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Abstract

We study the vacuum stability of orbifold compactifications of type IIB string theory. We
focus in orbifolds of the shape (S1 × T 4) /Zp that spontaneously break all supersymmetry.
We compute the one-loop partition function for these models and integrate it to obtain
the vacuum energy density. We then analyze the resulting vacuum and how instabilities
appear depending on the S1 radius.
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Chapter 1

Introduction

Our current theoretical frameworks for describing the most fundamental interactions and
pieces of nature, general relativity, and the standard model of particle physics have suc-
cessfully described a wide range of phenomena within their respective domains: the for-
mer governs the large-scale structures and the macroscopic nature of space-time, while
the latter explains the interactions of subatomic particles through the electromagnetic,
weak, and strong nuclear forces. However, these theories remain incompatible with each
other, especially when attempting to describe conditions where both gravitational and
quantum effects are significant, such as in black holes and the early universe.[26]

String theory stands out as the most promising candidate for a unified theory of quantum
gravity. Unlike point particles in traditional quantum field theories, string theory postu-
lates that the fundamental constituents of the universe are one-dimensional strings, while
among the theory objects with all kind of dimensionalities, called branes, are present. The
fundamental strings vibrate at different frequencies, with each vibration mode giving rise
to different fields. Remarkably, string theory incorporates the graviton, the hypothetical
quantum of gravity, thus providing a nice framework to explore a quantum description of
gravity.

One of the key motivations for this work is the connection between string theory and the
cosmological constant[25]. Quantum field theories predict a vacuum energy density, while
general relativity links this value with the so-called cosmological constant Λ, a parame-
ter that codifies the geometry of the space-time in absence of other content apart from
vacuum fluctuations. String theory, with its intricate structure and higher-dimensional
framework, offers different perspectives on this parameter. Exploring which models give
different vacua, within the whole landscape that string theory offers, may result in possi-
ble constraints of this theory in order to match the experimental data.

One of the main historical arguments from critics of this theory was its requirement of a
symmetry known as supersymmetry (SUSY) [28]. This symmetry reflects in a connection
between bosons and fermions, and is a crucial element of string theory that arises when
adding fermions to the theory, but until the date it has not been observed in nature.
This aspect also implies the vanishing of the cosmological constant, forcing the expected
geometry of the vacuum to be flat.
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Another non compelling aspect of string theory is its requirement for extra spatial dimen-
sions. Our observable universe seems to be four-dimensional, but string theory requires
the existence of additional dimensions that are compactified, periodical or “curled-up”, in
a way that makes them invisible at our energy scale. Compactification procedures not only
hide these extra dimensions but also significantly influence the resulting lower-dimensional
physical theory. This thesis will focus on a particular method of compactification based
on orbifolds, which involves modifying the compact dimensions to break SUSY sponta-
neously. This allows the theory to be consistent and keeps fermions in the spectrum,
while explaining why SUSY has not been found in nature and prescribing a procedure
that may give a non-vanishing vacuum amplitude.

Orbifolds provide a versatile tool for achieving SUSY breaking.[13] We aim to gain deeper
insights into the quantum properties of the vacuum by studying the one-loop vacuum
amplitude in Type IIB string theory with SUSY broken through the orbifold. For exam-
ple, we will investigate if any kind of instabilities (tachyonic states) may appear in the
theory by performing this method and if those instabilities may be erased by requiring
more restrictive constraints. The one-loop vacuum amplitude is particularly significant
as it encapsulates the first order quantum correction and provides information about the
stability and dynamics of the vacuum state, as we will see.

1.1 Outline & Objective

The specific goal of this thesis involves giving a prescription to compute the one-loop
vacuum amplitude for Type IIB string theory after spontaneous SUSY breaking by ap-
plying orbifold methods. This involves calculating the partition function of the theory
and integrating it over the fundamental domain of the torus. By doing so, we can explore
how quantum instabilities manifest in this setting and how the interplay between SUSY
breaking and compactification shapes the physical properties of the vacuum.The outline
to achieve this purpose will be as follows:

Since the theory exhibits conformal symmetry, we will study the conformal field theory
(CFT) living in the world-sheet. To make this thesis accessible to people without String
Theory or CFT backgrounds, we will start by briefly stating the basics of CFT’s focusing
on the results we will need in Section 2.

Using the CFT framework we will proceed to compute the partition function in Section
3. There we will introduce the action of the theory, the quantization scheme and how to
get the different contributions to the partition function.

In Section 4, we will introduce the concept of orbifolds, specify the orbifold action on the
coordinates and states and quickly proceed with the computation of the partition function
in the case in which the group used for the quotient is a general symmetric freely acting Zp.

Once we have this partition function, in Section 5, we will study a standard method,
sometimes known as the orbit method, to solve the integral of the partition function and,
particularly, the extension of this method to the theory with orbifolds. We will end an-
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alytically computing some examples of one-loop vacuum amplitude for these models and
study their properties.
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Chapter 2

Conformal field theory

Conformal field theories occupy a central position in modern theoretical physics due to
their wide range of applications. In string theory, CFT’s describe the dynamics of strings
through the perspective of the two-dimensional world-sheet that these objects define while
they travel through the space-time[8]. The consistency of string theory heavily relies on
the properties of these world-sheet CFT’s and the study of its mathematical structures is
a key part of its simple description. Moreover, the AdS/CFT correspondence, connects
the CFT defined on the boundary of an Anti-de Sitter (AdS) space with the gravity theory
in its bulk [23]. This duality has provided profound insights into both quantum gravity
and strongly coupled quantum field theories, offering a non-perturbative formulation of
string theory and enabling the study of black holes and quantum chromodynamics among
other systems.

CFT’s also have a major relevance in condensed matter physics, primary due to their
ability to describe critical phenomena. At critical points, systems undergo phase transi-
tions characterized by scale invariance. CFT’s, with their inherent conformal symmetry,
provide a natural framework for modeling these phase transitions and allow the exact
determination of critical exponents and scaling functions, which are essential for under-
standing the behavior of materials near critical points.

CFT’s are quantum field theories that are invariant under conformal transformations,
which preserve angles but not necessarily distances. These symmetries simplify many
calculations, allowing for solutions in certain cases where other methods fail.

2.1 Basics of 2D CFT’s

Let us start this brief description of CFT’s by defining what is a conformal transformation.
Given two manifolds (M, g) and (N, h), where the first component represents a topological
space and the second a metric over it, a local conformal transformation ϕ is defined to
act as:[17]

ϕ ◦ g = Λh . (2.1)

The main idea of this kind of transformations is that they are angle preserving. For
the purpose of this thesis we will delve into the study of conformal transformations over
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two-dimensional flat manifolds (M, η); the endomaps then lead to transformations of the
shape:1

ϕ ◦ η = Λη −→ ηαβ
∂ϕα

∂xµ
∂ϕβ

∂xν
= Ληµν . (2.2)

Where µ ∈ {1, 2}. If we choose a flat metric ηαβ = δαβ then we get the following
restrictions under the map ϕ:

∂1ϕ
1 = ∂2ϕ

2 ∂2ϕ
1 = −∂1ϕ2 . (2.3)

Which is equivalent to the Cauchy-Riemann equations, and so these conformal maps
are equivalent to biholomorphic maps. Following this idea, we can perform a change of
variables z = x1+ix2 z = x1−ix2 to change into the complex plane and better understand
how the coordinates change under conformal maps,

ds2 = dzdz
ϕ−−→
∣∣∣∣∂ϕ∂z

∣∣∣∣2 dzdz = ∆(z, z) dzdz . (2.4)

We call ∆ the scaling dimension. Following this perspective we can apply an infinitesimal
transformation z → z̃ = z+ϵ(z) and obtain the conformal algebra; expanding for both the
holomorphic and antiholomorphic coordinates we get that the generators of the algebra,
and its conmutation relations, are:

Holomorphic: ln = −zn+1∂z, [ln, lm] = (n−m) ln+m . (2.5)

Anti-Holomorphic: ln = −zn+1∂z,
[
ln, lm

]
= (n−m) ln+m . (2.6)

Each of this algebras are called Witt Algebra. Strictly speaking, due to the independent
treatment of the coordinates z and z, the whole algebra is the direct sum of two Witt
algebras A⊕ A together with the commutator relation

[
lnlm

]
= 0. This is reduced when

imposing a physical condition z = (z)∗. Applying this condition we restrict our algebra
to the one generated by the operators ln + ln and ln − ln for all n ∈ Z.

In order to get the global conformal transformations we can upgrade this transformations
onto the Riemann sphere S1 ≡ C ∪ {∞} and require them to be well-defined. We then
get four different types of transformations.2

• Translations:

– Generated by
(
l−1 + l−1

)
and i

(
l−1 + l−1

)
– Resulting in xµ → xµ + aµ with aµ ∈ R2

• Rotations:

– Generated by i
(
l0 − l0

)
– Resulting in xµ →Mµ

ν x
ν Mµ

ν ∈ SO(1, 1)
1We are assuming that that the maps are orientation preserving, which is equivalent to

∣∣∣∂ϕ(x1,x2)
∂(x1,x2)

∣∣∣ > 0
2We give the description of this transformations on real coordinates since it is simpler to see their

physical meaning.
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• Dilations:

– Generated by
(
l0 + l0

)
– Resulting in xµ → Λxµ

• Special Conformal Transformations:

– Generated by
(
l1 − l1

)
and i

(
l1 − l1

)
– Resulting in xµ → xµ−bµ|x|2

1−2bµxµ+|b|2|x|2

The first three transformations have a clear physical meaning; a theory which is confor-
mal invariant will be invariant under the Poincaré group, as expected for a good physical
theory, while the invariance under dilation transformations indicates that the system is
invariant under changes of scale and the invariance under special conformal transforma-
tions indicates invariance under angle-preserving maps.

We can then relate the group of finite globally defined conformal transformations to the
group of Möbius transformations over S1, SL(2,C)/Z2:(

a b
c d

)
∼
(
−a −b
−c −d

)
a, b, c, d ∈ C, ad− bc = 1 =⇒ z → az + b

cτ + d
(2.7)

When describing a physical system, each state can be understood as eigenstates of op-
erators such the hamiltonian and momentum operators. In CFT’s, physical states are
then defined by the eigenvalues of the dilation and rotation operators. Since they are de-
scribed in terms of l0, l0 for these theories, we can focus on states that are simultaneously
eigenstates for both operatos:

l0|ψ⟩ = h|ψ⟩ l0|ψ⟩ = h|ψ⟩ =⇒ |ψ⟩ = |h, h⟩ , (2.8)

(
l0 + l0

)
|h, h⟩ =

(
h+ h

)
|h, h⟩

(
l0 − l0

)
|h, h⟩ =

(
h− h

)
|h, h⟩ . (2.9)

The eigenvalue of the dilation operator is then the scaling dimension previously defined
∆ = h+ h, while the eigenvalue of the rotation operator is the spin s = h− h.

2.2 The punctured plane and radial quantization

In the context of String Theory we will study the CFT living on the so-called world-sheet;
which is the manifold generated by the trace of a string moving in the space-time. In this
thesis we will focus in Type IIB String Theory, and we will focus on closed strings; this
implies that the world-sheet to be homeomorphic to a cylinder:
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Figure 2.1: Representation of a closed string propagating through a space-time with
coordinates (X0, X1, X2). The surface that codifies its trajectory is known as world-sheet
and can be reparametrized be a cylinder with coordinates (τ, σ).

We can use the symmetries of the theory to define a conformally flat metric, so we end
up having a Minkowski space in D=2 with coordinates τ ∈ R and σ ∈ R/LZ ≡ S1, where
L is the period of the cyclic coordinate.

Figure 2.2: Map between the cylinder (world-sheet) and the punctured plane. Source:[22]

Then we perform a change of variables to ζ = τ + iσ ζ = τ − iσ, in which follows that the
periodicity of σ forces ζ ≈ ζ + iL. We can then relate the cylindrical world-sheet with
the complex plane without including the origin, which is called punctured plane. This
relation is given by a conformal map:

z = f(ζ) = e
2πζ
L (2.10)
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This is going to be the picture in which we will develop the quantization scheme for this
theory. While in a usual 1D quantization scheme we have a Hilbert space for each fixed
time and then study the time evolution by introducing propagators between time slices, in
the picture of the punctured plane we will have this Hilbert space defined in circles around
the origin, for which the propagation will be given by increasing the radial direction.

Following this perspective, the hamiltonian, which is related to the time evolution, will
correspond to the dilation operator from the conformal algebra, while the momentum
operator, related to space translations, will correspond to the rotation operator.

Recall from QFT that we have to take special care when computing N-point correlators
with the time ordering between them; this idea is implemented in radial quantization by
imposing a radial ordering:

R [ϕ1(z, z)ϕ2(w,w)] =

{
ϕ1(z, z)ϕ2(w,w) if |z| > |w| ,
±ϕ2(w,w)ϕ1(z, z) if |z| < |w| .

(2.11)

Where the sign depends on the statistics of the field, + for bosons and − for fermions.

In Lagrangian mechanics one of the most interesting objects is the energy-momentum
tensor Tµν . It is an invariant quantity for any Lorentz-invariant theory that arises as a
conserved current under space-time translations and whose associated conserved charges
are the momentum operators P µ.

Returning to the perspective of the punctured plane, in complex coordinates, transla-
tional and scale invariance reduce the energy-momentum tensor to only two independent
components: the chiral Tzz and antichiral Tzz currents, holomorphic and antiholomorphic
respectively. From here on, we will describe the procedures for the holomorphic part
only, since the antiholomorphic one is equivalent; we will only mention them when it is
necessary.

In the context of CFT’s the energy momentum tensor has also another really interesting
perspective. For a given theory with an action S[ϕ] depending on a field ϕ, we can compute
the energy-momentum tensor by applying an infinitesimal transformation xα → xα + ϵα :

Tµν(x
α) =

∂L
∂(∂µϕ)

∂νϕ− ηµνL, Quantization condition : ⟨0| T |0⟩ = 0 . (2.12)

In order to get the Hilbert space, we consider the mode expansion of the T tensor, as in
the latter case to get the ln, lm we express in complex coordinates:

T (z) =
∑
n∈Z

z−n−2Ln =⇒ Ln =

∮
C0

zn+1T (z)
dz

2πi
. (2.13)

Where C0 is a closed contour containing 0. The Ln n ∈ Z are the generators of the
so-called Virasoro algebra, which is the central extension of the already discussed Witt
algebra. Nevertheless, we still need the commutation relation of these operators in order
to define the algebra. To do so, we need to investigate the fields in the theory, since as
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shown in (2.13), the T (z) does depend inherently in the theory.

In CFT’s the fields are characterised by how they transform under conformal maps. In this
context, we define two kind of fields, the primary (or conformal) fields and the secondary
fields. The primary fields are defined to transform under a finite conformal transformation
φ as:[17]

ϕ(z, z)
z→z̃=φ(z)−−−−−−→ (∂z z̃)

h (∂z z̃)h ϕ (z̃, z̃) . (2.14)

And so they are called primary fields of weight (h, h), while secondary fields are any other
kind. Performing an infinitesimal transformation z → z+ ϵ(z), a primary field it changes
as:

δϕ(w,w) = h∂ϵ(w) ϕ(w,w) + ϵ(w)∂wϕ(w,w) . (2.15)

Using the relation between the energy momentum tensor and infinitesimal transforma-
tions discussed before, we can compute how the field ϕ transforms under an infinitesimal
transformation δz = ϵ(z):

δϕ(w,w) =
1

2πi

∮
ϵ(z) [T (z), ϕ(w)] dz . (2.16)

Which can be computed substracting the paths of integration as

Figure 2.3: Substraction of the integration contours to simplify the commutator inside
the integral. The direction of the path is given by the radial ordering. Source:[22]

.

Through the residue theorem we know that we only need to expand the term T (z)ϕ(w)
and check the singular points of this expansion when z → w in order to obtain the
result of the integral; this kind of expansion is usually referred as OPE (Operator product
expansion). In the case of primary fields (2.15), we already know the result of the integral,
leading to the OPE:

R [T (z)ϕ(w,w)] =
h

(z − w)2
ϕ(w,w) +

1

z − w
∂zϕ(w,w) + Non-singular terms . (2.17)

Then we can obtain the conmutators of the Ln Virasoro generators by computing the
OPE of T with itself. In general, in CFT’s this expansion leads to:

R [T (z)T (z)] ∼ c

2 (z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
. (2.18)
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Which leads to the commutation relation, when expanding the T (z) as in (2.12):

[Ln, Lm] = (n−m)Ln+m +
c

12
n
(
n2 − 1

)
δn+m,0 . (2.19)

The algebra characterised by this generators and commutation relation is known as Vi-
rasoro algebra. Repeating this process for the antichiral part we get a similar algebra for
the Ln antichiral generators; we also get an extra relation

[
Ln, Lm

]
= 0, which reveals

that our full algebra is V ir ⊕ V ir.

2.2.1 Central Charge

Clearly the energy-momentum tensor is not a primary field, since its expansion has an
extra term for theories with c ̸= 0. This c is known as central charge, and depends on the
lagrangian defining the theory. Before we analyze this central charge, Let us quickly show
the particular form of the lagrangians that we are going to follow during the computations
of the partition function in this thesis:

2.2.1.1 Example: Free Boson

Let us take the action of a free real scalar field:

S[ϕ] ∝ 1

2

∫
∂µϕ∂

µϕd2x . (2.20)

It will not be proven that this action is conformal invariant, which can be found in [27],
but it will be motivated. Computing the energy-momentum tensor of the classical theory
by applying an infinitesimal translation:

T µν =
∂L

∂ (∂µϕ)
∂νϕ− ηµνL = ∂µϕ∂νϕ−

1

2
ηµν∂ρϕ∂

ρϕ . (2.21)

We realise that this tensor is symmetric and traceless, the vanishing of the trace of the
energy-momentum tensor motivates the scale invariance of the theory. On the other hand,
we can obtain the tensor for the quantum theory, representing the energy-momentum
tensor in complex coordinates:

⟨0|T (z)|0⟩ = 0 =⇒ T (z) = −2π : ∂zϕ∂zϕ : (2.22)

Where the : . : represents the normal ordering. We can then compute the OPE’s related
to this energy-momentum tensor:

R [T (z)∂wϕ(w,w)] ∼
∂zϕ

(z − w)2
+

∂2zϕ

(z − w)
, (2.23)

R [T (z)T (w)] ∼ 1

2 (z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

(z − w)
. (2.24)

Comparing (2.23) and (2.17) shows that ∂zϕ is a conformal field of conformal weight
h = 1, while equation (2.24) results in c = 1. The description also applies for the
antiholomorphic contribution resulting in h = 1, c = 1. Summarising, the algebra of
states will be determined by the central charge following (2.19). Since for the scalar real
field c = c = 1, and so we say bosonic fields have c = 1.
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2.2.1.2 Example: Free Fermion

Recall the action for a free real Majorana fermionic field:

S[ψ] ∝
∫ (

ψ∂zψ + ψ∂zψ
)
. (2.25)

As in the latter case this theory is invariant under the full conformal group[27]. This time
chirality is directly related with each of the fields; from the equations of motion one get
that ψ(z) is holomorphic and so chiral while ψ(z) is antiholomorphic and so antichiral.
We compute the energy-momentum tensor:

T (z) = −π : ψ∂zψ : T (z) = −π : ψ∂zψ : (2.26)

Which allows us to compute the OPE’s

R [T (z)∂wψ(w,w)] ∼
1
2
∂zψ

(z − w)2
+

∂2zψ

(z − w)
, (2.27)

R [T (z)T (w)] ∼
1
2

2 (z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

(z − w)
. (2.28)

Getting a similar result for the atiholomorphic part. This fixes the theory of a free Majo-
rana fermion as containing fields of conformal weight h = h = 1

2
and it fits in an algebra

determined by c = c = 1
2
.

As a side note, one important property of the central charge is that it is additive when
considering decoupled CFT’s. If we have n decoupled CFT’s, the energy-momentum
tensor satisfies:

T (z) =
n∑

i=1

Ti(z) =⇒ c =
n∑

i=1

ci . (2.29)

This property will be exploited in several points of our description. For example, it allows
us to compute different bosonic contributions for a theory separately. Other feature of
this property is that, when considering the ghost formalism, it restricts the number of
dimensions in critical superstring theory to D = 10.[20].

