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Abstract 

This thesis aimed to investigate the decision-making behavior of cyclists in shared spaces, 

specifically examining the potential of dynamic gap acceptance models in predicting cyclists' 

responses to pedestrian crossings. By extending previous research on Diffusion Decision Models 

(DDM), this study incorporated the influence of pedestrian density on cyclists' decision 

processes. By doing a Continue / Brake cycling task in a simulated city environment, the effects 

of different environmental factors on decision outcomes and reaction times where tested and 

significant findings emerged. Time-to-Arrival (TTA) was found to negatively affect the 

likelihood of cyclists braking, indicating that a greater time to arrival influences decreases the 

probability of braking decisions. Although distance did not individually show a significant effect 

on decision outcomes, pedestrian density did. This suggests that higher pedestrian density 

increases the likelihood of braking, likely due to perceived risk. Reaction Times (RTs) were 

significantly influenced by both distance and density, with higher distance and density leading to 

shorter RTs. The interaction between TTA and pedestrian density notably affected RTs, with 

higher density conditions increasing decision complexity and cognitive load. Based on the 

statistical results, a baseline DDM based on previous research is compared to three models with 

different variations of density integration. The models with density integrated showed worsened 

performance, with the model where density influences urgency showing the most promise. This 

worsened performance highlights the need for further model refinement to capture cautious 

behaviors accurately.  
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1. Introduction 

1.1 Behavioral Adaptation in Shared Spaces 

In urban planning, the concept of shared spaces represents a transformative approach to 

designing public spaces. It transforms spaces where different forms of mobility are separated to 

spaces where different forms of mobility are allowed in the same space. In shared spaces, the 

absence of traditional traffic controls like signs and signals necessitates that users navigate based 

on informal social protocols and negotiation (Hamilton-Baillie, 2008). Therefore, road design 

plays an important role in ensuring the safety of traffic participants. When considering cyclists' 

safety, cars are often identified as the primary risk. However, in areas with extensive cycling 

infrastructure, pedestrians crossing the road are a more significant threat for cyclists (Dozza & 

Werneke, 2014). 

 Integrating shared spaces into an existing infrastructure network introduces complexity, 

as such networks may already exhibit diverse degrees of separation in its infrastructure. For 

example, in suburban areas in The Netherlands, cyclists and cars share a road while in more rural 

areas they typically have distinct lanes. Introducing the absence of traffic controls like signs and 

signals further intensifies the complexity for road users. The safety of cyclists can be influenced 

by the extent to which they adapt their behavior to informal social protocols and negotiation 

processes. Thompson et al. (2017) shows this by using agent-based modelling and simulating an 

environment with different degrees of infrastructure separation. In their model, the safety of the 

cyclist is dependent on the level of behavioral adaptation of the road users to the different levels 

of separation. As a result, the likelihood of accidents in areas with no separation increases when 

behavioral adaptation decreases (Thompson et al., 2017).  

 Fortunately, research by Beitel et al. (2018) on naturalistic data suggests that as 

pedestrian density in shared spaces increases, cyclist speed decreases, suggesting that the 

presence of potential accidents or conflicts might induce cyclists to adapt their behavior. 

Similarly, research where participants had to navigate through a virtual crowd has shown that 

pedestrians adapt their behavior based on their neighbors in the crowd (Warren & Rio, 2015). In 

this scenario, an increase in neighbors shows a positive relationship with behavioral adaptation 

for both speed and heading, which decreases based on the distance between the pedestrian and 

their neighbors (Warren & Rio, 2015).  
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 The behavioral adaptation mentioned by Beitel et al. (2018) could also be due to visual 

crowding. Visual crowding is a phenomenon where the perception and recognition of objects in 

the peripheral vision are impaired by the presence of nearby distractors (Kondyli et al., 2023; 

Nandy & Tjan, 2012; Xia et al., 2020). This effect is significant in the context of cycling, where 

the ability to detect and respond to critical visual cues, such as pedestrians or traffic signs, can be 

compromised by visual clutter. In driving scenarios, crowding can influence saccadic movements 

and the localization of targets, potentially leading to an increased risk of accidents. Studies have 

shown that visual complexity in driving environments can increase cognitive load, leading to 

reduced attention and slower response times, thereby impacting overall traffic safety (Kondyli et 

al., 2023; Nandy & Tjan, 2012; Xia et al., 2020). However, the relationship between conflict, 

pedestrian density and cyclist speed is not uniformly consistent. This intricate interplay between 

infrastructure, user behavior, and safety underscores the necessity of a nuanced approach to 

modeling cyclist decision behavior and reactivity. 

1.2 Evidence Accumulation Modelling 

 In recent years, researchers have looked into the possibility of applying evidence 

accumulation modelling for modelling reactivity in applied decision making settings (Boag et al., 

2023; Palada et al., 2016). One of the more successful evidence accumulation models, the 

Diffusion Decision Model (DDM), aims to describe a decision-making process in terms of speed 

and accuracy (Starns & Ratcliff, 2010). It assumes that decision making occurs in three phases: 

an encoding phase, a decision phase and a motor response phase. In the encoding phase, input is 

encoded and initiates the decision phase. In the decision phase, evidence for one choice over the 

other is continuously accumulated in a noisy manner based on the input. The rate at which the 

evidence is accumulated is called the drift rate. Once enough evidence has been accumulated for 

one choice over the other, by crossing a predefined threshold or boundary, a decision is made 

and a (motor) response occurs (Bontje & Zgonnikov, 2024; Lerche et al., 2020; Ratcliff, 1978; 

Ratcliff et al., 2001, 2004, 2006, 2016; Starns & Ratcliff, 2010; Wagenmakers et al., 2007).  

 The DDM not only describes decision-making processes but can also show biases in 

response strategies. Clay et al. (2017) explains it by using signal detection theory terminology in 

relation to loss aversion strategies. In their explanation, a bias in decision making would 

correspond to a criterion shift in signal detection theory, changing the likelihood that a decision-

maker selects one option over the other. For example, in a scenario where individuals are 
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presented with a two-choice scenario, such as deciding to ‘Accept’ or ‘Reject’ a wager, the 

expectation in a bias-free environment is for both choices to be selected at similar rates. 

However, a bias would shift the response criterion, making the individual prefer one choice over 

the other. In this context, loss aversion can be thought of as a bias against changes that make the 

situation worse. This would result in the Reaction Time (RT) distributions for the biased 

response being lower (Clay et al., 2017). In the DDM, the criterion shift can be reflected by 

setting the starting point at an intercept and moving it closer to one of the decision boundaries. 

Then, less evidence is necessary to reach one of the decision boundaries (Clay et al., 2017; 

Ratcliff, 1978; Ratcliff & McKoon, 2008). 

 Bias within the DDM can also be reflected by adjustments to the drift rate 

(Alexandrowicz & Gula, 2022; Leite & Ratcliff, 2011; Navarro & Fuss, 2009). A positive drift 

rate biases decisions towards one choice, while a negative drift rate biases them towards the 

opposite choice. This dynamic is particularly evident under experimental conditions that 

manipulate decision criteria or stimulus frequency. Navarro and Fuss (2009) highlight how 

variations in drift rate affect decision-making speed and accuracy, emphasizing its role in biasing 

responses. Similarly, Alexandrowicz & Gula (2022) underscores the estimation issues that arise 

when extreme drift rates cause decisions to favor one boundary predominantly, showcasing the 

inherent bias in such scenarios. Moreover, Leite & Ratcliff (2011) illustrate that changes in 

decision cutoffs and stimulus frequency necessitate drift rate adjustments to fit observed 

behaviors, further confirming its critical role in modeling decision bias. Collectively, these 

studies affirm that drift rate is integral to understanding how biases manifest in the decision-

making process within the DDM framework. 

