoring and species segmentation using remote sensing (RS).

We begin with a concise description of Remote Sensing data sources (2.1)

followed by describing Vegetation Indices (2.2), which are widely utilized

in RS research. Next, we discuss the current methods of biomass moni-

toring using AI and RS data, along with their existing limitations (2.3). The

third part of this chapter provides an overview of AI and RS in plant species

segmentation (2.4). In both chapters 2 and 3, deep learning and non-deep

learning methods are described.

2.1 Remote Sensing Imagery

In this section, we explore the various data sources utilized in remote sens-

ing, highlighting their distinct advantages and applications. Understanding

the diversity of these data sources is fundamental to comprehending the

broader research domain of remote sensing.

2.1.1 Radar Data

Radar data, specifically Synthetic Aperture Radar (SAR) data, is important

in remote sensing due to its capability to penetrate cloud cover and oper-

ate under all weather conditions. This feature makes SAR data useful for

applications such as deforestation monitoring, land surface mapping, and

disaster management. The ability of radar to provide consistent and reli-

able data regardless of environmental conditions is particularly beneficial

for continuous and long-term monitoring projects.

Among the most commonly used data sources for radar data are Sentinel-

1 and ALOS PALSAR.
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Sentinel-1: Sentinel-1 is a constellation of two polar-orbiting satellites,

Sentinel-1A and Sentinel-1B, launched by the European Space Agency (ESA).

Sentinel-1A was launched in April 2014 and Sentinel-1B in April 2016. These

satellites provide all-weather, day-and-night radar imagery with a revisit

time of six days at the equator. The C-band radar instrument on Sentinel-

1 operates at a wavelength of approximately 5.6 cm, which is suitable for

various applications, including land and water monitoring, emergency re-

sponse, and maritime surveillance. The high temporal frequency and spa-

tial resolution of Sentinel-1 make it valuable for observing changes over

time, such as monitoring deforestation or land subsidence [24].

ALOS PALSAR: The Advanced Land Observing Satellite (ALOS) with

the Phased Array type L-band Synthetic Aperture Radar (PALSAR) was

launched by the Japan Aerospace Exploration Agency (JAXA) in January

2006 and operated until May 2011. ALOS-2, its successor, was launched in

May 2014. PALSAR operates in the L-band with a wavelength of about 23.6

cm, which allows for deeper penetration into vegetation and soil, making it

particularly useful for forestry, agriculture, and geological applications. The

longer wavelength of L-band radar is advantageous for monitoring biomass

and forest structure, as it can penetrate the canopy and provide information

about the underlying vegetation [25], [26].

However, these data sources have limitations when it comes to vegeta-

tion monitoring, particularly for biomass estimation:

• Sentinel-1: While Sentinel-1’s C-band radar can provide detailed sur-

face information, its shorter wavelength has limited penetration ca-

pabilities compared to L-band radar. This makes it less effective for

capturing information about the structure of dense forests or estimat-

ing biomass. The C-band is more sensitive to surface scattering, which

means it primarily captures information about the canopy surface rather

than the volume of vegetation [24].

• ALOS PALSAR: Although ALOS PALSAR’s L-band radar can pene-

trate deeper into vegetation and is better suited for monitoring for-

est structure and biomass, its spatial resolution is lower compared to

14
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Sentinel-1. This can limit the level of detail and accuracy in biomass

estimation, particularly in heterogeneous landscapes. Additionally,

the availability of ALOS PALSAR data can be less frequent, and its

operational timeline is discontinuous, with gaps between ALOS and

ALOS-2 [25], [26].

In summary, while radar data from sources like Sentinel-1 and ALOS

PALSAR is valuable for many remote sensing applications, they have in-

herent limitations for vegetation monitoring, especially for biomass estima-

tion. These limitations necessitate the use of complementary data sources

and advanced analytical methods to improve the accuracy and reliability of

biomass assessments.

2.1.2 Optical Data

Optical data, derived from sensors capturing visible, near-infrared, and short-

wave infrared light, is widely employed for its high spatial and spectral res-

olution. These characteristics make optical data essential for a range of ap-

plications, including agricultural monitoring, land cover classification, and

urban planning. The detailed spectral information obtained from optical

sensors allows for precise identification and analysis of various surface ma-

terials and conditions, enhancing the accuracy of remote sensing studies.

Among the various optical satellite data sources, several stand out due

to their unique characteristics:

Sentinel-2: The Sentinel-2 mission, part of the European Space Agency’s

Copernicus program, consists of two satellites, Sentinel-2A and Sentinel-2B,

launched in June 2015 and March 2017, respectively. These satellites pro-

vide high-resolution optical imagery in 13 spectral bands, ranging from vis-

ible to short-wave infrared. With a revisit time of five days at the equator,

Sentinel-2 offers a spatial resolution of 10 meters for most bands, making it

highly suitable for detailed land cover classification and vegetation moni-

toring. Sentinel-2 data is freely available, making it an accessible resource

for researchers and practitioners [27].

Landsat: The Landsat program, a joint initiative of NASA and the US

15



Literature Review

Geological Survey, has been providing Earth observation data since 1972.

The latest satellites, Landsat 8 (launched in 2013) and Landsat 9 (launched in

2021), capture imagery in 11 spectral bands, including visible, near-infrared,

and thermal infrared wavelengths. Landsat offers a spatial resolution of 30

meters for most bands and a revisit time of 16 days. Landsat data is also

freely available, which has made it a cornerstone for long-term environ-

mental monitoring and change detection studies. [28], [29].

Pleiades: The Pleiades satellites, operated by Airbus Defence and Space,

offer very high-resolution optical imagery with a spatial resolution of 0.5

meters for panchromatic and 2 meters for multispectral bands. The satellites

capture data in four spectral bands (RGB and near-infrared). Pleiades pro-

vides high-detail imagery suitable for urban planning and precision agricul-

ture, but access to this data comes at a higher cost compared to Sentinel-2

and Landsat [30].

Drone Imagery: Drones equipped with multispectral or hyperspectral

sensors can capture high-resolution imagery with spatial resolutions down

to centimeters. This level of detail is beneficial for small-scale studies, preci-

sion agriculture, and detailed vegetation analysis. Drones offer flexibility in

data acquisition, allowing for targeted and timely data collection. However,

their coverage area is limited compared to satellites, and flight operations

can be constrained by regulations, weather conditions, and battery life [31].

Plane-Captured Imagery: Airborne platforms equipped with advanced

sensors can cover larger areas than drones while providing high-resolution

imagery. These platforms can carry a variety of sensors, including mul-

tispectral, hyperspectral, and LiDAR, offering comprehensive data for di-

verse applications. The main advantages of plane-captured imagery include

high spatial resolution and the ability to cover large areas efficiently. How-

ever, the operational costs are higher, and data acquisition is less frequent

compared to satellites.

When it comes to biomass monitoring, each data source has its strengths

and weaknesses:

• Sentinel-2 and Landsat: Both provide free, high-quality imagery with

16



2.1 Remote Sensing Imagery

sufficient spatial and spectral resolution for large-scale biomass mon-

itoring. The frequent revisit times and comprehensive spectral bands

are advantageous for tracking vegetation changes and estimating biomass

over large areas [27], [28], [29].

• Pleiades: The very high spatial resolution of Pleiades imagery allows

for detailed biomass assessments at smaller scales. This can be useful

for precision agriculture and urban forestry, though the higher cost

and limited spectral bands may restrict its broader applicability [30].

• Drone and Plane-Captured Imagery: These platforms provide unpar-

alleled spatial resolution and flexibility, making them ideal for de-

tailed biomass studies in specific areas. The ability to deploy var-

ious sensors adds versatility. However, their limited coverage area

and higher operational costs can be drawbacks for large-scale biomass

monitoring [31].

In summary, the choice of data source for biomass monitoring depends

on the scale of the study, budget, and specific requirements for spatial and

temporal resolution. Combining multiple data sources can often provide

the most comprehensive and accurate biomass assessments.

2.1.3 LiDAR Data

LiDAR (Light Detection and Ranging) data, which utilizes laser light to gen-

erate detailed three-dimensional maps of the Earth’s surface, offers high

accuracy and resolution. This technology is particularly useful for appli-

cations such as topographic mapping, forestry, autonomous vehicle navi-

gation, and archaeological studies. By measuring the time it takes for laser

pulses to return after hitting a target, LiDAR can produce precise elevation

models and detailed structural information [32].

2.1.3.1 Applications and Advantages

LiDAR’s ability to create high-resolution 3D models makes it invaluable for

a variety of applications:
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• Topographic Mapping: LiDAR is extensively used to create detailed

Digital Elevation Models (DEMs) that accurately represent the terrain.

• Forestry: It can measure forest structure, including tree height, canopy

density, and biomass, which are critical for forest management and

carbon stock assessment [33].

2.1.3.2 Limitations

Despite its advantages, LiDAR data has some limitations:

• Weather Sensitivity: LiDAR’s effectiveness can be compromised by

adverse weather conditions such as heavy rain, fog, or snow, which

can scatter or absorb the laser pulses.

• Dense Vegetation: While LiDAR can penetrate through gaps in the

canopy to some extent, very dense vegetation can limit its ability to

capture ground-level details accurately.

• Operational Costs: High operational costs are associated with LiDAR

data acquisition, particularly from airborne platforms. The cost in-

cludes the equipment, flight operations, and data processing, which

can be significant compared to other remote sensing methods [33],

[32].

2.1.3.3 LiDAR for Biomass Monitoring

LiDAR is particularly well-suited for biomass monitoring due to its ability

to measure forest structure in three dimensions. Here are some key points:

• High Accuracy: LiDAR can accurately estimate tree height, canopy

volume, and biomass density, providing crucial data for forest carbon

stock assessments and ecological studies.

• Detailed Vegetation Structure: Unlike optical sensors, LiDAR can

penetrate the forest canopy and provide detailed information about

the vertical structure of the forest, which is essential for understand-

ing biomass distribution [32].

Challenges

18
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• Cost: The high cost of LiDAR data acquisition can be a significant

barrier for extensive biomass monitoring projects. The expenses as-

sociated with both drone-based and plane-based LiDAR need to be

considered in the context of the project budget and scale [32].

2.2 Vegetation Indices

Vegetation Indices (VIs) are mathematical expressions that combine mea-

sured reflectance in multiple spectral bands of remote-sensing data to gen-

erate values useful in assessing plant growth, vigor, and various vegetation

properties such as biomass and chlorophyll content [34]. Each VI requires

specific band combinations as input. Bands are defined as specific ranges of

wavelengths in the electromagnetic spectrum that satellite sensors detect,

measured in nanometers (nm).

Band availability varies depending on the image source; for instance,

super-high-resolution satellite imagery from Pleiades Neo offers 6 bands

capturing different wavelength spectra: Deep Blue, Blue, Green, Red, Red

Edge, and Near-infrared. In contrast, widely used Sentinel-2 provides 13

bands, including Coastal/Aerosol, Blue, Green, Red, Vegetation Red Edge

1, Vegetation Red Edge 2, Vegetation Red Edge 3, Near Infrared (NIR), Nar-

row Near Infrared (NNIR), Water Vapor, Shortwave Infrared 1 (SWIR1),

Shortwave Infrared 2 (SWIR2), and Shortwave Infrared 3 (SWIR3). Notably,

bands with the same names may not necessarily cover the same wavelength

spectra (for a detailed band description, see A.1). Hence, it’s essential to rec-

ognize that a Vegetation Index calculated with a specific formula may yield

varying results with different data sources.

