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Abstract 

Amyotrophic lateral sclerosis (ALS) is a fatal motor neural disease with a 
highly variable presentation among patients. Diagnosing ALS typically 
takes over a year from the initial onset of symptoms, often delaying the use 
of assistive devices like wheelchairs and complicating disease management 
and treatment. Assessment inconsistencies, due to variations in ALS 
Functional Rating Scale-Revised (ALSFRS-R) versions, recall bias, and 
periodic assessments, underscore the need for objective methods to quantify 
disease progression. 

Recent studies have demonstrated that accelerometer-based physical 
activity monitoring might objectively evaluate disease severity and track 
progression in ALS patients. Digital biomarkers from accelerometers might 
enable earlier detection of health status changes, offering clinicians valuable 
insights into daily functioning to aid treatment. Machine learning research 
has increasingly linked physical activity with various diseases, offering 
valuable insights for ALS progression studies. 

Our study investigates the relationship between accelerometer-based 
physical activity features and walking abilities in ALS patients using 
explainable artificial intelligence techniques. We conducted a detailed 
analysis to understand how each feature distinguished between categories. 
Our findings indicate that digital biomarkers extracted from accelerometer 
data can effectively distinguish ALS patients' walking abilities at different 
scales using XGBoost. Particularly, bout-based features highlight the 
model's ability to capture both gross and fine motor functions. Patients with 
normal walking function exhibit higher levels of moderate-to-vigorous and 
vigorous activities, while those with impaired walking spend more time in 
light activities. 

In conclusion, accelerometry-derived features, analyzed through machine 
learning methods, can differentiate walking functions in ALS patients. 
However, further research is needed to optimize model performance, 
validate markers in practical applications, explore alternative thresholds, 
and refine labeling criteria to fully assess functional degradation. 
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1. Introduction 
 
 

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative 
disorder characterized by inexorable progression. It profoundly affects 
motor function and quality of life over time, ultimately leading to death by 
respiratory failure a few years after onset of first symptoms [1]. Despite its 
incurable nature, supportive and adjunctive therapies offer some relief from 
symptoms, potentially improving the disease course [2]. Effective 
utilization of these therapies necessitates healthcare professionals to possess 
a thorough understanding of patients’ disease progression. The ALS 
Functional Rating Scale-Revised (ALSFRS-R) typically plays an important 
role in monitoring and managing disease progression by evaluating various 
behavioral functions affected by ALS [3]. However, the languages and 
variations in ALSFRS-R versions, the divergent training programs from 
different certifying organizations and the limitation in detecting small 
changes in physical functioning can lead to inconsistencies in assessments, 
which compromise the quality and conclusiveness of the data collected [4, 
5, 6]. 

In particular, the broad use of digital platforms and mobile applications 
for self-assessment by patients makes it essential to establish objective 
methods for quantifying disease progression and collection of high-quality 
data via remote digital tools. Recent studies have shown that accelerometer-
based physical activity monitoring is an objective method for evaluating 
disease severity and measuring disease progression in ALS patients [7, 8]. 
The accelerometer-derived vertical movement index, has been validated as a 
highly discriminatory outcome measure for predicting future disease 
progression rates and strongly associated with overall survival time in 
patients with ALS [9]. Accelerometer-based outcomes also exhibit excellent 
correlations with King’s staging in ALS patients [7, 9, 10]. These findings 
highlight the potential of accelerometer-based outcomes to model individual 
disease courses and predict survival outcomes, similar to the functionality of 
ALSFRS-R scale [11, 12, 13]. 

Given the continuous and objective nature of accelerometer-based 
monitoring, it offers the advantage of enabling continuous home monitoring 
[14]. This capability allows for the detection and early treatment of changes 
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in health status, providing clinicians with valuable insights into patients’ day-
to-day functioning. Understanding patients’ body movement and physical 
activity levels throughout the day is critical, particularly in the context of 
neurodegenerative or chronic diseases [15]. 

In recent years, there has been a growing body of machine learning 
research focused on exploring the relationship between physical activity and 
various diseases, such as Parkinson’s disease, low back pain, and dementia 
[16, 17, 18]. In the context of ALS, Gupta et al. demonstrated that high 
response rates for at-home data collection can be achieved using supervised 
machine learning models [19]. Similarly, Vieira et al. showcased the 
feasibility of using digital outcomes alongside machine learning to predict 
self-assessed ALSFRS-R [20]. Both of them found limb movement did not 
correlate well with bulbar and respiratory function, but can have a better 
association in gross and fine motor function. 

Building on this foundation, our study aims to further analyze how digital 
biomarkers derived from accelerometry data relate to differences in walking 
ability among ALS patients, distinguishing between those with mild to 
serious changes and those with no changes during daily life. By leveraging 
explainable artificial intelligence techniques, we seek to evaluate the 
importance of these features and gain a deeper understanding of the key 
factors driving the classification outcomes. This comprehensive approach 
not only enhances our understanding of ALS severity in movement aspect, 
but also holds the potential to inform more timely, personalized and effective 
treatment strategies.
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2. Data 
 
 

2.1 Data description 

The patient cohort for this study was derived from two prospective cohort 
studies conducted at the University Medical Centre Utrecht (UMCU) in the 
Netherlands. Participants were recruited through the Treatment Research 
Initiative to Cure ALS (TRICALS) database and the UMCU biobank for motor 
neuron diseases. Patients were eligible for inclusion based on the following 
criteria: (a) Patients were required to be over the age of 18. (b) Patients were 
required to have a diagnosis of possible, probable (laboratory- supported), 
or definite amyotrophic lateral sclerosis (ALS), according to the revised El 
Escorial criteria [21]. (c) Patients diagnosed with progressive muscular 
atrophy (PMA) were also included. (e) All participants provided written 
informed consent. 

 

2.2 Data preparation 
 

2.2.1 Accelerometer data 

The accelerometer data utilized in this study were obtained from prior 
studies. Patients were provided with the ActiGraph GT9X Link (ActiGraph 
LLC, Pensacola, FL), a compact (0.5 × 3.5 × 1 cm), lightweight (14 g) tri-
axial accelerometer device. They return the device either by mailed or 
handed it over during visits. Patients were instructed to wear the ActiGraph 
on the right hip in the anterior axillary line using a belt clip during waking 
hours for a continuous period of 3 to 7 days. The device was set to collect data 
at a sampling rate of 30 Hz. 

The accelerometer data were distributed to students through 
SURFfilesender, a secure file-sharing service that stores files on servers in the 
Netherlands for up to 21 days. This service is recommended by UMC Utrecht 
and complies with European privacy legislation (GDPR). Students received the 
data in GT3X file format, comprising a total of 89 files from 89 patients. 
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2.2.2 Metadata 

An Excel spreadsheet provided supplementary data on patients’ starting and 
stopping wear times, as well as their walking scale. The “walking scale” 
was estimated using the item 8 of the ALSFRS-R, assessing walking 
functionality ranging from 0 (no movement in leg) to 4 (no problems) [3] 
and served as the classification label for this study. All data in the 
spreadsheet were anonymized to protect patient privacy. Importantly, 
students did not have access to any demographic information about the 
patients. 

 

2.3 Data processing 
 

2.3.1 Raw data segmentation 

The accelerometer data for each patient was segmented into 24-hour spans 
to represent daily activities. Due to the varying start and stop times of 
measurements for each patient, the initial step involved selecting valid time 
spans based on the wear times recorded in the metadata file. Next, any 
missing data within these spans were identified and filled with zeros, 
ensuring continuity and indicating periods of no movement. Subsequently, 
Hees, a raw-based non-wear algorithm [22], was employed to detect wear 
and non-wear times. Only days with at least 8 hours of wear time were 
considered and one continuous time span representing a day’s activity. Days 
with less than 8 hours of data were excluded from the analysis. Figure 1 
shows the different number of valid data days for each patient, illustrating 
the variability in the amount of data collected per patient. 

To ensure fair comparison between different patients, 2 days’ data from 
each patient were included in the analysis. Consequently, 3 patients who had 
fewer than 2-day data and 1 patient who did not have any days with more 
than 8 hours of wear time were excluded. For patients with more than 2 
days, 2 days were randomly sampled. Figure 2-a graphically illustrates the 
process of raw data segmentation.  
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Figure 1 The amount of data collected per patient 

 
Figure 2 The workflow of preprocessing and modelling 

 

2.3.2 Accelerometer-based features 
 

The raw accelerometer data underwent summarization into activity counts 
to quantify physical activity. Each sample within a 1-second epoch window 
was assigned an activity count based on the vector magnitude of the triaxial 
data. This activity count was calculated as the square root of the sum of the 

squares of the triaxial data, i.e., !𝑥# + 𝑦# + 𝑧# . To remove or limit 

accelerations likely attributed to non-human body movements, frequency 
filtering (using a 7th order IIR filter) and amplitude thresholds were applied 
[23]. 

