
 

 

 

 

 
 

 

Cone-beam CT to CT harmonization by 

learning disentangled representations 

 

Minor Research Project 

MSc Medical Imaging 

 

Raquel González López 

 

 

 

 

   

Supervisors: Karan Malhotra and Bálint Hompot 

Senior Deep Learning Engineers, Thirona B.v. 

 

Examiner: Dr. ir. Koen L. Vincken 

Associate Professor, UMC Utrecht 

 

 

Nijmegen, 29th July 2024 



Cone-beam CT to CT harmonization by learning
disentangled representations

Raquel González López
MSc Medical Imaging

Universiteit Utrecht
r.gonzalezlopez@students.uu.nl

Abstract—Chest computed tomography (CT) is a widely used
imaging modality for evaluating thoracic pathology, with fan-
beam CT (FBCT) and cone-beam CT (CBCT) being the primary
types. While CBCT reduces radiation exposure, it often results
in lower image quality, limited field of view, and increased
artifacts, restricting its clinical applications. Given these challenges
and the predominance of FBCT data and automated models
designed for FBCT, developing high-quality CBCT-to-CT image
synthesis is essential for improving CBCT image quality and
expanding its applications. One promising approach is image
harmonization, which mitigates domain shifts in medical images
by translating from a source image to a target image acquisition
setting while preserving the underlying anatomy. Recent methods,
such as HACA3 for magnetic resonance imaging, have used
disentangled representations of anatomy, contrast, and artifacts
to respect anatomical differences between contrasts. To this end,
this study aimed to perform image synthesis harmonization
between CBCT and FBCT to capture CBCT anatomy while
preserving FBCT quality and resolution. The harmonized images
were evaluated through downstream tasks requiring various detail
levels: lobes, nodules, and airways segmentation. Results showed
that the model effectively reduced artifacts and smoothed the
HU distribution, leading to improved segmentation performance,
particularly in lobes and airways, although some detail was
lacking in segmented airways. External evaluations suggested the
model’s potential generalizability to other distributions. Overall,
this harmonization approach enhances CBCT image quality,
expanding its applicability across various imaging tasks.

Index Terms—CT, Cone-beam CT, disentangled representation,
image synthesis, harmonization

I. INTRODUCTION

Chest computed tomography (CT) is a widely used imaging
modality that allows for the evaluation of thoracic pathology
[1, 2]. There are two main types of CT scanning methods:
Fan-beam CT (FBCT) and Cone-beam CT (CBCT). In FBCT,
X-rays are irradiated in a fan shape and imaged by a line
sensor or X-ray flat panel. This method involves acquiring
sequential, thin axial scans through the patient’s volume, which
are then processed using a computer. It is typically used in
diagnosis or pre-operative planning since it produces high-
quality images and soft tissue differentiation. On the contrary,
CBCT is often conducted during interventional procedures,
such as bronchoscopy, biopsy, or radiotherapy. CBCT uses
diverging kV X-rays which are irradiated in a conical shape
which enables the acquisition of images over a much larger
volume in a single scan in comparison to FBCT. In this way,
the scan can be done in a relatively shorter time [3].

The performance of CT systems is significantly influenced by
the quality and specifications of the X-ray detectors and sources
employed. Current CBCT acquisition modes aim to lower the
radiation dosage to the patient. However, this reduction in
dose may result in a reduction in the image quality and the
accuracy of the assigned Hounsfield unit (HU) [4]. This HU
helps distinguish different tissue types by value, which are
independent of X-ray energy. Furthermore, the intrinsic issue
of the large cone geometry produces noisier images and artifacts
than FBCT. These limitations preclude CBCT images from
various high-precision clinical applications.

Challenges in data variability between FBCT and CBCT
further complicate their direct comparison and integration.
It is common that both CTs are neither paired nor one-to-
one mapped, especially because CBCTs have a more limited
field of view (FOV). Structural differences might be present
in the CBCT data, such as atelectasis or reduction in lung
volume during intraoperative oxygenation (see Fig. 1) [5]. Other
differences include variations in breathing volume, heart motion,
and phantom airways—artifacts that mimic airways without
existing physically. Additionally, the presence of intraoperative
navigation devices such as bronchoscopes, which may contain
metal components, can cause beam hardening artifacts [6].
Given these challenges and the predominance of FBCT data
and automated models designed for FBCT, developing high-
quality CBCT-to-CT image synthesis is essential for improving
CBCT image quality and expanding its applications.

