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ABSTRACT

Predicting mortality for ICU patients while ensuring fairness across different demographic
groups is a multifactorial issue. This study aims to address this challenge by leveraging the
Medical Information Mart for Intensive Care (MIMIC-IV) dataset to develop robust machine
learning models. The study compares neural network and logistic regression models using both a
comprehensive set of predictors and a subset of the most significant predictors. Bias mitigation
techniques, including reweighting and threshold modification, were applied to address disparities
in model performance. Results indicate that while overall accuracy was high, significant biases
were observed, particularly against Asian patients and Medicaid insurance holders. The logistic
regression model trained on a balanced dataset and adjusted through threshold modification
emerged as the optimal choice, achieving minimal inequalities across subgroups while
maintaining high accuracy and F1 scores for mortality prediction. These findings underscore the
need for continuous evaluation and advanced bias mitigation strategies to ensure equitable
healthcare outcomes.

Key Words:Mortality, clinical data, imbalanced dataset, fairness, bias, sensitive attributes, vital
signs, laboratory measurements, significant predictors, feature selection, neural network model,
logistic regression model, SMOTE, equalized odds, accuracy, F1 score, accuracy, reweighting,
threshold modification, ROC curve, calibration plot.
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INTRODUCTION

The Intensive Care Unit (ICU) specializes in treating severely ill patients with essential
life-saving interventions such as continuous monitoring of the patient's condition, advanced
technologies, and trained staff. This comprehensive approach has been shown to significantly
improve patient outcomes by preventing the progression of severe illnesses (Kane et al., 2007).
Despite these advancements, predicting patient mortality in the ICU remains a critical area of
research. Accurate mortality predictions are vital for optimizing patient care and delivering the
most appropriate treatment plans. Ensuring these predictions are fair across diverse patient
populations is important for establishing unbiased healthcare and reducing disparities in
treatment outcomes.

The rapid advancement of technology and the proliferation of patient health data have
necessitated the development of sophisticated machine learning models to accurately predict
patient mortality based on specific clinical indicators. These models aim to provide timely and
reliable predictions that can assist clinicians in making informed decisions, improving patient
care and resource allocation (A. E. W. Johnson et al., 2023). Researchers have primarily focused
on enhancing metrics such as accuracy and specificity in these predictive models. However, there
has been a notable oversight regarding the potential biases these models may exhibit towards
certain demographic groups (Obermeyer et al., 2019). This lack of consideration for fairness and
equity in model development can lead to disparities in healthcare outcomes, particularly for
protected attributes such as race, gender, and type of insurance.

The aim of this study is to address the dual challenges of predicting mortality in ICU patients
who stay for more than 24 hours and mitigating potential algorithmic biases towards protected
groups. For the analysis, the Medical Information Mart for Intensive Care (MIMIC-IV) dataset
has been used, which includes both structured and unstructured patient data. This research aims
to develop robust predictive models that not only achieve high accuracy but also ensure fairness
across diverse patient populations.

4



LITERATURE REVIEW

Forecasting patient outcomes in the ICU is a crucial yet challenging aspect of critical care
research. Using multifactorial scoring systems to predict patient outcomes in the ICU has
become essential in critical care by offering vital insights into disease severity and guiding
long-term treatment strategies. These scoring systems, such as the Acute Physiology and Chronic
Health Evaluation (APACHE III) (Knaus et al., 1991), the Sequential Organ Failure Assessment
(SOFA) (Antonelli et al., 1999) and the Simplified Acute Physiology Score SAPS II (Gall,
1993), are commonly employed to assess disease severity and mortality risk. These scoring
systems were developed through the collaborative efforts of experts in clinical medicine and
statistical analysis. Each system was designed with a specific objective and is meant to
complement the others. For example, the APACHE III and SAPS are specifically tailored to
assess the severity of a patient's condition and predict mortality within the first 24 hours of ICU
admission (Pattalung et al., 2021). In general, scoring systems provide valuable insights into the
condition of patients in the ICU while they can be used as indicators for variable selection during
the analysis.

Such an analysis is imminent due to the abundance of clinical data and the continuous
development of technology. Several machine learning algorithms emerged during the last few
years aiming to provide insights and to perform accurate predictions. Pang et al. (2022)
established and compared multiple machine learning models using the MIMIC-IV database to
predict ICU mortality risk. By integrating the Acute Physiology Score III (APS III) (Haq et al.,
2014) and the Logistic Organ Dysfunction Score (LODS) (Heldwein et al., 2011) as input
features, the study assessed four machine learning models: (a) XGBoost, (b) Logistic Regression,
(c) Support Vector Machine (SVM) and (d) Decision Tree. The XGBoost model outperformed
others, achieving an AUC of 0.918 which indicates a highly predictive ability. This research
highlights the importance of utilizing physiological scores to improve prediction performance
and assist clinicians in assessing mortality risk, especially for patients with uncertain survival
outcomes. However, the study does not address potential algorithmic biases that may affect
certain groups based on protected attributes such as gender, age, ethnicity, and type of insurance.
These biases can lead to discrepancies in the accuracy and fairness of predictions resulting in
inequitable healthcare outcomes.