Based on extensive literature review, 49 features were selected (Table 1) 
[18, 19, 24, 25]. Features such as aggregate, maximum, standard deviation, 
mean and ratio duration time of each activity bout in a day, were computed 
to reflect the average daily activity of a patient. To estimate bout time in 
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different activity levels, we used a cutoff method [26]. Sedentary activity 
is defined as less than 100 counts per minute. Light activity is fewer than 
760 counts per minute. Moderate-to-vigorous activity is below 2020 counts 
per minute, and vigorous activity is considered to be 2020 counts per minute 
or more. 

Features regarding each activity bout count were also calculated based 
on activity bouts, offering detailed insights into the characteristics of each 
bout type, including sedentary, light, moderate-to-vigorous, and vigorous 
activities, across the day. This analysis helps in understanding how activity 
is distributed across different intensity levels and the overall contribution of 
each activity type to the daily activity profile. Apart from bout-based 
features, minute-based features such as mean, standard deviation, 
coefficient of variation, minimum, maximum, and percentiles (25th, 50th, 
and 75th) offer a granular view of activity distribution on a minute-by-
minute basis throughout the day. Spectral analysis involved examining the 
frequency domain of the accelerometer data and extracting features 
representing average power within the 0.5 Hz to 5 Hz frequency range 
across multiple 2-second windows of accelerometer data using Fast Fourier 
Transform (FFT). This feature serves to quantify both the intensity and 
variability of physical movements captured by the accelerometer. 

To compare data between different patients fairly, two days from each 
patient were included in the analysis. Averaging the features over these two 
days for each patient resulted in a single observation per patient, which can 
maintain sample independence.
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Table 1 Feature description 

category Feature name Description and method 

amount of 

activity 

Aggregate 

duration time 
 

The accumulated time of each activity type (sedentary, light, 

moderate-to-vigorous, and vigorous) bouts over a single day. 

Max duration 

time 

The duration of the longest bout for each activity type 

(sedentary, light, moderate-to-vigorous, and vigorous) The 

accumulated time of each activity type (sedentary, light, 

moderate-to-vigorous, and vigorous) bouts over a single day. 

Standard 

deviation (sd) 

duration time 

The standard deviation of the time spent in consecutive bouts 

for each activity type (sedentary, light, moderate-to-vigorous, 

and vigorous) The accumulated time of each activity type 

(sedentary, light, moderate-to-vigorous, and vigorous) bouts 

over a single day. 

Mean duration 

time 

The average duration of consecutive bouts for each activity 

type (sedentary, light, moderate-to-vigorous, and vigorous) 

The accumulated time of each activity type (sedentary, light, 

moderate-to-vigorous, and vigorous) bouts over a single day. 

Ratio duration 

time 

 

The ratio of the accumulated time of each activity type 

(sedentary, light, moderate-to-vigorous, and vigorous) bouts 

to the length of one segment. 

Activity 

intensity 

Aggregate count 

The accumulated count of individual bouts for each activity 

type (sedentary, light, moderate-to-vigorous, and vigorous) 

recorded over a single day. 

Max count 

 

The highest count recorded for a single bout of each activity 

type (sedentary, light, moderate-to-vigorous, and vigorous) 

within a specified time segment. 

Standard 

deviation (sd) 

count 

The standard deviation of the counts for each bout of each 

activity type (sedentary, light, moderate-to-vigorous, and 

vigorous) recorded over a single day. 

Mean count 

The average value of the counts for each bout of activity type 

(sedentary, light, moderate-to-vigorous, and vigorous) 

recorded over a single day. 
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ratio count 

 

The ratio of the accumulated counts of each type of activity 

bout (sedentary, light, moderate-to-vigorous, and vigorous) to 

the total number of counts recorded within one segment. 

Minute-based 

mean count 

The average of activity counts recorded within each 1-minute 

window throughout a day. 

Minute-based 

standard 

deviation (sd) 

count 

The standard deviation of the activity counts recorded within 

a 1-minute window throughout a day. 

Minute-based 

coefficient of 

variation (cv) 

count 

The coefficient of variation of the activity counts recorded 

within a 1-minute window throughout a day. 

Minute-based 

max count 

The maximum of activity counts recorded within a 1-minute 

window throughout a day. 

Minute-based 

min count 

The minimum of activity counts recorded within a 1-minute 

window throughout a day. 

Minute-based 

p25 count 

The 25th percentile of activity counts recorded within a 1-

minute window throughout a day. 

Minute-based 

p50 count 

The 50th percentile of activity counts recorded within a 1-

minute window throughout a day. 

Minute-based 

p75 count 

The 75th percentile of activity counts recorded within a 1-

minute window throughout a day. 

Spectral Cumulative power in the 0.5-5 Hz frequency band 
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3. Method 
 
 

3.1 XGboost classifier 
 

XGBoost short for extreme gradient boosting, is a powerful algorithm for 
data classification and prediction [27]. It has gained popularity for its out- 
standing performance in various machine learning challenges and scientific 
projects [28]. It offers several advantageous properties: (i) It incorporates 
feature selection during training by assigning weights to individual features 
based on their importance in predicting the target variable. (ii) It is a flexible 
and robust non-parametric model capable of handling a variety of data types, 
including numerical and categorical features, making it suitable for diverse 
data distributions. (iii) As an ensemble learning method, it is more robust to 
noise compared to a single decision tree. (iv) It implements regularization 
techniques such as L1 and L2 regularization to prevent overfitting and 
improve generalization performance. 

The input of the model is <S, L>, where S represents the physical activity 
feature vectors of patient i and L represents the corresponding label. Each 
physical activity feature vector, Si, consists of k elements, where k is 49 
features in this case. The labels, L, denote whether a patient’s walking 
ability is dichotomized as "normal walking" or "problem walking" based on 
their ALSFRS-R scale, where a label of 1 indicates normal walking, and 0 
denotes problem walking. 

Before inputting the features into the model, they are normalized using 
z-score normalization. Due to the imbalance in feature measures (20 normal 
walking subjects and 65 subjects with problem walking), an adaptive 
synthetic oversampling approach (ADASYN) is applied to the training set 
to create a balanced dataset [29]. 

The dataset is initially divided using StratifiedKFold into 5 folds, each 
containing 25 samples. Within these folds, there are approximately 6 
samples classified as normal walking and 19 as problem walking. During 
cross-validation, one fold serves as the test set while the remaining four 
folds are combined to form the training set. 
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Following this partitioning, RandomizedSearchCV is employed to 
explore a range of hyperparameter values for XGBoost. This process 
involves randomly sampling combinations of hyperparameters and 
evaluating each combination using 5-fold cross-validation. The goal is to 
identify the optimal hyperparameter settings that maximize the model's 
performance, specifically aiming for high accuracy across all classes in a 
balanced manner. 

The approach incorporates Leave-One-Out (LOO) cross-validation to 
assess the final model's performance. In each iteration of LOO cross-
validation, one sample is designated as the test set, while the remaining 84 
samples are used to train the model. Within this training phase, ADASYN 
is applied to balance the dataset by generating synthetic samples for the 
minority class, enhancing the model's ability to learn from imbalanced data. 
Following training, predictions are generated using the model on the test 
sample, and these predicted values are compared against the actual labels to 
compute evaluation metrics.  

 

3.2 Evaluation metrics 
 

Accuracy, sensitivity, specificity, precision, F1-score, and AUC were 
calculated to evaluate the performance of the classification. In this study, 
normal walking was considered as the positive case and problem walking 
was the negative case. Correct predictions of normal walking and problem 
walking patients are called true positives (TP) and true negatives (TN), 
respectively. Incorrect classifications of problem walking patients as normal 
walking or of normal walking patients as problem walking, are called false 
positives (FP) and false negatives (FN) respectively. 

Accuracy was the proportion of all the correct classification results. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 (1) 

 

Sensitivity represents the proportion of positive cases that are correctly assigned 

(true positive rate). 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2) 
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Specificity refers to the rate of correctly predicted negative cases in all negative 

cases (true negative rate). 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (3) 

 

Precision is the ratio of the correctly predicted positive cases in all predicted 

positive cases. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (4) 

 

F1-score is the harmonic mean (average) of the precision and sensitivity. 