Fig. 1. An example of Fan-Beam (left) and Cone-Beam (right) chest CT.

One promising image synthesis approach is image harmo-
nization, which aims to mitigate domain shift in medical images
by translating from a source image to a target image acquisition
setting while preserving the underlying anatomy. In recent years,
image-synthesis harmonization techniques have emerged, which
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are a special type of image-to-image (I2I) translation. This can
be performed in supervised and unsupervised ways depending
on the availability of training data [7]. On the one hand,
supervised harmonization requires paired data, using pixel-
to-pixel error for training, which lacks generalizability. On the
other hand, unsupervised harmonization does not require paired
training data but assumes a similarity between the two image
domains. One of the most known I2I methods is CycleGAN by
learning a translation model and a discriminator [8]. A common
drawback in unsupervised models is the geometry shift, where
structural changes in the image can lead to inconsistencies in
anatomical features. This occurs because the harmonization
process heavily depends on the discriminator’s judgment.

Most of the unsupervised I2I methods rely on the assumption
of identical anatomy between images, which is not the case for
CT and CBCT images. This can be achieved through the cycle-
consistency loss to encourage anatomy preservation. However,
cycle-consistency loss alone is an insufficient constraint due
to the geometry shift [9–11]. To overcome the challenges of
unpaired data and differences in anatomy features between
images to harmonize, recent advances in magnetic resonance
imaging harmonization have focused on learning a disentangled
representation of anatomy and contrast [11, 12]. As a result,
this disentanglement of the latent space respects the inherent
anatomical difference between contrasts. Zuo et al. [13] further
explored this by proposing Harmonization with Attention-
based Contrast, Anatomy, and Artifact Awareness (HACA3),
which also disentangles artifact representations. Current state-
of-the-art approaches for CBCT harmonization often use
CycleGAN-based methods or a combination with disentangled
representations [14–18]. These methods have shown promising
results but are limited by the assumption of identical anatomy
and potential structural differences in the data. Most of the
disentangled representation approaches have been applied to
magnetic resonance imaging and, to the best of our knowledge,
have not been used for CBCT-to-CT image synthesis.

This study aims to perform I2I translation from CBCT
to FBCT. The main objective is to capture the anatomy
acquired in CBCT with the quality and resolution of FBCT
by using the image synthesis harmonization approach. More
specifically, we aim to adapt the HACA3 model [13] for
CT data. To quantitatively assess the performance of the
model, we evaluate the resulting harmonization on several
downstream segmentation tasks including lobes, airways, and
nodules structures. We further assess the model’s adaptability
by evaluating on external real CBCT data.

II. METHODS

A. Dataset

The dataset used in this work is from the free publicly
available Lung Image Database Consortium image collection
(LIDC-IDRI), which consists of diagnostic and lung cancer
screening thoracic CT scans [19]. It was initiated by the
National Cancer Institute and further advanced by the Founda-
tion for the National Institutes of Health. In total, it contains

1018 cases from seven different academic centers, with the
collaboration of eight medical imaging companies. For this
study, a subset of 95 cases was used, which were divided into
56 for training (70%), 9 for validation (10%), and 20 for testing
(30%). All images have a resolution of 512 x 512 pixels in the
x-y dimensions, with an in-plane pixel size ranging from 0.461
mm to 0.977 mm. The z-dimension and slice thickness vary
between scans, with slice thicknesses ranging from 0.6 mm to
5.0 mm. Manual annotations from expert image analysts were
used as ground truth during the downstream tasks evaluation.