In data science, the terms bias and unfairness are closely related and often used interchangeably.
However, understanding different types of bias and addressing them effectively is crucial. The
study by Chen et al. (2024) provides an extensive review of bias in AI models developed using
electronic health records (EHRs). This systematic review defines six major types of bias:
algorithmic, confounding, implicit, measurement, selection, and temporal. It identifies various
strategies for detecting and mitigating these biases, emphasizing the importance of fairness in AI
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model development. Key contributions include the evaluation of bias detection methods and bias
mitigation techniques, categorized into three stages: (a) preprocessing, (b) in-processing, and (c)
post-processing. This paper specifically focuses on algorithmic bias and explores mitigation
techniques utilizing these strategies to enhance the fairness and accuracy of machine learning
models.

The development of advanced machine learning models and the implementation of bias
mitigation algorithms are crucial to ensure that predictions are both fair and accurate across
various demographic groups. Additionally, questions have arisen regarding the relationship
between the accuracy of these models and the impact of implementing bias mitigation
algorithms. Pattalung et al. (2021) and Meng et al. (2022) both focus on predicting mortality in
ICU patients using deep machine learning techniques, although they address different
considerations of model performance and fairness. Pattalung et al. (2021) leveraged Recurrent
Neural Networks (RNNs) to achieve high predictive accuracy (AUCs between 0.87 and 0.91)
and utilized SHapley Additive exPlanations (SHAP) for interpretability, ensuring that the factors
influencing mortality predictions were transparent and clinically relevant. In contrast, Meng et al.
(2022) emphasized the importance of fairness alongside accuracy. Their study identified the
IMV-LSTM model as the best performer with an AUC of 0.955, while also highlighting biases
and treatment disparities across demographic groups. By evaluating fairness using AUC metrics
across these groups, they demonstrated a minimum AUC of 0.918 and a macro-average AUC of
0.954, showing fair predictive performance. Both studies underscore the importance of
interpretability and fairness in machine learning models, but Meng et al. (2022) particularly
highlights the critical issue of demographic biases, stressing the need for models that are both
accurate and unbiased.

Objectives

Many decisions influence the fairness of model outcomes, including the selection of features,
model architecture, and bias mitigation techniques. Previous research has not extensively
explored the impact of feature selection on the trade-off between performance and fairness.
Investigating how different predictors and mitigation strategies affect the accuracy and equity of
machine learning models is vital. This study seeks to address these gaps by examining the
relationship between predictor selection and model performance, the effectiveness of bias
mitigation techniques, and the susceptibility of different patient groups to algorithmic bias.

6



Research Question:

How effectively machine learning models predict mortality in ICU patients, while mitigating
potential biases according to some patients’ attributes?

Sub-questions:

a) How does the selection of predictors affect the potential biases across the patients’ attributes?

b) How effective are bias mitigation techniques across different demographic groups?

c) Are there groups of patients that are more prone to algorithmic bias?

DATA

2.1 Data Description

In this study, we use MIMIC-IV, which is a publicly accessible database from the Beth Israel
Deaconess Medical Center, covering patient data from 2008 to 2019. MIMIC-IV includes
comprehensive information on over 60,000 ICU admissions, comprising more than 40,000
unique patients. It includes comprehensive information such as patient demographics, vital signs,
laboratory measurements, medication details, clinical notes, procedures, treatments, diagnoses,
and patient outcomes. This dataset is designed to facilitate research by providing accessible,
structured and unstructured data for developing predictive models and critical care studies (A. E.
W. Johnson et al., 2023).

2.2 Pre-processing

Prior to initiating the analysis, several data cleaning and processing steps were conducted. This
study specifically targets ICU patients with hospital stays exceeding 24 hours. The time
component is essential, as it allows for the collection of more stable and significant clinical data,
accurately reflecting ongoing critical care and interventions. Although some patients had
multiple ICU admissions, we focused on selecting only their last admission. This approach may
introduce some selection bias into analysis, but this is not in the scope of this study. Focusing on
a single ICU admission per patient, despite some having multiple admissions, aims to maintain
dataset consistency and avoid potential confounding factors. This technique simplifies the
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analysis and ensures that each patient is represented equally, preventing any one patient from
disproportionately influencing the results. Afterwards, variables were categorized into three
distinct groups: demographic attributes, vital signs, and laboratory measurements. In the end,
after implementing these steps, the dataset contains 12048 rows (number of patients) and 5102
columns (number of variables).

2.3 Feature Engineering

First, the race variable, which is one of the sensitive attributes of this study, was categorized into
five distinct groups: (a) Asian (n = 369), (b) Black/African American (n = 1108), (c)
Hispanic/Latino (n = 431), (d) White (n = 8068), and (e) Other (n = 2072). This grouping was
necessary because the original variable contained subgroups with very few individuals, which
could introduce noise and reduce the accuracy of the analysis. The second transformation
addressed the missing values in some patient measurements. In this study, no imputation
methods were employed to handle the missing clinical data in vital signs and laboratory
measurements; instead, NA values were replaced with 0. This approach was chosen to ensure a
complete dataset for analysis. However, it is important to note that this method can introduce
imputation bias, particularly if the missingness is not under the assumption of missing
completely at random.

