
UTRECHT UNIVERSITY

Department of Information and Computing Science

Applied Data Science master thesis

Exploring the association between remote monitored physical

activity and amyotrophic lateral sclerosis: insights from
machine learning

First examiner:

Ruben van Eijk

Second examiner:

Boudewijn Sleutjes

Candidate:

Xia Wu

In cooperation with:

UMC Utrecht

3 July, 2024

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal motor neural disease with a
highly variable presentation among patients. Diagnosing ALS typically
takes over a year from the initial onset of symptoms, often delaying the use
of assistive devices like wheelchairs and complicating disease management
and treatment. Assessment inconsistencies, due to variations in ALS
Functional Rating Scale-Revised (ALSFRS-R) versions, recall bias, and
periodic assessments, underscore the need for objective methods to quantify
disease progression.

Recent studies have demonstrated that accelerometer-based physical
activity monitoring might objectively evaluate disease severity and track
progression in ALS patients. Digital biomarkers from accelerometers might
enable earlier detection of health status changes, offering clinicians valuable
insights into daily functioning to aid treatment. Machine learning research
has increasingly linked physical activity with various diseases, offering
valuable insights for ALS progression studies.

Our study investigates the relationship between accelerometer-based
physical activity features and walking abilities in ALS patients using
explainable artificial intelligence techniques. We conducted a detailed
analysis to understand how each feature distinguished between categories.
Our findings indicate that digital biomarkers extracted from accelerometer
data can effectively distinguish ALS patients' walking abilities at different
scales using XGBoost. Particularly, bout-based features highlight the
model's ability to capture both gross and fine motor functions. Patients with
normal walking function exhibit higher levels of moderate-to-vigorous and
vigorous activities, while those with impaired walking spend more time in
light activities.

In conclusion, accelerometry-derived features, analyzed through machine
learning methods, can differentiate walking functions in ALS patients.
However, further research is needed to optimize model performance,
validate markers in practical applications, explore alternative thresholds,
and refine labeling criteria to fully assess functional degradation.

2

Contents

CONTENTS .. 2
1. INTRODUCTION ... 3
2. DATA ... 5

2.1 DATA DESCRIPTION .. 5
2.2 DATA PREPARATION .. 5
2.3 DATA PROCESSING .. 6

3. METHOD .. 11
3.1 XGBOOST CLASSIFIER .. 11
3.2 EVALUATION METRICS .. 12
3.3 FEATURE IMPORTANCE .. 13

4. RESULTS ... 14
5. DISCUSSION AND CONCLUSION .. 17
REFERENCES ... 20
APPENDIXES ... 25

APPENDIX 1 SHAP DEPENDENCE PLOTS .. 25
APPENDIX 2 CONVERTING GT3X FILES TO CSV FILES ... 28
APPENDIX 3 ACCELEROMETER DATA PREPROCESSING .. 29
APPENDIX 4 RANDOMLY SELECTING 2 DAY’S DATA .. 33
APPENDIX 5 FEATURE EXTRACTION ... 35
APPENDIX 6 AVERAGING 2 DAY’S DATA ... 47
APPENDIX 7 MODELLING PROCESS ... 47

3

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative
disorder characterized by inexorable progression. It profoundly affects
motor function and quality of life over time, ultimately leading to death by
respiratory failure a few years after onset of first symptoms [1]. Despite its
incurable nature, supportive and adjunctive therapies offer some relief from
symptoms, potentially improving the disease course [2]. Effective
utilization of these therapies necessitates healthcare professionals to possess
a thorough understanding of patients’ disease progression. The ALS
Functional Rating Scale-Revised (ALSFRS-R) typically plays an important
role in monitoring and managing disease progression by evaluating various
behavioral functions affected by ALS [3]. However, the languages and
variations in ALSFRS-R versions, the divergent training programs from
different certifying organizations and the limitation in detecting small
changes in physical functioning can lead to inconsistencies in assessments,
which compromise the quality and conclusiveness of the data collected [4,
5, 6].

In particular, the broad use of digital platforms and mobile applications
for self-assessment by patients makes it essential to establish objective
methods for quantifying disease progression and collection of high-quality
data via remote digital tools. Recent studies have shown that accelerometer-
based physical activity monitoring is an objective method for evaluating
disease severity and measuring disease progression in ALS patients [7, 8].
The accelerometer-derived vertical movement index, has been validated as a
highly discriminatory outcome measure for predicting future disease
progression rates and strongly associated with overall survival time in
patients with ALS [9]. Accelerometer-based outcomes also exhibit excellent
correlations with King’s staging in ALS patients [7, 9, 10]. These findings
highlight the potential of accelerometer-based outcomes to model individual
disease courses and predict survival outcomes, similar to the functionality of
ALSFRS-R scale [11, 12, 13].

Given the continuous and objective nature of accelerometer-based
monitoring, it offers the advantage of enabling continuous home monitoring
[14]. This capability allows for the detection and early treatment of changes

4

in health status, providing clinicians with valuable insights into patients’ day-
to-day functioning. Understanding patients’ body movement and physical
activity levels throughout the day is critical, particularly in the context of
neurodegenerative or chronic diseases [15].

In recent years, there has been a growing body of machine learning
research focused on exploring the relationship between physical activity and
various diseases, such as Parkinson’s disease, low back pain, and dementia
[16, 17, 18]. In the context of ALS, Gupta et al. demonstrated that high
response rates for at-home data collection can be achieved using supervised
machine learning models [19]. Similarly, Vieira et al. showcased the
feasibility of using digital outcomes alongside machine learning to predict
self-assessed ALSFRS-R [20]. Both of them found limb movement did not
correlate well with bulbar and respiratory function, but can have a better
association in gross and fine motor function.

Building on this foundation, our study aims to further analyze how digital
biomarkers derived from accelerometry data relate to differences in walking
ability among ALS patients, distinguishing between those with mild to
serious changes and those with no changes during daily life. By leveraging
explainable artificial intelligence techniques, we seek to evaluate the
importance of these features and gain a deeper understanding of the key
factors driving the classification outcomes. This comprehensive approach
not only enhances our understanding of ALS severity in movement aspect,
but also holds the potential to inform more timely, personalized and effective
treatment strategies.

5

2. Data

2.1 Data description

The patient cohort for this study was derived from two prospective cohort
studies conducted at the University Medical Centre Utrecht (UMCU) in the
Netherlands. Participants were recruited through the Treatment Research
Initiative to Cure ALS (TRICALS) database and the UMCU biobank for motor
neuron diseases. Patients were eligible for inclusion based on the following
criteria: (a) Patients were required to be over the age of 18. (b) Patients were
required to have a diagnosis of possible, probable (laboratory- supported),
or definite amyotrophic lateral sclerosis (ALS), according to the revised El
Escorial criteria [21]. (c) Patients diagnosed with progressive muscular
atrophy (PMA) were also included. (e) All participants provided written
informed consent.

2.2 Data preparation

2.2.1 Accelerometer data

The accelerometer data utilized in this study were obtained from prior
studies. Patients were provided with the ActiGraph GT9X Link (ActiGraph
LLC, Pensacola, FL), a compact (0.5 × 3.5 × 1 cm), lightweight (14 g) tri-
axial accelerometer device. They return the device either by mailed or
handed it over during visits. Patients were instructed to wear the ActiGraph
on the right hip in the anterior axillary line using a belt clip during waking
hours for a continuous period of 3 to 7 days. The device was set to collect data
at a sampling rate of 30 Hz.

The accelerometer data were distributed to students through
SURFfilesender, a secure file-sharing service that stores files on servers in the
Netherlands for up to 21 days. This service is recommended by UMC Utrecht
and complies with European privacy legislation (GDPR). Students received the
data in GT3X file format, comprising a total of 89 files from 89 patients.

6

2.2.2 Metadata

An Excel spreadsheet provided supplementary data on patients’ starting and
stopping wear times, as well as their walking scale. The “walking scale”
was estimated using the item 8 of the ALSFRS-R, assessing walking
functionality ranging from 0 (no movement in leg) to 4 (no problems) [3]
and served as the classification label for this study. All data in the
spreadsheet were anonymized to protect patient privacy. Importantly,
students did not have access to any demographic information about the
patients.

2.3 Data processing

2.3.1 Raw data segmentation

The accelerometer data for each patient was segmented into 24-hour spans
to represent daily activities. Due to the varying start and stop times of
measurements for each patient, the initial step involved selecting valid time
spans based on the wear times recorded in the metadata file. Next, any
missing data within these spans were identified and filled with zeros,
ensuring continuity and indicating periods of no movement. Subsequently,
Hees, a raw-based non-wear algorithm [22], was employed to detect wear
and non-wear times. Only days with at least 8 hours of wear time were
considered and one continuous time span representing a day’s activity. Days
with less than 8 hours of data were excluded from the analysis. Figure 1
shows the different number of valid data days for each patient, illustrating
the variability in the amount of data collected per patient.

To ensure fair comparison between different patients, 2 days’ data from
each patient were included in the analysis. Consequently, 3 patients who had
fewer than 2-day data and 1 patient who did not have any days with more
than 8 hours of wear time were excluded. For patients with more than 2
days, 2 days were randomly sampled. Figure 2-a graphically illustrates the
process of raw data segmentation.