 

𝐹1 = 2	
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (5) 

 

The receiver operating characteristic (ROC) curve was calculated to 
evaluate the performance of XGboost. The Y-axis of this curve represents the 
true positive rate (sensitivity) and the X-axis means false positive rate 
(specificity). The overall classification performance of XGboost was evaluated 
by the area under the ROC curve (AUC). AUC ranges in value from 0 to 1, 
where 0.5 indicates random guessing, and 1 indicates perfect performance.  

 
3.3 Feature importance 

To evaluate the influence of each feature on the classifier’s prediction, the 
SHapley Additive exPlanations (SHAP) approach will be employed. This 
method, derived from coalitional game theory, provides insights into how 
to fairly distribute the "payout" among the features [30]. By computing 
Shapley values, features in non-linear models like XGboost can be ranked 
based on their importance. These values quantify feature importance and 
reveal the direction of their impact on the model prediction. SHAP fosters 
understanding by providing precise explanations for each dataset 
observation, reinforcing confidence when key variables align with human 
domain knowledge and reasonable expectations. 
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4. Results 
 

85 patients with 49 accelerometer features were selected as the input for the 
classifiers. Figure 3 displays the confusion matrix, from which the accuracy, 
sensitivity, specificity, precision and the F1-score were calculated to 
evaluate the model’s performance metrics. 

Using XGBoost, the two groups were classified with a high accuracy of 
76.47%. The specificity score reveals that 76.92% of the samples are 
correctly classified as problem walking patients, while 23.08% are 
identified as normal walking patients. The sensitivity score shows that 75% 
of the samples are correctly assigned to the normal walking group, with 25% 
misclassified as problem walking. These scores indicate that the model is 
effective at identifying true positive and true negative cases but also makes 
some false positive and false negative errors. The F1-score, which considers 
both false positives and false negatives by computing their harmonic mean, 
was 60%. This suggests that the model has a moderate ability to correctly 
identify positive cases and balance false positives and false negatives, 
although the precision is relatively low. In figure 4, the AUC indicates that 
the model has a 75% chance of correctly distinguishing between problem 
walking and normal walking patients. 

 
Figure 3 Confusion matrix 
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Figure 4 The receiver operating characteristic (ROC) curve is shown in 

orange. The area under the curve (AUC) represents the overall 

performance of the classifier. The blue dashed line represents a random 

classifier, where the proportion of correctly classified normal walking 

samples is equal to the proportion of incorrectly classified problem 

walking samples. 

In Figure 5, a density scatter plot of SHAP values for each feature 
highlights their impact on the model output. Features are sorted by the sum 
of the SHAP value magnitudes across all samples. The plot reveals that the 
moderate-to-vigorous standard deviation (sd) count is the most impactful 
feature for the model’s prediction. Small values of the moderate-to-vigorous 
sd count (marked with blue dots) contribute to negative model predictions 
(more likely to be classified as problem walking), whereas higher values in 
this feature (marked with red dots) contribute to positive model predictions 
(more likely to be classified as normal walking). This indicates that patients 
with changes in walking ability tend to have small variations in moderate-
to-vigorous activity counts. Furthermore, the pattern in the mean duration 
time of the light activity reveals that higher values in this feature (indicating 
more time spent in light activity) lead to a higher likelihood of patients being 
classified as having problem walking. 

The distribution of SHAP values for the moderate-to-vigorous sd count 
is also informative. Many low values have very high negative SHAP values, 
indicating that small variations in moderate-to-vigorous activity strongly 
contribute to negative predictions, suggesting a higher likelihood of 
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problem walking classification. In contrast, many high values are centered 
around a small range of low positive SHAP values, indicating that normal 
walking individuals with variations in moderate-to-vigorous activity have a 
less pronounced impact on predictions. 

 
Figure 5 SHAP summary plot 

Appendix 1 further illustrates the impact of each feature on the model’s 
predictions and identifies critical threshold values distinguishing problem 
walking subjects from normal walking subjects. SHAP values above the y=0 
lead to predictions of normal walking. For moderate-to-vigorous activity, 
all features except for ratio duration time and mean count show that higher 
values increase the likelihood of predicting normal walking. Similarly, for 
vigorous activity, all features except for sd count indicate that higher values 
increase the probability of predicting normal walking. In contrast, for 
sedentary activity, higher values in all features except for max count and 
max duration time increase the likelihood of predicting problem walking. 
Also, for light activity and minute-based features, higher values in these 
features decrease the likelihood of predicting normal walking, thereby 
increasing the probability of predicting problem walking. 
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5. Discussion and Conclusion 
 

This research highlights the utility of objective physical performance 
monitoring using accelerometry in the ALS population. By understanding 
the importance of these features, we can provide an objective method to 
quantify disease progression and comprehend the interactions among these 
features. This approach has the potential to significantly enhance our ability 
to monitor and manage ALS. 

Based on bout-based, minute-based, and spectral outcomes, using 
XGBoost, the two groups were classified with relatively high accuracy, 
sensitivity, and specificity. The precision is 50%, indicating that the model 
produces 50% false positive predictions and 50% true positive predictions. 
However, the F1-score of 60% suggests that the model has a moderate 
ability to correctly identify positive cases and balance false positives and 
false negatives. The AUC of 75% is consistent with the AUC achieved by 
the multi-layer perceptron models in Vieira et al.'s approach to predicting 
ALSFRS-R scores for walking function. This result confirms that digital 
biomarkers extracted from accelerometer data can effectively distinguish 
ALS patients' walking abilities at different scales using XGBoost. 
Additionally, as item 8 (walking) is a gross motor function, this finding 
reveals that accelerometer data can capture the relationship between 
physical activity and gross motor functions. This aligns with previous 
research by Gupta et al. and Vieira et al., further validating the use of 
accelerometers in assessing gross motor functions in ALS patients. 

After verifying the feasibility of the model, we conducted a more 
detailed analysis of how each feature distinguished between categories, 
which is less commonly addressed in other methods. It was observed that 
higher values in moderate-to-vigorous and vigorous activity are more likely 
to predict patients without problem walking compared to those with problem 
walking. Interestingly, features such as moderate-to-vigorous mean count, 
moderate-to-vigorous ratio duration time, and vigorous sd count show 
higher values for patients with problem walking. This means normal 
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walking patients may often have a large number of short bouts of activity, 
which can result in the total activity count being spread across many bouts, 
leading to a lower mean count. In contrast, problem walking patients may 
have fewer but more intense bouts of activity, resulting in higher mean 
counts. For instance, patients with no ambulatory capacity, not even with 
assistance, still exhibit some periods of moderate-to-vigorous and vigorous 
activity every day. This implies that even those with severe walking 
difficulties engage in some level of intense activity. However, whether this 
movement is autonomous and related to walking remains to be verified by 
collecting more data. 

Conversely, problem walking patients exhibit high values in light 
activity and minute-based features. On the one hand, higher light mean 
count and light mean duration time indicate that problem walking patients 
spend more time engaged in light activity. These light activities may include 
tasks such as dressing, hygiene, turning in bed, or adjusting bed clothes, 
which can be considered fine-motor functions. Thus, bout-based features 
applied in the machine learning model are able to effectively predict not 
only the functional assessment of skills that require strength but also the fine 
motor functions at different walking stages of ALS patients. This 
comprehensive approach highlights the model's ability to capture a wide 
range of motor functions, providing valuable insights into the patient's 
overall motor abilities. 

On the other hand, higher values in standard deviation, coefficient of 
variation, and max count suggest more variability in their activity levels. 
This variability is also evident in sedentary behavior. Patients with problem 
walking do not engage in long and highly active rest periods (indicated by 
small max counts and max duration times), and their resting patterns are 
highly variable (indicated by large standard deviations in duration time and 
count). This variability suggests that problem walking patients have many 
rest periods of differing lengths and activity levels. This observation is 
consistent with the label’s partition, where problem walking functionality 
ranges widely from 0 (no movement in the leg) to 3 (minor ambulatory 
difficulties). 

The variability in sedentary, light and short period activities among 
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patients with a problem walking scale from 0 to 3 means the model can 
detect these differences effectively. In other words, the model is able to 
identify subtle variations in motor activity that correlate with the severity of 
walking difficulties. Clinically, this variability can be crucial for tailoring 
individualized treatment plans and monitoring disease progression.  

