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Abstract

Colloidal gels are suspensions of micro-sized particles that can form a network-like
structure, when interacting via a short-ranged attraction with bond energy much greater
than the thermal energy. Under applied stresses, the network response is both viscous
and elastic. Interestingly, there is a range of parameters in which the response is
a delayed collapse. This response is initially elastic, followed by a rapid collapse in
which the network disintegrates and the response is viscous. The collapse behaviour
outside this range is relatively well understood, but a fundamental picture of the delayed
collapse is yet incomplete. In this thesis project, we show that a continuum method
can overcome the particular challenges that this problem poses to the more traditional
approaches, such as experimental studies and particle-based simulations. Our model
includes the viscous stress of fluid flow through the network and the elastic stress due
to osmotic pressure, which we expect to explain the delay behaviour. However, we
found that the elastic network response due to osmotic pressure does not play a role in
this collapse process. Also, we show the delay times that our model produces to be a
grid artifact. In comparison to a recent study that finds a larger delay time due to a
visco-elastic stress, we identify this stress as (one of) the causes of delayed collapse.

Figure 1: (Title page) Schematic representation of the collapse of a colloidal gel. Colloidal particles
are represented by black dots, which are suspended in a fluid. The initial state is a (macroscopically)
homogeneous network of suspended colloidal particles. While the top of the network remains intact,
its bottom collapses. In the final state, the system has phase-separated into a colloid-rich sediment
and a supernatant fluid.
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1 Introduction

There is a large variety of fluids in our everyday life whose behaviour is more challenging
to describe than one would expect. While simple, Newtonian, fluids flow ‘regularly’ under
stress, complex fluids behave differently. Complex fluids are mixtures of substances of two
different phases in coexistence, of which at least one is a fluid. In this thesis project, we are
interested in a subclass of complex fluids, colloidal gels. Colloidal refers to the regime where
Brownian forces have a non-negligible effect [1]. In this context, it implies that the dispersed
particles have at least one dimension between approximately 1 nm and 1 µm [2]. A colloidal
gel is defined to be a network of colloidal particles in a suspending medium that spans the
sample.

These gels have numerous industrial applications [3], due to their behaviour under de-
formation and flow, that is, their rheology [4, 5]. These applications include cleaning prod-
ucts [6], hair care products [7], paints [8], proppants (used in oil and gas exploration) [9] and
there are applications within food technology and nutrition [10, 11]. Gels have also gained
attention in other fields of research, such as bio-engineering, where gels have been applied as
scaffold material for tissue engineering [12, 13].

This industrial relevance has led to a large body of practical knowledge on how to form
gels with specific mechanical properties [14], however, a full fundamental picture of a gel’s
rheology is not yet complete. A result of this practical knowledge is the finely tuned non-
Newtonian stress response of toothpaste [15]. While the paste flows as we apply a small force
to extract it from the tube, it behaves as a solid under gravitational stress on our brush. This
type of response is desirable for a lot materials, leading to numerous industrial applications
of gels

The usefulness of gels in some of these applications is limited by sedimentation, depending
on their ‘shelf life’, which might range from weeks to years. In any real-world system, a density
mismatch between the colloidal and suspending phase is unavoidable [16]. This mismatch
gives rise to a buoyant force and ultimately drives leads to sedimentation (or creaming, in case
of a negative buoyant density). The long-term behaviour is thus a separation into a colloid-
rich and colloid-poor region. However, depending on the gel, different types of separation can
be observed: fast sedimentation, delayed collapse, and slow sedimentation [17]. The delayed
collapse is characterized by a finite time in which the network bears the buoyant weight,
after which the gel settles rapidly, compared to sedimentation processes [17–22]. This time
is typically referred to as the delay time and has an obvious relation with the shelf life of
gel-based industrial applications that rely on the presence of the network. The onset of the
rapid settling is not fully understood, and among the possible causes are streamer formation
— dense clusters falling through the gel, leading to eroded channels in the network — and
network collapse [23–27]. These processes are the result of the dynamics of the colloidal
particles within the gel, and are clearly related to the gel’s stability, and thus its reliability
in applications. The goal of this thesis project is to contribute to the knowledge of these
dynamics.

Several methods have been applied to study the dynamics of colloidal gels, where efforts
can be divided into theoretical, computational, and experimental studies, each approach with
its own pros and cons. The foundation of theoretical studies is formed by the poro-elastic
model together with continuity equations [22, 19]. The drawback of such studies is that
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significant approximations are needed in order to be able to solve the equations. These
include reductions regarding the role played by hydrodynamic interactions [28] and viscous
stresses due to porous flow [29]. In addition, these studies have been limited to a height-
dependent volume fraction, which constrains fluid flow to be vertical. Horizontal flows require
another spatial dimension, and so do shearing stresses of the network and a curved meniscus.
These features are quite likely to influence the settling behaviour of gels, which has been
verified experimentally for a curved meniscus [27].

Experimental studies have not only led to the large number of applications of gels, but
also fundamental insights, since the microstructure of a gel is experimentally observable [30–
32]. However, the duration of experimental studies is related to the delay time of the system.
Since a shelf life of years is desirable for most practical purposes, a ‘brute-force’ approach
to developing new products may require an infeasible amount of time. This means that
fundamental experiments need to be conducted on weaker gels that show the salient features
of their industrial analogues.

The efforts on the computational side consists mainly of particle-based simulations, which
can predict the dynamics of a large number of colloidal particles to great accuracy [33, 21].
However, explicitly simulating each particle is simply not feasible for a typical experimental
setup. A container of dimensions 1 × 1 × 4 cm, of which a volume fraction of 10% consists
of colloidal particles with a radius of 1 µm, contains about 1011 particles. A common way
to overcome this challenge is to introduce periodic boundary conditions, which works well
to simulate the bulk of the gel. However, the distance of the interactions between particles
is still limited, while long-ranged interactions seem to play an important role in the gel’s
dynamics [34–36]. Also, processes at the boundaries of the gel, such as the forming of
dense clusters at the top of the sample, are important in the collapse behaviour of the
gel [17, 27]. This limits (particle-based) computational studies to system much smaller than
the experimental scale, which is at least one order of magnitude smaller than the industrial
scale. This forms an important drawback of these methods, since small-scale systems have
been observed to behave differently from gels on these length scales [37].

From the discussion above, we conclude that all methods have such significant drawbacks
that they are not useful to predict the collapse behaviour of colloidal gels. To overcome these,
we use a hybrid method, combining theory and computation, which describes the system at
the continuum level. The foundation of this method is a mean-field approximation, thus
in our case we treat the colloidal volume fraction and velocity as a field. In this way, we
integrate out the dynamics of the single colloids, but we do have access to mesoscale variables.
The theoretical effort is limited to expressing the time evolution of these variables in terms
of differential equations. Instead of introducing further approximations that are needed for
an analytic solution, we solve these numerically. This leads to a quick generation of detailed
information of gel collapse behaviour on experimental time scales, a fast and useful predictive
tool once validated by experiment [38].

Our aim is to create a model that is able to provide us with this mesoscale information.
Then this model can be used to identify the forces that have an influence on the collapse
behaviour, and possibly also tells us how it influences the collapse. We will show that a simple
model captures one of the separation behaviours. Increasing the complexity of the model by
a height-dependent volume fraction will produce a wider range of these behaviours. Also,
in the system we model, we can rule out the influence of osmotic pressure on the collapse
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behaviour.
This thesis is built up as follows. We provide a broad historical perspective of the problem

and related challenges in section 2. In section 3, we dive into the theory that leads up to
the model, and specify the system we model in order to exhibit its non-equilibrium nature.
Then we model the collapse process of a gel under the assumption that the gel can only
compress homogeneously in section 4. When all these aspects have been covered, we move
on to modeling the system without this assumption in section 5. In section 6, we compare
the results to our expectations and existing literature. Section 7 summarizes this work and
provides suggestions for follow-up studies.
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2 A historical perspective

In this thesis project, we are interested in the settling behaviour of a specific system, a
colloidal gel. This behaviour is rather complicated and depends on a lot of parameters, so
we introduce the contributing factors by means of a historical perspective. We start with the
simplest case of settling behaviour, a single small sphere in a viscous fluid under the influence
of only gravity. Stokes’ law [39] states that such a sphere experiences the following drag force

Fd = 6πµrv, (1)

Figure 2: Stokes flow, the
red sphere reaches a terminal
velocity when the drag force
is equal to the gravitational
pull. Adapted from [40], with
permission.

where µ is the viscosity of the fluid and r the radius of the
settling sphere. If an external force such as gravity is applied to
this system, a buoyant force drives an acceleration of the sphere
until the drag force balances the driving force, as illustrated
in figure 2. At that point, the sphere reaches a terminal, or
settling, velocity

vs =
2

9

ρbgr
2

µ
, (2)

where the velocity is defined by the motion of the sphere relative
to the fluid. The gravitational acceleration is denoted by g,
and we have defined a buoyant density ρb. This is the density
difference between the spherical particle and the suspending
fluid. Note that the suspended particle is usually assumed to
have a higher density than the suspending fluid, such that ρb =
ρs − ρf > 0. However, these equations hold for any value of
buoyant density, leading to ‘upward settling’, or creaming of
suspended particles.

These equations are relatively simple, but are derived from
the much more involved Navier-Stokes (NS) equations. These
equations are partial differential equations that have been used to describe viscous flows with
great success in fields ranging from ocean currents [41] to aerodynamics [42]. However, it is
still unknown whether these equations always have a smooth solution1 .