Commonly employed VIs include the Normalized Vegetation Index (NDVI),

Soil Adjusted Vegetation Index (SAVI), Chlorophyll Index (CI), Enhanced

Vegetation Index (EVI), and Leaf Area Index (LAI) [34].

The process of calculating VIs involves transforming bands in relation to
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each other. For example, the formula for NDVI is:

NDVI =
NIR − RED
NIR + RED

(2.1)

To apply this in practice, element-wise calculations are performed on

Near Infrared and Red Bands. Consequently, the output of a Vegetation

Index is a 2-dimensional matrix with the same height and width as the in-

put bands, where each pixel’s value carries information about the relative

health and density of vegetation at its corresponding location on the Earth’s

surface.

In machine learning research, VIs are typically generated during prepro-

cessing as part of feature engineering. They are often used as input variables

to machine learning models, either instead of or in addition to raw satellite

bands [35].

2.3 Biomass estimation

In this section, we explore how artificial intelligence (AI) methods are used

to estimate biomass, which is important for monitoring ecosystems. We will

start by looking at different ways to monitor biomass, including using deep

learning and non-deep learning methods. Then, we will talk about the chal-

lenges of using AI for biomass prediction, like not having enough data or

making models too complicated. Finally, we will discuss why it’s important

to divide vegetation into different parts when predicting biomass. This sec-

tion aims to help us understand how AI can be used to estimate biomass

and what challenges we might face.

2.3.1 Deep Learning Approaches

Multiple studies have used Deep Learning, especially Convolutional Neu-

ral Networks (CNN) [36], for biomass estimation. The advantages of using

Deep Learning in this context include its ability to automatically learn hier-
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archical features from raw data, which can be particularly beneficial when

working with complex and high-dimensional remote sensing datasets. Ad-

ditionally, Deep Learning models have shown promise in capturing intri-

cate spatial patterns and relationships within imagery, thereby potentially

improving the accuracy of biomass estimates. Moreover, Deep Learning ap-

proaches are often more flexible and adaptable to different types of data and

can handle large volumes of information efficiently.

Deep Learning and optical remote sensing methodologies have been

used for biomass estimation in various studies. One study developed a

model using artificial neural networks (ANN) [37] and vegetation indices

derived from remotely sensed data (Landsat5, 30m spatial resolution) to es-

timate Above-Ground Biomass (AGB) in the Brazilian Amazon [18]. The

study however reported a quite big error (20% of biomass values). This is

likely because of the resolution of the imagery used, and exceptionally high

biomass values in Amazon Forest. Similarly, another study by [38] reported

an R2 value of 0.27 when predicting biomass using (Landsat8, 30m spatial

resolution) data in China. These studies, utilizing only optical bands and

simple vegetation indices as input features, underscore the limitations of

existing Deep Learning approaches [38].

Other researchers use different Deep Learning architectures in order to

lift the performance of the model in estimating biomass. Li et. al. [23] com-

pared three non-parametric models, including ANN [37], random forests

(RFs) [39], and quantile regression neural network (QRNN)[40], for AGB

estimation in Pinus Densata forests in China. In this study, a high accuracy

has been reported. It must be mentioned (and the authors themselves did

so) that Pinus Densata forest is a very specific case of an ecosystem - it con-

tains only one type of tree, and this species is quite remarkable as coniferous

trees have distinctive tops and rarely intersect. Moreover, all the trees in the

forest were reported to be of the same age, which is rarely the case in natural

ecosystems, and even less likely to occur in carbon offset projects, especially

agroforestry.

Poor generalization [41] of the algorithms used for biomass prediction
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must be noted. A specific study by Pascarella et al. [42] developed a Re-

gressive UNET for biomass estimation using Sentinel-2 data and ESA CCI

BIOMASS Project [43] labels, which cover multiple species in Europe. De-

spite achieving what the authors deemed as very good results, the reported

R2 value of 0.6 +/- 0.1 indicates a significant error in terms of biomass

estimation accuracy, particularly in the context of metric tons per hectare

(MgT/ha). Moreover, the study highlights the challenge of generalizing

Deep Learning models trained on European forests to other regions, as ev-

idenced by a drop in accuracy when applied to Asian forests (R2 = 0.4),

despite being labeled as a "remarkable generalization" .

Recent research suggests that incorporating texture measures into the

modeling process may offer a promising avenue for improving biomass pre-

diction accuracy. For instance, another study [44] demonstrated that includ-

ing texture features such as mean, variance, dissimilarity, entropy, contrast,

correlation, and second moment significantly improved biomass prediction

performance, achieving R2 values of 0.63 using CNN [36] and 0.70 using

CNN-LSTM [45] models.

Despite the theoretical advantages of Deep Learning methods for biomass

estimation using remote sensing data, several limitations and shortcomings

have been observed in published studies. One notable limitation is the re-

quirement for a large amount of training data, which often leads researchers

to utilize freely available datasets such as Sentinel-2 and Landsat. While

these datasets offer broad coverage and accessibility, they come at the cost

of spatial resolution, which may limit the ability to capture fine-scale vege-

tation patterns and heterogeneity. Furthermore, the labels used for training

these Deep Learning models are often derived from datasets with relatively

low resolution, such as the ESA CCI BIOMASS Project [43], which may in-

troduce errors and inaccuracies into the training process [38].

The sub-field of super-high-resolution Remote Sensing remains relatively

underexplored, primarily due to the high costs associated with acquiring

this type of data. Notably, as of today (17/05/2024), Google Scholar does

not report any study that utilizes Deep Learning with super-high resolu-
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tion imagery for Forest Biomass estimation. While Sentinel-2 (10m spatial

resolution) and Landsat 5/8 (30m spatial resolution) are suitable for many

scenarios, biomass mapping for carbon offset purposes, particularly in agro-

forestry, necessitates imagery with much higher resolution, preferably un-

der 1 meter. However, a significant challenge lies in the scarcity of input

data, i.e., satellite imagery, and labels. There is a notable absence of widely

accepted biomass datasets with resolutions of 1 meter or less. Therefore, de-

veloping algorithms for biomass estimation at such high resolutions poses

a formidable challenge.

2.3.2 Non-Deep Learning Approaches

Non-Deep Learning methods for biomass estimation have also been exten-

sively explored in the literature. These approaches encompass a diverse

range of techniques, including traditional machine learning algorithms such

as Random Forest [39], Support Vector Machines [46], and Decision Trees

[47], as well as statistical and regression-based models [47]. Non-Deep Learn-

ing methods are often favored for their simplicity, interpretability, and com-

putational efficiency, making them suitable for applications where compu-

tational resources are limited or where transparency and interpretability of

the model are crucial [48]. Additionally, Non-Deep Learning approaches

can be effective in situations where the dataset is relatively small or when

feature engineering plays a significant role in model performance [49].

As in the case of Deep Learning-based studies, researchers here also

use data of different resolutions to support their hypotheses. For example,

one study compared biomass prediction using Random Forest [39], CNN

[36], and CNN-LSTM [45], and found that using Random Forest allows for

achieving comparable results to CNN and CNN-LSTM: for instance, RF

with Landsat 8 can predict biomass with R2 = 0.73 [44], while the CNN-

LSTM and CNN obtained worse results (R2 = 0.72 and R2 = 0.56 re-

spectively). The same study reports that the use of a geostationary satellite

Gaofen-6 (2m resolution) and Sentinel-2 (10m resolution) gives comparable

results.
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In the realm of higher-resolution data, WorldView-2-based NDVI (spa-

tial resolution of 2m) was used with Random Forest to estimate the biomass

of wetlands [50]. An important contribution of this study is that the authors

calculated NDVI multiple times, using different Near-Infrared bands avail-

able in WorldView-2 (Red Edge with a 705-745 nm wavelength, NIR with a

770-895 nm wavelength, and NIR2 with an 860-1040 nm wavelength). Ran-

dom Forest trained on traditional NDVI, calculated using the NIR band,

achieved much worse accuracy (R2 = 0.39) than when using the Red Edge

band instead of NIR in calculations (R2 = 0.79).

This illustrates a critical issue with Remote Sensing-based Machine Learn-

ing: data sources differ not only in resolution but also in the specific wave-

lengths captured under the same band name. The NIR band from the World-

View 2 satellite is not the same as the NIR band from Sentinel-2 or Landsat

5, and therefore, developing a methodology with one specific type of data

does not guarantee success if the same methodology is used with different

types of data. For example, another study [51] used similarly prepared fea-

tures and Random Forest, but with Landsat 5 data, achieving an accuracy

of R2 = 0.22.

Because of this, it must be underlined that algorithms relying solely

on VIs are sensor-dependent. One of solutions to this issue is to use tex-

ture information, which is less sensor-dependent, as an additional input in

these methodologies. For instance, Eckert et. al. [52] used Worldview (5m)

imagery with texture information to estimate carbon biomass in Madagas-

car. By employing Step-wise Multiple Linear Regression [53], the authors

achieved an R2 = 0.865 using GLCM texture features. Remarkably, the

study distinguished between non-degraded and degraded forests, estimat-

ing the biomass in each separately. As the authors note, "the more heteroge-

neous the forest canopy structure, the stronger the correlation with textural

parameters." They also observed that the correlation between vegetation in-

dices and biomass saturates at high biomass values [52].
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2.3.3 Importance of Vegetation Segmentation in Biomass Pre-

diction

Building upon the previous findings, another study highlights the impor-

tance of not only texture but also species detection in Above Ground Biomass

(AGB) modeling. Zhang et al. [44] used Sentinel2 data and Support Vec-

tor Machine to first segment the imagery into 5 groups (Pine, Oak, Walnut,

Other, and non-forest) and later used the segmentation results as input to

the Random Forest algorithm, together with information about Vegetation

Indices, texture, and SAR data. The reported accuracy of species segmen-

tation is 80%, while R2 of predicted biomass differs between species: it is

equal to 0.61 in pine, 0.62 in oak, 0.78 in walnut, and 0.65 in forests with

other dominant species. The authors of the study underline the importance

of separate models for separate species, noting that because of AGB varia-

tions in different species, a model used for classifying all 3 species together

was significantly overestimating low biomass values, and significantly un-

derestimating high biomass values. They stress it is necessary to construct

AGB models for different tree species.

A meta-analysis of studies on biomass modeling with Unmanned Aerial

Systems corroborates these findings [54]. The authors emphasize that growth

stage and plant structure, both of which are species-dependent, are likely

the most influential factors affecting above-ground biomass (AGB) estima-

tion accuracy as well as model robustness and transferability. Specifically,

the analysis indicates that optical remote sensing is more susceptible to

species variability due to its lack of structural information, which is oth-

erwise provided by LiDAR data. In this case, information about the species

can be used as a proxy for more detailed relationship between spectral in-

formation and biomass.