Several limitations of this study need to be addressed. Firstly, the 
samples with abnormal walking patterns include three different severity 
levels. This indicates a wide variability among patients, especially those 
with no ambulatory capacity. Tracking disease progression in this subgroup 
of patients could potentially be enhanced by measuring the severity of other 
functionalities, such as using voice samples. Secondly, although this study 
provides important insights into the potential of accelerometer-derived 
features, the limited sample size prevents a thorough understanding due to 
the heterogeneity in patients. The variation in individual patient 
characteristics and disease progression stages may not be fully captured in 
a small sample, leading to less generalizable results. Future research with 
larger, more diverse cohorts is necessary to validate these findings and 
enhance the robustness of the model, ensuring it can accommodate the wide 
range of motor function variations present in the ALS population. Lastly, it 
should be noted that this study established sedentary, light, moderate-to-
vigorous, and vigorous physical activity thresholds based on Matthews’s 
theory [26]. Future research could explore alternative methods for threshold 
selection to optimize feature extraction and improve model performance. 

In conclusion, using machine learning methods, features derived from 
accelerometry can to some extent differentiate the walking function of ALS 
patients. We observed that patients with normal walking function exhibit 
higher levels of moderate-to-vigorous and vigorous activities, whereas those 
with impaired walking spend more time in light physical activities. 
However, to optimize the model's performance and ensure the validity of 
these markers in practical applications, further research is needed. This 
includes exploring alternative thresholds, utilizing additional datasets, 
addressing dataset size limitations, and refining labeling criteria to 
comprehensively assess functional degradation. 
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Appendix 2 Converting GT3X files to csv files 
 

library(read.gt3x) 

library(PhysicalActivity) 

library(ggplot2) 

library(lubridate) 

library(dplyr) 

 

# Set the directory where the GT3X files are located 

gt3x_dir <- "self-define directory path" 

 

# List all GT3X files in the directory 

gt3x_files <- list.files(gt3x_dir, pattern = "\\.gt3x$", full.names = TRUE) 

 

for (file in gt3x_files) { 

  # Read the GT3X file 

  data <- read.gt3x(file) 

  raw_data <- as.data.frame(data) 

  raw_data$time_index <- attributes(data)$time_index 

  # Convert the data to CSV format 

  csv_file <- sub("\\.gt3x$", ".csv", file)  

  write.csv(raw_data, csv_file, row.names = FALSE) 

  # Print message 

  cat("Converted", file, "to CSV format:", csv_file, "\n") 

} 
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Appendix 3 Accelerometer data preprocessing 
 

import pandas as pd 

import os 

import glob 

import matplotlib.pyplot as plt 

import numpy as np 

import re 

from hees_2013 import hees_2013_calculate_non_wear_time 

 

def missing_process(selected_df): 

    # calculate the difference between current second and previous second 

    ts = [ts_elem.to_pydatetime() for ts_elem in selected_df['time']] 

    ts = [t.strftime('%Y-%m-%d %H:%M:%S') for t in ts] 

    ts = pd.to_datetime(ts).unique() 

    ts = pd.DataFrame(ts, columns=['time']) 

    ts['diff'] = ts['time'].diff().dt.total_seconds() 

 

    # if difference is not 1, record the missing second 

    missing_sec = [] 

    for i in range(1, len(ts)): 

        if ts['diff'][i] != 1: 

            missing_sec.append(pd.date_range(start=ts['time'][i - 1], 

end=ts['time'][i], freq='S')[1:-1]) 

    missing_sec = [item for sublist in missing_sec for item in sublist] 

 

    missing_sec_list = [value for sublist in [[elem] * 30 for elem in 

missing_sec] for value in sublist] 

    timestamp_microseconds = [int(sec.timestamp() * 1e6) for sec in 

missing_sec_list] 

 

    # interpolate 30 sample datetimes in one second 

    initial_value = [3.3333, 3.3334, 3.3333] 

    interpolation_values = [] 

    cumulative_sum = 0 

    missing_result = [] 

 

    for i in range(0, len(timestamp_microseconds)): 

        if i % 30 == 0: 

            interpolation_values.append(0) 

        else: 
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            index = (i % 3) 

            interpolation_values.append(initial_value[index - 1]) 

 

    for i in range(len(timestamp_microseconds)): 

        cumulative_sum = interpolation_values[i] + cumulative_sum 

        if i % 30 == 0: 

            cumulative_sum = 0 

        next_microsecond = timestamp_microseconds[i] + cumulative_sum * 10000 

        missing_result.append(next_microsecond) 

 

    missing_result = pd.to_datetime(missing_result, unit='us') 

    missing_result = pd.DataFrame({'time': missing_result}) 

    missing_result['X'] = 0 

    missing_result['Y'] = 0 

    missing_result['Z'] = 0 

 

    complete_sec = pd.concat([selected_df[['time', 'X', 'Y', 'Z']], 

missing_result], ignore_index=True) 

    complete_sec = complete_sec.sort_values(by='time').reset_index(drop=True) 

 

    return complete_sec 

 

 

# Directory containing the CSV files 

directory = 'self-define directory path' 

 

 

# Get a list of file paths for all CSV files in the directory 

csv_files = glob.glob(os.path.join(f'{directory}', "*.csv")) 

 

# Read metadata 

metadata = pd.read_excel('(self-define directory path)/metadata.xlsx') 

metadata['tSTART'] = pd.to_timedelta(metadata['tSTART']) 

metadata['tSTOP'] = pd.to_timedelta(metadata['tSTOP']) 

 

 

# Iterate over each CSV file 

for file_path in csv_files: 

    # Extract the name of the CSV file 

    csv_name = os.path.splitext(os.path.basename(file_path))[0] 

    num = re.findall(r'\d+', csv_name) 
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    if len(num) > 1: 

        num = num[1] 

    else: 

        num = num[0] 

    csv_name_new = f'ID{num}' 

 

    # select start recording time and stop recording time based on the record 

in metadata 

    if csv_name_new in metadata['ID'].values: 

        index = metadata[metadata['ID'] == csv_name_new].index[0] 

        start_date = metadata['START'][index] 

        start_time = metadata['tSTART'][index] 

        stop_date = metadata['STOP'][index] 

        stop_time = metadata['tSTOP'][index] 

 

    start_date_time = start_date + start_time 

    stop_date_time = stop_date + stop_time 

 

 

    # Read the CSV file into a DataFrame 

    df = pd.read_csv(file_path) 

    df['time'] = pd.to_datetime(df['time']) 

    selected_df = df[(df['time'] >= start_date_time) & (df['time'] <= 

stop_date_time)].reset_index(drop=True) 

  

    # checking missing seconds and filling to continuous time series 

    complete_df = missing_process(selected_df) 

    complete_np = complete_df[['X', 'Y', 'Z']].values 

 

    # checking wear and non-wear time 

    non_wear_detect = hees_2013_calculate_non_wear_time(data=complete_np, 

hz=30) 

    complete_df['wear_or_not'] = non_wear_detect 

    start_index = None 

    spans = [] 

 

    # Loop through the DataFrame to find consecutive spans of 1 in column 

'wear_or_not' 

    for i in range(len(complete_df)): 

        if complete_df.loc[i, 'wear_or_not'] == 1: 

            if start_index is None: 
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                start_index = i 

        else: 

            if start_index is not None: 

                spans.append((start_index, i - 1)) 

                start_index = None 

        print(i) 

 

    # If the last span goes till the end of the DataFrame 

    if start_index is not None: 

        spans.append((start_index, len(complete_df) - 1)) 

 

    # select one day's time equal or larger than 8 hours 

    data_time = [sublist[1] - sublist[0] for sublist in spans] 

    valid_time = 30 * 60 * 60 * 8  # 8 hours data 

    data_time = np.array(data_time) 

    day_index = np.where(data_time >= valid_time)[0] 

 

 

    # save results based on one day 

    for i in day_index: 

        start = spans[i][0] 

        stop = spans[i][1] 

        complete_df.loc[start:stop].to_csv(f'(self-define directory path) 

/{csv_name_new}_{i}.csv', index=False) 

 

        plt.plot(complete_df['X'][start:stop]) 

        plt.savefig(f'(self-define directory path)/{csv_name_new}_{i}.png') 

        plt.close() 
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Appendix 4 Randomly selecting 2 day’s data 
 

import numpy as np 

import os 

import glob 

import matplotlib.pyplot as plt 

from collections import Counter 

import random 

import csv 

 

random.seed(0) 

 

directory = 'self-define directory path' 

 

# Get a list of file paths for all CSV files in the directory 

csv_files = glob.glob(os.path.join(self-define directory path, "*.csv")) 

 

# Extract the name of the CSV file 

csv_name = [] 

for file_path in csv_files: 

    csv_name.append(os.path.splitext(os.path.basename(file_path))[0]) 