As previously noted, the abundance of variables poses several challenges to the analysis. The
three most principal issues are: (a) Multicollinearity: High correlation among predictor variables
can distort the statistical significance of individual predictors decreasing their individual effects.
(b) Model Complexity: An increase in the number of variables increases the complexity of the
model, thereby reducing its interpretability and making it more difficult to derive clear results.
(c) Computational Cost: High dimensionality in data significantly increases the computational
time required for model processing, which is detrimental when quick decision-making is
essential. Taking all the above into consideration, the analysis is conducted initially using 31
variables closely related to predicting mortality according to Pattalung et al. (2021) and Meng et
al. (2022). In Table 1, the names and types of predictors are presented.
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Table 1: Names and types of all 31 predictors

Category Names of Predictors
Demographic
attributes

Gender, Race, Age, Insurance, Admission location, First careunit, Last
careunit, Los

Vital Signs

Arterial Blood Pressure diastolic, Arterial Blood Pressure mean,
Arterial Blood Pressure systolic, Heart Rate, Oxygen Saturation,
Temperature, ART BP Diastolic, ART BP Mean, ART BP Systolic,

Bladder Pressure, Blood Temperature CCO (C), EtCO2, PAR-Activity,
PAR-Circulation, PAR-Oxygen saturation, PAR-Remain sedated,

PAR-Respiration
Laboratory

Measurements
Calcium Total, Cholesterol Ratio (Total/HDL), 24hr Creatinine, 24hr

Protein, 25-OH Vitamin D

2.4 Exploratory Data Analysis (EDA)

The exploratory data analysis (EDA) phase is a critical component in uncovering the hidden
patterns and relationships within the dataset. This phase entails a thorough and systematic
examination of the dataset to identify key characteristics and ensure data quality before
advancing to more complex modeling and inferential analysis. In this study, the dataset
comprises a range of clinical and demographic variables pertinent to ICU patients. The analysis
focuses on protected variables such as age, gender, and insurance status.

Figure 1: Bar plots of mortality based on gender, type of insurance and race respectively
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By examining Figure 1, it becomes evident that there exists an imbalance between individuals
who survived and those who did not across all subgroups of the protected variables. This
observation suggests that the models employed in this study are more likely to overfit over the
majority class. A significant concern arising from this imbalance is the potential for bias towards
certain subgroup categories.

Table 2: Numbers and percentages of patient mortality across different sensitive attributes

Mortality
Sensitive Attributes No (%) Yes (%)

Gender Male 6147 (89.4%) 729 (10.6%)
Female 4544 (87.8%) 628 (12.2%)

Race

Asian 328 (88.9%) 41 (11.1%)
Black/African
American 990 (89.3%) 118 (10.7%)

Hispanic/Latino 401 (93%) 30 (7%)
Other 1748 (84.4%) 324 (15.6%)
White 7224 (89.5%) 844 (10.5%)

Insurance
Medicaid 726 (90.3%) 78 (9.7%)
Medicare 4516 (86.2%) 725 (13.8%)
Other 5413 (90.7%) 554 (9.3%)
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Table 2 shows that male patients have a slightly higher survival rate (89.4%) and a lower
mortality rate (10.6%) compared to female patients. Moreover, Hispanic/Latino patients show
the best outcomes with the highest survival rate and lowest mortality rate outcomes compared to
patients categorized as Other. In terms of the type of insurance, patients with Medicaid or Other
types of insurance fare better than those with Medicare, indicating potential disparities based on
insurance type. In general, the mortality and survival rates across the sensitive attributes do not
differ substantially, but that is not the case based on the number of patients in each group.

However, despite the overall imbalance, patients with Medicaid Insurance are fewer compared to
those with Medicare or other types of insurance, increasing the likelihood that the algorithm may
develop biases towards the latter groups. Similarly, the distribution of patients by race shows that
White patients outnumber the other subgroups suggesting a potential bias towards the White
subgroup.

Given these observations, it is crucial to investigate whether the group differences encoded in the
dataset could impact the fairness of the models’ outcomes trained on this data. Understanding
and addressing these biases is vital for ensuring the fairness and accuracy of the predictive
models. Analyzing these disparities further can help in developing strategies to mitigate bias and
improve the robustness of the models across different subgroups.

METHODOLOGY

This section outlines the steps and algorithms utilized in this analysis. From the initial set of
predictors, the objective is to identify the most critical predictors for mortality. Subsequently, the
analysis explores how the performance of the predictive models and potential biases change
when using all predictor variables compared to using only the most important ones.

3.1 Predictive Models

Generalized Linear Model – Logistic Regression

A Generalized Linear Model (GLM) is a family of models used as an extension of the linear
regression model. They allow the dependent variable to have a non-normal distribution. In this
research, a GLM is employed to implement binary classification for predicting mortality. The
binary nature of the outcome variable (mortality: no/yes) necessitates a model that can handle
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such data distributions effectively. The specific GLM used in this study is the Logistic
Regression model, which is a type of GLM designed for binary outcomes using binary
distribution.

Neural Network Model

Neural networks are machine learning algorithms which can recognize complex patterns and
relationships in data. Their main components are layers and neurons. Each layer contains
neurons which connect to the neurons of the next layer. These connections are called weights.
Different layers perform different tasks allowing the model to learn different patterns. Through a
process called training, the neural networks adjust the weights of these connections to minimize
errors in their predictions.

In this study, four layers have been used. An Input layer containing neurons equal to the number
of predictors, two Hidden Layers with 64 and 32 neurons each, and an Output Layer with a
single neuron computing the probability of mortality.