2.3.4 Challenges in AI-based Biomass Prediction: Summary

As described in previous sections, AI-based above-ground biomass (AGB)

prediction using optical remote sensing faces several significant challenges.

While Deep Learning (DL) methods are often robust and capable of achiev-
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ing superior results compared to non-DL methods [55], their application

in this domain is hindered by the absence of foundational models, a sig-

nificant lack of data, and issues related to dataset labeling and the collec-

tion of ground-truth data. Unlike standard computer vision tasks, where

target labels can be created relatively easily, preparing biomass heat maps

(for image-to-image translation) or even parcel-level biomass estimations

(where an image is regressed to a single biomass value) is a resource-intensive

process [56].

The process of creating accurate biomass labels requires substantial ef-

fort and resources. A team of foresters must be deployed to the field to

gather data, a task that is both costly and logistically challenging [57]. This

is particularly true for tropical ecosystems, which are often remote and dif-

ficult to access due to poor transportation infrastructure and other logistical

barriers [57]. Furthermore, the ground-truth data collected is only valid for

a limited time after collection, as biomass can change rapidly due to factors

like deforestation and vegetation growth. Therefore, it is crucial that opti-

cal imagery be captured shortly before or after ground measurements. This

synchronization is difficult to achieve, especially considering that approx-

imately 67% of the Earth’s surface is covered by clouds at any given time

[58], limiting the availability of cloud-free imagery.

This results in a very limited number of usable learning examples de-

spite significant effort. It is estimated that it takes about three hours for an

experienced team to measure a 0.1-hectare plot (1,000 square meters) [59]

[60]. In publicly available datasets (e.g. [61], [43]), each such measure-

ment typically corresponds to a single label. This demonstrates the con-

siderable effort required to assemble a dataset of sufficient size for training

deep learning models, which typically need large amounts of data. Conse-

quently, despite the potential benefits of deep learning for biomass predic-

tion, the practical constraints on data collection pose a significant barrier to

its widespread application in this field.

Moreover, the variability in AGB across different species, ecoregions,

and environmental conditions, along with fluctuations due to precipitation,
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seasonality, and climate, complicates the use of a single methodology for

biomass estimation across different satellite data, vegetation types, or re-

gions. Remote sensing studies often produce results that are sensor-specific

and region- or species-specific [51] [50]. This specificity underscores the

need for methods that require minimal training examples, as these models

will likely need retraining when applied to different ecosystems or loca-

tions. Consequently, a robust and adaptable biomass estimation approach

should be capable of effectively utilizing a limited number of training sam-

ples to accommodate the diverse conditions encountered in various ecolog-

ical settings.

Given these challenges, Machine Learning (ML) appears more suitable

for biomass estimation as it generally requires fewer labeled examples [62].

Current research underscores the importance of texture information in this

task, which can enhance the accuracy of ML models. Moreover, it would

be beneficial to adopt a more step-wise approach, as the current error rates

are too high for practical applications such as carbon markets. A step-wise

method would also allow for more precise error tracing.

One promising solution is highlighted in the study by Zhang et al. [63],

which proposes a two-step process: first performing species segmentation

and then estimating biomass based on these segmented regions. This ap-

proach can potentially improve accuracy by addressing the specific charac-

teristics of different vegetation types before estimating biomass.

Another notable factor highlighted in current studies is the subjectivity

of scale. Despite successful attempts to map biomass using spectral data

at resolutions ranging from 10 to 30 meters, the best results achieved still

exhibit a mean absolute error (MAE) as high as 18.2 megatonnes of biomass

per hectare [38] [42]. While this level of error may not be problematic at the

national level, it could lead to significant miscalculations in carbon offset

projects, particularly those involving agroforestry.

Furthermore, super-high-resolution imagery remains underexplored in

the context of biomass estimation, paralleling the situation observed in Ma-

chine Learning studies. To date, only one study has utilized Pleiades Neo
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for biomass predictions, yielding sub-optimal results [64]. Notably, this

study did not employ advanced methodologies such as texture functions or

a comprehensive set of vegetation indices. The limited number of studies in

this area can be attributed to the high costs associated with acquiring high-

resolution data. However, this research gap presents a significant oppor-

tunity for further investigation, as higher-resolution models typically offer

increased accuracy compared to their low-resolution counterparts. Addi-

tionally, high-resolution models are better suited for applications requiring

precise delineation, particularly those involving small parcels of land.

In summary, available research on biomass monitoring shows that an

accurate estimation may be possible, but the uniformity of the species and

high-resolution data are crucial for this task. The information about the

species could possibly be delivered in the form of a segmentation mask, but

current methodologies suffer from being ecosystem-specific, as well as lack

the ability to use the main feature that seems to be logical to use - the texture

of the image. This project aims to fill this gap and investigate the potential

of using texture-derived segmentation masks for biomass estimation.

2.4 Segmentation

Building on the promising findings of Zhang et al. [44], further exploration

of species segmentation and texture analysis holds considerable promise.

Segmentation in Computer Vision refers to the process of dividing a digital

image into multiple segments or regions to facilitate analysis and under-

standing of the image content. This technique plays a crucial role in various

fields such as disease detection, crop management, robotics, and medical

image analysis [65][66]. Image segmentation is particularly significant in

clinical cardiology for anatomical segmentation using artificial intelligence-

based computer vision, aiding in automation and novel applications within

the medical field [67]. Deep learning models, like the U-Net architecture,

have been widely utilized for image segmentation tasks, achieving high ac-

curacy scores such as an IoU of 0.80 and a dice coefficient of 0.82, surpassing

some state-of-the-art techniques [68]. Additionally, segmentation is essen-
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tial in tasks like building segmentation from aerial images and LIDAR data,

where deep learning frameworks like U-Net have been successfully applied,

achieving competitive IoU scores for accurate building segmentation [69].

In this section, both deep-learning and non-deep learning segmentation

methods for remote satellite imagery will be delineated and subsequently

compared. Additionally, the pivotal roles of texture in enhancing segmen-

tation accuracy and effectiveness will be underscored.

2.4.1 Deep Learning vs. Non-Deep Learning Approaches

In recent years, numerous studies have demonstrated significant advance-

ments in satellite image segmentation ([70], [71], [72]). While these methods

are highly accurate, they primarily focus on detecting human infrastruc-

ture. In contrast, using AI for vegetation segmentation presents a more

formidable challenge. Notably, one of the most popular GitHub reposito-

ries on AI for remote sensing, [73], boasts 8,000 stars, but within its 40 topic

categories and over 1,000 links, only 12 methods pertain to tree segmenta-

tion/classification. Of these, only two address closed-canopy tree segmen-

tation/classification, and just one is based on non-hyperspectral data [74].

A logical choice would be to use one of the state-of-the-art (SOTA) mod-

els, such as Mask R-CNN [75], YOLO [20], or SAM [21]. However, these

models were not pre-trained on satellite imagery, leading to sub-optimal

performance on this type of data. While they perform reasonably well for

segmenting human infrastructure (e.g., roofs), they struggle to accurately

segment vegetation, especially different vegetation classes. For this research,

SAM and YOLO were applied to various datasets containing vegetation,

and their performance was found to be inadequate.

Due to the challenges associated with species segmentation, researchers

have explored alternative methods, such as UNET [76], for this task. In one

notable study, Kattenborn et al. [77] utilized UNET for canopy segmen-

tation using drone data with a resolution of 3 cm. This study focused on

distinguishing Pinus radiata and Ulex europaeus, achieving segmentation ac-

curacies of 87% and 84%, respectively. The findings demonstrate that with
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high-resolution data and a sufficient number of training examples, convo-

lutional neural networks (CNNs) can perform the segmentation task effec-

tively. However, the extrapolative capabilities of the algorithm remain un-

certain, as it was not validated on the same tree species growing in different

ecoregions.

The authors also highlighted the significant effort required to compile

their dataset. In addition to UAV imagery, fieldwork was necessary to geo-

tag trees and provide additional information for accurate delineation. De-

spite this effort, the entire dataset comprises only seven images, each cap-

turing an areas of 150 by 150 meters. While this may be sufficient for 3 cm

imagery, the scenario changes when considering satellite imagery. For in-

stance, with the super high-resolution Pleiades Neo satellite imagery at 0.5

m resolution, one such tile would be only 300 by 300 pixels, which is insuf-

ficient to train a neural network without risking overfitting. This example

underscores the substantial effort required to gather an adequate dataset for

species segmentation tasks.

These findings are corroborated by Schiefer et al. [78], who employed

CNNs for species segmentation in a German forest. Their study focused

on distinguishing between nine classes. The authors collected data from

thirteen plots, each measuring 100 by 100 meters. They acknowledged that

accurate delineation of the classes required ground measurements such as

tree height, geolocation, and diameter at breast height (DBH). Similar to

the study by Kattenborn et al., the amount of training data they gathered is

sufficient for training a neural network if the data resolution is 3 cm. How-

ever, if we aim to use satellite imagery with a resolution of 0.5 meters, this

amount of data would be inadequate.

Fricker et al. [79] employed Convolutional Neural Networks (CNNs)

along with 1m resolution hyperspectral data cubes from NEON Airborne

Observation Platform (AOP) [80] to perform tree classification. This hy-

perspectral imagery, comprising 426 bands [81], is notably uncommon in

remote sensing data, which typically features far fewer bands. The au-

thors achieved an impressive average classification f-score of 0.83 for hy-
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perspectral data and 0.59 for RGB data. This highlights the advantage of

using high-dimensional hyperspectral data, as most super-high resolution

imagery generally contains only four bands, while high-resolution (10m)

data typically has twelve bands.

The study faced significant challenges in its preparation. LiDAR had to

be flown over the entire area to create accurate labels for canopy segmenta-

tion. Additionally, a highly-specialized GPS system was necessary to align

field samples with the trees visible in the LiDAR and optical data, as regular

GPS systems lacked the required accuracy. The researchers also emphasized

the critical need for optimal lighting and weather conditions during data

capture, noting that even slight deviations in lighting could impair the al-

gorithm’s performance. Despite these efforts, only 544 trees were measured,

underscoring the demanding nature of the study.

In order to mitigate the problem of data scarcity, Non-Deep Learning ap-

proaches are also popular in segmentation tasks. One study used Support

Vector Machine to detect and map rubber plantation with Sentinel 2- and

Landsat 8-derived Vegetation Indices [82]. The reported accuracy was 87%

and 85%, respectively. Another study [83] used Vegetation Indices and Ran-

dom Forest to address a similar task: rice and crop mapping. The accuracy,

even though Sentinel 2 data was supplemented with Sentinel 1, reached

73%. This level of accuracy is not ideal. Moreover, Sentinel 2 is 10m reso-

lution data and is very well suitable for national-level predictions, is more

challenging to use plantations with small parcel sizes.