The NS equations can be simplified by eliminating terms that have a negligible effect,
leading to different sets of equations that are valid in different ‘flow regimes’. A system is
typically identified to lie in a given regime by a dimensional analysis. This analysis naturally
leads to the Reynolds number, which is the ratio between inertial and viscous forces,

Re =
inertia

viscosity
=

ρuL

µ
, (3)

where ρ is the density of the fluid, u the (relative) velocity of the fluid, L the characteristic
length, and µ the viscosity of the fluid. In some cases, it may be unclear what the length
scale is that governs the physics. For example, in the case of propagation by wings, different

1Whether the Navier-Stokes equations have a solution in general, unique or not, is such an intriguing
problem that it has been pronounced one of the millenium prize problems [43].
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length scales are available, such as chord length, wake width2 and flapping amplitude [44].
However, in our case, there are no competing length scales, and thus our characteristic
length equals the radius of the colloidal spheres, L = r. Clearly, this number was used by
Sir George Gabriel Stokes in 1856 to simplify the full NS equations, but its importance was
illustrated by Sir Osborne Reynolds in 1883 [45]. His experiments showed that the Reynolds
number can be used to characterize flows into either laminar or turbulent, corresponding to a
low or high Re, respectively. The transition from laminar to turbulent is not sharp, and the
Reynolds number marking this transition depends strongly on the geometry of the system [46].
These limitations are minor remarks, however, compared to the implication of a universal
characterization of flows. This was recognised by Sommerfeld in 1908 at the international
congress of mathematicians (ICM), referring to this number by its current name [47].

As mentioned before, another use of this number is to reduce the NS equations to a
simpler form. For example, Re ≈ 0 leads to equation 1, if the following assumptions are met.
The first assumption is that the flow is laminar, in which flow-lines3 are smooth and adjacent,
as in figure 2. Note that the laminar flow requires that the Reynolds number is lower than
some critical value Rec, which depends on parameters such as the geometry and boundary
conditions of the flow, and even the molecular properties of the flowing fluid [48]. Considering
fluid flow through a pipe, typical critical values are Rec ≈ 2000 [49], such that the laminar
flow assumption is always fulfilled when Re < 1. The remaining assumptions were met by the
definition of the system: The particle is spherical, the fluid is homogeneous, the surfaces are
smooth and the sphere is suspended in an infinite fluid, meaning that there are no boundaries
to take into account. This illustrates that the Reynolds number can characterize the flow
regime of a wide range of systems.

Violating one of the above assumptions allows us to describe a more general system, at
the cost of more complicated equations. For example, if there are multiple settling spheres in
the system, then the flow that is induced by one sphere affects the other spheres. In 1905, as
a by-product of the study of Brownian motion, Albert Einstein [50] proposed a correction of
the viscosity of a solution due to a reduced mobility of the solvent surrounding the suspended
particles. Applying this correction to equation 2 leads to a corrected sedimenting velocity

vs,E = vs(1 + αϕ)−1, (4)

where α = 2.5 for hard spheres, and ϕ the volume fraction occupied by these spheres. This
expression is valid for hard spheres with a low buoyant density and with a large interparticle
distance, relative to their radius. Around the same time, Marian Smoluchowski also studied
Brownian motion, and proposed a number of corrections to Stokes’ law in 1912 [51]. Most
importantly, he proposed a correction like Einstein’s, but based on another reasoning, leading
to

vs,S = vs(1− 2.32r/a), (5)

2The chord length of a wing is the distance measured from front to rear tip. The wake width is related to
the size of the low-pressure turbulent region behind the wing.

3Flow-lines are the paths that fluid particles follow. Fluid particles are an infinitesimal volume of fluid
with a fixed mass, but are different from usual point particles in the sense that they can be compressed and
deformed.
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where a is the distance between two particles, such that r/a ∝ ϕ1/3. This result follows
naturally from a regular arrangement of spheres. The stochastic approach by Batchelor [52]
lead to

vs,B = vs(1− 6.55ϕ), (6)

which he claimed to be accurate up to first order in ϕ. Around the same time, Maude and
Whitmore proposed the following relation [53], based on experimental observations.

vs,MW = vs(1− ϕ)β, (7)

where β is a function of particle shape, size distribution and Reynolds number. We observe
that the discrete, particle-based, approach to study the settling behaviour of particles in a
specific system is well-established. However, in order to be able to predict settling processes in
a more general sense, a different, continuum approach is required [54, ch. 4]. In the continuum
approach, we treat the volume fraction of settling particles as a continuous function of space.
This greatly reduces the complexity of the model, and allows us to introduce interparticle
attractions that are present in a gel.

In 1987, Buscall et al. [16] introduced the most coarse-grained continuum model that
describes the gravitational collapse of colloidal gels. In this model, the system is divided
into a homogeneous gel and a colloid-free region above it. We refer to this model as the
poro-elastic model, after the forces that balance the gravitational stress. In this model, the
gravitational stress is balanced against a viscous drag force due to solvent flowing through
pores in the network, and an elastic stress developed in the network of particles [19]. This
theoretical framework has recently been used to reproduce experimentally observed erythro-
cyte sedimentation rates. Rather than sedimenting immediately, erythrocytes also sustain
gravitational stress without sedimenting for a finite time, which can be explained by re-
garding a blood sample as a gel [22]. The volume fraction of colloids that describes this
physiological system is relatively high, implying that the system is in the creeping regime of
sedimentation. That is, the compression or compactification of the network is slow, compared
to the sedimentating rate of a red blood cell that is not supported by a network. Manley et
al. [19] show that gels exhibit a different sedimentation behaviour at lower colloid volume
fractions, which this model does not predict, as we will see in section 4. Typically, we lose
information if we reduce the dimensionality of a problem, so we expect this approximation
as too coarse-grained.

2.1 Recent advances

As the power and availability of computers increased, the discrete (very high dimensional)
approach developed significantly and could be used to predict the collapse process of a gel.
Particle-based simulations give us very detailed information on the dynamics of each particle
in the system. In 2016, a study of Harich et al. [17] produced a diagram that describes the
phase behaviour of colloidal gels. Part of their work was a Brownian dynamics simulation,
with a square-well potential rather than the actual, depletion4 potential. This choice is

4The attraction that is induced by depletion will be discussed in further detail in section 3.4.
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justified by the extended law of corresponding states, as proposed in [55]. This law states
that the effective range of a collection of potentials (including depletion and square well) can
be quantified in terms of the reduced second virial coefficient. The second virial coefficient
is a function of the pair interaction strength, and reduced means that it is normalized. The
normalization is a division by the second virial coefficient of a hard sphere with diameter σeff ,
the effective hard-core diameter of the potential [56]. As an example, this law states that the
two square well potentials in figure 3, assuming V0 = 5 kBT are corresponding states, since
they have the same reduced second virial coefficient. Modeling the interparticle potential as
a square well has the advantage that there is a clear definition of a bond. This is essential in
the study of gels, since a collection of particles can only be called a network if the particles
are bonded together. The Brownian dynamics simulation could thus be used to predict the
phase behaviour of a colloid-polymer mixture, in particular whether the system gels or not.
Harich et al. studied this system with attractions ranging from 0.01σ to 0.1σ, with σ the
diameter of the colloids, and bond strengths5 up to about 10 kBT .

While the extended law of corresponding states work well to relate the phase behaviour
induced by short-ranged potentials, it does not mean that the dynamics are the same. For
example, in a 2018 Brownian dynamical simulation of freely draining6 particles by Padman-
abhan and Zia [21], similar phase behaviour but different collapse behaviours were reported.
The focus of this study was to explain the delay behaviour of the collapse, which they did
observe in their system of small particles. They used a Morse interaction potential,

VMorse = V0 (exp[−2a(r − σ)]− 2 exp[−a(r − σ)], ) (8)

with V0 ∼ 5− 6 kBT the well depth and (inverse) width parameter a = 60/σ, see figure 3. In
this paper, it is proposed that pores are created and widened due to the fluid flow through the
network. These pores decrease the viscous stress of fluid backflow that supports the network,
thus allowing more fluid flow and faster pore widening. They propose this is a catastrophic
process that underlies the sudden collapse of the network.

This proposition is supported by a Brownian dynamical study by Varga et al. [23], in
which a stability criterion was introduced. This criterion makes a division between stable
and unstable gels, and is based on the aging of the gel. Aging can be described by the
competition between the following two simultaneous processes. The first is pore forming,
decreasing the viscous drag of fluid backflow. The second is slow compactification, which
increases the strength of the gel. This strength could become large enough to fully support
its own weight [19], thus without the ‘support’ of fluid backflow. For stable (or strong) gels,
the delay time associated with pore forming is larger than the characteristic time associated
with this strengthening. Their settling behaviour is described as creeping sedimentation. In
unstable (or weak) gels, the delay time until large pores are formed has lapsed before the
network can support its own weight and thus rapid settling occurs.

5Bond strength refers to the BDE, or the ‘well depth’ V0
6Freely draining or settling refers to the behaviour of a single particle in an infinite fluid. In this context,

it means that particles experience a Stokes drag force as they move through the suspending fluid, but their
movement does not affect the fluid. This implies that the fluid does not mediate (hydrodynamic) interactions
between the colloidal particles.
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Figure 3: Visual representation of different potentials associated with the interparticle pair inter-
action of colloids, where V0 is the well depth of the interaction (corresponding to the BDE). The
Asakura-Oosawa(-Vrij)-interaction represents the effective attraction induced by depletion. It can
be modeled by a generalized ‘high exponent’ Lennard Jones potential, see equation 9. The two
square well potentials have the same reduced second virial coefficient, such that these potentials
have the same effective interaction range.

The delay time

There is an important difference between the study of Padmanabhan and Zia [21] and most
other BD simulations. They find a delay time, while other simulations capture only the rapid
collapse and subsequent slow compactification. At this point, the source of this discrepancy
could be the different interaction potentials. For comparison, we report the generalized
‘high-exponent’ Lennard-Jones potential that was used by Torre et al. [57].

V he
LJ = V0

[(
D

r

)96

− 2

(
D

r

)48
]

(9)

This is a smooth approximation to the generally accepted representation of depletion, the
Asakura-Oosawa-Vrij (AOV) potential [58]. In figure 3, we see that the AOV potential is
similar to the Morse potential. However, they reported no delay time either. In order to
explain this discrepancy, we study the relative influence of gravitational and Brownian forces.
We denote the time it takes for a particle to settle a distance equal to its radius r by τs, and
the time to diffuse that same distance by τd. We express τd as the time corresponding to a
mean squared displacement of r2, such that τd ∝ r2/D, with D the diffusion coefficient. The
proportionality constant depends on the dimensionality of the problem, but is not relevant
here. At the colloidal scale of our problem, we can express the diffusion coefficient using the
Stokes-Einstein-Sutherland equation [59],

D =
kBT

6πµr
. (10)

We introduce the dimensionless gravitational Péclet number as the ratio of τd to τs,

Peg =
diffusion time τd
settling time τs

∝ 2ρbgr
2

9 rµ

r2

D
=

4πgρbr
4

3kBT
, (11)
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where we have used equation 2 to define the settling time as ts = r/vs. We observe that this
number strongly depends on the size of the particles. Thus, when comparing the outcome of
different studies, this must be taken into account. Harich et al. [17] studied particles with a
radius of 326 nm in a suspending medium with a density difference of 253 kg m−3. Assuming
‘normal’ conditions, g = 9.81 m s−2 and kBT = 4.11 × 10−21, we find that Peg ≈ 0.03.
Padmanabhan et al. [21] studied systems with Peg ∼ 0.01− 0.1 and reported a delay time of
the order of a hundred τd. The discrepancy is resolved by comparing the time scales. Using a
typical value of µ ≈ 10−3 Pa s, we find that τd ≈ 2Peg s. Since the delay times are expected
to lie in a range of minutes to months [17], a delay time on the order of a second is quite
likely to go unnoticed.

