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Abstract

Iterated monodromy groups (in short, IMGs) are self-similar groups naturally associated to iter-
ations of (anti-)rational maps on the Riemann sphere. In this thesis, we study the properties of
the IMGs of critically fixed (anti-)rational maps; critically fixed maps being those maps whose
critical points are also fixed points. More specifically, we prove that the IMGs of critically fixed
(anti-)polynomials are regular branch on the subgroup of group elements with even permutational
part. In the case of polynomials, we make use of the one-to-one correspondence between the con-
formal conjugacy classes of critically fixed polynomials and the isomorphism classes of connected
planar embedded graphs. Similarly, in the case of anti-polynomials, we use that there is a one-to-
one correspondence between the conformal conjugacy classes of critically fixed anti-rational maps
and the isomorphism classes of unobstructed topological Tischler graphs. Not being able to prove a
similar statement in the general case of (anti-)rational maps, we discuss some motivating examples
and explain some of the difficulties.
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Chapter 1

Introduction

In this thesis we study iterated monodromy groups (in short, IMGs) of (anti-)rational maps on
the Riemann sphere; these maps we denote by f ∶ Ĉ → Ĉ. An iterated monodromy group is a
group which acts on the preimages of a base point by a monodromy action. IMGs can be used
to study dynamical systems, as they encode combinatorial information about the dynamics of the
corresponding maps. Furthermore, IMGs are interesting objects to study from a group theoretic
perspective. They are self-similar, meaning that for an iterated monodromy group G there is a
canonical homomorphism from G to Gd × Sd. Additionally, they provide examples of groups of
intermediate growth.

We focus on studying the algebraic structure of the iterated monodromy groups of critically
fixed (anti-)rational maps on the Riemann sphere; critically fixed maps being those maps whose
critical points are also fixed points. In particular, we study the branchness properties of the iterated
monodromy groups of these maps. For a group G to be regular branch on a subgroup H means
that Hd embeds into H and that H has finite index in G.

One motivation to study the branchness properties of groups is a result by Bartholdi. He proved
that finitely generated, contracting, semi-fractal, regular branch groups are finitely L-pesented, but
are not finitely presented [Bar03]. This is particularly interesting for iterated monodromy groups,
as IMGs are groups that are finitely generated, contracting and semi-fractal.

Branchness properties of iterated monodromy groups of postcritically finite quadratic polyno-
mials have been studied by Bartholdi and Nekrashevych in [BN08]. Šunić (and his collaborators)
studied the branchness properties of iterated monodromy groups of critically fixed polynomials and
gave a talk on their results in May 2021 at Banff International Research Station [Šun21]. In this
thesis we reprove Šunić’s results, as well as extend them to the case of iterated monodromy groups
of critically fixed anti-polynomials; an anti-polynomial being a complex conjugate of a polynomial
map.

To study the IMGs of critically fixed rational maps, we use that there is a one-to-one corre-
spondence between the conformal conjugacy classes of critically fixed rational maps (of degree at
least two) and the isomorphism classes of connected planar embedded graphs (with at least one
edge and no loops) [Hlu19]. We use these graphs to describe the generators of the IMGs in terms
of their wreath recursion.

For the polynomial case, we reprove the statements of Šunić. These statements can be summa-
rized in the following theorem.

Theorem 1.0.1. Let f ∶ Ĉ→ Ĉ be a critically fixed polynomial with ∣Cf ∣ ≥ 3. Let G ∶= IMG(f) and
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let E < G be the subgroup of all elements of G with even permutational part. Then G is regular
branch on E.

We prove this theorem by induction, starting with a base case in which f has two critical points,
meaning that G has two generators.

We use a similar strategy to study the IMGs of anti-rational maps. We namely use that there
is a one-to-one correspondence between conformal conjugacy classes of critically fixed anti-rational
maps (of degree at least 2) and isomorphism classes of unobstructed topological Tischler graphs.
We again use these graphs to describe the generators of the IMGs in terms of their wreath recursion.

We can then use the lemmas we have proven for the polynomial case to prove the following
statement.

Theorem 1.0.2. Let f ∶ Ĉ→ Ĉ be a critically fixed anti-polynomial with ∣Cf ∣ ≥ 3. Let G ∶= IMG(f)
and let E < G be the subgroup of all elements of G with even permutational part. Then G is regular
branch on E.

We have not been able to prove similar results in the more general case of (anti-)rational maps.
We will however discuss specific examples of rational maps, and look at some of the difficulties
regarding proving a general statement in the case of rational maps.
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Karemaker for being my UU project supervisor and second examinor. Lastly, I want to thank all
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Notation

Before starting on the background, we introduce some notation that we will use throughout this
thesis.

N the set of natural numbers, excluding 0

C the set of complex numbers

n an element of N

N≥n the set of natural numbers greater than or equal to n

Ĉ the Riemann sphere

[n] the set {1,2, . . . , n}
An the alternating group on [n]
Sn the symmetric group on [n]
X a (finite) alphabet

A(X) the alternating group on X

S(X) the symmetric group on X

X∗ the set {x1x2 . . . xn ∣xi ∈ X, n ≥ 0} of words in the alphabet X

TX the tree of words in the alphabet X

Aut(TX) the automorphism group of TX

π1(M, t) the fundamental group of a topological spaceM at a basepoint t

f ∶ Ĉ→ Ĉ an (anti-)rational map on Ĉ

fn the n-th iterate of f

Cf the set of critical points of f

Pf the postcritical set of f

Fix(f) the set of fixed points of f

IMG(f) the iterated monodromy group of f

Tisch(f) the Tischler graph of f (when f is critically fixed)

Charge(f) the charge graph of f (when f is critically fixed)
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Chapter 2

Background

The background in this chapter is based on [Nek05], [BGN03], [Hlu19] and [Gey22].

2.1 Tree of words TX

Let X be a finite set, called an alphabet. We denote by

X∗ = {x1x2 . . . xn ∣xi ∈ X, n ∈ N ∪ {0}}

the set of all finite words over the alphabet X, including the empty word ∅. We have X∗ = ⋃n≥0X
n.

For v = x1x2 . . . xn ∈ Xn we say that the length of the word v is n; this length is denoted ∣v∣.
The set X∗ naturally is a vertex set of the tree of words TX. The root of this tree is the empty

word ∅ and two words are connected by an edge if and only if they are of the form v and vx for
some v ∈ X∗ and x ∈ X. The set Xn is called the n-th level of the tree TX.

Let w ∈ X∗ be arbitrary. We denote by Tw the subtree of TX rooted at w, which has the vertex
set wX∗ = {wu ∣u ∈ X∗}. Note that the subtree Tw is isomorphic to TX via the shift sw ∶ Tw → TX

defined by wu↦ u for u ∈ X∗.

2.2 Automorphism group of TX

Let X be a finite alphabet. An automorphism of the tree of words TX is a bijective map f ∶ X∗ → X∗

that respects adjacency of the vertices, that is, for any two adjacent vertices v, vx ∈ X∗ the vertices
f(v) and f(vx) are also adjacent, i.e., there exist u ∈ X∗ and y ∈ X such that f(v) = u and
f(vx) = uy. The set of all automorphisms of the rooted tree TX forms a group under the operation
of composition of maps; this group is called the automorphism group of TX and is denoted Aut(TX).
We always consider right actions, meaning that for g1, g2 ∈ Aut(TX) in the product g1g2 the element
g1 acts first. The n-th level stabilizer StAut(TX)

(n) is the subgroup of all elements of Aut(TX) that
fix all vertices of the n-th level of TX.

For every g ∈ Aut(TX) and w ∈ X∗, we define the automorphism g∣w ∶ TX → TX by

g∣w ∶= swg ○ g ○ s−1w .

This automorphism is called the restriction of g to the subtree Tw or the restriction of g at the
vertex w.
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In the following, we assume that X = {1,2, . . . , d} to simplify the discussion. We also recall that
S(X) denotes the symmetric group on the set X.

We have a natural isomorphism

ψ ∶ StAut(TX)
(1) → Aut(TX)d, g ↦ ⟪g∣1, g∣2, . . . , g∣d⟫ ∶= (g∣1, g∣2, . . . , g∣d).

In general, every element g ∈ Aut(TX) can be written as

g = ⟪g∣1, g∣2, . . . , g∣d⟫σg, (2.1)

where ⟪g∣1, g∣2, . . . , g∣d⟫ ∈ StAut(TX)
(1) and σg ∈ S(X) is the permutation defining the action of g on

the first level X1. We call σg the permutational part of g. The expression (2.1) is called the wreath
recursion of g.

Formally, the isomorphism ψ above extends to a canonical isomorphism

ψ ∶ Aut(TX) → Aut(TX)d ⋊ S(X),

where the semidirect product is taken with respect to the natural action of S(X) on every factor
of Aut(TX)d. Hence, the automorphism group Aut(TX) is isomorphic to the permutational wreath
product Aut(TX) ≀ S(X). That is, wreath recursions of two elements g, h ∈ Aut(TX) are multiplied
in the following way

⟪g∣1, g∣2, . . . , g∣d⟫σg ⋅ ⟪h∣1, h∣2, . . . , h∣d⟫σh = ⟪g∣1h∣1σg , g∣2h∣2σg , . . . , g∣dh∣dσg⟫σgσh.

There are the following standard subgroups of a group acting on a rooted tree.

Definition 2.2.1. Let G ≤ Aut(TX).
1. For a vertex v ∈ X∗, the vertex stabilizer is the subgroup Gv = {g ∈ G ∣ vg = v}.

2. The n-th level stabilizer StG(n) is the subgroup of all elements of G that fix all vertices of
the n-th level Xn of the tree TX; i.e., StG(n) = ⋂

v∈Xn

Gv.

3. The rigid stabilizer RiStG(v) of a vertex v ∈ X∗ is the group of all elements of G that may
only act non-trivially on the vertices of the form vu, for u ∈ X∗. That is,

RiStG(v) = {g ∈ G ∣wg = w for all w ∉ vX∗}.

4. The n-th level rigid stabilizer RiStG(n) is the subgroup generated by the rigid stabilizers of
all vertices of the n-th level; i.e., RiStG(n) = ⟨RiStG(v) ∣ v ∈ Xn⟩.

Definition 2.2.2. A group G ≤ Aut(TX) is called level-transitive if it acts transitively on every
level Xn of the tree TX.

Given H,H1, . . . ,Hd < Aut(TX), the notation H1 × ⋅ ⋅ ⋅ × Hd ⊂ H means that H contains the
preimage ψ−1(H1 × ⋅ ⋅ ⋅ ×Hd), which is the subgroup of StAut(TX)

(1) that acts on the subtree xTX

by an element from Hx for each x ∈ X.
Definition 2.2.3. Let G ≤ Aut(TX) be level-transitive. If all of the rigid stabilizers RiStG(n), n ∈ N,
are non-trivial, then G is said to be weakly branch. The group G is branch if all RiStG(n) have
finite index in G.