To derive CBCT scans from the provided FBCT data, the
ASTRA toolbox was employed, which is an open-source
software package that supports tomographic reconstruction
tasks [20, 21]. In this process, alignment of the simulated CBCT
data with the FBCT was crucial. From this point forward,
the simulated CBCT data will be referred to as genCBCT.
To achieve this, a virtual Cone-beam projection is rotated
180 degrees around the FBCT volume to obtain the forward
projection or sinogram. This is then reconstructed using the
Feldkamp-Davis-Kress method [22]. To replicate a real CBCT
scan setting, the same parameters as the Philips Allura FD20
Xper scanner were used: an 810 mm source-axis distance, an
1195mm source-detector distance, and a 30x40 cm2 detector
with a 0.775 mm pixel pitch [23]. Furthermore, a bronchoscope
or scope was also simulated, as it is commonly present in
interventional procedures for lung inspection. A bronchoscope
typically consists of a thin, flexible outer tube with a working
channel, where an inner tube can be inserted for procedures
such as biopsy or ablation. This setup allows for detailed
examination and intervention within the lung anatomy. Fig. 2
depicts the genCBCT with and without scope.

Fig. 2. An example of A) Fan-Beam CT with its correspondent ASTRA
generated CBCT B) without the presence of scope and C) with scope.

To perform an external evaluation with real CBCT data, the
Learn2Reg dataset was utilized [24, 25]. This dataset comprises
14 patients, each with a set of scans: prior FBCT and CBCT
taken before treatment, and another FBCT and CBCT taken
at the end of treatment. The FBCT scans were acquired at
maximum inspiration, while both CBCT scans were taken at
maximum expiration. All images had the same dimensions
of 390x280x300 with a spacing of 1x1x1 mm. Due to the
limited FOV, the CBCT images were zero-padded to match
these dimensions. This dataset has been previously used in
image registration challenges due to its inclusion of variations
in breathing phases and time shifts between the beginning and
end of treatment. It was employed during inference to evaluate
the model’s adaptability to real CBCT data.
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B. Preprocessing

Both the FBCT and the genCBCT images were resized to
224x224x224, to obtain the same number of 2D slices in all
orientations (axial, coronal, and sagittal) from the 3D volumes.
In the case of the Learn2Reg data, the zero-padding present in
the CBCTs was removed before the resizing operation. Then,
the intensity values of the images were clipped between -1000
and 2500. The high maximum clipping parameters were chosen
to account for the higher values of the bronchoscope and its
artifacts since the metallic components usually have high HU
units (≥ 2000).

C. Network architecture

Following the image preprocessing, the next section de-
lineates the employed network architecture. The adopted
framework is based on the HACA3 architecture [13], which
follows an ”encoder-attention-decoder” structure. It consists of
three major components: (1) encoding contrast, anatomy, and
artifacts, (2) anatomy fusion with attention, and (3) decoding
(see Fig. 3).

1) Learning anatomy, contrast, and artifact representations:
To disentangle the different anatomy, contrast, and artifact
representation, in HACA3 they introduced contrastive learning
[26]. The idea behind it is learning discriminative features
from query, positive and negative examples. In the case of
the anatomy encoder, these examples are small image patches
and can be denoted as pq , p+, and p−. First, the query patch
pq is randomly selected at a random location of the anatomy
representation β of one of the two contrasts, either 0 which
represents FBCT, or 1 which represents CBCT. Then, the
positive patch p+ is selected from the same corresponding
location in the other contrast. Meanwhile, the negative patches
p
(n)
− are sampled from the same locations as pq as well as from

random locations within different anatomy representations β.
From this, with a contrastive loss function LC , pq is encouraged
to be more similar to p+ than to p

(n)
− , but not identical. It can

be defined as follows:

LC(pq, p+, p
(n)
− ) = − log

[
epq·p+

epq·p+ + 1
N

∑N
n=1 e

pq·p(n)
−

]
, (1)

where n = 1, ..., N and N is the total number of negative
examples. In this way, the p

(n)
− at the same location in different

contrast encourages contrast information to be removed from
β, and the random locations help to capture a broader anatomy
representation.