 

count_csv = Counter([item.split('_')[0] for item in csv_name]) 

 

# select individuals that have equal and more than 2 segments 

selected_names = [] 

for name, count in count_csv.items(): 

    if count >= 2: 

        selected_names.append(name) 

 

selected_data = [] 

for name in selected_names: 

    for item in csv_name: 

        if item.split('_')[0] == name: 

            selected_data.append(item) 

        else: 

            pass 

 

# randomly select 2 segments 

grouped_data = {} 
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for item in selected_data: 

    prefix = item.split('_')[0] 

    if prefix not in grouped_data: 

        grouped_data[prefix] = [] 

    grouped_data[prefix].append(item) 

 

selected_samples = [] 

for prefix, items in grouped_data.items(): 

    selected_sample = random.sample(items, 2) 

    selected_samples.append(selected_sample) 

flattened_list = [element for sublist in selected_samples for element in 

sublist] 

 

# save to file 

csv_file = f'(self-define directory path)/(self-define name).csv' 

 

with open(csv_file, 'w', newline='') as file: 

 

    writer = csv.writer(file) 

    writer.writerow(flattened_list) 

 

print("CSV saves successful:", csv_file) 

 

# plot the number segments of each individuals 

count_csv = sorted(count_csv.items(), key=lambda x: x[1], reverse=True) 

 

names = [item[0] for item in count_csv] 

counts = [item[1] for item in count_csv] 

 

plt.figure(figsize=(22, 10)) 

plt.bar(names, counts, color="#4393C3") 

plt.xlabel('Patients') 

plt.ylabel('Day counts') 

plt.xticks(ticks=np.arange(len(names)), labels=np.arange(len(names))) 

ax = plt.gca() 

ax.spines['top'].set_visible(False) 

ax.spines['right'].set_visible(False) 

plt.xlim(-1, len(names) - 0.5) 

plt.savefig("(self-define name).png") 

plt.show() 

 



35  

 
Appendix 5 Feature extraction 
 

import numpy as np 
import pandas as pd 
import os 
import glob 
import re 
import extract_ac 
import matplotlib.pyplot as plt 
import datetime 
import numpy.fft as fft 
import csv 
 
directory = 'self-define directory path' 
 
# Get a list of file paths for all CSV files in the directory 
csv_name = pd.read_csv('(self-define directory path)/(self-define name).csv') 
csv_files = glob.glob(os.path.join('self-define directory path', "*.csv")) 
 
# initial time column name 
time_column = 'time' 
 
def get_counts_csv( 
    raw, 
    freq: int, 
    epoch: int, 
    fast: bool = True, 
    verbose: bool = False, 
    time_column: str = None, 
): 
 
    if time_column is not None: 
        ts = pd.to_datetime(raw[time_column]) 
        time_freq = str(epoch) + "S" 
        ts = ts - pd.to_timedelta(epoch / 2, unit='s') 
        ts = ts.dt.round(time_freq) 
        ts = ts.unique() 
        ts = pd.DataFrame(ts, columns=[time_column]) 
 
    raw_clean = raw[["X", "Y", "Z"]] 
    if verbose: 
        print("Converting to array", flush=True) 
    raw_clean = np.array(raw_clean) 
    if verbose: 
        print("Getting Counts", flush=True) 
    counts = extract_ac.get_counts(raw_clean, freq=freq, epoch=epoch, 
fast=fast) 
    del raw_clean 
    counts = pd.DataFrame(counts, columns=["Axis1", "Axis2", "Axis3"]) 
    counts["AC"] = ( 
        counts["Axis1"] ** 2 + counts["Axis2"] ** 2 + counts["Axis3"] ** 2 
    ) ** 0.5 
 
    ts = ts[0: counts.shape[0]] 
    if time_column is not None: 
        counts = pd.concat([ts, counts], axis=1) 
    return counts 
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# feature: %active 
def active(counts): 
    counts_minute = counts.groupby([counts[time_column].dt.date, 
counts[time_column].dt.hour, counts[time_column].dt.minute]).sum() 
 
    counts_minute_ts = counts_minute.index.values 
    counts_minute_ts = [datetime.datetime.combine(i[0], datetime.time(i[1], 
i[2])) for i in counts_minute_ts] 
    counts_minute_ts = [t.strftime('%Y-%m-%d %H:%M') for t in 
counts_minute_ts] 
    counts_minute[time_column] = pd.to_datetime(counts_minute_ts) 
    counts_minute = counts_minute.reset_index(drop=True) 
 
    counts_minute['type'] = [1 if c < 100 else (2 if c < 760 else (3 if c < 
2020 else 4)) for c in counts_minute['AC']] 
 

    counts_minute['active'] = ['inactive' if t == 1 else 'active' for t in 

counts_minute['type']] 

 

    return counts_minute 

def active_stat(count_min): 

    active_size = count_min.groupby('active').size() 

    active_percent = active_size['active'] / active_size.sum() 

    return active_percent 

 

# feature: met 

def met(counts): 

    # The coefficient of variation of the counts per 10 s 

    i = 0 

    ac_10_cv = [] 

    ac_10 = [] 

    while i < len(counts): 

        j = i + 10 

        ac_10.append(counts['AC'][i:j].sum()) 

        ac_10_std = counts['AC'][i:j].std() 

        ac_10_mean = counts['AC'][i:j].mean() 

        if ac_10_mean == 0: 

            ac_10_cv.append(0) 

        else: 

            ac_10_cv.append((ac_10_std / ac_10_mean) * 100) 

        i = j 

    ac_10_cv = pd.DataFrame({'ac10': ac_10, 'cv10': ac_10_cv}) 

 

    # The met of the counts per 10 s 

    met_10 = [] 
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    for c in range(len(ac_10_cv)): 

        if ac_10_cv['ac10'][c] <= 8: 

            met_10.append(1) 

        elif ac_10_cv['ac10'][c] > 8 and ac_10_cv['cv10'][c] <= 10: 

            met_10.append(2.294275 * (np.exp(0.00084679 * 

ac_10_cv['ac10'][c]))) 

        elif ac_10_cv['ac10'][c] > 8 and ac_10_cv['cv10'][c] > 10: 

            ln_ac10 = np.log(ac_10_cv['ac10'][c]) 

            met_10.append(0.749395 + (0.716431 * ln_ac10) - (0.179874 * 

(ln_ac10 ** 2)) + (0.033173 * (ln_ac10 ** 3))) 

 

    met_10 = pd.DataFrame(met_10) 

 

    # The met of the counts per day 

    met_1d = met_10.mean().values[0] 

    return met_1d 

 

# feature: daily_vm 

def daily_VM(counts): 

    # daily VM 

    counts_day_std = counts['AC'].std() 

    counts_day_mean = counts['AC'].mean() 

    vm = np.log(counts_day_std * counts_day_mean + 1) 

    return vm 

 

# check if the all the labels in the dictionary. If not, adding the missed 

label and set value to 0 

def missing_key(dict): 

    if len(dict) != 4: 

        missing_keys = [key for key in [1, 2, 3, 4] if key not in dict.keys()] 

        for i in range(len(missing_keys)): 

            dict[missing_keys[i]] = 0 

    return dict 

 

# feature: 

# The accumulated/max/standard deviation/mean/ratio time of each activity type 

# (sedentary, light, moderate-to-vigorous, and vigorous) bouts within one 

segment. 

def activity_bout_time(counts_minute): 

    activity_arrays = {} 

    # Iterate over the types 
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    for type_name, type_data in counts_minute.groupby('type'): 

        # Sort the type_data by the time_column 

        type_data = 

type_data.sort_values(by=time_column).reset_index(drop=False) 

 

        # Initialize lists to store continuous duration intervals 

        bout_intervals = [] 

        current_interval = [type_data.iloc[0]['index']] 

 

        # Iterate over the rows in the type_data 

        for i in range(1, len(type_data)): 

            # Check if the current row's time is continuous with the previous 

row 

            if (type_data.iloc[i][time_column] - type_data.iloc[i - 

1][time_column]).total_seconds() <= 60: 

                current_interval.append(type_data.iloc[i]['index']) 

            else: 

                bout_intervals.append(current_interval) 

                current_interval = [type_data.iloc[i]['index']] 

 

        # Append the last interval 

        bout_intervals.append(current_interval) 

 