2.2.1.3 Casimir Energy

To illustrate the physical meaning of the central charge, we can relate the energy-momentum
tensor computed for the CFT in the plane again into the cylinder by the map (2.10). As
we have already seen, Tµν is not a primary field and so its transformation under a confor-
mal map is not trivially obtained through equation (2.15), instead we have to compute
the inverse of ζ and compute the transformation by brute force, doing so we obtain:

T (z)
ζ−1

−−→ 2π

L

(
z2T (z)− c

12

)
=⇒ LCylinder

0 = L0 −
c

24
. (2.30)
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Then we can obtain the expected value of the energy-momentum tensor for the cylinder.
Requiring again the quantization condition:

⟨T (z)⟩ = ⟨T (z)⟩ = 0 =⇒ ⟨T00⟩ = −
1

2π

(
⟨TCylinder(z)⟩+ ⟨TCylinder(z)⟩

)
=

π

12L2
(c+ c) .

(2.31)

From this term we can obtain the energy of the cylinder:

ECylinder = −
∫ L

0

⟨T00⟩dx = − π

12L
(c+ c) . (2.32)

Which is exactly the Casimir energy of a system, for example, if we choose to have a
scalar field, then c = c = 1 and so ECylinder = − π

6L
, same result that we would obtain

for the ground state of a sum of harmonic oscillators after performing a UV regularisation.

2.2.2 Hilbert spaces

Central charge allows us to mathematically characterize the representations of interest in
our theory. In other words, it allows us to describe the different possible ground states
that may appear in our system as well as the whole Hilbert space that can be built over
it. To see how this happens, we need to define how we build up the Hilbert space for CFT’s.

In order to have a well defined vacuum |0⟩ for the CFT we must require the regularity of
T (z)|0⟩ when z → 03, which can be attained by asking the state to verify:

Ln|0⟩ = Ln|0⟩ = 0 ∀n ≥ −2 . (2.33)

Which implies invariance of the vacuum under transformations generated by L0, L±1.
Focusing on the holomorphic part, this means that the |0⟩ vacuum must be SL(2,R)-
invariant4, invariant under global conformal transformations, as one would expect.

We can define a state |h⟩ = lim
z→0

ϕ(z)|0⟩ as created by acting with a primary field ϕ(z) of

conformal weight h over the SL(2,R)-invariant vacuum; these states satisfy:

L0|h⟩ = h|h⟩ Ln|h⟩ = 0 n ∈ N∗ . (2.34)

This is the definition of a highest-weight state in algebra. Then we have a clear corre-
spondence between primary fields and highest-weight states. From these highest-weight
states we can obtain new states by acting with negative Virasoro generators L−n n > 0,
those are called descendant states. The intuition behind this construction is that highest-
weight states represent the ground state for some specific Hilbert space while the negative
Virasoro operators act as the creation operators.

3This is equivalent to the infinite past in the cylinder perspective.
4The R is due to choosing the holomorphic part for the discussion, the general framework involves a

|0⟩C = |0⟩ ⊗ |0⟩ and is invariant under SL(2,C)/Z2.
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The Hilbert space arising from the |h⟩ is called Verma module, this name is also used for
the space arising from |h, h⟩ and it forms a representation of the Virasoro algebra.

Since we can link a state |h⟩ with a primary field, we can investigate this connection
to check how to relate the descendants of a highest-weight state with fields. Laurent
expanding the ϕ:

ϕ(z) =
∑
n∈Z

ϕnz
−n−h =⇒ ϕn =

1

2πi

∮
ϕ(z)zn+h . (2.35)

The modes ϕn are raised to operators. The effect of acting with L−n over |h⟩ is equivalent
to applying one of these ϕn over it. This relation can be obtained by developing the
commutation relations of the Ln and ϕn, this leads to a definition of the states as the
modes of the primary field:

ϕn|0⟩ = 0 ∀n > −h ϕ−h|0⟩ = |h⟩ . (2.36)

The set of the primary field ϕ(z) and its descendant fields, usually denoted as [ϕ] is called
the conformal family of ϕ, and it is simple to see that the Hilbert state built through these
fields is equivalent to the one obtained by using the highest-weight state, this results in
the so-called state-operator correspondence, which means that the set of Verma modules
and the set of conformal families are bijective.

In order to have a well defined physical theory we would ask for the representation to be
unitary. We can then find constraints over h and c to represent a physical theory. For
example, if we compute the the norm of a descendant state:

0 ≤ ⟨h|L†
−nL−n|h⟩ = ⟨h| [Ln, L−n] |h⟩ =

[
2nh+

c

12

(
n3 − n

)]
⟨h|h⟩ . (2.37)

In general we can inspect the different options for h and c that lead to unitary representa-
tions, this method is done through the so-called Kac determinant; as this is not intended
to be a fully formal description, we will just state the interesting result for our context,
the rest can be found in [10].

For c = 1, the case of bosonic fields, we find a continuous infinite number of representations
characterized by h whilst the ones satisfying h = n2

4
n ∈ Z contain an extra null vector in

their Hilbert space. For c = 1
2
, fermionic fields, we find three different unitary irreducible

representations, characterized by h ∈ {0, 1
2
, 1
16
}.

2.2.3 Characters of the Virasoro Algebra

In the quest for computing the partition function we can think about its most classi-
cal description as sum over all the particles/states of our theory weighted by their en-
ergy/temperature . For CFT’s we will see how the explicit connection with the algebra
and the partition function is performed in Chapter 3, but for our purposes, it is a nice
shortkey using the language of characters.
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The character of an irreducible representation given by a highest-weight state |h⟩, gener-
ating a Hilbert space Hh is defined to be:

χi(τ) = TrHh
qL0− c

24 =
∑
n∈N

dim(n+ h)qn+h− c
24 . (2.38)

Where q = e2πiτ is defined in order to weight the states correctly as they will appear in the
partition functions in the next sections, the τ parameter will be introduced later as the
skew parameter of the torus. The dim(n+ h) factor just measures the number of linearly
independent states in the Hilbert space Hh at the different levels. The most relevant theo-
ries for the objective of this thesis are c = 1 and c = 1

2
as we have already discussed about.

In the c = 1 we have an infinite number of possible highest-weight representations whose
characters are:[14]

h = 0 =⇒ χ1,0(τ) =
1

η(τ)
, (2.39)

h =
n2

4
=⇒ χ

1,n
2

4

(τ) =
1

η(τ)
qn

2/4
(
1− qn+1

)
, (2.40)

h ̸= 0 =⇒ χ1,h(τ) =
1

η(τ)
qh . (2.41)

Where we followed the notation χc,h, and η(τ) is Dedekind’s η function defined as:

η(τ) = q
1
24

∞∏
n=1

1

1− qn
. (2.42)

For the c = 1
2
theory, we find three irreducible representations and their characters are:[14]

h = 0 =⇒ χ0(τ) =
1

2
√
η

(√
θ3 +

√
θ4

)
, (2.43)

h =
1

2
=⇒ χ 1

2
(τ) =

1

2
√
η

(√
θ3 −

√
θ4

)
, (2.44)

h =
1

16
=⇒ χ 1

16
(τ) =

1√
2η

√
θ2 . (2.45)

Where ϑ’s are the Jacobi’s ϑ functions defined as:

ϑ

[
α
β

]
(τ) = η(τ)e2πiαβq

1
2
α2− 1

24

∞∏
n=1

(
1 + qn+α− 1

2 e2πiβ
)(

1 + qn−α− 1
2 e−2πiβ

)
. (2.46)

Using the notation:

ϑ3 = ϑ

[
0
0

]
, ϑ4 = ϑ

[
0
1
2

]
, ϑ2 = ϑ

[
1
2

0

]
, ϑ1 = ϑ

[
1
2
1
2

]
= 0 . (2.47)

The purpose of these characters is twofold. Firstly, it simplifies the notation while dis-
cussing the partition function. Secondly, they have transform in a particular way under
modular transformations that we will use when computing the partition function.

For a more formal and extensive description about characters, we refer the reader to [8].
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Chapter 3

One-loop Partition Function

The main objective of this thesis is computing the one-loop cosmological constant for a
class of vacua determined by compactification on orbifolds.

For this objective, in this chapter we start by computing the one-loop partition function1.
To do so, we will discuss the spectrum of the Type IIB theory and compute all different
contributions to the partition function separately. We will end by discussing some general
thermodynamical properties of this partition function and how to read the spectrum from
it.

For historical reasons, we will focus in a spacetime R1,4×S1×T 4. The choice of having a T n

as compactified part can be seen as just simplicity, while the fact that we are considering
5 non-compact directions has mainly historical reasons linked to the study of the D1−D5
brane system. [31]

3.1 CFT Partition Function

To start constructing the partition function we have to first understand what is the ge-
ometry underneath the one-loop diagrams in Type IIB String Theory.

Figure 3.1: Expansion of vacuum-to-vacuum amplitude in terms of world-sheet geometries.

We are focusing on closed strings, the first intuition about one-loop amplitudes is that
their related diagrams are determined by a genus 1 surface. This idea leads to the deter-
mination that one-loop vacuum diagrams are homeomorphic to the torus. The discussion
and simplifications to obtain the partition function goes through understanding how the

1We will refer to it as just partition function from now on.
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algebra of the CFT is related with the directions of the torus and the connection of torus
with lattices.

P

H

λ1

λ2

Λ(λ1, λ2) Representation

P

H

1

τ

T 2 = C/Λ

Λ(τ) Representation

Figure 3.2: Representation of the lattice that generates the torus. The basis of the
lattice is given by vectors λ2 and λ1 . After a reparametrization we represent it with the
parameter τ .

We can link each specific possible torus shape with a lattice determined by two vec-
tors as shown in Figure 3.2. λ1, describes the cycle in which translations are generated
by the P̂ operator (the momentum operator) and λ2 describes the Ĥ one (the hamil-
tonian operator). We can freely reparameterize the coordinates so that λ1 = 1 and
λ2 = τ1 + iτ2 = τ ∈ H+ ≡ {z ∈ C | Im(z) > 0}.

Following this picture, we can construct the partition function through the generating
function over euclidean periodic time as a typical QFT procedure. In order to do so,
we need to identify one of the directions with the one related to the Ĥ operator, and so
we will choose τ = τ2. This assumption establishes one specific torus between the whole
number of possible tori determined by τ ∈ H+. In doing so τ2 represents the period of
euclidean time (also interpreted as the inverse of the temperature), and so the partition
function reads as

Z(T ) = Tr
(
e−βĤ

)
=⇒ Z(0, τ2) = Tr

[
e−2πτ2Ĥ

]
= Tr

[
e−2πτ2(L0+L0− c+c

24 )
]
. (3.1)

Where the last equality is obtained from the algebra of the CFT, L0,L0 represent the
Virasoro generators for right and left movers and c,c represent their central charges. In
order to get a general torus that allows us to describe any possible shape of the lattice
we can skew the previous example. To do so we perform a traslation over the horizontal
axis of Figure 3.2); this traslation is implemented by P̂ = i

(
L0 − L0

)
from the CFT. For

a generic τ ∈ C we end up with the expression:

Z(τ1, τ2) = Tr
[
e−2πτ2(L0+L0− c

24
− c

24)e−2πτ1i(L0−L0)
]
= Tr

[
qL0− c

24 qL0− c
24

]
. (3.2)
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Where we have defined q = e2πiτ . This expression shows explicitly the factor related to the
right-movers (involving q) and the factor related to the left-movers (involving q). Now, we
can expand L0 as a sum over the Virasoro generators in the different directions. Using the
properties of the trace, and knowing from the second chapter that the energy-momentum
tensor splits as the sum of the different contributions, we can then expand the partition
function in different pieces. Working in a R1,4 × T 4 × S1 spacetime and using (2.29) and
(3.2):

Z(τ, τ) = ZR1,4(τ, τ) ZT 4(τ, τ) ZS1(τ, τ) ZF (τ, τ) . (3.3)

Where the first three contributions in the right-hand side refer to the bosonic contribution
in the directions given by the sub-index and the last contribution refers to the fermionic
contributions. From the CFT perspective we are separating the total central charge in
the contributions from separated bosons and fermions of c = 1 and c = 1

2
respectively.

The details of each contribution can be obtained using standard techniques from quantum
mechanics, nevertheless we will review briefly how to obtain the contributions from the
perspective of the CFT and the characters of Virasoro algebras as well as drafting the
basics on how to obtain the states in String Theory.

3.1.1 Modular transformations

Before computing the partition function, there is an important remark, the one-loop par-
tition function must be modular invariant. As already stated, the partition function
corresponds to the study of different fields over a toric geometry. Following this, the
function must be invariant under the disconnected diffeomorphisms of the torus. These
are not directly taken into account in the CFT computation of the partition function.
These transformations form the so-called modular group PSL(2,Z).

An intuitive way to construct the modular group is simply focusing on the lattice that gen-
erates the torus. In this context, the transformations of τ ∈ H+ ≡ {z ∈ C | Im(z) ≥ 0}
that encode the periodicity over both cycles of the torus. They are generated by taking
slices of the coordinate in Ĥ and making a twist in 2π and cutting a slice in the P̂ direc-
tion and making a twist in 2π. By doing so, we get two different transformations:
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Figure 3.3: Intuition under the modular transformations S and T through their effect on
the torus cycles and lattices. Source:[30]

• T Transformation: The T transformation is related with the P -cycle, and so it is
defined as the traslation T (τ) = τ + 1.

• S Transformation: The twisting on the H direction generates the transformation
U(τ) = τ

τ+1
, but the usual presentation of the group, due to the nice properties

when discussing boundary conditions, is usually given on terms of S = UT−1
which

leads to the transformation S(τ) = −1
τ

The modular group is then defined as the group generated by this transformations with
the usual composition PSL(2,Z) ≡ ⟨S, T | S2 = (ST )3 = Id⟩.

The domain of the τ parameter is then restricted by the fact that modular transfor-
mations do not generate different theories. In order to avoid over-counting, we require
τ ∈ H+/PSL(2,Z) = F . We call F the fundamental domain of the torus, which can be
explicitly written as F ≡

{
z ∈ C | |z| > 1 , Re(z) ∈ [−1

2
, 1
2
] , Im(z) > 0

}
.

F

Figure 3.4: Fundamental domain, region filled in blue.

The region below the fundamental domain can be obtained with S transformations while
the lateral regions are obtained by applying T transformations.
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3.2 Bosonic contributions to the partition function

We start by computing here the bosonic contributions to the partiton function, we could
directly do it following the description of Virasoro characters, but we prefer linking them
with the direct computation of the trace in order to have both, an intuition on how
the modular functions will appear here, but also giving a small description on how the
bosonic fields arise in String Theory; this formalism will be required when introducing the
orbifold compactification. So we start by presenting the action of the bosonic contribution
to String Theory:

S = − 1

4πα′

∫
∂αX

µ∂αXµ dτdσ . (3.4)

In this action, the fields Xµ work as an embedding from the world-sheet to the space-time.
They map the world-sheet, a smooth surface parametrized by (τ, σ), with the space-time,
serving as coordinates/bosonic fields in it. The equations of motion arising from this
action may be solved after requiring periodical boundary conditions2 to get the expansion
of the fields:

Xµ(τ, σ) = Xµ
L(τ + σ) +Xµ

R(τ − σ) , (3.5)

Xµ
R =

1

2
xµ +

1

2
α′pµ (τ − σ) +

√
α′

2
i
∑
n∈Z∗

1

n
αµ
ne

−2πin(τ−σ) , (3.6)

Xµ
L =

1

2
xµ +

1

2
α′pµ (τ + σ) +

√
α′

2
i
∑
n∈Z∗

1

n
αµ
ne

−2πin(τ+σ) . (3.7)

Then we can quantize the theory, promoting the modes αµ
n to operators. The commutators

for these operators read as:

[αµ
n, α

ν
m] = [α̃µ

n, α̃
ν
m] = nδm+n,0η

µν , [αµ
n, α̃

ν
m] = 0 . (3.8)

So they form two copies of the same algebra. We can extend the definition of the αµ
n to

n = 0 by just inspecting equations (4.5) and (4.6), and so defining αµ
0 = pµ.

The so called L0 operator, obtained from the energy-momentum tensor expansion and
expression the hamiltonian of the system, is then obtained as total number of oscillators
operator plus the contribution of the momenta, summarised:

L0 =
1

2

∑
n∈Z

: α−nαn :=
1

2
α0 +

∞∑
n=0

α−nαn . (3.9)

We are working on closed strings, we allow left and right movers.The vacuum will be the
tensor product of the left and right vacua (|0⟩ ⊗ |0⟩) and we can act over it with the left
αµ
n or right αµ

n oscillators.

The action is conformal invariant[27] so we may study this theory as a CFT, allowing us
to use the already developed partition function formula.

2This is not a required thing in general String Theory, but since we are working in Type IIB, the
strings are closed and so we can impose this condition, avoiding open strings in our spectrum.
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3.2.1 Non-compact contributions to the partition function

The first bosonic contribution comes from the free (non-compact) directions.

Each free direction will contribute with a boson for each right and left movers. In this
context, if we have D free directions, since we are working on light-cone gauge this will
translate to D − 2 terms referred to the transverse directions.3. To compute each contri-
bution, we can just perform the trace for one of the contributions.

Tr
(
qL0− c

24 qL0− c
24

)
= q−

1
24 q−

1
24Tr

[
q

1
2
α0q

1
2
α0

]
Tr
[
q
∑∞

n=1 α−nαnq
∑∞

n=1 α−nαn

]
(3.10)

=

∫
R

√
2|q|α2

0dα0

∣∣∣∣∣q− 1
24

∞∏
n=1

∞∑
k=0

(qn)k

∣∣∣∣∣
2

=
1
√
τ2

1

|η|2
. (3.11)

Working in light-cone gauge (In order to avoid a treatment of ghost in the theory) we
only have 3 oscillators contributing to the whole partition function, leading to:

ZR1,4 =

(
1

√
τ2ηη

)3

. (3.12)

Remark that this result can also be obtained by using the Virasoro characters (2.42).
In general the momentum of free bosons may be any continuous value p ∈ R, which al-
lows us to write h = 1

2
p2. Examining the expansion in terms of the modes, we got the

level-matching condition (α0 − α0) |ϕ⟩ = 0, which constraints the highest-weight states of
our theory to |h, h⟩, h = h, and so we can express these contributions to the partition
function as:

Z(τ1, τ2) =

∫
R
χc=1,hχc=1,hdp =

1
√
τ2

1

|η|2
. (3.13)

We have two remarks from this relation, first of all is that both right and left movers are
treated exactly in the same manner thanks to the condition

(
L0 − L0

)
|ϕ⟩ = 0. As we

will see in the next sections, if this relation is not satisfied then the contributions are not
conjugate. Secondly, we expect each contribution to be modular invariant, as they define
a proper c = 1 theory by themselves. This can be easily checked following the modular
properties of the η function:

η(τ)
S−−−→
√
−iτη(τ), η(τ)

T−−−→ e
iπ
12η(τ) . (3.14)

And so each contribution transforms as:√
Im(τ)|η(τ)|2 S−−−→

√
Im(τ)

|τ |
|
√
−iτη(τ)|2 =

√
Im(τ)|η(τ)|2 , (3.15)√

Im(τ)|η(τ)|2 T−−−→
√
Im(τ)|e

πi
12η(τ)|2 =

√
Im(τ)|η(τ)|2 . (3.16)

Showing explicitly the modular invariance of this piece of the partition function.

3This result can also be justified using the formalism of ghosts, where there are bosonic ghost that
will contribute with −2 to the central charge.[20]
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3.2.2 Compact contributions

For the compact contributions, we will perform the computation of the S1 and give the
explicit version of the resulting lattice and how it transforms under modular maps; then
we will consider the contribution of the T 4 and check which constraints must be realized
in the lattice in order to ensure modular invariance.