The artifact encoder also uses contrastive learning with
query, positive, and negative examples denoted as xq, x+,
and x

(m)
− respectively. In this case, the xq and x+ examples

represent 2D slices from the same volumetric image. The
negative examples x(m)

− are either slices from different volumes
or augmented examples of xq with simulated artifacts. These
artifacts involved noise, motion, spikes, and ghosting, and were
simulated using TorchIO [27]. This helps the artifact encoder
to focus only on the artifact information since it is the only

difference between those examples. Moreover, selecting slices
from different volumes encourages different levels of artifacts
to be learned. The final loss to train the artifact encoder is
given by LC(xq, x+, x

(m)
− ) in Eq. 1, where m = 1, ...,M and

N is the total number of negative examples.

2) Decoding with attention mechanism: To account for
inherent anatomical differences across CT scans, the model
learns to integrate anatomical features to generate harmonized
images with high fidelity and improved robustness against
imaging artifacts and poor quality. As illustrated in Fig. 3, fully
connected networks are employed to learn keys K = k1, k2 and
queries Q from the encoded representations of contrast θ and
artifacts η [28]. The similarity between K and Q is measured
to obtain the learned attentions α. These attentions highlight
source images with contrast and image quality similar to the
target image, guiding the decoder to use the corresponding
β representations for harmonization. Then, these are used to
obtain the optimal anatomical representation β∗ by computing
the weighted average with the attention α. Lastly, the decoder
uses both β∗ and the target contrast θt as inputs to generate
the output synthetic image x̂t.

D. Loss function

The HACA3 framework is structured as a conditional
variational autoencoder (CVAE), where θ serves as the latent
variable and β∗ acts as the condition. The CVAE loss used to
train HACA3 is given by:

LCVAE = |x̂t − yt|1 + λ1DKL[p(θ|yt)∥p(θ)], (2)

where |x̂t − yt|1 is the L1 norm between the synthetic
image x̂t and target image yt, DKL is the KL divergence and
p(θ) is the standard normal distribution. Furthermore, a cycle
consistency loss between the contrast Eθ and artifact encoder
Eeta is used to reanalyze the synthetic image and further
regularize. It can be defined as:

Lcyc = |Eθ(x̂t)− θt|1 + |Eη(x̂t)− ηt|1, (3)

where θt and ηt are the target contrast and artifact represen-
tations, respectively. These two losses, LCV AE and Lcyc are
combined with the contrastive loss described in Eq. 1 for both
the anatomy and artifact encoder as follows:

Ltotal = LCVAE + λ2LC(pq, p+, p
(n)
− )+

λ3LC(xq, x+, x
(m)
− ) + λ4Lcyc, (4)

where λ’s are hyperparameters: λ1 = 10−5 and λ2,3,4 = 0.1,
based on Zuo et al. [13].

E. Implementation details

To better align the genCBCT with actual CBCT, data
augmentation techniques were applied. To mimic the restricted
FOV, random cropping was used, such as isolating just one
lung in the image. Additionally, jitter transformations, including
adjustments to brightness, contrast, and sharpness, were applied
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Fig. 3. A schematic framework of HACA3 for Fan-beam CT and Cone-beam CT data. The source images x1,2 are both the FBCT and generated CBCT
(genCBCT). β1,2 represents the anatomical representation of the source images. θ and η represent the contrast and artifact representation respectively. α
represents the attentions and β∗ the optimal anatomy. The output synthetic image x̂t has the contrast of the target image yt and preserves the anatomy from
the source images. The network colors indicate weight sharing.

to modify the image’s intensity values, addressing potential
common artifacts [29].

The model was trained for 70 epochs with a batch size
of 12. Inference was then carried out on the test set using
the weights from the final epoch. During inference, either
a target image or the contrast and artifacts distribution has
to be provided to the model. For this purpose, a randomly
selected FBCT image from the test set was used as the target
to obtain the desired distributions. Although the trained model
can harmonize FBCT images using CBCT as a target, this study
only uses FBCT as the target to achieve our goal. Employing
a test set image ensures an unbiased evaluation of the model’s
generalization capabilities on unseen data, thereby providing
a robust assessment of its performance. Given that this is a
2D approach, synthetic images were generated for all three
orientations. The median value at each voxel was used as the
intensity value for the final fused image [7]. Since the output
synthetic images are normalized, the normalization is reversed
to obtain the intensity values in the HU scale.