The group G is regular weakly branch on H ≤ G if H is non-trivial and H × ⋅ ⋅ ⋅ ×H
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d factors

⊂ H. If in

addition H has finite index in G, we say that G is regular branch on H.
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2.2.1 Self-similar groups

Definition 2.2.4. An action of a group G on the tree TX by automorphisms is said to be self-similar
if for every g ∈ G and every x ∈ X there exist h ∈ G and y ∈ X such that

(wx)g = ywh

for all w ∈ X∗. In particular, G < Aut(TX) is called self-similar if its action on TX is self-similar. In
other words, G is self-similar if the restriction g∣w is an element of G for all g ∈ G and w ∈ X∗.

Definition 2.2.5. Let G ≤ Aut(TX) and let S ⊆ G. We define the labeled Schreier graph for G
with respect to S. This is a directed graph with vertex set X′ consisting of all x ∈ X for which it
holds that there exists at least one s ∈ S such that s acts non-trivially on x and directed edge set
X′ × S, where the edge (x, s) starts at x and ends at xs (and is labeled s∣x, for every x ∈ X′ and
s ∈ S). For every s ∈ S, we choose a distinct color and every edge of the form (x, s) is colored in
the color corresponding to s. Furthermore, the edge (x, s) is drawn as a thick line if the restriction
s∣x is non-trivial.

2.3 Iterated monodromy groups

Let f ∶ Ĉ → Ĉ be an (anti-)rational map. The critical points of f are those points c ∈ Ĉ at which f
is not locally injective. The set of critical points of f is denoted by Cf . The set Pf ∶= ⋃∞n=1 fn(Cf)
is then called the postcritical set of f . The map f is said to be postcritically finite if the cardinality
∣Pf ∣ of the postcritical set is finite. Lastly, we have the set of fixed points of f , which is denoted by
Fix(f).

Let f ∶ Ĉ → Ĉ be a postcritically finite (anti-)rational map of degree d ≥ 2. Then f induces a
d-to-1 covering

f ∶ M1 ∶= Ĉ ∖ f−1(Pf) →M ∶= Ĉ ∖ Pf . (2.2)

We use this covering to construct the so-called tree of preimages Tf . Choose a basepoint t ∈ M;
this will be the root of the tree. For each n ∈ N, the n-th level of the tree of preimages Tf is the
set f−n(t) of preimages of t under the n-th iteration of f . We connect each vertex z ∈ f−n(t) with
f(z) ∈ f−(n−1)(t). As the map f in (2.2) is a degree d covering, every vertex in the level f−(n−1)(t)
is connected to exactly d vertices in the n-th level, which means that Tf is a d-regular rooted tree.

Let π1(M, t) be the fundamental group of M with respect to the basepoint t. We denote by
[γ] the homotopy class of a closed loop γ, based at t. For each such loop γ ∈ π1(M, t) we have
that for every n ≥ 0 and z ∈ f−n(t) there is exactly one lift γz of γ under fn starting at z. We
denote by zγ the endpoint of the path γz. By the homotopy lifting property, zγ depends only on
the homotopy class [γ], and not on the specific choice of the representative γ.

The map

z ↦ zγ

then defines a permutation on the set f−n(t). This action of π1(M, t) on f−n(t) is called the
monodromy action.

The permutation z ↦ zγ defines an automorphism of the tree Tf . Indeed, let z ∈ f−n(t) and
f(z) ∈ f−(n−1)(t) be two adjacent vertices, and let γz be the fn-lift of γ starting in z and ending
in zγ . Then f(γz) is the fn−1-lift of γ starting in f(z) and ending in f(zγ). It follows that
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f(z)γ = f(zγ), and thus zγ and f(z)γ are adjacent as well. Hence, the map z ↦ zγ defines an
automorphism of Tf .

The discussion above implies that the fundamental group π1(M, t) acts on the tree of preimages
Tf by automorphisms. This action is called the iterated monodromy action of π1(M, t) on Tf . It
follows that we have a group homomorphism:

ϕf ∶ π1(M, t) → Aut(Tf)

from the fundamental group ofM= Ĉ∖Pf to the automorphism group Aut(Tf) of the rooted tree
of preimages Tf .

Definition 2.3.1. The iterated monodromy group of f , denoted IMG(f), is the quotient of the
fundamental group π1(M, t) by the kernel of the iterated monodromy action. That is,

IMG(f) = π1(M, t)/Ker(ϕf) ≃ ϕf(π1(M, t)).

One can easily check that, up to conjugacy, the iterated monodromy group does not depend on
the choice of the basepoint t.

2.3.1 Standard action

As noted before, the tree of preimages Tf is a d-regular rooted tree, and is thus isomorphic to the
tree of words TX for an alphabet X of d letters. There does not exist a canonical isomorphism, but
there is a class of natural isomorphisms, which is constructed as follows.

Fix an alphabet X of d letters and a bijection Λ ∶ X → f−1(t) between the vertices of the first
level of the tree of words TX and the first level of the tree of preimages Tf . For every x ∈ X, choose
a path ℓx starting in t and ending in Λ(x). We now extend the map Λ to X∗ inductively by the
rule that Λ(xv) for x ∈ X and v ∈ Xn is the endpoint of the fn-lift of ℓx starting in Λ(v) ∈ f−n(t).
The constructed labelling map Λ ∶ TX → Tf is an isomorphism of rooted trees.

The standard action of π1(M, t) (or IMG(f)) on the tree TX is the action obtained by conju-
gating the iterated monodromy action on Tf by a labelling map Λ ∶ TX → Tf .

Proposition 2.3.2 ([BGN03, Proposition 5.4]). The standard action is self-similar and is given
by

(xv)γ = y (vℓxγxℓ−1y ) , (2.3)

where γx is the f -lift of the loop γ starting at Λ(x), and y ∈ X is such that Λ(y) is the endpoint of
γx.

ℓx

ℓy

γx

t

Λ(x)

Λ(y)γ

Figure 2.1: A visualisation of the recurrent formula (2.3) for the standard action.
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2.4 Critically fixed rational maps

In this section, we introduce critically fixed rational maps and discuss a way to combinatorially
classify them using planar embedded graphs.

Definition 2.4.1. A rational map f ∶ Ĉ→ Ĉ is critically fixed if Cf ⊂ Fix(f), that is, if f fixes each
of its critical points.

2.4.1 Tischler graphs

Let f ∶ Ĉ→ Ĉ be a critically fixed rational map and let c ∈ Cf be a critical point of f . The basin of
attraction of c is the set

Bc ∶= {z ∈ Ĉ ∣ lim
n→∞

fn(z) = c}.

The immediate basin of c, denoted by Ωc, is the connected component of Bc that contains c. It is
a standard fact in complex dynamics that Ωc is a simply connected open set. Furthermore, there
exists a conformal map τc ∶ D→ Ωc and a natural number dc ∈ N>2 such that

(τc ○ f ○ τ−1c )(z) = zdc

for all z ∈ D ∶= {z ∈ C ∣ ∣z∣ < 1}. This conformal map extends to a continuous and surjective map
τc ∶ D→ Ωc between closures.

An internal ray of angle θ ∈ [0,1) in the immediate basin Ωc is the image of the radial arc
r(θ) ∶= {te2πiθ ∣ t ∈ [0,1]} under the map τc. Every internal ray of angle θ has a landing point, which
is defined to be the point τc(e2πiθ) ∈ ∂Ωc. Note that the internal ray of angle θ is fixed (set-wise)
under f if and only if θ = j

dc−1
for some j = 0, . . . , dc − 2. We denote by Rf the set of all landing

points of all fixed internal rays. Note that Rf ⊂ Fix(f).

Definition 2.4.2. The Tischler graph of a critically fixed rational map f is the planar embedded
graph Tisch(f) whose edge set consists of the fixed internal rays in the immediate basins of all
critical points of f and whose vertex set consists of the endpoints of these rays.

Let now T = Tisch(f) be the Tischler graph of a critically fixed rational map f ∶ Ĉ → Ĉ with
deg(f) ≥ 2. We denote by VT , ET and FT the vertex, edge and face sets respectively. Then, the
following statements hold [Hlu19]:

• VT = Cf ∪Rf = Fix(f);

• ∣VT ∣ = deg(f) + 1, ∣ET ∣ = 2deg(f) − 2 and ∣FT ∣ = deg(f) − 1;

• T is bipartite and connected;

• Each face of T is a (possibly degenerate) quadrilateral and has exactly two critical points on
the boundary.

2.4.2 Charge graphs

Let again T = Tisch(f) be the Tischler graph of a critically fixed rational map f ∶ Ĉ → Ĉ with
deg(f) ≥ 2. Now, for every face Q of T , we choose a Jordan arc eQ that joins the two critical points
of f on the boundary of Q, so that int(eQ) ⊂ Q.
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Definition 2.4.3. A charge graph of f is the graph with vertex set Cf and edge set {eQ ∣Q ∈ FT };
it is denoted by Charge(f).

We now briefly describe the blow-up operation, which is a way to define a (topological) branched
covering map fG ∶ Ĉ→ Ĉ from a (connected) planar embedded graph G in Ĉ. (Here, we assume that
G may have multiple edges, but no loops.) Informally, blowing up the graph G means that we cut
the sphere Ĉ open along the interior of each edge e of G and glue in a closed Jordan region patch De

inside each cut along the boundary. To define the map fG, we first send the boundary ∂De of each
patch in a 2-to-1 fashion onto the respective edge e, so that the endpoints of e stay fixed. Then we
continuously extend fG to the whole sphere in the following way. The map fG homeomorphically
maps each complementary component of the union of the patches onto the respective face of G.
Simultaneously, the interior of each Jordan region patch De is mapped by fG homeomorphically
onto the complement of the corresponding edge e. For a formal construction, see [PL98] and [Hlu19,
Section 5.1].

Using the blow-up operation, we can state the following results on charge graphs.

Theorem 2.4.4 ([Hlu19, Proposition 8 and Theorem 2]). Every critically fixed rational map f
with deg(f) ≥ 2 can be obtained from a charge graph of f by blowing up its edges.

Furthermore, this induces a canonical bijection between the conformal conjugacy classes of crit-
ically fixed rational maps of degree at least 2 and the isomorphism classes of connected planar
embedded graphs with at least one edge and no loops.

We will now explain more formally the first part of the theorem above. Let f be a critically
fixed rational map and let G ∶= Charge(f) be its charge graph. Recall that every edge eQ of G
corresponds to a face Q of T = Tisch(f). We have that under the map f , every edge eQ will have
exactly two lifts e+Q and e−Q within the closure of the face Q; both of these arcs are isotopic to eQ
relative to VT ⊃ Cf . In particular, the arcs eQ, e

+
Q and e−Q share their endpoints. The edges e+Q and

e−Q form the boundary of the Jordan region patch DeQ , such that eQ ⊂ DeQ ⊂ Q. It follows that f

maps the interior int(DeQ) homeomorphically onto Ĉ ∖ eQ for every edge eQ of G. Furthermore,
every complementary component W of ⋃Q∈FT

DeQ is contained in a unique face UW of Charge(f),
and f maps W onto UW by an orientation preserving homeomorphism so that f(∂W ) = ∂UW . We
define G± to be the graph with the vertex set Cf and the edge set {e+Q, e−Q ∣Q ∈ FT }, G+ to be the
graph with vertex set Cf and edge set {e+Q ∣Q ∈ FT } and G− to be the graph with vertex set Cf

and edge set {e−Q ∣Q ∈ FT }.