 Unfortunately, despite its accuracy in describing decision-making, there is a noticeable 

lack of literature on applying the DDM to cyclist behavior and cyclist conflicts. However, DDM 

applications on conflict detection where cars and/or pedestrians are involved does exist and has 

mainly focused on an extension of the diffusion decision model. This extension integrates gap 

acceptance models into the DDM (Boag et al., 2023; Pekkanen et al., 2022; Theisen et al., 2024; 

Zgonnikov et al., 2022). Gap acceptance models are used to analyze road crossing decisions. 

This is done by looking at the decision to stay in their place or to go and cross the road, based on 

the distance between road users and the Time To Arrival (TTA) between the road users and the 

conflict (Kaparias et al., 2016; Tian et al., 2024). For example, Kaparias et al. (2016) have used it 
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to analyze naturalistic data. They look at how elements of shared spaces influence pedestrian and 

driver behavior. Kaparias et al. (2016) show that when elements of shared spaces are introduced 

by introducing informal (uncontrolled) pedestrian crossing facilities, gap acceptance for 

pedestrians does not change but cars do lower their speed, reflecting the behavior of the cyclists 

in Beitel’s (2018) research. 

 By applying gap acceptance methodology to the DDM, the possibility of modelling the 

underlying cognitive processes that lead to a road crossing decision arises. In this version of the 

DDM, the drift rate is driven by a linear combination of distance and TTA, or generalized gap, 

which lead to gap acceptance decisions. This model assumes that by default, the evidence 

accumulation is driven towards the decision to cross the road and accept the gap. Only when the 

evidence is below a predetermined critical value, the direction of the evidence accumulation 

switches and goes towards the decision to not accept the gap to stay (Pekkanen et al., 2022; 

Theisen et al., 2024; Zgonnikov et al., 2022). For example, Pekkanen et al. (2022) have shown 

that the model can be used to describe the road crossing behavior of pedestrians. Their results 

suggest that when a car uses implicit and explicit signals that show intent to yield, the 

pedestrians drift rate towards a crossing decision increases. 

 Zgonnikov et al. (2022) have used a dynamic version of the gap acceptance DDM to 

analyze left turn gap acceptance behavior for traffic conflicts where two cars arrive at a road 

crossing. In their experiment, the driver had to decide if they would stay at the road crossing or 

go based on the gap between the driver and an upcomming car. What makes their version differ 

from other gap acceptance DDM’s, is that they introduced the idea of urgency, which can 

influence the decision boundaries. When time passes during the decision-making process, 

neuronal firing increases, showing that deciding induces a cost. This cost inferred from the 

increased neuronal firing can be reflected in the decision boundaries by collapsing them over 

time (Churchland et al., 2008; Drugowitsch et al., 2012). In the study by Zgonnikov et al. (2022), 

it is assumed that the TTA creates this sense of urgency for the driver. Theisen et al. (2024) have 

compared the dynamic version of Zgonnikov et al. (2022) to the traditional static version 

developed by Ratcliff (1978) and shows that it is able to describe road crossing decision behavior 

more accurately. Additionally, Bontje & Zgonnikov (2024) has expanded on this model by 

suggesting that the generalized gap, which is the linear relationship between distance and TTA, 
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and the decision outcome can induce this sense of urgency. They also show that the model can be 

used to predict decision confidence. 

1.3 Research Questions 

 Whilst the popularity of shared spaces in urban design increases, the lack of empirical 

research investigating the dynamics of the behavioral adaptation of cyclists and applications of 

the DDM on cyclist conflicts is apparent. Therefore, this study’s aim is to look at how cyclist 

adapt their decision behavior and the possible applications of the dynamic gap acceptance DDM 

(Bontje & Zgonnikov, 2024; Zgonnikov et al., 2022). By adding elements of shared spaces to 

cyclist-pedestrian conflicts and adjusting the pedestrian density, this thesis will try to answer two 

questions. The first question that will be investigated is: “How do cyclist adapt their behavior 

based on environmental factors in a shared space”. The second question that will be answered is: 

“Can the brake or continue decision behavior of cyclists in a shared space be modelled in an 

evidence accumulation model?” To answer these questions, this study will perform a Go/No go 

experiment which will be redesigned as a Continue/Brake task. In this task, the cyclist will be set 

in a simulated environment and must decide if they want to brake to let a pedestrian cross the 

road or continue and keep on cycling based on the gap between them and the pedestrian. In this 

experiment, three hypotheses are tested.  

1.4 Hypotheses 

1.4.1 Decision behavior and reaction times 

 To answer the first question, this thesis will first test if the probability of a Brake 

response decreases with TTA and distance, and how pedestrian density influences the probability 

(Bontje & Zgonnikov, 2024; Zgonnikov et al., 2022). Previous literature focusing on cars, 

designed their experiment in such a way that gap acceptance decisions occur in a stationary 

position (Pekkanen et al., 2022; Theisen et al., 2024; Zgonnikov et al., 2022). Cyclists, however, 

continuously move through the environment and modulate their behavior based on 

environmental factors (Beitel et al., 2018; Kondyli et al., 2023; Nandy & Tjan, 2012; Warren & 

Rio, 2015; Xia et al., 2020). But it is uncertain how environmental factors, such as pedestrian 

density, influence the decision outcome of the cyclist. Therefore, the hypotheses (hypotheses 1a) 

that will be tested is if an increase in TTA and distance decreases the probability of a 'Brake' 
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response. Additionally, the influence of pedestrian density will be examined to determine if it 

modulates the probability of a 'Brake' response and therefore induces a bias towards braking. 

 Second, this thesis will test whether TTA, distance, pedestrian density, and the decision 

outcome (Continue or Brake) influence RTs. Specifically, it will investigate if these factors 

individually and interactively contribute to changes in RTs, and how they affect the speed of 

decision-making in cyclists navigating shared spaces. Previous articles have shown that the 

generalized gap influences the urgency of deciding, and therefore influences the overall RTs of 

participants (Bontje & Zgonnikov, 2024). However, as research has shown that pedestrian 

density and visual crowding induces behavioral adaptation (Beitel et al., 2018; Warren & Rio, 

2015; Xia et al., 2020), it is uncertain how density influences RTs and the urgency of deciding. 

The hypothesis to be tested (hypotheses 1b) is that higher TTA and distance will lead to longer 

RTs, while higher pedestrian density influences the perceived gap and induces a sense of 

urgency leading to lower RTs. 

1.4.2 Evidence accumulation modelling 

 To answer the second research question, this thesis will first look at how the influence of 

pedestrian density on the behavior of the cyclist can be modelled best. Bontje & Zgonnikov 

(2024) have described the influence of the generalized gap on the decision process. But, the 

visual crowding caused by the higher pedestrian density, could influence the decision process by 

altering the perception of the gap between the cyclist and the pedestrian (Kondyli et al., 2023; 

Nandy & Tjan, 2012; Xia et al., 2020). Therefore, this thesis will compare four different models. 

First, this thesis will apply the generalized gap model developed by Bontje & Zgonnikov (2024) 

as a baseline model to test its applicability (Model 1, Generalized gap). Second, it will be tested 

if the visual crowding caused by the pedestrian density can be modelled as a perceived gap 

instead of a generalized gap, where density influences the accumulation process and urgency of 

deciding (Model 2, Perceived gap). 

 Third, this thesis will look at the influence of pedestrian density on the decision bias. As 

described in hypotheses 1a, cyclists adapt and modulate their behavior based on environmental 

factors (Beitel et al., 2018; Warren & Rio, 2015; Xia et al., 2020). As it is uncertain how the bias 

induced by the pedestrian density could be modelled best, it will be tested if it can be reflected 

best by dynamically adjusting the drift rate (Model 3, Dynamic drift rate) (Alexandrowicz & 

Gula, 2022; Leite & Ratcliff, 2011; Navarro & Fuss, 2009), or in the starting point of the 
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evidence accumulation (Model 4, Starting point bias) (Clay et al., 2017; Ratcliff, 1978; Ratcliff 

& McKoon, 2008). 