The implementation was based on PyTorch (v1.12.0) [30]
and both training and inference were performed on a Nvidia
GeForce RTX 2080 (12GB) using CUDA version 11.3.

F. Evaluation

To compare the resulting harmonized image with its respec-
tive target CT, the evaluation included the use of the structural
similarity index measurement (SSIM) [31] and the peak signal-
to-noise ratio (PSNR) value [32]. The SSIM is a perceptual
metric for the assessment of the visual quality of images. It
can be defined for two grayscale images x and y as follows:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (5)

where µx, µy , σ2
x, σ2

y , σxy are the mean values, variance and
covariance of x and y respectively, while c1 and c2 stabilize
the equation. PSNR quantifies how much noise or distortion
is present and can be defined between image x and reference
image y as:

PSNR(x, y) = 10 log10

(
MAX2

I

MSE

)
, (6)

where the numerator is the maximum possible intensity value of
the image and MSE denotes the mean squared error between the
images. If we consider a 3D image with dimensions MxNxK,
then MSE can be defined as:

MSE(x, y) =
1

MNK

M∑
m=1

N∑
n=1

K∑
k=1

[x(m,n, k)−y(m,n, k)]2,

(7)
The model was also evaluated on three downstream tasks:

(i) lobes segmentation, (ii) nodules segmentation, and (iii)
airways segmentation. These tasks provide a comprehensive
assessment of the model’s performance, ranging from simpler
analyses, such as lobes segmentation or nodules, to more
detailed, airways. All the different evaluations were performed
the FBCT, the genCBCT, and the resulting harmonized CBCT.
To ensure a fair comparison, all images were downsampled to
a uniform size of 224x224x224, as the original images varied
significantly in resolution.

1) Lobes segmentation: The lung quantification platform
LungQ (version 3.0.0, Thirona, Nijmegen, The Netherlands)
was used to perform the lobes segmentation. It predicts
five classes corresponding to the different lobes: the left
superior lobe, the left inferior lobe, the right superior lobe,
the right middle lobe, and the right inferior lobe. To assess
the performance of the lobes segmentation, the Dice Score
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Coefficient (DSC) and the Hausdorff distance (HD) were
used. The DSC quantifies the overlap between two volume
segmentations and is defined as twice the intersection of the
volumes divided by their union [33]. The HD calculates the
distance between two point sets and it is an indicator of the
largest segmentation error[34]. These metrics were computed
per lobe label between the predicted LungQ and ground truth
segmentations. To evaluate the differences between the FBCT,
genCBCT, and the harmonized genCBCT metrics, a statistical
analysis was performed. More specifically the Wilcoxon-ranked
t-test [35] for non-parametric paired data with Bonferroni
adjustment for multiple test comparison was used.

2) Nodules segmentation: For the nodules segmentation task,
only the nodules ≥ 3mm in diameter in all orientations were
considered since only those were present in the ground truths.
To examine the performance, both precision and recall metrics
were calculated between the nodules in the ground truth and
their corresponding predictions. Recall is used in this context
because it reflects the model’s ability to identify all relevant
nodules. It provides a measure of the segmentation algorithm’s
sensitivity, which is crucial for clinical applications where
missing true positive nodules can have significant consequences.
Precision complements recall by indicating the proportion of
predicted nodules that are true positives, ensuring the model’s
predictions are accurate. It should be noted that the nodules
segmentation module was previously trained on simulated
CBCT data.

3) Airways segmentation: The airways segmentation task
was also performed with LungQ. From the segmentation,
the total airway count (TAC) can be obtained. It is directly
computed by the algorithm, which selects the largest connected
component and counts each airway branch and its respective
children. Furthermore, the airway count per generation level
was calculated to obtain a more in-depth comparison between
segmentations.

III. RESULTS

In this section, we present the results of the model per-
formance and downstream tasks, focusing exclusively on test
outcomes. For reference, HACA3 achieved a PSNR of 35.00
and an SSIM of 0.93 on magnetic resonance imaging [13],
while a CycleGAN combined with a disentangled representation
obtained a PSNR of 34.12 and an SSIM of 0.86 on CBCT
without scope [17]. In our study, using the LIDC test set, the
PSNR was 32.53 [31.09, 33.63] and the SSIM was 0.88 [0.83,
0.91] when comparing the harmonized genCBCT with the
target FBCT.