We start with the S1 contribution. In this context the bosonic coordinates are periodic,
following:

X(τ, σ) ∼ Z(τ, σ) + 2πRn n ∈ Z . (3.17)

Where X represents the coordinate over the S1. Following the mode expansion of the
coordinates (3.6), (3.7), we can now have a shift between right and left momentum:

(α0 − α0) |ϕ⟩ = Rn|ϕ⟩ . (3.18)

From here we follow [8]. We can choose a generic factor 1
2
∆2, to be the conformal weight

of the holomorphic part h = 1
2
∆2, which constrains h = 1

2
(∆−Rn)2.Writing in terms of

these two quantities the partition function:

ZS1 =
1

|η|2
∑
h,h

χc=1,hχc=1,h =
1

|η|2
∑
∆,n

q
1
2
∆2

q
1
2
(∆−Rn)2 . (3.19)

We can then restrict the possible values of the scaling factor by requiring this partition
function to be modular invariant. Imposing invariance under T transformations requires:

q
1
2
∆2

q
1
2
(∆−Rn)2 T : τ→τ+1−−−−−−→ q

1
2
∆2

q
1
2
(∆−Rn)2e2πin(∆R− 1

2
R2n) =⇒ ∆R− 1

2
R2n = m ∈ Z .

(3.20)

Solving for ∆, we present the usual version of the partition function for a compact boson
on an S1

ZS1 =
1

|η|2
∑

n,m∈Z

q
1
4(

n
R
+mR)

2

q
1
4(

n
R
−mR)

2

. (3.21)

Through this discussion we used α′ = 1, which reflects in the exponent of q q being a
linear combination of R and 1

R
. If we write it for a generic α′ the easiest solution is shifting

R→ R√
α′ , which fixes any dimensional inconvenience.

We can analyze more deeply this expression. First of all, if we follow the path integral
perspective of the partition function, we would find that the partition function can be
written as:[20]

ZS1 =
1

|η|2
∑
PL,PR

q
α′
4
P 2
Lq

α′
4
P 2
R =⇒ PL,R =

n

R
± mR

α′ . (3.22)

The last equality is given by comparison with (3.21). In the string theory language, states
with n ̸= 0 are called Kaluza-Klein modes, since the contribution n

R
can be related with
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the center of mass contribution to the momenta PL/R. This result is typically obtained
by compactifying a dimension by the Kaluza-Klein method. On the other hand, the m
is called the winding number since it appears as a contribution to the squared momenta
whose origin is the winding of the strings over the S1 direction. In some sense, the num-
ber of loops of the string over this direction contributes to the momenta with a factor
proportional to the radius of the S1.

Now we can think that, in this contribution, right and left states are not treated in the
same manner. Their momentum are different, this appears to violate level-matching since
we could have different ”masses” on both sides by having pR ̸= pL. We will, for now, just
state that this is naturally expected when applying condition (3.18), but we will exploit
this property later on while discussing about the states after the orbifolding, and we will
check explicitly how the level-matching is ensured when computing the one-loop ampli-
tude.

As a last remark, we still need to check the invariance of this partition function under
S and T transformations. This invariance is already trivially satisfied, but can be quite
annoying trying to check it by brute force in this shape. To check the S invariance we
then perform a Poisson resummation on the sum arising in (3.22)

ZS1 =
1

|η|2
∑

n,m∈Z

qP
2
RqP

2
L =

R√
α′

1
√
τ2|η|2

∑
n,m∈Z

e
− πR2

τ2α
′ |n+mτ |2

. (3.23)

Then the prefactor is modular invariant as it is the contribution of a free direction. The
sum is trivially modular invariant. The T transformation can be undone by shifting
n→ n− 1 which has no effect on the sum, as we would expect since the definition of the
pL/R is given to ensure T invariance. Meanwhile the S transformation is easily undone by
the change m→ −m, which leaves the sum invariant.

3.2.2.1 Momentum lattices

As we have shown, the S1 contribution can be summarised as a prefactor 1
|η|2 and then

a sum over the possible right and left momenta. This result can also be obtained in a
slightly more general level .

If we consider a compact coordinate, we can represent it as a quotient over an infinite
discrete group as:

X ∼ X + 2πRm =⇒ X ∈ R/2πRZ . (3.24)

This relation leads to an expansion of the bosonic coordinates, in terms of the world-sheet
variables (τ, σ):

X(τ, σ) = x+ α′pτ +mRσ + oscillators (n > 0 terms) . (3.25)

On the other hand, we can split the fields in terms of left and right movers XR(τ −
σ), XL(τ + σ):

XL/R = xL/R +
1

2
α′pL/R (τ ± σ) + oscillators (n > 0 terms) . (3.26)
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Where these PL/R are precisely the ones in (3.22) while computing the partition function
of the S1, justifying why we call them this way. On the other hand, when we quantize the
theory, the operator P̂ generates translations over x, then in order to have a well defined
wave function eipx, we must require p ∈ Z

R
.

This leads to the idea that the identification in (3.24) may be generalised with the concept
of a lattice. Formally, a lattice Γ is a set of points of Rn such that we can write any point
as an integer linear combination of elements of its basis B = {ei}i∈I :

x ∈ Γ ⇐⇒ x =
∑
i∈I

miei , mi ∈ Z ∀i ∈ I ≡ {1, 2, 3, ...} . (3.27)

Lattices may have also an associated inner product. When it is given by a metric whose

signature is diag

−1−, 1, ...,−1︸ ︷︷ ︸
r

, 1, 1, ..., 1︸ ︷︷ ︸
s

 then is called Lorentzian of signature (r, s).

Given a lattice Γ with an inner product denoted by ⟨·, ·⟩, we can define its dual lattice Γ∗
as:

Γ∗ ≡
{
x ∈ Rn

∣∣ ⟨x, v⟩ ∈ Z ∀ v ∈ Γ
}
. (3.28)

Moreover, a lattice is called even if the norm of all vectors is an even number. If the
lattice Γ verifies Γ = Γ∗, then it is called self-dual.

We can also give a notion of size to the lattice. This is through the idea of the volume of the
unit cell, which is expressed as the determinant of the matrix Gj

i = eji =⇒ vol (Γ) = |G|.
Given the relation between the lattice and its dual, it is easy to see that vol (Γ∗) = 1

vol(Γ)
.

In our example of the S1 compactification, we can identify Γ = RZ, which leads to the
restriction that the momenta p lives in Γ∗. Summarising this perspective, the compact-
ification of the bosonic coordinates equivalent to the quotient over a lattice. Then, the
total centre of mass momenta will live in the dual lattice.

To recover the left and right momenta, which we already obtained requiring modular
invariance in the partition function, we can express the side momenta as:

pR/L = p± L L ∈ Γ, p ∈ Γ∗ . (3.29)

Recall that in the partition function the main quantities are pL/R. Following this descrip-
tion, we can recognize that (pL, pR) form a Lorentzian lattice with metric diag(−1, 1).
We can then define the momentum lattice as:

Γ∗ = spanZ

〈
1√
2

(
1
R√
α′

,
1
R√
α′

)
,
1√
2

(
R√
α′
,− R√

α′

)〉
. (3.30)

Following this description, the product of two lattice vectors will satisfy:

P · P ′ =
1

2

(
n
R√
α′

+mR

)(
n′

R
+m′R

)
− 1

2

( n
R
−mR

)(n′

R
−m′R

)
= nm′ + n′m .

(3.31)
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Which ensures than this lattice is even, as P 2 ∈ 2Z; while its volume is vol (Γ) = 1. Those
two conditions are sufficient to say that the lattice is self-dual.[29]

3.2.2.2 TD contribution

Following the idea of the lattices, we can generalize this discussion for a general TD. In
this context, we will have D chiral bosons and D antichiral bosons. As already mentioned,
the contributions from different coordinates are multiplicatives for the partition function,
so the partition function of the TD will be:

ZTD(τ, τ) =
1

|η|2D
∑

(pL,pR)∈Γ

q
1
2
p2Lq

1
2
p2R . (3.32)

For a general D-dimensional lattice, given a general metric G induced on the compact
direction, we can write down:4[7]

p2L/R =
α′

2
m⃗tG−1m⃗+

1

2α′ n⃗
tGn⃗± n⃗tm⃗ n⃗, m⃗ ∈ ZD . (3.33)

Further constraints to the lattice may be done in order to ensure modular invariance.
Again, requiring a Lorentzian signature we find that Γ is an even lattice as p2L − p2R =
2n⃗tm⃗ ∈ 2Z. This constraints leads, as in the case of the S1, to T invariance of the partition
function.

1

|η|2D
∑

(pL,pR)∈Γ

q
1
2
p2Lq

1
2
p2R =

1

|η|2D
∑

(pL,pR)∈Γ

e−πτ2(p2L+p2R)eπiτ1(p
2
L−p2R) (3.34)

T−→ 1

|η|2D
∑

(pL,pR)∈Γ

e−πτ2(p2L+p2R)eπiτ1(p
2
L−p2R)eπi(p

2
L−p2R) . (3.35)

To check the S invariance, we perform a Poisson resummation as before. In this case we
need the general formula, leading to:

∑
p∈Γ

f(p) = V ol(Γ∗)
∑
b∈Γ∗

f̃(b), f̃(b) = F̂ [f(p)] (b) . (3.36)

To simplify this description, we can first apply an S transformation and then compute
the resummation, This leads to

q
1
2
p2Lq

1
2
p2R

S:τ→−1
τ−−−−−→ e−πi

p2L
τ eπi

p2R
τ . (3.37)

Now performing the Poisson resummation we get:∑
(pL,pR)∈Γ

q
1
2
p2Lq

1
2
p2R −→ vol (Γ∗)

√
τ2

D

∑
(bL,bR)∈Γ∗

q
1
2
b2Lq

1
2
b2R . (3.38)

4We are setting B = 0.
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Now, if we require the full partition function ZTD(τ) to be modular invariant we find that
vol(Γ∗) = 1, which imposes that the lattice must be self-dual.

Through this results, we can express the contribution of the T 4 to the partition function
as:

ZT 4(τ, τ) =
1

|η|8
∑

(pL,pR)∈Γ4,4

q
1
2
p2Lq

1
2
p2R . (3.39)

Where the Γ4,4 is an even self-dual Lorentzian lattice. This kind of lattices are usually
called Narain lattices.

With this result we have already computed all the bosonic contributions and checked its
modular invariance.

3.3 Fermionic contribution to the partition function

The fermionic part can be built in several ways depending on the approach. Since mod-
ular invariance is of major importance for this thesis, the main perspective would be a
geometrical approach which will also has a deeper meaning when implementing the action
of the orbifold. We will also briefly compare different techniques, such as the CFT direct
approach or taking into account the different sectors in order to impose the GSO projec-
tion. In any case, we have to properly define the fermions in our theory; we will follow
the RNS formalism for these contributions. The notation and thread of this discussion
will follow [7].

In order to add fermions, we pair the bosonic fieldsXµ(τ, σ) µ ∈ [0, 1, ..., D] with fermionic
partners ψµ(τ, σ)[6], anticommuting fields which are spinors on the world-sheet5 and vec-
tors on the space-time. The immediate change to the action is adding the standard Dirac
term for D free massless fermions:

SF =
−1
4π

∫
ψ

µ
γα∂αψµdτdσ . (3.40)

Where the ρα are the two-dimensional Dirac matrices obeying the usual Clifford algebra.

The addition of this term enhances the symmetries of the lagrangian that now presents
the so-called supersymmetry, which can be summarised as:

δXµ = ϵψµ ,

δψµ = ρα∂αX
µϵ . (3.41)

Where ϵ is a constant infinitesimal Majorana spinor that consists of anticommuting Grass-
man numbers. In this case one can choose two possible periodicity conditions on each
spinorial component ψ± for the boundary term to vanish. For the closed bosonic string
it was taken to be the periodicity condition Xµ(τ, σ + 2π) = Xµ(τ, σ), but due to the
fermionic nature of these new fields they can also be antiperiodical, giving two possible
expansions of the modes:

5The spinorial index A = ± is, as usual, dropped.
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• Neveu-Schwarz conditions: Choosing antiperiodicity for thhe fermionc fields:

ψµ
±(τ, σ + 2π) = −ψµ

±(τ, σ) . (3.42)

Then the mode decomposition of the fields will be:

ψµ
−(τ, σ) =

∑
n∈Z+ 1

2

bµne
−in(τ−σ) , (3.43)

ψµ
+(τ, σ) =

∑
n∈Z+ 1

2

b
µ

ne
−in(τ+σ) . (3.44)

The fermionic fields resulting from this choice are said to lay in the NS sector.

• Ramond conditions: Choosing periodicity for thhe fermionc fields:

ψµ
±(τ, σ + 2π) = ψ±(τ, σ) . (3.45)

Then the mode decomposition of the fields will be:

ψµ
−(τ, σ) =

∑
n∈Z

bµne
−in(τ−σ) , (3.46)

ψµ
+(τ, σ) =

∑
n∈Z

b
µ

ne
−in(τ+σ) . (3.47)

The fermionic fields resulting from this choice are said to lay in the R sector.

The quantized theory is pretty straightforward. We will have inside each sector, two types
of operators, {αn}n∈Z the bosonic ones, exactly the same as in the bosonic theory, and
the fermionic ones {bn}n∈I where I ≡ Z for the R sector and I ≡ Z+ 1

2
for the NS sector.

The algebra for the operators are:

[αµ
n, α

ν
m] = nδn+m,0η

µν , {bµn, bνm} = δn+m,0η
µν . (3.48)

While the operator L0 changes by adding a fermionic part:

Lf
0 =

1

2

∑
{n∈I}

n : b−n · bn :=
∑

{n∈I|n>0}

nb−n · bn . (3.49)

The Hilbert space is determined by acting with the negative index operators over the
ground states of both sectors, those ground states are defined as:

αµ
n|0⟩NS = bµm|0⟩NS = 0, n ∈ N, m ∈ N+

1

2
, (3.50)

αµ
n|a⟩R = bµm|a⟩R = 0, n ∈ N, m ∈ N∗ . (3.51)

Where the a label reflects the degeneracy of the Ramond sector vacuum due to the exis-
tence of the bµ0 operators.These do not appear in the L0 formula and so do not change the
mass of the state, but indeed they rotate the state; as follow from equation (3.49), they
satisfy the Clifford algebra, and so the ground state is non-unique and it is a spinor.
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It is illustrative to remark that the normal ordering in the definition of L0 arises a constant
term. Using ζ-Riemann regularisation we obtain:6

NS: Lf
0 =

∑
n∈Z+ 1

2

nb−n · bn −
1

48
, R: Lf

0 =
∑
n∈Z

nb−n · bn +
1

24
. (3.52)

Adding the bosonic extra term (+ 1
24
) shift the vacuum energy in order to relate later the

spaces descending from the ground state throught these operators with the highest-weight
representations on CFT:

NS: Lf
0 =

∑
n∈Z+ 1

2

nb−n · bn, R: Lf
0 =

∑
n∈Z

nb−n · bn +
1

16
. (3.53)

NS L0 eigenvalue State R L0 eigenvalue State
0 |0⟩ 1

16

∣∣ 1
16

〉
1
2

b− 1
2
|0⟩ 1

16
+ 1 b−1

∣∣ 1
16

〉
3
2

b− 3
2
|0⟩ 1

16
+ 2 b−2

∣∣ 1
16

〉
2 b− 3

2
b− 1

2
|0⟩ 1

16
+ 3 b−3

∣∣ 1
16

〉
, b−2b−1

∣∣ 1
16

〉
5
2

b− 5
2
|0⟩

3 b− 5
2
b− 1

2
|0⟩

7
2

b− 7
2
|0⟩

4 b− 7
2
b− 1

2
|0⟩, b− 5

2
b− 3

2
|0⟩

... ... ... ...

Table 3.1: Hilbert space arising in the NS and R sectors.

Since we are working on closed string, we allow left and right movers, and so we will have
different vacua obtained by tensoring the previous ones, this leads to 4 possible sectors
on Type IIB, NS-NS, NS-R, R-NS, R-R. It is easy to see that the space-time fields aris-
ing from the NS-NS and R-R sectors will be bosons while NS-R R-NS will generate the
fermions.

In superstrings this is not the whole story; we also need to impose the so-called GSO
projection in order to reach a consistent theory. This operator can be justified in terms of
representation theory and modular invariance as we will see later. In this case, we will just
justify its implementation by requiring the spectrum of the theory to be supersymmetric.

In the NS sector, it is represented by a projection πNS = 1
2

[
1 + (−1)F

]
where the operator

F =
∑

n∈N+ 1
2

b−nbn − 1 is the fermion number; while in the R sector the GSO holds in

imposing one chirality to the ground field. In the case of closed strings, we have to
impose this GSO for both left and right movers; the choice of the chirality of the R
ground states lead to two possible consistent theories:

6This is the description of the Hilbert spaces on both sectors for one single contribution. Recall that,
working in light-cone gauge, we will have D − 2 contributions.
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• Type IIA: (−1)F = 1 = −(−1)F .
This choice generates a nonchiral theory.

• Type IIB: (−1)F = 1 = (−1)F .
This choice generates a chiral theory.

In this thesis we will work on Type IIB, and so our theory will involve closed strings and
chiral fields.

3.3.1 Spin structures and geometry

The fermionic nature of the ψ fields allows to choose ± periodical conditions for each of
the cycles in the torus, so we may have time (anti)periodicity and space (anti)periodicity;;
as we will see, this is closely related to modular invairance. The previous description chose
antiperiodicity in the spatial direction. Choosing a specific combination is called as spin
structure, following [14], we will denote a given spin structure (x, y) as x□

y
, where the

square represents a τ = τ2 unit cell describing the torus, x representing the periodicity on
the space direction and y the periodicity on the time direction.

While the spatial periodicity is directly codified in the mode expansion in (3.43)-(3.47)
establishing the Hilbert spaces of the modes; the time (anti)periodicity involves the in-
sertion of an operator reflecting the fermionic or bosonic behaviour of the states; the
discussion of this operator is not trivial, but for the purposes of this thesis we will only
highlight that such an operator must anticommute with the fermionic fields. The proper
choice is (−1)F , which correctly flips the boundary condition in time. Inserting this four
possible conditions we get four different contributions to the trace, for the holomorphic
part this summarises as:

-□
-

:TrNS

[
qL0− c

24

]
, -□

+
:TrR

[
qL0− c

24

]
, (3.54)

+□
−

:TrNS

[
(−1)F qL0− c

24

]
, +□

+
:TrR

[
(−1)F qL0− c

24

]
. (3.55)

Then, the fermionic part of the partition function must be a combination of these traces,
the insertion of the left movers involve taking the absolute value square of the whole term.
In order to perform this combination in a consistent way, we require this combination to
be modular invariant.

Those terms can be expressed in terms of modular functions as:

-□
-

:
8∏

j=1

q−
1
48

∏
r∈Z+ 1

2

(1 + qn) =
ϑ4
3

η4
, -□

+
:

8∏
j=1

q−
1
48

∏
r∈Z

(1 + qn) =
ϑ4
2

η4
, (3.56)

+□
−

:
8∏

j=1

q−
1
48

∏
r∈Z+ 1

2

(1− qn) = ϑ4
4

η4
, +□

+
:

8∏
j=1

q−
1
48

∏
r∈Z

(1− qn) = −ϑ
4
1

η4
= 0 , (3.57)

(3.58)
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where we have already introduced that we have 8 contributions since we have 10 direc-
tions. The index j moves along the contributions, as they are all equivalent, the result of
this product is just powering one contribution to the 8th.

Applying S and T transformations results in interchanging the periodicity conditions,
schematically:

Fixed point under PSl(2,Z): +□
+

(3.59)

-□
+

S←→ +□
−
, -□

−
T←→ +□

−
. (3.60)

This results can be analytically computed through the modular properties of the Jacobi ϑ
functions, but it can also be obtained from the geometrical perspective given on Section
3.1.1, where we already discussed how the S and T transformations affect the cycles of
the torus.

Since those are all the possible pieces, we expect the partition function to be a linear
combination of these elements, following the previous rules and adding the phases that
arise during these transformations, the partition function must be proportional to:

ZF ∝
(
-□
-

)
−
(
+□
−

)
−
(
-□
+

)
±
(
+□
+

)
. (3.61)

Where, even if the last phase is not fixed, since that term vanishes there is no degeneracy;
this is actually a key difference between Type IIA and Type IIB, this term does not vanish
in Type IIA .
Seeing explicitly how modular invariance fixes what we introduced as GSO projection, to
avoid over-counting we set the overall constant to be 1

2
, which also agrees with the overall

factor of the GSO projection: πGSO = 1
2

(
1− (−1)F

)
.