7

Figure 1 The amount of data collected per patient

Figure 2 The workflow of preprocessing and modelling

2.3.2 Accelerometer-based features

The raw accelerometer data underwent summarization into activity counts
to quantify physical activity. Each sample within a 1-second epoch window
was assigned an activity count based on the vector magnitude of the triaxial
data. This activity count was calculated as the square root of the sum of the

squares of the triaxial data, i.e., !𝑥# + 𝑦# + 𝑧# . To remove or limit

accelerations likely attributed to non-human body movements, frequency
filtering (using a 7th order IIR filter) and amplitude thresholds were applied
[23].

Based on extensive literature review, 49 features were selected (Table 1)
[18, 19, 24, 25]. Features such as aggregate, maximum, standard deviation,
mean and ratio duration time of each activity bout in a day, were computed
to reflect the average daily activity of a patient. To estimate bout time in

8

different activity levels, we used a cutoff method [26]. Sedentary activity
is defined as less than 100 counts per minute. Light activity is fewer than
760 counts per minute. Moderate-to-vigorous activity is below 2020 counts
per minute, and vigorous activity is considered to be 2020 counts per minute
or more.

Features regarding each activity bout count were also calculated based
on activity bouts, offering detailed insights into the characteristics of each
bout type, including sedentary, light, moderate-to-vigorous, and vigorous
activities, across the day. This analysis helps in understanding how activity
is distributed across different intensity levels and the overall contribution of
each activity type to the daily activity profile. Apart from bout-based
features, minute-based features such as mean, standard deviation,
coefficient of variation, minimum, maximum, and percentiles (25th, 50th,
and 75th) offer a granular view of activity distribution on a minute-by-
minute basis throughout the day. Spectral analysis involved examining the
frequency domain of the accelerometer data and extracting features
representing average power within the 0.5 Hz to 5 Hz frequency range
across multiple 2-second windows of accelerometer data using Fast Fourier
Transform (FFT). This feature serves to quantify both the intensity and
variability of physical movements captured by the accelerometer.

To compare data between different patients fairly, two days from each
patient were included in the analysis. Averaging the features over these two
days for each patient resulted in a single observation per patient, which can
maintain sample independence.

9

Table 1 Feature description

category Feature name Description and method

amount of

activity

Aggregate

duration time

The accumulated time of each activity type (sedentary, light,

moderate-to-vigorous, and vigorous) bouts over a single day.

Max duration

time

The duration of the longest bout for each activity type

(sedentary, light, moderate-to-vigorous, and vigorous) The

accumulated time of each activity type (sedentary, light,

moderate-to-vigorous, and vigorous) bouts over a single day.

Standard

deviation (sd)

duration time

The standard deviation of the time spent in consecutive bouts

for each activity type (sedentary, light, moderate-to-vigorous,

and vigorous) The accumulated time of each activity type

(sedentary, light, moderate-to-vigorous, and vigorous) bouts

over a single day.

Mean duration

time

The average duration of consecutive bouts for each activity

type (sedentary, light, moderate-to-vigorous, and vigorous)

The accumulated time of each activity type (sedentary, light,

moderate-to-vigorous, and vigorous) bouts over a single day.

Ratio duration

time

The ratio of the accumulated time of each activity type

(sedentary, light, moderate-to-vigorous, and vigorous) bouts

to the length of one segment.

Activity

intensity

Aggregate count

The accumulated count of individual bouts for each activity

type (sedentary, light, moderate-to-vigorous, and vigorous)

recorded over a single day.

Max count

The highest count recorded for a single bout of each activity

type (sedentary, light, moderate-to-vigorous, and vigorous)

within a specified time segment.

Standard

deviation (sd)

count

The standard deviation of the counts for each bout of each

activity type (sedentary, light, moderate-to-vigorous, and

vigorous) recorded over a single day.

Mean count

The average value of the counts for each bout of activity type

(sedentary, light, moderate-to-vigorous, and vigorous)

recorded over a single day.

10

ratio count

The ratio of the accumulated counts of each type of activity

bout (sedentary, light, moderate-to-vigorous, and vigorous) to

the total number of counts recorded within one segment.

Minute-based

mean count

The average of activity counts recorded within each 1-minute

window throughout a day.

Minute-based

standard

deviation (sd)

count

The standard deviation of the activity counts recorded within

a 1-minute window throughout a day.

Minute-based

coefficient of

variation (cv)

count

The coefficient of variation of the activity counts recorded

within a 1-minute window throughout a day.

Minute-based

max count

The maximum of activity counts recorded within a 1-minute

window throughout a day.

Minute-based

min count

The minimum of activity counts recorded within a 1-minute

window throughout a day.

Minute-based

p25 count

The 25th percentile of activity counts recorded within a 1-

minute window throughout a day.

Minute-based

p50 count

The 50th percentile of activity counts recorded within a 1-

minute window throughout a day.

Minute-based

p75 count

The 75th percentile of activity counts recorded within a 1-

minute window throughout a day.

Spectral Cumulative power in the 0.5-5 Hz frequency band

11

3. Method

3.1 XGboost classifier

XGBoost short for extreme gradient boosting, is a powerful algorithm for
data classification and prediction [27]. It has gained popularity for its out-
standing performance in various machine learning challenges and scientific
projects [28]. It offers several advantageous properties: (i) It incorporates
feature selection during training by assigning weights to individual features
based on their importance in predicting the target variable. (ii) It is a flexible
and robust non-parametric model capable of handling a variety of data types,
including numerical and categorical features, making it suitable for diverse
data distributions. (iii) As an ensemble learning method, it is more robust to
noise compared to a single decision tree. (iv) It implements regularization
techniques such as L1 and L2 regularization to prevent overfitting and
improve generalization performance.

The input of the model is <S, L>, where S represents the physical activity
feature vectors of patient i and L represents the corresponding label. Each
physical activity feature vector, Si, consists of k elements, where k is 49
features in this case. The labels, L, denote whether a patient’s walking
ability is dichotomized as "normal walking" or "problem walking" based on
their ALSFRS-R scale, where a label of 1 indicates normal walking, and 0
denotes problem walking.

Before inputting the features into the model, they are normalized using
z-score normalization. Due to the imbalance in feature measures (20 normal
walking subjects and 65 subjects with problem walking), an adaptive
synthetic oversampling approach (ADASYN) is applied to the training set
to create a balanced dataset [29].

The dataset is initially divided using StratifiedKFold into 5 folds, each
containing 25 samples. Within these folds, there are approximately 6
samples classified as normal walking and 19 as problem walking. During
cross-validation, one fold serves as the test set while the remaining four
folds are combined to form the training set.

12

Following this partitioning, RandomizedSearchCV is employed to
explore a range of hyperparameter values for XGBoost. This process
involves randomly sampling combinations of hyperparameters and
evaluating each combination using 5-fold cross-validation. The goal is to
identify the optimal hyperparameter settings that maximize the model's
performance, specifically aiming for high accuracy across all classes in a
balanced manner.

The approach incorporates Leave-One-Out (LOO) cross-validation to
assess the final model's performance. In each iteration of LOO cross-
validation, one sample is designated as the test set, while the remaining 84
samples are used to train the model. Within this training phase, ADASYN
is applied to balance the dataset by generating synthetic samples for the
minority class, enhancing the model's ability to learn from imbalanced data.
Following training, predictions are generated using the model on the test
sample, and these predicted values are compared against the actual labels to
compute evaluation metrics.

3.2 Evaluation metrics

Accuracy, sensitivity, specificity, precision, F1-score, and AUC were
calculated to evaluate the performance of the classification. In this study,
normal walking was considered as the positive case and problem walking
was the negative case. Correct predictions of normal walking and problem
walking patients are called true positives (TP) and true negatives (TN),
respectively. Incorrect classifications of problem walking patients as normal
walking or of normal walking patients as problem walking, are called false
positives (FP) and false negatives (FN) respectively.

Accuracy was the proportion of all the correct classification results.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 (1)

Sensitivity represents the proportion of positive cases that are correctly assigned

(true positive rate).

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2)

13

Specificity refers to the rate of correctly predicted negative cases in all negative

cases (true negative rate).

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (3)

Precision is the ratio of the correctly predicted positive cases in all predicted

positive cases.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (4)

F1-score is the harmonic mean (average) of the precision and sensitivity.

𝐹1 = 2	
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (5)

The receiver operating characteristic (ROC) curve was calculated to
evaluate the performance of XGboost. The Y-axis of this curve represents the
true positive rate (sensitivity) and the X-axis means false positive rate
(specificity). The overall classification performance of XGboost was evaluated
by the area under the ROC curve (AUC). AUC ranges in value from 0 to 1,
where 0.5 indicates random guessing, and 1 indicates perfect performance.

3.3 Feature importance

To evaluate the influence of each feature on the classifier’s prediction, the
SHapley Additive exPlanations (SHAP) approach will be employed. This
method, derived from coalitional game theory, provides insights into how
to fairly distribute the "payout" among the features [30]. By computing
Shapley values, features in non-linear models like XGboost can be ranked
based on their importance. These values quantify feature importance and
reveal the direction of their impact on the model prediction. SHAP fosters
understanding by providing precise explanations for each dataset
observation, reinforcing confidence when key variables align with human
domain knowledge and reasonable expectations.

14

4. Results

85 patients with 49 accelerometer features were selected as the input for the
classifiers. Figure 3 displays the confusion matrix, from which the accuracy,
sensitivity, specificity, precision and the F1-score were calculated to
evaluate the model’s performance metrics.