2.4.3 Polynomial case

In the special case when f ∶ Ĉ→ Ĉ is a critically fixed polynomial map, we can say even more about
the properties of T = Tisch(f) and G = Charge(f). For example, in T , every face is connected to
∞. To see this, we first note that the degree of the vertex ∞ in T equals deg(f)−1. When we start
at one edge adjacent to∞ and move clockwise to the next edge adjacent to∞, we see that there is a
unique face through which we move. This holds for every edge adjacent to the vertex corresponding
to ∞, meaning that in this way we already have all deg(f) − 1 faces of T . We conclude that ∞ is
on the boundary of every face of the Tischler graph T . Consequently, in Charge(f), we see that
every edge is connected to the vertex corresponding to ∞.

Because every face is a quadrilateral and∞ is on the boundary of every face, we have that when
you remove the vertex corresponding to∞ from the graph T along with the edges adjacent to∞, the

12



remaining graph has only one face. This means that the remaining graph is acyclic. Furthermore,
we have that the number of vertices of this remaining graph is deg(f) and the number of edges is
deg(f) − 1. Using Lemma A.1, we conclude that this graph must be connected, hence is a tree.

2.5 Critically fixed anti-rational maps

In this section, we talk about critically fixed anti-rational maps and how to classify them using
certain planar embedded graphs.

Definition 2.5.1. An anti-rational map is the complex conjugate of a rational map. An anti-
polynomial is the complex conjugate of a polynomial.

Like in the case of rational maps, an anti-rational map f is called critically fixed if all critical
points of f are fixed by f . Furthermore, again following the set-up in the case of rational maps, the
Tischler graph of a critically fixed anti-rational map is the graph whose edges are the fixed internal
rays of f and whose vertices are the endpoints of these rays.

Let now T = Tisch(f) be the Tischler graph of a critically fixed anti-rational map f ∶ Ĉ → Ĉ
with deg(f) ≥ 2. We denote by VT and FT the vertex set and face set respectively. Then, the
following statements hold [Gey22]:

• VT = Cf ∪Rf = Fix(f);

• ∣FT ∣ = deg(f) + 1;

• Each vertex corresponding to a critical point of multiplicity m has degree m+ 2 ≥ 3 and each
vertex corresponding to a repelling fixed point has degree 2;

• Every face A of T is a Jordan domain and f maps A anti-conformally onto Ĉ ∖ Ā.

Definition 2.5.2. A topological Tischler graph is a connected planar embedded graph T ⊂ S2

where every vertex has degree ≥ 3, and every face is a Jordan domain.

The topological Tischler graph for a critically fixed anti-rational map is obtained from its
Tischler graph by forgetting all vertices of degree 2, which are exactly the vertices corresponding
to repelling fixed points.

We now define a way to obtain a map, the so-called associated Schottky map, from a topological
Tischler graph.

Definition 2.5.3. For a Jordan domain U ⊂ S2, an associated topological reflection (in U) is an
orientation-reversing homeomorphism fU ∶ S2 → S2 such that fU = id on ∂U , and f2U = id on S2.
For a topological Tischler graph T ⊂ S2, an associated Schottky map fT is a map such that the
restriction of fT to each face U of T is a topological reflection associated to U .

Definition 2.5.4. A topological Tischler graph G is called obstructed if there is a pair of distinct
faces A and B of G sharing two distinct edges a, b ⊂ ∂A ∩ ∂B. G is called unobstructed if this is
not the case.

Using these definitions, we can state the following classification of anti-rational maps.

13



Theorem 2.5.5 ([Gey22, Theorem 5.6, Corollary 5.12 and Theorem 5.13]). Every critically fixed
anti-rational map f with deg(f) ≥ 2 is isotopic relative to Cf to the Schottky map associated to the
Tischler graph of f .

Furthermore, this induces a canonical bijection between conformal conjugacy classes of critically
fixed anti-rational maps of degree at least 2 and isomorphism classes of unobstructed topological
Tischler graphs.

2.5.1 Anti-polynomial case

In the more specific case of anti-polynomials, the topological Tischler graph has certain special
properties, which we will discuss in this section. To do so, we introduce the following definition.

Definition 2.5.6. A subset T ⊂ Ĉ∖{∞} is an unbounded planar embedded tree if T is closed in R2

and homeomorphic to a planar embedded tree without vertices of degree 2, and with all its leaves
removed. A topological Tischler tree is an unbounded planar embedded tree with ≥ 3 unbounded
edges.

Let now T̂ be the topological Tischler graph of a critically fixed anti-polynomial. Then the
following statements hold:

• Every face has ∞ on its boundary;

• The vertex ∞ has degree d − 1, where d is the degree of the anti-polynomial;

• The topological Tischler graph is unobstructed;

• T = T̂ ∩ R2 is a topological Tischler tree.

14



Chapter 3

Polynomial case

In this chapter, we prove Theorem 1.0.1; our main result on critically fixed polynomials. The proof
of this theorem is based on induction. Before providing the proof, we introduce two lemmas that
allow us to execute the induction basis and the induction step in this proof. However, we start
this chapter by considering a specific example of a critically fixed polynomial to get a feeling of the
tools and ideas that we are going to utilise in the proofs.

3.1 Example

Let f ∶ Ĉ→ Ĉ be the polynomial of degree 7 given by

f(z) = −15z
7 + 35z6 + 21z5

41
, (3.1)

and denote by G the iterated monodromy group IMG(f). In this subsection, we prove that G is
regular branch on itself.

The polynomial f is critically fixed, and the set of critical points of f is given by Cf = {0,1,∞}.
The Tischler graph Tisch(f) of this polynomial is depicted in Figure 3.1a. Here, circles represent
points in Cf and squares represent points in Fix(f) ∖ Cf . To simplify the picture, we have left
out infinity, which is connected to all vertices in Fix(f) ∖ Cf . The corresponding charge graph
Charge(f) of f is depicted in Figure 3.1b.

We choose a spanning subtree T of Charge(f) as shown in thick black edges in Figure 3.2a. Fur-
thermore, we choose t to be the fixed point in the outer face of the charge graph. The fundamental
group π1(Ĉ ∖Cf , t) is then generated by the loops a and b, depicted in red and green respectively
in Figure 3.2a. Note that each of them intersects exactly one edge of the chosen tree T . With a

(a)

∞

(b)

Figure 3.1: The Tischler graph (a) and the charge graph (b) for the map f from (3.1).
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∞a b

t

(a)

⋆
⋆

⋆
⋆

⋆
⋆

ℓ2

ℓ3

ℓ4
ℓ5

ℓ6 ℓ7

t

a
b

(b)

Figure 3.2: Computing the action of IMG(f): (a) The spanning subtree T of Charge(f) and the
corresponding generators a and b; (b) The preimage of Charge(f) under f .

slight abuse of notation, we denote by a and b the corresponding elements in π1(Ĉ∖Cf , t) and also
in G. Then a and b generate G as well.

In Figure 3.2b we see the preimage of 3.2a under f . For clarity, we have left out all preimages
of a and b that have the form of a loop. We choose a spanning subtree T ′ of the preimage of
Charge(f) under f , that is a subgraph of the preimage of T under f . This tree is shown in thick
black edges in Figure 3.2b. The fixed point t has 7 preimages in total; the preimages not equal to
t are depicted as ⋆. For each of these preimages, we choose a connecting path ℓi which connects t
to the preimage and which does not cross any of the edges of the spanning subtree T ′. Here, ℓ1 is
the constant path at the fixed point t. Furthermore, the edges corresponding to preimages of the
generators which cross T ′ are marked. Using Figure 3.2b and Proposition 2.3.2, we can now write
down the wreath recursions corresponding to the generators a and b. Namely,

a = ⟪a,1,1,1,1,1,1⟫(12345),
b = ⟪b,1,1,1,1,1,1⟫(167).

Note that the permutational parts σa = (12345) and σb = (167) of a and b are even, and hence
are elements of A7. Using these wreath recursions, we obtain the labeled Schreier graph of G on
the first level of the 7-regular rooted tree. Here we use a coloured edge to describe the action of
the corresponding generator; red and green for a and b respectively.

Using Figure 3.3, we try to come up with non-trivial elements in G that have only trivial
restrictions. We use commutators of powers of a and b to produce such elements. The elements we

2

3

1

4

5

7

6

a

b

Figure 3.3: The labeled Schreier graph of G with respect to {a, b}.
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construct are listed below.

[a−1, b−1] = aba−1b−1 = ⟪1,1,1,1,1,1,1⟫(175)
[a−2, b−1] = a2ba−2b−1 = ⟪1,1,1,1,1,1,1⟫(174)
[a−3, b−1] = a3ba−3b−1 = ⟪1,1,1,1,1,1,1⟫(173)
[a−4, b−1] = a4ba−4b−1 = ⟪1,1,1,1,1,1,1⟫(172)
[a−1, b−2] = ab2a−1b−2 = ⟪1,1,1,1,1,1,1⟫(165)
[a−2, b−2] = a2b2a−2b−2 = ⟪1,1,1,1,1,1,1⟫(164)
[a−3, b−2] = a3b2a−3b−2 = ⟪1,1,1,1,1,1,1⟫(163)
[a−4, b−2] = a4b2a−4b−2 = ⟪1,1,1,1,1,1,1⟫(162)

We can also write this as

[a−i, b−j] = aibja−ib−j = ⟪1,1,1,1,1,1,1⟫(1 8 − j 6 − i)

for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 2. Lemma A.3 then tells us that these constructed elements in fact
generate ⟪1,1,1,1,1,1,1⟫A7. It follows that ⟪a,1,1,1,1,1,1⟫ and ⟪b,1,1,1,1,1,1⟫ are in G. More
specifically, we have the following decompositions:

a ⋅ [a−1, b−1] ⋅ [a−2, b−1]−1 ⋅ [a−1, b−1]−1 ⋅ [a−3, b−1] ⋅ [a−4, b−1]−1 ⋅ [a−3, b−1]−1 = ⟪a,1,1,1,1,1,1⟫
b ⋅ [a−1, b−1]−1 ⋅ [a−1, b−2] ⋅ [a−1, b−1] = ⟪b,1,1,1,1,1,1⟫.

To see this, note that

(175)(174)−1(175)−1(173)(172)−1(173)−1 = (175)(147)(157)(173)(127)(137)
= (154)(132)
= (15432)
= (12345)−1

and

(175)−1(165)(175) = (157)(165)(175)
= (176)
= (167)−1.

We conclude that G × 1 × 1 × 1 × 1 × 1 × 1 ⊂ G, and thus that G ×G ×G ×G ×G ×G ×G ⊂ G. That
is, we proved the statement below.