Then the fermionic contribution is:

ZF =
1

2

∣∣∣∣ϑ4
3

η4
− ϑ4

4

η4
− ϑ4

2

η4

∣∣∣∣2 = 0 . (3.62)

By virtue of the so-called Riemann identity for Jacobi ϑ functions this contribution van-
ishes, so the whole partition function of the system vanishes.

3.3.1.1 CFT perspective

Through the CFT perspective, we already know that there exist 3 different irreducible
unitary representation for the c = 1

2
theory. Comparing these representations with the

algebras that arise for each sector 3.1, we can easily identify:

NS↔ [0]⊕
[
1

2

]
, R↔

[
1

16

]
. (3.63)
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Imposing the GSO projection disentangles both representations in the NS sector, while
the R sector only has one contribution | 1

16
⟩+ or | 1

16
⟩−.

From the perspective of characters, there is also another way to obtain this constraints
based on fusion algebras and the Verlinde formula. Since those characters are related to
the algebras verifying c = 1

2
, there should not appear new ones when considering modular

transformations. This allows us to rewrite the modular transformations S and T in terms
of matrices in the space of the characters, in such a way that the modular invariance is
imposed in a more general way, for a disussion of this topic we suggest [8].

To summarize the notation for the computation of cosmological constant, we will express
the fermionic contribution in terms of the characters for the [0],

[
1
2

]
and

[
1
16

]
:

-□
-

: χ0 + χ 1
2
, -□

+
: χ0 − χ 1

2
, (3.64)

+□
−

:
√
2χ 1

16

+□
+

: 0 . (3.65)

3.4 Connection with Thermodynamics & String States

In previous sections we have computed the full partition function for Type IIB string
theory in a R1,4 × T 4 × S1 space-time, which can be expressed as:

Z(τ, τ) =
1

2
√
τ2

3

1

(ηη)12

 ∑
(PL,PR)∈ΓS1

q
α′
4
p2Lq

α′
4
p2R

 ∑
(pL,pR)∈Γ4,4

q
α′
4
P 2
Lq

α′
4
P 2
R

∣∣ϑ4
3 − ϑ4

4 − ϑ4
2

∣∣2 .

(3.66)

Where the ΓS1 represents the lattice of the S1 specified in (3.22). As it has been already
discussed, the partition function has a natural intuition related to statistical physics.

If one sets τ1 = 0, then the expansion of the partition function is exactly the usual for-
mula with a temperature given by the factor β = 2πτ2, this gives an insight about the
meaning of τ2 parameter. The limit when τ2 → 0 is equivalent on the thermodynamical
perspective to T →∞, and so we will call it the UV regime. On the other hand, the limits
τ2 →∞ and T → 0 are also equivalent, and so we will call this limit IR or massless regime.

On the other hand we can understand the partition function as a sum over all the states,
in which particles contribute with + for bosons and − for fermions, where its sign is
included in the partition function by the GSO projection [11].

Z = Tr
[
(−1)F qL0− c

24 qL0− c
24

]
≈ 1

τ
1−D′/2
2

∑
bosons

qnqm − 1

τ
1−D′/2
2

∑
fermions

qnqm (3.67)

=
1

τ
1−D′/2
2

∑
n,m

[NB(n,m)−NF (n,m)] qnqm . (3.68)
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Where n,m are the L0 and L0 eigenvalues respectively and D′ is the number of non-
compact directions. As we will argue later, the level-matching n−m = 0 is not trivially
satisfied and will arise naturally while performing the integral to get the vacuum energy
density.

The supersymmetry, introduced in (3.41), connects fermionic and bosonic fields. When
taken into space-time particles, this results on the fermionic and bosonic degrees of free-
dom being exactly the same for each mass level. Following (3.62), this symmetry implies
that the partition function vanishes as we already computed. Moreover, we can track this
vanishing effect back to the fermionic contribution, which is the contribution related to
adding SUSY to the theory. But we can get more information from the partition function
apart from ensuring that the spectrum is supersymmetric.

Focusing on states with no momenta or windings, we can then obtain the masses of the
lowest energy states by expanding the characters, since the overall contribution is 0 in
this case (Due to SUSY) we will split the partition function in the different sectors, and
study their fields.

To perform the expansion, the easiest way is split the contributions from the Jacobi ϑ
functions, which can be directly expressed as infinite sums, and the contributions from the
η’s, that will be expanded when q, q → 0. Using the sum expansion of the ϑ functions:[9]

ϑ

[
α
β

]
(τ) =

∑
n∈Z

q
1
2
(n+α)2e2πi(n+α)β . (3.69)

The NS sector results in ϑ functions with α = 0, while the R sector exhibits α = 1
2
. On

the other hand, the η contributions can be Taylor expanded as:

1

(ηη)12
= (qq)−

1
2

∞∏
n=1

1

(1− qn) (1− qn)
= (qq)−

1
2
[
1− 12q − 12q + 144qq +O

(
q2, q2

)]
.

(3.70)

And so the lower energy contributions to the partition function on each sector read:

Z =
1

τ
3/2
2

× Sum over T 4 × S1 × (qq)−
1
2

∑
r,r̃

q
1
2
r2q

1
2
r̃2 [1 +O (q, q)] . (3.71)

Where r, r̃ ∈
(
Z+ 1

2

)4
for the NS- or -NS sectors respectively and r, r̃ ∈ Z4 for the R- and

-R sectors.

The modular invariance is apparently broken in this expression since we are in the low
energy approximation, as well as the level-matching is not trivially satisfied at this level,
so when considering the possible states in each sector, we have to take into account
both effects. While level matching implies that the exponent for q and q are the same,
modular invariance may be recovered by only accepting states allowed by the GSO pro-
jection,resulting in

∑
i

si ∈ 2Z.
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Inspecting the spectrum we get:

NS R
(±1, 0, 0, 0)

(
±1

2
,±1

2
, 1
2
, 1
2

)
(0,±1, 0, 0)

(
±1

2
,±1

2
,−1

2
,−1

2

)
(0, 0,±1, 0)

(
1
2
,−1

2
, 1
2
,−1

2

)
(0, 0, 0,±1)

(
−1

2
, 1
2
, 1
2
,−1

2

)(
1
2
,−1

2
,−1

2
, 1
2

)(
−1

2
, 1
2
,−1

2
, 1
2

)
(3.72)

Multiplying R-R or NS-NS states will create space-time bosons, while products of R-NS
and NS-R are space-time fermions. We clearly see the intuition under (3.62), since the
terms with the − in the partition function expansion are exactly the ones referred to the
fermionic sectors when we compute the absolute value squared.

From the partition function we can also obtain the masses of such states. The power of
the q, q is 1

2
α′p2 = m2, and so we can read the mass squared for each state. In this case as

the square of all the vectors r, r̃ is 1 and the powers of q, q are the same in the fermionic
contribution, without the S1 contribution the level matching is trivially satisfied. When
considering the S1, level-matching imposes constraints on the allowed values of momenta
and winding according to (3.18).

Computing the masses for this states we check that for all the possible products, the
masses of the states are 0. As the contribution from the S1 is always positive, we infer
that the spectrum has no tachyonic states, and so we will not expect having IR diver-
gences. In the next section we will also study what happens when the level-matching is
not trivially satisfied.

There is also another important remark about the GSO projection and the stability of
the vacuum. As we discussed, there is no tachyon in this theory, but if we take naively
all the possible particles that may arise in the theory without imposing modular invari-
ance, then tachyonic states will appear. A simple example comes from taking the state

(0, 0, 0, 0) × (0, 0, 0, 0), which implies an overall factor of (qq)−
1
2 , which translates into a

negative square mass state, a tachyon. Then, the requirement of modular invariance /
GSO projection erases this state from the spectrum.
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Chapter 4

Orbifolds

In physics we usually work on geometrical spaces codified through the concept of manifold
(M, g), topological spaces over which we defined some charts (U, ϕ) that give us a local
representation of the points in the topological space as geometrical objects in Rn or other
usual set of numbers, such as C.

On the other hand, from the algebraic perspective, given a group G we can define an ac-
tion over a set X; the intuition under this idea can vary depending on the group and the
set, from permutations over a set of elements, rotations in polygons, transformations of
geometrical figures, we will revisit the most vital concepts associated with group actions
while talking about the mathematical structure in this chapter. The idea of group actions
is also common in physics, for instance when describing the spin of the electron with the
SU(2) group or in crystallography when describing the crystal lattice points through just
the nodes of the unit cell.

Mixing these two concepts results in the idea of orbifolds. By exploiting a symmetry
coming from a group action in a physical system, we can start with the manifold in
which the theory lives in, “mod out” the symmetry and reach into a new system in which
this symmetry is (spontaneously or totally) broken by only performing geometrical and
algebraic procedures in the formalism. This idea is linked with String Theory as a nice
way of break SUSY and recover a theory without explicit supersymmetry by performing
changes in the compactified dimensions as we will see in the next chapters.

4.1 Mathematical Structure

We will start the formal discussion about orbifolds by refreshing the concept of group
actions. Then we will define what is an orbifold and give some examples. This is not
intended as a totally formal introduction, but as a way of formally introducing this topic
and give an intuition.

Given a group G and a set X, an action ϕ of an element g ∈ G over an element x ∈ X is
a map which is compatible with the group structure, i.e. :

ϕ : G×X −−−→ X
(g, x) −−−→ g ◦ x = x′ ,

(4.1)
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satisfying ϕ [g, ϕ (h, x)] = ϕ (gh, x). This action is said effective when Ker (ϕ) = {e}, with
e ∈ G the identity element, it is also called free if it does not have non-trivial fixed points,
i.e. Gx ≡ {x ∈ X | g ◦ x = x ∀g ∈ G} = {e} ∀x ∈ X.

Once we have defined an action, we can define an equivalence relation x, y ∈ X x ∼
y ⇐⇒ x = g ◦ y, g ∈ G. This allows use to have a well defined coset description X/G.

Some of the most intuitive examples of group actions are the continuous rotations of the
plane and the discrete rotations.

• SO(2) rotations: Consider G = SO(2) and the set X = R2. We can define an
action of G over X acting as rotations over the plane. We can represent the group
through a parameter θ which represent the angle of rotation. Doing this procedure,
we have that the action of G sends one point (x, y) ∈ R2 to other point following
Figure 4.2. This allows us to build the quotient R2/SO(2) in which we identify
points (x, y) ∼ g ◦ (x, y)∀g ∈ SO(2). The quotient results in the positive real line.

O P1

P2

g ∈ SO(2)
O

gP1
gP2

O
R2

(x, y) ∼ g ◦ (x, y)
O π

R2/SO(2) ∼= R+

Figure 4.1: Example of SO(2) action over R2 and its related coset construction.

• Discrete rotations and cones: Consider G = Zp ≡ {1, g, g2, g3, ..., gn−1} p ≥ 2.
We can define an action of G over R2 as a rotation of 2πn

p
around the origin. In this

case we find a well defined quotient R2/Zp which generates a cone of angle 2π
p
.

Figure 4.2: Example of quotient of a plane under G = Z3. Source:[18]

37



Those two examples are obviously non-freely acting; in both cases the origin (0, 0) is
invariant under the action of the whole group and so is a fixed point under the action.
In terms of the quotient R2/Zp we can related this fixed point with the singularity that
arises at the end of the cone.

There can also be groups acting on sets which are not related to rotations, one exam-
ple of this kind of action is the torus T n. Taking G = Z2, we can define an action
such that it performs an entire translation on R2: g = (p, q) ∈ Z2, a = (x, y) ∈ R2

g ◦ x = (x + p, y + q) ∈ R2. Taking the quotient will lead to an equivalence relation
a1 ∼ a2 ⇐⇒ x1 − x2, y1 − y2 ∈ Z. From the geometrical perspective, this quotient is
equivalent to a 2-dimensional torus T 2 ≡ R2/Z2.

After recalling the concepts of manifold and group actions, we can properly define an
orbifold, it requires first some definitions linked to the previous mentioned.

Figure 4.3: Idea of orbifold chart. The lower-right picture represents an open set U . The
upper figure is the image resulting on R2 as in the manifold case, the map ϕ induces an
homeomorphism between the initial open set and the lower-left image, the geometrical
figure in which the quotient over the symmetry group H is present. Source:[18]

Let U ⊂ X an open set of a topological space X, Ũ ⊂ Rn an open set and G a finite
group acting smoothly and effectively over X. Then we can define an orbifold chart as

the collection
(
Ũ , G, ϕ

)
, where ϕ : Ũ → U is a continuous H-invariant map that induces

an homeomorphism Ũ/H ∼= U .

Following this definition, we can proceed with requiring compatibility between the orbifold
charts, defining an orbifold atlas and then defining an orbifold as a manifold M equipped
with an orbifold atlas exactly as in the manifold case. The usual manifold charts connect
locally topological spaces with euclidean spaces, while the orbifold charts locally connect
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this space to quotients of euclidean spaces over groups.

For our purposes we attend to a relation stating that the quotient of a manifold over a
group action has a natural orbifold structure, and so we will just treat orbifolds as quo-
tients of manifolds over groups.[18]

With this picture we can easily understand what is the main difference between an orb-
ifold and a usual manifold. Clearly manifolds are specific cases of orbifolds in which the
groups for each orbifold chart are trivial Hi = {e}, then we recover the usual definition
of manifold. However, orbifolds are extensions of manifolds. An example of an orbifold
which cannot be described as a manifold is R3/Z2 where the Z2 acts as the reflection
(x, y, z)→ (−x,−y,−z) . This orbifold is an open cone in the real projective space RP2,
and so is a contractible space, so its homotopy group is trivial. However, extracting the
singular point at the vertex modifies the homotopy group to be the same as for RP2 which
is Z/2Z. In smooth manifolds, extracting a point does not change the homotopy, and so
we can determine that this orbifold is not a manifold.

As already occurs with group actions, if we think about a D=2 smooth manifold, a smooth
surface; from the orbifold picture, choosing the group to act as in the conical action, we
are allowing local conical singularities in our orbifold, and so we are in some sense allowing
“spikes” or singularities which are determined by the fixed points of the group action. In
this thesis we are going to avoid confronting singularities by defining only freely acting
orbifolds.

4.2 Orbifolds in Type IIB String Theory

As we already checked from the partition function, the spectrum of our theory is su-
persymmetric. When we added fermionic fields to the world-sheet, we had to impose a
consistency condition known as the GSO projection, also motivated by modular invari-
ance. This projection, crops part of the spectrum, erasing tachyons that may appear
otherwise, but also resulting in a supersymmetric spectrum in which the fermionic and
bosonic degrees of freedom are the same at all mass levels. This result has two inconve-
niences, the first one is that experimentally we have not detected supersymmetry, which
may be because this one is broken or hidden in some sense; but also the equivalence
between fermionic and bosonic degrees of freedom makes the partition function vanish,
which as we will argue later, makes the cosmological constant be exactly zero.

The main use of orbifolds in this thesis will be using some symmetry of the theory to
mod out a group acting on the T 5. Following this idea, as we will check explicitly, we will
spontaneously break SUSY in the theory, giving mass to all the fermions and resulting
in a non-trivial vacuum whose stability and values depend on particularities of the theory.

The theory in which we are working is Type IIB compactified on R1,4×T 5. Since we want
to keep the non-compact directions intact, we will only apply the orbifold over the T 5.
To do so, we need to define suitable coordinates that allows us to describe the group action.

In this thesis we will study cyclic groups Zp ≡ {1, g, g2, g3, ..., gp−1}, p ∈ N; but as
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already seen in the previous examples, if we take a random action of this group over T n,
the resulting orbifold, may have fixed points; so we need to take care of avoiding this in
order to link this description with Schwerk-Schwarz reductions that spontaneously break
SUSY [31].

4.2.1 Specifications about the coordinates

We will only investigate the Xµ affected by the group action, so we are only interested
in the T 5. To avoid fixed points we will split T 5 ≡ T 4 × S1 and require the group to act
differently in the torus and the circle. We will represent the circle coordinate by Z and
the torus coordinates as (Y i)ı∈{1,2,3,4}.

Due to the orbifold action, we prefer using complex coordinates in the torus, and so we
will use W j = 1√

2
(Y 2j + iY 2j−1) j ∈ {1, 2} . Those coordinates are then split between

left and right movers as done before:

W j(τ, σ) = W j
L(τ + σ) +W j

R(τ − σ) . (4.2)

We then choose the group action so it performs, over the bosonic coordinates, rotation
on the torus and a translation in the circle, ensuring no fixed points. Following [15],
we will choose an orbifold whose effect is codified by four mass parameters {mi}i∈[1,4],
mi = ±2πk

n
k ∈ Z represents the mass that the states acquire after the orbifold. Following

this formalism, we will break all SUSY whenever all the mass parameters are turned on.
We can think about this as equivalent to the Higgs mechanism. As we spontaneously
break the symmetry, we give masses to the fields. In the case of SUSY, we start having
N = 8 and as we turn on the mass parameters we break it till N = 0.
We can represent the action of the group over the coordinates as:

Torus coordinates Circle coordinate

W 1
L

g−→ ei(m1+m3)W 1
L Z

g−→ Z + 2πR
p

W 2
L

g−→ ei(m1−m3)W 2
L

W 1
R

g−→ ei(m2+m4)W 1
R

W 2
R

g−→ ei(m2−m4)W 2
R

The mass parameters are usually codified in the so called twist vectors:

u = (0, 0,
m1 +m3

2π
,
m1 −m3

2π
) , (4.3)

ũ = (0, 0,
m2 +m4

2π
,
m2 −m4

2π
) . (4.4)

When u = ũ the orbifold is said symmetric, since it acts in the same manner over right
and left movers, and asymmetric if u ̸= ũ
We can translate this action to the bosonic states:

• Circle coordinates: Acting with the g element performs a shift on the coordinate of
+2πR 1

p
, this can be translated to the momenta space as:

g ◦ (|n,m⟩) = e2πin
1
p |n,m⟩ . (4.5)
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• Torus coordinates: We directly use that the action perform a rotation on the coor-
dinates to get the action over the non-zero modes:

g ◦
(
αj
−n|0⟩

)
= e2πiujg ◦ (|0⟩) = e2πiuj |0⟩ . (4.6)

Where the j runs over the torus coordinates. We discuss later what occurs with the mo-
mentum contribution.

Meanwhile, the identification X ∼ g ◦ X introduces new options for the boundary con-
ditions. These new options will result in new sectors of the Hilbert space of states, the
so-called twisted sectors Hk (Tagged by the parameter k ∈ {0, 1, 2, ..., p}). For the closed
states we have:1

Z(τ, σ + 2π) = Z(τ, σ) + 2πR(m+
k

p
), (4.7)

W 1
L(τ, σ + 2π) = e2πiũ3kW 1

L(τ, σ), W 1
R(τ, σ + 2π) = e2πiu3kW 1

R(τ, σ), (4.8)

W 2
L(τ, σ + 2π) = e2πiũ4kW 2

L(τ, σ), W 2
R(τ, σ + 2π) = e2πiu4kW 2

R(τ, σ). (4.9)

The discussion about fermions is equivalent. For the NS sector the vacuum is a scalar and
so it will be a fixed point of the group action as in the case for the bosons g◦|0⟩NS = |0⟩NS.
For the R sector, the vacua are spinors as seen in Section 3.3, and so we will act as rotation
g ◦ |0⟩R = e2πiu⃗s⃗|0⟩R where vecs represents the spin. As we will work with 8 contributions,
we have 4 spin numbers.

1Recall, u3/4 = m1±m3

2π ; ũ3/4 = m2±m4

2π
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4.3 One-loop Partition Function: Orbifolded Theory

We have already discussed how to compute the full partition function in Section 3 and in
this chapter we introduced the concept of orbifold. In terms of the states in the theory,
the group action by which we are modding has two effects: give mass to some states in
our Hilbert space and add some extra states in the new twisted sectors.

The introduction of these modifications is quite direct.

• To represent the projection arising from the orbifold over a group2 G we can just
define a projection operator πG = 1

|G|
∑

g∈G g.
For the case of the cyclic groups Zp we are going to work with, we can represent it
as

πG =
1

p

n−1∑
i=0

gi =
1

p

[
1 + g + g2 + ...+ gp−1

]
. (4.10)

• To introduce the extra sectors we can easily express the total Hilbert space as a direct
sum of the spaces in the different sectors H = ⊕g∈GHg, applying the properties of
the trace TrH (A) =

∑
g∈G

TrHg (A)

Combining both descriptions we can represent the partition function of the orbifolded
theory over a Zp as

Z =
1

p

∑
g,h∈G

TrHh

(
gqL0− c

24 qL0− c
24

)
=

1

p

p−1∑
i,j=0

TrH
gk

(
glqL0− c

24 qL0− c
24

)
=

1

p

p−1∑
k,l=0

Z[k, l] .