3.2 Balancing the Dataset

Synthetic Minority Oversampling Technique (SMOTE)

As it mentioned, dataset imbalance can affect outcome predictions and introduce biases,
especially against protected groups. SMOTE (Synthetic Minority Over-sampling Technique) is a
method used to address this issue by generating synthetic samples for the minority class.
SMOTE works by first identifying the data points that belong to the minority class in the dataset.
For each of these points, SMOTE selects a specified number of its nearest neighbors within the
minority class (the default is 5). Then, it generates new synthetic samples by choosing a random
neighbor and creating a new point somewhere along the line segment that connects the original
data point and its neighbor. The exact position of this new synthetic point is determined by a
random number between 0 and 1, which ensures that the generated samples are varied (Chawla et
al., 2002). By adding these synthetic data points to the dataset, SMOTE increases the
representation of the minority class, balancing the class distribution. This approach effectively
improves the predictions of the outcome variable for the minority class.
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3.3 Bias Mitigation Techniques

Reweighting

Reweighting is an in-processing bias mitigation technique that involves adjusting the weights of
the training samples to ensure fair representation of different demographic groups. By assigning
higher weights to underrepresented groups and lower weights to overrepresented groups, this
technique aims to balance the influence of each group in the training process. This ensures that
the model does not disproportionately favor the majority group, thus promoting a more equitable
learning process.

Threshold Modification

Threshold modification is a post-processing bias mitigation technique that changes the decision
threshold of a classifier to achieve fairer outcomes across different groups. The decision
threshold is the value above which a model predicts the positive class. By adjusting this
threshold for different demographic groups, the technique aims to balance performance metrics
such as the false positive rate and the false negative rate across these groups. This method allows
for direct control over the decision criteria to ensure that the classifier treats different groups
more equitably, thereby mitigating bias in the model's predictions.

3.4 Evaluation and Fairness Metrics

Accuracy

Accuracy is a commonly used metric for evaluating the performance of a classification model. It
measures the proportion of correctly predicted instances out of the total instances in the dataset.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =   𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Receiver Operating Characteristic Curve (ROC Curve)

The ROC curve is a graphical representation used to evaluate the performance of a binary
classification model. It plots the True Positive Rate (TPR) against the False Positive Rate (FPR).
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The Area Under the Curve (AUC) provides a measure model's distinguishability between the two
classes, with a higher AUC indicating better performance.

F1 Score

The F1 score is a valuable metric for evaluating the performance of binary classification models.
It is especially useful when the dataset is imbalanced, meaning the number of positive instances
is much smaller or larger than the number of negative instances.

𝐹1 𝑠𝑐𝑜𝑟𝑒  =  2⋅ Pr𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛·𝑅𝑒𝑐𝑎𝑙𝑙
Pr𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

Equalized Odds Difference

Equalized odds difference is a fairness metric used to evaluate whether a binary classification
model makes equally accurate predictions across different groups. It measures the difference in
true positive rates and false positive rates between groups, ensuring that the model's predictions
are equally fair and unbiased across all groups. An equalized odds difference close to 0 indicates
a fairer model (Hardt et al., 2016).

3.5 Experimental Process

Model Training

To predict mortality using clinical data, two machine learning models were initially applied: a
Neural Network (NN) and a Logistic Regression (LR) model. For training the models, two
distinct sets of predictors were utilized. The first set contains all 31 predictors available in the
dataset, while the second includes only the most significant predictors. Before training the
models, categorical variables such as gender, race, insurance, and admission location were
converted into numeric format using dummy variables. Afterwards, the dataset was divided into
training and test sets, with 80% of the data allocated for training and the remaining 20% for
testing. In order to have the same results each time, we set a seed equal to 42.

Both NN and LR models were trained using these predictor sets, and their performance was
evaluated on the test set. To assess potential bias towards protected variables, the fairness metric
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known as equalized odds difference was computed. This initial evaluation provided a baseline
understanding of the relationship between models' accuracy and fairness.

Dataset Balancing Using SMOTE

To address class imbalance within the dataset, SMOTE technique was applied. This method
generates synthetic samples for the minority class to balance the dataset. Following the
application of SMOTE, the NN and LR models were retrained using the balanced dataset. The
same procedures as described in the baseline model training were followed, including the
conversion of categorical variables to numeric format and the division of the dataset into training
and test sets. The objective of retraining the models on the balanced dataset was to evaluate the
impact of SMOTE on model accuracy and to investigate whether this technique introduced any
bias towards the protected variables.

Mitigating Bias

To further address bias, specific bias mitigation techniques were applied to the models. For the
neural network models, an in-processing technique reweighting was used. This technique adjusts
the weights of the training samples during model training to ensure that the model treats samples
from different groups more equitably. For the logistic regression models, a post-processing bias
mitigation technique called thresholding was implemented. This method involves adjusting the
decision thresholds for different demographic groups after model training to ensure fair
outcomes across these groups. The aim is to develop robust predictive models that not only
achieve high accuracy but also ensure fairness and reduce bias. Table 3 contains the names and
descriptions of the models described in this part.

Table 3: Model name and description

Names Description

nn_all Neural network model trained on imbalanced dataset using all
predictors

nn_top14 Neural network model trained on imbalanced dataset using only the
most significant predictors

lr_all Logistic regression model trained on imbalanced dataset using all
predictors

lr_top14 Logistic regression model trained on imbalanced dataset using only
the most significant predictors

15



nn_smote_all Neural network model trained on balanced dataset using all
predictors

nn_smote_top14 Neural network model trained on balanced dataset using only the
most significant predictors

lr_smote_all Logistic regression model trained on balanced dataset using all
predictors

lr_smote_14 Logistic regression model trained on balanced dataset using only
the most significant predictors

nn_smote_fair_all Neural network model trained on balanced dataset + reweighting
using all predictors

nn_smote_fair_top14 Neural network model trained on balanced dataset + reweighting
using only the most significant predictors

lr_smote_fair_all Logistic regression model trained on balanced dataset +
thresholding using all predictors

lr_smote_fair_top14 Logistic regression model trained on balanced dataset +
thresholding using only the most significant predictors

Figure 2: Flowchart of the Experimental Process
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RESULTS

4.1 Predictor Selection

To identify the most significant predictors for our analysis, we employed the GLM for binary
classification. The primary objective of this model is to determine which predictors have the
most significant impact on mortality, specifically those with a p-value less than 0.05. The GLM
is trained on an initial set of predictors (31 predictors), and its output highlights the significance
of each predictor in forecasting patient mortality. Table 4 contains the names of the predictors
that are considered significant (14 predictors).