 By testing the two hypotheses and the four models, this study could aid future research by 

showing how environmental factors influence decision behavior of cyclists, and if the dynamic 

gap acceptance DDM can be used to describe decision behavior of multiple forms of mobility. It 

could also aid policy makers and city designers on where, if and how shared spaces could be 

integrated safely into the infrastructure network, based on the projected pedestrian density such 

an area would have. 
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2. Methods 

This study was approved by the Ethical Review Board of the Faculty of Social and Behavioral 

Sciences of Utrecht University. 

 

2.1 Experimental Design 

2.1.1 Participants 

 A total of 24 participants (6 males, 18 females, average age of 22,00 years ranging from 

19 to 25) participated in this experiment. The participants were collected through a random 

convenience sample and consisted of students from the University of Utrecht. Each participant 

received course credit for the duration of the experiment or received monetary compensation. All 

participants had normal or corrected to normal vision. Participants had basic knowledge of the 

purpose of the experiment and received a full explanation after completion of the experiment. 

Each participant gave written informed consent before the experiment. 

 

2.1.2 Procedure 

 The experiment consisted of a Go/No Go task which was redefined as a Continue/Brake 

task. The participants were instructed to take the role of a cyclist, cycling through a shared space 

with varying amounts of pedestrians. Furthermore, the participants were told that in each trial of 

the experiment, a pedestrian would try to cross the cycling path at varying locations. In the 

experiment the participants had to decide whether they would keep on cycling, or if they would 

brake to let the pedestrian pass. To make a ‘Continue’ decision to keep on cycling, the 

participants could press the ‘K’ key on their keyboard. To make a ‘Brake’ decision to let the 

pedestrian pass, the participants could press the ‘S’ key on their keyboard. Participants were 

instructed to react as fast as possible and keep their hands on the right position on the keyboard 

at any time during the experiment. The participants were given the opportunity to pause the 

experiment using the ‘Backspace’ key whenever they felt like having a break. If they decided to 

take a break, they could press ‘Enter’ to continue. The participants were also given the 

opportunity to terminate the experiment using the ‘Escape’ key whenever they felt like ending 

the experiment. 



12 
 

 At the start of the experiment, the participants were given opportunity to practice 10 trials 

of the experiment. Each trial consisted of a countdown that counted down from three to zero 

after which a randomly chosen video stimuli would be shown. After deciding to brake or 

continue, the video would stop, and the next trial would start. At the start of the practice trials, a 

message was displayed on screen which explained the experiment and explained the controls. 

After 10 trials, the participant was asked if they felt like continuing the practice trials or not. The 

participants could end the practice trials by pressing the ‘Escape’ key when they felt like they 

had practiced enough. The participants were allowed to ask questions about the controls during 

the practice trials if they felt like the instructions were not clear enough. 

 The data recording section of the experiment was divided into 3 blocks of 15 minutes 

each. Each block had 72 trials, making a total of 216 trials per participant. At the start of the data 

recording section, a message was displayed which explained the controls again. In between the 

blocks, the participants were given a break for as long as they needed. When they felt like 

continuing, they would ask the researcher present to start the next block. The participants could 

also take a break during the blocks by pressing ‘Backspace’. The participants could also end the 

date recording section using the ‘Escape’ key. In each trial, one of the generated videos was 

displayed in a predefined randomized order. 

 The videos were organized and randomized using a MATLAB script. The videos were 

first filtered to meet specific conditions necessary for the distinct parts of the experiment. 

Subsequent random permutations of the eligible files were performed to create multiple blocks of 

trials, ensuring no repetitions of the videos within a block and varied exposure across 

participants. Each participant received a unique set of trials. To ensure variety and 

counterbalance order effects across the study, one participant's set was the reverse order of 

another participant's set. These sets were saved as text files, maintaining a randomized and 

unique trial structure for each participant, effectively minimizing potential sequence biases in 

data collection. 

 

2.1.3 Conditions 

 The experiment used a 2 x 2 x 2 within-subject design with the TTA, distance and 

pedestrian density as independent variables. The TTA was measured as the time it took for the 

cycling participant to arrive at the point of conflict with the crossing pedestrian. The TTA was 
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either 4 or 6 seconds. The distance was measured as the distance between the cycling participant 

and the point of conflict with the crossing pedestrian. The distance was either 15 or 25 meters. 

To make sure the TTA remained either 4 or 6 seconds at the different distances, the speed of the 

cycling participant was simulated different for each variation. This resulted in four different 

velocities for the cyclist. These are 9.0 km/h (6 s and 15 m), 13.5 km/h (4 s and 15 m), 15.0 km/h 

(6 s and 25 m) and 22.5 km/h (4 s and 25 m). The pedestrian density was simulated in either a 

low or a high-density condition. The simulation parameters are described in Appendix A. A 

schematic view of the experimental conditions is displayed in Fig. 1. The reaction time 

measured, and the decision made were used as dependent variables.  
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Figure 1: A schematic view of the different experimental conditions. The cyclist can have one of four speed 

variations in each of the conditions. In conditions A and E, the cyclist has a speed of 9.0 km/h. In conditions B and 

F, the cyclist has a speed of 13.5 km/h. in conditions C and G, the cyclist has a speed of 15.0 km/h. In conditions D 

and H, the cyclist has a speed of 22.5 km/h. 

 

2.1.4 Materials and stimuli 

 The participants performed the experiment on a computer in a laboratory environment 

provided by the University of Utrecht. which included a 23-inch screen and a commercially 

available keyboard. SimCrowds (SimCrowds, n.d.) was used as a simulation software to generate 
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the video stimulus materials. The simulations of the different conditions were exported as .mp4 

files and were displayed randomly using the PsychoPy3 package in Python. The videos were 

displayed at 59,940 Hz and a resolution of 1920 x 1080 px. The experiment setup is displayed in 

Fig. 2. 

 

Figure 2: Experimental setup. 

 The stimulus videos displayed one of two simulated city environments with elements of 

shared space. The environments chosen are shared spaces in the city centre of Utrecht, the 

Netherlands where cyclists are already a common occurrence. The Janskerkhof and the 

Stadhuisplein were chosen as city environments. An example of the Stadhuisplein with a high 

pedestrian density is shown in Fig. 3 and an example of the Janskerkhof with a low pedestrian 

density is shown in Fig. 4. For each condition and each location, two different videos were 

simulated. In the different videos, the location of where the conflict occurs in the shared space 
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differed by inverting the cycling direction of the cyclist. For each video, the start of the evidence 

accumulation was added to the metadata of the videos to use in the analysis, just as the 

information about the condition to which the video belongs. For each location and direction, a 

video was generated where no pedestrian crossed the road and was added as a noise trial. 

 

Figure 3: Simulated environment of the Stadhuisplein Utrecht with high pedestrian density. 

 

Figure 4: Simulated environment of the Janskerkhof Utrecht with low pedestrian density. 
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2.2 Statistical Analysis 

2.2.1 Data preparation and exclusion 

24 participants each performed 216 trials accounting for 5184 total trials. Before the data 

analysis commenced, data was excluded using Python scripts based on the following criteria. 

First, trials where participants chose to pause the experiment (n = 0), noise trials (n = 576) or 

trials where no response was given (n = 7), were excluded from the data. This reduced the 

dataset by 11.2%, excluding 583 trials and reducing the number of trials to 4601.  