(4.11)

Following this idea, we split the partition function of the theory over an orbifold in different
blocks Z[k, l] in which the first number refers to the twisted sector and the second one to
the order of the projection over the group. After this discussion, our main objective now
is computing the different blocks:

Z[k, l] = TrH
gk

(
glqL0− c

24 qL0− c
24

)
. (4.12)

Let us start this computation by focusing on the untwisted sector, i.e., the blocks of the
shape Z[0, l]. The block Z[0, 0] = 0, which correspond to the theory compactified on
R1,4 × T 5 was already computed, so we only care about the terms with 1 ≤ l ≤ p− 1.

4.3.1 S1/Zp contribution

Starting with the bosonic contributions, the action of the group over the S1 is taken to
perform an extra shift on the circle depending on the order of the group and the order of

2For this definitions we are assuming the group is abelian
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the element, following (4.7):

ZS1 [0, l] = Tr
[
glqL0− 1

24 qL0− 1
24

]
=

1

ηη

∑
n,m∈Z

⟨n,m|glqL0− 1
24 qL0− 1

24 |n,m⟩

=
1

ηη

∑
n,m

e2πin
l
p q

α′
4
PL(n,m)2q

α′
4
PR(n,m)2 . (4.13)

Then we compute the contribution from the twisted sectors. These sectors arise from new
possible boundary conditions, as it was specified in (4.7)-(4.9). In this formalism we see
clearly that the natural extension to the k-th sector is shiftingm→ m+ k

p
. Combining the

result of the projection and this shifting we get the general formula for the S1 contribution:

Z[k, l] =
1

ηη

∑
n,m∈Z

e2πin
l
p q

α′
4
PL(n,m+ k

p)
2

q
α′
4
PR(n,m+ k

p)
2

. (4.14)

We could ask ourselves if there could be some extra phase or terms arising when going
into a non-trivial projection in the twisted sectors and try to sanity check that modular
invariance still present, but as we will see later, modular invariance of the partition func-
tion blocks is not as trivial as it is for the whole partition function, so we will discuss it
in the next case.

Examining this contribution, we can see both phenomena that we expected in the orbifold.
Examining an example of the Z2 we have four blocks building up the partition function:

Z[k, l] =
1

|η|2
∑

n,m∈Z

(−1)ln q
α′
4
pL(n,m+ k

2 )
2

q
α′
4
pR(n,m+ k

2 )
2

. (4.15)

First of all, we have the twisted sectors in which the momentum is shifted by a value.
It is easy to check that in this case the lowest momentum is shifted by ∆pL/R = ± R√

8α′ ,
showing that the energy difference between the twisted sectors will depend on the radius
of the S1. This will have a consequence for the least energy states of the theory, leading
to possible instabilities as we will discuss later. Following this idea, we explicitly see that
there are new fields in our spectrum. On the other hand, if we fix a sector, we get that
the partition function is a sum of two terms:

Z[k] =
1

2
(Z[k, 0] + Z[k, 1]) =

1

2|η|2
∑

n,m∈Z

[1 + (−1)n] q
α′
4
pL(n,m+ k

2 )
2

q
α′
4
pR(n,m+ k

2 )
2

. (4.16)

This expansion is just considering the orbifold projection applied to the k-th sector, but
here it is easy to see that all the states with n ∈ 2Z+1 acquire an extra term that, when
considering the full partition function, will result in extra mass for those states.

4.3.2 T 4/Zp contribution

In the case of the T 4 the rotation projects out some of the possible momentum over the
lattice. Intuitively speaking, the rotation moves some momentum states in the trace to
other direction, resulting in the product ⟨p|g|p⟩ = 0. After the orbifold, we must specify
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which sublattice of a Γ4,4 survives the projection. The possible sublattices depend on the
specific group of symmetry we are modding out, we can follow [21] for a general descrip-
tion and [5] for a description about the symmetries of lattices. In general for symmetric
orbifolds we just have to care about choosing an appropriate lattice that presents the sym-
metry Zp that we need in order to correctly define the orbifold and have that contribution
not destroyed by the projection. Examples of those lattices are A1⊕A1⊕A1⊕A1 ⊂ Γ4,4

or a A1 ⊕ A1 for a Z4 quotient[15]. If we choose an asymmetric orbifold that leaves no
direction on the right movers unrotated, then the sublattices may be chosen to be any
chiral lattice of the shape Γ4,0.

As we discussed in Section 3.2.2, the lattices related to the T 4 are self-dual and so they
have volume 1. When applying the orbifold, the sublattice that survives the projection
may fail to be self-dual. Under modular transformation (particularly, under S) a new
factor arises. To ensure modular invariance we will need to divide over the volume of the
sublattice.

Proceeding with the contribution related to the oscillators, we can easily obtain it from
the action of the group on the coordinates of T 4 (4.8)-(4.9), which is summarized for the
right-movers as:

ZT 4 [0, l] =
4∏

j=3

q−
1
24Tr

(
glqL

j
0

)
=

4∏
j=3

[
q

1
24

∏
n∈N∗

(
1− qne2πiluj

) (
1− qne−2πiluj

)]−1

(4.17)

=
4∏

j=3

2 sin (πluj)
η(τ)

ϑ[
1
2

− 1
2
+luj

](τ)
. (4.18)

with a similar shape for the left-movers replacing u → ũ and taking the complex conju-
gate. To compute this term we have assumed that uj ̸∈ Z, if this occurs, the direction is
left unrotated from the bosonic perspective, which means that the contribution from that
T 2 is the usual one.

The prefactor corresponds to the number of fixed points by the action over the T 4 coor-
dinates[7], recall that the full action over S1× T 4 has not fixed points due to the shifting
on the S1, but the rotation of the T 4 may have them.

4.3.3 Fermionic contribution

For the fermions the computations are quite similar as in the bosonic case. We rely again
on the rotating nature of the action over the T 4 which just involves a shifting on the
second components of the ϑ functions. Directly addressing the traces we obtain, for the
right movers:

ZNS[0, l] =
1

2

{(
ϑ3

η

)2 4∏
j=3

ϑ[ 0
−luj

]

η
−
(
ϑ4

η

)2 4∏
j=3

ϑ[
0

−luj− 1
2
]

η

}
. (4.19)
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ZR[0, l] =
1

2


(
ϑ2

η

)2 4∏
j=3

ϑ[ 1/2−luj
]

η
−
(
ϑ1

η

)2 4∏
j=3

ϑ[
1/2

−luj− 1
2
]

η

 . (4.20)

Where the last term is important for considering modular invariance but vanishes as
ϑ1 = 0.

The whole fermionic contribution, introducing both the holomorphic and anti-holomorphic
parts, reads as:

ZF [0, l] =
1

2

∣∣∣∣∣
(
ϑ3

η

)2 4∏
j=3

ϑ[ 0
−luj

]

η
−
(
ϑ4

η

)2 4∏
j=3

ϑ[
0

−luj− 1
2
]

η
−
(
ϑ2

η

)2 4∏
j=3

ϑ[ 1/2−luj
]

η

∣∣∣∣∣
2

. (4.21)

4.3.4 Modular invariance and projection over the orbifold

Now, instead of analysing the states in the twisted sectors Hgi , which will be tedious since
we will have to compute several different Hilbert spaces for the new boundary conditions
of the fields introduced by the group action, we can just recall how the time and space
boundary conditions were interchanged under modular transformations in (3.60).

Equivalent to the computations performed for the fermionic states, we can understand the
insertion of the operators gl in the trace as a “time” boundary condition on the time cycle
of the torus, this is explicitly justified with the current description of the orbifold action
over the states (4.12). On the other hand, the Hilbert spaces of the twisted sectors arise
in a similar manner as the “space” boundary conditions, with a proper justification of
this perspective on (4.7)-(4.9), this leads to represent the different blocks of the partition
function as

l□
k
.

As we performed modular transformations in order to modify the spin structures, we
can do the same thing with these blocks. Under a general modular transformation these
blocks transform as:[14]

l □
k

τ→aτ+b
cτ+d−→ la+kb □

lc+ kd
. (4.22)

Particularly focusing on the S transformation, it related the untwisted sector with a
gl insertion with the unprojected l-th sector. The S transformation corresponds with
a = 0, b = −1, c = 1, d = 0, which then results in the transformation:

l □
0

τ→− 1
τ−→ 0□

l
. (4.23)

This prescription allows us to directly compute any contribution Z[k, l] from the different
blocks related to all the possible group actions Z[0, l]. This idea is sustained in the fact
that those transformations connect all the blocks of the partition function, sometimes
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referred as having a complete symmetry.

Using carefully these properties, we get the general contributions:3

ZT 4 [k, l] =

∣∣∣∣∣∣∣∣
4∏

i=3

2 sin [πgcd(k, l)ui]
η

ϑ

[
1
2
− kui

−1
2
+ lui

]
∣∣∣∣∣∣∣∣
2

. (4.24)

While the fermionic components ZF [k, l] = |ZNS − ZR|2 read as:

ZNS[0, l] =
1

2


(
ϑ3

η

)2 4∏
j=3

ϑ[ kuj

−luj
]

η
−
(
ϑ4

η

)2 4∏
j=3

ϑ[
kuj

−luj− 1
2
]

η

 , (4.25)

ZR[0, l] =
1

2


(
ϑ2

η

)2 4∏
j=3

ϑ[1/2+kuj

−luj
]

η
−
(
ϑ1

η

)2 4∏
j=3

ϑ[
1/2+kuj

−luj− 1
2
]

η

 . (4.26)

Where, as stated before, the last term will be 0 as ϑ1 = 0.

4.3.5 Example of a Z2 with u = ũ = (0, 0, 1, 0)

In order to explore a specific example, we will evaluate the previous description for a Z2

orbifold and understand its low energy spectrum. There are two inequivalent twist vectors
that result on a Z2 symmetric orbifold with group action following the already discussed
one. One of the orbifolds breaks all SUSY and the other does not do it. We can check
which will be the outcome by referring to the mass parameters.If we turn on all the mass
parameters setting mi = π, we get the twist vectors u = ũ = (0, 0, 1, 0), there are also
other options but their resulting partition function is essentially the same.

As we have already discussed, the spectrum of closed bosonic string theory presents tachy-
onic states, understood as instabilities in the associated quantum theory. When adding
fermions we had to impose modular invariance (a consistency condition) by which we
crop part of the spectrum and get a supersymmetric spectrum, which makes the partition
function vanish. In this framework the problem of the tachyonic states is solved by this
GSO projection that erases the negative mass states avoiding the divergences of Z(τ, τ)
that arise when q, q → 0, the IR regime.

In this chapter we used the orbifold formalism, which erases some states but also added
some others. As the orbifold projection over the untwisted sector results in adding extra
mass to the states we do not have to worry about possible tachyonic states here. As we
have seen in the previous sections, the twisted sectors present a significant difference in
energy from the untwisted sector; when this difference is negative, possible tachyons will
appear.

3gcd stands for great common divisor.

46



We can check this explicitly by studying the partition function, as was already discussed
in Section 4.4, we can associate the exponent of q, q with the mass squared of the states,
so if we have an overall negative term there, tachyons will be present in the spectrum.

We know the close form for all terms except for the sum over the T 4/Z2 lattice. In this
example with u = ũ = (0, 0, 1, 0) the action of the group over the bosonic contributions
for the T 4, following (4.2.1), is trivial, since uj ∈ Z∀j. This means that the lattice does
not change after the orbifold compactification. The bosonic part is summarised as:

ZB[k, l](τ, τ) =
1

|η|16
1
√
τ2

3

 ∑
(pL,pR)∈Γ4,4

q
α′
4
p2Lq

α′
4
p2R

[ ∑
n,m∈Z

(−1)nl q
α′
2
pL(n,m+ k

2
)2q

α′
2
pR(n,m+ k

2
)2

]
.

(4.27)

The fermionic contribution is directly computed after applying the obtained formulas
(4.25)-(4.26), the result reads:

ZF [k, l] =
1

4

∣∣∣∣∣∣∣∣
(
ϑ3

η

)3 ϑ

[
k
−l

]
η

− eπik
(
ϑ4

η

)3 ϑ

[
k

−1
2
− l

]
η

−
(
ϑ2

η

)3 ϑ

[
1
2
+ k
−l

]
η

∣∣∣∣∣∣∣∣
2

.

(4.28)

To analyze the spectrum in search of tachyonic states we can expand the full partition
function as discussed in Section 4.4 . Following that description, we describe the partition
function in terms of q, q (|q| << 1, equivalent to approach the IR spectrum), impose the
level matching and study the masses of the lowest energy states. As we argued before, the
block Z[0, 0] is the untwisted unprojected block, and so it matches the partition function
of a general Type IIB compactified in a T 5 already described. We will repeat the analysis,
this time for the whole untwisted sector Z[0, l].

The series expansion of the ϑ function with the shift implied by the orbifold reads as:

ZF [k, l] ∼ eπi
∑4

i=3 kl(u2
i−ũ2

i )
∑
r,r̃

q
1
2
(r+ku)2q

1
2
(r̃+kũ)2e−2πil[(r+ku)u−(r̃+kũ)ũ] .

Where, as in the other case, the range of r, r̃ depend on the choice of the NS or R sector
for left and right movers. The overall phase vanishes for symmetric orbifolds. Neglecting
the contribution from the T 4 momenta, we can expand the different blocks of the partition
function for this Z2 case as:

Z[k, l] =
1
√
τ2

3 (qq)
− 1

2

∑
n,w∈Z

e
2πin
p

lq
α4

4
P 2
R(k)(q)

α′
4
P 2
L(k)

∑
r,r̃

q
1
2
(r+ku)2q

1
2
(r̃+kũ)2e−2πil[(r+ku)u−(r̃+kũ)ũ] .

(4.29)

Remark that this expansion is not general for all orbifolds, for a big amount of them
we should introduce the overall contribution of modular function from the T 4 as (4.20)
instead of just adding the η functions as in this case.
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4.3.5.1 Untwisted Sector spectrum

For the untwisted sector we have already shown the possible weight vectors: As mentioned,
the untwisted sector is only constrained by the GSO projection and allows the states:

Sector r̃, r

NS

( ±1, 0, 0, 0)
(0,0,±1, 0)
(0,0,0,±1)

Sector r̃, r

R

(
±1

2
,±1

2
, 1
2
, 1
2

)(
±1

2
,±1

2
,−1

2
,−1

2

)(
1
2
,−1

2
, 1
2
,−1

2

)(
1
2
,−1

2
,−1

2
, 1
2

) (4.30)

Where the underline means that the written state and the state obtained after exchanging
the underlined components are valid.

Now we have to check which states are not projected out and the contributions to the
masses. The orbifold charge will be trivial when r3 − r̃3 ∈ Z, so for any possible tensor
product in the NS-NS and R-R sectors will remain in the spectrum while the R-NS and
NS-R will need the contribution from the circle to remain in the spectrum, missing level-
matching and we can get it again as done before, as a summary:

• R-R & NS-NS Sectors: The possible states will be the tensor product between 2
of all the possible weight vectors in the NS or R respectively. Those states always
verify r2 = 1 and so having no winding from the orbifold, n = 0, and cancelling the
q

1
2
r2− 1

2 contribution in any case, this means that those states are all massless.

• R-NS & NS-R Sectors: As in the case of the twisted sector the contribution of the
orbifold charge must be cancelled by requiring n ∈ 2Z + 1, but in this case the
level matching is trivially confirmed, and so all the possible fermions are also in the
spectrum but they all become massive due to the n = ±1 condition, their mass will
be m =

∣∣ 1
R

∣∣
4.3.5.2 Twisted sector spectrum

To build the states of the closed string we have to do the tensor product of right and left
movers. For the twisted sector we fix k = 1:

• NS-NS Sector: The lowest energy state in the NS-NS sector is given by:

(0, 0,−1, 0)⊗ (0, 0,−1, 0) .

Its mass will be given by a winding appearing from k=1 and since it is the lowest
mass state n=0. It is easy to check where this extra contribution to the mass is
arising, as we can see in (4.14), the twisted sectors provide a fractional extra wind-
ing contribution to the momenta.

We have to take into account also that the term q
1
2
(r−u)2 = 1 and so we have an

overall factor q−
1
2 contributing to the momenta in the circle, so the term will read

as q
1
4 [α′PR(0,1/2)2−2], which gives a mass square term of:

α′m2 =
R2

4α′ − 2 . (4.31)
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So this state will be tachyonic if R < 2
√
2α′, meaning that instabilities will appear

in this theory when the radius of the S1 is lower than a critical value R∗.

• R-R Sector: First we must check whether those states are projected out due to the
orbifolding; in the NS-NS this is not relevant since they have trivial charge under
the orbifold, but in this case since r, r̃ ∈ Z+ 1

2
this charge may be not trivial. The

charge under the orbifold will be given by e−2πil(r3−r̃3) and so the condition for those
states to not be unprotected is r3 − r̃3 ∈ Z, but in any case this is also trivially
verified. On the other hand, looking at the S1 contribution, states with r − r̃ ∈ 2Z
will remain massless, while the rest will have extra momentum. The first massive
states will be given by:

(
1

2
,−1

2
,−1

2
,
1

2

)
⊗
(
1

2
,−1

2
,−1

2
,
1

2

) (
±1

2
,±1

2
,−1

2
,−1

2

)
⊗
(
1

2
,−1

2
,−1

2
,
1

2

)
(
1

2
,−1

2
,−1

2
,
1

2

)
⊗
(
±1

2
,±1

2
,−1

2
,−1

2

) (
±1

2
,±1

2
,−1

2
,−1

2

)
⊗
(
±1

2
,±1

2
,−1

2
,−1

2

)
(
1

2
,−1

2
,−1

2
,
1

2

)
⊗
(
±1

2
,±1

2
,−3

2
,−1

2

) (
±1

2
,±1

2
,−1

2
,−1

1

)
⊗
(
±1

2
,±1

1
,−3

2
,−1

2

)
(
1

2
,−1

2
,−1

2
,
1

2

)
⊗
(
1

2
,−1

2
,−3

2
,−1

2

) (
±1

2
,±1

1
,−1

2
,−1

2

)
⊗
(
1

2
,−1

2
,−3

2
,−1

2

)
(
±1

2
,±1

2
,−3

2
,−1

2

)
⊗
(
1

2
,−1

2
,−1

2
,
1

2

) (
1

2
,−1

2
,−3

2
,−1

2

)
⊗
(
1

2
,−1

1
,−1

2
,
1

2

)
(
±1

2
,±1

2
,−3

2
,−1

2

)
⊗
(
±1

2
,±1

2
,−1

2
,−1

2

) (
1

2
,−1

2
,−3

2
,−1

2

)
⊗
(
±1

2
,±1

2
,−1

2
,−1

2

)
(
±1

2
,±1

2
,−3

2
,−1

2

)
⊗
(
±1

2
,±1

2
,−3

2
,−1

2

) (
1

2
,−1

2
,−3

2
,−1

2

)
⊗
(
±1

2
,±1

2
,−3

2
,−1

2

)
(
±1

2
,±1

2
,−3

2
,−1

2

)
⊗
(
1

2
,−1

1
,−3

2
,−1

2

) (
1

2
,−1

2
,−3

2
,−1

2

)
⊗
(
1

2
,−1

1
,−3

2
,−1

2

)
For the masses we check that the factor (r−u)2 = 1 for all those states both for left
and right movers, so this power of qq cancells the contribution from the η functions
and have no effect in the mass, and so the mass is given by:

α′m2 =

(
R

2
√
α′

)2

=⇒ m =

∣∣∣∣ R2α′

∣∣∣∣ . (4.32)

We link this masses with the fractional winding that appears in the twisted sector,
as from the S1 we can read that, going to the twisted sector shifts m → m + 1

2
in

the momenta of the S1.