Using XGBoost, the two groups were classified with a high accuracy of
76.47%. The specificity score reveals that 76.92% of the samples are
correctly classified as problem walking patients, while 23.08% are
identified as normal walking patients. The sensitivity score shows that 75%
of the samples are correctly assigned to the normal walking group, with 25%
misclassified as problem walking. These scores indicate that the model is
effective at identifying true positive and true negative cases but also makes
some false positive and false negative errors. The F1-score, which considers
both false positives and false negatives by computing their harmonic mean,
was 60%. This suggests that the model has a moderate ability to correctly
identify positive cases and balance false positives and false negatives,
although the precision is relatively low. In figure 4, the AUC indicates that
the model has a 75% chance of correctly distinguishing between problem
walking and normal walking patients.

Figure 3 Confusion matrix

15

Figure 4 The receiver operating characteristic (ROC) curve is shown in

orange. The area under the curve (AUC) represents the overall

performance of the classifier. The blue dashed line represents a random

classifier, where the proportion of correctly classified normal walking

samples is equal to the proportion of incorrectly classified problem

walking samples.

In Figure 5, a density scatter plot of SHAP values for each feature
highlights their impact on the model output. Features are sorted by the sum
of the SHAP value magnitudes across all samples. The plot reveals that the
moderate-to-vigorous standard deviation (sd) count is the most impactful
feature for the model’s prediction. Small values of the moderate-to-vigorous
sd count (marked with blue dots) contribute to negative model predictions
(more likely to be classified as problem walking), whereas higher values in
this feature (marked with red dots) contribute to positive model predictions
(more likely to be classified as normal walking). This indicates that patients
with changes in walking ability tend to have small variations in moderate-
to-vigorous activity counts. Furthermore, the pattern in the mean duration
time of the light activity reveals that higher values in this feature (indicating
more time spent in light activity) lead to a higher likelihood of patients being
classified as having problem walking.

The distribution of SHAP values for the moderate-to-vigorous sd count
is also informative. Many low values have very high negative SHAP values,
indicating that small variations in moderate-to-vigorous activity strongly
contribute to negative predictions, suggesting a higher likelihood of

16

problem walking classification. In contrast, many high values are centered
around a small range of low positive SHAP values, indicating that normal
walking individuals with variations in moderate-to-vigorous activity have a
less pronounced impact on predictions.

Figure 5 SHAP summary plot

Appendix 1 further illustrates the impact of each feature on the model’s
predictions and identifies critical threshold values distinguishing problem
walking subjects from normal walking subjects. SHAP values above the y=0
lead to predictions of normal walking. For moderate-to-vigorous activity,
all features except for ratio duration time and mean count show that higher
values increase the likelihood of predicting normal walking. Similarly, for
vigorous activity, all features except for sd count indicate that higher values
increase the probability of predicting normal walking. In contrast, for
sedentary activity, higher values in all features except for max count and
max duration time increase the likelihood of predicting problem walking.
Also, for light activity and minute-based features, higher values in these
features decrease the likelihood of predicting normal walking, thereby
increasing the probability of predicting problem walking.

17

5. Discussion and Conclusion

This research highlights the utility of objective physical performance
monitoring using accelerometry in the ALS population. By understanding
the importance of these features, we can provide an objective method to
quantify disease progression and comprehend the interactions among these
features. This approach has the potential to significantly enhance our ability
to monitor and manage ALS.

Based on bout-based, minute-based, and spectral outcomes, using
XGBoost, the two groups were classified with relatively high accuracy,
sensitivity, and specificity. The precision is 50%, indicating that the model
produces 50% false positive predictions and 50% true positive predictions.
However, the F1-score of 60% suggests that the model has a moderate
ability to correctly identify positive cases and balance false positives and
false negatives. The AUC of 75% is consistent with the AUC achieved by
the multi-layer perceptron models in Vieira et al.'s approach to predicting
ALSFRS-R scores for walking function. This result confirms that digital
biomarkers extracted from accelerometer data can effectively distinguish
ALS patients' walking abilities at different scales using XGBoost.
Additionally, as item 8 (walking) is a gross motor function, this finding
reveals that accelerometer data can capture the relationship between
physical activity and gross motor functions. This aligns with previous
research by Gupta et al. and Vieira et al., further validating the use of
accelerometers in assessing gross motor functions in ALS patients.

After verifying the feasibility of the model, we conducted a more
detailed analysis of how each feature distinguished between categories,
which is less commonly addressed in other methods. It was observed that
higher values in moderate-to-vigorous and vigorous activity are more likely
to predict patients without problem walking compared to those with problem
walking. Interestingly, features such as moderate-to-vigorous mean count,
moderate-to-vigorous ratio duration time, and vigorous sd count show
higher values for patients with problem walking. This means normal

18

walking patients may often have a large number of short bouts of activity,
which can result in the total activity count being spread across many bouts,
leading to a lower mean count. In contrast, problem walking patients may
have fewer but more intense bouts of activity, resulting in higher mean
counts. For instance, patients with no ambulatory capacity, not even with
assistance, still exhibit some periods of moderate-to-vigorous and vigorous
activity every day. This implies that even those with severe walking
difficulties engage in some level of intense activity. However, whether this
movement is autonomous and related to walking remains to be verified by
collecting more data.

Conversely, problem walking patients exhibit high values in light
activity and minute-based features. On the one hand, higher light mean
count and light mean duration time indicate that problem walking patients
spend more time engaged in light activity. These light activities may include
tasks such as dressing, hygiene, turning in bed, or adjusting bed clothes,
which can be considered fine-motor functions. Thus, bout-based features
applied in the machine learning model are able to effectively predict not
only the functional assessment of skills that require strength but also the fine
motor functions at different walking stages of ALS patients. This
comprehensive approach highlights the model's ability to capture a wide
range of motor functions, providing valuable insights into the patient's
overall motor abilities.

On the other hand, higher values in standard deviation, coefficient of
variation, and max count suggest more variability in their activity levels.
This variability is also evident in sedentary behavior. Patients with problem
walking do not engage in long and highly active rest periods (indicated by
small max counts and max duration times), and their resting patterns are
highly variable (indicated by large standard deviations in duration time and
count). This variability suggests that problem walking patients have many
rest periods of differing lengths and activity levels. This observation is
consistent with the label’s partition, where problem walking functionality
ranges widely from 0 (no movement in the leg) to 3 (minor ambulatory
difficulties).

The variability in sedentary, light and short period activities among

19

patients with a problem walking scale from 0 to 3 means the model can
detect these differences effectively. In other words, the model is able to
identify subtle variations in motor activity that correlate with the severity of
walking difficulties. Clinically, this variability can be crucial for tailoring
individualized treatment plans and monitoring disease progression.

Several limitations of this study need to be addressed. Firstly, the
samples with abnormal walking patterns include three different severity
levels. This indicates a wide variability among patients, especially those
with no ambulatory capacity. Tracking disease progression in this subgroup
of patients could potentially be enhanced by measuring the severity of other
functionalities, such as using voice samples. Secondly, although this study
provides important insights into the potential of accelerometer-derived
features, the limited sample size prevents a thorough understanding due to
the heterogeneity in patients. The variation in individual patient
characteristics and disease progression stages may not be fully captured in
a small sample, leading to less generalizable results. Future research with
larger, more diverse cohorts is necessary to validate these findings and
enhance the robustness of the model, ensuring it can accommodate the wide
range of motor function variations present in the ALS population. Lastly, it
should be noted that this study established sedentary, light, moderate-to-
vigorous, and vigorous physical activity thresholds based on Matthews’s
theory [26]. Future research could explore alternative methods for threshold
selection to optimize feature extraction and improve model performance.

In conclusion, using machine learning methods, features derived from
accelerometry can to some extent differentiate the walking function of ALS
patients. We observed that patients with normal walking function exhibit
higher levels of moderate-to-vigorous and vigorous activities, whereas those
with impaired walking spend more time in light physical activities.
However, to optimize the model's performance and ensure the validity of
these markers in practical applications, further research is needed. This
includes exploring alternative thresholds, utilizing additional datasets,
addressing dataset size limitations, and refining labeling criteria to
comprehensively assess functional degradation.