Proposition 3.1.1. Let f be the polynomial from (3.1) and G be the iterated monodromy group
IMG(f). Then G is regular branch on itself.
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3.2 The base case lemma

In the following, we generalise the example from Section 3.1 to a more general setup which includes
the IMGs of all critically fixed polynomials with exactly two finite critical points.

Lemma 3.2.1. Let G = ⟨a, b⟩ be a subgroup of Aut(T[k+l−1]) generated by two elements a and b,
where k, l ∈ N≥2. Furthermore, suppose there are elements ā, b̄ ∈ G such that their wreath recursions
have the following form:

ā = ⟪1, . . . ,1, a®
x

,1, . . . ,1⟫α = ⟪1, . . . ,1, a®
x

,1, . . . ,1⟫(12 . . . k),

b̄ = ⟪1, . . . ,1, b®
y

,1, . . . ,1⟫β = ⟪1, . . . ,1, b®
y

,1, . . . ,1⟫(1 k + 1 . . . k + l − 1),

where x ∈ [k] and y ∈ {1, k + 1, . . . , k + l − 1}, and where α and β have the same parity as the
permutational part of a and b respectively. Let E < G be the subgroup of all elements of G with
even permutational part. Then the following two statements hold:

(i) ⟪1, . . . ,1⟫Ak+l−1 ⊂ E;

(ii) E × ⋅ ⋅ ⋅ ×E
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k+l−1 times

⊂ E.

Proof. The labeled Schreier graph for the action of ā and b̄ on [k + l − 1] is depicted in Figure 3.4.
We use this graph to create non-trivial elements that have only trivial restrictions. Like in Section
3.1, the constructed elements are special commutators. Namely, for x ∈ [k] and y = 1, they have
the following form:

[ā−i, b̄−j] = ⟪1, . . . ,1⟫(1 k + l − j k − i + 1) for 1 ≤ i ≤ k − x and 1 ≤ j ≤ l − 1
[āi−k, b̄−j] = ⟪1, . . . ,1⟫(1 k + l − j k − i + 1) for k − x + 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ l − 1.

2

3

1

k − 1
k

x

xα

k + l − 2

k + l − 1

k + 1

k + 2

y

yβ

a b

Figure 3.4: The labeled Schreier graph of ā and b̄ acting on [k + l − 1].
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Furthermore, for x ∈ [k] and y ∈ {k + 1, . . . , k + l − 1}, they have the following form:

[ā−i, b̄−j] = ⟪1, . . . ,1⟫(1 k + l − j k − i + 1) for 1 ≤ i ≤ k − x and 1 ≤ j ≤ k + l − 1 − y
[āi−k, b̄−j] = ⟪1, . . . ,1⟫(1 k + l − j k − i + 1) for k − x + 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ k + l − 1 − y
[ā−i, b̄l−j] = ⟪1, . . . ,1⟫(1 k + l − j k − i + 1) for 1 ≤ i ≤ k − x and k + l − y ≤ j ≤ l − 1
[āi−k, b̄l−j] = ⟪1, . . . ,1⟫(1 k + l − j k − i + 1) for k − x + 1 ≤ i ≤ k − 1 and k + l − y ≤ j ≤ l − 1.

Using these elements and Lemma A.3, we see that we have ⟪1, . . . ,1⟫Ak+l−1 ⊂ ⟨ā, b̄⟩ ⊆ G. The set
⟪1, . . . ,1⟫Ak+l−1 consists solely of elements with even permutational part, so by definition, we have
⟪1, . . . ,1⟫Ak+l−1 ⊂ E, proving the first statement. To prove the second statement, we distinguish
three different cases, depending on the parity of the permutational parts of the generators a and b.

Case 1: both a and b have even permutational part. In this case, both α and β are even permuta-
tions and the subgroup E is in fact the whole groupG. Combining the fact that ⟪1, . . . ,1⟫Ak+l−1 ⊂ E
with the fact that α and β are even permutations, we see that we can express the elements
⟪1, . . . ,1⟫α−1 and ⟪1, . . . ,1⟫β−1 in terms of a and b. It follows that

ā ⋅ ⟪1, . . . ,1⟫α−1 = ⟪1, . . . ,1, a®
x

,1, . . . ,1⟫α ⋅ ⟪1, . . . ,1⟫α−1 = ⟪1, . . . ,1, a®
x

,1, . . . ,1⟫

and
b̄ ⋅ ⟪1, . . . ,1⟫β−1 = ⟪1, . . . ,1, b®

y

,1, . . . ,1⟫β ⋅ ⟪1, . . . ,1⟫β−1 = ⟪1, . . . ,1, b®
y

,1, . . . ,1⟫

are both elements of ⟨a, b⟩ = E. Combining this with ⟪1, . . . ,1⟫Ak+l−1 ⊂ E, we conclude that
E × ⋅ ⋅ ⋅ ×E
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k+l−1 times

⊂ E, proving the second statement.

Case 2: both a and b have odd permutational part. In this case, both α and β are odd permuta-
tions. Furthermore, the subgroup E of all elements of G with even permutational part is generated
by the set {a2, b2, ab}; see Lemma A.4. We prove that ⟪1, . . . ,1, a2®

x

,1, . . . ,1⟫, ⟪1, . . . ,1, b2®
y

,1, . . . ,1⟫

and ⟪1, . . . ,1, ab®
x

,1, . . . ,1⟫ are all elements of the subgroup E.

We have that ⟪1, . . . ,1⟫Ak+l−1 ⊂ E, which in particular means that ⟪1,1, . . . ,1⟫(k + 1xα x) is
an element of E. We now look at the following products:

⟪1, . . . ,1⟫(k + 1xα x) ⋅ ā = ⟪1, . . . ,1⟫(k + 1xα x) ⋅ ⟪1, . . . ,1, a®
x

,1, . . . ,1⟫α

= ⟪1, . . . ,1, a®
xα

,1, . . . ,1⟫(k + 1xα x)α,

ā ⋅ ⟪1, . . . ,1, a®
xα

,1, . . . ,1⟫(k + 1xα x)α = ⟪1, . . . ,1, a®
x

,1, . . . ,1⟫α ⋅ ⟪1, . . . ,1, a®
xα

,1, . . . ,1⟫(k + 1xα x)α

= ⟪1, . . . ,1, a2®
x

,1, . . . ,1⟫α(k + 1xα x)α.

Note that α(k + 1xα x)α is an even permutation, hence its inverse is also even. Again using that
⟪1, . . . ,1⟫Ak+l−1 ⊂ E, it follows that ⟪1, . . . ,1, a2®

x

,1, . . . ,1⟫ ∈ E.

19



We can use the same kind of argument to prove that ⟪1, . . . ,1, b2®
y

,1, . . . ,1⟫ ∈ E.

Lastly, we show that ⟪1, . . . ,1, ab®
x

,1, . . . ,1⟫ ∈ E. For this, let z ∈ [k + l − 1] ∖ {xα, y} and note

that ⟪1, . . . ,1⟫(z xα y) ∈ E. We then look at the following products:

⟪1, . . . ,1⟫(z xα y) ⋅ b̄ = ⟪1, . . . ,1⟫(z xα y) ⋅ ⟪1, . . . ,1, b®
y

,1, . . . ,1⟫β

= ⟪1, . . . ,1, b®
xα

,1, . . . ,1⟫(z xα y)β,

ā ⋅ ⟪1, . . . ,1, b®
xα

,1, . . . ,1⟫(z xα y)β = ⟪1, . . . ,1, a®
x

,1, . . . ,1⟫α ⋅ ⟪1, . . . ,1, b®
xα

,1, . . . ,1⟫(z xα y)β

= ⟪1, . . . ,1, ab®
x

,1, . . . ,1⟫α(z xα y)β.

The permutation α(z xα y)β again is an even permutation, from which we can conclude that
⟪1, . . . ,1, ab®

x

,1, . . . ,1⟫ ∈ E. Combining the fact that ⟪1, . . . ,1, a2®
x

,1, . . . ,1⟫, ⟪1, . . . ,1, b2®
y

,1, . . . ,1⟫

and ⟪1, . . . ,1, ab®
x

,1, . . . ,1⟫ are all elements of E with ⟪1, . . . ,1⟫Ak+l−1 ⊂ E, we conclude that in this

case it also holds that E × ⋅ ⋅ ⋅ ×E
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k+l−1 times

⊂ E.

Case 3: one of the generators a, b has even permutational part and the other generator has
odd permutational part. Without loss of generality, we assume that a has even permutational part
and b has odd permutational part, so α is an even permutation and β is an odd permutation.
In this case the subgroup E of all elements of G with even permutational part is generated by
the set {a, b2, bab−1}; see Lemma A.4. We prove that ⟪1, . . . ,1, a®

x

,1, . . . ,1⟫, ⟪1, . . . ,1, b2®
y

,1, . . . ,1⟫,

⟪1, . . . ,1, bab−1
²

y

,1, . . . ,1⟫ ∈ E.

As in the case of two even permutations, from the fact that ⟪1, . . . ,1⟫Ak+l−1 ⊂ E it follows
that ⟪1, . . . ,1, a®

x

,1, . . . ,1⟫ ∈ E. Using the same reasoning as in the case of two odd permutations,

we can state that ⟪1, . . . ,1, b2®
y

,1, . . . ,1⟫ ∈ E. To show that ⟪1, . . . ,1, bab−1
²

y

,1, . . . ,1⟫ ∈ E, we let
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z ∈ [k+ l−1]∖{yβ, x} and note that ⟪1, . . . ,1⟫(z yβ x) ∈ E. We then look at the following equations:

⟪1, . . . ,1⟫(z yβ x) ⋅ ā = ⟪1, . . . ,1⟫(z yβ x) ⋅ ⟪1, . . . ,1, a®
x

,1, . . . ,1⟫

= ⟪1, . . . ,1, a®
yβ

,1, . . . ,1⟫(z yβ x)

b̄ ⋅ ⟪1, . . . ,1, a®
yβ

,1, . . . ,1⟫(z yβ x) = ⟪1, . . . ,1, b®
y

,1, . . . ,1⟫β ⋅ ⟪1, . . . ,1, a®
yβ

,1, . . . ,1⟫(z yβ x)

= ⟪1, . . . ,1, ba®
y

,1, . . . ,1⟫β(z yβ x)

b̄−1 = ⟪1, . . . ,1, b−1°
yβ

,1, . . . ,1⟫β−1

⟪1, . . . ,1, ba®
y

,1, . . . ,1⟫β(z yβ x) ⋅ b̄−1 = ⟪1, . . . ,1, ba®
y

,1, . . . ,1⟫β(z yβ x) ⋅ ⟪1, . . . ,1, b−1°
yβ

,1, . . . ,1⟫β−1

= ⟪1, . . . ,1, bab−1
²

y

,1, . . . ,1⟫β(z yβ x)β−1.