• NS-R & R-NS sectors: In principle, we could have different states coming from the
tensor product of the different R sector states times the only one on the NS sector
in both sides, but we have to check again if those states get a charge under the
orbifold and get projected out.
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To check this, we return to the expansions. The term related to the orbifold charge
will read as:

e−2πil(r3−r̃3) = e−2πil(± 1
2) = e±πil . (4.33)

So this states are going to be projected out since they get a non-trivial charge under
the orbifold. In the n = 0 momentum state this occurs, but when n ̸= 0 this
effect can be mixed with the momenta sum over the circle, since as we have already
seen there exist a phase in the sum which is exactly eπinl, so if n ∈ 2Z + 1 those
states of the R-NS and NS-R sector are not projected out; so in order to get the
lightest states we ask for states with n = 1 or n = −1, the specific value between
+1 and −1 will be determined may be determined by the specific phases but this
case is quite special since both contributions always vanish for any odd n, but we
have another constraint, the level matching. By comparing the mass from the left
or right movers we have another constraint over n coming from the algebra, by
assuring level-matching we just have the following options:

– NS-R Sector:

[n = −1] (0, 0,−1, 0)⊗
(
±1

2
,±1

2
,−1

2
,−1

2

)
[n = −1] (0, 0,−1, 0)⊗

(
1

2
,−1

2
,−1

2
,
1

2

)
– R-NS Sector:

[n = 1]

(
±1

2
,±1

2
,−1

2
,−1

2

)
⊗ (0, 0,−1, 0)

[n = 1]

(
1

2
,−1

2
,−1

2
,
1

2

)
⊗ (0, 0,−1, 0)

We can compute the mass on these sectors. For all these states the mass is the
same, but Let us compute it in one specific combination first to check everything is
alright. For example we can take the right movers in the first of the given states,
the momentum on the circle reads initially as:

P 2
L/R(n, k = 1;w = 0) =

n2

R2
+

R2

4α′2 ±
n

α
. (4.34)

But checking the partition function it receives a correction:

α′m2
L =

α′n2

R2
+
R2

4α′ + n + 2 (r + u)2 − 2 , (4.35)

α′m2
R =

α′n2

R2
+
R2

4α′ − n + 2 (r̃ + u)2 − 2 . (4.36)

In the first case (r + u)2 = 1 and (r̃ + u)2 = 0 so we get:

α′m2
L =

α′n2

R2
+
R2

4α′ + n , (4.37)

α′m2
R =

α′n2

R2
+
R2

4α′ − n − 2 . (4.38)
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So choosing n = −1 the states satisfy level-matching so the mass of those states are:

α′m2 =
α′

R2
+
R2

4α′ − 1 =⇒ m =

∣∣∣∣ 1R − R

2α′

∣∣∣∣ . (4.39)

These states will be massless if R =
√
2α′ < 2

√
2α′, and so the tachyonic bound prevents

this states to be massless.

For a general Zp symmetric orbifold acting as described, the highest contribution to the
energy as it occurs in this example between the twisted sectors arise in the k = 1 sector.
This allows to establish a bound for the radius of the S1 to avoid tachyons in our theory
which reads as [15]:

R ≥
√

2npα′ n = ||u3| − |u4|| . (4.40)
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4.3.6 Example of a Z2 with u = ũ = (0, 0, 1/2, 1/2)

This is, as performed before, a symmetric orbifold with twist vectors u = ũ = (0, 0, 1/2, 1/2).

Simplifying a bit the expression and factorising out the η’s since we will expand it at the
end, following the same procedure as before, we get:4

Z[k, l] = (
√
τ2)

−3 1

(ηη)6

∣∣∣∣∣∣ χj[k]

ϑ
[

1
2
− k

2

− 1
2
+ l

2

]
∣∣∣∣∣∣
4

× Sum over momenta on S1 and T 4×

× 1

4

∣∣∣∣(ϑ2
3ϑ

2

[
k
2

− l
2

]
− eπi

∑4
i=3

k
2ϑ2

4ϑ
2

[
k
2

−1
2
− l

2

])
−
(
ϑ2
2ϑ

2

[
1
2
+ k

2

− l
2

]
+ eπi

∑4
i=3 kuiϑ2

1ϑ
2

[
1
2
+ k

2

−1
2
− l

2

]) ∣∣∣∣2 .

(4.41)

First let us expand the first factor with the η functions to check the qq terms out of the
fermionic part. The contribution is given by (In the twisted sector):

1

4
(ηη)−6

∣∣∣∣∣∣
4∏

j=3

χj[1]

ϑ[
1
2
−uj

− 1
2
+luj

]

∣∣∣∣∣∣
2

= 4 (ηη)−6
(
ϑ[

0
l−1
2
]
−2
)(

ϑ[
0

l−1
2
]
−2
)
. (4.42)

Now Let us expand the holomorphic contribution first for simplicity (the anti-holomorphic
part is equivalent with the complex conjugate):

η−6
(
ϑ[

0
l−1
2
]
−2
)
= η−8q

1
12

∞∏
n=1

(
1 + qn−1/2(−1)l−1

)−4

= q−
1
4

∞∏
n=1

(1− qn)−8 (1 + qn−1/2(−1)l−1
)−4

≈ q−
1
4

[
1 + (−1)(l+1)4

√
q + 18q + (−1)(l+1)56q3/2 +O(q2

]
. (4.43)

So the overall factors for the lightest states will be a (qq)
1
4 . Indeed we can compute the

overall contribution for the k−th twisted sector as Ek−1
2
with Ek =

∑
i∈I

1
2
k{ui} (1− {ui}).

Now we must expand as a series, as done before, the fermionic contribution:

ZNS[k, l] ∝
∑
r,r̃∈Z4

q
1
2
(r+ku)2q

1
2
(r̃+kũ)2e−πil

∑4
i=3(ri−r̃i) . (4.44)

And so in the the twisted sector we have:

ZNS[1, l] ∝
∑
r,r̃∈Z4

q
1
2
(r+u)2q

1
2
(r̃+ũ)2e−πil

∑4
i=3(ri−r̃i) . (4.45)

So the weight vectors for the lightest states will be given by r, r̃ ∈ {(0, 0,−1, 0), (0, 0, 0,−1)}
or following the notation for the permutations (0, 0,−1, 0).
In the R sector the lightest states will have only two possible vector: r, r̃ =

(
±1

2
,±1

2
,−1

2
,−1

2

)
4Recall χj [k] = 2 sin (πkuj) when k ̸= 0 and the whole quotient vanish when k = 0 in this case.
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4.3.6.1 Untwisted Spectrum

As in the non-supersymmetric case we only have to check the orbifold charge and the
level-matching. The condition for this orbifold is that the state won’t be projected out
whenever

∑4
i=3 (ri − r̃i) ≡ 0 mod 2. This condition is not satisfied for all the possible

tensor products in any possible sector, but whenever this condition is not satisfied we
can do the same procedure as before for the R − NS and NS − R states, on the other
hand since all the possible vectors satisfy r2 = 1 we will have no mismatch between mR

and mL and there are going also to be no external contributions to the momentum since

E0 = E0 = 0, so the overall factor will be (qq)
1
2 which cancels; this change of the factor

comes from the fact that the term ∝ η
ϑ
becomes 1 for the k = 0 sector.

• NS-NS Sector: First we start with the states given by tensor products with trivial
orbifold charge:

(±1, 0, 0, 0)⊗ (±1, 0, 0, 0)

(0, 0,±1, 0)⊗ (0, 0,±1, 0)

(0, 0,±1, 0)⊗ (0, 0, 0,±1)

(0, 0, 0,±1)⊗ (0, 0,±1, 0)

(0, 0, 0,±1)⊗ (0, 0, 0,±1)

All these states have n = 0 and no winding nor external factors so they are
massless. Then we have massive states coming from the products, setting n = ±1:

(±1, 0, 0, 0)⊗ (0, 0,±1, 0)

(±1, 0, 0, 0)⊗ (0, 0, 0,±1)

(0, 0,±1, 0)⊗ (±1, 0, 0, 0)

(0, 0, 0,±1)⊗ (±1, 0, 0, 0)

With masses m =
∣∣ 1
R

∣∣
• R-R Sector: We do the same procedure, I am not writing all of them here because
they are many different combinations from the given table, but basically we will
have massless bosons whenever the weight vectors verify |r3 + r4| = |r̃3 + r̃4| and
m =

∣∣ 1
R

∣∣ in other case, to give some examples:
Massless: (

±1

2
,±1

2
,−1

2
,−1

2

)
⊗
(
±1

2
,±1

2
,−1

2
,−1

2

)
(
1

2
,−1

2
,
1

2
,−1

2

)
⊗
(
1

2
,−1

2
,−1

2
,
1

2

)
Massive: (

1

2
,−1

2
,
1

2
,−1

2

)
⊗
(
±1

2
,±1

2
,−1

2
,−1

2

)
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• R-NS & NS-R Sectors: It is exactly the same as in the latter cases, we will have
massless and massive fermions of mass m =

∣∣ 1
R

∣∣ depending on if the condition
|r3 + r4| = |r̃3 + r̃4| is satisfied or not, I am not listing all of them since we have so
many possibilities but here are 4 examples:
Masless: (

1

2
,−1

2
,−1

2
,
1

2

)
⊗
(
±1, 0, 0, 0

)
Massive: (

1

2
,−1

2
,−1

2
,
1

2

)
⊗ (0, 0, 0,±1)

4.3.6.2 Twisted Sector spectrum

So we can now construct the possible lowest energy states:

• NS-NS Sector: We have 4 options, summarized as:

(0, 0,−1, 0)⊗ (0, 0,−1, 0)

The level matching is trivially confirmed since we are in a symmetric orbifold, but we
have to check the orbifold charge, in this case for any combination

∑4
i=3 (ri − r̃i) = 0

and so they have trivial charge, so we have no problems with those states, in general
this conditions reads as

∑4
i=3 (ri − r̃i) ≡ 0 mod 2.

The mass of this states is given by:

α′m2 =
R2

4α′ . (4.46)

• R-R Sector: We have four options summarised as:(
±1

2
,±1

2
,−1

2
,−1

2

)
⊗
(
±1

2
,±1

2
,−1

2
,−1

2

)
(
±1

2
,±1

2
,−1

2
,−1

2

)
⊗
(
±1

2
,±1

2
,−1

2
,−1

2

)
Again the level-matching is trivially confirmed and the orbifold charge is trivial since
the sum gives out 2. The mass of those states is also:

α′m2 =
R2

4α′ . (4.47)

• R-NS & NS-R Sectors: First we check the orbifold charge, this is rather easy since the
contribution from the R sector is always going to be −1 and the NS contribution
−1 so those states are also not projected out. Then we have to check the level-
matching, the contribution to the exponent of the q’s are the same, since at the end
r + u = (0, 0,−1

2
, 1
2
)[NS] or (±1

2
,±1

2
, 0, 0)[R] and so its square is the same, giving

that the level matching is trivially successful in these states and we do not have to
add n ̸= 0 contributions. So the possible states are:
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– R-NS Sector: (
±1

2
,±1

2
,−1

2
,−1

2

)
⊗ (0, 0,−1, 0)

– NS-R Sector:

(0, 0,−1, 0)⊗
(
±1

2
,±1

2
,−1

2
,−1

2

)
All of them have the same mass as the states on the other sectors.
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Chapter 5

Cosmological Constant

5.1 EFT vs. String Perspective

Let us start by refreshing the idea of the vacuum energy from the field theory point of
view by taking the effective action action of a free massive scalar field. After performing
a Wick rotation the path integral defines the vacuum energy ΓE:[7]

e−ΓE =

∫
e−SE [ϕ]Dϕ

We can evaluate the integral on the right side as a determinant getting to the expression:

ΓE = −ln
[√
| −□+m2|

]
With the log-trace formula we can evaluate the terms inside the logarithm. Using mo-
mentum representation, we get:

ΓE = −V
2

∫
RD

ln
(
p2 +m2

) dDp

(2π)D
. (5.1)

(5.2)

Where V stands for the volume of he non-compact directions and D runs through the
directions of the space-time. Adding several fields introduces a sum over the different
particles:

ΓE = −V
2

∫
RD

∑
i∈I

(−1)Fi ln
(
p2 +m2

i

) dDp

(2π)D
(5.3)

=
−V
2

∑
i∈I

∫
RD

∫
R+

(−1)Fi e−2πt(p2+m2
i )dt

t

dDp

(2π)D
. (5.4)

Where I enumerates all the particles, the Fi corrects the statistics for the fermionic fields
with a − sign and the t integral from the second line comes from using the formal identity
[20]:

ln(A) = −
∫
R+

e−2πtAdt

t
. (5.5)
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VD stands for the volume of the space-time, if we take it into the left hand side we get
the vacuum energy density, and so the cosmological constant Λ. We can then transform
the sum over the particles as the trace by recalling the result from the algebra:

L0 + L0 = H =
α′

2

(
p2 +m2

)
. (5.6)

And introducing the particles as the base |i >, and so:

Λ =
−1
2

∫
RD

∫
R+

Tr′
(
(−1)Fi e−

4π
α′ t(L0+L0)

) dt
t

dDp

(2π)D
.

Where the trace is denoted by T ′ since the zero modes are introduced by the p integral.
From the algebra we must impose the level-matching condition. We can do so in the
integral by adding a delta:

δ
(
L0 − L0

)
=

∫
R
e2πiθ(L0−L0)dθ . (5.7)

And so the one-loop vacuum amplitude reads as:

Λ =
−1
2

∫
RD

∫
R+

∫
R
Tr′
(
e−

4π
α′ t(L0+L0)

)
e2πiθ(L0−L0)dt

t

dDp

(2π)D
dθ . (5.8)

Now performing changes of variables we can rewrite this in a similar shape as the partition
function on the torus:

t =
α′τ2
2
, θ = τ1 . (5.9)

Λ =
−1
4

∫
RD

∫
R+

∫
R
Tr′
(
e2πi[(iτ1−τ2)L0−(iτ1+τ2)L0]

) dτ1dτ2
τ2

dDp

(2π)D
. (5.10)

And so defining τ = τ1 + iτ2, q = e2πiτ and denoting C+ as the upper part of the plane
{(x, iy) |y ≥ 0} the result reads as:

Λ =
−1
4

∫
RD

∫
C+

Tr′
(
qL0qL0

) dτ1dτ2
τ 22

dDp

(2π)D
. (5.11)

The integral over the momenta will give the 0 mode contribution and so it will result in
the partition function inside the integral, so in general:

Λ =
−1

4
(
2π
√
α′
)D ∫

C+

Z(τ1, τ2)
dτ1dτ2
τ 22

.

But this integral will have divergences depending on the particular cases:

• UV Divergences: This kind will appear since each bosonic contribution, at least

for the free bosons, will read ∝
(√

τ2ηη
)−1

, and so τ2 → 0 ∈ C we will have a
divergence. This corresponds to the T →∞ regime and so to a UV divergence.
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• IR Divergences: In the case of the bosonic string or the presence of tachyons in
the IR spectrum lead to divergences when τ2 →∞ will also be present.

For avoiding the UV divergences we can impose a cutoff in a natural way. When we
defined the skew parameter τ we dicussed that it belongs to the fundamental domain
F ≡ C+/PSL(2,Z) to avoid over-counting; this also agrees with the idea that the whole
integral must be modular invariant, since the partition function is modular invariant and
the measure dτ

Im(τ)2
also. And so the one-loop cosmological constant reads:

Λ =
−1

4
(
2π
√
α′
)D ∫

F
Z(τ1, τ2)

dτ1dτ2
τ 22

. (5.12)

Where F ≡ C+/PSL(2Z) ≡ {τ = τ1 + iτ2 | τ1 ∈ [−1/2, 1/2], τ2 > 0, τ 21 + τ 22 ≥ 1} We
will denote the integral over the fundamental domain, and so the amplitude of the torus,
as Ω:

Ω =

∫
F
Z(τ1, τ2)

dτ1dτ2
τ 22

. (5.13)

5.2 Unfolding Procedure

In order to perform integrals of the shape of (5.13) we have a major problem. The
fundamental domain defines a region in which the boundaries of one of the variables is
entangled with the other, for example:

Ω =

∫
F
Zdµ =

∫ 1/2

−1/2

∫ ∞

√
1−τ21

Z(τ1, τ2)

τ 22
dτ2dτ1 . (5.14)

Where dµ = dτ1dτ2
τ22

is the invariant under PSL(2,Z) measure. This expression is clearly

difficult to approach analytically, and so we would prefer to modify the domain in such
a way that we recover an expression close to the result from the field theory in which
the domain of integration does not mix both variables. The main problems associated
with this are the existence of IR divergences in the integrand (τ2 → ∞) and the already
mentioned difficult domain of integration.

The solution to the second issue is straightforward; if we manage to mod out part of the
symmetry of the integrand by algebraic procedures we may change the domain of integra-
tion in order to reduce the PSL(2,Z) into other group G such that the quotient C+/G is
a domain that does not entangle the variables. In order to do this, we will first focus on
the integral of the partition function before performing the orbifold compactification and
then we will generalize to the case of orbifolds.

Let us start by focusing on the Ω integral (5.8). The partition function inside the integral
is built as a product of modular invariant pieces, one of them is the sum over the momenta
lattice ΛS1(τ), contribution which is expanded as an infinite sum:

ΛS1(x) =
∑

n,m∈Z

qP
2
RqP

2
L =

R√
α′

1
√
τ2

∑
n,m∈Z

e
− πR2

τ2α
′ |n+mτ |2

. (5.15)
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Now we recall that the PSL(2,Z) group can be represented as:

(
a b
c d

)
, ai ∈ Z, ad− bc = 1 . (5.16)

Focusing on the sum over the lattice we can rewrite, extracting the great common divisor
from n,m: ∑

n,m∈Z

e−α|n+mτ |2 =
∑
p∈Z

∑
c,d∈N

e
−α p2

τ2
|c+dτ |2

. (5.17)

We can relate each exponential through one specific T transform using transformations
g ∈ PSL(2,Z)/T :[24] (

a1 a2
c d

)
: e

−α p2

τ2
g−→ e

−α p2

τ2
|c+dτ |2

. (5.18)

And so we can recover the S1 sum over the lattice as the orbit of this element over
PSL(2,Z)/T :∑

n,m∈Z

e
− πR2

τ2α
′ |n+mτ |2

=
∑
p∈Z

∑
g∈PSL(2,Z)/T

e
− πR2

τ2α
′ p

2

=
∑

g∈PSL(2,Z)/T

g ◦ Λ̃S1 . (5.19)

Now we directly realize that we have expressed the lattice in such a way that we have a T
invariant term and the sum over the whole orbit over PSL(2,Z)/T . In order to simplify
the discussion, we will add it to the Ω integral. To do so we expand:

1 =
ΛS1

ΛS1

=
∑

g∈PSL(2,Z)

g ◦ Λ̃S1

ΛS1

=
∑

g∈PSL(2,Z)

g ◦

(
Λ̃S1

ΛS1

)
. (5.20)

Where in the last equality we used that the sum over the lattice ΛS1 is modular invariant.
Inserting this in the Ω equation:

Ω =

∫
F
Zdµ =

∫
F

∑
g∈PSL(2,Z)

g ◦

(
Λ̃S1

ΛS1

)
Zdµ . (5.21)

Now, using that both the partition function and the measure are modular invariant, we
can act with g−1 and they remain the same, and so:

Ω =

∫
F

∑
g∈PSL(2,Z)

g ◦

(
Λ̃S1

ΛS1

Zdµ

)
=

∑
g∈PSL(2,Z)

∫
g−1◦F

Λ̃S1

ΛS1

Zdµ =

∫
C+/T

Λ̃S1

Z

ΛS1

dµ .

(5.22)

A quick inspection gives C+/T ≡ {(τ1, τ2) ∈ C | τ1 ∈ [−1/2, 1/2], τ2 > 0}, so we have
correctly modded out part of the modular invariance and just left an integrand invariant
under T transformation, unfolding the domain. Studying the properties of the integrand

we realize that it is no longer UV divergence due to the presence of the term e
−αp2 1

τ2 ;
this procedure gives also the correct prescription in order to avoid the UV divergences,
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the Poisson resummation does not alter the function but ensures the convergence of the
integral when τ2 → 0. On the other hand, the τ1 can now be interpreted as the imposition
of the level-matching.

To give an example, consider a theory with the contributions coming from two free bosons
and a compact one on an S1. The partition function will read as:

Z(τ1, τ2) =
R√
α′

1

τ 32

1

(ηη)3
ΛS1 (τ) ,

1

η3
= q−

1
8

∑
n∈N

anq
n, an = ∂q

∞∏
n=1

(1− qn)−3
∣∣
q=0

.