20

References

1. Oskarsson, B., Gendron, T. F., & Staff, N. P. (2018). Amyotrophic Lateral
Sclerosis: An Update for 2018. Mayo Clinic proceedings, 93(11), 1617–
1628. https://doi.org/10.1016/j.mayocp.2018.04.007

2. Orsini, M., Oliveira, A. B., Nascimento, O. J., Reis, C. H., Leite, M. A.,

de Souza, J. A., Pupe, C., de Souza, O. G., Bastos, V. H., de Freitas, M. R.,
Teixeira, S., Bruno, C., Davidovich, E., & Smidt, B. (2015). Amyotrophic
Lateral Sclerosis: New Perpectives and Update. Neurology international,
7(2), 5885. https://doi.org/10.4081/ni.2015.5885

3. Cedarbaum, J. M., Stambler, N., Malta, E., Fuller, C., Hilt, D., Thurmond,

B., & Nakanishi, A. (1999). The ALSFRS-R: a revised ALS functional
rating scale that incorporates assessments of respiratory function. Journal of
the Neurological Sciences, 169(1–2), 13–21. https://doi.org/10.1016/s0022-
510x(99)00210-5

4. Maier, A., Boentert, M., Reilich, P., Witzel, S., Petri, S., Großkreutz, J.,
Metelmann, M., Lingor, P., Cordts, I., Dorst, J., Zeller, D., Günther, R.,
Hagenacker, T., Grehl, T., Spittel, S., Schuster, J., Ludolph, A., Meyer, T.,
& MND-NET consensus group (2022). ALSFRS-R-SE: an adapted,
annotated, and self-explanatory version of the revised amyotrophic lateral
sclerosis functional rating scale. Neurological research and practice, 4(1),
60. https://doi.org/10.1186/s42466-022-00224-6

5. Bedlack, R. S., Vaughan, T., Wicks, P., Heywood, J., Sinani, E., Selsov,
R., Macklin, E. A., Schoenfeld, D., Cudkowicz, M., & Sherman, A. (2016).
How common are ALS plateaus and reversals?. Neurology, 86(9), 808–812.
https://doi.org/10.1212/WNL.0000000000002251

6. Van Eijk, R. P. A., de Jongh, A. D., Nikolakopoulos, S., McDermott, C.
J., Eijkemans, M. J. C., Roes, K. C. B., & van den Berg, L. H. (2021). An
old friend who has overstayed their welcome: the ALSFRS-R total score as
primary endpoint for ALS clinical trials. Amyotrophic lateral sclerosis &
frontotemporal degeneration, 22(3-4), 300–307.
https://doi.org/10.1080/21678421.2021.1879865

21

7. Van Eijk, R. P. A., Bakers, J. N. E., Bunte, T. M., De Fockert, A. J.,
Eijkemans, M. J., & Van Den Berg, L. H. (2019). Accelerometry for remote
monitoring of physical activity in amyotrophic lateral sclerosis: a
longitudinal cohort study. Journal of Neurology, 266(10), 2387–2395.
https://doi.org/10.1007/s00415-019-09427-5

8. Strączkiewicz, M., Karas, M., Johnson, S. A., Burke, K., Scheier, Z.,
Royse, T. B., Calcagno, N., Clark, A., Iyer, A., Berry, J., & Onnela, J.
(2024). Upper limb movements as digital biomarkers in people with ALS.
EBioMedicine, 101, 105036. https://doi.org/10.1016/j.ebiom.2024.105036

9. Van Unnik JWJ, Meyjes M, Janse van Mantgem MR, Van den Berg LH,
Van Eijk RPA. (2024). Remote monitoring of amyotrophic lateral sclerosis
using wearable sensors detects differences in disease progression and
survival: a prospective cohort study. EBioMedicine, 5:103:105104. doi:
10.1016/j.ebiom.2024.105104

10. Balendra, R., Jones, A., Jivraj, N., Knights, C., Ellis, C., Burman, R.,
Turner, M. R., Leigh, P. N., Shaw, C. E., & Al‐Chalabi, A. (2014).
Estimating clinical stage of amyotrophic lateral sclerosis from the ALS
Functional Rating Scale. Amyotrophic Lateral Sclerosis and
Frontotemporal Degeneration/Amyotrophic Lateral Sclerosis &
Frontotemporal Degeneration, 15(3–4), 279–284.
https://doi.org/10.3109/21678421.2014.897357

11. Maier, A., Boentert, M., Reilich, P., Witzel, S., Petri, S., Großkreutz, J.,
Metelmann, M., Lingor, P., Cordts, I., Dorst, J., Zeller, D., Günther, R.,
Hagenacker, T., Grehl, T., Spittel, S., Schuster, J., Ludolph, A. C., & Meyer,
T. (2022). ALSFRS-R-SE: an adapted, annotated, and self-explanatory
version of the revised amyotrophic lateral sclerosis functional rating scale.
Neurological Research and Practice, 4(1). https://doi.org/10.1186/s42466-
022-00224-6

12. Prell, T., Gaur, N., Steinbach, R., Witte, O. W., & Großkreutz, J. (2020).
Modelling disease course in amyotrophic lateral Sclerosis: pseudo-
longitudinal insights from cross-sectional health-related quality of life data.
Health and Quality of Life Outcomes, 18(1).
https://doi.org/10.1186/s12955-020-01372-6

22

13. Gordon, P. H., Cheung, Y. K., & Kimura, F. (2006). Progression rate of
ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology,
67(7), 1314–1315. https://doi.org/10.1212/01.wnl.0000243812.25517.87

14. Yang, C., & Hsu, Y. (2010). A review of Accelerometry-Based
Wearable Motion Detectors for Physical activity monitoring. Sensors,
10(8), 7772–7788. https://doi.org/10.3390/s100807772

15. Mathie, M., Coster, A. C., Lovell, N. H., & Celler, B. G. (2004b).
Accelerometry: providing an integrated, practical method for long-term,
ambulatory monitoring of human movement. Physiological Measurement,
25(2), R1–R20. https://doi.org/10.1088/0967-3334/25/2/r01

16. Mei, J., Desrosiers, C., & Frasnelli, J. (2021). Machine Learning for the
Diagnosis of Parkinson's Disease: A Review of Literature. Frontiers in aging
neuroscience, 13, 633752. https://doi.org/10.3389/fnagi.2021.633752

17. Zheng, X., Reneman, M. F., Preuper, R. H. S., Otten, E., & Lamoth, C.
J. (2023). Relationship between physical activity and central sensitization
in chronic low back pain: Insights from machine learning. Computer
methods and programs in biomedicine, 232, 107432.
https://doi.org/10.1016/j.cmpb.2023.107432

18. Iaboni, A., Spasojevic, S., Newman, K., Schindel Martin, L., Wang, A.,
Ye, B., Mihailidis, A., & Khan, S. S. (2022). Wearable multimodal sensors
for the detection of behavioral and psychological symptoms of dementia
using personalized machine learning models. Alzheimer's & dementia
(Amsterdam, Netherlands), 14(1), e12305.
https://doi.org/10.1002/dad2.12305

19. Gupta, A. S., Patel, S., Premasiri, A., & Vieira, F. (2023). At-home
wearables and machine learning sensitively capture disease progression in
amyotrophic lateral sclerosis. Nature communications, 14(1), 5080.
https://doi.org/10.1038/s41467-023-40917-3

20. Vieira, F. G., Venugopalan, S., Premasiri, A. S., McNally, M., Jansen,
A., McCloskey, K., Brenner, M. P., & Perrin, S. (2022). A machine-learning
based objective measure for ALS disease severity. NPJ digital medicine,
5(1), 45. https://doi.org/10.1038/s41746-022-00588-8

21. Brooks, B. R., Miller, R. G., Swash, M., & Munsat, T. L. (2000). World

23

Federation of Neurology Research Group on Motor Neuron Diseases. El
Escorial Revisited: Revised criteria for the diagnosis of amyotrophic lateral
sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron
Disorders, 1(5), 293–299. https://doi.org/10.1080/146608200300079536

22. Syed, S., Morseth, B., Hopstock, L. A., & Horsch, A. (2020). Evaluating
the performance of raw and epoch non-wear algorithms using multiple
accelerometers and electrocardiogram recordings. Scientific reports, 10(1),
5866. https://doi.org/10.1038/s41598-020-62821-2

23. Neishabouri, A., Nguyen, J., Samuelsson, J., Guthrie, T., Biggs, M.,
Wyatt, J., Cross, D., Karas, M., Migueles, J. H., Khan, S., & Guo, C. C.
(2022). Quantification of acceleration as activity counts in ActiGraph
wearable. Scientific reports, 12(1), 11958. https://doi.org/10.1038/s41598-
022-16003-x

24. Ellis, K., Kerr, J., Godbole, S., Staudenmayer, J., & Lanckriet, G.
(2016). Hip and Wrist Accelerometer Algorithms for Free-Living Behavior
Classification. Medicine and science in sports and exercise, 48(5), 933–940.
https://doi.org/10.1249/MSS.0000000000000840

25. Zheng, X., Reneman, M. F., Preuper, R. H. S., Otten, E., & Lamoth, C.
J. (2023). Relationship between physical activity and central sensitization
in chronic low back pain: Insights from machine learning. Computer
methods and programs in biomedicine, 232, 107432.
https://doi.org/10.1016/j.cmpb.2023.107432

26. Matthews, C. E., Keadle, S. K., Troiano, R. P., Kahle, L., Koster, A.,
Brychta, R., Van Domelen, D., Caserotti, P., Chen, K. Y., Harris, T. B., &
Berrigan, D. (2016). Accelerometer-measured dose-response for physical
activity, sedentary time, and mortality in US adults. The American journal
of clinical nutrition, 104(5), 1424–1432.
https://doi.org/10.3945/ajcn.116.135129

27. Chen, T.Q. and Guestrin, C. (2016) Xgboost: A Scalable Tree Boosting
System. Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, 13-17 August
2016, 785-794. https://doi.org/10.1145/2939672.2939785

28. Gertz, M., Große-Butenuth, K., Junge, W., Maassen-Francke, B.,

24

Renner, C., Sparenberg, H., & Krieter, J. (2020). Using the XGBoost
algorithm to classify neck and leg activity sensor data using on-farm health
recordings for locomotor-associated diseases. Computers and Electronics in
Agriculture, 173, 105404. https://doi.org/10.1016/j.compag.2020.105404

29. Haibo He, Yang Bai, Garcia, E. A., & Shutao Li. (2008). ADASYN:
Adaptive synthetic sampling approach for imbalanced learning. 2008 IEEE
International Joint Conference on Neural Networks (IEEE World Congress
on Computational Intelligence), 1322-1328.
https://doi.org/10.1109/IJCNN.2008.4633969