Table 4: Names and types of only the significant predictors

Category Names of Predictors

Demographic
attributes

Age, Los, Last_careunit Coronary Care Unit (CCU), Last_careunit
Medical Intensive Care Unit (MICU), Last_careunit Surgical Intensive
Care Unit (SICU), Last_careunit Neuro Surgical Intensive Care Unit
(Neuro SICU), Last_careunit Medical Surgical Intensive Care Unit

(MICU/SICU), Last_careunit Trauma SICU (TSICU)

Vital Signs Heart Rate, Oxygen Saturation, Temperature, ART BP Systolic,
Bladder Pressure, EtCO2

Laboratory
Measurements -

4.2 Training on the Imbalanced Dataset
As described in the previous section, we trained four machine learning models (2 neural
networks and 2 logistic regression models) on the imbalanced dataset. Tables 5, 6, and 7 provide
insights for these models in performance and fairness among the demographic groups gender,
race, and insurance status.
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Table 5: Performance and fairness metrics according to Gender on original dataset

Model Mortality F1 scores (Male/Female) Overall
Accuracy

Equalized Odds
Difference

nn_all
no 0.93/0.92 0.86 0.007
yes 0.30/0.29

nn_top14 no 0.92/0.92 0.86 0.057yes 0.32/0.26

lr_all no 0.93/0.93 0.87 0.057yes 0.11/0.20

lr_top14 no 0.93/0.93 0.87 0.009yes 0.07/0.06

Table 6: Performance and fairness metrics according to Race on original dataset

Model Mortality
F1 scores (White/Black-African
American/Other/Hispanic-Latino/

Asian)

Overall
Accuracy

Equalized Odds
Difference

nn_all
no 0.93/0.95/0.89/0.93/0.93 0.86 0.454
yes 0.26/0.39/0.34/0.48/0.00

nn_top14 no 0.93/0.94/0.89/0.93/0.55 0.86 0.223yes 0.28/0.36/0.28/0.35/0.20

lr_all no 0.94/0.94/0.90/0.94/0.94 0.87 0.128yes 0.14/0.08/0.21/0.00/0.00

lr_top14 no 0.93/0.94/0.90/0.94/0.95 0.87 0.041yes 0.08/0.00/0.07/0.00/0.00

Table 7: Performance and fairness metrics according to Insurance on original dataset

Model Mortality F1 scores
(Other/Medicare/Medicaid)

Overall
Accuracy

Equalized Odds
Difference

nn_all
no 0.93/0.92/0.93 0.86 0.132
yes 0.20/0.37/0.32

nn_top14 no 0.93/0.91/0.94 0.86 0.153yes 0.28/0.32/0.17

lr_all no 0.94/0.92/0.93 0.87 0.145yes 0.05/0.24/0.00

lr_top14 no 0.94/0.92/0.94 0.87 0.050yes 0.04/0.09/0.00
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In terms of overall accuracy, all the models achieve high accuracy around 0.87, indicating strong
overall performance. However, despite the high accuracy, there are disparities in the F1 scores,
particularly for minority classes. While the F1 scores for the majority class, patients that
survived, are mostly over 0.90, the scores for minority classes are notably lower because of the
class imbalance. Furthermore, there is notable variation in F1 scores, especially among
demographic subgroups of race attribute. This inserts bias to the models’ predictions making the
models more or less favorable to patients with specific characteristics.

According to predictor selection, models using all predictors tend to have higher F1 scores
compared to those using only the most significant predictors. This suggests that including a
broader range of predictors enhances the models' ability to accurately classify different classes.
Notably, lr_top14 model shows the lowest F1 scores for minority classes across all demographic
attributes, with values ranging from 0 to 0.1, indicating that this model is less effective in
handling minority class predictions. Moreover, neural network models generally outperform
logistic regression models, especially when only the most significant predictors are selected and
predictions over minority class are considered.

As fairness is concerned based on gender, the equalized odds difference metric is close to 0 in all
cases. So, there is no substantial algorithmic bias between male and female patients. Such
findings are to be expected given the distributions of the outcome across the protected attributes
in the training data. However, when considering the race attribute, the fairness metric for the
nn_all model is 0.45 which shows moderate bias towards some subgroups. The F1 scores for the
Hispanic/Latino and Asian subgroups in this model are 0.48 and 0, respectively, highlighting
high variance and potential bias. The Asian subgroup has the lowest F1 scores across all models
and regardless of the selection of predictors. Additionally, the equalized odds difference
experiences some variations: neural network models, despite their relatively better performance,
have higher EOD values compared to logistic regression models. Models with fewer predictors
tend to have lower equalized odds difference scores compared to those using all predictors.
Finally, the EOD values for insurance status are considerably low, with the lowest observed
value being 0.05 in the lr_top14 model. This indicates minimal bias in model performance
related to insurance type.