 Second, if a participant responded after the pedestrian crossed the road, the program 

recorded the response in the next trial as a negative value during the countdown. As it is assumed 

that it takes approximately 240 ms for a person to respond to a stimulus (Card et al., 2005), all 

trials with a RT lower than 240 ms were excluded. If this happened in more than 10% of the 

trials, it was assumed that the participant did not pay full attention or understand the task 

correctly and the whole dataset of that participant was excluded. This excluded the data of 1 

participant and excluded 218 trials total, reducing the number of participants to 23 and reduced 

the number of trials by 4.7% to 4383 total trials.  

 Third, the time it takes for the pedestrian to start crossing the road, which is assumed to 

be the start of the evidence accumulation of the participant was subtracted from the RTs. 

However, the time it takes for the pedestrian to start was rounded to whole seconds which is not 

as accurate as it could be. Additionally, the environmental factors included in the video could be 

of influence on the start of the evidence accumulation of the participant. This resulted in negative 

RTs (113 trials) and RTs exceeding the TTA (123 trials) still being present in the data. These 

trials could still say something about the environmental factors influence on the behavior, which 

is why they will be used in further analysis. A visualization of the data distributions can be found 

in Appendix B. figure 15. 

 

2.2.2 Statistical analysis 

 To test the first hypothesis, a linear mixed-effects model was fitted using MATLAB’s 

(R2024a) ‘fitglme’ package to analyze the binary outcome of whether the participant pressed 

Brake or Continue. The model formula was specified as: 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ~ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑇𝑇𝐴 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 +  (1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝐼𝐷) + (1|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) 
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This model included interaction terms between Distance, TTA and Density, with random 

intercepts for participants to account for individual differences and random intercepts for 

location to account for differences in reaction for the two locations. Here, Brake was coded as 0, 

Continue as 1, low density as 0 and high density as 1. 

 To test the second hypothesis, a linear mixed-effects model was fitted using the ‘fitglme’ 

package to analyze the influence of the experimental design on the RTs. The model formula was 

specified as: 

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 ~ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑇𝑇𝐴 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + (1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝐼𝐷)

+  (1|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) 

This model included interaction terms between Decision outcome, Density, Distance, and TTA, 

with random intercepts for participants to account for individual differences and random 

intercepts for location to account differences in reaction for the two locations. The coding for the 

decision outcome and density conditions were kept the same, where Brake decisions were coded 

as 0, Continue as 1, low density as 0 and high density as 1. 

 

  



19 
 

3. Experimental Results 

 
The results of the linear mixed effects models suggest that the drivers’ decision behavior (Table 

1, Figure 5) and RT (Table 2, Figure 6) were significantly affected by TTA, Distance and 

pedestrian density.  

 To analyze the effects of the environmental factors of the decision behavior of cyclists, a 

linear mixed-effects model was fitted to the data. As shown in Table 1 and Figure 5, the results 

indicate a significant negative effect of TTA (t = -4.2734, p < 0.001) and a significant positive 

effect of Density (t = 2.2558, p = 0.024), suggesting that increased TTA decreases and high 

Density increases the probability of a 'Brake' response. Although Distance did not show a 

significant main effect (t = 1.0756, p = 0.282), its interaction effects with TTA (t = -1.8815, p = 

0.060) and Density (t = 1.9077, p = 0.056) trend towards significance, hinting that higher 

Distance might mitigate the effects of the high TTA and \ the high Density conditions. This 

influence of Distance on decision outcomes is illustrated in Figure 5. The interaction effects 

between TTA and Density and the three-way interaction effect show no significant effects, 

suggesting no influence of these interactions on the decision outcome. 

 

 
Table 1: Coefficients of the linear mixed-effects model describing the relation between the decision outcome, TTA, Distance and 

pedestrian density. "Continue" decisions were coded as 0 and "Brake" decisions as 1. 

Name Estimate Std. Error t-score p value 

(Intercept) 0.82454 0.086298 9.5546 2.005 x 10-21 

TTA -0.052324 0.012244 -4.2734 1.9665 x10-5 

Distance 0.094833 0.088171 1.0756 0.28219 

Density 0.19898 0.088209 2.2558 0.024132 

TTA : Distance -0.032542 0.017296 -1.8815 0.059977 

TTA : Density -0.027849 0.017308 -1.609 0.10769 

Distance : Density 0.23797 0.12474 1.9077 0.056495 

TTA : Distance : Density -0.041145 0.024469 -1.6815 0.092739 
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Figure 5: Probability of Braking in Low and High Density Conditions. The plots show the probability of braking as a function of 

TTA and Distance in low and high pedestrian density conditions. Probability decreases with TTA and Distance under low-density 

conditions, while higher Density tends to increase this probability, particularly at shorter distances and lower TTA. 

 The linear mixed-effects model analysis revealed several significant factors influencing 

RTs in cyclists. The results, detailed in Table 2 and figure 6, demonstrate key findings regarding 

the main effects and interaction effects of the experimental conditions. 

 The intercept was significant (t = 8.6587, p < 0.001), indicating a consistent baseline RT 

across participants. Contrary to the expectations stated in hypothesis 1b, the effect of TTA on RT 

was not significant (t = -1.3536, p = 0.176), suggesting that variations in TTA did not 

independently influence RTs. In contrast, Distance had a significant negative effect on RT (t = -

3.6626, p < 0.001), indicating that as Distance increases, RT decreases. Density also had a 

significant negative effect on RT (t = -2.172, p = 0.030), suggesting that higher pedestrian 

Density leads to shorter RTs. However, the main effect of decision type on RT was not 

significant (t = -0.73242, p = 0.464).  

 Regarding interaction effects, the interaction between TTA and Distance was highly 

significant (t = 4.6562, p < 0.001), indicating that the combination of TTA and Distance, which 

reflects the cyclists speed, could be a contributing factor on RT. The interaction between TTA 

and Density was also significant (t = 3.2968, p = 0.001), suggesting that the influence of TTA on 

RT is modulated by Density. The three-way interaction among TTA, Distance, and Density was 

significant (t = -2.9556, p = 0.003), demonstrating that the combined influence of these three 

factors on RT is complex and significant. Similarly, the interaction between TTA, Distance, and 
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decision type was significant (t = 4.0601, p < 0.001), indicating that the interaction between 

cyclist speed and decision type significantly impacts RTs. 

 The interaction between Distance and Density was not significant (t = 1.7856, p = 0.074), 

nor was the interaction between TTA and decision type (t = 1.3873, p = 0.165) and the 

interaction between Density and decision type (t = -0.67122, p = 0.502). The three-way 

interactions between TTA, Density, and decision type (t = 0.7733, p = 0.439) and between 

Distance, Density, and decision type (t = -0.15839, p = 0.874) were not significant. Lastly, the 

four-way interaction among TTA, Distance, Density, and decision type was also not significant (t 

= -0.75058, p = 0.453). 

 In summary, the analysis highlighted significant main effects of distance and Density on 

RT, as well as complex interaction effects involving TTA, distance, and density. These findings 

suggest that the interplay between environmental factors cyclist speed and the decision outcome 

significantly influences the speed of cyclist responses in shared spaces. 

 

Table 2: Results of the linear mixed-effects model describing the effects of TTA, Distance and pedestrian density on reaction 

time. “Continue” was the reference category for the decision variable and low density was the reference category for the density 

variable.  