30. Lundberg, S. M., & Lee, S. (2017). A unified approach to interpreting
model predictions. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.1705.07874

25

Appendixes

Appendix 1 SHAP dependence plots

26

27

28

Appendix 2 Converting GT3X files to csv files

library(read.gt3x)

library(PhysicalActivity)

library(ggplot2)

library(lubridate)

library(dplyr)

Set the directory where the GT3X files are located

gt3x_dir <- "self-define directory path"

List all GT3X files in the directory

gt3x_files <- list.files(gt3x_dir, pattern = "\\.gt3x$", full.names = TRUE)

for (file in gt3x_files) {

 # Read the GT3X file

 data <- read.gt3x(file)

 raw_data <- as.data.frame(data)

 raw_data$time_index <- attributes(data)$time_index

 # Convert the data to CSV format

 csv_file <- sub("\\.gt3x$", ".csv", file)

 write.csv(raw_data, csv_file, row.names = FALSE)

 # Print message

 cat("Converted", file, "to CSV format:", csv_file, "\n")

}

29

Appendix 3 Accelerometer data preprocessing

import pandas as pd

import os

import glob

import matplotlib.pyplot as plt

import numpy as np

import re

from hees_2013 import hees_2013_calculate_non_wear_time

def missing_process(selected_df):

 # calculate the difference between current second and previous second

 ts = [ts_elem.to_pydatetime() for ts_elem in selected_df['time']]

 ts = [t.strftime('%Y-%m-%d %H:%M:%S') for t in ts]

 ts = pd.to_datetime(ts).unique()

 ts = pd.DataFrame(ts, columns=['time'])

 ts['diff'] = ts['time'].diff().dt.total_seconds()

 # if difference is not 1, record the missing second

 missing_sec = []

 for i in range(1, len(ts)):

 if ts['diff'][i] != 1:

 missing_sec.append(pd.date_range(start=ts['time'][i - 1],

end=ts['time'][i], freq='S')[1:-1])

 missing_sec = [item for sublist in missing_sec for item in sublist]

 missing_sec_list = [value for sublist in [[elem] * 30 for elem in

missing_sec] for value in sublist]

 timestamp_microseconds = [int(sec.timestamp() * 1e6) for sec in

missing_sec_list]

 # interpolate 30 sample datetimes in one second

 initial_value = [3.3333, 3.3334, 3.3333]

 interpolation_values = []

 cumulative_sum = 0

 missing_result = []

 for i in range(0, len(timestamp_microseconds)):

 if i % 30 == 0:

 interpolation_values.append(0)

 else:

30

 index = (i % 3)

 interpolation_values.append(initial_value[index - 1])

 for i in range(len(timestamp_microseconds)):

 cumulative_sum = interpolation_values[i] + cumulative_sum

 if i % 30 == 0:

 cumulative_sum = 0

 next_microsecond = timestamp_microseconds[i] + cumulative_sum * 10000

 missing_result.append(next_microsecond)

 missing_result = pd.to_datetime(missing_result, unit='us')

 missing_result = pd.DataFrame({'time': missing_result})

 missing_result['X'] = 0

 missing_result['Y'] = 0

 missing_result['Z'] = 0

 complete_sec = pd.concat([selected_df[['time', 'X', 'Y', 'Z']],

missing_result], ignore_index=True)

 complete_sec = complete_sec.sort_values(by='time').reset_index(drop=True)

 return complete_sec

Directory containing the CSV files

directory = 'self-define directory path'

Get a list of file paths for all CSV files in the directory

csv_files = glob.glob(os.path.join(f'{directory}', "*.csv"))

Read metadata

metadata = pd.read_excel('(self-define directory path)/metadata.xlsx')

metadata['tSTART'] = pd.to_timedelta(metadata['tSTART'])

metadata['tSTOP'] = pd.to_timedelta(metadata['tSTOP'])

Iterate over each CSV file

for file_path in csv_files:

 # Extract the name of the CSV file

 csv_name = os.path.splitext(os.path.basename(file_path))[0]

 num = re.findall(r'\d+', csv_name)

31

 if len(num) > 1:

 num = num[1]

 else:

 num = num[0]

 csv_name_new = f'ID{num}'

 # select start recording time and stop recording time based on the record

in metadata

 if csv_name_new in metadata['ID'].values:

 index = metadata[metadata['ID'] == csv_name_new].index[0]

 start_date = metadata['START'][index]

 start_time = metadata['tSTART'][index]

 stop_date = metadata['STOP'][index]

 stop_time = metadata['tSTOP'][index]

 start_date_time = start_date + start_time

 stop_date_time = stop_date + stop_time

 # Read the CSV file into a DataFrame

 df = pd.read_csv(file_path)

 df['time'] = pd.to_datetime(df['time'])

 selected_df = df[(df['time'] >= start_date_time) & (df['time'] <=

stop_date_time)].reset_index(drop=True)

 # checking missing seconds and filling to continuous time series

 complete_df = missing_process(selected_df)

 complete_np = complete_df[['X', 'Y', 'Z']].values

 # checking wear and non-wear time

 non_wear_detect = hees_2013_calculate_non_wear_time(data=complete_np,

hz=30)

 complete_df['wear_or_not'] = non_wear_detect

 start_index = None

 spans = []

 # Loop through the DataFrame to find consecutive spans of 1 in column

'wear_or_not'

 for i in range(len(complete_df)):

 if complete_df.loc[i, 'wear_or_not'] == 1:

 if start_index is None:

32

 start_index = i

 else:

 if start_index is not None:

 spans.append((start_index, i - 1))

 start_index = None

 print(i)

 # If the last span goes till the end of the DataFrame

 if start_index is not None:

 spans.append((start_index, len(complete_df) - 1))

 # select one day's time equal or larger than 8 hours

 data_time = [sublist[1] - sublist[0] for sublist in spans]

 valid_time = 30 * 60 * 60 * 8 # 8 hours data

 data_time = np.array(data_time)

 day_index = np.where(data_time >= valid_time)[0]

 # save results based on one day

 for i in day_index:

 start = spans[i][0]

 stop = spans[i][1]

 complete_df.loc[start:stop].to_csv(f'(self-define directory path)

/{csv_name_new}_{i}.csv', index=False)

 plt.plot(complete_df['X'][start:stop])

 plt.savefig(f'(self-define directory path)/{csv_name_new}_{i}.png')

 plt.close()

33

Appendix 4 Randomly selecting 2 day’s data

import numpy as np

import os

import glob

import matplotlib.pyplot as plt

from collections import Counter

import random

import csv

random.seed(0)

directory = 'self-define directory path'

Get a list of file paths for all CSV files in the directory

csv_files = glob.glob(os.path.join(self-define directory path, "*.csv"))

Extract the name of the CSV file

csv_name = []

for file_path in csv_files:

 csv_name.append(os.path.splitext(os.path.basename(file_path))[0])

count_csv = Counter([item.split('_')[0] for item in csv_name])

select individuals that have equal and more than 2 segments

selected_names = []

for name, count in count_csv.items():

 if count >= 2:

 selected_names.append(name)

selected_data = []

for name in selected_names:

 for item in csv_name:

 if item.split('_')[0] == name:

 selected_data.append(item)

 else:

 pass

randomly select 2 segments

grouped_data = {}

34

for item in selected_data:

 prefix = item.split('_')[0]

 if prefix not in grouped_data:

 grouped_data[prefix] = []

 grouped_data[prefix].append(item)

selected_samples = []

for prefix, items in grouped_data.items():

 selected_sample = random.sample(items, 2)

 selected_samples.append(selected_sample)

flattened_list = [element for sublist in selected_samples for element in

sublist]

save to file

csv_file = f'(self-define directory path)/(self-define name).csv'

with open(csv_file, 'w', newline='') as file:

 writer = csv.writer(file)

 writer.writerow(flattened_list)

print("CSV saves successful:", csv_file)

plot the number segments of each individuals

count_csv = sorted(count_csv.items(), key=lambda x: x[1], reverse=True)

names = [item[0] for item in count_csv]

counts = [item[1] for item in count_csv]

plt.figure(figsize=(22, 10))

plt.bar(names, counts, color="#4393C3")

plt.xlabel('Patients')

plt.ylabel('Day counts')

plt.xticks(ticks=np.arange(len(names)), labels=np.arange(len(names)))

ax = plt.gca()

ax.spines['top'].set_visible(False)

ax.spines['right'].set_visible(False)

plt.xlim(-1, len(names) - 0.5)

plt.savefig("(self-define name).png")

plt.show()

35

Appendix 5 Feature extraction

import numpy as np
import pandas as pd
import os
import glob
import re
import extract_ac
import matplotlib.pyplot as plt
import datetime
import numpy.fft as fft
import csv

directory = 'self-define directory path'