4.3 Training after SMOTE Oversampling
Using SMOTE Oversampling technique, the dataset is balanced over the outcome variable.
Tables 8, 9, and 10 provide insights for performance and fairness of the models among the
demographic groups gender, race, and insurance status after balancing the dataset by generating
data for minority class.
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Table 8: Performance and fairness metrics according to Gender on balanced dataset

Model Mortality F1 scores (Male/Female) Overall
Accuracy

Equalized Odds
Difference

nn_smote_all
no 0.87/0.85 0.77 0.090
yes 0.38/0.31

nn_smote_top14 no 0.84/0.82 0.73 0.025yes 0.39/0.37

lr_smote_all no 0.92/0.92 0.86 0.035yes 0.34/0.31

lr_smote_top14 no 0.90/0.87 0.81 0.041yes 0.46/0.42

Table 9: Performance and fairness metrics according to Race on balanced dataset

Model Mortality
F1 scores (White/Black-African
American/Other/Hispanic-Latino

/Asian)

Overall
Accuracy

Equalized
Odds

Difference

nn_smote_all
no 0.86/0.85/0.84/0.89/0.95 0.77 0.369
yes 0.34/0.29/0.43/0.32/0.22

nn_smote_top14 no 0.83/0.85/0.81/0.86/0.81 0.73 0.389yes 0.37/0.37/0.43/0.47/0.21

lr_smote_all no 0.93/0.95/0.88/0.93/0.95 0.86 0.333yes 0.31/0.43/0.37/0.25/0.00

lr_smote_top14 no 0,89/0.90/0.87/0.87/0.86 0.81 0.298yes 0.44/0.44/0.49/0.44/0.26

Table 10: Performance and fairness metrics according to Insurance on balanced dataset

Model Mortality F1 scores
(Other/Medicare/Medicaid)

Overall
Accuracy

Equalized
Odds

Difference

nn_smote_all
no 0.90/0.80/0.94 0.77 0.469
yes 0.34/0.37/0.17

nn_smote_top14 no 0.86/0.79/0.82 0.73 0.083yes 0.40/0.37/0.34

lr_smote_all no 0.93/0.91/0.93 0.86 0.367yes 0.23/0.42/0.00

lr_smote_top14 no 0.90/0.87/0.90 0.81 0.158yes 0.39/0.49/0.41
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By balancing and training the models on the new dataset, several new findings emerged. The
overall accuracy for the NN models decreased by approximately 12%, while for the logistic
regression LR models, there was only a slight decrease of 7% for the model that uses only the
significant predictors. Models using the most significant predictors experienced a more
substantial decrease in overall accuracy.

Regarding F1 scores, an increase was noted in most subgroups with some experiencing a more
substantial increase than others. This indicates that bias may have been introduced, improving
the models’ predictions for only some of the demographic subgroups.

In case of gender attribute, the F1 scores have been increased for both groups without indicating
potential bias towards male or female patients. The EOD also remained low, close to 0, meaning
there is no indication of gender bias.

According to race, we observed that some subgroups experienced significant increase in F1
scores compared to others for minority class. For example, the F1 score for the Asian patients
increased from 0 to 0.22 when using the nn_smote_all and from 0 to 0.26 when using the
lr_smote_top14 model. An interesting finding is that also a significant increase from 0.55 to 0.81
occurred in the majority class for the Asian group using the nn_smote_top14 model.
Additionally, an increase in EOD has been noted with lr_smote_top14 to be 87%, while the value
of EOD for nn_smote_all decreased by 21%. The EOD values range from 0.3 to 0.4, showing
potential bias to the models.

For the insurance attribute, we noticed a significant increase in both F1 scores and EOD metrics,
especially for models using all predictors. For patients with Medicaid insurance, the F1 score
using the nn_smote_all model dropped to 0.17, while for other groups, the scores increased. A
similar trend was observed for the Medicaid group using the lr_smote_all model, where the F1
score remained 0, but the scores for other groups increased considerably. The EOD metric also
experienced a substantial increase, particularly for the nn_smote_all and lr_smote_all models,
reaching values of 0.47 and 0.37, respectively. This indicates that models using more predictors
are more prone to bias in this case.

4.4 Training after SMOTE Oversampling and Bias Mitigation

In order to address the issue of the inserted bias after balancing the data, two mitigation bias
approaches have been conducted. For NN models, it is an in-processing technique called
reweighting, while for the LR models a post-processing technique called thresholding. Tables 11,
12 and 13 present the results after implementing these methods.
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Table 11: Performance and fairness metrics according to Gender after bias mitigation

Model Mortality F1 scores (Male/Female) Overall
Accuracy

Equalized Odds
Difference

nn_smote_fair_all
no 0.87/0.88 0.80 0.057
yes 0.43/0.44

nn_smote_fair_top14
no 0.82/0.80 0.71 0.009yes 0.40/0.38

lr_smote__fair_all
no 0.88/0.89 0.81 0.133yes 0.46/0.43

lr_smote_fair_top14
no 0.88/0.85 0.79 0.035yes 0.47/0.43

Table 12: Performance and fairness metrics according to Race after bias mitigation

Model Mortality
F1 scores (White/Black-African
American/Other/Hispanic-Latin

o/Asian)