        # Store the continuous intervals in the activity_arrays dictionary 

        activity_arrays[type_name] = bout_intervals 

 

    aggregate_minutes_each_time = {} 

    max_minutes_each_time = {} 

    mean_minutes_each_time = {} 

    ratio_minutes_each_time = {} 

    std_minutes_each_time = {} 

    for type_name in activity_arrays: 

        agg_bout_len = [] 

        for bout in activity_arrays[type_name]: 

            bout_len = len(bout) 

            agg_bout_len.append(bout_len) 

        aggregate_minutes_each_time[type_name] = np.sum(agg_bout_len) 

        max_minutes_each_time[type_name] = np.max(agg_bout_len) 

        std_minutes_each_time[type_name] = np.std(agg_bout_len) 

        mean_minutes_each_time[type_name] = np.sum(agg_bout_len) / 

len(agg_bout_len) 
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        ratio_minutes_each_time[type_name] = np.sum(agg_bout_len) / 

len(counts_minute) 

 

    aggregate_minutes_each_time = missing_key(aggregate_minutes_each_time) 

    max_minutes_each_time = missing_key(max_minutes_each_time) 

    std_minutes_each_time = missing_key(std_minutes_each_time) 

    mean_minutes_each_time = missing_key(mean_minutes_each_time) 

    ratio_minutes_each_time = missing_key(ratio_minutes_each_time) 

 

    return aggregate_minutes_each_time, max_minutes_each_time, 

std_minutes_each_time, mean_minutes_each_time, ratio_minutes_each_time 

 

# The accumulated/max/standard deviation/mean/ratio count of each activity 

type 

# (sedentary, light, moderate-to-vigorous, and vigorous) bouts within one 

segment. 

def activity_bout_count(counts_minute): 

    activity_arrays = {} 

    # Iterate over the types 

    for type_name, type_data in counts_minute.groupby('type'): 

        # Sort the type_data by the time_column 

        type_data = 

type_data.sort_values(by=time_column).reset_index(drop=False) 

 

        # Initialize lists to store continuous duration intervals 

        bout_intervals = [] 

        current_interval = [type_data.iloc[0]['AC']] 

 

        # Check if the current row's time is continuous with the previous row 

        # Calculate each bout counts 

        for i in range(1, len(type_data)): 

            if (type_data.iloc[i][time_column] - type_data.iloc[i - 

1][time_column]).total_seconds() <= 60: 

                current_interval.append(type_data.iloc[i]['AC']) 

            else: 

                bout_intervals.append(current_interval) 

                current_interval = [type_data.iloc[i]['AC']] 

 

        # Append the last interval 

        bout_intervals.append(current_interval) 
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        # Store the continuous intervals in the activity_arrays dictionary 

        activity_arrays[type_name] = bout_intervals 

 

    aggregate_minutes_each_activity = {} 

    max_minutes_each_activity = {} 

    mean_minutes_each_activity = {} 

    ratio_minutes_each_activity = {} 

    std_minutes_each_activity = {} 

    for type_name in activity_arrays: 

        agg_bout_len = [] 

        mean_bout_len = [] 

        for bout in activity_arrays[type_name]: 

            agg_bout_len.append(np.sum(bout)) 

            mean_bout_len.append(np.sum(bout)/len(bout)) 

        aggregate_minutes_each_activity[type_name] = np.sum(agg_bout_len) 

        max_minutes_each_activity[type_name] = max(agg_bout_len) 

        mean_minutes_each_activity[type_name] = np.mean(mean_bout_len) 

        std_minutes_each_activity[type_name] = np.std(mean_bout_len) 

        ratio_minutes_each_activity[type_name] = np.sum(agg_bout_len) / 

counts_minute['AC'].sum() 

 

    aggregate_minutes_each_activity = 

missing_key(aggregate_minutes_each_activity) 

    max_minutes_each_activity = missing_key(max_minutes_each_activity) 

    mean_minutes_each_activity = missing_key(mean_minutes_each_activity) 

    std_minutes_each_activity = missing_key(std_minutes_each_activity) 

    ratio_minutes_each_activity = missing_key(ratio_minutes_each_activity) 

    return aggregate_minutes_each_activity, max_minutes_each_activity, 

mean_minutes_each_activity, std_minutes_each_activity, 

ratio_minutes_each_activity 

 

 

# feature: 

# mean, standard deviation, coefficient of variation, 

# minimum, maximum, 25th, 50th and 75th percentile. 

def basic_stats(counts): 

    counts_minute_group = counts.groupby([counts[time_column].dt.date, 

counts[time_column].dt.hour, counts[time_column].dt.minute]) 

 

    mean_counts_minutes = counts_minute_group.mean() 

    std_counts_minutes = counts_minute_group.std() 
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    cv_counts_minutes = std_counts_minutes / mean_counts_minutes 

    max_counts_minutes = counts_minute_group.max() 

    min_counts_minutes = counts_minute_group.min() 

    p25_counts_minutes = counts_minute_group.quantile(0.25) 

    p50_counts_minutes = counts_minute_group.quantile(0.50) 

    p75_counts_minutes = counts_minute_group.quantile(0.75) 

    p90_counts_minutes = counts_minute_group.quantile(0.90) 

    p95_counts_minutes = counts_minute_group.quantile(0.95) 

 

 

    # Resample data to 5-minute intervals and calculate sum of acceleration 

values 

    agg_counts_minutes = counts_minute_group.sum() 

    count = 0 

    agg_counts_5minutes = [] 

    while (count < len(agg_counts_minutes)): 

        

agg_counts_5minutes.append(agg_counts_minutes['AC'][count:count+5].max()) 

        count = count + 5 

 

    max_counts_day_5min = np.mean(agg_counts_5minutes) 

 

    mean_counts_day = mean_counts_minutes['AC'].mean() 

    std_counts_day = std_counts_minutes['AC'].mean() 

    cv_counts_day = cv_counts_minutes['AC'].mean() 

    max_counts_day = max_counts_minutes['AC'].mean() 

    min_counts_day = min_counts_minutes['AC'].mean() 

    p25_counts_day = p25_counts_minutes['AC'].mean() 

    p50_counts_day = p50_counts_minutes['AC'].mean() 

    p75_counts_day = p75_counts_minutes['AC'].mean() 

    p90_counts_day = p90_counts_minutes['AC'].mean() 

    p95_counts_day = p95_counts_minutes['AC'].mean() 

 

    return mean_counts_day, std_counts_day, cv_counts_day, max_counts_day, 

min_counts_day, p25_counts_day, p50_counts_day, p75_counts_day, 

p90_counts_day, p95_counts_day, max_counts_day_5min 

 

 

# feature: 

# Angular Features: roll, pitch, and yaw angles 

# roll = tan−1(y, z), pitch = tan−1(x, z) and yaw = tan−1(y, x). 
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# The average (avgroll, avgpitch, avgyaw) and standard deviation (sdroll, 

sdpitch, sdyaw) of these angles were computed over the window 

def angular_features(raw_df): 

    roll_counts_second = pd.DataFrame(np.arctan2(raw_df['Y'], raw_df['Z'])) 

    pitch_counts_second = pd.DataFrame(np.arctan2(raw_df['X'], raw_df['Z'])) 

    yaw_counts_second = pd.DataFrame(np.arctan2(raw_df['Y'], raw_df['X'])) 

 

    roll_counts_second[time_column] = pd.to_datetime(raw_df[time_column]) 

    pitch_counts_second[time_column] = pd.to_datetime(raw_df[time_column]) 

    yaw_counts_second[time_column] = pd.to_datetime(raw_df[time_column]) 

 

    roll_counts_minute = 

roll_counts_second.groupby([roll_counts_second[time_column].dt.date, 

roll_counts_second[time_column].dt.hour, 

roll_counts_second[time_column].dt.minute]) 

    pitch_counts_minute = 

pitch_counts_second.groupby([pitch_counts_second[time_column].dt.date, 

pitch_counts_second[time_column].dt.hour, 

pitch_counts_second[time_column].dt.minute]) 

    yaw_counts_minute = 

yaw_counts_second.groupby([yaw_counts_second[time_column].dt.date, 

yaw_counts_second[time_column].dt.hour, 

yaw_counts_second[time_column].dt.minute]) 

 

    roll_counts_minute_mean = roll_counts_minute.mean() 

    pitch_counts_minute_mean = pitch_counts_minute.mean() 

    yaw_counts_minute_mean = yaw_counts_minute.mean() 

 

    roll_counts_minute_std = roll_counts_minute.std() 

    pitch_counts_minute_std = pitch_counts_minute_mean.std() 

    yaw_counts_minute_std = yaw_counts_minute_mean.std() 