Get a list of file paths for all CSV files in the directory
csv_name = pd.read_csv('(self-define directory path)/(self-define name).csv')
csv_files = glob.glob(os.path.join('self-define directory path', "*.csv"))

initial time column name
time_column = 'time'

def get_counts_csv(
 raw,
 freq: int,
 epoch: int,
 fast: bool = True,
 verbose: bool = False,
 time_column: str = None,
):

 if time_column is not None:
 ts = pd.to_datetime(raw[time_column])
 time_freq = str(epoch) + "S"
 ts = ts - pd.to_timedelta(epoch / 2, unit='s')
 ts = ts.dt.round(time_freq)
 ts = ts.unique()
 ts = pd.DataFrame(ts, columns=[time_column])

 raw_clean = raw[["X", "Y", "Z"]]
 if verbose:
 print("Converting to array", flush=True)
 raw_clean = np.array(raw_clean)
 if verbose:
 print("Getting Counts", flush=True)
 counts = extract_ac.get_counts(raw_clean, freq=freq, epoch=epoch,
fast=fast)
 del raw_clean
 counts = pd.DataFrame(counts, columns=["Axis1", "Axis2", "Axis3"])
 counts["AC"] = (
 counts["Axis1"] ** 2 + counts["Axis2"] ** 2 + counts["Axis3"] ** 2
) ** 0.5

 ts = ts[0: counts.shape[0]]
 if time_column is not None:
 counts = pd.concat([ts, counts], axis=1)
 return counts

36

feature: %active
def active(counts):
 counts_minute = counts.groupby([counts[time_column].dt.date,
counts[time_column].dt.hour, counts[time_column].dt.minute]).sum()

 counts_minute_ts = counts_minute.index.values
 counts_minute_ts = [datetime.datetime.combine(i[0], datetime.time(i[1],
i[2])) for i in counts_minute_ts]
 counts_minute_ts = [t.strftime('%Y-%m-%d %H:%M') for t in
counts_minute_ts]
 counts_minute[time_column] = pd.to_datetime(counts_minute_ts)
 counts_minute = counts_minute.reset_index(drop=True)

 counts_minute['type'] = [1 if c < 100 else (2 if c < 760 else (3 if c <
2020 else 4)) for c in counts_minute['AC']]

 counts_minute['active'] = ['inactive' if t == 1 else 'active' for t in

counts_minute['type']]

 return counts_minute

def active_stat(count_min):

 active_size = count_min.groupby('active').size()

 active_percent = active_size['active'] / active_size.sum()

 return active_percent

feature: met

def met(counts):

 # The coefficient of variation of the counts per 10 s

 i = 0

 ac_10_cv = []

 ac_10 = []

 while i < len(counts):

 j = i + 10

 ac_10.append(counts['AC'][i:j].sum())

 ac_10_std = counts['AC'][i:j].std()

 ac_10_mean = counts['AC'][i:j].mean()

 if ac_10_mean == 0:

 ac_10_cv.append(0)

 else:

 ac_10_cv.append((ac_10_std / ac_10_mean) * 100)

 i = j

 ac_10_cv = pd.DataFrame({'ac10': ac_10, 'cv10': ac_10_cv})

 # The met of the counts per 10 s

 met_10 = []

37

 for c in range(len(ac_10_cv)):

 if ac_10_cv['ac10'][c] <= 8:

 met_10.append(1)

 elif ac_10_cv['ac10'][c] > 8 and ac_10_cv['cv10'][c] <= 10:

 met_10.append(2.294275 * (np.exp(0.00084679 *

ac_10_cv['ac10'][c])))

 elif ac_10_cv['ac10'][c] > 8 and ac_10_cv['cv10'][c] > 10:

 ln_ac10 = np.log(ac_10_cv['ac10'][c])

 met_10.append(0.749395 + (0.716431 * ln_ac10) - (0.179874 *

(ln_ac10 ** 2)) + (0.033173 * (ln_ac10 ** 3)))

 met_10 = pd.DataFrame(met_10)

 # The met of the counts per day

 met_1d = met_10.mean().values[0]

 return met_1d

feature: daily_vm

def daily_VM(counts):

 # daily VM

 counts_day_std = counts['AC'].std()

 counts_day_mean = counts['AC'].mean()

 vm = np.log(counts_day_std * counts_day_mean + 1)

 return vm

check if the all the labels in the dictionary. If not, adding the missed

label and set value to 0

def missing_key(dict):

 if len(dict) != 4:

 missing_keys = [key for key in [1, 2, 3, 4] if key not in dict.keys()]

 for i in range(len(missing_keys)):

 dict[missing_keys[i]] = 0

 return dict

feature:

The accumulated/max/standard deviation/mean/ratio time of each activity type

(sedentary, light, moderate-to-vigorous, and vigorous) bouts within one

segment.

def activity_bout_time(counts_minute):

 activity_arrays = {}

 # Iterate over the types

38

 for type_name, type_data in counts_minute.groupby('type'):

 # Sort the type_data by the time_column

 type_data =

type_data.sort_values(by=time_column).reset_index(drop=False)

 # Initialize lists to store continuous duration intervals

 bout_intervals = []

 current_interval = [type_data.iloc[0]['index']]

 # Iterate over the rows in the type_data

 for i in range(1, len(type_data)):

 # Check if the current row's time is continuous with the previous

row

 if (type_data.iloc[i][time_column] - type_data.iloc[i -

1][time_column]).total_seconds() <= 60:

 current_interval.append(type_data.iloc[i]['index'])

 else:

 bout_intervals.append(current_interval)

 current_interval = [type_data.iloc[i]['index']]

 # Append the last interval

 bout_intervals.append(current_interval)

 # Store the continuous intervals in the activity_arrays dictionary

 activity_arrays[type_name] = bout_intervals

 aggregate_minutes_each_time = {}

 max_minutes_each_time = {}

 mean_minutes_each_time = {}

 ratio_minutes_each_time = {}

 std_minutes_each_time = {}

 for type_name in activity_arrays:

 agg_bout_len = []

 for bout in activity_arrays[type_name]:

 bout_len = len(bout)

 agg_bout_len.append(bout_len)

 aggregate_minutes_each_time[type_name] = np.sum(agg_bout_len)

 max_minutes_each_time[type_name] = np.max(agg_bout_len)

 std_minutes_each_time[type_name] = np.std(agg_bout_len)

 mean_minutes_each_time[type_name] = np.sum(agg_bout_len) /

len(agg_bout_len)

39

 ratio_minutes_each_time[type_name] = np.sum(agg_bout_len) /

len(counts_minute)

 aggregate_minutes_each_time = missing_key(aggregate_minutes_each_time)

 max_minutes_each_time = missing_key(max_minutes_each_time)

 std_minutes_each_time = missing_key(std_minutes_each_time)

 mean_minutes_each_time = missing_key(mean_minutes_each_time)

 ratio_minutes_each_time = missing_key(ratio_minutes_each_time)

 return aggregate_minutes_each_time, max_minutes_each_time,

std_minutes_each_time, mean_minutes_each_time, ratio_minutes_each_time

The accumulated/max/standard deviation/mean/ratio count of each activity

type

(sedentary, light, moderate-to-vigorous, and vigorous) bouts within one

segment.

def activity_bout_count(counts_minute):

 activity_arrays = {}

 # Iterate over the types

 for type_name, type_data in counts_minute.groupby('type'):

 # Sort the type_data by the time_column

 type_data =

type_data.sort_values(by=time_column).reset_index(drop=False)

 # Initialize lists to store continuous duration intervals

 bout_intervals = []

 current_interval = [type_data.iloc[0]['AC']]

 # Check if the current row's time is continuous with the previous row

 # Calculate each bout counts

 for i in range(1, len(type_data)):

 if (type_data.iloc[i][time_column] - type_data.iloc[i -

1][time_column]).total_seconds() <= 60:

 current_interval.append(type_data.iloc[i]['AC'])

 else:

 bout_intervals.append(current_interval)

 current_interval = [type_data.iloc[i]['AC']]

 # Append the last interval

 bout_intervals.append(current_interval)

40

 # Store the continuous intervals in the activity_arrays dictionary

 activity_arrays[type_name] = bout_intervals

 aggregate_minutes_each_activity = {}

 max_minutes_each_activity = {}

 mean_minutes_each_activity = {}

 ratio_minutes_each_activity = {}

 std_minutes_each_activity = {}

 for type_name in activity_arrays:

 agg_bout_len = []

 mean_bout_len = []

 for bout in activity_arrays[type_name]:

 agg_bout_len.append(np.sum(bout))

 mean_bout_len.append(np.sum(bout)/len(bout))

 aggregate_minutes_each_activity[type_name] = np.sum(agg_bout_len)

 max_minutes_each_activity[type_name] = max(agg_bout_len)

 mean_minutes_each_activity[type_name] = np.mean(mean_bout_len)

 std_minutes_each_activity[type_name] = np.std(mean_bout_len)

 ratio_minutes_each_activity[type_name] = np.sum(agg_bout_len) /

counts_minute['AC'].sum()

 aggregate_minutes_each_activity =

missing_key(aggregate_minutes_each_activity)

 max_minutes_each_activity = missing_key(max_minutes_each_activity)

 mean_minutes_each_activity = missing_key(mean_minutes_each_activity)

 std_minutes_each_activity = missing_key(std_minutes_each_activity)

 ratio_minutes_each_activity = missing_key(ratio_minutes_each_activity)

 return aggregate_minutes_each_activity, max_minutes_each_activity,

mean_minutes_each_activity, std_minutes_each_activity,

ratio_minutes_each_activity

feature:

mean, standard deviation, coefficient of variation,

minimum, maximum, 25th, 50th and 75th percentile.

def basic_stats(counts):

 counts_minute_group = counts.groupby([counts[time_column].dt.date,

counts[time_column].dt.hour, counts[time_column].dt.minute])

 mean_counts_minutes = counts_minute_group.mean()

 std_counts_minutes = counts_minute_group.std()