Overall
Accuracy

Equalized Odds
Difference

nn_smote_fair_all
no 0.88/0.87/0.85/0.90/0.94 0.80 0.464
yes 0.41/0.42/0.51/0.43/0.33

nn_smote_fair_top14
no 0.81/0.84/0.79/0.81/0.81 0.71 0.178yes 0.38/0.38/0.44/0.37/0.27

lr_smote_fair_all
no 0.89/0.90/0.84/0.91/0.95 0.81 0.708yes 0.43/0.48/0.50/0.46/0.00

lr_smote_fair_top14
no 0.87/0.88/0.84/0.85/0.85 0.79 0.571yes 0.45/0.42/0.50/0.51/0.25

Table 13: Performance and fairness metrics according to Insurance after bias mitigation

Model Mortality F1 scores
(Other/Medicare/Medicaid)

Overall
Accuracy

Equalized Odds
Difference

nn_smote_fair_all
no 0.89/0.84/0.92 0.80 0.314
yes 0.42/0.46/0.38

nn_smote_fair_top14
no 0.84/0.78/0.81 0.71 0.101yes 0.39/0.40/0.35

lr_smote_fair_all
no 0.88/0.88/0.91 0.81 0.127yes 0.42/0.48/0.43

lr_smote_fair_top14
no 0.87/0.86/0.83 0.79 0.067yes 0.42/0.50/0.39
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After implementing bias mitigation techniques, we observed a further overall increase in F1
scores across nearly all groups of the protected attributes. Patients with Medicaid insurance
experienced the most significant improvement. Specifically, using the reweighting technique, the
F1 score for the nn_smote_fair_all model increased from 0.17 to 0.38. Similarly, using the
threshold modification technique, the F1 score for the lr_smote_fair_top14 model increased from
0 to 0.43. Additionally, the EOD values decreased in each case, with the most significant
reduction occurring in the lr_smote_fair_top14 model, where EOD decreased by 66%.

Regarding the race attribute, the results were more mixed. In the lr_smote_fair_all model, the F1
score for the Asian group remained at 0, even after applying bias mitigation techniques.
Furthermore, the EOD for this model increased to 0.71, indicating that threshold modification
was not effective in addressing bias for the race attribute. Additionally, an increase of 24% in the
EOD metric was observed for the nn_smote_fair_all model, suggesting that the reweighting
method did not adequately mitigate bias among race subgroups.

For the gender category, no substantial difference occurred to the EOD metric with all values
remaining close to 0 in each case. Although, in terms of model comparison, it is presented that
models using only the most significant predictors have lower EOD values in each protected
attribute and despite the type of the model.

4.5 Summary

As infered above, the bias mitigation techniques did not effectively address bias for the race
attribute, prompting further exploration of the underlying causes. Calibration plots and
ROC-AUC plots can provide valuable insights into this issue.

According to Figures 4 and 6, the AUC scores for Asian patients are lower compared to other
groups, indicating poorer discriminatory performance for this subgroup. Additionally, the
calibration plots in Figures 5 and 7 reveal substantial deviations from the calibration line for
Asian patients compared to other patients, particularly in models utilizing all predictors. This
suggests that the predicted probabilities for Asian patients are less reliable, contributing to the
observed biases.

When examining the relationship between performance and fairness, it becomes evident that
efforts to enhance model performance can also increase the EOD fairness metric. This trade-off
suggests that optimizing for overall performance may provoke disparities among protected
groups (Figures 8 and 9).
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Figure 4: ROC curve of nn_smote_fair_all and nn_smote_fair_top14 respectively

Figure 5: Calibration curve of nn_smote_fair_all and nn_smote_fair_top14 respectively

Figure 6: ROC curve of lr_smote_fair_all and lr_smote_fair_top14 respectively
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Figure 7: Calibration curve of lr_smote_fair_all and lr_smote_fair_top14 respectively

Figure 8: ROC-AUC curve for neural network and logistic regression models
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Figure 9: Equalized Odds Difference bar plot for every model

DISCUSSION

The unequal distribution of patients across different protected groups can decrease model
performance and introduce algorithmic bias, particularly regarding race and type of insurance.
The primary research question investigates how machine learning models can accurately predict
mortality in ICU patients while mitigating potential biases. Analysis reveals a trade-off between
performance and fairness based on the number of predictors used. Models utilizing all predictors
tend to predict patient mortality more accurately, with neural networks outperforming logistic
regression models. However, models using only the most significant predictors exhibit less bias
towards demographic groups, making bias mitigation techniques more effective.

So, for the question of how the selection of predictors impacts potential biases on patients'
sensitive attributes, we can infer that models using a subset of the most significant predictors
demonstrated enhanced fairness across demographic groups. These models exhibited reduced
bias towards protected attributes such as race and type of insurance, ensuring more equitable
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treatment and outcomes for different patients. By focusing on the most significant predictors, the
models balanced the trade-off between accuracy and fairness more effectively.

Balancing the dataset by generating additional data to improve prediction accuracy for minority
classes inadvertently introduced bias, favoring some patient subgroups over others. The gender
attribute did not experience significant changes, with EOD values remaining close to 0,
indicating no bias between male and female patients. This outcome aligns with the EDA
findings, where the distribution of patients by gender was relatively equal. In contrast, race and
insurance type attributes showed more pronounced biases. Asian patients were less favored in
terms of race, while patients with Medicaid insurance were less favored in terms of insurance
type. This is evident from the F1 scores and EOD values for these groups, with the race attribute
showing the highest EOD values almost in every case.