Name Estimate Std. Error t-score p value 

(Intercept) 2.6568 0.30683 8.6587 6.6155 x 10-18 

TTA -0.057225 0.042277 -1.3536 0.17594 

Distance -1.1084 0.30262 -3.6626 0.00025264 

Density -0.71498 0.32919 -2.172 0.029913 

Decision -0.21214 0.28964 -0.73242 0.46395 

TTA : Distance 0.26913 0.0578 4.6562 3.316e-06 

TTA : Density 0.2063 0.062576 3.2968 0.00098563 

Distance : Density 0.82951 0.46457 1.7856 0.074241 

TTA : Decision 0.078152 0.056332 1.3873 0.16541 

Distance : Decision -1.2379 0.40621 -3.0475 0.0023217 

Density  : Decision -0.28021 0.41747 -0.67122 0.50212 

TTA : Distance : Density -0.2582 0.087361 -2.9556 0.0031375 

TTA : Distance : Decision 0.32272 0.079485 4.0601 4.9912 x 10-5 

TTA : Density : Decision 0.062678 0.081053 0.7733 0.43939 

Distance : Density : Decision -0.094127 0.59428 -0.15839 0.87416 

TTA : Distance : Density : Decision -0.08645 0.11518 -0.75058 0.45295 
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Figure 6: Reaction time by Density and Decision. The plots show the RTs for Brake and Go decisions under varying TTA and 

Distance conditions, separated by low and high density. The first plot shows RTs for continue decisions in low density conditions. 

RTs increase with higher TTA and are longer and show a greater increase for 25 m compared to 15m. The second plot shows 

RTs for continue decisions in high density conditions. RTs for the 15 m condition are longer than the 25 m condition. The third 

plot shows RTs for brake decisions in low density conditions. RTs remain relatively stable with a slight in at a higher TTA for 25 

m and a slight decrease for 15 m. The fourth plot shows RTs for brake decisions in high density conditions. RTs show a slight 

increase at a higher TTA. 
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4. Evidence accumulation modelling 

4.1 Decision Models 

To understand the decision-making dynamics of cyclists in shared spaces, it is essential to bridge 

the gap between experimental studies of cyclist behavior and modern cognitive models of 

decision making. Building upon the classical drift-diffusion model and the extension including 

gap acceptance (Bontje & Zgonnikov, 2024; Ratcliff, 1978; Ratcliff et al., 2016; Zgonnikov et 

al., 2022), this thesis aims to extend the model by taking the influence of pedestrian density on 

decision-making processes into consideration. The statistical results suggest that density 

significantly affects both decision outcomes directly and response times indirectly. Theoretical 

considerations also suggest that the presence of pedestrians or the visual crowding caused by the 

crowd can influence the behavior of the cyclist. Therefore, this thesis will investigate to what 

extent the pedestrian density can be implemented into already existing decision models by 

testing four different models. 

 

4.1.1 Decision model with generalized gap 

 The models are based on previously suggested decision models. This model, developed 

by Bontje & Zgonnikov (2024) will be tested as a baseline model. As previous models, the 

decision-making process can be described as noisy evidence accumulation:  

𝑑𝑥 =  𝛼(𝑔(𝑡) − 𝜃𝑐𝑟𝑖𝑡)𝑑𝑡 + 𝑑𝑊 

where x is the decision variable at time t, the drift rate parameter a ≥ 0 quantifies the relative 

contribution of incoming perceptual information to the accumulated evidence (decisions are 

made at random if a = 0), d = d(t) is the distance to the point of conflict, W is the stochastic 

Wiener process adding noise to the accumulation process, 𝑔(𝑡) is the generalized gap between 

the cyclist and the pedestrian and 𝜃𝑐𝑟𝑖𝑡 determines the critical value of 𝑔(𝑡), such that at the time 

𝑔(𝑡) =  𝜃𝑐𝑟𝑖𝑡, the drift rate changes direction. 𝑔(𝑡) can be represented as: 

𝑔(𝑡) = 𝑇𝑇𝐴(𝑡) +  𝛽𝑑 

where TTA = TTA(t) is the time-to-arrival of the cyclist to the point of conflict at time t and the 

relative weighting of distance information (compared to TTA) is characterized by parameter β.  

 To model the urgency effect and the collapsing boundaries, the model assumes that the 

accumulation process described before terminates when evidence x hits one of the boundaries: 
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𝑏(𝑡) = ±𝑏0 ( 
1

1 + 𝑒−𝑘(𝑔(𝑡)− 𝜃𝑐𝑟𝑖𝑡)
 ) 

where b0 is the boundary scale parameter, k > 0 defines the sensitivity of boundary to 𝑔(𝑡), 𝜃𝑐𝑟𝑖𝑡 

is the 𝑔(𝑡) at which the boundary is at its baseline value (±1/2bo) 

 The model only captures the decision process itself, and does not represent sensory 

perception, decision execution and any time delays associated with those processes. For the 

nondecision components associated with those processes, a normally distributed non-decision 

time was included in the model: 

𝑡𝑁𝐷𝜖N(𝜇𝑁𝐷 , 𝜎𝑁𝐷) 

In total, the model has seven free parameters: a, β, 𝜃𝑐𝑟𝑖𝑡, b0, k, 𝜇𝑁𝐷,  and  𝜎𝑁𝐷. 

 

4.1.2 Decision model with perceived gap 

 The indirect effect of density on reaction times suggested by the statistical results, 

suggests that density influences the urgency effects. The direct effect on decision outcome 

suggests that density also influences the decision outcome. Theoretical considerations stating that 

visual crowding can occur due to an increase in pedestrian density. Therefore, this model will 

assume that, instead of a generalized gap, a perceived gap will show a better fit. The perceived 

gap is described as: 

𝑔𝑝(𝑡) = 𝑇𝑇𝐴(𝑡) +  𝛽𝑑 − 𝛿𝑝𝑔 ⋅  𝐷𝑒𝑛𝑠𝑖𝑡𝑦 

In this model, the perceived gap will replace the generalized gap in the baseline model. 

𝛿𝑝𝑔 represents the influence of density on the linear relationship of TTA and d. Modelling density 

as a negative influence on the generalized gap, will therefore also influence 𝜃𝑐𝑟𝑖𝑡 so that it also 

changes direction based on the influence of density. This model has eight free parameters: a, β, 

𝜃𝑐𝑟𝑖𝑡, b0, k, 𝜇𝑁𝐷 ,   𝜎𝑁𝐷 and 𝛿𝑝𝑔. 

 

4.1.3 Decision model with dynamic drift rate 

 The baseline model assumed that the drift rate is proportional to the difference between 

the generalized gap and the critical value of that gap. However, the statistical results suggest that 

pedestrian density effects the decision outcome. Building upon the baseline model, this model 

will introduce a bias. As it is unsure if the bias is caused by an a priori bias, or a dynamic bias 

caused by environmental factors, this model will assume that the drift rate is dynamically 

modulated by the pedestrian density, as expressed in the following formula: 
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𝑑𝑥 = (𝛼 +  𝛿𝑑𝑑𝑟 ⋅  𝐷𝑒𝑛𝑠𝑖𝑡𝑦)(𝑔(𝑡) − 𝜃𝑐𝑟𝑖𝑡)𝑑𝑡 + 𝑑𝑊 

where 𝛿𝑑𝑑𝑟  represents the dynamic influence of density on the drift parameter 𝛼. All other 

components of the perceived gap model remain the same for the modified drift-diffusion model. 

This model has eight free parameters: a, β, 𝜃𝑐𝑟𝑖𝑡, b0, k, 𝜇𝑁𝐷 ,   𝜎𝑁𝐷 , 𝛿𝑑𝑑𝑟 . 

 

4.1.4 Decision model with starting point bias 

 As stated before, the statistical results and theoretical considerations suggest a bias in the 

decision-making process, but it is unclear whether it is an a priori bias or a dynamic bias. 