Again, by noting that β(z yβ x)β−1 is an even permutation, we can conclude that it holds that
⟪1, . . . ,1, bab−1

²
y

,1, . . . ,1⟫ ∈ E. One last time combining ⟪1, . . . ,1, a®
x

,1, . . . ,1⟫, ⟪1, . . . ,1, b2®
y

,1, . . . ,1⟫,

⟪1, . . . ,1, bab−1
²

y

,1, . . . ,1⟫ ∈ E with the fact that ⟪1, . . . ,1⟫Ak+l−1 ⊂ E, we conclude that in the third

case it also holds that E × ⋅ ⋅ ⋅ ×E
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k+l−1 times

⊂ E. In conclusion, we have proven that in all three cases both

statements hold, proving the lemma.

Lemma 3.2.1 leads to a more general corollary, but to phrase this corollary, we first need to
introduce a useful notation.

Definition 3.2.2. Let G < Aut(TX), H < G and S ⊆ X. Then we define

H[S] ∶= {g ∈ Aut(TX) ∣ g∣x ∈H for x ∈ S, g∣x = 1 for x ∉ S}.
Recall that A(X) denotes the alternating group on the set X. We note that for S ⊆ X, we may

naturally view the group A(S) as a subgroup of A(X).
Corollary 3.2.3. Let X be a finite set, let a1, a2 ∈ Aut(TX) and let G = ⟨a1, a2⟩. Furthermore, let
ā1, ā2 ∈ G and suppose that for i ∈ {1,2} the following conditions hold:

• the permutational part of āi consists of a single cycle σi on a set Xi ⊂ X with ∣Xi∣ ≥ 2;

• the parity of σi coincides with the parity of the permutational part of ai;

• āi restricts to ai at xi ∈ Xi; all other restrictions are trivial.

Furthermore, suppose that ∣X1 ∩ X2∣ = 1. Let E < G be the subgroup of all elements of G with even
permutational part. Then the following holds:

(i) ⟪1, . . . ,1⟫A(X1 ∪X2) ⊂ E;

(ii) E[X1 ∪X2] ⊂ E.
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3.3 The induction step lemma

In this section, we prove the lemma below, which we will later utilize in the induction step of the
proof of our first main result (Theorem 3.4.1).

Lemma 3.3.1. Let m ∈ N≥3 and G = ⟨a1, a2, . . . , am⟩ be a subgroup of Aut(T[M]) for some M ≥ 4.
Suppose that for every 1 ≤ i ≤m there exists an element āi ∈ G such that:

• the permutational part of āi consists of a single cycle σi on a set Xi ⊂ [M] of size ki ≥ 2;

• the parity of σi coincides with the parity of the permutational part of ai;

• āi restricts to ai at some xi ∈ Xi, while all the other restrictions are trivial.

For every 1 ≤ i ≤m, let

Yi ∶=
i

⋃
j=1

Xj

and let Ei < ⟨a1, . . . , ai⟩ < G be the subgroup of all elements of ⟨a1, . . . , ai⟩ with even permutational
part. Let 3 ≤ n ≤m and suppose that En−1 satisfies the following two conditions:

(i) ⟪1, . . . ,1⟫A(Yn−1) ⊂ En−1;

(ii) En−1[Yn−1] ⊂ En−1.

Next, assume that ∣Yn−1 ∩Xn∣ ≥ 1 and ∣Yn−1 ∖Xn∣ ≥ 2. Then En also satisfies conditions (i) and (ii).

Proof. Let x ∈ Yn−1 ∩Xn and let y1, y2 ∈ Yn−1 ∖Xn. According to the statement, we have

ān = ⟪1, . . . ,1, an
x̄n

,1, . . . ,1⟫σn,

where xn ∈ Xn. Since En−1 satisfies conditions (i) and (ii), for every g ∈ En−1 there is an element
ḡ ∈ En−1 of the form

ḡ = ⟪1, . . . ,1, g
®
x

,1, . . . ,1⟫(xy1 y2).

y1

x

y2

xσ
−2
n

xσ
−1
n

xσn

xσ
2
n

xn

xσn
n

g

an

Figure 3.5: The labeled Schreier graph depicting ān and ḡ.
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Figure 3.5 illustrates the labeled Schreier graph for the action of ān and ḡ. Here, we only depicted
the “non-trivial part”, that is, we do not show the vertices where both ān and ḡ act trivially.

We first prove that En satisfies the first condition, meaning that ⟪1, . . . ,1⟫A(Yn) ⊂ En. Apply-
ing Corollary 3.2.3 to ān and ḡ, we see that ⟪1, . . . ,1⟫A(Xn∪{y1, y2}) < En. In particular, this means
that ⟪1, . . . ,1⟫(x y1 m) ∈ En for all m ∈ Xn∖{x}. We assumed that ⟪1, . . . ,1⟫A(Yn−1) ⊂ En−1 ⊂ En,
from which it follows that ⟪1, . . . ,1⟫(x y1 m) ∈ En for all m ∈ Yn−1 ∖ {x, y1}. Combining these two
statements, we see that we can use Lemma A.2 to conclude that ⟪1, . . . ,1⟫A(Yn) ⊂ En, proving
that En satisfies condition (i).

We now go on to proving the second condition, namely that En[Yn] ⊂ En. We do this by
showing that ⟪1, . . . ,1, s®

x

,1, . . . ,1⟫ ∈ En for all generators s of En. To show this, we distinguish

two different cases.
Case 1: kn is odd, so σn is an even permutation. In this case, both ān and an are elements of

En. By Lemma A.4 and since En−1[Yn−1] ⊂ En−1 ⊂ En, it is sufficient to show that the following
statements hold:

• ⟪1, . . . ,1, an
x̄

,1, . . . ,1⟫ ∈ En;

• ⟪1, . . . ,1, aiana−1i
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

x

,1, . . . ,1⟫ ∈ En for all ai ∈ {a1, . . . , an−1} with odd permutational part.

Using that ⟪1, . . . ,1⟫A(Yn) ⊂ En, we can state that ān ⋅ ⟪1, . . . ,1⟫σ−1n = ⟪1, . . . ,1, an
x̄n

,1, . . . ,1⟫ ∈ En,

and even that ⟪1, . . . ,1, an
x̄

,1, . . . ,1⟫ ∈ En.

Now fix ai ∈ {a1, . . . , an−1} with odd permutational part, so σi is an odd permutation. Con-
jugating āi, ān and ā−1i by certain elements of ⟪1, . . . ,1⟫A(Yn), we can construct elements of the
form

⟪1, . . . ,1, ai®
x

,1, . . . ,1⟫o1,⟪1, . . . ,1, an
x̄o1

,1, . . . ,1⟫e,⟪1, . . . ,1, a−1i°
xo1e

,1, . . . ,1⟫o2 ∈ ⟨a1, a2, . . . , an⟩,

where o1, o2 are odd permutations on Yn and e is an even permutation on Yn. Multiplying these
three elements, we get

⟪1, . . . ,1, ai®
x

,1, . . . ,1⟫o1 ⋅ ⟪1, . . . ,1, an
x̄o1

,1, . . . ,1⟫e ⋅ ⟪1, . . . ,1, a−1i°
xo1e

,1, . . . ,1⟫o2

= ⟪1, . . . ,1, aiana−1i
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

x

,1, . . . ,1⟫o1eo2 ∈ ⟨a1, . . . , an⟩.

Since o1eo2 is an even permutation, we can now conclude that ⟪1, . . . ,1, aiana−1i
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

x

,1, . . . ,1⟫ ∈ En.

Case 2: kn is even, so σn is an odd permutation. By Lemma A.4, it is sufficient to show that
the following statements hold:

• ⟪1, . . . ,1, a2n
x̄

,1, . . . ,1⟫ ∈ En;
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• ⟪1, . . . ,1, aian±
x

,1, . . . ,1⟫ ∈ En and ⟪1, . . . ,1, anai±
x

,1, . . . ,1⟫ ∈ En for all ai ∈ {a1, . . . , an−1} with

odd permutational part;

• ⟪1, . . . ,1, anaia−1n
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

x

,1, . . . ,1⟫ ∈ En for all ai ∈ {a1, . . . , an−1} with even permutational part.

Conjugating the element an by elements of ⟪1, . . . ,1⟫A(Yn), we may construct elements of the form
⟪1, . . . ,1, an

x̄

,1, . . . ,1⟫o1 ∈ ⟨a1, . . . , an⟩ and ⟪1, . . . ,1, an
x̄o1

,1, . . . ,1⟫o2 ∈ ⟨a1, . . . , an⟩, where o1 and o2

are odd permutations on Yn. Multiplying these two elements, we get

⟪1, . . . ,1, an
x̄

,1, . . . ,1⟫o1 ⋅ ⟪1, . . . ,1, an
x̄o1

,1, . . . ,1⟫o2 = ⟪1, . . . ,1, a2n
x̄

,1, . . . ,1⟫o1o2 ∈ ⟨a1, . . . , an⟩.

The permutation o1o2 is an even permutation, because o1 and o2 are both odd permutations. From
this, we can conclude that ⟪1, . . . ,1, a2n

x̄

,1, . . . ,1⟫ ∈ En.

Next, fix ai ∈ {a1, . . . , an−1} with odd permutational part, which means that σi is an odd
permutation. Conjugating āi and ān by certain elements of ⟪1, . . . ,1⟫A(Yn), we can construct
elements ⟪1, . . . ,1, ai®

x

,1, . . . ,1⟫o1 ∈ ⟨a1, . . . , an⟩ and ⟪1, . . . ,1, an
x̄o1

,1, . . . ,1⟫o2 ∈ ⟨a1, . . . , an⟩, where o1

and o2 are odd permutations on Yn. Multiplying these elements, we get

⟪1, . . . ,1, ai®
x

,1, . . . ,1⟫o1 ⋅ ⟪1, . . . ,1, an
x̄o1

,1, . . . ,1⟫o2 = ⟪1, . . . ,1, aian±
x

,1, . . . ,1⟫o1o2 ∈ ⟨a1, . . . , an⟩.

As o1o2 is an even permutation, this also means that ⟪1, . . . ,1, aian±
x

,1, . . . ,1⟫ ∈ En. Using the same

kind of argument we can also conclude that ⟪1, . . . ,1, anai±
x

,1, . . . ,1⟫ ∈ En.

Now fix ai ∈ {a1, . . . , an−1} with even permutational part, so σi is an even permutation. Conju-
gating ān, āi and ā

−1
n by elements of ⟪1, . . . ,1⟫A(Yn), we can construct elements of the form

⟪1, . . . ,1, an
x̄

,1, . . . ,1⟫o1,⟪1, . . . ,1, ai®
xo1

,1, . . . ,1⟫e,⟪1, . . . ,1, a−1n°
xo1e

,1, . . . ,1⟫o2 ∈ ⟨a1, . . . , an⟩,

where o1 and o2 are odd permutations on Yn and e is an even permutation on Yn. Multiplying
these three elements, we get

⟪1, . . . ,1, an
x̄

,1, . . . ,1⟫o1 ⋅ ⟪1, . . . ,1, ai®
xo1

,1, . . . ,1⟫e ⋅ ⟪1, . . . ,1, a−1n°
xo1e

,1, . . . ,1⟫o2

= ⟪1, . . . ,1, anaia−1n
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

x

,1, . . . ,1⟫o1eo2 ∈ ⟨a1, . . . , an⟩.