41

 cv_counts_minutes = std_counts_minutes / mean_counts_minutes

 max_counts_minutes = counts_minute_group.max()

 min_counts_minutes = counts_minute_group.min()

 p25_counts_minutes = counts_minute_group.quantile(0.25)

 p50_counts_minutes = counts_minute_group.quantile(0.50)

 p75_counts_minutes = counts_minute_group.quantile(0.75)

 p90_counts_minutes = counts_minute_group.quantile(0.90)

 p95_counts_minutes = counts_minute_group.quantile(0.95)

 # Resample data to 5-minute intervals and calculate sum of acceleration

values

 agg_counts_minutes = counts_minute_group.sum()

 count = 0

 agg_counts_5minutes = []

 while (count < len(agg_counts_minutes)):

agg_counts_5minutes.append(agg_counts_minutes['AC'][count:count+5].max())

 count = count + 5

 max_counts_day_5min = np.mean(agg_counts_5minutes)

 mean_counts_day = mean_counts_minutes['AC'].mean()

 std_counts_day = std_counts_minutes['AC'].mean()

 cv_counts_day = cv_counts_minutes['AC'].mean()

 max_counts_day = max_counts_minutes['AC'].mean()

 min_counts_day = min_counts_minutes['AC'].mean()

 p25_counts_day = p25_counts_minutes['AC'].mean()

 p50_counts_day = p50_counts_minutes['AC'].mean()

 p75_counts_day = p75_counts_minutes['AC'].mean()

 p90_counts_day = p90_counts_minutes['AC'].mean()

 p95_counts_day = p95_counts_minutes['AC'].mean()

 return mean_counts_day, std_counts_day, cv_counts_day, max_counts_day,

min_counts_day, p25_counts_day, p50_counts_day, p75_counts_day,

p90_counts_day, p95_counts_day, max_counts_day_5min

feature:

Angular Features: roll, pitch, and yaw angles

roll = tan−1(y, z), pitch = tan−1(x, z) and yaw = tan−1(y, x).

42

The average (avgroll, avgpitch, avgyaw) and standard deviation (sdroll,

sdpitch, sdyaw) of these angles were computed over the window

def angular_features(raw_df):

 roll_counts_second = pd.DataFrame(np.arctan2(raw_df['Y'], raw_df['Z']))

 pitch_counts_second = pd.DataFrame(np.arctan2(raw_df['X'], raw_df['Z']))

 yaw_counts_second = pd.DataFrame(np.arctan2(raw_df['Y'], raw_df['X']))

 roll_counts_second[time_column] = pd.to_datetime(raw_df[time_column])

 pitch_counts_second[time_column] = pd.to_datetime(raw_df[time_column])

 yaw_counts_second[time_column] = pd.to_datetime(raw_df[time_column])

 roll_counts_minute =

roll_counts_second.groupby([roll_counts_second[time_column].dt.date,

roll_counts_second[time_column].dt.hour,

roll_counts_second[time_column].dt.minute])

 pitch_counts_minute =

pitch_counts_second.groupby([pitch_counts_second[time_column].dt.date,

pitch_counts_second[time_column].dt.hour,

pitch_counts_second[time_column].dt.minute])

 yaw_counts_minute =

yaw_counts_second.groupby([yaw_counts_second[time_column].dt.date,

yaw_counts_second[time_column].dt.hour,

yaw_counts_second[time_column].dt.minute])

 roll_counts_minute_mean = roll_counts_minute.mean()

 pitch_counts_minute_mean = pitch_counts_minute.mean()

 yaw_counts_minute_mean = yaw_counts_minute.mean()

 roll_counts_minute_std = roll_counts_minute.std()

 pitch_counts_minute_std = pitch_counts_minute_mean.std()

 yaw_counts_minute_std = yaw_counts_minute_mean.std()

 roll_counts_day_mean = roll_counts_minute_mean.mean().values[0]

 pitch_counts_day_mean = pitch_counts_minute_mean.mean().values[0]

 yaw_counts_day_mean = yaw_counts_minute_mean.mean().values[0]

 roll_counts_day_std = roll_counts_minute_std.mean().values[0]

 pitch_counts_day_std = pitch_counts_minute_std.mean()

 yaw_counts_day_std = yaw_counts_minute_std.mean()

 return roll_counts_day_mean, pitch_counts_day_mean, yaw_counts_day_mean,

43

roll_counts_day_std, pitch_counts_day_std, yaw_counts_day_std

feature: Fast Fourier Transform (FFT)

def fft_features(raw_df):

 sample_frequency = 30 # 30 hz

 window_size = 60 # 2 seconds

 # fft_frequency = fft.fftfreq(window_size, 1 / sample_frequency)

 half_hz = 1

 five_hz = 10

 amp = np.sqrt(raw_df['X']**2 + raw_df['Y']**2 + raw_df['Z']**2)

 power_spectral_list = []

 i = 0

 while i < len(amp)-60:

 j = i + 60

 fft_results = fft.fft(amp[i:j])[0:int(window_size/2)]

 power = np.abs(fft_results)**2

 power[0] = 0

 max_fre = fft.fftfreq(window_size, 1 /

sample_frequency)[np.argmax(power)]

 accumulated_power = np.sum(power[half_hz:five_hz])

 power_spectral_list.append(accumulated_power)

 i = j

 return np.mean(power_spectral_list)

Iterate over each CSV file to calculate features

final_feature_table = []

c = 0

for file_path in csv_files:

 # Extract the name of the CSV file

 csv_name = os.path.splitext(os.path.basename(file_path[0]))[0]

 # Read the CSV file into a DataFrame

 df = pd.read_csv(file_path[0])

 # get counts per second

 counts = get_counts_csv(raw=df, freq=30, epoch=1, verbose=False,

time_column=time_column)

 # feature: %active

 counts_minute = active(counts)

44

 percent_active_day = active_stat(counts_minute)

 # feature: MET

 met_day = met(counts)

 # feature: daily vm

 daily_vm = daily_VM(counts)

 # feature: daily A1

 daily_A1 = np.log(counts['Axis3'].std() + 1)

 # feature: VMI

 vmi = np.log(counts['Axis3'] + 1).std()

 # feature: agg, max, mean, std, ratio of bout time

 aggregate_minutes_each_time, max_minutes_each_time, std_minutes_each_time,

mean_minutes_each_time, ratio_minutes_each_time =

activity_bout_time(counts_minute)

 # feature: agg, max, mean, std, ratio of bout counts

 aggregate_minutes_each_activity, max_minutes_each_activity,

mean_minutes_each_activity, std_minutes_each_activity,

ratio_minutes_each_activity = activity_bout_count(counts_minute)

 # feature: basic stats

 mean_counts_day, std_counts_day, cv_counts_day, max_counts_day,

min_counts_day, p25_counts_day, p50_counts_day, p75_counts_day,

p90_counts_day, p95_counts_day, max_counts_day_5min = basic_stats(counts)

 # feature: angular

 roll_counts_day_mean, pitch_counts_day_mean, yaw_counts_day_mean,

roll_counts_day_std, pitch_counts_day_std, yaw_counts_day_std =

angular_features(df)

 # feature: Fast Fourier Transform (FFT)

 fft_feature_day = fft_features(df)

 # final feature table

 features = [csv_name, percent_active_day, met_day, daily_vm, daily_A1,

vmi,

 aggregate_minutes_each_time[1],

45

aggregate_minutes_each_time[2], aggregate_minutes_each_time[3],

aggregate_minutes_each_time[4],

 max_minutes_each_time[1], max_minutes_each_time[2],

max_minutes_each_time[3], max_minutes_each_time[4],

 std_minutes_each_time[1], std_minutes_each_time[2],

std_minutes_each_time[3], std_minutes_each_time[4],

 mean_minutes_each_time[1], mean_minutes_each_time[2],

mean_minutes_each_time[3], mean_minutes_each_time[4],

 ratio_minutes_each_time[1], ratio_minutes_each_time[2],

ratio_minutes_each_time[3], ratio_minutes_each_time[4],

 aggregate_minutes_each_activity[1],

aggregate_minutes_each_activity[2], aggregate_minutes_each_activity[3],

aggregate_minutes_each_activity[4],

 max_minutes_each_activity[1], max_minutes_each_activity[2],

max_minutes_each_activity[3], max_minutes_each_activity[4],

 std_minutes_each_activity[1], std_minutes_each_activity[2],

std_minutes_each_activity[3], std_minutes_each_activity[4],

 mean_minutes_each_activity[1], mean_minutes_each_activity[2],

mean_minutes_each_activity[3], mean_minutes_each_activity[4],

 ratio_minutes_each_activity[1],

ratio_minutes_each_activity[2], ratio_minutes_each_activity[3],

ratio_minutes_each_activity[4],

 mean_counts_day, std_counts_day, cv_counts_day,

max_counts_day, min_counts_day, p25_counts_day, p50_counts_day,

p75_counts_day, p90_counts_day, p95_counts_day, max_counts_day_5min,

 roll_counts_day_mean, pitch_counts_day_mean,

yaw_counts_day_mean, roll_counts_day_std, pitch_counts_day_std,

yaw_counts_day_std,

 fft_feature_day]

 final_feature_table.append(features)

 c += 1

 print(csv_name, c)

final_feature_table = np.array(final_feature_table)

save to file

csv_file = '(self-define directory path)/(self-define name).csv'

with open(csv_file, 'w', newline='') as file:

 writer = csv.writer(file, delimiter=',')

46

 for row in final_feature_table:

 writer.writerow(row)

print("CSV saves successfully:", csv_file)