 

    roll_counts_day_mean = roll_counts_minute_mean.mean().values[0] 

    pitch_counts_day_mean = pitch_counts_minute_mean.mean().values[0] 

    yaw_counts_day_mean = yaw_counts_minute_mean.mean().values[0] 

 

    roll_counts_day_std = roll_counts_minute_std.mean().values[0] 

    pitch_counts_day_std = pitch_counts_minute_std.mean() 

    yaw_counts_day_std = yaw_counts_minute_std.mean() 

 

    return roll_counts_day_mean, pitch_counts_day_mean, yaw_counts_day_mean, 
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roll_counts_day_std, pitch_counts_day_std, yaw_counts_day_std 

 

# feature: Fast Fourier Transform (FFT) 

def fft_features(raw_df): 

    sample_frequency = 30  # 30 hz 

    window_size = 60  # 2 seconds 

    # fft_frequency = fft.fftfreq(window_size, 1 / sample_frequency) 

    half_hz = 1 

    five_hz = 10 

 

    amp = np.sqrt(raw_df['X']**2 + raw_df['Y']**2 + raw_df['Z']**2) 

    power_spectral_list = [] 

    i = 0 

    while i < len(amp)-60: 

        j = i + 60 

        fft_results = fft.fft(amp[i:j])[0:int(window_size/2)] 

        power = np.abs(fft_results)**2 

        power[0] = 0 

        max_fre = fft.fftfreq(window_size, 1 / 

sample_frequency)[np.argmax(power)] 

        accumulated_power = np.sum(power[half_hz:five_hz]) 

        power_spectral_list.append(accumulated_power) 

        i = j 

    return np.mean(power_spectral_list) 

 

# Iterate over each CSV file to calculate features 

final_feature_table = [] 

c = 0 

for file_path in csv_files: 

    # Extract the name of the CSV file 

    csv_name = os.path.splitext(os.path.basename(file_path[0]))[0] 

 

    # Read the CSV file into a DataFrame 

    df = pd.read_csv(file_path[0]) 

 

    # get counts per second 

    counts = get_counts_csv(raw=df, freq=30, epoch=1, verbose=False, 

time_column=time_column) 

 

    # feature: %active 

    counts_minute = active(counts) 
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    percent_active_day = active_stat(counts_minute) 

 

    # feature: MET 

    met_day = met(counts) 

 

    # feature: daily vm 

    daily_vm = daily_VM(counts) 

 

    # feature: daily A1 

    daily_A1 = np.log(counts['Axis3'].std() + 1) 

 

    # feature: VMI 

    vmi = np.log(counts['Axis3'] + 1).std() 

 

    # feature: agg, max, mean, std, ratio of bout time 

    aggregate_minutes_each_time, max_minutes_each_time, std_minutes_each_time, 

mean_minutes_each_time, ratio_minutes_each_time = 

activity_bout_time(counts_minute) 

 

    # feature: agg, max, mean, std, ratio of bout counts 

    aggregate_minutes_each_activity, max_minutes_each_activity, 

mean_minutes_each_activity, std_minutes_each_activity, 

ratio_minutes_each_activity = activity_bout_count(counts_minute) 

 

    # feature: basic stats 

    mean_counts_day, std_counts_day, cv_counts_day, max_counts_day, 

min_counts_day, p25_counts_day, p50_counts_day, p75_counts_day, 

p90_counts_day, p95_counts_day, max_counts_day_5min = basic_stats(counts) 

 

    # feature: angular 

    roll_counts_day_mean, pitch_counts_day_mean, yaw_counts_day_mean, 

roll_counts_day_std, pitch_counts_day_std, yaw_counts_day_std = 

angular_features(df) 

 

    # feature: Fast Fourier Transform (FFT) 

    fft_feature_day = fft_features(df) 

 

    # final feature table 

    features = [csv_name, percent_active_day, met_day, daily_vm, daily_A1, 

vmi, 

                aggregate_minutes_each_time[1], 
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aggregate_minutes_each_time[2], aggregate_minutes_each_time[3], 

aggregate_minutes_each_time[4], 

                max_minutes_each_time[1], max_minutes_each_time[2], 

max_minutes_each_time[3], max_minutes_each_time[4], 

                std_minutes_each_time[1], std_minutes_each_time[2], 

std_minutes_each_time[3], std_minutes_each_time[4], 

                mean_minutes_each_time[1], mean_minutes_each_time[2], 

mean_minutes_each_time[3], mean_minutes_each_time[4], 

                ratio_minutes_each_time[1], ratio_minutes_each_time[2], 

ratio_minutes_each_time[3], ratio_minutes_each_time[4], 

                aggregate_minutes_each_activity[1], 

aggregate_minutes_each_activity[2], aggregate_minutes_each_activity[3], 

aggregate_minutes_each_activity[4], 

                max_minutes_each_activity[1], max_minutes_each_activity[2], 

max_minutes_each_activity[3], max_minutes_each_activity[4], 

                std_minutes_each_activity[1], std_minutes_each_activity[2], 

std_minutes_each_activity[3], std_minutes_each_activity[4], 

                mean_minutes_each_activity[1], mean_minutes_each_activity[2], 

mean_minutes_each_activity[3], mean_minutes_each_activity[4], 

                ratio_minutes_each_activity[1], 

ratio_minutes_each_activity[2], ratio_minutes_each_activity[3], 

ratio_minutes_each_activity[4], 

                mean_counts_day, std_counts_day, cv_counts_day, 

max_counts_day, min_counts_day, p25_counts_day, p50_counts_day, 

p75_counts_day, p90_counts_day, p95_counts_day, max_counts_day_5min, 

                roll_counts_day_mean, pitch_counts_day_mean, 

yaw_counts_day_mean, roll_counts_day_std, pitch_counts_day_std, 

yaw_counts_day_std, 

                fft_feature_day] 

    final_feature_table.append(features) 

 

    c += 1 

    print(csv_name, c) 

 

final_feature_table = np.array(final_feature_table) 

 

# save to file 

csv_file = '(self-define directory path)/(self-define name).csv' 

 

with open(csv_file, 'w', newline='') as file: 

    writer = csv.writer(file, delimiter=',') 
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    for row in final_feature_table: 

        writer.writerow(row) 

 

print("CSV saves successfully:", csv_file) 
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Appendix 6 Averaging 2 day’s data 
 

import numpy as np 

import pandas as pd 

 

# read files and IDs 

directory = '(self-define directory path)' 

df = pd.read_csv('(self-define directory path)/(self-define name).csv', 

header=None) 

df = df.rename(columns={0: 'ID'}) 

df['ID_prefix'] = df['ID'].str.split('_').str[0] 

 

# import metadata to get labels 

metadata = pd.read_excel('(self-define directory path)/metadata.xlsx') 

metadata['label'] = [0 if v == 4 else 1 for v in metadata['ITEM8']] 

 

id_names = np.unique([name.split('_')[0] for name in df['ID']]) 

id_labels = pd.DataFrame(columns=['ID', 'label']) 

for id in id_names: 

    id_labels = id_labels.append(metadata[metadata['ID'] == id][['ID', 

'label']], ignore_index=True) 

 

 

# Iterate over each CSV file to calculate mean 

df_avg = df.groupby('ID_prefix').mean().reset_index(drop=False) 

df_avg_all = pd.merge(df_avg, metadata[['ID', 'label']], left_on='ID_prefix', 

right_on='ID', how='inner') 

df_avg_all = df_avg_all.drop(columns=['ID_prefix']).reset_index(drop=True) 

df_avg_all.to_csv('(self-define directory path)/(self-define name).csv', 

index=False) 

 

 

 
 
Appendix 7 Modelling process 
 

import pandas as pd 

from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import LeaveOneOut, StratifiedKFold 

from sklearn.metrics import accuracy_score, precision_score, f1_score, 
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confusion_matrix, recall_score, auc, roc_curve 

from sklearn.model_selection import RandomizedSearchCV 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.stats import randint, uniform 

from xgboost import XGBClassifier 

from imblearn.over_sampling import ADASYN 

import shap 

import seaborn as sns 

import matplotlib.ticker as mticker 

 

 

 

# balance classes 

def resampling(X, y): 

    sm = ADASYN(random_state=0) 

    X_res, y_res = sm.fit_resample(X, y) 

    return X_res, y_res 

 

# read data 

directory = '(self-define directory path)' 

df = pd.read_csv('(self-define directory path)/(self-define name).csv') 

df['label'] = df['label'].replace({0: 1, 1: 0}) 

X = df.drop(['label', 'ID', '57', '58', '59', '60', '61', '62', '55', '54', 

'56', 

             '1', '2', '3', '4', '5'], axis=1) 

y = df['label'] 