The permutational part of this element is an even permutation, which means that we can conclude
that ⟪aiana−1i ,1, . . . ,1⟫ is an element of En.

We have now proven that ⟪1, . . . ,1, s®
x

,1, . . . ,1⟫ ∈ En for all generators s of En, which implies

that En[Yn] ⊂ En and finishes the proof of the lemma.
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3.4 Proof of branchness

Theorem 3.4.1. Let f ∶ Ĉ→ Ĉ be a critically fixed polynomial with ∣Cf ∣ ≥ 3. Let G ∶= IMG(f) and
let E < G be the subgroup of all elements of G with even permutational part. Then G is regular
branch on E.

Proof. Let d be the degree of f and let Cf = {c1, c2, . . . , cn,∞} be the set of critical points of f .
We start this proof by looking at the charge graph Charge(f). As shown in Section 2.4.3, in this
graph, every edge is connected to the critical point ∞. Let now t be the fixed point in one of the
faces of the charge graph and choose a spanning subtree T of Charge(f). Then, for every i ∈ [n],
we define a loop ai based at t. We do this by connecting t to a small loop around ci by a path
that does not cross T . Note that for every i ∈ [n], the loop ai crosses exactly one edge of T exactly
once, namely, the edge of T that connects ∞ and ci. The fundamental group π1(Ĉ ∖Cf , t) is then
generated by these loops ai. With a slight abuse of notation, we denote by ai not only the element
in π1(Ĉ ∖ Cf , t), but also in G = IMG(f). Then the set {a1, . . . , an} also generates the iterated
monodromy group G.

Next, we look at the graph G± as defined in Section 2.4.2 and the lifts of the loops ai under f .
Denote by T+ the graph consisting of the edges e+ of G+ such that f(e+) is an edge of T . Note that
T+ is a spanning subtree of G± which is isotopic to T relative to Cf . Furthermore, since f sends e+i
homeomorphically onto ei, we have that ∣f−1(ai) ∩ e+i ∣ = ∣ai ∩ ei∣ = 1. This means that exactly one
lift of ai crosses an edge of the tree T+, and that this edge is exactly the edge e+i . Then, for every
preimage tj of t (t1 being t itself), we choose a path ℓj connecting t to tj which does not cross any
edge of T+. The path ℓ1 is the constant path at t.

Using Proposition 2.3.2, we can now say things about the wreath recursions of the generators
ai. We can state the following properties of ai:

• The permutational part of ai consists of a single cycle σi on a set Xi ⊂ [d] of size ki ≥ 2. Here,
the number ki is given by the local degree of the critical point ci. Furthermore, the set Xi

corresponds exactly to the preimages of t in the blow-up of the edges which are crossed by
the loop ai exactly once.

• The generator ai restricts to ai at some xi ∈ Xi, while all other restrictions are trivial. The
reason for this is that exactly one lift of ai crosses an edge of T+ and that none of the paths
ℓj crosses an edge of T+.

We use [Nek05, Proposition 6.8.2] to conclude that the reduced labeled Schreier graph of G with
respect to {a1, . . . , an} is a tree of n cycles. This means that for every distinct i, j ∈ [n] it holds
that ∣Xi ∩Xj ∣ ∈ {0,1} and for every i ∈ [n] there exists at least one j ∈ [n] such that ∣Xi ∩Xj ∣ = 1.

We now want to use induction on the number of cycles of the reduced labeled Schreier graph
to prove that G is regular branch on E. To do so, we need to have an order through which we are
going to walk through the cycles. We make this order in the following way. Fix ai ∈ {a1, . . . , an}
such that the respective cycle corresponds to a leaf in the tree of cycles, i.e., for Xi it holds that
there exists exactly one j ∈ [n] such that ∣Xi ∩ Xj ∣ = 1. We define gn ∶= ai. We now remove the
cycle corresponding to ai from the tree of cycles. In the remaining tree, we again choose a cycle
corresponding to a leaf; we define this to be gn−1. We repeat this process until only one cycle
remains. This cycle will be g1.

Note that for each i ∈ [n] the following conditions hold:
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• the permutational part of gi consists of a single cycle on a set Zi ⊂ X with ∣Zi∣ ≥ 2;

• gi restricts to gi at zi ∈ Zi; all other restrictions are trivial.

Define

Yi ∶=
i

⋃
j=1

Zj

and let Ei < ⟨g1, . . . , gi⟩ < G be the subgroup of all elements of ⟨g1, . . . , gi⟩ with even permutational
part.

Note that we have that ∣Z1 ∩ Z2∣ = 1. This means we can now use Corollary 3.2.3 to state the
following:

(i) ⟪1, . . . ,1⟫A(Y2) ⊂ E2;

(ii) E2[Y2] ⊂ E2.

This will be our induction basis.
Now assume that condition (i) and condition (ii) hold for Ei−1 with i ∈ {3,4, . . . , n}. Because

of how we have chosen the order of cycles, we have that ∣Yi−1 ∩ Zi∣ = 1, from which it follows that
∣Yi−1 ∖ Zi∣ ≥ 2. This means that we can use Lemma 3.3.1 to state that

(i) ⟪1, . . . ,1⟫A(Yi) ⊂ Ei;

(ii) Ei[Yi] ⊂ Ei.

Using induction, we can then also deduce that

(i) ⟪1, . . . ,1⟫A(Yn) ⊂ En;

(ii) En[Yn] ⊂ En.

Note that En = E and Yn = [d]. This then implies that G is regular branch on E, which concludes
the argument.
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Chapter 4

Rational case

In this chapter, we look at two examples corresponding to two critically fixed rational maps that
are not polynomials. In the first example, we see that we can apply the tools we have used to prove
our statement for polynomials to prove a similar result in the case of this specific rational map.
However, in the second example, we see that it is not possible to apply these tools and we prove a
slightly different result.

4.1 Square example

Let f ∶ Ĉ→ Ĉ be the rational map given by

f(z) = 3z5 − 20z
5z4 − 12 , (4.1)

and denote by G the iterated monodromy group IMG(f). In this section, we will prove that G is
regular branch on itself.

The rational map f is a critically fixed map, and the critical points of f are given by the
set Cf = {−1 − i,−1 + i,1 − i,1 + i}. Furthermore, the fixed points of f are given by the set
Fix(f) = {−1 − i,−1 + i,1 − i,1 + i,0,∞}. The Tischler graph Tisch(f) is depicted in Figure 4.1a.
Here, circles represent critical points and squares represent points in Fix(f)∖Cf . The corresponding
charge graph Charge(f) is depicted in Figure 4.1b.

We choose a spanning subtree T of the critical set Cf in Tisch(f) as shown in thick black edges
in Figure 4.2a. Furthermore, we choose a fixed point t, as shown in Figure 4.2a. The fundamental

(a) (b)

Figure 4.1: The Tischler graph (a) and the charge graph (b) for the map f from (4.1).

27



a

b c

d

t

(a)

⋆

⋆

⋆ ⋆

a

b c

d

1

2

3

4

5

(b)

Figure 4.2: Computing the action of IMG(f): (a) The spanning subtree T of Tisch(f) and the
corresponding generators a, b, c and d; (b) The preimage of Charge(f) under f .

group π1(Ĉ∖Cf , t) is then generated by the loops a, b, c and d, depicted in orange, red, green and
blue respectively in Figure 4.2a. Note that each of them intersects exactly one edge of the chosen
tree T . With a slight abuse of notation, we denote by a, b, c and d the corresponding elements in
π1(Ĉ ∖Cf , t) and also in G. Then a, b, c and d not only generate π1(Ĉ ∖Cf , t), but also generate
the iterated monodromy group G.

In Figure 4.2b we see the lifts of the four loops under f . To simplify the picture, we have left out
all lifts that have the form of a loop. Using Figure 4.2b, we can write down the wreath recursions
corresponding to the generators of G. Namely,

a = ⟪1,1,1, a,1⟫(145),
b = ⟪1,1,1,1, b⟫(152),
c = ⟪1, c,1,1,1⟫(123),
d = ⟪1,1, d,1,1⟫(134).

Next, we apply Corollary 3.2.3 to the generators a and c and conclude that it holds that
⟪1,1,1,1,1⟫A5 ⊂ G. As all four generators have even permutational part, it follows that ⟪1,1,1, a,1⟫,
⟪1,1,1,1, b⟫, ⟪1, c,1,1,1⟫ and ⟪1,1, d,1,1⟫ are elements of G. We can use this to conclude that
G ×G ×G ×G ×G ⊂ G, which means that we have proven the statement below.

Proposition 4.1.1. Let f be the polynomial from (4.1) and G be the iterated monodromy group
IMG(f). Then G is regular branch on itself.

Lastly, we note that we can apply a modified version of the proof above to the more general
case of a critically fixed rational maps whose charge graph is a square with multiple edges.

4.2 Triangle example

In this section, we study the iterated monodromy group G associated to the charge graph from in
Figure 4.3b. In Figure 4.3a, we see the Tischler graph corresponding to this charge graph depicted
in red.

We choose a spanning subtree T of the Tischler graph; this tree is depicted in thick red lines
in Figure 4.4a. Furthermore, we choose a basepoint t, as shown in Figure 4.4a. The iterated
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(a) (b)

Figure 4.3: The Tischler graph (a) and the charge graph (b).

monodromy group G is then generated by the loops a and b, depicted in blue and green respectively
in Figure 4.4a. Note that each of them intersects exactly one edge of the chosen tree T .

In Figure 4.4b we see the lifts of the two loops. To simplify the picture, we have left out all
lifts that have the form of a loop. Using Figure 4.2b, we can write down the wreath recursions
corresponding to the generators of G. Namely,

a = ⟪1,1,1, a⟫(124),
b = ⟪1,1, b,1⟫(234).

Let G = ⟨a, b⟩ be the group generated by a and b. Furthermore, let K < G be the subgroup
generated by the following elements:

g1 = a2b = ⟪1, a, b, a⟫(12)(34),
g2 = aba = ⟪1,1, ba, a⟫(13)(24),
g3 = a−1b = ⟪a−1,1, b,1⟫(12)(34),
g4 = ba−1 = ⟪a−1,1, b,1⟫(14)(23).

We prove that G is regular branch on K. For this, we first consider the following commutators:

g−13 g4 = [b, a−1] = ⟪1,1,1,1⟫(13)(24),
g4g2g

−1
3 g−11 = [b−1, a−1b−1] = ⟪1,1,1,1⟫(14)(34).