2.2 The role of hydrodynamic interactions

Another topic of debate in the context of gel dynamics is the role of hydrodynamic interac-
tions. These are dynamic colloid-colloid interactions mediated by the suspending medium,
and we will denote such interactions by the abbreviation HIs. They have been hypothesized
to be one of the mechanics underlying the collapse of colloidal gels, which is why devote some
of our attention to them here. While HIs do not significantly affect equilibrium structure [60],
different effects of HIs on the dynamics of colloidal gels were reported [61, 57, 35, 62–64].
Gels that are formed by arrested phase decomposition are (highly) out-of-equilibrium sys-
tems, such that HIs can play a role in the formation of the structure [65] and affect mechanical
properties. We highlight a few results below in chronological order.

In the 2016 study of Harich et al. [17], the collapse behaviour of colloidal gels was also
studied in an experimental setup. They observed dense clusters forming at the top of the gel,
and proposed that HIs play a role in the forming of these clusters. This was based on the
inability of the Brownian dynamics simulations that excluded HIs to reproduce these. They
also found experimental evidence that these clusters fall through the gel when their weight
exceeds the yield strength, which was verified a few years later [27].

A normal mode analysis of colloidal gels in 2018 [36], in which systems with and without
HIs were compared, led to the conclusion that short-ranged HIs have no significant influence.
Long-ranged HIs were reported to play a central role in the viscoelasticity of the gel network,
and play a smaller role at higher colloid volume fractions due to screening7 effects. Electric
field screening is due to induced flow of mobile charges, but the hydrodynamic ‘field’ is a flow.
HIs are thus not screened by mobile particles, but only by fixed particles or boundaries [66,
67]. In the same year, Varga et al. [23] performed Brownian dynamical simulations with an
attractive square well potential that includes long-ranged HIs. They kept track of vertical
pores in the system, which allowed them to introduce (small) initial pores. They showed that
their model reproduces experimentally observed delay times faithfully. This suggests that
the exclusion of short-ranged HIs does not have a significant effect on the delay time of the
collapse process.

More recently, in 2022, Turetta et al. [68] reported the same results on the effect of HIs, by

7You may have encountered the term screening in the context of the reduction of the effective strength
of an electric field. It is explained by the induced flow of mobile charge-carriers, effectively increasing the
density of opposing charges near an electric source. This limits the range of the induced interaction by the
field.
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comparing their Brownian dynamical studies without HIs, with long-ranged HIs and short-
ranged HIs. They used the Hamaker equation [69] to model Van der Waals attraction between
the colloids, and reported a colloid volume fraction of ϕ ≈ 0.2 above which they report
the long-ranged HIs to be screened. Again, hydrodynamic screening should be interpreted
as ‘dominated by other interactions’. They also suggest that including short-ranged HIs
decrease the aggregation rate, related to the aging of a gel. This is in sharp contrast to
a more recent study by Torre et al. [57] which shows that short-ranged lubrication effects
do have a significant effect at low ϕ, and that these effects accelerate the aging of a gel.
Relatively recently, the seemingly contradictory reports on the effects of HIs were unified by
the observation that these effects are dependent on the colloid volume fraction [70]. The
authors also reported that on corresponding structural times, (i.e. times corresponding to
percolation and the onset of aging,) the structural differences reported earlier [65] were not
significant.

2.3 Kynch theory

The alternative, continuum, approach, also developed further with the increase of available
computational power. The foundation could be the Kynch theory of sedimentation [71]. The
fundamental assumption here is that the velocity of a sedimenting particle only depends
on the local volume fraction. This assumption is shown to be reasonable if the particle
propagation is relatively slow or considerably damped [71]. These constraints are not too
stringent, such that this theory can successfully describe sedimenting spheres [72]. In fact,
this theory seems to be the basis of most models of fluid-structure interactions [73–75]. In our
system, a colloidal gel, the structure is the network of particles, and the fluid its suspending
medium. The application of this theory justified by the damped propagation of particles.
We expect their freedom of movement to be severely limited, due to their relatively strong
attraction. Thus, Kynch theory will form the basis of our model in section 5.
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3 Theory and background

At this point, we have defined a gel to be a percolating, i.e. sample-spanning, network
of particles. The network is formed by bonds due to a short-ranged attractive potential
between these particles. We are interested in the behaviour of these systems, in particular
their collapse. In order to study this phenomenon, we need a description of the mechanics
that govern this behaviour. These mechanics clearly depend on the structure and mechanical
properties of the gel, partially determined by the mechanism that underlies the forming of
the gel, and its preparation procedure [76, 77, 31, 78]. Before we dive into the specifics that
underlie the formation of a colloidal gel, we discuss the stress-strain relationship.

3.1 The stress-strain relation

The stress-strain relation, or curve, is a macroscopic description of a material’s physical
strength. It relates the deformation of a material to its internal stress. It is an important
tool in the classification of substances, which informs us of the state of matter they are
in [79, 80]. The simplest cases are common states of matter such as solids, liquids and gases.
The behaviour of a liquid is qualitatively different from that of a solid, but similar to that of
a gas. Thus we limit our attention to differences between solids and fluids from here on. A
solid responds elastically, thus ‘bouncing back’ if a given stress is removed. A fluid typically
dissipates the energy of a stress8, and removing the stress does not undo the deformation.
This means that we can easily distinguish between solids and fluids by applying and removing
a stress. However, mixtures do not necessarily behave as a single state of matter. A class
of substances that often exhibits both types of stress response is the class of complex fluids.
These are mixtures of substances of two different phases in coexistence, of which at least
one is a fluid. Gels belong to the class of complex fluids and exhibit this particular stress
response [81].

(a) (b) (c)

Figure 4: a) Different types of stress on a control volume. b) Typical stress-strain curve for a solid,
the amount of stress for which the stress-strain curve of the solid is no longer linear is indicated by
‘yield stress’. c) The stress response of a Newtonian fluid is expressed in terms of the deformation
rate ∂yuε, where x points in the direction of the deformation and y is normal to this direction, as
indicated in a).

We illustrate this with a comparison to the typical stress-strain relation of solids and
fluids. In order to appreciate the broadness of this relation, we consider its constituents in

8Note that there are a lot of different types of stress. A shearing stress is typically dissipated, but an
incompressible fluid responds elastically to a compressing stress.
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their full generality. Stress is the force per unit area, and when we consider a unit volume,
it can be found to act in different ways on each set of faces. Stresses can act in a normal or
a shear form, or as a mixture of these, and are thus not necessarily uniaxial9, see figure 4a.
Strain is the deformation associated with the applied stress and comes in many forms, such as
compression, stretching, torsion, and rotation. In figure 4b, we see the typical stress response
of a solid. This response is elastic; as soon as the applied stress is removed, the deformation
is reverted, with a maximum stress known as the elastic limit. This type of yielding can only
be determined by careful testing, but the proportionality limit can simply be read off from
the stress-strain curve. This limit is indicated in figure 4b by ‘yield stress’, and corresponds
to the maximum amount of stress up to which stress is proportional to strain.

In the case of fluids, the strain is only well-defined if the freedom of movement is con-
strained by impermeable walls. In the more general case, the freedom of movement allows
dissipation of the energy that a stress introduces in the system. This is a viscous stress re-
sponse, for which the stress-strain relationship is time- and space-dependent. This response
is captured by a velocity gradient, that we will refer to as the deformation rate.

Figure 5: Laminar flow parallel to a
no-slip boundary at y = 0, illustrating
the deformation rate ∂yuε. Shearing
stresses are denoted by τ and the rate
of shear by uε. Figure adapted from
public domain [82].

The most natural way to express deformation rate
is in terms of shearing stresses, denoted by τ . We
introduce the time-dependence by the rate of shear10

uε = ∂tε. This is illustrated by an example, laminar
fluid flow, parallel to a no-slip surface at y = 0, see
figure 5. The space-dependence is captured by taking
the spatial derivative of uε in the direction normal to
the fluid flow, in this case ŷ, defining the deformation
rate ∂yuε. In the example of laminar flow, the defor-
mation rate is simply the relative velocity of adjacent
layers. These layers experience internal friction due to
this motion, and the following relation was proposed
by Newton

τ = µ
∂uε

∂y
, (12)

where µ is the viscosity of the fluid. This surprisingly
simple equation holds for most velocity gradients en-
countered in practice [83]. Fluids for which this linear
relation holds accurately are referred to as Newtonian
or ‘simple’ fluids.

The stress responses discussed above are thus fundamentally different, but some materials
exhibit both viscous and elastic behaviour. These are known as viscoelastic materials, whose
type of stress response depends on the magnitude of the applied stress [84]. As mentioned
before, gels belong to this class of materials, where the elastic response is due to the structure
of the network, with a given yield stress. For stresses larger than the yield stress, the
network collapses, driving an opposing flow of the suspending fluid. The elastic response

9Note that this point of view is typical for fluid dynamics and deviates from the common idea of point
masses.

10Note that shear is used to refer to the shearing strain, i.e. the displacement of a face of the control
volume in its tangential direction.
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thus corresponds to the stretching of bonds in the network under moderate stresses, and the
viscous response to the fluid flow after these bonds break under higher stresses [85]. Thus the
strength of the bonds play an important role in the transition point of the stress response.