Therefore, this model will assume that density influences the starting point. As stated in the 

literature, the presence of pedestrians could cause the cyclist to adapt their behavior. As 

pedestrians are always present, for low as well as high density conditions, this model will assume 

there is an initial bias, influenced by the changing density. This relationship is described in the 

following formula: 

𝑥0 =  𝜃𝑏𝑖𝑎𝑠 (𝐷𝑒𝑛𝑠𝑖𝑡𝑦) = 𝜃0 +  𝛿𝑠𝑝𝑏 ⋅ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 

where 𝑥0 is the accumulated evidence at 𝑡 = 0, 𝜃0 is the initial decision bias and 𝛿𝑠𝑝𝑏 represents 

the influence of density. This model has nine free parameters: a, β, 𝜃𝑐𝑟𝑖𝑡, b0, k, 𝜇𝑁𝐷 ,   𝜎𝑁𝐷, 𝛿𝑠𝑝𝑏 

and 𝜃0. 

 

4.2 Model Fitting 

 The models were fitted to the data in a two-stage approach. The model parameters were 

first fitted to the data using differential evolution optimization of the weighted least-sum (WLS) 

score using the PYDDM python package (Bontje & Zgonnikov, 2024; Ratcliff & Tuerlinckx, 

2002; Zgonnikov et al., 2022). The WLS method was used to fit the model to characteristics of 

the typical behavior over all participants. The models were fitted to the group averaged 

probabilities and response time distributions. Furthermore, the Vincentizing approach was used 

to quantify the group averaged response time distributions (Ratcliff & Tuerlinckx, 2002). Based 

on the individual participants’ data, per-participant RT quantile functions were calculated, which 

were then averaged across participants. The group averaged cumulative distribution function was 

then calculated as an inverse of the group-averaged quantile function. The group means of 

response times and probability of going versus braking were calculated as the average of within-

participant mean values (Bontje & Zgonnikov, 2024; Zgonnikov et al., 2022). This resulted in 
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the baseline parameters for all models. The parameter boundaries used in the fitting procedures 

are described in Appendix C. 

 In the second stage, the baseline model parameters were used to predict the model 

performance using the root mean square of the model outputs. For this stage, the “fmincon” 

function of MATLAB 2024a was used to find the best-fitting parameters, as described by Bontje 

& Zgonnikov (2024). Here, the WLS score was used to determine the model fit. A lower WLS 

score indicates a better model fit. The parameter boundaries were kept the same as in the first 

stage and are described in Appendix C. 

 

4.3 Model Results  

 The model fitting results for the DDM are summarized in Table 3. The WLS scores 

indicate the goodness of fit for each model, with lower scores representing better fits (Ratcliff & 

Tuerlinckx, 2002). Four models were compared: the Generalized Gap model, the Perceived Gap 

model, the Dynamic drift rate model, and the Starting Point Bias model. Each model 

incorporates different parameters to capture the decision-making dynamics of cyclists in shared 

spaces. 

 The results suggest that implementing density into the evidence accumulation process 

worsens the performance of the overall model. Only the Perceived gap model shows the ability 

to somewhat predict the decision behavior. Implementing density as a bias, either by 

dynamically adjusting the drift rate or as a starting point bias, breaks the model and shows an 

ineffectiveness to predict the behavior.  

 

Table 3: Fitted parameters of the drift-diffusion models; WLS: mean weighted least squares error (Ratcliff & Tuerlinckx, 2002) 

Model WLS α β 𝜽𝒄𝒓𝒊𝒕 b0 k 𝝁𝑵𝑫  𝝈𝑵𝑫 𝜹𝒑𝒈  𝜹𝒅𝒅𝒓 𝜹𝒔𝒑𝒃  𝜽𝟎 

1. 

Generalized 

Gap 

20.79 4.740 0.033 6.231 3.154 1.995 2.404 0.998 - - - - 

2. Perceived 

Gap 

26.95 3.587 0.961 28.178 1.080 1.956 2.495 0.830 3.838 - - - 
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3. Dynamic 

drift rate 

38.12 3.279 0.002 4.311 0.794 1.741 2.011 0.584 - 2.307 - - 

4. Starting 

point bias 

28.16 0.107 0.999 8.862 0.532 1.947 2.433 0.999 - - 0.877 1.927 

 

4.3.1 Generalized gap model 

 The Generalized Gap model served as the baseline, including fundamental parameters 

such as the drift rate (α), the weighting of distance information (β), and the critical gap threshold 

(θ crit). This model produced a WLS score of 20.79 with parameter estimates indicating a strong 

influence of the drift rate (α = 4.740) and strong nondecision parameters (μND = 2.404, σND = 

0.998). 

 In figure 7, The model tends to overestimate the percentage of braking decisions 

compared to the experimental data, especially at the 15-meter distance. Only the 25-meter and 

TTA 6 condition is predicted well. Both the model and experimental data show a decreasing 

trend in the percentage of braking decisions as TTA increases. The model can show the same 

trends in decision outcomes as the experimental data. 

 In figure 8, The model generally predicts the trend of increasing reaction times in high 

density relatively accurate for both braking and continuing decisions. However, the model is 

unable to capture the trends in low density for higher gaps. It shows that it overestimates RTs for 

15-meters and a TTA of 6 seconds and underestimates RTs for 25-meters and a TTA of 6 

seconds. 

 Overall, the model shows that it can generally capture the behavior in high density 

conditions but shows the necessity for implementing density to be able to capture the behavior in 

low density conditions. 
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Figure 7: Model performance of Generalized gap model on predicting the decision outcome. 
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Figure 8: Model performance of the Generalized gap model on predicting the reaction times. 

4.3.2 Perceived Gap Model 

 In the Perceived Gap model, the perceived gap (𝑔𝑝(𝑡)) replaces the generalized gap (𝑔(𝑡)

), incorporating the influence of pedestrian density (𝛿𝑝𝑔). This model achieved a worse fit 

compared to the Generalized Gap model, with a WLS score of 26.95. The parameter estimates 

show a significant increase in the distance weighting parameter (β = 0.961) and a substantial 

increase in the critical value (θ crit = 28.178). The influence of pedestrian density (𝛿𝑝𝑔 = 3.838) 

was notably significant, suggesting that density could induce a sense of urgency in the cyclists 

and has a significant influence on the critical value. 

 In figure 9, the model predicts a decrease in braking decisions as TTA increases for low 

density conditions. This trend matches the experimental data, although the model overestimates 

braking at 15 meters, and underestimates braking for 25 meters at a TTA of 6 seconds. In high-

density conditions, the model predicts a higher percentage of braking decisions compared to low 
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density. The predictions remain stable but tend to overestimate braking decisions compared to 

the experimental data.  

 In figure 10, the model shows that it performs better in predicting RTs than decision 

outcomes. In low density, it tends to show the general trend for both decision outcomes but tends 

to not fully capture the RTs for a TTA of 6 seconds. It overestimates the RTs for 15-meters for 

continue decisions and underestimate RTs for braking. For high density, it can accurately capture 

continue decisions. However, for brake decisions it is unable to capture the general trends 

showing that it underestimates the RTs at a TTA of 6 seconds. 

 Overall, the model shows that including density helps the model distinguish between 

behaviors shown in low and high density, but also shows that it needs further refinement to fully 

capture the behavior, especially for a TTA of 6 seconds 

 

Figure 9: Model performance of Perceived gap model on predicting the decision outcome. 
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Figure 10: Model performance of the Generalized gap model on predicting the reaction times. 

4.3.3 Dynamic drift rate model 

 The Dynamic Drift Rate model incorporated a dynamic modulation of the drift rate by 

pedestrian density. This model produced a WLS score of 38.12, showing worse fit compared to 

the baseline model. The drift rate (α = 3.279) was influenced by pedestrian density (𝛿𝑑𝑑𝑟= 

2.307), indicating a substantial density effect on the decision-making process. However, as 

shown in figure 11 and 12, the model is unable to predict the decision behavior fully, especially 

for brake decisions with a TTA of 6 seconds. 