Another way to combat the lack of high resolution labelled datasets is to

use unsupervised methods for such task. In the realm of super-high resolu-

tion data, SLIC segmentation [84] in combination with Random Forest was

adapted to extract tree canopy [85]. The study reported high classification

accuracy, with the algorithm being able to distinguish between single- and

multi-tree canopies. There are however very big limitations to this method:

it was developed and tested on areas with very sparse vegetation, growing

on bare ground, which is not a very commonly occurring scenario, as in the

majority of use cases the trees grow in between bushes, or are otherwise
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surrounded with other vegetation. Moreover, the method is only suitable

for classifying one type of tree only and is unable to differentiate between

species. This is likely because SLIC segmentation bases on colour features

[84], and different tree species can have very similarly looking canopies, es-

pecially in their green-leaf stage [86].

Closed-canopy forest segmentation is a particularly challenging task.

Similar to biomass prediction, research suggests that texture analysis can

be advantageous for this task as well. For example, Immitzer et al. [87]

employed wavelet-based texture measures to perform superpixel segmen-

tation, followed by using a random forest classifier to distinguish between

two different tree species within the canopy. Notably, unlike the majority of

studies, this research utilized high-resolution (5m) WorldView-2 data. The

classification accuracy achieved was 0.74 for pine and 0.79 for spruce. Simi-

lar results were achieved by Wang et. al. [88], who used JSEG color segmen-

tation [89] and later wavelet-based texture measures for forest delineation

on orthophotos with 0.5m spatial resolution.

2.4.2 Challenges and Limitations of Current Approaches

In Section 2.2, it was emphasized that biomass prediction using Deep Learn-

ing methods is challenging due to the data-intensive nature of these algo-

rithms. Gathering a sufficiently large and well-labeled dataset for success-

ful training is very difficult. This challenge is also present in segmentation

tasks. There are many widely available datasets for rooftop mapping, road

mapping, or water body mapping. However, fewer datasets are available

for land cover mapping. In these datasets, vegetation is typically labeled

either as a single class, "vegetation," or divided into forest and non-forest

vegetation. This granularity is insufficient for the objectives of this thesis,

which focus on mapping different vegetation types.

Moreover, as with biomass estimation, available land-use datasets are of-

ten at a 10m resolution because they are based on Sentinel-2 data. One such

popular dataset is the CORINE Land Cover dataset, which, as noted by [61],

is not perfect and frequently contains mislabeled pixels. While this dataset
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was sufficient to train a UNET architecture, issues such as mislabeling and

unbalanced classes make the task very challenging.

It is also necessary to note that there is no universal definition of terms

such as ’forest,’ ’cropland,’ or ’bushland’; different organizations and coun-

tries specify them differently. For example, the United Nations Framework

Convention on Climate Change defines forests as "land having a minimum

canopy cover of 10-30%, minimum tree height of 2-5 meters, and a mini-

mum area of 0.1 hectares" [90]. On the other hand, the European Environ-

ment Agency defines a forest as "land spanning more than 0.5 hectares with

trees higher than five meters and a canopy cover of more than 10%, or trees

able to reach these thresholds in situ" [91]. This variation poses an addi-

tional challenge when using pre-trained models, as such discrepancies can

render a method unusable.

In practice, this means it is nearly impossible to create a single labeled

dataset that can be universally applied for training Machine Learning mod-

els. Labeling must be redone each time a new region is analyzed, leading to

a scarcity of labeled data. Consequently, methods that require less training

data are more valuable.

2.5 Summary

Artificial intelligence (AI) in remote sensing remains a relatively underex-

plored domain, particularly when it comes to leveraging super high-resolution

satellite imagery. While many researchers utilize widely available data sources

such as Landsat 5 (30m), Landsat 8 (30m), and Sentinel-2 (10m), there is sig-

nificantly less focus on data with 5m resolution like WorldView-2, and al-

most no studies employ satellites like Pleiades Neo with 50cm resolution.

This underutilization of high-resolution imagery presents both a challenge

and an opportunity for advancing remote sensing applications.

Both biomass prediction and species segmentation are inherently diffi-

cult tasks, primarily due to the limited availability of datasets and the sub-

stantial effort required to prepare these datasets. Furthermore, the extrap-
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olative capabilities of current algorithms are limited; methods that work

well in one ecoregion or with one species often do not perform effectively

with others. This lack of generalizability hinders broader application and

adoption of these techniques across diverse environments.

These tasks are interlinked, as demonstrated by studies indicating that

species segmentation can enhance biomass predictions, improving accuracy

and error traceability. Traditionally, researchers have focused on vegetation

indices for these tasks, but recent studies highlight the significant role of

texture features in both biomass prediction and species segmentation. In-

corporating texture analysis can provide more detailed and reliable results,

underscoring the need for more comprehensive approaches.

The aim of this work is, therefore twofold: first, to develop a segmenta-

tion framework based on texture features and a machine learning (non-deep

learning) model that can be trained with a limited amount of examples and

does not require precise delineation of species. Second, to utilize the results

of this segmentation framework to improve biomass prediction. This ap-

proach seeks to address the limitations of current methods by providing a

more efficient and generalizable solution for remote sensing applications.
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Multiple data sources were used in this study, and the selection of final

sites was based on the data availability - they cover locations where Acorn

projects are located, and therefore the data was easy to obtain for these ar-

eas.

Originally, we wanted to focus on vegetation segmentation using high-

resolution satellite imagery (Pleiades Neo). This part of the data is described

in a section 3.1 of this chapter.

However, what we also wanted to verify is the importance of vegetation

segmentation for biomass estimation. Because of external issues with data

acquisition, we were not able to obtain LiDAR data, necessary for biomass

calculation, for the initial project area. For this reason, another area was

selected, for which optical and biomass data were available. The optical

data for this region is described in section 3.2, whereas the biomass data is

described in the section 3.3

3.1 Pleiades Neo - Kenya site

3.1.1 Project site description

Pleiades Neo data was captured over an area in Kenya, in Embu county (see

figures 3.1 and 3.2). This type of imagery has 0.3 m spatial resolution and is

delivered in 6 spectral bands: red, green, blue, red-edge, near-infrared, and

deep blue. For vegetation monitoring, bands red, green, and near-infrared

are most commonly used. See figure 3.5 for reference.

The image 1, located in the north-western part of the county, was cap-

tured on the 03.02.2024. The image 2, located more towards the centre of the

county, was captured on the 28.01.2024
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Figure 3.1: Red dots indicate the
location of the project in Kenya

Figure 3.2: Red dots indicate the
location of the project in Embu
County

Figure 3.3: Pleiades Neo image of
the Kenya project area - image 1

Figure 3.4: Zoom in into Pleiades
image

Figure 3.5: Pleiades Neo: Kenya
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3.1.2 Data Preprocessing

3.1.2.1 Vegetation Detection Methodology

The dataset underwent a cleaning process to ensure the exclusion of non-

vegetative regions. This was accomplished by the computation of the Nor-

malized Difference Vegetation Index (NDVI) [34], which is given by the

equation:

NDVI =
(NIR − Red)
(NIR + Red)

(3.1)

where NIR represents the near-infrared band, and Red denotes the red

band of the electromagnetic spectrum. Regions exhibiting an NDVI value

less than 0.5 were classified as non-vegetated and subsequently excluded

from the analysis.

Additionally, the red-to-green ratio was calculated to further improve

the vegetation detection process:

Red to Green Ratio =
R
G

(3.2)

where R and G represent the reflectance values in the red and green

bands, respectively. A threshold value of 1.0 was applied to this ratio, with

values exceeding this threshold indicating the absence of vegetation.

The final vegetative areas were delineated by applying an OR operation

to both of these masks; the non-vegetation mask can be defined as:

non_vegetation = (
R
G

> 1.0) or (NDVI < 0.5) (3.3)
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Consequently, the remaining dataset exclusively represented regions with

a confirmed presence of vegetation (3.8).

Figure 3.6: Sub-area captured in
Pleiades Neo image. One can notice
multiple regions not covered with
vegetation.

Figure 3.7: The same sub-area with
vegetation mask applied. Pink areas
designate non-vegetated parts.

Figure 3.8: Vegetation detection

3.1.2.2 Shadow Detection

One of the hypotheses of this project suggests the influence of vegetation-

casted shadows on correct classification methodology. In order to test it,

we developed a simple algorithm for shadow detection, with the following

formula:

shadow = ln(red + green + blue) < 7.3 (3.4)

The 7.3 parameter was chosen experimentally and was guided by visual

inspection of the image.

3.1.3 Data Annotation

Because this research utilizes a supervised learning approach, high-resolution

imagery was manually labeled (using QGIS Desktop 3.30.2) into 4 distinc-
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(a) Sub-area captured in Pleiades Neo im-
age. One can notice multiple regions cov-
ered in shadow.

(b) The same sub-area with vegetation
mask (pink) and shadow mask (dark
blue) applied. Pink areas designate non-
vegetated parts.

Figure 3.9: Shadow detection

tive classes of vegetation: broadleaves, palms, crops, and coffee trees. In to-

tal, an area of 13032 m2 (1.30325 ha) was annotated, resulting in 52130 learn-

ing examples. The annotations were not complete, meaning that around

60% of the raster used were not annotated.

An example of these classes can be seen in Figure 3.10.

(a) Original image (b) Zoomed-in image

Figure 3.10: Areas selected as vegetation examples: green indicates
broadleaves, yellow - crops, blue - coffee, and orange - palms.
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3.2 Orthophoto - Colombia site

A high-resolution (3cm), plane-based orthophoto was captured over an area

in Colombia, Risaralda Department (see Figure 3.11 and 3.12). This image

consists of three bands (Red, Green, and Blue) and covers an area of 2281

hectares. See Figure 3.15 for reference.

Figure 3.11: Red dot indicates
project location in Colombia

Figure 3.12: Red dot indicates the
location of the project in Risaralda
Department

3.2.1 Data Preprocessing

The orthophoto captured over the Colombia site consists of only three layers

(Red, Green, and Blue), so NDVI and Vegetation Mask were not computed.

Additionally, the orthophoto was captured around midday, minimizing the

presence of shadows, and therefore the shadow masking step was skipped.

The original resolution of the orthophoto, at 3 cm, did not align with the

30 cm resolution of the Pleiades Neo imagery, which was used to develop

the segmentation method. To harmonize these discrepancies and enable the

reuse of the segmentation approach, the orthophoto was downsampled to

a 30 cm resolution (see Figure 3.18). This adjustment was made to more

closely match the Pleiades Neo imagery specifications. The downsampling
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Figure 3.13: Orthophoto image over
Colombia site

Figure 3.14: Zoom in into the or-
thophoto.

Figure 3.15: Orthophoto: Colombia

process was straightforward: every tenth pixel was sampled in both the

width and height dimensions, utilizing NumPy for efficiency. This method

ensured that the data remained consistent across different imaging sources.

Figure 3.16: Zoom-in into the or-
thophoto: before downsampling (3
cm resolution)

Figure 3.17: Zoom-in into the or-
thophoto: after downsampling (30
cm resolution)

Figure 3.18: Orthophoto Downsampling
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3.2.2 Data Annotation

To segment the orthophoto, a part of this image had to be annotated, as it’s

properties are significantly different from Pleiades Neo image (e.g. only 3

bands). In the area, there were 6 distinctive vegetation classes that were

used: coffee trees, palms, banana trees, broadleaves, coniferous trees, and

grasslands. The details about annotations can be seen in a table 3.1

Segmentation Class Area (m2) Amount of Pixels
Broadleaves 102470 ≈ 113855556
Coniferous 90433 ≈ 100480000
Grassland 67529 ≈ 75032222
Palms 78795 ≈ 87550000
Banana Trees 37130 ≈ 41255556
Coffee Trees 64673 ≈ 71858889

Table 3.1: Statistical data for different vegetation classes with calculated pixel
amounts.