An example of median harmonization performance is illus-
trated in Fig. 4. The results show that the model effectively
reduces high-intensity values produced by the scope and
minimizes artifacts, such as motion artifacts. However, some
beam hardening artifacts persist, as seen in Fig. 4 A and B.
Additionally, in certain areas, the airway wall is not fully
reconstructed, as indicated in Fig. 4 C.

Fig. 4. Visualization of a median case based on PSNR and SSIM metrics. Slices
of all three orientations are shown for the target FBCT, harmonized generated
CBCT (genCBCT), and source genCBCT images. The PSNR between the
target FBCT and the harmonized genCBCT is 32.71 and the SSIM is 0.86.
The Red arrows are used to highlight specific regions to compare.

For visualization, Fig. 5 shows a ”good” case with a PSNR
of 33.99 and an SSIM of 0.91, which falls in the 75th percentile
of these metrics results, indicating high-quality performance.
Next to it, is the worst case with a PSNR of 29.61 and an
SSIM of 0.76. The different segmentation results are described
in the following subsections.

A. Lobes segmentation

The harmonized genCBCT outperformed the genCBCT
images for all five lobe segmentation labels in terms of DSC, as
can be seen in Fig. 6. Statistically significant differences were
observed in DSC values between FBCT and both harmonized
genCBCT and genCBCT for the left superior lobe (p < 0.001),
but no HD comparisons reached significance. In label 2, all DSC
comparisons were significant, and only the HD between FBCT
and genCBCT was significant. Label 3 showed significant
differences in DSC and HD between FBCT and genCBCT,
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Fig. 5. Visualization of a good case (75th percentile) and the worst case based on PSNR and SSIM metrics. The first row displays the target FBCT, harmonized
generated CBCT (genCBCT), and source genCBCT images. The second row shows lobe segmentations overlaid on the images, with colors representing
different lobes: red for the left superior lobe, orange for the left inferior lobe, cyan for the right superior lobe, purple for the right middle lobe, and dark
blue for the right inferior lobe. The third row highlights nodule segmentations in orange, overlaid on a relevant image slice. The final row presents airway
segmentations with all components. Red arrows are used to highlight specific regions to compare.

Fig. 6. Evaluation metrics results of the lobes segmentation downstream task. On the left, boxplot of the DSC values for the source FBCT (purple), harmonized
genCBCT (white), and genCBCT (green). On the right, the HD values for the same sets. The lobes are as follows: (1) the left superior lobe, (2) the left
inferior lobe, (3) the right superior lobe, (4) the right middle lobe, and (5) the right inferior lobe.
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as well as DSC difference between harmonized genCBCT
and CBCT. For Label 4, only the HD between FBCT and
genCBCT was significant. Lastly, in Label 5, both DSC and
HD comparisons between FBCT and genCBCT, and FBCT
and harmonized genCBT were significant. Visually, the lobe
segmentations appear similar across the different image types,
although differences are noticeable in genCBCT in regions
affected by the scope (see Fig. 5).

B. Nodules segmentation

The performance of nodule segmentation across different
imaging modalities was assessed using recall and precision
metrics, as detailed in Table I. For recall, both FBCT and
genCBCT exhibited a median value of 0.50 with a range
of [0.50, 1.00], indicating consistent detection capability
across these modalities. The harmonized genCBCT had a
lower median recall of 0.50 with a wider range of [0.35,
1.00], suggesting some variability in nodule detection post-
harmonization. It is important to note that the model was
trained on FBCT and genCBCT data, but not on harmonized
genCBCT, which may affect its performance on the latter. In
terms of precision, again FBCT and genCBCT achieved the
same median value of 0.33, with a range of [0.25, 0.50]. The
harmonized genCBCT images showed lower precision, with a
median of 0.25 [0.20, 0.33]. These results indicate a decrease
in recall and precision with harmonization. For example, in
Fig. 5 it can be seen how in the ”good” case one nodule was
not segmented by either the harmonized genCBCT or CBCT.
while in the worst case, where only one nodule was present,
two nodules were segmented.