In this thesis project, we will be mostly concerned with strain in the form of compression.
Fluids are often assumed to be incompressible, and so is our suspending medium. However,
the network of suspended particles is compressible, but resists compression, as shown by
experiment [19, 17, 27]. Depending on the magnitude of the stress, the response is elastic
or viscous. This type of viscosity is described by ‘dilatational viscosity’, and denoted by
ζ [86, 87].

3.2 Types of gel

The macroscopic behaviour of a gel depends on a number of factors, of which we discussed
the colloid radius r. Other important factors are the initial volume fraction of colloids ϕ0

and the bonds between the colloidal particles [22, 19, 17, 24]. Here, we study the different
macroscopic behaviours that gels can exhibit due to different bonds. The most important
characteristic of a bond is its strength, often expressed as the bond dissociation energy (BDE).
Its typical unit is kBT , where kB is the Boltzmann constant and T the temperature. Bonds
may be broken stochastically, due to the Brownian motion of the colloidal particles. The
probability of bond breaking depends on the thermal energy corresponding to the kinetic
energy of colliding molecules. The characteristic energy of a degree of freedom is one kBT ,
thus the thermal energy is typically a few kBT . A gel can already form with an attraction
strength corresponding to a BDE just above the thermal energy11. However, such a network
reorders on small time scales due to the high probability of bond breaking. This allows
the system to quickly phase-separate into a dense region of attractive colloids and a dilute
phase. This corresponds to the equilibrium state of the system, but not all gel systems reach
equilibrium. For example, when the bonds are covalent [89, 90], these are often considered to
be irreversible and thus the system does not change on experimentally available timescales.
Note that covalent bonds are typically expressed in eV, where one kBT ≈ 25 meV, such that
the associated BDE is on the order of a hundred kBT [91, 92]. The behaviour of gels that
are formed by attractions with an intermediate BDE is less straightforward and will be at
the focus of our attention. Examples of such bonds are depletion interactions (which we will
discuss in further detail in section 3.4), hydrogen bonds and hydrophobic effects [93].

There are many examples of systems in which these interactions occur, allowing them to
form gels, such as a dispersion of sterically stabilized colloidal silica in a liquid that poorly
solvates the grafted chains [94, 95]. This system has the property that the gel formation is
reversible with temperature as the control parameter. Gels are also studied in the context of
biology, for example in the context of erythrocyte (i.e. red blood cells) sedimentation rate12,
one of the oldest medical diagnostic tools, with its origin in ancient times [22].

In order to characterize the behaviour of a gel in terms of the bonds, we must also take the
range of these into account, which is defined in the following way. We consider the network

11The colloidal gels that form the focus of our study usually have a BDE higher than 4 kBT [17]. At the
nanoscale, systems with a BDE of ∼ 2 kBT can form a gel [88].

12Roughly speaking, a blood sample is drawn and the rate at which red blood cells sediment is deter-
mined [96]. It is generally used as a fast and cheap test to diagnose and monitor inflammatory activity [97].
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particles to be spherical with a diameter σ and denote the radial interaction range by R.
The range of the bonds is most naturally expressed in terms of the dimensionless variable
ξ = 2(R− σ)/σ, the ratio of the attractive to the repulsive range of the interaction.

In systems with long-ranged interactions13, the kinetics of phase separation are not ar-
rested on any accessible experimental time scales. In this case a transient, continuously
coarsening network is formed by the phase separation process of spinodal decomposition [98].

For systems with short-ranged interactions, however, spinodal decomposition is arrested.
In this case, the mechanism through which the gel is formed plays an important role in the
microstructure of the gel [99]. One such mechanism is an equilibrium process referred to as
homogeneous percolation [100, 88], these gels are referred to as equilibrium gels [101]. From a
thermodynamic perspective, these gels can be regarded as supercooled14 liquids [102]. These
gels are represented in the left panel of figure 6 and can be found in systems where the
number of neighbors a particle can have is limited [103, 104]. An example of such a system is
a suspension of patchy colloids [105]. Note that these systems are not in equilibrium, but can
be continuously reached from an equilibrium state by increasing the interaction strength15.

Figure 6: Different mechanisms of gelation lead to gels with a different microstructure. In the
left panel, a typical equilibrium gel is depicted. In the right panel, we show a gel that is formed by
arrested spinodal decomposition. Image adapted from [106], with permission.

The colloidal system that we study forms a gel through a different mechanism, arrested
spinodal phase decomposition [107, 106]. This decomposition is initiated by a quenching16,
such that homogeneously distributed colloids suddenly experience an attractive interaction,
and heterogeneous clusters start forming. Without quenching, thus gradually increasing
interactions, these clusters can compactify and we would again observe a continuous phase

13Long-ranged in these systems means that the R has the same order of magnitude as D. In the referenced
study, ξ = 1.2, rather than ξ ≈ 0.1 for short-ranged systems.

14Supercooling a liquid is the process of lowering the temperature below its freezing point without it
becoming a solid. Solidification is prevented by the absence of a seed crystal or nucleus around which a
crystal structure can form.

15The interaction strength is expressed in terms of kBT , so lowering the temperature is a way of (gradually)
increasing the interaction strength. This makes sense, since the bonds compete with collisions whose energy
is related to the temperature.

16Quenching is a concept in materials science that describes a process where a workpiece is cooled rapidly
such that undesirable states are thermodynamically favourable and kinetically accessible in a short window of
time. In this case, it means that attractions are increased rapidly (by increasing the polymer concentration)
such that the spinodal phase separation becomes kinetically inaccessible since the colloids are trapped in the
network.
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decomposition. By quenching, the compactifying of clusters is arrested, illustrated in the right
panel of figure 6. We conclude that the gel state is in our case reached by a non-equilibrium
transition from a fluid-like to a solid-like state, characterized by the sudden arrest of their
dynamics.

3.3 Gelation through spinodal phase decomposition

The sudden arrest of dynamics in a colloidal gel is due to crowding or ‘jamming’, which traps
them kinetically [108]. The generality of this process led to a unifying description in terms
of a jamming phase diagram [109], see figure 7. It was further postulated that the attractive
interactions might jam the system in a way similar to a confining pressure [110]. This implies
that the phase behaviour of gelling systems can be described by such a diagram. The concept
of jamming is commonly associated with the glass phase, and the network in gels is often
described as ‘glassy’ [111]. There are some clear similarities between these phases. Both
are nonergodic disordered systems [112], exhibiting static elasticity, and it can be difficult
to distinguish between them experimentally [113]. However, despite their similarities, these
are distinct systems. Most importantly, the elastic response of a glass is due to caging
effects [114], where a gel’s elastic response is due to a percolating network [115]. With these
processes in mind, the aforementioned jamming phase diagram was updated to include the
regions that are relevant to gelling systems [116], see figure 7. In this figure, two fluid phases
have been distinguished, separated by the blue percolation line. On its right, the colloidal
particles have a high enough volume fraction and attraction strength to form a network that
spans the sample. Without phase separation, however, the dynamics are not arrested, and
the network is transient, i.e. continuously changing [117]. If a percolating system is quenched
deep enough into the spinodal region, then it (locally) immediately decomposes into high- and
low-volume fraction regions, forming the branches of the self-supporting network. The depth
of the required quench depends on the point of intersection between the arrested dynamics
line and the binodal line, which in turn depends on the specific system. There are system
that form a gel directly at the gas-liquid spinodal boundary, which do thus not require a
quench [118, 119].

Colloidal systems

Here, we study the process of spinodal phase decomposition in terms of our colloidal system.
As before, we study this process in terms of volume fraction and interaction strength. We
quantify the interaction strength in terms of the reduced second virial coefficient b2, as
introduced in section 2. In doing so, we can use our model to describe a much wider class
of systems17. This leads to a natural definition of effective interaction strength, 1− b2. This
is zero for a purely repulsive hard-core potential, and increases upon increasing interaction
strength or range.

In our colloidal system, the interaction between colloids is due to the presence of polymers.
These mediate an effective interaction that is commonly referred to as a depletion interaction,
which we study in further detail in section 3.4. For now, we observe that the range of these

17According to the extended law of corresponding states, the binodals of all particles with a short-ranged
attraction collapse onto a single curve in (ϕ, b2)-space [55].
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Figure 7: Jamming phase diagram. A fluid phase separates into a gas-liquid coexistence upon
increasing interaction strength. Nonergodicity is quantified by a relaxation time of τ , indicated by
the purple line. The black vertical arrows indicate an increase in attraction strength, showing that
the phase separation dynamics are arrested upon a deep quench. Image reproduced from [93], with
permission.

interactions depends on the size of the polymers. We are interested in systems with short-
ranged interactions, which is determined by the ratio between colloid and polymer size. This
means we will consider relatively large colloidal particles, with r ∼ 1 µm.

Figure 8: Phase diagram of colloidal suspensions based on
theory. The shaded region indicates where a gel is formed.
Reproduced from [17], with permission18.

Now we follow Harich et al. [17]
in their study of the phase be-
haviour of colloidal suspensions.
This results in a jamming phase di-
agram that resembles figure 7, in
terms of the interaction strength
1 − b2, thus mirroring the vertical
axis. We consider a colloidal sus-
pension with an initially low colloid
volume fraction and low interaction
strength, compared to kBT . Since
the interaction is short-ranged, the
colloids behave as a homogeneous
fluid (if the system reaches equi-
librium). This homogeneous fluid
undergoes a phase separation for
a given range of volume fractions.

18Published by the Royal Society of Chemistry under a CC BY 3.0 Licence.
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Whether this is via nucleation and growth or via spinodal decomposition, depends on the
region in the phase diagram. In either region, the ultimate fate of the suspension is phase
separation into a dense fluid and dilute gas. However, by quickly increasing the attraction /
decreasing the temperature, in the spinodal region, you can cause the BDE to grow so large
that clusters do not rearrange much internally. The onset of this process is indicated by the
cyan line in figure 8.

In section 3.5, we will discuss this phase diagram in more detail. At this point, we
observe that percolation can only occur for sufficiently high volume fractions. Increasing the
volume fraction leads to dynamical arrest due to either repulsion (by caging) or attraction
(by bonding), depending on the interaction [120, 121]. An unordered solid is formed due
to dynamical arrest, which happens on the scale of clusters if the attraction strength is
sufficiently high and the volume fraction sufficiently low [122–124]. These arrested clusters
and chains of colloids grow and interconnect, leading to an unordered network that spans
the sample if the volume fraction is sufficiently high [125–127]. The shaded area in figure 8
corresponds to the conditions under which this happens.