 In figure 11, the model predictions for both 15 meters and 25 meters can somewhat 

predict the model performance for a TTA of 4 second. However, the model shows that it is 

unable to predict the decision outcome for a TTA of 6 seconds, predicting a 100% continuation 

probability.  

 In figure 12, the model predicts stable RTs across TTAs for both 15 meters and 25 meters 

for continue decisions. The predictions for continue decisions in low density show a slight 

underestimation of RTs, but align well with the experimental data, which also shows minimal 
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variation in RTs with increasing TTA. For continue decisions in high density, the model again 

predicts stable RTs for both distances. The experimental data shows a slight increase in RTs with 

TTA, but overall, the model captures the trend reasonably well, but tends to underestimate RTs. 

In line with the decision outcome results of figure 11, the model is unable to fully capture brake 

decisions. For both low and high density, it tends to underestimate RTs for a TTA of 4 seconds, 

except for 25 meters in high density. However, the model is unable to predict RTs for a TTA of 6 

seconds. 

 Overall, the Dynamic Drift Rate model captures the general trend of braking decisions 

influenced by TTA and pedestrian density. However, it is not able to capture the braking 

behavior at higher TTAs. This suggests that while the model incorporates the dynamic influence 

of density on the drift rate, further refinement is necessary to improve its ability in predicting 

decision probabilities under varying conditions. 

 

Figure 11: Model performance of Dynamic drift rate model on predicting the decision outcome. 
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Figure 12: Model performance of the Dynamic drift rate model on predicting the reaction times. 

4.3.4 Starting point bias model 

 The Starting Point Bias model assumed that pedestrian density influences the initial 

decision bias. This model had a WLS score of 28.16, showing a worse fit than the baseline model 

and a slightly worse fit than the Perceived gap model. The drift rate (α = 0.107) was significantly 

lower, with the initial decision bias (𝜃0 = 1.927) and its modulation by density (𝛿𝑠𝑝𝑏 = 0.877) 

being prominent parameters. However, as shown in figure 13 and 14, it is unable to predict brake 

decisions. 

 In figure 13, the model shows a 0% probability of braking for all conditions. This shows 

that the model is unable to predict decision outcome based on density influencing the starting 

point bias. 

 In figure 14, the model can somewhat accurately predict the RTs for continue decisions 

for all distance and TTA conditions but is still unable to predict any results for brake decisions. 
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 Overall, the model shows it is unable to capture the full behavior shown by the 

experimental results. 

 

Figure 13: Model performance of the Starting point bias model on predicting the decision outcome. 
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Figure 14: Model performance of the Starting point bias model on predicting the reaction times. 
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5. Discussion 

The aim of this thesis was to explore the decision behavior of cyclists in shared spaces, focusing 

on behavioral adaptation and the possible application of dynamic gap acceptance models in 

predicting cyclists' responses to pedestrian crossings. Building upon previous research and the 

principles of the DDM (Bontje & Zgonnikov, 2024; Ratcliff et al., 2016; Zgonnikov et al., 2022), 

this thesis the possibility of applying a dynamic gap acceptance DDM to cycling and extends 

these models to include the influence of pedestrian density on cyclists' decision-making 

processes. 

 

5.1 Behavioral Adaptation 

 The empirical results show that both decision outcomes and RTs are significantly 

influenced by environmental factors such as TTA, distance, and pedestrian density. The 

significant negative effect of TTA on the likelihood of braking (t = -4.2734, p < 0.001) and the 

significant positive effect of pedestrian density on braking probability (t = 2.2558, p = 0.024) 

suggest that cyclists are more likely to continue when they have more time to react but are more 

cautious in denser pedestrian environments. This suggests an adaptive response to perceived risk 

and complexity, supporting the idea of behavioral adaptation in shared spaces, discussed by 

Beitel et al. (2018) and Warren & Rio (2015).  

 The non-significant effect of distance on the decision outcome contrasts with previous 

studies that have highlighted its importance in gap acceptance decisions (Bontje & Zgonnikov, 

2024; Zgonnikov et al., 2022). One possible explanation for this discrepancy is the dynamic 

nature of cyclists compared to the more static context often studied with drivers, which is shown 

in the interactions between TTA and distance (t = -1.8815, p = 0.060) and between distance and 

density (t = 1.9077, p 0.056) which both trend towards significance. In shared spaces, cyclists 

continuously adjust their speed and trajectory based on real-time interactions with pedestrians 

and other environmental factors, which might diminish the relative importance of distance as a 

standalone factor. Additionally, Beitel et al. (2018) and Warren & Rio (2015) suggest that 

cyclists adapt their behavior more fluidly to the presence of pedestrians, which may reduce the 

impact of distance on their decision-making process in comparison to stationary drivers or 
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pedestrians making crossing decisions. This adaptability might explain why distance did not 

show a significant main effect on the decision outcome in this study. 

 In terms of RTs, the introduction of density as an environmental factor shows a complex 

relationship. The analysis revealed that distance has a robust negative effect on RTs (t = -3.6626, 

p < 0.001). This finding suggests that as the distance between the cyclist and the pedestrian 

increases, cyclists take less time to decide. This result contrasts with hypothesis 1b, which stated 

that greater distance would lead to longer RTs due to the additional time available for decision-

making. One possible explanation for this discrepancy is that longer distances might allow 

cyclists to make quicker decisions due to reduced immediate risk and increased predictability. In 

addition, pedestrian density showed a significant negative effect on RTs (t = -2.172, p = 0.030). 

This suggests that higher pedestrian density leads to shorter RTs, possibly because cyclists are 

compelled to make faster decisions in more crowded environments due to heightened vigilance 

caused by visual crowding or the necessity for rapid adaptation. This aligns with previous 

research indicating that cyclists adjust their behavior in response to increased environmental 

complexity (Beitel et al., 2018; Nandy & Tjan, 2012; Warren & Rio, 2015; Xia et al., 2020).  

 Interestingly, TTA did not independently influence RTs (t = -1.3536, p = 0.176), 

suggesting that variations in TTA alone are not sufficient to significantly alter decision times. 

However, the interaction between TTA and distance was highly significant (t = 4.6562, p < 

0.001), indicating that the combination of these factors, reflective of the cyclists' speed, 

significantly impacts RTs. Specifically, higher TTA combined with longer distances led to 

increased decision times. Moreover, the interaction between TTA and pedestrian density was 

significant (t = 3.2968, p = 0.001). In high-density conditions, RTs were longer at higher TTA, 

suggesting that the complexity of navigating through dense environments increases cognitive 

load and decision time. This supports the idea that environmental complexity significantly 

influences cyclists' reactions. 

 Overall, the combined results on decision outcomes and RTs not only provide detailed 

insights into the decision-making behavior of cyclists in shared spaces, but also reinforce and 

extend the key points discussed by Beitel et. al. (2018) about behavioral adaptation by cyclist 

based on environmental factors.  
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5.2 Drift Diffusion Model 

 Interestingly, implementing pedestrian density as an environmental factor in DDM 

modelling appears to be more challenging than initially thought. As shown in the model results 

in chapter 4.3, the model performance worsens when accounting for density. The Generalized 

gap model was the only model that was able to predict the general trends for both decision 

outcome and RTs but tended to overestimate decision outcomes. The Perceived gap model was 

the only model that demonstrated some potential in distinguishing behaviors under different 

density conditions, but all models require further refinement. Interestingly, all models that 

include density show a tendency or a full inability to predict decision behavior for brake 

decisions, especially at a TTA of 6 seconds. 

 When comparing the proposed models to previous models describing gap acceptance 

decisions, it is noticeable that the WLS scores differ significantly. Bontje and Zgonnikov's 

(2024) study achieved very low WLS scores, indicating a high level of fit for their dynamic drift-

diffusion models. Their lowest WLS score was 1.45, which is significantly lower than how their 

model performs in this study (20.79 for the Generalized gap model). This discrepancy highlights 

the potential limitations in the current models' ability to capture all relevant aspects of decision-

making. 