Figure 3.19: Zoom in into the annotated orthophoto.
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3.2 Orthophoto - Colombia site

Figure 3.20: Annotated orthophoto image over Colombia site
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3.3 Biomass data - Colombia site

The biomass ground truth data was derived from LiDAR using Acorn’s pro-

prietary methodology. This data, delivered at a 10 m resolution, covers the

entire area of the orthophoto (2281 ha). It expresses biomass values in tonnes

of biomass per hectare.

For mapping purposes, the raster was upsampled to a 30 cm resolution

using bicubic interpolation [92] to match the orthophoto’s resolution. An

example comparison can be seen on the figure 3.23.

Figure 3.21: Zoom-in into the
biomass layer: before upsampling
(10 m resolution)

Figure 3.22: Zoom-in into the
biomass layer: after upsampling
(30 cm resolution)

Figure 3.23: Biomass layer upsampling

The original range of values of biomass was between 0 and 96 tonnes per

hectare. After interpolation, the range of biomass changed to be between -

11 and 104 (see Figure 3.24 for reference) in order to mitigate it, the values

of interpolated biomass were clipped to the old range.

At the conclusion of the segmentation phase, we successfully generated

2,236 tiles, each measuring 256 by 256 pixels. Each tile included data for

the red, green, and blue bands, alongside corresponding segmentation and

biomass data. It is pertinent to note that these tiles represent only a subset

of the entire area covered by the segmentation, not the entirety.
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3.3 Biomass data - Colombia site

Figure 3.24: Comparison of biomass values distribution before and after bicu-
bic interpolation

The tiles were subsequently loaded into a Python environment and trans-

formed into a pixel-wise dataframe using Pandas. Initially, this dataframe

comprised a total of 7,929,856 rows, with each row representing individual

pixel information.

This raw dataframe underwent further processing to enhance data qual-

ity:

• Rows containing NaN values were removed.

• Pixels where all RGB values were either 255 or 0 were excluded from

analysis.

These steps refined the dataset down to 7,249,180 entries. The highest recorded

value of biomass within this cleaned dataset was 56.8125.

Following data cleaning, a log transformation was applied to normalize

the distribution of biomass values [93]. This transformation adjusted the

range of biomass values to between 0 and approximately 4.023. The effects

of this normalization on the data distribution are illustrated in Figure 3.25.
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Figure 3.25: Comparison of values distribution before and after log normaliza-
tion
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4. Method

This section outlines the step-by-step methods used in this study, including

data annotation and initial processing, species separation, and biomass es-

timation. Our approach utilizes high-resolution optical satellite images to

improve current segmentation methods, as well as prove their utility in the

biomass mapping task.

Because this research project consists of two parts, this chapter is divided

into two sections - developing a methodology for species segmentation (sec-

tion 4.1) and biomass estimation (section 4.2)

4.1 Species Segmentation

The species segmentation part of the project has a 6 step methodology. The

aim of it is to classify high-resolution Pleiades Neo satellite imagery into

different vegetation types. The six steps are:

• Data Annotation;

• Data points selection;

• Feature Preparation;

• Iterative feature selection using RF classification;

• N parameter selection;

• Random Forest hyper-parameters fine-tuning.

The aim of these steps is to obtain a set of features, as well as a trained RF

algorithm, that can be used to prepare a 2D segmentation mask. The mask

can later be used for statistics, as well as as an input for biomass calculations.

Figure 4.1 shows the performed steps for Random Forest Training.

Moreover, since the texture features selection, as well as data points def-
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Figure 4.1: Visualization of an ML pipeline for Random Forest training

inition, are an important part of this research, this part of the pipeline (the

first four blocks, or the first two rows of Figure 4.1) was visualized in more

detail in the Figure 4.2.

In the following subsections, the steps from this Figure will be explained

and described.
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4.1 Species Segmentation

Figure 4.2: Processing & Feature Engineering pipeline, encompassing 4 differ-
ent steps. The pipeline allows for effective computing of all texture features for
one set of datapoints.
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4.1.1 Step 1: Data Annotation

This step of the pipeline was described in the data chapter 3, in the section

3.1.3

4.1.2 Step 2: Layers processing and layer features extraction

Figure 4.3: Step 2 of the pipeline: Layers Processing and Feature Extraction

This step was partially described in section 3. Here, the input raster was

loaded and the bands were processed. In the training stage, the raster was

clipped to a smaller area, closely bounding the annotated areas. As a result,

4 input bands (red, green, blue, and nir) were used to create Shadow Mask,

Vegetation Mask, Greyscale 1 (prepared from an RGB image), and Greyscale

2 (prepared from a False Color image).

These were used as input to calculate additional layers: each of the 8

input layers was transformed using 6 different functions: Variance 2d func-

tion, Gaussian Filter (sigma=1)[94], Gaussian Filter (sigma=2), Vertical Gra-

dient, Horizontal gradient, and Local Binary Pattern [95].

An example of these transformations can be seen in Figure 4.4, while the

mathematical definition of these transformations is summarised in Figure

B.1.
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Figure 4.4: Step 2 of the pipeline: Layers Processing and Feature Extraction
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4.1.3 Step 3: Preparation of data points

Figure 4.5: Step 3 of the pipeline: Data points preparation

In this step, 10000 pixels from each labeled class were randomly selected.

This happened only once and these pixels were used in all further calcu-

lations and experiments, in order to obtain comparable results. Based on

them, 4 different datasets were created, differing in the size of the window

surrounding each pixel:

• DS-10 with a window size of 10 by 10 pixels surrounding the image

• DS-15 with a window size of 15 by 15 pixels surrounding the image

• DS-20 with a window size of 20 by 20 pixels surrounding the image

• DS-25 with a window size of 25 by 25 pixels surrounding the image.

An area of N by N pixels surrounding a given coordinate will be referred

to as a Data Point (DP)
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4.1.4 Step 4: Datapoint-level feature extraction

Figure 4.6: Step 4 of the pipeline: Data points level feature extraction

In Step 4, DP-level texture feature calculations were employed. This pro-

cess includes calculating 13 different texture features for each data point of

size n by n: GLCM, Gabor features, HOG features, Haralick features, texture

energy, wavelet features, fractal dimensions, local phase features, Markov

random fields, skewness, kurtosis, mean, and variance. The pre-selection of

these features was made based on current literature and the ease of use. The

description of these features can be found in Figures B.3, B.2, and B.4.
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4.1.5 Feature Selection Loop

Feature selection is an essential step in data analysis, particularly when

dealing with large and complex datasets. In our study, each DP consists

of 2016 features - we start with 9 layers, each transformed 63 times, which

gives us 567 layers; they are then transformed with texture features which

together return 32 values, which gives us 2016 values per DP, in total.

Given that our classification task involves only 4 classes, it is reasonable

to assume that all 2016 features would not be necessary; moreover, some

features may be highly correlated. Another point to consider is that com-

puting all features for segmentation purposes is impractical, as it takes an

extensive amount of time.

To address these challenges, feature selection was performed to reduce

the dimensionality of the dataset. This process helps in identifying and re-

taining only the most relevant features, thus making the analysis more effi-

cient and manageable.

Two different approaches were employed to optimize feature selection

for the task at hand, each with distinct focus points. Both approaches began

with the full set of features and systematically excluded groups of features

one at a time, performing classification using Random Forest algorithm, and

evaluating the impact on accuracy.

The first approach focused on excluding texture features initially. It

started with all possible layers and sequentially excluded texture features

from each layer. After determining the essential texture features, it then

proceeded to exclude entire layers.

The second approach took the opposite strategy by initially excluding

entire layers. Once the relevant layers were identified, it then focused on

excluding texture features based on data points (DP).

This difference in the sequence of feature exclusion defines the primary

distinction between the two approaches, leading to varying impacts on clas-

sification accuracy and computational efficiency.
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4.1.6 N parameter selection

The core assumption of this study is that texture features can be encoded

into a single float value and subsequently used for species segmentation.

This raises the natural question: how large should the surrounding area be

to effectively capture texture? Intuitively, larger surrounding area provides

more context, but can also introduce noise. To address this question, we

investigated square areas of size N by N and examined the optimal value of

N from the set 10, 15, 20, 25, 30, 35, 40. Considering the image is in 40cm

resolution, these values correspond to 4, 6, 8, 10, 12, 14, and 16 meters.

After identifying the optimal subset of texture features to use, the data

points are recalculated using different values of N. It is important to note

that the pixel coordinates remain unchanged to maintain consistency and

ensure comparability of results. Once the texture features are recalculated

for various values of N, the accuracy of the Random Forest classifier is eval-

uated. The value of N that yields the highest accuracy is then established as

the best parameter.

4.1.7 Hyperparameter Fine-Tuning

The final phase included hyperparameter fine-tuning of the Random Forest

classifier. With the selected features and N parameter, the data was passed

through a GridSearch algorithm using Cross Validation to determine the

best hyperparameters.

Cross Validation [96] is a statistical method used to estimate the skill of

machine learning models. It involves splitting the dataset into a set of train-

ing and test sets multiple times in different ways and ensuring that every

observation from the original dataset has the chance of appearing in the

training and test set. This provides a robust estimate of model performance.

In this study, 10-fold cross validation was used. It is an important step to

include in our project, as we operate on a relatively small dataset of features.

Grid Search [97] is a systematic way of working through multiple com-

binations of parameter tunes, cross-validating as it goes to determine which
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tune gives the best performance. The algorithm exhaustively searches over

the specified parameter values.

The range of hyperparameters, as well as their description, can be found

in table 4.1.

Hyperparameter Name Description Values Considered
n_estimators The number of trees in the

forest.
[50, 100, 150, 200, 250, 300,
350]

max_depth The maximum depth of
the tree.

[None, 5, 10, 20, 30]

min_samples_split The minimum number of
samples required to split
an internal node.

[2, 5, 7, 10]

min_samples_leaf The minimum number of
samples required to be at
a leaf node.

[1, 2, 3, 4]

bootstrap Whether bootstrap sam-
ples are used when build-
ing each tree.

[True, False]

Table 4.1: Hyperparameters considered for fine-tuning the Random Forest
classifier.

These parameters were chosen based on their impact on the model’s per-

formance, and the search aimed to find the optimal combination to maxi-

mize the accuracy of the Random Forest classifier.
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4.2 Biomass Estimation

Because of the lack of biomass data from the Kenya region, a high-resolution

drone orthophoto from Colombia was employed to test the hypothesis about

biomass estimation. The original orthophoto, with a resolution of 3 cm per

pixel, was downsampled to 30 cm per pixel to match more closely the res-

olution of the original data used in the development of the segmentation

methodology. It is important to note here that the orthophoto does not in-

clude a Near-Infrared layer, which was used for the initial development of

the methodology.