In order to get a feeling of the actual bond strengths in the system of interest, we report
a few typical values in table 1. In this table, we report the well depth in kBT of a square
well potential that corresponds to the specified effective interaction strength 1− b2 and well
width. We specify the well widths in terms of the diameter D of the colloids. The attractions
in the colloidal system are due to a depletion interaction, which we discuss in the following
section.

Effective interaction strength 1− b2

Well width 0.1 3 5 100 1000

0.1D 0.095 1.4 1.8 4.6 6.9
0.01D 0.74 3.5 4.0 7.0 9.3

Table 1: Well depths of a square well potential corresponding to the given parameters, expressed
in kBT . The width of the well is expressed in terms of the colloid diameter D.

3.4 The depletion interaction

In the case of non-equilibrium gels, the attraction strength must be increased discontinuously.
A discontinuous temperature change is experimentally not feasible on these scales, so a
different method is needed. An interaction whose associated BDE can be tuned easily and
discontinously is the depletion interaction [25], which we will discuss in further detail below.
A typical system with such an interaction is the colloid-polymer mixture, also the most
popular system to study gels in general [3].

Following Harich et al. [17], we study this model colloidal gel. The system is a colloid-
polymer mixture in suspension, comprising colloidal hard-sphere particles and non-absorbing
polymers. Due to the presence of polymers, the colloids experience an effective attraction.
When the polymers are ideal, this attraction fits the Asakura-Oosawa-Vrij form and derives
purely from configurational entropy.
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Figure 9: When colloids
(dark blue) come close, their
excluded volume (light blue)
overlaps, such that polymers
(red) have an increased free
volume.

This can be understood as follows. Consider the polymers
with a radius of gyration rg as non-interacting19 spheres with
radius rg. The colloid-polymer interaction potential is then

V (r) =

{
∞ if r < D/2 + rg

0 if r ≥ D/2 + rg
(13)

where r is the center-to-center distance between the colloid and
the polymer. This means that there is a region around each
colloid, which the polymers unable to occupy and we therefore
refer to as an excluded volume. The overlap between two of
these regions reduces the overall excluded volume in the system,
increasing the entropy of the smaller polymer spheres. Follow-
ing Vrij [128], we introduce a scaled distance r̃ = r/σ, where
σ = D/2+ rg. Since we consider systems in which rg ≪ D, the
net effect can be studied at the pair level and gives the following interaction potential

V (r̃) = −4

3
πσ3

[
1− 3

4
r̃ +

1

16
r̃3
]
nkBT if rg/σ ≤ r̃ ≤ 2, (14)

where n is the number density of the polymers. This effective interaction potential is called
the depletion potential, and was first described by Asakura and Oosawa in 1954 [129, 130].
The functional form, equation 14, was introduced by Vrij [128] in 1976 and verified experi-
mentally a few years later [131]. The depletion interaction also has energetic contributions,
which have been identified theoretically [132] and experimentally [133]. However, these con-
tributions are explained by a nonuniform concentration of polymers (outside the excluded
volume). We can assume this to be uniform for a system with a low concentration of ideal
polymers with a small ratio of polymer-to-colloid radius ξ = 2rg/D. In this case, the entropic
effect dominates the effective interaction [134].

The system studied by Harich et al. [17] (as referred to before) contains colloidal particles
with diameter D = 652 nm, and polymers with radius of gyration rg = 21 nm, such that
ξ = 0.064, and the depletion potential is an effective pair 20 potential, dominated by entropic
effects. The strength of the interaction is tuned by adjusting the polymer concentration,
typically with a BDE of the order of ten kBT . We stress that this interaction is strong
enough to form an elastic network that can sustain itself against gravitational stress for some
time that was referred to as the delay time21.

19The polymers are considered to be non-interacting amongst themselves, which is a realistic assumption
for low concentrations.

20We note that the excluded volume overlap may be a three-body effect if multiple colloids come close
together such that there is a region where the excluded volumes of these overlap, but some geometry reveals
that this requires ξ ≥ 2/

√
3− 1 ≈ 0.154 [134].

21We recall that the shelf life of a product is thus limited by the delay time of the gel, which motivates us
to understand the parameters that influence the delay time.
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Figure 10: The arrows represent non-compensated
pressure on colloids (spheres with radius σ2) by col-
lisions with polymers (spheres with radius σ3). The
excluded volume is indicated by a dashed line. Image
reproduced from [128].

With this interaction in mind, we
observe that a quench is experimen-
tally feasible for these systems. This
quench corresponds to an instantaneous
increase of polymers in the (homoge-
nized) suspension of colloids. This is
realized by vortex mixing the suspen-
sion after the addition of polymers, thus
breaking any bonds that have already
formed [135]. This results in a homo-
geneous system with an increased inter-
action strength, since it depends on the
polymer concentration [136]. This is un-
derstood with the visual aid of figure 10.
The polymers collide with the colloids
from all directions, except if the distance between colloids r is small enough that their ex-
cluded volumes overlap. In that case, the polymer collision indicated by the arrows in figure 10
are not compensated, leading to a net force in the direction of r. This force is proportional
to the polymer concentration (indicated by n3 in the figure).

We note that we have studied the interaction between the colloids only in terms of
polymer-mediated effects. Interactions mediated by the suspending medium, HIs, do not
affect the equilibrium structure of the system [60]. However, the system we study is arrested
and its relaxation toward equilibrium is slowed down considerably. In this case, HIs can
have an influence on the structure, and the specifics of this influence have been studied ex-
tensively [61, 65, 57, 35, 62, 63]. Recently, it was found that when gravity does not play a
role, the effect of HIs can be captured by a parameter described as the ‘structural age’. At
corresponding ages, the gel structures that have formed with and without HIs, are indistin-
guishable [70]. It should be noted that HIs cannot be completely ignored, since lubrication
effects were later shown to affect the structure nontrivially [57].

3.5 The collapse of colloidal gels

Our work is not affected by the particular challenges of HIs as discussed above, since the
reported effects mostly concern gelation rate and structure of the gel. Our starting point is
simply the time point at which the gel is formed, and the structure will be captured in a
parameter that corresponds to the strength of the gel. The initial structure is thus a suspen-
sion of colloids that have formed a sample-spanning network that is able to support itself by
short-ranged attractions. The interparticle bonds may break, allowing the gel to restructure
over time [137, 138], often referred to as ‘aging’. A dynamic simulation of a comparable
system of polydisperse nearly-hard Brownian hard spheres shows that this aging may play
an important role in the collapse of gels [21]. The study suggests that the most important un-
derlying process is particle migration and the growing of a capillary-like structural instability
of the gel, as was also suggested by Varga et al. [23]. Hydrodynamic interactions may widen
this pore, allowing the collapse to speed up. Another factor taken into consideration are the
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interparticle attractions, producing a negative osmotic pressure22 that causes the collapse of
the gel. A negative osmotic pressure is also found in an attractive glass, where it cannot
cause collapse due to steric hindrance; there is no freedom of movement of particles to move
closer together. We conclude that collapse happens in case of a negative osmotic pressure at
the bottom of the sample, and only when the volume fraction of colloids is low enough to
have sufficient freedom of movement.

Harich et al. [17] studied the collapse of a colloidal gel under gravitational stress and
found three different collapse behaviours for different initial conditions. The conditions that
determine the collapse behaviour are colloid volume fraction, polymer volume fraction (which
determines the colloid interaction strength through the depletion potential), and the diameter
of the colloids [25]. These collapse behaviours are characterized by the time evolution of the
gel’s height, h(t). To illustrate this concept, we consider the network at a local level. The
network collapses (locally) when the gravitational stress exceeds the local yield stress of the
network. This results in three distinct zones of behaviour: the supernatant, the falling zone,
and the consolidating zone. The supernatant zone is the colloid-free region above the network,
and the consolidating zone is the region where the local yield stress exceeds the gravitational
stress of the network above it. The falling zone is where the network is collapsing, driven by
gravitational force and balanced by viscous drag force due to fluid backflow [139].

With these three zones in mind, we can now define the height of the network as the
interface between the supernatant and falling zone, leading to the gel’s height profile h(t),
which is time-dependent. This height profile can be used to determine the characteristic
delay time of the collapse and thus separates gels into their stability classes, according to the
decay of the height profile [17, 26]. This allows use to distinguish between weak and strong
gels. The height profile of a weak gel shows a collapse after a delay time, and strong gels
compact slowly [17, 106, 93]. Colloidal gels have a tuneable interaction strength, typically of
the order of ten kBT [85, 125]. As a result of this, their collapse behaviour spans both the
weak and strong gel class [17].

In figure 11(a), we see that a colloidal suspension with low interaction strength and
colloid volume fraction, represented by the lighter shades of the gelation region in figure 12,
sediments immediately. Harich et al. [17] explain this by the influence of gravity, they suggest
that percolation in real systems happens at higher colloid volume fractions only. This would
imply that the network is not space-spanning and thus the fluid backflow that would cause
viscous stress if it was space-spanning now goes around the clusters that may have formed.
In figure 11(b), where the initial colloid volume fraction is higher, we see an initial quiescent
period in which nothing seems to happen (at this scale), after which the network collapses
suddenly. In an experimental study that focuses specifically on the processes [27], it was
found that two processes happen during the quiescent period. A layer of dense clusters forms
at the top of the gel, which eventually fall through the gel, creating pores. At the same
time, droplets of suspending medium are formed, creating pores as they move up through
the gel. These pores grow until they are large enough to reduce resistance to fluid backflow
significantly, leading to the sudden collapse. Another factor that contributes to the collapse

22We interpret the osmotic pressure as the minimum pressure difference between the colloid-rich and
colloid-poor phase in order to prevent solvent flowing into the colloid-rich region. A negative osmotic pressure
therefore indicates that solvent is pushed out of the colloid-rich phase, thus condensing this phase further.