TABLE I
EVALUATION METRICS RESULTS FOR NODULES SEGMENTATION TASK

FBCT Harmonized genCBCT genCBCT
Precision 0.33 [0.25, 0.50] 0.25 [0.20, 0.33] 0.33 [0.25, 0.50]

Recall 0.75 [0.50, 1.00] 0.50 [0.35, 1.00] 0.75 [0.50, 1.00]

C. Airways segmentation

The median of the TAC for FBCT was 85.0, for harmonized
genCBCT 4.0, and for the genCBCT zero. The low or zero
value for genCBCT is due to the absence of detected TAC
values in 9 cases for the harmonized genCBCT and 14 cases
for the genCBCT test cases. The results of airway count
per generation level are shown in Fig. 7. Lower generation
levels, which represent the main airway branches, are almost
consistently detected across all image types. As the generation
level increases, the airway count also increases. However, for
both the harmonized genCBCT and genCBCT, this remains
significantly lower. The airway count for harmonized genCBCT
is lower than FBCT but higher than genCBCT. At the highest
generation levels, harmonized genCBCT often fails to detect
airways. This can be visually seen in Fig. 5, where both good
and worst-case scenarios show the CBCT as disconnected, with
the trachea not fully segmented. In addition, the depth of the
harmonized genCBCT airway tree does not match that of the

FBCT, and even in the worst case, it is disconnected in multiple
regions.

Fig. 7. Airways counts per generation level for the source FBCT (purple),
harmonized genCBCT (white), and genCBCT (green).

D. External evaluation: Learn2Reg

Figure 8 shows two examples of harmonization performance
using the Learn2Reg dataset, which consists of real CBCT
data with inherent complexities. In Figure 8 A, there is a
noticeable reduction in artifacts and smoothing of HU values
in the harmonized CBCT. However, due to the presence of high
levels of artifacts in the real CBCT data, such as streak artifacts,
these artifacts remain visible even after harmonization. The
examples depicted are from pre-treatment scans, illustrating
the model’s performance with real-world data that is more
challenging than the simulated CBCT data used during training
and evaluation.

Fig. 8. Visualization of the Learn2Reg external data results are shown.

IV. DISCUSSION

In this study, we evaluate the performance of an image
synthesis harmonization approach based on the disentanglement
of the latent representation of anatomy, contrast, and artifacts.
Our results highlight the model’s ability to reduce artifacts,
such as motion and scope, and to smooth the HU distribution.
These enhancements translate to improved performance in
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downstream tasks like lobes and airway segmentation, where
the harmonized genCBCT consistently outperforms genCBCT.

Our model not only enhances CBCT images with scope
artifacts but also performs exceptionally well on images without
scope. Although these results are not included in the main body,
the model’s ability to achieve superior SSIM values on images
with scope, in comparison to current approaches in images with
scope [17], highlights its robustness and potential for broader
clinical applications. This is significant, as harmonizing images
without scope is inherently easier due to the reduced number
of artifacts, thus further validating the model’s capabilities.

In some cases with high artifacts, the airway wall was not
fully reconstructed. This was especially true when the airway
wall was thin or small (see Fig. 4 C). This was also affected
by the slicing artifacts caused, by the median fusion approach
to obtain the final harmonized genCBCT image. which could
be solved by a fusion network [11] or 3D approach. The scope
HU is reduced but not entirely. The beam hardening artifacts
produce by the scope are still present in some cases.

Despite these successes, the model faced challenges in
accurately reconstructing airway walls in high-artifact cases,
particularly when the walls were thin or small (see Fig. 4
B and C). This limitation was partly due to slicing artifacts
from the median fusion approach used to generate the final
harmonized genCBCT image. Exploring alternative methods,
such as a fusion network [11] or 3D approaches, could address
these issues. While the model reduced the scope HU, beam-
hardening artifacts persisted in some instances, indicating areas
for future improvement.