47

Appendix 6 Averaging 2 day’s data

import numpy as np

import pandas as pd

read files and IDs

directory = '(self-define directory path)'

df = pd.read_csv('(self-define directory path)/(self-define name).csv',

header=None)

df = df.rename(columns={0: 'ID'})

df['ID_prefix'] = df['ID'].str.split('_').str[0]

import metadata to get labels

metadata = pd.read_excel('(self-define directory path)/metadata.xlsx')

metadata['label'] = [0 if v == 4 else 1 for v in metadata['ITEM8']]

id_names = np.unique([name.split('_')[0] for name in df['ID']])

id_labels = pd.DataFrame(columns=['ID', 'label'])

for id in id_names:

 id_labels = id_labels.append(metadata[metadata['ID'] == id][['ID',

'label']], ignore_index=True)

Iterate over each CSV file to calculate mean

df_avg = df.groupby('ID_prefix').mean().reset_index(drop=False)

df_avg_all = pd.merge(df_avg, metadata[['ID', 'label']], left_on='ID_prefix',

right_on='ID', how='inner')

df_avg_all = df_avg_all.drop(columns=['ID_prefix']).reset_index(drop=True)

df_avg_all.to_csv('(self-define directory path)/(self-define name).csv',

index=False)

Appendix 7 Modelling process

import pandas as pd

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import LeaveOneOut, StratifiedKFold

from sklearn.metrics import accuracy_score, precision_score, f1_score,

48

confusion_matrix, recall_score, auc, roc_curve

from sklearn.model_selection import RandomizedSearchCV

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import randint, uniform

from xgboost import XGBClassifier

from imblearn.over_sampling import ADASYN

import shap

import seaborn as sns

import matplotlib.ticker as mticker

balance classes

def resampling(X, y):

 sm = ADASYN(random_state=0)

 X_res, y_res = sm.fit_resample(X, y)

 return X_res, y_res

read data

directory = '(self-define directory path)'

df = pd.read_csv('(self-define directory path)/(self-define name).csv')

df['label'] = df['label'].replace({0: 1, 1: 0})

X = df.drop(['label', 'ID', '57', '58', '59', '60', '61', '62', '55', '54',

'56',

 '1', '2', '3', '4', '5'], axis=1)

y = df['label']

Normalization

scaler = StandardScaler()

X_sca = scaler.fit_transform(X)

setting hyperparameters for further tuning

param_distributions = {

 'n_estimators': randint(50, 3000),

 'max_depth': randint(1, 6),

 'eta': uniform(0.01, 0.3),

 'min_child_weight': randint(1, 10),

 'reg_alpha': uniform(0, 1),

49

}

Hyperparameter Tuning using RandomizedSearchCV with StratifiedKFold

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)

random_search = RandomizedSearchCV(XGBClassifier(scale_pos_weight=10,

random_state=0),

 param_distributions,

 n_iter=50,

 cv=cv,

 scoring='f1_micro',

 random_state=0,

 n_jobs=-1,

 return_train_score=True)

Final Model Training

x_, y_ = resampling(X_sca, y)

random_search.fit(x_, y_)

best_parameters = random_search.best_params_

clf = XGBClassifier(

 scale_pos_weight=10,

 n_estimators=best_parameters['n_estimators'],

 max_depth=best_parameters['max_depth'],

 eta=best_parameters['eta'],

 min_child_weight=best_parameters['min_child_weight'],

 reg_alpha=best_parameters['reg_alpha'],

 random_state=0

)

Final Evaluation using LOO

loo = LeaveOneOut()

y_true = []

y_pred = []

y_pred_prob = []

shap_values = []

for train_index, test_index in loo.split(X_sca):

 X_train, X_test = X_sca[train_index], X_sca[test_index]

 y_train, y_test = y[train_index], y[test_index]

 X_train, y_train = resampling(X_train, y_train)

50

 y_train = np.array(y_train)

 # training model

 clf.fit(X_train, y_train)

 # predict classes

 y_pred.append(clf.predict(X_test)[0])

 y_true.append(y_test.values[0])

 # predict probabilities

 y_pred_prob.append(clf.predict_proba(X_test)[:,1])

 # Create a SHAP explainer object

 explainer = shap.TreeExplainer(clf)

 # Calculate SHAP values for a sample of data

 shap_values.append(explainer.shap_values(X_test)[0])

Drawing the SHAP plots

shap_values = np.array(shap_values)

feature_names=['sedentary aggregate duration time', 'light aggregate duration

time', 'moderate-to-vigorous aggregate duration time', 'vigorous aggregate

duration time',

 'sedentary max duration time', 'light max duration time',

'moderate-to-vigorous max duration time', 'vigorous max duration time',

 'sedentary sd duration time', 'light sd duration time',

'moderate-to-vigorous sd duration time', 'vigorous sd duration time',

 'sedentary mean duration time', 'light mean duration time',

'moderate-to-vigorous mean duration time', 'vigorous mean duration time',

 'sedentary ratio duration time', 'light ratio duration time',

'moderate-to-vigorous ratio duration time', 'vigorous ratio duration time',

 'sedentary aggregate count', 'light aggregate count',

'moderate-to-vigorous aggregate count', 'vigorous aggregate count',

 'sedentary max count', 'light max count', 'moderate-to-vigorous

max count', 'vigorous max count',

 'sedentary sd count', 'light sd count', 'moderate-to-vigorous

sd count', 'vigorous sd count',

 'sedentary mean count', 'light mean count', 'moderate-to-

vigorous mean count', 'vigorous mean count',

 'sedentary ratio count', 'light ratio count', 'moderate-to-

vigorous ratio count', 'vigorous ratio count',

 'minute-based mean count', 'minute-based sd count', 'minute-

51

based cv count', 'minute-based max count', 'minute-based min count', 'minute-

based p25 count', 'minute-based p50 count', 'minute-based p75 count',

 'spectral']

X.columns = list(range(shap_values.shape[1]))

SHAP feature importance measured as the mean absolute Shapley values

shap_bar = shap.summary_plot(shap_values, X_sca,

plot_type="bar",

plot_size=[15, 15],

feature_names=feature_names,

max_display=20,

show=False)

Shap summary plot

shap_dot = shap.summary_plot(shap_values, X_sca,

plot_type="dot",

plot_size=[15, 15],

feature_names=feature_names,

max_display=20,

show=False)

plt.savefig('plot/shap_bar.png')

plt.savefig('plot/shap_dot.png')

SHAP dependence plots
for feature in X.columns:
 fig, ax = plt.subplots(figsize=(14, 8))
 shap_dependence = shap.dependence_plot(feature,
 shap_values,
 X,
 show=False,
 feature_names=feature_names,
 interaction_index=None,
 ax=ax)
 ax.set_xlabel(ax.get_xlabel(), fontsize=18, fontweight='bold')
 ax.set_ylabel(ax.get_ylabel(), fontsize=18, fontweight='bold')
 scatter = ax.collections[0]
 scatter.set_sizes([40]) # Set point size
 scatter.set_color('#4393C3') # Set point color
 ax.axhline(y=0,
 color='#D6604D',
 linestyle='--',
 label='SHAP value = 0')
 plt.legend(loc='best', prop={'size': 16, 'weight': 'bold'})
 y_min, y_max = ax.get_ylim()
 num_ticks = 10
 yticks = np.linspace(y_min, y_max, num_ticks)
 ax.set_yticks(yticks)
 ax.tick_params(axis='x', labelsize=16)
 ax.tick_params(axis='y', labelsize=16)
 for tick in ax.get_xticklabels():
 tick.set_fontweight('bold')
 for tick in ax.get_yticklabels():

52

 tick.set_fontweight('bold')

 plt.savefig(f'{feature_names[feature]}.png')
 # plt.show()

Calculating evaluation metrics
accuracy = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
cm = confusion_matrix(y_true, y_pred)
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
specificity = tn / (tn + fp)
print(f'acc:{accuracy:.4f}; precision:{precision:.4f}; recall:{recall:.4f}; specificity:{specificity:.4f};
f1:{f1:.4f}; cm: {cm}')

plot confusion matrix
cm_counts = ['{0:0.0f}'.format(value) for value in cm.flatten()]
row_sums = cm.sum(axis=1, keepdims=True)
cm_percentage = cm / row_sums * 100

Create labels for the heatmap annotations with percentage values
cm_percentage_new = np.array([["{:.2f}%".format(value) for value in row] for row in cm_percentage])
labels = [f'{v1}\n{v2}' for v1, v2 in zip(cm_counts, cm_percentage_new.flatten())]
labels = np.asarray(labels).reshape(2,2)
ax = sns.heatmap(cm_percentage, annot=labels, fmt='', cmap='Blues', cbar_kws={'format': '%.0f%%'})
cbar = ax.collections[0].colorbar
cbar.ax.yaxis.set_major_formatter(mticker.PercentFormatter(xmax=100))
ax.set(xlabel='Predicted label', ylabel='True label')
ax.set_xticklabels(['Problem walking', 'Normal walking'])
ax.set_yticklabels(['Problem walking', 'Normal walking'])
plt.savefig('(self-define directory path)/(self-define name).png')

Plot ROC curve
fpr, tpr, thresholds = roc_curve(y_true, y_pred_prob)
roc_auc = auc(fpr, tpr)
plt.plot(fpr, tpr, color='#F4A582', lw=2, label='ROC curve (AUC = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='#4393C3', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc='lower right')
plt.savefig('(self-define directory path)/(self-define name).png')