23This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
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Figure 11: Time evolution of the volume fraction profile, ϕ(z, t), with z = h/h0 the normalized
height. The color bar on the right indicates the local volume fraction, and the red lines indicate the
gel’s height h(t). The three different collapse behaviours are shown, and the horizontal dashed line
at z = 1 indicates the meniscus. Reproduced from [17], with permission from the Royal Society of
Chemistry23.

rate is the negative osmotic pressure of the colloids. In figure C(c), where the initial volume
fraction is increased further, the yield stress of the gel is high enough to prevent collapse,
and it compactifies instead. This behaviour is observed at volume fractions above ϕ ≈ 0.4,
where the freedom of movement of the colloids is presumably reduced enough such that pores
cannot be formed.

With these different collapse behaviours in mind, we take another look at the phase dia-
gram of colloidal gels, resulting in figure 12. This figure summarizes the experimental results
of the study of Harich et al. [17]. We observe that the collapse behaviour of figure 11(a) does
not correspond to a gel, since the volume fraction is not high enough to form a percolating
network. This is indicated by arrow [2], showing a shift in the theoretical percolation line
to the dotted purple line. This shift is motivated by the presence of gravity in real sys-
tems. The gravitational stress of a single particle is already larger than the yield stress of
systems that lie in regime A in figure 12. The effect of gravity on the forming of gels has
received less attention in computational studies, but recently study confirms this assumption.
De Graaf et al. [141] report a criterion in terms of a critical colloid volume fraction, where
buoyancy-driven flows dominate the dynamics rather than the mechanical strength of the
forming network. The delayed collapse behaviour as in figure 11(b) corresponds to regime D
in figure 12. The slow compactification as illustrated in figure 11(c) corresponds to regime
B in figure 12. The red curve indicates the boundary between the glass phase and a dense
gel, but regime B seems to extend beyond this boundary. It was suggested [140] that this
boundary should be shifted according to arrow [1] for colloidal systems.

We have discussed a large body of experimental work that clearly indicate a delay time
before the onset of a sudden collapse. Computationally, a lot of microscale information is
available that has helped us to understand a gel’s dynamics. However, computational studies
have not reported a delay time that is larger than a few seconds. In this thesis project, we
aim to build a theoretical model that aids our understanding of the mechanics underlying
this delay time.

24This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
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Figure 12: Phase diagram of colloidal suspensions based on experimental results. The black curve
is the gas-liquid binodal from simulations, that was obtained using molecular dynamics simulations.
The solid purple curve shows the percolation threshold, obtained from Brownian dynamics simula-
tions. The solid red curves indicates where the glass transition takes place, as predicted using mode
coupling theory. The cyan line is the tie line where the binodal intersects the glass transition curve.
Arrow [1] indicates the proposed shift of the glass transition curve [140], and arrow [2] indicates
that gelation does not coincide with the percolation under the influence of gravity. The colored dots
correspond to different types of observed systems, where • is a homogeneous fluid, • is a gas-liquid
coexistence, and •, • and • are gels with different collapse behaviours, discussed in further detail in
section 3.5. Reproduced from [17], with permission from the Royal Society of Chemistry24.



4 THE SPACE-HOMOGENEOUS MODEL 25

4 The space-homogeneous model

In this section, we explore the model for gel collapse presented by Darras et al. [22], who used
it to succesfully capture the process of sedimentation of red blood cells. Note that this model
traces its origins back to the poro-elastic model and the work of Manley et al. [19]. Red
blood cells were experimentally observed to be stable against collapse during a delay time,
which was added as a fit parameter in the model. The post-delay collapse can be regarded
as an independent process [20], and it is this regime that is described particularly well by
Darras’ model.

This model balances the gravitational and viscous stresses. The former is due to a den-
sity difference between the colloids and solvent, driving the colloids downward, while mass
conservation implies that solvent must flow upward (assuming that the colloids have a higher
density). The viscous stress is due to the flow of solvent through the network of colloids, and
is modeled by the Kozeny-Carman relation, which describes fluid flow through porous media.

4.1 Fluid flow through porous media

We consider the colloids to be a porous medium through which the solvent moves slowly.
Following Darras, we choose to model the permeability k of this porous medium by a Kozeny-
Carman relationship. This relationship was developed using the assumption that the porous
medium can be described as an assembly of capillary tubes in which the Navier-Stokes equa-
tions apply [142]. The original work considered fluid flow through soils, and assumes laminar
flow in the narrow capillaries [143]. Using Pouseuille’s law for laminar flow, the required
pressure difference ∆p for a flow velocity u through a packed bed25 of thickness l is

∆p

l
= −32µl′

D2ϵl
u. (15)

Here, µ is the dynamic viscosity of the fluid, l′ the average length of a capillary, D their
average diameter, ϵ the void fraction of the packed bed (i.e. the volume fraction that is
occupied by the fluid). Note that the velocity u is the superficial26 velocity of the fluid,
which is related to the average velocity of the fluid by u = ϵu. A combination of assumptions
and experimental observations allows us to express this as

∆p

l
= −180

µ

d2s

(1− ϵ)2

ϵ3
u, (16)

where ds is the diameter of the packing particles27. The diversity in porous media is reflected
in the many ways that this relation has been reformulated. It did not take long for other
models to appear, around the time that Kozeny published his work in Austria, a similar
result was reported in England [144]. These relations share the feature that they depend on
constants that must be determined through experiment. For example, in this case, the ratio

25A packed bed is a pipe that is filled with a packing material, in our case the packing material is the
randomly arranged network of colloids.

27It was assumed that these are spherical.
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of capillary length to the thickness of the bed l′/l = 2.5 has been observed experimentally,
and is absorbed into the prefactor on the RHS of equation 16.

At the scale of our model, we can treat the the packed bed as homogeneous, and thus
the left-hand side of equation 16 can be treated as a pressure gradient ∂zp. Our model relies
on a relation between the pressure gradient and the relative velocity of the fluid, but at this
point we are interested in the permeability of the porous medium. We state Darcy’s law [145]
below, and note that this relation holds is valid in the low-Reynolds regime [146].

q = − k

µ

∂p

∂z
. (17)

We observe that the volumetric flux q is equal to the superficial velocity u defined above,
such that we can derive an expression for the permeability from equation 16, leading to

k =
d 2
s ϵ

3

k0(1− ϵ)2
, (18)

where we have absorbed the prefactors into k0. Since we are interested in the colloidal
phase rather than the fluid phase, we rewrite this in terms of the colloidal volume fraction
ϕ. Note that we must normalise this volume fraction by ϕm, the volume fraction at which
the colloidal phase is completely jammed. With this in mind, we substitute 1 − ϵ = ϕ/ϕm.
Adopting Darras’ notation, we have ds = a, the diameter of the colloidal particles. This leads
to the permeability of the colloidal phase,

k =
a 2 (1− ϕ/ϕm)

3

k0 ϕ2
, (19)

We note that this relation is semi-empirical, and as such, comes with a range of validity,
which will be discussed more in the results subsection. From the aforementioned relationship,
we note two important properties of the permeability: k diverges for small values of ϕ, and
vanishes for values of ϕ near its maximum ϕm. Following Manley et al. [19], we use a different
version of this relation. Note that it has the same properties as equation 19 at limiting values
of ϕ,

k(ϕ) =
a2 (1− ϕ/ϕm)

3

k0 ϕ
. (20)

This alternative is one of the numerous proposed corrections to the Kozeny-Carman rela-
tion [147]. Most importantly, it seems that the microstructure of the media plays a significant
role [148, 149]. However, despite using only macroscopic variables and the many proposed
corrections, the Kozeny-Carman model describes situations such as flow through packed beds
of spheres particularly well [29]. This is also evident from the success of this model to fit
experimental data of gravitational gel collapse [24, 19, 22]. We will discuss the permeability
in further detail in section 4.4.

4.2 Theoretical framework

In this section, we model the gel as a system that consists of two parts: there is a colloid-
poor region, and a colloid-rich region. This model is highly coarse-grained, allowing us to
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set the colloid volume fraction ϕ to zero in the colloid-poor region (so it can be treated as a
pure Newtonian solvent), and to assume spatial homogeneity in the colloid-rich region. The
division into two distinct regions is justified by the assumption that the attraction between
colloids suppresses diffusion, leading to a sharp boundary. A sharp, asymptotic boundary is
also observed experimentally [24].

Figure 13 shows a diagram representing the experimental setup that is modeled: The
initial configuration is a cuvette of height h0 = 10 cm, with an initial volume fraction of
colloids ϕ0 in the range 0.1 to 0.7. The height of the interface decreases under gravitational
stress, forming a colloid-free region (indicated as a gray area). In this model, the interface
height h and colloid volume fraction ϕ are functions of time only.

Figure 13: Diagram showing the time evolution of the space homogeneous model where time
evolves from left to right. A darker shade indicates a higher colloid volume fraction ϕ, grey indicates
colloid-poor regions. The bars at the bottom represent the boundary layer between the colloid-rich
and colloid-poor region. In this boundary layer, we indicate the colloid and solvent volume by
purple and grey regions, respectively.