 

 

# Normalization 

scaler = StandardScaler() 

X_sca = scaler.fit_transform(X) 

 

 

# setting hyperparameters for further tuning 

param_distributions = { 

    'n_estimators': randint(50, 3000), 

    'max_depth': randint(1, 6), 

    'eta': uniform(0.01, 0.3), 

    'min_child_weight': randint(1, 10), 

    'reg_alpha': uniform(0, 1), 
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} 

 

# Hyperparameter Tuning using RandomizedSearchCV with StratifiedKFold 

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=0) 

random_search = RandomizedSearchCV(XGBClassifier(scale_pos_weight=10, 

random_state=0), 

                                   param_distributions, 

                                   n_iter=50, 

                                   cv=cv, 

                                   scoring='f1_micro', 

                                   random_state=0, 

                                   n_jobs=-1, 

                                   return_train_score=True) 

 

# Final Model Training 

x_, y_ = resampling(X_sca, y) 

random_search.fit(x_, y_) 

best_parameters = random_search.best_params_ 

 

clf = XGBClassifier( 

    scale_pos_weight=10, 

    n_estimators=best_parameters['n_estimators'], 

    max_depth=best_parameters['max_depth'], 

    eta=best_parameters['eta'], 

    min_child_weight=best_parameters['min_child_weight'], 

    reg_alpha=best_parameters['reg_alpha'], 

    random_state=0 

) 

 

 

# Final Evaluation using LOO 

loo = LeaveOneOut() 

y_true = [] 

y_pred = [] 

y_pred_prob = [] 

shap_values = [] 

for train_index, test_index in loo.split(X_sca): 

    X_train, X_test = X_sca[train_index], X_sca[test_index] 

    y_train, y_test = y[train_index], y[test_index] 

 

    X_train, y_train = resampling(X_train, y_train) 
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    y_train = np.array(y_train) 

    # training model 

    clf.fit(X_train, y_train) 

 

    # predict classes 

    y_pred.append(clf.predict(X_test)[0]) 

    y_true.append(y_test.values[0]) 

    # predict probabilities 

    y_pred_prob.append(clf.predict_proba(X_test)[:,1]) 

 

    # Create a SHAP explainer object 

    explainer = shap.TreeExplainer(clf) 

    # Calculate SHAP values for a sample of data 

    shap_values.append(explainer.shap_values(X_test)[0]) 

 

 

 

# Drawing the SHAP plots 

shap_values = np.array(shap_values) 

feature_names=['sedentary aggregate duration time', 'light aggregate duration 

time', 'moderate-to-vigorous aggregate duration time', 'vigorous aggregate 

duration time', 

               'sedentary max duration time', 'light max duration time', 

'moderate-to-vigorous max duration time', 'vigorous max duration time', 

               'sedentary sd duration time', 'light sd duration time', 

'moderate-to-vigorous sd duration time', 'vigorous sd duration time', 

               'sedentary mean duration time', 'light mean duration time', 

'moderate-to-vigorous mean duration time', 'vigorous mean duration time', 

               'sedentary ratio duration time', 'light ratio duration time', 

'moderate-to-vigorous ratio duration time', 'vigorous ratio duration time', 

               'sedentary aggregate count', 'light aggregate count', 

'moderate-to-vigorous aggregate count', 'vigorous aggregate count', 

               'sedentary max count', 'light max count', 'moderate-to-vigorous 

max count', 'vigorous max count', 

               'sedentary sd count', 'light sd count', 'moderate-to-vigorous 

sd count', 'vigorous sd count', 

               'sedentary mean count', 'light mean count', 'moderate-to-

vigorous mean count', 'vigorous mean count', 

               'sedentary ratio count', 'light ratio count', 'moderate-to-

vigorous ratio count', 'vigorous ratio count', 

               'minute-based mean count', 'minute-based sd count', 'minute-
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based cv count', 'minute-based max count', 'minute-based min count', 'minute-

based p25 count', 'minute-based p50 count', 'minute-based p75 count', 

               'spectral'] 

X.columns = list(range(shap_values.shape[1])) 

# SHAP feature importance measured as the mean absolute Shapley values 

# shap_bar = shap.summary_plot(shap_values, X_sca, 

#                   plot_type="bar", 

#                   plot_size=[15, 15], 

#                   feature_names=feature_names, 

#                   max_display=20, 

#                   show=False) 

# # Shap summary plot 

# shap_dot = shap.summary_plot(shap_values, X_sca, 

#                   plot_type="dot", 

#                   plot_size=[15, 15], 

#                   feature_names=feature_names, 

#                   max_display=20, 

#                   show=False) 

# plt.savefig('plot/shap_bar.png') 

# plt.savefig('plot/shap_dot.png') 

 

# SHAP dependence plots 
for feature in X.columns: 
    fig, ax = plt.subplots(figsize=(14, 8)) 
    shap_dependence = shap.dependence_plot(feature, 
                         shap_values, 
                         X, 
                         show=False, 
                         feature_names=feature_names, 
                         interaction_index=None, 
                         ax=ax) 
    ax.set_xlabel(ax.get_xlabel(), fontsize=18, fontweight='bold') 
    ax.set_ylabel(ax.get_ylabel(), fontsize=18, fontweight='bold') 
    scatter = ax.collections[0] 
    scatter.set_sizes([40])  # Set point size 
    scatter.set_color('#4393C3')  # Set point color 
    ax.axhline(y=0, 
               color='#D6604D', 
               linestyle='--', 
               label='SHAP value = 0') 
    plt.legend(loc='best', prop={'size': 16, 'weight': 'bold'}) 
    y_min, y_max = ax.get_ylim() 
    num_ticks = 10 
    yticks = np.linspace(y_min, y_max, num_ticks) 
    ax.set_yticks(yticks) 
    ax.tick_params(axis='x', labelsize=16) 
    ax.tick_params(axis='y', labelsize=16) 
    for tick in ax.get_xticklabels(): 
        tick.set_fontweight('bold') 
    for tick in ax.get_yticklabels(): 
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        tick.set_fontweight('bold') 
 
    plt.savefig(f'{feature_names[feature]}.png') 
    # plt.show() 
 
# Calculating evaluation metrics 
accuracy = accuracy_score(y_true, y_pred) 
precision = precision_score(y_true, y_pred) 
recall = recall_score(y_true, y_pred) 
f1 = f1_score(y_true, y_pred) 
cm = confusion_matrix(y_true, y_pred) 
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel() 
specificity = tn / (tn + fp) 
print(f'acc:{accuracy:.4f}; precision:{precision:.4f}; recall:{recall:.4f}; specificity:{specificity:.4f}; 
f1:{f1:.4f}; cm: {cm}') 
 
 
# plot confusion matrix 
cm_counts = ['{0:0.0f}'.format(value) for value in cm.flatten()] 
row_sums = cm.sum(axis=1, keepdims=True) 
cm_percentage = cm / row_sums * 100 
 
# Create labels for the heatmap annotations with percentage values 
cm_percentage_new = np.array([["{:.2f}%".format(value) for value in row] for row in cm_percentage]) 
labels = [f'{v1}\n{v2}' for v1, v2 in zip(cm_counts, cm_percentage_new.flatten())] 
labels = np.asarray(labels).reshape(2,2) 
ax = sns.heatmap(cm_percentage, annot=labels, fmt='', cmap='Blues', cbar_kws={'format': '%.0f%%'}) 
cbar = ax.collections[0].colorbar 
cbar.ax.yaxis.set_major_formatter(mticker.PercentFormatter(xmax=100)) 
ax.set(xlabel='Predicted label', ylabel='True label') 
ax.set_xticklabels(['Problem walking', 'Normal walking']) 
ax.set_yticklabels(['Problem walking', 'Normal walking']) 
# plt.savefig('(self-define directory path)/(self-define name).png') 
 
# Plot ROC curve 
fpr, tpr, thresholds = roc_curve(y_true, y_pred_prob) 
roc_auc = auc(fpr, tpr) 
plt.plot(fpr, tpr, color='#F4A582', lw=2, label='ROC curve (AUC = %0.2f)' % roc_auc) 
plt.plot([0, 1], [0, 1], color='#4393C3', lw=2, linestyle='--') 
plt.xlim([0.0, 1.0]) 
plt.ylim([0.0, 1.05]) 
plt.xlabel('False Positive Rate') 
plt.ylabel('True Positive Rate') 
plt.legend(loc='lower right') 
# plt.savefig('(self-define directory path)/(self-define name).png') 
 
 