(5.23)

With the expansion of η functions we can rewrite:

Z(τ1, τ2) =
R√
α′

∑
n,m∈N

anam
q−

1
8 q−

1
8

τ 32
qnqmΛS1

(
π
R2

α′

)
. (5.24)

Expanding the q’s:

Z(τ1, τ2) =
R√
α′

1

τ 32

∑
n,m∈N

anamq
− 1

8 e2πτ2(n+m− 1
4)e2πiτ1(n−m)ΛS1

(
π
R2

α′

)
. (5.25)

Now we can perform the integral over the fundamental domain. Following the prescription
we developed we just change ΛS1 → Λ̃S1 :

Ω =
R√
α′

∑
p∈Z

∑
n,m∈N

anam

∫ ∞

0

1

τ 32
e−2πτ2(n+m− 1

4)e
−π R2

τ2α
′ p

2

dτ2

∫ 1/2

−1/2

e2πiτ1(n−m)dτ1 . (5.26)

Now we check explicitly that the τ1 integral imposes the level matching, in fact, the result
of its integral is a delta δn,m, while the τ2 can be represented by a Basset function (5.43):

Ω =

√
α′

R

∑
p∈Z

∑
n∈N

a2n
8n− 1

p2
K2

[√
2π|p| R√

α′

√
8n− 1

]
. (5.27)

The objective of this example is just to show how to use this unfolding method to compute
those kind of amplitudes. We will perform the analysis of the orbifolded theory in the
next section. For this case, it can be shown that this amplitude diverges, indeed, a closer
inspection of the integral (5.26) shows that in the IR (τ2 → ∞), the contributions from
n = 0 generate an exponential divergence. this is reflected on the final result inside the
K2 function, in which the argument turns imaginary. We link this divergence with the
presence of tachyons in the bosonic string spectrum; which leads to vacuum instabilities.
We will deeply analyze this problem when discussing the theories on orbifolds.

5.2.1 Extension to orbifolds

As already discussed the partition function of a theory compactified on orbifolds splits in
different blocks. The resulting partition function is given by:

Z =
1

p

∑
k,l∈[0,p−1]

Z[k, l] . (5.28)
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As the orbifold is taken to act over the S1 direction the sum over the related lattice is
modified and so the previous unfolding does not fail to generate an unfolded integral,
since the only requirement is the modular invariance of Z, but the introduction of Λ̃
only cancells the contribution in Z[0, 0], while on the other terms we get impossible to
solve (analytically) integrals. The first intuitive movement would be trying to upgrade
the proccess in order to use Λ̃S1 [k, l] that cancels each contribution differently, but each
Z[k, l] block is not, in general, modular invariant by itself as we have already seen.

The natural extension is looking for blocks that are T invariant and trying to apply a
similar method to them and lately relate all the terms to these ones through modular
transformations.

In order to give a prescription, Let us assume that the orbifold is a Zp with p prime. Our
starting point will be expressing the whole partition function as the orbit of an element1

over a subgroup G ⊂ PSL(2,Z). We know that this is indeed possible due to the relation
(4.24) between the [k, l] blocks under modular transformations, i.e.:

Z =
1

p

p∑
k,l=1

Z[k, l] =
1

p

∑
g∈Gk0,l0

⊂PSL(2,Z)

g ◦ (Z[k0, l0]) . (5.29)

Obviously this set of transformations is determined by the block [k0, l0] chosen to represent
the sum. Figure 5.1 shows the “descendent” nets from T-invariant terms. The connections
between all the terms [k, l] with fixed k through S and T transformation starting from a
T-invariant term [0, k].

[0, 1] [1, 0]

[1, 1]

T

S

T

(a) Net for a Z2 orbifold.

[0, 1] [1, 0] [2, 0] [0, 2]

[1, 1] [2, 2]

[1, 2] [2, 4]

[1, 3] [2, 1]

[1, 4] [2, 3]

T

S

T T

S

T

T T

T T

S

T T

S

(b) Example of net for a Z5 orbifold.

Figure 5.1: Examples of descendent nets obtained from modular transformations from
[0, 1] and [0, 2]. The connection between the [0, 1] and [0, 2] descendent nets through S
transformations is also showed.

1The term [0,0] vanishes so it’s implicitly taken out of the sum.
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Following the spirit of the latter development, we intend to end with a domain only mod-
ded by the T group, this means that the natural choices for [k0, l0] are the ones that are
T -invariant. From the examples above, we see that the states [0, i] are natural choices in
this context, but any T -invariant term is accepted for this procedure.

Given Z0, a T -invariant block, we have a well defined G set such that we can recover
the full partition function by acting with its elements over Z0. In this context, there is a
uniquely defined group Γ such that[32]:

∀γ ∈ Γ, γ ◦ Z0 = Z0 ,
∑
g∈G

g ◦ Γ = PSL(2,Z) . (5.30)

For simplicity, we will focus on the [0, 1] term. Following the discussion for the case
without the group quotient, we investigate now the S1 lattice associated to this term.
After the Poisson resummation, reads as:

Λp
1 =

∑
n,m∈Z

e
− πR2

α′p2τ2
|pn+1+pmτ |2

. (5.31)

This lattice is invariant under the the so-called Γ1
0[p] subgroup of PSL(2,Z), given by

matrices of the modular group with the shape:

Γ1
0[p] ≡

〈(
pa+ 1 b
pc pd+ 1

)
| ad− bc = 1

〉
⊂ PSL(2,Z) . (5.32)

As a side remark, as done before, a modular transformation may be represented as:

τ → aτ + b

cτ + d
, ad− bc ̸= 0, a, b, c, d ∈ Z . (5.33)

And so if we represent them as matrices:(
a b
c d

)
∼
(
−a −b
−c −d

)
ad− bc ̸= 0, a, b, c, d ∈ Z . (5.34)

. From this symmetry it follows that the group Γ1
0[p] can be also represented as:

Γ1
0[p] ≡

〈(
pa− 1 b
pc pd− 1

)
| ad− bc = 1

〉
⊂ PSL(2,Z) . (5.35)

The next step is representing the S1 sum over the lattice Λp
1 as the orbit of an element

through the group Γ1
0[p]/T . The main problem is that the decomposition is not so straight-

forward in this case.

For p = 2, 3, we can rewrite the lattice as an orbit following:

Λp
1(x) =

∑
m∈Z

∑
{(c,d)∈Z2|(pc+1,pd)=1}

e
−x(pm+1)2 1

p2τ2
|pc+1+pdτ |2

=
∑
j∈Z

∑
γ∈Γ1

0[n]/T

γ ◦
(
e
−x

(pj+1)

p2

)
.

(5.36)
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Indeed for these cases
∑

g∈G g ◦ (Γ1
0[p]) = PSL(2,Z)/T , which is why we can express the

sum in this way. If this does not hold, as we will see later with the p = 5 example, the
expansion of the lattice is slightly different.

For p > 3 we divide the sum in several terms which are related to the other T invariant
terms in the net of Zp apart from Z[0, 1]. In order to illustrate the description we will
just do the example for p = 5. When expanding the lattice Λ5

1(x) we cannot do it directly
in such a way that the subgroup Γ that stabilizes the T -invariant term [0,1] verifies∑

g∈G g ◦ (Γ) = PSL(2,Z)/T . the group that stabilizes this [0, 1] element is the one

already described Γ1
0[5]; but an expansion of the lattice Λ5

1(x) requires two terms, if we
want to express the contribution as the orbit of an element through a group as in the
latter case:

Λ
(5)
1 =

∑
m,c,d∈Z

(5c+1,5d)=1

e
−(5m+1)2

|5c+1+5dτ |2
25τ2 +

∑
m,c,d∈Z

(5c+3,5d)=1

e
−(5m+2)2

|5c+3+5dτ |2
25τ2 . (5.37)

The expansion in two terms is also required algebraically because of the 5 multiplying the
c, d in the exponent. The first term is treated in a similar way as in the latter case, by
expressing it as the orbit of an element under Γ1

0[5]; this idea can also be performed in
the second term, but modifying the matrices that we are multiplying to the main element.

One can easily find that the subgroup we are looking for is the one given by matrices of
the shape: (

5a+ 3 b
5c 5d+ 2

)
∼
(

5a− 3 b
5c 5d− 2

)
. (5.38)

The matrices of this shape form a subgroup of PSL(2,Z), usually denoted as Γ2
0[5]. Its

generalization to p ̸= 5 is trivial, just substituing 5→ p.

Having this setup, we can think about how does choosing a T−invariant block different
than the [0, 1] affects this procedure. In principle, we have no reason to take one particular
T-invariant block, the result should be equivalent for all of them. With this idea, we can
expect to have different contributions from the different T -invariant terms of the net. In
the net of Z5 we have two suitable elements for this description, the first is the basis of
the previous development [0, 1] while the second is [0, 2]; checking the net diagram, these
elements are related by a transformation h = ST 2ST 3S ∈ PSL(2,Z) ; h◦Z[0, 1] = Z[0, 2].
This specific transformation can be linked with the Γ1

0[5] and Γ2
0[5] groups:

ST 2ST 3S ◦ Γ1
0[5]/T = Γ2

0[5]
[
ST 2ST 3S,Γ1

0[5]
]
= 0 . (5.39)

Following this, we can repeat the expansion as in the other cases expressing the two terms
as:

Λ̃
(n)
i (x) =

∑
p∈Z

e
− x

τ2
(p+ i

n)
2

=⇒ Λ
(5)
1 =

∑
γ∈Γ1

0[5]/T

γ ◦
[
Λ̃

(5)
1 (x) + h ◦ Λ̃(5)

2 (x)
]
. (5.40)

But if we think about all the possible blocks Z[k, l] that may appear in a Z5 we may also
think that we would expect similar terms arising for [0, 3] and [0, 4], since they are also
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T-invariant, but as we already mentioned, the Γ groups for [0, 3] and [0, 4] are exactly the
same as for [0, 2] and [0, 1] respectively as seen in (5.38) and (5.35), which means that we
are already taking them into account.

Returning into the Ω integral, we can express the quotient h◦
(

Z[0,1]

Λ
(5)
1

)
= Z[0,2]

Λ
(5)
2

, and follow

the unfolding procedure:

5Ω =

∫
F

∑
g∈G

g ◦ (Z[0, 1]) dµ =

∫
F

∑
g∈G

g ◦

(
Λ

(5)
1

Λ
(5)
1

Z[0, 1]

)
dµ

=
∑

g∈G, γ∈Γ1
0[5]

∫
F
gγ ◦

{
Z[0, 1]

Λ
(5)
1

[
Λ̃

(5)
1 + h ◦

(
Λ̃

(5)
2

)]}
dµ

=
∑

g∈G, γ∈Γ1
0[5]

∫
F
gγ ◦

{
Z[0, 1]

Λ
(5)
1

Λ̃
(5)
1 + h ◦

(
Z[0, 2]

Λ
(5)
2

Λ̃
(5)
2

)}
dµ

=
∑

g∈G, γ∈Γ1
0[5]

∫
F
gγ ◦

(
Z[0, 1]

Λ
(5)
1

Λ̃
(5)
1

)
+ gγh ◦

(
Z[0, 2]

Λ
(5)
2

Λ̃
(5)
2

)
dµ

=
∑

g∈G, γ∈Γ1
0[5]

∫
F
gγ ◦

(
2∑

i=1

Z[0, i]

Λ
(5)
i

Λ̃
(5)
i

)
dµ =

∫
H+

2∑
i=1

Z[0, i]

Λ
(5)
i

Λ̃
(5)
i dµ . (5.41)

Where the last line is obtained by using [γ, h] = 0 as already stated, and h ∈ G, since
[0, 1]

h−→ [0, 2], so it is contained in this set by definition. And so we can express in the
integral over the fundamental domain as:

Ω =
1

5

2∑
i=1

∫
H+

Z[0, i]

Λ
(5)
i

Λ̃
(5)
i dµ . (5.42)

For any orbifold over the group Z5, obviously this method is intended to simplify the par-
tition functions arising in our calculations and that is why the lattice that we are dividing
by is exactly the one from the contributions in the terms Z[0, i].

Generalizing the previous discussion to p ∈ N∗, p > 2 is quite intuitive. We focus on those
descending chains of blocks like the one arising from Z[0, 1] or Z[0, 2] in the previous
example; since we know it should split the sum as in (5.27), and so we focus on the Z[0, l]
such that l is coprime with p and the rest of the T-invariant terms already considered, and
then we repeat exactly the same procedure. By doing so we get the following formula:[32]

Ω =

∫
F

1

n

p∑
i,j=0

Z[i, j]dµ =

∫
H+

1

n

∑
i∈I

Z[0, i]

Λ
(n)
i

Λ̃
(n)
i

dτ1dτ2
τ 22

. (5.43)

Where I ≡
{
i ∈ N∗ | gcd(i, n) = 1 ∧ i < 1

2
(n− 1)

}
.

The most interesting consequence of the formula is that, not only the integral is simpli-
fied avoiding contours difficult to compute analytically; but it also shows an interesting
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property. The only blocks of the partition function that we need in order to compute the
vacuum-amplitude are in the untwisted sector, and within these, we only need the ones
coming from projections whose orders are coprime with the order of the group and less
than its half. This reduces substantially the number of terms one should compute to get
this magnitude. For example, for the case of a Z9, we would potentially have 80 different
blocks we should introduce in the initial integral. After the unfolding, we only need to
compute 2 terms, Z[0, 1] and Z[0, 2].

On the other hand, it also simplifies the treatment of the lattices while computing this
integral. In some cases the initial Narain lattice Γ4,4 that appears in the untwisted sector
is broken in the twisted sectors by the action of the orbifold; but applying the unfolding
procedure we do not need to use the twisted sector blocks, and so we will not have to
study those lattices in order to compute the vacuum amplitude.

5.3 Example for R1,9 × S1/Z2

Let us start by a simple example. Consider a Type IIB string theory compactified in
R1,9×S1/Z2. Without the orbifold, we just have 7 bosonic free contributions and 1 com-
pact contribution on a S1 equivalent to the discussed in Section 3.2.2;. The Z[0, 0] block
vanishes due to the presence of supersymmetry. To breaK SUSY then we act over the S1

with a translation orbifold and over the fermionic coordinates with a fermion index (−1)F
operator. In practice, we already know how to compute its partition function, since the
action of the group is equivalent to the torus action over fermions with the Z2.

Having this framework, we already know that the partition function splits in different
blocks and how to obtain the cosmological constant:

Z(τ1, τ2) =
1

2

1∑
k,l=0

Z[k, l](τ1, τ2), Λ = − 1

4
(
2π
√
α′
)9 ∫

F
Z(τ1, τ2)dµ . (5.44)

Then, in order to get the cosmological constant arising for this model, we are interested
in the integral; given the unfolding procedure we can rewrite:

Ω =

∫
F
Z(τ1, τ2)dµ =

1

2

∫
H+

Z[0, 1]

Λ
(2)
1

(
πR2

α′

)∑
j∈Z

e
− πR2

α′τ2
(n+ 1

2)
2

. (5.45)

Recalling the result for the orbifold, we get that the [0,1] blovk of the partition function
is expressed as:

Z[0, 1] = ZR1,8 × ZS1 [0, 1]× ZF [0, 1] . (5.46)

ZR1,8 =
(√

τ2 |η|2
)−7

; ZS1 =
1

|η|2
R√
α′τ2

Λ
(2)
1

(
πR2

α′

)
; ZF =

∣∣∣χ0 + χ 1
16

∣∣∣2 . (5.47)

While the fermionic part and the η contributions can be expanded in terms of Taylor
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series over q:2

χ0 + χ 1
16

=
1

2

[(
ϑ3

η

)4

−
(
ϑ4

η

)4

+

(
ϑ2

η

)4
]
=

(
ϑ2

η

)4

,

∣∣∣∣χ0 + χ 1
16

η8

∣∣∣∣2 = ∣∣∣∣ϑ2

η3

∣∣∣∣8 .

(5.48)

ϑ2

η3
=

2ηq1/12
∏∞

n=1 (1 + qn)2

ηq1/12
∏∞

n=1 (1− qn)
2 = 2

∞∏
n=1

(
1 + qn

1− qn

)2

=⇒
(
ϑ2

η3

)4

= 24
∞∑
n=0

Anq
n .

(5.49)

And so the expansion leads to:∣∣∣∣χ0 + χ 1
16

η8

∣∣∣∣2 = 28
∑

n,m∈N

AnAmq
nqm, An = ∂nq

∣∣∣∣
q=0

∞∏
n=1

(
1 + qn

1− qn

)8

. (5.50)

Returning to the Ω integral, then we have an expanded version:

Ω = 27
R√
α′

∑
j∈Z

∑
n,m∈N

AnAm

∫
H+

1

τ 62
e−2πτ2(n+m)+2πiτ1(n−m)e

− πR2

α′τ2
(j+ 1

2)
2

dτ1dτ2 . (5.51)

Where the first exponential term arises from the qnqm term from the fermionic expansion.
Now we can perform the τ1 and τ2 integrals separately because of the H+ domain. The
τ1 integral involves just one term:∫ 1

2

− 1
2

e2πi(n−m)dτ1 ∝ sin [π (n−m)] =⇒
∫ 1

2

− 1
2

e2πi(n−m)dτ1 = δn,m . (5.52)

On the other hand the τ2 integral is split in two parts, the first one refers to the term
n = m = 0 and the second one compiles all the other terms and gives out a modified
Bessel function of the second kind, also called Basset function, defined as:

Kν(z) =
π

1
2

(
1
2
z
)ν

Γ
(
v + 1

2

) ∫ ∞

1

e−zt
(
t2 − 1

)ν− 1
2 dt =

1

2

(
1

2
z

)ν ∫ ∞

0

exp

(
−t− z2

4t

)
dt

tν+1
.

(5.53)

Introducing the δn,m in the sum and the τ2 integral we get the final shape of this integral:

Ω =
211 31

33 7 5
π5

(√
α′

R

)9

+
218

π5/2

(√
α′

R

)4 ∑
M∈N∗
j∈2Z+1

|AM |2
(√

πM

|j|

)5

K5

[
2π

R√
α′
|j|
√
M

]
.

(5.54)

The first term, that goes as 1
R9 is related to the low-energy theory, while the rest of the

contributions are contained in the infinite sum of the second term. The index of the sum
are M , which runs over the different mass levels, and j which arised from the momenta
contribution of the S1. This function is definely positive, as any of the terms in the sum
can be negative and the first term is always non-zero except for the limit R → 0, in

2We have used the Riemann identity for the first equality
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which we decompactify the S1 recovering a supersymmetric spectrum. The K5 is closely
linked with the number of non-compact directions, as the 5 = 1 + D−1

2
where D = 9 is

the number of non-compact directions; this comes from the prefactor 1
τ62

= 1

τ
2+D−1

2
2

in the

integral.

The AM correspond to the number of string states in the M mass level, as it arises from

the expansion of
χ0+χ 1

16

η3
, which is the fermionic contribution; so it reflects the number

that arises when expanding the partition function with the term qM .

5.3.1 Hagedorn phase transition

From the analysis of the partition function in Section 4.4 we already know that the lowest
energy states in the k = 1 twisted sector may be tachyonic depending on the radius of
the S1 compactification, particularly:

R <
√
8α′ =⇒ Tachyonic R =

√
8α′ =⇒ Massless R >

√
8α′ =⇒ Massive

So we expect that in the case of R <
√
8α′ the integral (5.13) should diverge due to the

presence of tachyons in the spectrum. From the previous analysis we realize that the term
M = 0 does not diverge for any value of the radius, so the divergence should appear in
the contribution given by M > 0 terms.

We then focus on the second term in (5.54):

∑
M∈N∗

∑
j∈Z

aj,M , aj,M = |AM |2
( √

M

|2j + 1|

)5

K5

[
2π|2j + 1| R√

α′

√
M

]
. (5.55)

It can be easily seen that, for a fixedM ∈ N∗, limn→∞ aj,M = 0, so the divergences are not
probably coming from this sum, on the other hand, in the M limit there are two possible

sources of divergence, the coefficients AM and the
√
M

5
term.