 A possible explanation for these results can be that the gap acceptance DDM as it is 

designed now, is unable to capture the complex decision environment of the experiment. In 

Bontje and Zgonnikov’s (2024) study, the task involved drivers making left-turn gap acceptance 

decisions, whereas this experiment focused on cyclists navigating shared spaces with pedestrian 

interactions. The differences in decision contexts and environmental complexities might 

contribute to variations in model performance. Cyclists’ continuous movement and the dynamic 

nature of shared spaces introduce additional layers of complexity that are challenging to model 

accurately. This has been made apparent by the difference in model performance between the 

Generalized gap model and the models including pedestrian density. This suggests that the 

models might not fully capture the nuanced ways in which cyclists perceive and react to 

pedestrian density. In contrast, Bontje and Zgonnikov’s (2024) models effectively captured 

driver confidence, possibly due to a more controlled decision environment. This could be 

supported by anecdotal evidence from the participants. Participants indicated that they 

considered multiple choices when approaching the cyclist-pedestrian conflict. They said that they 
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considered lowering their speed instead of braking when choosing for braking, or they 

considered dodging the pedestrian as a valid decision for continuing. 

 Another explanation for the model results has to do with the model fit boundaries used 

for calculating the model parameters. When comparing the model boundaries shown in 

Appendix C (Bontje & Zgonnikov, 2024; Zgonnikov et al., 2022) to the model results in table 3, 

some model parameters are near the boundary. For example, parameter k describing the 

sensitivity of the collapsing model boundaries is near its fitting boundary. The same can be said 

for both non decision parameters and the influence of the starting point. This means that the 

fitting boundaries used for the tasks with cars in previous research may not be applicable to tasks 

with cyclists. This could implicate that the tasks of driving and cycling are significantly different, 

and results may not be transferrable from one task to another. As stated before, the model might 

not capture the complex decision environment where multiple decision options might be 

possible. Having multiple decision outcomes while not accounting for them, could influence the 

nondecision time and decision outcome. Future research should therefore consider including 

multiple decision options to analyze. A possible way to analyze multiple decisions could be the 

Linear Ballistic Accumulator model, which explains decision-making by assuming that evidence 

accumulates linearly and independently for each choice option until a threshold is reached 

(Brown & Heathcote, 2008). 

5.3 Experimental Limitations 

 A potential limitation of this study is the decision context, as has been shown by the 

model results. Previous research, such as the studies by Zgonnikov (2022) and Bontje & 

Zgonnikov (2024), involved environments with clearly defined lanes for different types of 

mobility. In those scenarios, the decision-making process was simplified to a two-choice 

paradigm where the participant could not leave their own lane. In contrast, the shared space in 

this thesis allowed for a broader range of decisions. Post-experimental discussions with 

participants revealed that they considered multiple options when faced with cyclist-pedestrian 

conflicts. Despite the experimental instructions specifying a binary choice—either braking or 

continuing—participants reported considering alternatives such as slowing down instead of fully 

braking, or dodging pedestrians as a form of continuing. This inclination to weigh multiple 

options could have introduced variability in decision outcomes that was not accounted for in the 

study's design. Future research should therefore reconsider the experimental design to either 
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include multiple decision outcomes or simplify the stimulus to force the consideration of only 

two options. 

 A notable limitation of this thesis is the reliability of the start of evidence accumulation. 

As stated in the method section, the exact start of the pedestrian crossing the road was unclear, 

due to the variability in the pedestrian crossing simulations. Interestingly, the negative RTs only 

occurs in the datasets of seven participants and mostly occur in conditions where the TTA is 6, as 

can be seen in Appendix B. This could mean that for some participants, the start of the pedestrian 

crossing the road is ambiguous, or that the pedestrians walking around could initiate the evidence 

accumulation for the participant. It is possible that in in the trials where this happens, other 

unknown effects are measured and interfere with the effects this thesis want to measure. As it is 

uncertain what is the cause of these negative RTs, future research should focus on having less 

variability in the starting point of the pedestrian. Future research could also focus on the direct 

influence of the pedestrians walking around on the initiation of the evidence accumulation. For 

example, an experiment could introduce trials where pedestrians don’t cross, but fakes trying to 

cross the road to force a reaction of the participant. Doing this might inform future experimental 

designs on best practices for designing the simulations. 

5.4 Implications 

 The confirmation of the hypotheses regarding the influence of pedestrian density on 

cyclists' decision-making behavior has several significant implications for both theoretical 

modeling and practical applications. From a theoretical perspective, the findings support 

previous research on the effects of visual crowding by extending it to effect decision behavior of 

cyclists in shared spaces. The findings also underscore the importance of integrating 

environmental factors into DDM development. However, implementing pedestrian density 

shows to be more of a challenge than previously thought. This challenge underscores the 

necessity to take a more nuanced approach towards modeling environmental factors in complex 

decision environments. 

 Practically, these insights can inform urban planners, guiding the creation of safer and 

more efficient shared spaces. Understanding that higher pedestrian density influences cyclists' 

decision-making can help urban planners decide if and where shared spaces can be integrated, 

based on the projected pedestrian and cyclist flow that space might have. Policymakers can also 

use these findings to develop targeted safety regulations and traffic calming measures that reflect 
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the adaptive behaviors of road users in high-density environments. These practical applications 

ultimately contribute to the development of urban environments that are more accommodating 

and safer for all users, enhancing overall urban mobility and quality of life. 

6. Conclusion 

This thesis explored cyclists' decision behavior in shared spaces using dynamic gap acceptance 

models that included pedestrian density. The findings suggest that cyclist adapt their decision 

behavior dynamically based on the TTA, distance and the surrounding pedestrians. However, 

capturing the dynamics of the decision behavior in a DDM appears to be more challenging and 

needs a more nuanced approach than previously attempted in DDM research. 
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Appendix A: Simulation Settings 

 

Table 4: Simulation setting for simulated Ganzemarkt Utrecht environment 

 High Density Low Density 

Number of pedestrians ~330 ~75 

Average global walking speed 1,34 m/s 1,37 m/s 

Input pedestrians 4 pedestrians / second 1 pedestrian / second 

Average waiting pedestrians 46 10 

Waiting Area 150 m2 + 200 m2 = 350 m2 

Waiting behaviour around 

cycling lane 

Mean duration of 5 seconds with a standard deviation of 1 

second 

 

Table 5: Simulation setting for simulated Janskerkhof Utrecht environment 

 High Density Low Density 

Number of pedestrians ~600 ~140 

Average global walking speed 1,40 m/s 1,44 m/s 

Input pedestrians 4 pedestrians / second 1 pedestrian / second 

Average waiting pedestrians 25 7 

Waiting Area 150 m2 + 200 m2 = 350 m2 

*one waiting area of 75m2 is relatively far away from the 

crossing point (between the church and the drift) 

Waiting behaviour around 

cycling lane 

Mean duration of 5 seconds with a standard deviation of 1 

second 
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Appendix B: Data Distributions Per Participant 

 

Figure 15: Data distribution per participant after data preparation, separated by decision outcome. 
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Appendix C: Diffusion Model Boundaries 

 

Table 6: Parameter boundary settings for drift diffusion model fitting procedures (Bontje & Zgonnikov, 2024; Zgonnikov et al., 

2022) 

Parameter Min Max 

beta 0 1 

theta_crit 4 60 

alpha 0.1 5 

b_0 0.5 5 

k 0.5 2 

ndt_location 0 2.5 

ndt_scale 0.001 1 

Delta_rho 0.1 5 

Theta_0 -2 2 

 

 