To evaluate the hypothesis that segmentation improves biomass estima-

tion, the orthophoto’s annotations were used to retrain the Random For-

est algorithm described in Section 4.1.5. The entire image was then seg-

mented using the trained Random Forest model. The input raster data was

divided into 256 by 256-pixel tiles, each of which was segmented, resulting

in a 256x256x1 layer where each integer value represents a specific class as-

signed to each pixel. This segmentation layer was then combined with the

original input channels, including Red, Green, and Blue channels, creating

a dataset that integrates both spectral and segmentation information.

A biomass layer derived from LiDAR data was delivered to us with a

10m resolution. To enhance the resolution to match the input image reso-

lution, the image was resized using the OpenCV Python library. Cubic in-

terpolation [92], a more complex method compared to linear interpolation,

was chosen for this task as it typically yields smoother results and a sharper

output image. The biomass layer was then tiled into 256 by 256 tiles, and

added to the according tiles of RGB(N) + segmentation layer, creating

Each tile was then flattened to create a dataframe. For setup 1, the data

frame included columns for Red, Green, Blue, Segmentation, and Biomass

values. For setup 2, the data frame included columns for Red, Green, Blue,

and Biomass values. The resulting data frames comprised a total of 7,929,856

rows.

Next, the data was divided into three subsets to ensure an unbiased eval-
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uation of the model’s performance. The training set consisted of 70% of the

data, while the testing and validation sets each contained 15% of the data.

This division allowed for distinct data subsets for training, testing, and val-

idation, facilitating a robust assessment of the model’s accuracy and gener-

alizability.

XGBoost [98], a gradient-boosting algorithm known for its efficiency and

performance with structured data, was used to estimate biomass. The al-

gorithm was chosen as it is relatively lightweight, as well as less prone to

overfitting than other methods.

The inclusion of segmentation layers was hypothesized to improve the

model’s ability to capture spatial patterns and heterogeneity in the data,

leading to more accurate biomass estimation. By comparing the perfor-

mance of the model with and without the segmentation layers, this study

aimed to determine the impact of segmentation on biomass prediction ac-

curacy. The results of this analysis provided insights into the effectiveness

of incorporating segmentation information in remote sensing applications

for biomass estimation.
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This thesis aimed at finding answers to multiple different hypothesis. Both

species segmentation and biomass estimation results will be discussed, fo-

cusing on the results of feature selection, N parameter exploration, species

segmentation results using Random Forest algorithm, and biomass estima-

tion error analysis.

5.1 Species Segmentation Results

5.1.1 Feature Selection

The methodology for feature selection utilized two distinct approaches: one

focused on layer-based features and the other on DP-based features. Each

approach identified a unique set of optimal features. Additionally, to assess

the performance impact of omitting texture information, we incorporated

two variants of a control approach into our analysis. This allowed us to

evaluate whether a dataset lacking texture information could achieve com-

parable results.

Approach 1: Emphasis on Layer Features: the first approach prioritized

layer features over texture features. The optimal number of features (N pa-

rameter) for this method was determined to be between 20 and 30. This

approach achieved an accuracy of 92% in data point classification. The lay-

ers utilized in this approach included the primary color bands (red, green,

blue, nir) and their corresponding local binary pattern (LBP) transforma-

tions (red_lbp, green_lbp, blue_lbp, nir_lbp). For texture features, only the

mean and variance were selected. The time required for data preparation of

a single tile (250x250) was relatively short at 9 seconds.

Approach 2: Emphasis on Texture Features: the second approach fo-

cused more on texture features, reducing the variety of layers used. Here,
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the optimal number of features (N parameter) was determined to be be-

tween 20 and 30. This approach yielded a higher classification accuracy of

95%. The layers employed were limited to blue and near-infrared. A more

extensive set of texture features was used, including 13 Haralick features

and skewness. Consequently, the time required for data preparation of a

single tile (250x250) was longer, amounting to 30 seconds.

The difference in time between these two approaches comes from the dif-

ference in computing layer-based texture features versus data-point-based

texture features. Layer-based texture features can be computed once for the

entire project area before any data points are selected. In contrast, data-

point-based texture features must be calculated for each datapoint, involv-

ing each n×n sliding window. This fundamental difference in computational

requirements contributes to the significant disparity in processing times

between the two approaches. Given the substantial amount of data that

needed to be segmented, we were willing to compromise accuracy slightly

in favor of faster processing, leading to the selection of Approach 1 as the

final method.

A comprehensive comparison of the two approaches and results of ex-

periments not utilizing texture features can be found in Appendix C

5.1.2 N parameter exploration

N parameter indicates the size of the area, expressed in pixels, surrounding

each pixel - the context of a pixel for which the texture is measured for. With

the resolution of the image being 30 cm, the smallest N value considered is

of size 3 by 3 meters (10 by 10 pixels).

The results indicated that larger N values corresponded to higher accu-

racy. Specifically, for a four-class classification task, the accuracies were as

follows: 73%, 85%, 92%, 93.5%, 94%, 95%, and 96% for N values of 10, 15,

20, 25, 30, 35, and 40, respectively (see Figure 5.1).

However, upon visual inspection of the results, a downside of large win-

dow sizes became apparent, which was not captured by the accuracy met-

ric. Since the samples were manually labeled, it was much easier to label
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Figure 5.1: 4-class classification accuracy with different size of N parameter

Figure 5.2: Manual annotation of the broadleaves class (orange). It can be
noted that the annotation is rough, not aligning with the actual tree bound-
ary, which means that edge pixels of the class were not included in the training
dataset

areas within a single vegetation type rather than at the edges where differ-

ent types meet (see Figure 5.2). Consequently, the majority of labels were

placed away from the borders of vegetation groups. The algorithm tended

to confuse classes for pixels located at the boundaries between different veg-

etation clusters, an issue that worsened as N increased (see Figure 5.3).

Therefore, despite the higher accuracy associated with larger N values,

we opted for N = 20. This value provided a good balance between high

accuracy and minimizing misclassifications at the edges of vegetation clus-

ters.
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Figure 5.3: Resulting segmentation with edge pixels misclassification - dark
green indicates broadleaved vegetation, not present in the area.
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5.1.3 Random Forest hyperparameters finetuning

In our study, the optimization of the Random Forest model’s performance

was critical for enhancing the accuracy of vegetation segmentation. To iden-

tify the most effective set of hyperparameters, we employed a systematic

approach using GridSearchCV, a method that iteratively explores a range

of potential settings to determine the optimal combination for model train-

ing. This process focuses on adjusting several key parameters that influence

the behavior and capability of the Random Forest algorithm. The param-

eters optimized included the number of trees in the forest (n_estimators),

the maximum depth of each tree (max_depth), the minimum number of

samples required to split an internal node (min_samples_split), the mini-

mum number of samples required to be at a leaf node (min_samples_leaf),

and whether bootstrap samples are used when building trees (bootstrap).

The best hyperparameters selected through this exhaustive search, as listed

above, are pivotal for ensuring that the model achieves a high level of pre-

dictive accuracy while avoiding overfitting, thereby making it robust in han-

dling complex data structures typical in remote sensing datasets.

The best hyperparameters selected with GridSearch are:

• n_estimators: 300;

• max_depth: 20;

• min_sample_split: 2;

• min_sample_leaf:1

• bootstrap: true.

5.1.4 Pleiades Neo (Kenya) Species Segmentation Results

The classification results for the Pleiades Neo dataset are as follows: the

accuracy of data point classification was 94% for the training set and 92%

for the test set. The most successfully recognized class was Crops (98.45%

accuracy)

The one-vs-all accuracy, f1, and f2 score for each class are detailed in
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Figure 5.4: Confusion Matrix for Pleiades Neo Classification

the table 5.2. The classification performance metrics for the Pleiades Neo

dataset indicate varying levels of effectiveness across different classes. The

accuracy of the data point classification is notably high for all classes, with

Broadleaves achieving 96.07%, Crops 98.45%, Coffee Trees 97.27%, and Palms

96.31%.

When examining the F1 scores, which balance precision and recall, Crops

exhibit the highest performance at 0.9789, followed closely by Broadleaves

at 0.9621. Palms have a moderate F1 score of 0.7589, while Coffee Trees have

a significantly lower F1 score of 0.6313, suggesting challenges in correctly

classifying this category.

The F2 scores, which emphasize recall more than precision, show a sim-

ilar trend. Broadleaves and Crops maintain high F2 scores of 0.9696 and

0.9761, respectively. Palms have a slightly lower F2 score of 0.7517, and Cof-

fee Trees have the lowest F2 score of 0.5952, further highlighting difficulties

in capturing all relevant instances of Coffee Trees.

Overall, while the classification model performs well for Broadleaves

and Crops, improvements are needed to enhance the classification of Coffee
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Trees and Palms.

Class Accuracy (%) F1 Score F2 Score
Broadleaves 96.07 0.9621 0.9696
Crops 98.45 0.9789 0.9761
Coffee Trees 97.27 0.6313 0.5952
Palms 96.31 0.7589 0.7517

Table 5.1: Classification Performance Metrics

The segmentation results for selected examples are illustrated in the fig-

ures 5.5,5.10,5.11,5.12.

Figure 5.5: Segmentation Result 1
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Figure 5.6: Segmentation Result 2

Figure 5.7: Segmentation Result 3

Figure 5.8: Segmentation Result 4
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5.1.5 Orthophoto (Colombia) Species Segmentation Results

In this study, we aimed to test the hypothesis that species-specific segmen-

tation can improve biomass estimation accuracy. Due to the absence of

biomass data for the Kenya site, we focused our efforts on segmenting or-

thophotos from the Colombia region. Six species were selected for this anal-

ysis: broadleaves, coniferous trees, palms, banana trees, coffee, and grass-

land.

Despite the higher spatial resolution of the orthophotos (3 cm), the lack

of a near-infrared band presented a challenge. To adhere to our previously

established methodology, we calculated local binary patterns (LBP) for all

available bands, as well as the red-to-green ratio. This resulted in eight

layers (red, green, blue, red by green, and the LBPs of each) being used

for the segmentation process. Mean and Variance were used as DP-based

texture features, with N settled at 20.

Initially, when the images were used at their original resolution, the seg-

mentation accuracy averaged 64%. To address this, the images were down-

sampled to a 30 cm resolution, in order to more closely follow the Pleiades

Neo scenario. This significantly improved the segmentation accuracy to an

average of 86%.

Class Accuracy (%) F1 Score F2 Score
Broadleaved 69.89 0.7400 0.7148
Grassland 86.98 0.8621 0.8667
Coniferous 94.59 0.9387 0.9430
Coffee 89.07 0.8827 0.8875
Palms 84.84 0.8278 0.8401
Banana trees 84.14 0.8361 0.8393

Table 5.2: Classification Performance Metrics

The classification metrics indicate varying performance across different

land cover types. The Coniferous class achieved the highest accuracy at

94.59%, with corresponding high F1 and F2 scores (0.9387 and 0.9430, re-

spectively), indicating that it was the easiest for the model to detect with

balanced precision and recall.
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Figure 5.9: Confusion Matrix for Orthophoto Classification. Classes: 0 -
Broadleaved; 1 - Grassland; 2 - Coniferous; 3 - Coffee; 4 - Palms; 5 - Banana
Trees.