Using these two elements, we see that we have ⟪1,1,1,1⟫K4 ⊆K, where K4 denotes the Klein four-
group. This means that we also have that ⟪1, a, b, a⟫,⟪1,1, ba, a⟫,⟪a−1,1, b,1⟫,⟪a−1,1, b,1⟫ ∈ K,
and hence that ⟪1, a−1, b−1, a−1⟫,⟪1,1, a−1b−1, a−1⟫,⟪a,1, b−1,1⟫,⟪a,1, b−1,1⟫ ∈K.

b

a
t

(a)

⋆

⋆

⋆
b

a4
1

3

2

(b)

Figure 4.4: Computing the action of IMG(f): (a) The spanning subtree T of the Tischler graph
and the corresponding generators a and b; (b) The preimage of the charge graph.
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We now use these elements to prove that ⟪g1,1,1,1⟫ = ⟪a2b,1,1,1⟫ ∈ K. For this, we look at
the following products:

⟪a,1, b−1,1⟫ ⋅ ⟪1,1, ba, a⟫ = ⟪a,1, a, a⟫,
⟪1,1,1,1⟫(14)(23) ⋅ ⟪a,1, a, a⟫ ⋅ ⟪1,1,1,1⟫(14)(23) = ⟪a, a,1, a⟫,

⟪1, a−1, b−1, a−1⟫ ⋅ ⟪1,1, ba, a⟫ = ⟪1, a−1, a,1⟫,
⟪1,1,1,1⟫(12)(34) ⋅ ⟪1, a−1, a,1⟫ ⋅ ⟪1,1,1,1⟫(12)(34) = ⟪a−1,1,1, a⟫,

⟪a, a,1, a⟫ ⋅ ⟪a−1,1,1, a⟫ = ⟪1, a,1, a2⟫,
⟪1,1,1,1⟫(12)(34) ⋅ ⟪1, a,1, a2⟫ ⋅ ⟪1,1,1,1⟫(12)(34) = ⟪a,1, a2,1⟫,

⟪a,1, a2,1⟫ ⋅ ⟪a−1,1, b,1⟫ = ⟪1,1, a2b,1⟫.

Combining the fact that ⟪1,1, a2b,1⟫ ∈ K with the fact that ⟪1,1,1,1⟫K4 ⊆ K, we conclude that
⟪g1,1,1,1⟫ = ⟪a2b,1,1,1⟫ ∈ K. We can use similar arguments to show that ⟪gi,1,1,1⟫ ∈ K for all
i ∈ [4]. Again using the fact that ⟪1,1,1,1⟫K4 ⊆ K, this means we can conclude that G is regular
branch on K.
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Chapter 5

Anti-polynomial case

In this chapter, we prove our main result for anti-polynomial maps. For this proof we make use of
the lemmas we have proven in the chapter on polynomial maps.

Theorem 5.0.1. Let f ∶ Ĉ→ Ĉ be a critically fixed anti-polynomial with ∣Cf ∣ ≥ 3. Let G ∶= IMG(f)
and let E < G be the subgroup of all elements of G with even permutational part. Then G is regular
branch on E.

Proof. Let Cf = {c1, c2, . . . , cn,∞} be the set of critical points of f and let d be the degree of f . We
start this proof by looking at the topological Tischler graph of the polynomial f . We denote this
graph by T̂ . We now distinguish two different cases, depending on the structure of the faces of the
graph T̂ .

Case 1: every face of T̂ has at most two critical points on its boundary. From this it follows
that every critical point is adjacent to ∞ in T̂ . To see this, suppose that there is a critical point
which is not adjacent to ∞. Because of the structure of T̂ , this means that this critical point is
adjacent to at least 3 other critical points. However, this would also mean that we have a face with
more than 2 points on its boundary, namely the critical point we started it and 2 of the adjacent
points. This contradicts our assumption, meaning that we indeed have that every critical point is
adjacent to ∞ in T̂ .

We then choose a spanning tree T ′ of T̂ such that all the critical points in Cf ∖ {∞} are leaves
of this tree. Next, we define T to be the tree obtained by removing ∞ and all adjacent edges from
T̂ . We choose a basepoint t in a face Ft which has two critical points on its boundary; one of which
being a leaf of T . For every i ∈ [n], we now define a loop ai based at t around the critical point ci
which crosses exactly one edge of the spanning tree T ′ exactly once. We do this by connecting t
to a small loop around ci by a path that does not cross T ′. The fundamental group π1(Ĉ ∖Cf , t)
is then generated by these loops. With a slight abuse of notation, we denote by ai not only the
element in π1(Ĉ ∖Cf , t), but also in IMG(f). Then the set {a1, . . . , an} also generates IMG(f).

We use the Schottky map associated to T̂ to study the lifts of the loops {a1, . . . , an}. We have
that the basepoint t has exactly d preimages under f ; one in every face, except in Ft. Furthermore,
we have that for every i ∈ [n], exactly one lift of the loop ai crosses an edge of the spanning tree
T ′, namely the edge in T ′ connecting ci to ∞. This means that ai has exactly one non-trivial
restriction; here it restricts to a−1i . Furthermore, the non-trivial lifts of every loop ai close up to a
cycle on the preimages of t in the faces of which ci is a point on the boundary. This means that
we have that the permutational part of ai is a cycle for every i ∈ [n].
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We can use the structure of the wreath recursion of ai to describe the structure of a−1i . Using
the statements above, we see that for every i ∈ [n] we have that:

• the permutational part of a−1i consists of a single cycle on a set Xi of size ki ≥ 2;

• the parity of the permutational part of a−1i coincides with the parity of the permutational
part of ai;

• a−1i restricts to ai at some xi ∈ Xi; while all other restrictions are trivial.

For our proof based on induction, we fix an order through which to walk through the cycles
corresponding to the inverses of our generators. We define g1 to be the inverse of the generator
corresponding to the critical point on the boundary of Ft; g1 being that critical point which is a
leaf of T . We let g2 be the inverse of the generator corresponding to the second critical point on the
boundary of Ft. Next, we let g3 be the inverse of the generator corresponding to an arbitrary cycle
adjacent to g2. We continue this way, by letting gj+1 be the inverse of the generator corresponding
to an arbitrary cycle adjacent to at least one of the cycles corresponding to the set {gi ∣1 ≤ i ≤ j}.
Before continuing our proof, we first define the following things. For every i ∈ [n], we define σi to
be the permutational part of gi, and Xi to be the set on which σi acts non-trivially. We define

Yi ∶=
i

⋃
j=1

Xi

and let Ei < ⟨g−11 , . . . , g−1i ⟩ < G be the subgroup of all elements of ⟨g−11 , . . . , g−1i ⟩ with even permuta-
tional part.

Note that we have that ∣X1 ∩ X2∣ = 1. This means we can now use Corollary 3.2.3 to state our
induction basis:

(i) ⟪1, . . . ,1⟫A(Y2) ⊂ E2;

(ii) E2[Y2] ⊂ E2.

Now assume that condition (i) and condition (ii) hold for Ei−1 with i ∈ {3,4, . . . , n}. For every
i ∈ {3,4, . . . , n}, we have that X1 ∩ Xi = ∅, meaning that ∣Yi−1 ∖ Xi∣ ≥ 2, as ∣X1∣ ≥ 2. Furthermore,
because of how we have chosen the order of cycles, we have that ∣Yi−1 ∩ Xi∣ ≥ 1. This means that
we can use Lemma 3.3.1 to state that

(i) ⟪1, . . . ,1⟫A(Yi) ⊂ Ei;

(ii) Ei[Yi] ⊂ Ei.

Using induction, we can then also state that

(i) ⟪1, . . . ,1⟫A(Yn) ⊂ En;

(ii) En[Yn] ⊂ En.

Note that En = E and Yn = [d]. This then implies that G is regular branch on E, which concludes
the argument of the first case.

Case 2: there is at least one face of T̂ which has at least three critical points on its boundary.
We start by choosing a basepoint t in a face with at least three critical points on its boundary. We
will denote this face by Ft. The next thing we do is choose a spanning tree T ′ of T̂ such that all
critical points on the boundary of Ft are leaves of this tree. We do this in the following way:
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1. We look at the graph obtained by removing all points on the boundary of Ft and the edges
adjacent to them, except for the point corresponding to ∞. The graph that remains is a
connected graph. The reason for this is that every face of T̂ is a Jordan domain connected to
∞ and from the boundary of every face we only remove a set of edges adjacent to each other,
of which at most one is an edge adjacent to ∞. This means we can then choose a spanning
tree of this graph.

2. For every point on the boundary of Ft, we then add one edge to this spanning tree which
connects the point to the tree.

For every i ∈ [n], we define a loop ai based at t. For every critical point ci which is a leaf of
T ′, we define ai by connecting t to a small loop around ci by a path that does not cross T ′. This
loop ai crosses exactly one edge of the spanning tree T ′ exactly once. We then define a loop ai for
every critical point ci which is a leaf of the tree T ′′ obtained by removing every leaf of T ′ as well as
the edge adjacent to this leaf. We define ai to be the loop based at t which crosses the edge of T ′′

adjacent to ci and crosses no other edges of T ′ such that the faces which ai crosses is minimal. We
continue this process until we have defined a loop ai for every i ∈ [n]. Note that all loops ai cross
exactly one edge of T ′ exactly once. The fundamental group π1(Ĉ ∖ Cf , t) is then generated by
these loops. With a slight abuse of notation, we denote by ai not only the element in π1(Ĉ∖Cf , t),
but also in IMG(f). Then the set {a1, . . . , an} also generates IMG(f).

Like in the first case, we use the Schottky map associated to T̂ to lift the loops {a1, . . . , an}.
For every i ∈ [n] for which ci is a leaf of T ′, we have that ai has the same structure as in the first
case. For the critical points ci which are not leaves of T ′, we have that the non-trivial lifts of ai
will close up to a cycle on the preimages of t in the faces of T̂ which are crossed by ai. This means
that the permutational part of ai is a cycle for every i ∈ [n]. Furthermore, exactly one of these lifts
will cross an edge of T ′ exactly once, namely, the edge of T ′ that is crossed by ai. This means that
ai has exactly one non-trivial restriction, where it restricts to a−1i .

We can use the structure of the wreath recursion of ai to describe the structure of a−1i . Using
the statements above, we see that for every i ∈ [n] we have that:

• the permutational part of a−1i consists of a single cycle on a set Xi of size ki ≥ 2;

• the parity of the permutational part of a−1i coincides with the parity of the permutational
part of ai;

• a−1i restricts to ai at some xi ∈ Xi; while all other restrictions are trivial.

We then choose an order through which to walk through the cycles corresponding to the inverses
of our generators. Let m be the number of points on the boundary of the face Ft. We now discuss
the structure of the cycles corresponding to these m critical points. For each of these critical points
ci, we have that the cycle corresponding to this point is a cycle on the preimages of t in the faces
of which ci is a point on the boundary, with the exception of Ft. This cycle will exactly intersect
with the cycles corresponding to neighbouring points on the boundary of Ft, and with these cycles
it will intersect exactly once. This means that the cycles corresponding to the m critical points on
the boundary of Ft form a tree of m cycles.

This means we can use the tools in the proof of Theorem 3.4.1 to choose an order through which
to walk through these cycles; we define g1 up to gm to be the inverses of the generators defined in
this order. For i ∈ [m], let σi denote the permutational part of gi and let Xi be the set of points on
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which σi acts non-trivially. Furthermore, let Ym = ⋃m
i=1Xi and let Em < ⟨g−11 , . . . , g−1m ⟩ < G be the

subgroup of all elements of ⟨g−11 , . . . , g−1m ⟩ with even permutational part. We again use the proof of
Theorem 3.4.1 to conclude that:

(i) ⟪1, . . . ,1⟫A(Ym) ⊂ Em;

(ii) Em[Ym] ⊂ Em.