In the lobes segmentation task, harmonized genCBCT con-
sistently outperformed genCBCT, with statistically significant
improvements in DSC and HD. On the contrary, nodule seg-
mentation performance was slightly diminished. The model’s
tendency to overshoot on FBCT to avoid missing potential
nodules resulted in lower precision and recall for harmonized
genCBCT. This could also be due to the model being trained
on both FBCT and CBCT. This underscores the effectiveness
of the harmonization process in maintaining nodule detection
capabilities but also highlights precision challenges that could
impact the reliability of segmentation results. Further research is
needed to address these challenges and refine the harmonization
process to enhance overall segmentation performance.

For the airway segmentation, the harmonization slightly
improved the performance both quantitatively with the TAC
and airway count per generation level and quantitatively by
correctly segmenting the trachea and in some cases connecting
the left and right bronchus (see Fig. 5). However, there was
a notable difference with respect to the FBCT. This indicates
that the harmonized genCBCT have a lower level of detail,
similar to CBCT. In addition, there can also be disconnected
airways, such as the worst case in Fig. 5.

Regarding the external evaluation of Learn2Reg, the perfor-
mance was variable depending on the quality and resolution of
the images. The FBCT and CBCT images in this dataset were

not previously aligned, and there was a notable difference in
resolution between them. Additionally, the artifact distribution
in Learn2Reg was not represented in our training data. Even
with these challenges, it could be seen how the model was
able to slightly reduce the present artifacts while preserving
the anatomy. This suggests that incorporating more diverse
training datasets that include a wider range of artifact types
and resolutions to enhance the model’s robustness to handle
varied clinical scenarios.

One of the main limitations of this study is the use of a
2D approach. A 3D patch-based approach could potentially
improve model performance by utilizing the full spatial context
of the images rather than processing them slice-by-slice.
However, this approach requires higher GPU capacity and
computational resources. Moreover, we resized the images to
a lower resolution to manage computational constraints, which
may have affected the level of detail present. The 3D approach
could mitigate this issue by allowing the use of original-
size images instead of a fixed cubic dimension, potentially
enhancing the model’s ability to capture fine anatomical details.

In addition to the previously discussed future work, several
other improvements could be explored. Firstly, enhancing
data augmentation strategies by incorporating more jitter
and simulating realistic CT-specific artifacts using tools such
as ASTRA [20, 21] could help to better represent beam
hardening effects. This includes modeling various artifacts
such as strikes and dark bands. Secondly, integrating scopes
with different materials and characteristics at various positions
within the CBCT scan could improve the model’s robustness.
Furthermore, incorporating the concept of spatial attention
could further enhance model accuracy and performance. By
allowing attention variables to vary across spatial locations, the
model could better adapt to local anatomical features, especially
in complex regions, and provide more fine-grained control
over the harmonization process. These advancements could
address current limitations and are essential for enhancing
the reliability and precision of CBCT imaging in clinical
settings. For example, improved CBCT could significantly
enhance tumor localization and dose planning in radiation
therapy, leading to better patient outcomes and more effective
treatments.

V. CONCLUSION

In this study, we explored the use of I2I translation to
enhance simulated genCBCT images, aiming to achieve the
anatomical detail of CBCT with the quality and resolution
of FBCT. Our approach employed HACA3, which utilizes
disentangled representations of anatomy, contrast, and artifacts
for harmonization. The architecture includes an anatomy fusion
module with an attention mechanism to address inherent
anatomical differences between CT scans. Our results demon-
strated that the model effectively reduced artifacts like motion
and scope and smoothed the HU distribution. The model was
evaluated on several downstream tasks, from general ones
like lobe segmentation to more specific ones such as nodules
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and airway segmentation. In lobe segmentation, harmonized
genCBCT images consistently outperformed genCBCT. For
nodule segmentation, harmonized genCBCT showed slightly
lower precision and recall, as both FBCT and CBCT were used
for training. For airway segmentation, a slight improvement
was observed with harmonized CBCT over CBCT, though the
images lacked detail. External evaluations indicated the model’s
potential generalizability to other distributions. Overall, the
harmonization approach effectively increased the quality and
diversity of the genCBCT dataset, demonstrating its potential
to enhance segmentation tasks and its applicability to various
imaging distributions.
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