In contrast, the Broadleaves class had the lowest accuracy at 69.89%,

along with the lowest F1 and F2 scores (0.7400 and 0.7148). This suggests

that Broadleaves areas were the most challenging for the model to classify

accurately, indicating significant room for improvement.

Grassland and Coffee classes performed well, with accuracies of 86.98%

and 89.07%, respectively. The F1 and F2 scores for Grassland (0.8621 and

0.8667) and Coffee (0.8827 and 0.8875) indicate robust performance, though

some enhancements could further improve recall, particularly for Grass-

land.

Palms and Banana trees classes had similar accuracies (84.84% and 84.14%)

and comparable F1 and F2 scores. While these results are satisfactory, tar-

geted improvements could help achieve a better balance in precision and

recall for these classes. Overall, while the model shows strong performance

for certain classes, others like Broadleaved require additional focus for im-

provement.
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5.1 Species Segmentation Results

Figure 5.10: Segmentation Result 2

Figure 5.11: Segmentation Result 3

Figure 5.12: Segmentation Result 4
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Figure 5.13: Training and testing accuracy over 73 epochs

5.1.6 Unet Species Segmentation

One of the assumptions we are testing is that texture-based segmentation

combined with machine learning is superior to well-established deep learn-

ing segmentation methods, such as Unet, in scenarios where we have a lim-

ited amount of labels. This hypothesis was tested by running Unet on the

entire segmented dataset that was available.

To challenge this hypothesis, the available manually annotated dataset

was divided into training (70%), testing (15%), and validation (15%) sets.

Data augmentation techniques, including random rotation and mirroring,

were applied to the training set. The training was conducted with a batch

size of 16 and utilized early stopping to prevent overfitting.

The results after 72 epochs indicated that the segmentation accuracy was

0.92 on the training set and 0.744 on the test set. However, upon inspecting

the plot visualizing the test accuracy, we can conclude that the performance

is highly unstable. This indicates overfitting of the algorithm (see figure

5.13).
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5.2 Biomass Estimation

5.2 Biomass Estimation

To test the hypothesis that information about vegetation class enhances biomass

estimation, the orthophoto from Colombia was segmented using the algo-

rithm outlined in subsection 5.1.5. For simplicity, the XGBoost algorithm

was selected for biomass estimation, rather than more complex methods

such as CNN. The experiment utilized a dataset of 200 000 data points,

which were randomly selected from the image. The data points included

features such as the values of the red, green, and blue bands, with an ad-

ditional information of vegetation class assigned through the segmentation

process.

The biomass estimation was conducted using XGBoost was employed

for the estimation.

The findings, detailed in Table 5.3 and visualized on Figure 5.14, demon-

strate that including the vegetation classification layer substantially improves

biomass estimation. The feature importance analysis conducted using the

XGBoost algorithm revealed that the segmentation layer was the most piv-

otal feature, with an importance score of 0.939 when included. Additionally,

excluding this layer from the model resulted in a notable escalation in the

error rate, increasing from 0.60 to 0.71.

Feature/MSE Without Segmentation With Segmentation
Red 0.4897 0.0216
Green 0.2901 0.0192
Blue 0.2202 0.0201
Segmentation - 0.9391
MSE 0.7100 0.5960

Table 5.3: Comparison of Feature Importances and MSE With and Without
Vegetation Class Feature

A detailed comparison of the distribution of actual versus predicted biomass

values for each class is illustrated in Figure 5.16.
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Figure 5.14: Comparison of Feature Importances and MSE With and Without
Vegetation Class Feature

Figure 5.15: Correlation between classes and biomass values. Blue bars repre-
sent significant correlations, while red bars represent non-significant ones.

Interestingly, there is a weak but significant correlation between biomass

values and four out of the five vegetation classes, with the coniferous class

showing the highest correlation at 0.23. These findings are visualized in

Figure 5.15

The observed low correlation and high error prompted us to investi-

gate the effect of removing outliers from the dataset, suspecting potential

misclassification of some pixels. We excluded pixels with biomass values

below the 5th percentile or above the 95th percentile within each class’s

biomass distribution. The visualization of predictions after this modifica-

tion is shown in Figure 5.17
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Figure 5.16: Visualization of actual vs predicted biomass value per class.
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Figure 5.17: Visualization of actual vs predicted biomass value per class after
excluding the outliers
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6. Discussion

In this project, we aimed to validate the significance of texture features in

vegetation segmentation, demonstrate their advantages over deep learning

algorithms, and determine whether prior vegetation segmentation aids in

biomass estimation. This chapter reviews the results obtained, explores

their applicability in broader contexts, compares them with findings from

the literature, and discusses the method’s limitations.

We will structure this chapter into two sections. The first section will

focus on the task of vegetation segmentation, while the second will concen-

trate on biomass estimation.

The discussion reflects on the research questions and objectives, as well

as the methodology and results.

6.1 Vegetation Segmentation

In this project, the texture-based vegetation segmentation methodology was

developed and later evaluated, on two different sites, data sources, and sets

of classes. This allows us for a comprehensive and in-depth review of the

accuracy and limitations of the method.

6.1.1 Texture Features

The core aspect of our methodology is the application of a sliding window

technique combined with the calculation of texture features to develop a

dataset. This dataset is subsequently employed to train a Random Forest

model for vegetation segmentation tasks.

To facilitate this, several texture functions were computed (see ??, ??, ??,

??) and incorporated into an iterative training loop with Random Forest to

identify the most essential subset of features.
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The feature selection process yielded some interesting insights. Notably,

despite the scarcity of studies incorporating texture features in remote sens-

ing data, those that do typically rely heavily on the Gray Level Co-occurrence

Matrix (GLCM) or a limited array of features, often concluding the superi-

ority of GLCM features [53]. Contrary to these findings, our research indi-

cates that GLCM features were among the least significant in our study. This

may be because of the relative simplicity of GLCM. Additionally, the exist-

ing Python implementations of GLCM are significantly slower compared to

other features utilized, which might have deterred their broader adoption

in research.

In our study, we introduce a significant distinction in texture feature

computation that is often overlooked in remote sensing literature. Tex-

ture features can be categorized into two types: layer-based features and

window-based features. Layer-based features, such as gradients, are com-

puted once for an entire large image, producing an output array of the same

shape as the input array. On the other hand, window-based features, like

Haralick features, need to be computed separately for each sliding window,

returning a set of float values.

This distinction is particularly crucial in the context of remote sensing,

especially with super-high-resolution imagery. These images are typically

very large, and the ability to precompute layer-based features significantly

enhances the speed and efficiency of data processing. In our research, we

found that Local Binary Patterns (LBP) were the most influential texture

features. This finding is consistent with previous successes of LBP in tex-

ture classification tasks [99], but it is noteworthy to observe its substantial

potential in remote sensing applications.

The capability to efficiently compute and utilize potent texture features

significantly enhances the accuracy and performance of vegetation segmen-

tation and other remote sensing tasks. This assertion is corroborated by our

research findings. We achieved over 90% segmentation accuracy in a 4-class

classification task. In contrast, other studies employing Random Forest al-

gorithms, such as those cited in [88], reported only 74% accuracy for pine
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6.1 Vegetation Segmentation

classification and 79% for spruce. These comparisons highlight the substan-

tial improvements our methodologies offer over traditional approaches, em-

phasizing the effectiveness of our advanced feature utilization in handling

complex remote sensing data.

6.1.2 Comparison to Traditional Deep Learning Approaches

Remote sensing analysis frequently has to deal with the scarcity of labeled

data, compounded by the laborious and challenging nature of the label-

ing process. Additionally, methods developed for one ecoregion often do

not seamlessly transfer to another, necessitating adaptable, easily retrain-

able approaches that require minimal training examples.

Given these constraints, deep learning methods, which typically demand

large datasets, may not be ideally suited for such tasks. To validate this, we

trained a UNet model on the same dataset used for our texture-based seg-

mentation to compare the effectiveness of the two approaches.

As anticipated, the limited number of training examples led to overfit-

ting in the UNet model. This outcome underscores the advantages of pre-

computing texture information. Theoretically, UNet’s convolutional layers

operate similarly to a manual sliding window approach, but they lack pre-

determined filters and require substantial training data to develop these ef-

fectively. Our manual approach, informed by domain-specific insights into

desirable filter characteristics, circumvents this need.

While we hypothesize that UNet could potentially surpass our method

under conditions of abundant data, the reality of our situation—where prepar-

ing the dataset alone consumed an entire workweek—highlights the im-

practicality of such data-intensive methods in our current context.

6.1.3 Evaluation & Limitations

Misclassifications on Class Edges

Our segmentation method exhibits several limitations that offer avenues

for future exploration. A significant challenge arises in classifying pixels lo-
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cated at the boundaries of different vegetation classes or where these classes

overlap. The training accuracy metric, which assigns a single class value to

each pixel, coupled with less-than-ideal annotations (it is easier to annotate

homogeneous areas within a class than at transitional edges), leads to im-

perfect segmentation at these critical junctions.

There are several potential solutions to this issue. Most directly, incorpo-

rating more complex boundary areas into the training and testing datasets

could improve the model’s ability to accurately classify these regions.

However, this approach has limitations, primarily due to the feature ex-

traction method employed. We hypothesize that the misclassification of

boundary pixels stems from their feature values, derived from a 20x20 pixel

window. This makes the feature context of a pixel at the edge of two classes

similar to that of a nearby pixel that, while close to the border, belongs to a

distinct class.

A promising direction for future research could involve adopting super-

pixel segmentation techniques, similar to those used in [88], to define con-

text windows. This method would allow for the extraction of texture fea-

tures within these dynamically shaped clusters rather than relying on fixed,

square windows. Implementing such an approach would necessitate fur-

ther investigation into its effectiveness and feasibility.

Overlapping classes

The algorithm demonstrates particular difficulty in areas where two veg-

etation classes coexist, as notably observed at the Colombia site where palms

overlap with coffee trees. In these cases, the algorithm tends to prioritize

palms, erroneously creating a buffer around this class rather than accurately

classifying the overlapping pixels as coffee. This issue stems from the inher-

ent behavior of the Random Forest model, which classifies based on the

majority vote from its decision trees.

One potential solution to this problem involves delving deeper into the

classifier’s output. Instead of solely considering the most frequent class,

extracting the second most popular class or even a distribution of votes
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among several top classes could provide more nuanced insights. Leverag-

ing ecological knowledge of the region, these refined predictions could be

intelligently combined to distinguish more accurately between overlapping

classes. This approach not only promises to enhance classification accuracy

in complex mixed-class areas but also aligns closely with the ecological re-

alities observed in field studies, potentially leading to significant improve-

ments in the practical application of remote sensing data in vegetation anal-

ysis.

Comparison between Pleiades Neo and Orthophoto segmentation

Pleiades Neo and Orthophotos are distinct data sources that offer vary-

ing capabilities for vegetation segmentation. Pleiades Neo provides a 30 cm

resolution along with a near-infrared band, whereas Orthophotos offers a

higher resolution of 3 cm but lacks the near-infrared spectrum. This differ-

ence fundamentally affects their utility in segmentation tasks.