For every m + 1 ≤ j ≤ n, we let gj+1 be the inverse of the generator corresponding to an arbitrary
cycle adjacent to at least one of the cycles corresponding to the set {gi ∣1 ≤ i ≤ j}. We now denote
for every i ∈ [n] the permutational part of gi by σi and the set on which σi acts non-trivially by
Xi. We then have that for every i ∈ [n] the following conditions hold:

• σi is a single cycle on the set Xi with ∣Xi∣ ≥ 2;

• gi restricts to gi at some xi ∈ Xi; all other restrictions are trivial.

We define

Yi ∶=
i

⋃
j=1

Xi

and let Ei < ⟨g−11 , . . . , g−1i ⟩ < G be the subgroup of all elements of ⟨g−11 , . . . , g−1i ⟩ with even permuta-
tional part.

Before continuing our proof, we make an important observation. We have that the boundary
of the face Ft consists of at least 4 edges. Furthermore, every loop ai crosses at most 2 edges of
these boundary edges. This means that there are at least 2 faces adjacent to Ft through which our
loop ai does not pass. We can conclude that for every m+ 1 ≤ i ≤ n we have that ∣Ym ∖Xi∣ ≥ 2, and
thus that ∣Yi−1 ∖ Xi∣ ≥ 2. We also note that, because of how we chose the order of our generators,
we have that ∣Yi−1 ∩Xi∣ ≥ 1.

Now assume that condition (i) and condition (ii) hold for Ei−1 with i ∈ {m + 1,m + 2, . . . , n}.
Using the observations above, we see that we can use Lemma 3.3.1 to state that

(i) ⟪1, . . . ,1⟫A(Yi) ⊂ Ei;

(ii) Ei[Yi] ⊂ Ei.

Using induction, we can then also state that

(i) ⟪1, . . . ,1⟫A(Yn) ⊂ En;

(ii) En[Yn] ⊂ En.

Note that En = E and Yn = [d]. This then implies that G is regular branch on E, which concludes
the argument of the second case, also concluding the proof.
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Chapter 6

Further research

In this thesis, we have proven results for (anti-)polynomials. However, the tools that we used to
prove these results are more generally applicable. This raises the question whether it would be
possible to prove similar results for (anti-)rational maps using these same tools. In the example in
Section 4.1, we have for example seen that in that case we could indeed use Corollary 3.2.3 to prove
the regular branchness of the iterated monodromy group. In the example in Section 4.2 however,
we see that we can not apply these tools, because the structure of the generators does not fit the
requirements of our lemmas.

This is exactly what makes it hard to generalise our statements. In the polynomial case, we
have that the cycles corresponding to the generators form a tree of cycles. In the more general case
of rational maps, we have that a pair of cycles can intersect at more than one point, which means
that we can not always use Corollary 3.2.3 to prove a base case for our induction. This means
that we might need to pose extra conditions on the Tischler graph to be able to prove a similar
statements in the case of rational maps.

Furthermore, because the cycles can have more than one intersection point, it is not clear how
we should choose the order in which to add new cycles to our base case. We can namely have that
the cycle we want to add intersects so much with the already added cycles, that there are less than
two points in the already added cycles which are not in the cycle we want to add. This would mean
that we can not use Lemma 3.3.1 to do the induction step of the proof.

Another problem we run into when looking at rational maps, is that if we make use of a
spanning tree of the charge graph corresponding to the map to calculate the wreath recursions
of the generators, we can have that these wreath recursions have multiple non-trivial restrictions.
This would for example be the case in the example in Section 4.1. However, we can solve this
problem by using a spanning tree of the Tischler graph instead of the charge graph.

All in all, we believe that it would be possible to use our tools to prove similar statements in
the more general case of (anti-)rational maps, but it might be necessary to include extra conditions
in these statements.
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Appendix A

Auxiliary lemmas

Here, we state and prove multiple lemmas that we use in the proofs in this thesis.

Lemma A.1. Let G = (V,E) be an acyclic graph for which it holds that ∣E∣ = ∣V ∣ − 1. Then G is
connected.

Proof. Define G1,G2, . . . ,Gn to be the connected components of G, and write Gi = (Vi,Ei). As G
is acyclic, we know for every i ∈ [n] that Gi is acyclic as well as connected, and hence is a tree.
Furthermore, it is a well known fact that the number of edges of a tree equals the number of vertices
minus one. This means that ∣Ei∣ = ∣Vi∣−1 for every i ∈ [n]. When we look at the following equation:

∣E∣ =
n

∑
i=1

∣Ei∣ =
n

∑
i=1

(∣Vi∣ − 1) =
n

∑
i=1

∣Vi∣ − n = ∣V ∣ − n,

we see that we can conclude that n = 1, hence that G is connected.

The three lemmas below are technical lemmas about the generating sets of the subgroups An

and E(G) of even elements in the symmetric group Sn and a group G < Aut(TX), respectively.

Lemma A.2. Let n ∈ N≥3. For distinct i, j ∈ N with 1 ≤ i, j ≤ n, the set of 3-cycles

{(i j k) ∣1 ≤ k ≤ n, k ≠ i, j}

generates the alternating group An.

Proof. It is a standard fact that for n ≥ 3 all 3-cycles in Sn generate the alternating subgroup An;
see, for example, [Arm88, Theorem 6.5]. We use this to prove the lemma by showing that with our
set of 3-cycles we can generate all 3-cycles. For this, we first note that (i j k)(i j k) = (i k j) for
all 1 ≤ k ≤ n, k ≠ i, j. Next, by looking at the product

(i j b)(i j a)(i b j) = (i a b),

we see that we can make all 3-cycles of the form (i a b) with 1 ≤ a, b ≤ n, a ≠ b, and a, b ≠ i, j. We
already showed that we can make the 3-cycles (i j k) and (i k j) for all 1 ≤ k ≤ n, k ≠ i, j. This
means that we can in fact make any 3-cycle of the form (i a b) with 1 ≤ a, b ≤ n, a ≠ b and a, b ≠ i.
Let now (a b c) be an arbitrary 3-cycle in An. If a, b, or c equals i, we have already shown that we
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can make the cycle (a b c), so suppose that a, b, c ≠ i. In this case, we can make the 3-cycles (i a b)
and (i c a), which means we can also make

(i a b)(i c a) = (a b c).

It follows that the set {(i j k) ∣1 ≤ k ≤ n, k ≠ i, j} generates the set of all 3-cycles in Sn, and hence
generates An.

Lemma A.3. Let k, l ∈ N≥2. Then the set of 3-cycles

{(1 k + l − j k − i + 1) ∣1 ≤ i ≤ k − 1, 1 ≤ j ≤ l − 1}

generates the alternating group Ak+l−1.

Proof. Our goal is to first show that we can generate the 3-cycle (1 k+l−1 m) for all 2 ≤m ≤ k+l−2,
after which we can use Lemma A.2 to prove the statement. Note that we already have (1 k+l−1 m)
for all 2 ≤ m ≤ k; these elements we get by plugging in 1 ≤ i ≤ k − 1 and j = 1. In particular, by
taking i = k − 1 and j = 1, we get the element (1 k + l − 1 2). Multiplying this 3-cycle with itself,
we get (1 2 k + l − 1). When we take i = k − 1 and 2 ≤ j ≤ l − 1, we obtain the 3-cycles (1 m 2) for
k + 1 ≤m ≤ k + l − 2. We can use these 3-cycles to get

(1 2 k + l − 1)(1 m 2)(1 k + l − 1 2) = (1 k + l − 1 m)

for all k + 1 ≤m ≤ k + l − 2, which means we have now generated the 3-cycles (1 k + l − 1 m) for all
2 ≤ m ≤ k + l − 2. Using Lemma A.2 we conclude that our set of 3-cycles generates the alternating
group Ak+l−1.

Lemma A.4. Let E < G be the subgroup of all elements of G with even permutational part and
denote by gen(G) the set of generators of G. Furthermore, we define the following sets:

X1 ∶= {e ∣ e ∈ gen(G) has even permutational part},
X2 ∶= {o1o2 ∣ o1, o2 ∈ gen(G) have odd permutational part},
X3 ∶= {oeo−1 ∣ o ∈ gen(G) has odd permutational part, e ∈ gen(G) has even permutational part}.

Then E is generated by the following set of elements:

X ∶=X1 ∪X2 ∪X3.

Proof. We will prove the statement by induction on the length of words in gen(G).
Let x be a word in gen(G) of length 1 with even permutational part. Then x = e for some

e ∈ gen(G) with even permutational part, which means that x ∈X1 and x ∈ ⟨X⟩.
Let x be a word in gen(G) of length 2 with even permutational part. We write x = x1x2 for the

decomposition of x into generators x1, x2 ∈ gen(G). We now distinguish two different cases:

1. First suppose that x1 has even permutational part, so x1 ∈X1. For the word x = x1x2 also to
have even permutational part, it must be that x2 has even permutational part as well. Hence,
x1, x2 ∈X1 and x ∈ ⟨X⟩.

2. Secondly, we suppose that x1 has odd permutational part. It must then hold that x2 too
has odd permutational part, otherwise their product can never have even permutational part.
This means that x = x1x2 ∈X2 and hence that x ∈ ⟨X⟩.
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Now suppose that for every word x in gen(G) with even permutational part and of length smaller
or equal to n ≥ 2 it holds that it is generated by the set X. Let then x ∈ E be an arbitrary word
in gen(G) of length n + 1 which has even permutational part. We write x = x1x2 . . . xn+1 for the
decomposition of x into generators. We again distinguish different cases:

1. The first case is the case that x1 has even permutational part, so x1 ∈ X1. This means that
x2 . . . xn+1 also has even permutational part. This is a word of length n, which means that
we can use our induction hypothesis to state that it is generated by the set X. As x1 ∈ X1,
we can then conclude that x = x1x2 . . . xn+1 also is generated by the set X.

2. The second case is the case that x1 has odd permutational part and x2 has even permuta-
tional part, so x1x2x

−1
1 , x1x

−1
2 x

−1
1 ∈ X3. The word x1x

−1
2 x

−1
1 x = x1x3 . . . xn+1 then has even

permutational part, as both x1x
−1
2 x

−1
1 and x have even permutational part. This is a word

of length n, so we can use the induction hypothesis and state that it is generated by X. As
x1x2x

−1
1 ∈X3, we see that x1x2x

−1
1 x1x3 . . . xn+1 = x is also generated by X.

3. The third and last case is the case that both x1 and x2 have odd permutational part, so
x1x2 ∈ X2. In this case x3x4 . . . xn+1 is a word of length n − 1 which has even permutational
part, which means we can use the induction hypothesis to say that it is generated by the set
X. As x1x2 ∈X2, we conclude that x1x2x3 . . . xn+1 = x is also generated by X.

Using induction, we can now conclude that every word in gen(G) with even permutational part
can be generated by X, hence that the subgroup E is generated by the set X.
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