If we assume that the horizontal area of the cuvette is A, the volume of the colloid-rich
region is h(t)A, and volume conservation of the colloids implies that h(t)Aϕ(t) is constant.
Since we assume that the colloids and solvent have a constant density ρc and ρs, respectively,
this corresponds to mass conservation. We conclude that mass conservation of the colloidal
phase implies

h(t)ϕ(t) = h0ϕ0. (21)

In this simple model, the only external force is gravity, pulling the colloids down (note that
we assume a positive buoyant density ρb = ρc − ρs > 0), thus increasing the colloid-poor
volume. Total volume conservation dictates that an equal volume of solvent particles must
cross the interface from the colloid-rich region. We study this in further detail using the
representation of the boundary layer at the bottom of each cuvette in figure 13. We set the
height of this boundary layer equal to δh, the change of interface height during a time interval
δt. Thus if the interface changes height, this corresponds to a volume of ϕAδh moving down.
Since the colloid-rich phase is homogeneous, the solvent phase occupies the horizontal area
(1 − ϕ)A, and moves up with a velocity v (relative to the interface). The upward moving
volume of solvent must be equal to the downward moving colloidal volume, such that

(1− ϕ)Avδt = ϕAδh. (22)
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Dividing both by Aδt and taking the limit δt → 0, we find

(1− ϕ)v = −ϕ
dh

dt
. (23)

Now we balance the forces that are involved in this model; the gravitational force must be
balanced by a stress gradient, so ∂σ/∂z = ρg. In the absence of colloids, the only contribution
to stress is the isotropic response of hydrostatic pressure, ∂p0/∂z = ρsg, where p0 is the
hydrostatic pressure and ρs the density of the solvent. This is the equilibrium solution,
where the solvent is at rest. The addition of colloids with buoyant density ρb > 0 increases
the gravitational force, which must be balanced by an ‘excess stress gradient’. Here we can
either follow Darras et al. [22] by using the constitutive relation as described by Manley et
al. [19], σ = σe− (1−ϕ)p, where σ, σe refer to the total and elastic stress. The (1−ϕ) factor
was included by Manley et al. to take into account that only the solvent is driven by the
pressure. Instead, we take this into account later and follow Buzzacarro et al. [24], using the
constitutive relation σ = σe−p. The experimentally observed elastic modulus in comparable
systems is about two orders of magnitude too small to balance gravitational force with elastic
stress [22], so we set σe = 0 in this model. This leads to the equation

−∂p

∂z
= ρbgϕ. (24)

Treating the colloids as a porous medium through which the solvent moves slowly, we use the
reasoning from section 4.1. There, we found the following expression for the permeability k,

k(ϕ) = k−1
0 a2(1− ϕ/ϕm)

3/ϕ, ( 20, repeated)

where k0 is a prefactor that depend on the microstructure of the gel, a is the diameter of
the colloidal particles and ϕm is the maximum volume fraction of the colloidal phase. In the
case of red blood cells, we have ϕm ≈ 0.86 [22]. We also recall Darcy’s law, which describes
the fluid flow through a porous medium in response to a pressure gradient,

(1− ϕ)

(
v − dh

dt

)
= − k

µ

∂p

∂z
, ( 17, repeated)

where µ is the viscosity of the fluid and k is the permeability of the porous medium. These
relations form a closed set that can be written compactly as below. Note that this becomes
an ordinary differential equation using the relation ϕ(t) = ϕ0h0/h(t), which we will solve
analytically. Note that Stokes’ law provides an expression for the sedimentation time of a
single sphere that has reached terminal velocity, which we denote by ts = 9µh0/(2ρbga

2). The
parameters h0 and ts are thus given by the experimental conditions, and k0 is a free parameter
that can be used to fit to experimental data. We combine equations 17, 20, 21, 23 and 24,
which leads to

dh

dt
= −ρbga

2

k0µ
(1− ϕ/ϕm)

3 = − 9h0

2tsk0
(1− ϕ/ϕm)

3. (25)
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4.3 Analytical solution

We will solve equation 25 analytically below. In order to keep things clear, we absorb all
constants into a fit parameter c = ρbga

2/(k0µ), such that c(1−ϕ0/ϕm)
3 is the initial velocity

of the interface. Note that h = ϕ0h0/ϕ such that ϕm = ϕ0h0/hm, where we define hm as the
minimum height of the interface, thus corresponding to the highest volume fraction of the
colloidal phase. This results in

dh

dt
= −c

(
1− hm

h

)3

= −c
(h− hm)

3

h3
. (26)

We split the differential equation in parts that depend only on h or t, and integrate over t:

ˆ
h3

(h− hm)3
dh

dt
dt =

ˆ
−c dt. (27)

We define the function f to be equal to the above, observe that the left-hand side is an
integral over h, and change variable to z = h− hm:

f(z) ≡
ˆ

(z + hm)
3

z3
dz =

ˆ
1 +

3hm

z
+

3h2
m

z2
+

h3
m

z3
dz,

= z + 3hm log(z)− 3h2
m

z
− h3

m

2z2
. (28)

We move the constant of integration to the right-hand side of equation 27, which becomes

= −c t+ C, (29)

with C the constant of integration, determined by the initial parameters ϕ0 and h0: consider
t = 0, then C = f(z0), where z0 = h0 − ϕ0h0/ϕm is the initial height above the minimum
height. As discussed above equation 25, Stokes’ law states that c = 9h0/(2k0ts). Now we
define another function g that depends on the dimensionless variables z′ = z/(ϕ0h0) and
t′ = t/(ϕ0ts). We substitute these relations into equations 28 and 29 to find

g(z′) ≡ f(z)/(ϕ0h0)− 3/ϕm log(ϕ0h0) = z′ + 3/ϕm log(z′)− 3

ϕ2
mz

′ −
1

2ϕ3
mz

′2 ,

= − 9

2k0
t′ + C ′, (30)

where C ′ is determined as before, giving C ′ = g(z′ = z0/(ϕ0h0)) = g(z′ = 1/ϕ0−1/ϕm). This
indicates that the process of gel collapse in this model can be described by a master curve that
is independent of the initial configuration. It satisfies g(z′) = −9t′/(2k0) + g(1/ϕ0 − 1/ϕm),
where ϕ0 can be interpreted as a parameter that determines the part of the master curve
that describes the corresponding process.

Based on the theory of the gravitational collapse of colloidal gels, we expect qualitatively
different collapse behaviours for different initial conditions. However, equation 30 illustrates
that this model describes the same process at different times. This requires that k0 is a
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Figure 14: The master curve, i.e. equation 30 with C ′ = 0, represented by the solid black curve.
Shifting the master curve to the right by 2k0C

′/9 represents experimental conditions with ϕ0 as
indicated in the legend. Times before t = 0 have no physical meaning. We have set k0 = 2,
ϕm = 0.86 and h0 = 10 cm.

constant and that the Kozeny-Carman relation that we used is valid in the range of volume
fractions that we study. If this is the case, then once k0 is determined, equation 30 produces
the solid black curve in figure 14, with an offset given by C ′, leading to the dashed curves.
The initial conditions are the cuvette height h0, the sedimentation time of a single sphere ts,
and the initial colloid volume fraction ϕ0. The regular time and height are obtained by a few
transformations, first shifting the curve by C ′, according to the initial volume fraction, as
shown in figure 14. Then we obtain the regular variables, using the relations z = z′ · (ϕ0h0)
and t = t′ ·(ϕ0ts). Then we take into account that z is the interface height above the minimum
hm by a final shift.

4.4 Results

Since the analytical solution that we found is an inverse function of a result that one would
call natural (where height would be given as a function of time), some care needs to be taken
in specifying domains, as the maximum values of z and z′ depend on ϕ0, h0 and ϕm. From
equation 25, we can conclude that the only relevant parameters are ϕ0, h0, ts, ϕm and k0. In
the example of the sedimentation of red blood cells, these parameters are found to be28 [22].

We reproduce the result as found by Darras et al. [22], which corresponds to the red line
in figure 15. For lower initial volume fractions of colloids, we see that the interface height falls
rapidly until the gel has almost completely collapsed. Higher initial volume fractions seem to

28Some of the parameters are provided in supplemental material, which can be found at
https://arxiv.org/pdf/2108.13841.pdf

29Note that Darras et al. reported the value of γ = k0/R
2, where R is the ratio of the average channel

width to the colloid radius a. We have defined our problem in terms of the colloid radius, and accordingly,
R2 is absorbed into our definition of k0.

https://arxiv.org/pdf/2108.13841.pdf
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Experimental conditions Fit parameters

ϕ0 h0 ts µ ρb g a ϕm k0

0.45 0.04 m 4.78 hours 1.2 mPa s 80 kgm−3 9.81 m s−2 4 µm 0.86 0.42

Table 2: The parameters that were used by Darras et al. [22] to model the sedimentation of red
blood cells. Initial colloid volume fractions ranged from 0.15 to 0.45, where the latter was reported to
represent a physiological value of red blood cell volume fraction in a blood sample. All experiments
were performed using a sample of height h0, solvent viscosity µ, buoyant density of the colloids ρb,
gravitational acceleration g and colloid radius a. Using Stokes’ law, these parameters correspond to
a sedimentation time of ts. Among their results were the reported values of the maximum packing
fraction ϕm and permeability k0

29.

only display slow sedimenting behaviour. This was also observed experimentally [17], so this
model seems to predict this outcome correctly, but we must note that these parameters lie
outside the range that our model can correctly describe. The problem is that the interface
height decreases faster than a sedimenting sphere at terminal velocity would. Since this
model only assumes gravitational force to drive the collapse, this is an unphysical result.

Figure 15: Interface height plotted against time for different initial volume fractions, using the
model proposed by Darras [22]. Other parameters are given in table 2. The dashed black line
represents a single falling sphere that starts falling at terminal velocity at t = 0. We see that the
interface drops faster than a single sphere for ϕ0 < 0.45. The inset shows the initial behaviour of
the model that is described by equation 25 with k0 = 9/2.

We recall equation 25 and observe that we can easily derive an expression for the initial
velocity of the interface, as mentioned in section 4.3.

dh

dt

∣∣∣∣
t=0

= −ρbga
2

k0µ
(1− ϕ0/ϕm)

3 = −9vs
2k0

(1− ϕ0/ϕm)
3, (31)

where we have used vs to denote the sedimentation velocity of a single colloidal particle.



4 THE SPACE-HOMOGENEOUS MODEL 32

Since k0 is an empirical constant, we can exploit this freedom to make sure that the initial
velocity of the interface is physical.

Figure 16: The minimum value of k0 for the initial velocity of the interface to lie below that of a
single sedimenting colloid, plotted against initial colloid volume fraction ϕ0.