So we know that the expected divergence is secretly hidden in the M sum. Now we can
try to get this behaviour analytically. To do so, we can expand the Kν modified Bessel
function of the second kind:

K5(x) =

√
π

Γ
(
11
2

) (x
2

)5 ∫ ∞

1

e−xt
√
t2 − 1

9
. (5.56)

So in our case the function is expanded as:

K5

[
2π|2n+ 1| R√

α′

√
πM

]
=

π5
√
π

Γ (11/2)

(
|2n+ 1| R√

α′

)5

M5/2

∫ ∞

1

e
−t

(
2π|2n+1| R√

α′
√
M

)√
t2 − 1

9
dt .

(5.57)

From this perspective the convergence of theM sum will be determined by comparing the
divergence coming from the AM coefficients and the terms with M on the last equation:

an,M = |AM |2
π5
√
π

Γ (11/2)

(
R√
α′

)5

M5

∫ ∞

1

e
−t

(
2π|2n+1| R√

α′
√
M

)√
t2 − 1

9
dt . (5.58)
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We can approximate the behaviour of the Taylor coefficients AM when M is large, so in
order to check if those terms diverge we can specify:3

AM ≈
1

M11/4
eπ

√
8M . (5.59)

This means that the number of string states grows exponentially with the energy. For
large M we get:

aj,M =
π5
√
π

Γ (11/2)
√
M

(
R√
α′

)5 ∫ ∞

1

e
2π

√
8M−t

(
2π|2j+1| R√

α′
√
M

)√
t2 − 1

9
dt . (5.60)

In the limit M → ∞ the convergence is given by the negativeness of the power of the
exponential:

2π
√
8M − t

(
2π|2j + 1| R√

α′

√
M

)
≤ 0 . (5.61)

This must hold for any j, which is verified if it is for j = 0. On the other hand t > 1 in
the whole domain of the integral, and so the most restrictive case is t = 1. Following this
ideas, the inequality that ensures the convergence is:

√
8 ≤ R√

α′
=⇒ R ≥ 2

√
2α′ . (5.62)

Recovering the tachyonic bound that we already got from the study of the spectrum,
showing that there are not IR divergencies over this bound.

The underlying theormodynamics here hide a so-called Hagedorn phase transition [16].

To give a brief picture, we started with the idea of fundamental vibrating strings which
may have an instability but, performing the series expansion and the Poisson resumma-
tion, we sent this divergences to the high-energy regime. We are now describing closed
strings in which the instability, appears now when heating up the system. At some critical
temperature given by the point of this critical radius value, strings are copiously produced
leading to a divergence in the number of states and so in terms of the energy. When the
radius is small enough, the density of states decays after some value so the system presents
no divergence.
rature from the typical partition function perspective.

5.4 Example for
(
T 4 × S1

)
/Z2

The procedure is exactly as the latter case, we only have to focus on the Z[0, 1] in order
to perform the integral Ω. In this case the T 4 compactification gives out a sum over the
momentum lattice, so this block reads as:

Z[0, 1] =
R√
α′

1

τ 22

∑
(pL,pR)∈Γ4,4

q
α′
4
p2Lq

α′
4
p2R × Λ

(2)
1

(
πR2

α′

)
×
∣∣∣∣χ0 + χ 1

16

η8

∣∣∣∣2 . (5.63)

3This relation is stated in [2], but also is known as the Cardy’s Formula.
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In order to perform the integral we need to give an explicit expression for the lattice Γ4,4.
In this case, we have a similar case as the last one, with the difference that we have less
bosonic free contributions and we have the sum over the torus lattice. Performing the
same unfolding as before we start with the expression:

Ω =
1

2

∫
S

Z[0, 1]

Λ
(2)
1

Λ̃
(2)
1 dµ . (5.64)

Again we can expand the terms:

Z[0, 1] = Zfree × ZT 4 × ZS1 [0, 1]× |χ0 + χ 1
16
|2 (5.65)

=
1

(
√
τ2|η|2)3

∑
(pL,pR)∈Γ4,4

q
α′
4
p2Lq

α′
4
p2R

|η4|2
R√

α′τ2|η|2
Λ

(2)
1 (

πR2

α′ )|χ0 + χ 1
16
|2 (5.66)

=
R√
α′

1

τ 22
×

∑
(pL,pR)∈Γ4,4

q
α′
4
p2Lq

α′
4
p2R × Λ

(2)
1 (

πR2

α′ )×
∣∣∣∣χ0 + χ 1

16

η8

∣∣∣∣2 . (5.67)

And so the Ω reads as:

Ω =
R

2
√
α′

∫
S

1

τ 42
×

∑
(pL,pR)∈Γ4,4

q
α′
4
p2Lq

α′
4
p2R × Λ̃

(2)
1

(
πR2

α′

)
×
∣∣∣∣χ0 + χ 1

16

η8

∣∣∣∣2 dτ2dτ1 . (5.68)

The unfolding is defined exactly as in the latter case, there is no difference in the process
from the algebraic point of view since the extra factor ZT 4 is itself modular invariant
as the lattice is required to be Lorentzian even self-dual. Now, the contributions to τ1
arise also from the sum over the torus lattice, so the integral over τ1 must include this
contribution.

From the study of the algebra over lattices, we know that the geometry of the lattice is
defined by its background field G. With respect to them we can write a closed form for
generic p2L/R:[7]

p2L/R = m⃗tG−1m⃗+
1

α′2 n⃗
tGn⃗± 2

α′ n⃗
tm⃗ n⃗, m⃗ ∈ Z4 . (5.69)

To perform this calculation we will fix a lattice Γ0, in which the metric is diagonal. In
general a general Γ4,4 can be related with this Γ0 lattice by a roation in SO(4, 4). The
theory we are describing is symmetric under SO(4)×SO(4) (rotations in the left and right
lattices independently), and so selecting a point in the space SO(4, 4)/SO(4)× SO(4) is
choosing a specific point in this moduli space. For dimensional reasons we will choose
G = α′Id, in this context the square of the chiral momentum can be explicitly computed:

p2L/R =
1

α′ m⃗
2 +

1

α′ n⃗
2 ± 2

α′ n⃗
tm⃗ . (5.70)

And so:

α′

4
p2L/R =

1

4

(
m⃗2 + n⃗2

)
± 1

2
n⃗tm⃗ n⃗, m⃗ ∈ Z4 . (5.71)
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The contribution from the lattice is then expanded as:∑
(pL,pR)∈Γ4,4

q
α′
4
p2Lq

α′
4
p2R =

∑
(pL,pR)∈Γ4,4

e
−πτ2

(
α′
2
p2L+

α′
2
p2R

)
e
−πiτ1

(
α′
2
p2L−

α′
2
p2R

)
=
∑

n⃗,m⃗∈Z4

e−πτ2(m⃗2+n⃗2)e−2πiτ1(n⃗tm⃗) .

(5.72)

The contribution to the τ1 integral then vanishes, since n⃗tm⃗ ∈ Z the contribution to the
τ1 integral is neglected, since after the integral the factor becomes a factor e±2πz z ∈ Z,
so we only have to change the τ2 contribution.

Explicitly the Ω integral is expressed as:

Ω =
R

2
√
α′

∫
S

1

τ 42
×

∑
(pL,pR)∈Γ4,4

q
α′
4
p2Lq

α′
4
p2R × Λ̃

(2)
1

(
πR2

α′

)
×
∣∣∣∣χ0 + χ 1

16

η8

∣∣∣∣2 dτ2dτ1 (5.73)

=
R

2
√
α′

∫
S

1

τ 42
×
∑

n⃗,m⃗∈Z4

e−πτ2(m⃗2+n⃗2)e−2πiτ1(n⃗tm⃗) × Λ̃
(2)
1

(
πR2

α′

)
×
∣∣∣∣χ0 + χ 1

16

η8

∣∣∣∣2 dτ2dτ1 .
(5.74)

As computed before:∣∣∣∣χ0 + χ 1
16

η8

∣∣∣∣2 = ∑
N,M∈N

ANAMq
NqM =

∑
N,M∈N

ANAMe
−2πτ2(N+M)e2πiτ1(N−M) . (5.75)

And so we can expand the integral as: .

Ω =
R

2
√
α′

∑
n⃗,m⃗∈Z4

N,M∈N

ANAM

∫
S

1

τ 42
e−πτ2(m⃗2+n⃗2+2N+2M)e−2πiτ1(N−M+n⃗tm⃗) × Λ̃

(2)
1

(
πR2

α′

)
dτ2dτ1 .

(5.76)

The level-matching integral now gives out a different delta δN+n⃗tm⃗
M , introducing it in the

sum:

Ω =
R

2
√
α′

∑
n⃗,m⃗∈Z4

N∈N
j∈Z

ANAN+n⃗tm⃗

∫ ∞

0

1

τ 42
e−πτ2[(n⃗+m⃗)2+4N] e

−πR2

α′τ2
(j+1/2)2

dτ2 . (5.77)

The latter expression can be directly integrated. We must distinguish between the term
[(n⃗+ m⃗)2 + 4N ] vanishing or not, this leads to:

2
√
α′

R
Ω =

∑
n⃗,m⃗∈Z4

N∈N
j∈Z

ANAN+n⃗tm⃗

∫ ∞

0

1

τ 42
e−πτ2[(n⃗+m⃗)2+4N] e

−πR2

α′τ2
(j+1/2)2

dτ2 (5.78)

=
27

π3

(√
α′

R

)6∑
j∈Z

(1 + 2j)−6 (5.79)

+ 24π3/2

(√
α′

R

)3 ′∑
n⃗,m⃗∈Z4

N∈N
j∈2Z+1

ANAN+n⃗tm⃗


√
(n⃗+ m⃗)2 + 4N

|j|

3

K3

[
π
R√
α′
|j|
√
(n⃗+ m⃗)2 + 4N

]
.

70



The first sum can be computed exactly:

2
√
α′

R
Ω =

22

3 · 5
π3

(√
α′

R

)6

(5.80)

+ 24π3/2

(√
α′

R

)3 ∑
j∈2Z+1

′∑
n⃗,m⃗∈Z4

N∈N

ANAN+n⃗tm⃗

[
1

j

√
(n⃗+ m⃗)2 + 4N

]3
K3

[
πj

R√
α′

√
(n⃗+ m⃗)2 + 4N

]
.

Where the ′ denotes that the term n⃗ = m⃗ = 0⃗ N = 0 is not considered on the sum.
Leading to the result:

Ω =
2

3 · 5
π3

(√
α′

R

)5

(5.81)

+ 23π3/2

(√
α′

R

)2 ∑
j∈2Z+1

′∑
n⃗,m⃗∈Z4

N∈N

ANAN+n⃗tm⃗

[
1

j

√
(n⃗+ m⃗)2 + 4N

]3
K3

[
πj

R√
α′

√
(n⃗+ m⃗)2 + 4N

]
.

5.4.1 Numerical approximation of Ω

Computing this sum analytically is almost impossible, while numerically we will have 10
different sum parameters with unbounded domains, so it is also quite difficult. We can
try to make an approximation by turning off the lattice momenta n⃗ = m⃗ = 0 (Since the
behaviour is also partially codified with the N parameter). Doing so we plot how this
amplitude behaves when increasing the radius:

2.8 2.9 3.0 3.1
R (α ')-1/2

200

400

600

800

1000

1200

Ω

P=100

Figure 5.2: Ω for various R/
√
α′ values.

N ∈ [1, 100]

2.8 2.9 3.0 3.1
R (α ')-1/2

5.0×106

1.0×107

1.5×107

Ω

P=200

Figure 5.3: Ω for various R/
√
α′ values.

N ∈ [1, 200]
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2.8 2.9 3.0 3.1
R (α ')-1/2

5.0×1015

1.0×1016

1.5×1016

Ω

P=500

Figure 5.4: Ω for various R/
√
α′ values. N ∈ [1, 500]

We can see that, as the radius tends to infinity, the amplitude tends to zero, while as
the radius is small, it explodes. This divergence is encoded in the asymptote that occurs
at R

α′ =
√
8. Theoretically, for this model, we argued that there should be a divergence

arising for R <
√
8α′. The existence of this critical radius is common to orbifold models

of this kind, it is a symptom of tachyons (states of negative mass square as discussed in
Section 4.3.5) appearing in the spectrum, and so it leads to vacuum instabilities. This
issue only appears when adding “high energy” states, and so when we consider N →∞,
as we discussed with the Hagedorn phase transition. This was not doable numerically, but
we can clearly see that as we increase the number of terms P in the sum of Ω, we get the
asymptotic behaviour, with the limit tending to Ω(

√
8)→∞ as we expected analytically.

5.4.2 Decompactification limit

This expression was obtained after choosing a suitable metric for the Γ4,4 g = α′Id, since
we can always Lorentz rotate from any general lattice to the one characterised by this
choice of metric (sometimes called Γ0). In order to decompactify, the easiest way goes
through explicitly showing the radius of each S1 in T 4 and taking its limit Ri → ∞. To
simplify the computations, we will choose the same radius to all the cycles in the torus and
perform directly the limit. We expect to recover the result from the theory on R1,8×S1/Z2.

To do this,let us specify some notation and the metric we will choose for the T 4. First of
all, we already have a radius (related to the S1/Z2), all the terms related to this radius

RS1 go as
(

RS1√
α′

)a
a ∈ Z; on the other hand we choose g = α′

R2
T4

Id to be the metric on

the T 4, choosing it to be diagonal and having all the same entries basically we take the
same idea as in the last case in which we separate T 4 = (S1)

4
but showing explicitly the

radius. So in order to simplify notation we define in this case:4

R =
RS1√
α′

; R = RT 4 =⇒ g =
α′

R2
Id . (5.82)

4The expression is symmetric in n⃗ and m⃗ before introducing the radius in the metric, and so we don’t
really care about adding 1

R or R. On the other hand, we use its square to relate with the already known
result of the circle.

72



Using this as input for equation (5.69) we realize that the result is exactly the same
expression after rescaling:

m⃗→ m⃗R ; n⃗→ n⃗

R
. (5.83)

Instead of trying to take the limit where R → 0 directly from the close expression we
obtained for Ω in (5.81), for the sake of simplicity, we will perform the limit in the τ2-
integral expression for Ω:

2

R
ΩT 2×S1 = 28

∑
n⃗,m⃗∈Z4

N∈N
j∈Z

ANAN+n⃗tm⃗

∫ ∞

0

1

τ 42
e
−πτ2

[
( n⃗
R
+m⃗R)

2
+4N

]
e

−πR
2

τ2
(j+ 1

2)
2

dτ2 . (5.84)

When R → ∞ all the terms with m⃗ ̸= 0 vanish since they get exponentially suppressed,
and so we can directly rewrite:

2

R
ΩT 2×S1 = 28

∑
N∈N

∑
j∈Z

A2
N

∫ ∞

0

1

τ 42
e−4πτ2N

∑
n⃗∈Z4

e−πτ2
n⃗2

R2 e
−πr̃2

τ2
(j+1/2)2

dτ2 . (5.85)

Upgrading the sum into an integral by saying n
R
→ x:

∑
n⃗∈Z4

e−πτ2
n⃗2

R2 =

[∑
n∈Z

e−πτ2
n2

R2

]4
−−−→
R→∞

[∫
R
e−πτ2x2

dx

]4
=

1

τ 22
. (5.86)

Probes directly that:
ΩT 4×S1

(
R,R

)
−−−→
R→∞

ΩS1

(
R
)
. (5.87)

5.4.3 Cosmological Constant analysis

As we developed in (5.13), for our model the one-loop contribution for the cosmological
constant is given in terms of the Ω integral as:

Λ = −1

4

Ω(
2π
√
α′
)5 . (5.88)

The first insight that we can get from here is that, for all these class of vacua, the one-loop
cosmological constant is always negative This is independent of the radius of the the S1

direction, as Ω
(

R√
α′

)
is positive defined. In case this one-loop contribution is relevant

enough, the overall vacuum would have AdS geometry.

Including the prefactor from (5.88) in (5.81), the cosmological constant reads as:

Ω = − 1

26 · 3 · 5π2

1

R5
(5.89)

− 1

24π
7
2

√
α′3R2

∑
j∈2Z+1

′∑
n⃗,m⃗∈Z4

N∈N

ANAN+n⃗tm⃗

[
1

|j|

√
(n⃗+ m⃗)2 + 4N

]3
K3

[
π|j| R√

α′

√
(n⃗+ m⃗)2 + 4N

]
.
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In the no string limit, in which the scale of the string is taken to be zero α′ → 0, the
second sum vanishes, this can be easily checked by using the asymptotic expansion for
large argument of the Basset function:

Kν(z) ∼
( π
2z

) 1
2
e−z

∞∑
k=0

ak(ν)

zk
. (5.90)

In the limit α′ → 0, the leading term in terms of alpha will be
√
α′−3

e
−A 1√

α′ → 0 vanishing
the second contribution.

The first term does correctly not have any dependence on α′ and so it is related with
t low energy theory, so Type IIB supergravity. This calculation was also performed in
supergravity [15], in which Λ ∝ 1

R5 , obviously this result was also expected from dimen-
sional analysis. The exact prefactor to this 1

R5 should not be compared directly with the
supergravity calculation, unfortunately the precise formula that links both computations,
in string theory and supergravity, does not work for the case D = 5.[12]

Figure 5.5: Cosmological constant over the radius of the S1 direction, R. Fixed α′ = 1.
The dashed line represents thhe critical value R =

√
8α′.

Thus, taking only into consideration the first term results in a cosmological constant
which is unstable since it will tend to roll down and the radius will tend to zero leading
to a vacuum instability that cannot be fixed. On the other hand, the pure stringy term
presents also this instability but at a critical value of the radius R0 > 0, allowing a region
R ∈ (0, R0) whose behaviour is completely out of the former analysis. If we try to extend
naively region of validity of this constant Λ to R < R0, then we will just find tachyons
whose mass increases in absolute value, so the vacuum would be unstable.

Moreover, the integral Ω is always positive, since the first term is always positive the
solution of the Basset function and its prefactor is always positive and the AN are also
positive. This forces the cosmological constant to be strictly negative, and so we expect
that, prior to further loop corrections, the vacuum of this model exhibits Anti-de-Sitter
geometry.
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Chapter 6

Conclusions & Outlook

In this thesis, we studied orbifold compactifications of Type IIB String Theory focusing
on the computation of one-loop partition function for these theories.

We performed the calculations of the one-loop vacuum amplitude arising from Type IIB
string theory with a R1,4× (S1 × T 4) /Zp spacetime. Particularly for Zp symmetric freely-
acting orbifolds, using standard techniques such as the orbits method to unfold the integral
of the partition function over the fundamental domain.

We then focused on an Z2 orbifold example and explicitly showed how to express the
result of this integral as a series expansion. We checked how the expected tachyonic
states in the spectrum lead to divergencences at low R and they are linked to well-known
phenomena such as Hagedorn phase transitions. We also proved some limit regimes as
the decompactification limit and obtained the cosmological constat at one-loop from the
String Theory perspective.

We compared how this cosmological constant has the same tendency in the α′ → 0 limit
(Λ ∼ 1

R5 ) as in the supergravity computation. We also showed that, for this kind of model,
the one-loop contribution to the vacuum energy is always negative.

Future research may imply several directions.One of the main ideas would be to explicitly
compare this result with the one arising from supergravity [1][12]. For doing so, there
could be modifications on the formulae already existing for D even.

On the other hand, we expect a natural roll-down of the vacuum energy over RS1 till
the phase transition in which it became unstable; further investigation will be needed to
actually confirm what may happen in the regime RS1 under the tachyonic bound. There is
some ongoing research on these topics, as trying to formally get some arguments inspired
by T -duality intuition to investigate that region.[11]

Moreover, some modifications during the integral of the unfolding may lead to easier
functions in the amplitude sum, such as performing a Poisson resummation on the T 4

contribution. This would help some analysis, such as showing explicitly how to drop the
dependence on the T 4 modes for the AN coefficients. Moreover, extensions to orbifolds
in which the sum over the S1 is not present may be also done analytically by using other
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kind of methods .[4][19][3]
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Suck, Michael Schreiber, and Peter Häussler. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 17–48. isbn: 978-3-662-05028-6. doi: 10.1007/978-3-662-
05028-6_2. url: https://doi.org/10.1007/978-3-662-05028-6_2.

[6] Katrin Becker, Melanie Becker, and John H. Schwarz. String Theory and M-Theory:
A Modern Introduction. Cambridge University Press, 2006.
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