Regarding the question of how effective bias mitigation techniques are across different
demographic groups, both reweighting and threshold modification successfully mitigated bias for
the insurance attribute, particularly for patients with Medicaid insurance. However, these
techniques were less successful in mitigating bias for the race attribute, particularly for Asian
patients using the threshold modification technique. This means that models fail to treat Asian
patients fairly, provoking discrimination towards this group. The F1 scores for Asian patients
were substantially lower than the other groups for minority class. So, the models underestimated
the risk of mortality for these patients contributing to delaying necessary medical interventions,
leading to the progression of diseases or even mortality. To answer the question of whether there
are groups of patients more prone to bias, the analysis reveals that certain groups, specifically
Asian patients and those with Medicaid insurance, are particularly susceptible to algorithmic
bias.This is against the principle that all patients must be treated equally, regardless of their racial
background (Beauchamp et al., 2019). Such discrimination not only violates ethical standards but
also exposes healthcare institutions to legal risks, including potential lawsuits and regulatory
penalties for violating anti-discrimination laws. Ensuring equitable treatment is essential for
maintaining trust in the healthcare system and providing high-quality care to all patients.

In this research, to achieve both accurate and unbiased mortality predictions, the neural network
model using only the significant predictors, trained on the balanced dataset and adjusted through
reweighting emerges as the optimal choice. This model demonstrates minimal inequalities across
subgroups while maintaining high accuracy and F1 scores for mortality prediction.
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CONCLUSION

The main objective of this study was to predict ICU patient mortality with a focus on fairness
across various demographic groups. The findings reveal a trade-off between performance and
fairness, with models utilizing all predictors achieving higher accuracy but also exhibiting
greater bias. Bias mitigation techniques effectively addressed disparities related to insurance type
but were less successful for racial attributes, particularly for Asian patients. This led to
underestimation of mortality risk and potential delays in medical interventions for this group.
The neural network model, trained on a balanced dataset and adjusted through reweighting,
demonstrated the best balance of accuracy and fairness. These results highlight the necessity for
more sophisticated bias mitigation approaches that can further address bias. Future research
should focus on refining these techniques or finding a different set of predictors increasing the
robustness of the models.

Data Availability Statement and Code Availability
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Jupyter notebooks are available on GitHub on the following link:

(https://github.com/linos98/Predicting-Mortality-and-Algorithmic-Fairness-of-ICU-Patients)
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APPENDIX

Table 14: Significance of predictors using GLM Model

Name of predictor P_value Significant
Age 0.000 yes
Los 0.025 yes

Arterial Blood Pressure diastolic 0.074 no
Arterial Blood Pressure mean 0.785 no
Arterial Blood Pressure systolic 0.396 no

Heart Rate 0.000 yes
Calcium, Total 0.069 no

Cholesterol Ratio (Total/HDL) 0.482 no
Oxygen Saturation 0.000 yes

Temperature 0.000 yes
ART BP Diastolic 0.734 no
ART BP Mean 0.950 no
ART BP Systolic 0.043 yes
Bladder Pressure 0.012 yes

Blood Temperature CCO (C) 0.822 no
EtCO2 0.000 yes

PAR-Activity 0.284 no
PAR-Circulation 0.934 no

PAR-Oxygen saturation 0.897 no
PAR-Remain sedated 0.180 no
PAR-Respiration 0.075 no
24hr Creatinine 1.000 no
24hr Protein 0.214 no

25-OH Vitamin D 0.281 no
Gender_male 0.203 no

Race_BLACK/AFRICAN AMERICAN 0.504 no
Race_HISPANIC/LATINO 0.135 no

Race_OTHER 0.101 no
Race_WHITE 0.678 no

Insurance_Medicare 0.630 no
Insurance_Other 0.929 no

Admission location_CLINIC REFERRAL 0.488 no
Admission location_EMERGENCY ROOM 0.914 no

Admission location_INFORMATION NOT AVAILABLE 0.783 no
Admission location_PACU 0.999 no
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Admission location_PHYSICIAN REFERRAL 0.512 no
Admission location_PROCEDURE SITE 0.484 no

Admission location_TRANSFER FROM HOSPITAL 0.957 no
Admission location_TRANSFER FROM NURSING FACILITY 0.883 no

Admission location_WALK IN/SELF REFERRAL 0.677 no
First_careunit_Coronary Care Unit (CCU) 0.493 no

First_careunit_Medical Intensive Care Unit (MICU) 0.512 no
First_careunit_Medical/Surgical Intensive Care Unit (MICU/SICU) 0.818 no

First_careunit_Neuro Intermediate 0.893 no
First_careunit_Neuro Stepdown 0.520 no

First_careunit_Neuro Surgical Intensive Care Unit (Neuro SICU) 0.645 no
First_careunit_Surgical Intensive Care Unit (SICU) 0.092 no

First_careunit_Trauma SICU (TSICU) 0.779 no
Last_careunit_Coronary Care Unit (CCU) 0.000 yes

Last_careunit_Medical Intensive Care Unit (MICU) 0.000 yes
Last_careunit_Medical/Surgical Intensive Care Unit (MICU/SICU) 0.000 yes

Last_careunit_Neuro Intermediate 0.983 no
Last_careunit_Neuro Stepdown 0.792 no

Last_careunit_Neuro Surgical Intensive Care Unit (Neuro SICU) 0.000 yes
Last_careunit_Surgical Intensive Care Unit (SICU) 0.000 yes

Last_careunit_Trauma SICU (TSICU) 0.000 yes
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