A key observation from our study was the lower segmentation accu-

racy with Orthophotos compared to Pleiades Neo. This discrepancy is likely

due to the absence of the near-infrared band in Orthophotos, which plays

a crucial role in vegetation monitoring and classification. Additionally, ar-

tificially downsampling the Orthophoto to 30 cm to match Pleiades Neo’s

resolution may have introduced further inaccuracies.

Notably, the accuracy of class segmentation varied significantly between

the two data sources. For instance, in the Colombian site, the detection

accuracy for broadleaves was only 69% with the Orthophoto, the lowest

among all classes, while Pleiades Neo achieved a 96% accuracy for the same

class. Despite broadleaves being a visually distinct class, this stark contrast

in performance suggests underlying issues. We hypothesize two main fac-

tors contributing to this discrepancy: the diversity within the broadleaves

category, which includes a variety of tree species, potentially confusing the

algorithm; and the similarity in canopy texture between some broadleaves

and other species, such as coffee trees, which can lead to misclassifications.

An example of this is depicted in Figure 6.1, where parts of the broadleaf

canopy mistakenly resemble the round-shaped canopy of coffee trees.
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Figure 6.1: Example of broadleaves misclassification. Dark green indicates
broadleaves, light blue - coffee trees.

To address these issues, integrating the use of multiple window sizes in

the segmentation process could be beneficial. This approach would allow

the capture of contextual variations at different scales, potentially improv-

ing the accuracy of class differentiation and overall segmentation perfor-

mance.

Time of Processing

A significant challenge encountered in this research was the extensive

time required to compute texture features, which notably impacted both the

results and the pace of the project. For example, to perform segmentation

on the Pleiades image using a comprehensive set of texture features, the

algorithm required a staggering 36 hours to complete. Even when reducing

the number of features, the process remained time-intensive, not achieving

the speed efficiency typically seen with neural networks.

One potential solution to enhance processing speed is to leverage GPU

acceleration. Due to time constraints, this was not implemented during the

current project. However, future work could benefit greatly from this ap-

proach. By utilizing pre-computed local binary pattern (LBP) layers and

restricting the feature set to mean and variance calculations, it becomes fea-

sible to adapt the entire framework for GPU execution. Tools such as Tensor-

Flow or PyTorch, which are designed for high-performance computational

parallelism on GPUs, could dramatically reduce processing time. This ad-

justment would not only accelerate the computation but also bring the pro-
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cessing time more in line with that of advanced neural network methods,

enabling more efficient and scalable remote sensing analytics.

6.2 Biomass Estimation

Due to the unavailability of biomass data for the site in Kenya, the biomass

estimation component of this project was exclusively carried out at the site

in Colombia. The primary objective of this experiment was to determine

whether incorporating a texture-derived segmentation layer improves biomass

estimation compared to using only RGB channels.

6.2.1 Vegetation Segmentation Influence

Our study appears to confirm the hypothesis that vegetation segmentation

positively influences biomass estimation. As detailed in 5.2, the inclusion of

the segmentation layer significantly reduced the Mean Squared Error (MSE)

in the XGBoost model. Additionally, feature importance analysis shows that

the segmentation layer is heavily utilized, with a feature importance (FI)

score of 0.93.

Despite the efforts, the estimation error remains considerably high. An

MSE of 0.59 is unsatisfactory, indicating the need for a more thorough anal-

ysis of the process.

The analysis of predicted versus actual biomass values per class (5.16)

reveals that XGBoost assigned a very narrow margin of values per class,

often close to the median value. This pattern, combined with the high im-

portance of the vegetation class, suggests that there may be another feature,

not available in our dataset, that could further differentiate pixels belonging

to the same class in a more nuanced way.

The findings about the low correlation between biomass values and the

assigned class are quite surprising. One might expect a high correlation in

some cases, such as grassland being expected to have a very low biomass

value. However, it is surprising to see that each class of vegetation covers

the entire range of biomass values. This indicates possible misclassifica-
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Figure 6.2: An example of missclassification: broadleaved vegetation was clas-
sified as grassland

tion, as it is very unlikely that grassland would have high biomass values.

Upon closer inspection of the confusion matrices and segmented images, it

becomes evident that a common type of misclassification is assigning the

grassland class to a specific species of broadleaves with a flat canopy struc-

ture and fine leaves (see Figure 6.2). Coincidentally, this type of vegetation

has a very high biomass.

This analysis highlights the need for additional features or refinement

in the classification model to better capture the nuances in vegetation types

and their corresponding biomass values. By incorporating more detailed

features or improving the classification accuracy, the model can provide

more precise biomass predictions, particularly for classes that are currently

being misclassified.

In an effort to identify and remove potentially misclassified data points,

the dataset was modified by excluding pixels whose biomass values fell

below the 5th percentile or above the 95th percentile for their respective

classes. This approach resulted in a significantly higher mean squared error

(MSE) of 0.36. Despite a better result, this method remains suboptimal as it

does not allow for distinguishing between outliers caused by segmentation

errors and those resulting from natural variations in biomass values.
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6.2.2 Limitations

Our methodology faces several limitations. Firstly, the heavy reliance on

segmentation means that any misclassification of pixels significantly im-

pacts accuracy. This dependency is particularly highlighted in the inter-

pretation of our results.

Secondly, our inability to test on Pleiades Neo data due to the lack of

available biomass data for that region represents a significant shortfall. The

absence of the near-infrared band in orthophoto data, which is crucial for

vegetation assessment in many studies, limits the effectiveness of our anal-

ysis. The Normalized Difference Vegetation Index (NDVI) alone, which can

correlate with biomass values up to 0.6 [100], could not be utilized. This

raises an important question: would the importance of segmentation dimin-

ish if the near-infrared band were included in the analysis? Despite these

challenges, we speculate that segmentation would still play a critical role.

Studies support this, noting instances where the NDVI of grasslands can

be comparable to that of forests [101], despite forests having significantly

higher above-ground biomass. Thus, segmentation and near-infrared data

could potentially complement each other in biomass estimation.

Thirdly, the necessity to artificially upsample the biomass data intro-

duced additional errors. Notably, some values became negative after bicu-

bic interpolation and required clipping to zero, while others significantly

exceeded their original values. These alterations affected the distribution of

biomass values, potentially degrading the quality of the ground truth data

and hindering the algorithm’s ability to learn accurately.
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7. Conclusions

The increasing utilization of the carbon stock market emphasizes the impor-

tance of developing methodologies for rapid and cost-efficient estimation of

above-ground biomass. Due to the limitations inherent in remote sensing

data, it is imperative to focus on methodologies that require minimal data

and are specifically developed for vegetation detection in remote-sensing

scenarios, distinguishing them from classical computer vision techniques.

This study aimed to develop a lean segmentation methodology for ana-

lyzing vegetation through high-resolution remote sensing data and to as-

sess whether such segmentation could improve biomass estimation. We

devised a method that leverages texture features for species segmentation,

effective even with minimal annotated datasets (demonstrated with as few

as 40,000 pixels, equivalent to annotating a 200 by 200 pixel image). This

method achieved an accuracy of 86% in a six-class classification using RGB

orthophotos and up to 95% in a four-class classification using RGB plus

near-infrared imagery from Pleiades Neo, exceeding our initial expecta-

tions. We validated our hypothesis that texture information, coupled with

a Random Forest classifier, offers greater efficacy for this task with limited

data compared to traditional segmentation approaches such as U-Net. Fur-

thermore, the local binary pattern was identified as the most effective tex-

ture function, surpassing the performance of the commonly utilized GLCM

in terms of both efficiency and speed.

The study also demonstrated that incorporating vegetation classification

could improve biomass estimation. Although the results did not meet all

expectations, they underscored the significant role of this additional feature,

affirming our second hypothesis.

Future Work

The potential of this methodology merits further exploration. Future
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studies should extend the testing of this segmentation approach to a wider

array of vegetation classes and data sources, and assess its effectiveness

across different resolutions and ecosystems; our evaluations were confined

to a 30cm resolution. Additionally, re-engineering the segmentation method

to utilize GPU processing could enhance computational speed. More rigor-

ous research is also needed in biomass prediction, as this study had to rely

on an artificially upsampled biomass dataset, introducing potential inaccu-

racies. Integrating both texture features and the near-infrared band for com-

prehensive biomass assessment should be considered in subsequent studies.

Conclusion

In summarizing this study, we acknowledge the advancements made in

refining methodologies for vegetation segmentation and biomass estima-

tion using remote sensing data. We managed to confirm and find satisfac-

tory answers to all three of our hypotheses:

• What texture functions can be used in order to achieve at least 90%

accuracy on the 4-classes canopy segmentation task?

The usage of Local Binary Pattern allows for that.

• Can the texture features in combination with random forest exceed the

performance of popular segmentation methodologies for small datasets?

Yes. The method outperformed UNET, which exhibited overfitting.

• Does the use of canopy segmentation input increases the biomass es-

timation accuracy, in comparison to a traditional method using raw

satellite imagery as input? Yes. The MSE of biomass estimation was

significantly lower when vegetation classes were used as a feature.

The outcomes contribute to the methodological framework of remote

sensing applications in ecological research and offer avenues for improving

environmental monitoring techniques. The continuation of this research is

expected to provide significant contributions to the field of environmental

science.
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A. Appendix A

A.1 Sentinel 2 and Pleiades Neo Spectral Bands

Band Name Wavelength (nm) Resolution (m)
Pleiades Neo

Deep Blue 400-450 0.3
Blue 450-520 0.3
Green 530-590 0.3
Red 620-690 0.3
Red Edge 700-750 0.3
Near-infrared 770-880 0.3

Sentinel-2
Coastal aerosol 443 60
Blue 490 10
Green 560 10
Red 665 10
Vegetation red edge 705 20
Vegetation red edge 740 20
Vegetation red edge 783 20
Near-infrared 842 10
Narrow NIR 865 20
Water vapour 945 60
SWIR - Cirrus 1375 60
SWIR 1610 20
SWIR 2190 20

Table A.1: Comparison of spectral bands and resolutions for Pleiades Neo and
Sentinel-2 satellites.
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B. Appendix B

Figure B.1: Description of the layer-based texture transformations.
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Figure B.2: Data Point level texture features used, excluding Haralick features
(p1)
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Appendix B

Figure B.3: Data Point level texture features used, excluding Haralick features
(p2)
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Figure B.4: Data Point level texture features used: Haralick features
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C. Appendix C
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101


	Introduction
	Carbon Stocks and Their Monitoring
	Carbon Measurements Methodologies
	Project Goal & Research Question

	Literature Review
	Remote Sensing Imagery
	Vegetation Indices
	Biomass estimation
	Segmentation
	Summary

	Data
	Pleiades Neo - Kenya site
	Orthophoto - Colombia site
	Biomass data - Colombia site

	Method
	Species Segmentation
	Biomass Estimation

	Results
	Species Segmentation Results
	Biomass Estimation

	Discussion
	Vegetation Segmentation
	Biomass Estimation

	Conclusions
	Bibliography
	Appendix A
	Sentinel 2 and Pleiades Neo Spectral Bands

	Appendix B
	Appendix C