We consider the initial velocity to have a maximum, corresponding to the terminal veloc-
ity of a sedimenting sphere under the same conditions (viscosity, colloid diameter, buoyant
density, and gravitational acceleration). Equation 31 thus provides a relation between k0 and
ϕ0, and we can derive similar expressions for each model, which is plotted in figure 16. We
see that the choice of constitutive relation (described by the blue and yellow lines) does not
affect the outcome much: the minimum value of k0 diverges as ϕ0 goes to zero. This limits
the range of applicability of this model. Using the Carman-Kozeny relationship of equation
20, however, allows us to describe the full range of initial conditions (meaning 0 < ϕ0 < ϕm).
This relation leads to the model decribed by relation 25, and is shown in the inset of figure 15.
The minimum value of k0 derived from equation 31 is indicated in green in figure 16, and we
see that if k0 = 9/2, then the interface will not drop faster than a single sedimenting sphere.
As discussed in section 4.1, it is not straightforward to find an expression for the permeability
of porous media. In our case, the porous medium is an out-of-equilibrium network of parti-
cles under gravitational stress. We conclude our discussion of this model by the observation
that approximating k0 to be a constant corresponds to ignoring the microstructure of the
network. However, if we limit our study of gel collapse to the macroscopic interface height,
the space homogeneous model can be used to describe some of the behaviour that is also
found experimentally. These behaviours are the fast collapse and the sedimenting phase,
but this model is not able to capture the delay of the collapse behaviour. It is important
to observe that the fast collapse and sedimenting phase are described by a single equation,
while the underlying physics of these phases are completely different.
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5 The space-dependent model

We have seen that the space-homogeneous model can model gel collapse macroscopically,
but it has its limitations. The most important is that it provides no insight in the physi-
cal processes that cause the delay of the collapse. We propose to let ϕ depend on height
and time, based on the experimental observation that concentration profiles are height-
dependent [17, 150, 27, 24]. Our hypothesis is that the collapse delay is caused by a stress
response generated by the colloidal phase. The network can have different stress-bearing
properties [151], and we consider viscous, visco-elastic and elastic stresses. The viscous
stress modulus of colloidal gels is reported to be smaller than the elastic modulus [152], and
the viscous response is dominated by Darcy flow [19]. The elastic response is due to the
jammed percolating network [153]. In our system, the attraction that causes the jamming
is the depletion interaction [154]. We model this as an effective interaction, the osmotic
pressure. It is more difficult to represent visco-elastic stresses due to their complex nature,
but some success has recently been achieved [87]

5.1 Osmotic pressure

Figure 17: Classical interpreta-
tion of osmotic pressure Π. The
thick vertical line is a semiper-
meable membrane and the pink
spheres depict solute particles.

The osmotic pressure has been claimed to induce the phase
separation process that underlies gel formation [21]. While
this is not a generally accepted idea, it is worth pursuing
the influence it has on the dynamics of the gel. The os-
motic pressure Π is often regarded as an excess pressure in
a specific type of solution. This solution consist of two con-
tainers that are connected by a semipermeable membrane,
in one of which the solute is present. For entropic reasons,
the solvent has a tendency to move to that container, effec-
tively invoking a pressure difference in the two containers.
The osmotic pressure is thus the pressure difference, once
equilibrium has been reached [155]. This situation is illus-
trated in figure 17 to the right.

In our case, the solute is the colloidal phase, and the
solvent is the polymer-liquid mixture. Using Newton’s
third law, we consider the pressure that the solvent exerts
on the colloidal particles. With this frame of reference in mind, figure 17 can be interpreted
in the following way. A positive osmotic pressure tends to disperse the colloidal particles, and
a negative osmotic pressure tends to push them closer together. Using the methodology of
the classical interpretation, we explore a few different ways to express the osmotic pressure.

The following discussion is based on the works of Jacobus Henricus van ’t Hoff (1852 -
1911), one of the founders of modern physical chemistry [156]. He expressed the osmotic
pressure in the following way,

Π = iNkBT/V, (32)
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where i is the Van ’t Hoff index, N the number of solute particles in a volume V . For
non-electrolytes dissolved in water, we have that i ≈ 1 [157]. We observe that equation 32
only holds for low concentrations N/V , and note the similarity to the ideal gas law. In order
to capture a larger range of concentrations, Van ’t Hoff also proposed a correction to this
equation based on a power series in c = N/V ,

Π = Π0 + Ac2, (33)

where A is an empirical parameter. We observe the resemblance of this idea to the virial
expansion, which we will use later on.

5.1.1 The Van der Waals equation

We continue our discussion with the works of another Dutch Nobel prize laureate, Johannes
Diderik van der Waals (1837-1923). In his thesis [158], he proposed a correction to the ideal
gas equation of state. If we apply his idea to the osmotic pressure relation above, we find

Π =
NkBT

(V − b)
− aN2

V 2
, (34)

where b takes an excluded volume effect into account, and a describes the strength of attrac-
tions. Both parameters are experimentally determinable, substance-specific constants. By
the similarity between the depletion potential and molecular attractions (We refer to the sim-
ilarity between the Morse and depletion potential in figure 3), we use the original expression
for b. That is, b = 2Nσ3π/3, where σ is the diameter of the particles, such that the excluded
volume is four times that of the volume of the colloidal particles. We study the system in
terms of the volume fraction ϕ = πσ3N/(6V ), such that b = 4ϕV . We observe that the
osmotic pressure diverges for ϕ → 0.25, which is undesirable. In an attempt to consolidate
theory with experiment, we redefine b = ϕV/ϕm, such that this behaviour occurs near the
maximum volume fraction. Now we express the Van der Waals-type osmotic pressure as

Π =
6kBT

πσ3(1− ϕ/ϕm)
ϕ− 36

π2σ6
aϕ2 (35)

We observe that the osmotic pressure can have an unrealistically large negative value for large
values of a and ϕ ∼ 0.5ϕm. More than a hundred alternative equations of state followed [159],
each improving Van der Waals’ expression in a given range of circumstances [160]. Here, we
choose one that allows negative pressure, which is realistic in our case, but is bounded in a
reasonable way.

5.1.2 The Dieterici equation

The Dieterici equation is a theoretically based alternative equation of state [161]. The attrac-
tion is modeled as a multiplicative factor rather than additive, and the parameter a appears
in an exponential. It is given by the following expression,

Π =
NkBT

V − b
exp [−aN/(kBTV )] . (36)
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We use the same assumptions as above to define b and rewrite in terms of ϕ,

Π =
6kBTϕ

πσ3(1− ϕ/ϕm)
exp

[
−6aϕ/(πσ3kBT )

]
. (37)

It is worth noting that this can be improved further by replacing the repulsive part of this
equation by the Carnahan-Starling equation of state for hard spheres [162]. This does not
have a large influence on the magnitude of the pressure, but justifies our choice of b as an
approximation to the hard-sphere model. The work of Sadus, which shows that the Dieterici
approach leads to more accurate predictions than the Van der Waals approach [162], was
challenged by Cachadina et al. [163]. Sadus showed their comments to be valid, but to have
no significant influence on the predictions [164]. Since we are mostly interested in the order
of magnitude of the (osmotic) pressure, we conclude that this model is good enough for our
purposes.

5.1.3 Osmotic attractive parameter

In order to study the effect of the osmotic pressure on our system, we must find an expression
for the attractive parameter a. We do so by expanding the expressions in terms of the number
density N/V = n = 6ϕ/(πσ3),

Π = kBT
(
n+ n2/nm

)
− an2 +O(n3), (35, expanded)

Π = kBT
(
n+ n2/nm

) (
1− an /(kBT )

)
+O(n3). (37, expanded)

We denote the maximum number density by nm. These equation are equal up to the second
order term. This makes sense, since both expressions are valid in the low-n regime. Also,
the virial expansion is useful in the low density regime, and this is what lets us establish a
value for the parameter a. For completeness, we write the virial expansion up to the second
order term in our variables,

Π = kBT
(
n+B2(µ, T )n

2 +O(n3)
)
. (38)

Now we can express a in terms of ϕm and B2,

a = kBT (1/nm −B2). (39)

We recall the definition of B2,

B2 = −1

2

ˆ
drr2 (exp [−ϕ(r)/(kBT )]− 1) , (40)

= −2πσ3

ˆ
dr∗r∗2 (exp [−ϕ(r∗)/(kBT )]− 1) , (41)

where ϕ(r) denotes the depletion potential between the colloids, and we defined a dimen-
sionless distance r∗ = r/σ. We can use these relations to predict the value of the attractive
parameter a, which we then use to express Π for a larger range of ϕ. We validate this ap-
proach by another work of Sadus [165], in which he showed that determining B2 from the
repulsive and attractive parameters, gives accurate predictions [165].
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V0 B∗ a∗

3 0.169 1.35
4 0.849 3.49
5 2.49 8.63
6 6.51 21.3
7 16.6 52.9
8 42.0 133

Table 3: Dimensionless val-
ues of the second virial co-
efficient B∗ and osmotic at-
traction parameter a∗, calcu-
lated for different well depths
of the depletion potential V0,
expressed in kBT .

We denote the integral on the right-hand side of equation 41
by B∗ = −B2/(2πσ

3), and define the dimensionless osmotic
attraction parameter a∗ = a/(kBTσ

3) = π(1/(6ϕm) +B∗). Ta-
ble 3 shows a few values in the range of attraction strengths
that is typical for our system.

Now we can express the osmotic pressure Π by expres-
sion 37, using the values of a as given in table 3. This expression
can be interpreted as the stress-strain relationship, where we
interpret the volume fraction as a strain. This is because an in-
crease in volume fraction corresponds to a decrease of occupied
volume of that phase, thus corresponding to a compression.
The resistance of a substance to compression is characterized
by the bulk modulus K [166]. It is defined as the ratio of the
infinitesimal pressure increase to the resulting relative decrease
of the volume, in our case

K = ϕ
∂Π

∂ϕ
. (42)

Figure 18: Spinodal line
that follows from equation 44.

However, we will find that the osmotic pressure con-
tributes in terms of the (inverse) osmotic compressibility,

β =
∂Π

∂ϕ
. (43)

In figure 19, Π and β are plotted for the Dieterici equation
of state for a few typical values of V0, the well depth of the
depletion potential. For comparison, the compressibility pre-
dicted by the Van der Waals equation of state is also shown on
the right, using dashed lines. The inset shows the agreement in
the low-ϕ regime. We also observe a large negative compress-
ibility for intermediate values of ϕ and V0 ≥ 5kBT . We observe
that a negative compressibility is unphysical for most ordinary
materials [167]. Since the Van der Waals equation of state was
developed to model for real gases, we consider it to be invalid
in this regime and consider only the Dieterici equation.

Thus, we focus on the results that follow from the Dieterici equation, the full lines in
figure 19. We observe that the osmotic pressure is minimized by a phase separation for a
certain range of ϕ and V0, as can be seen from negative slopes in the top left panel.

This phase separation corresponds to the gelation process of arrested phase separation
in a certain sense. At low interaction strength, V0 = 3, we observe no phase separation,
corresponding to a homogeneous mixture. For intermediate interaction strengths, V0 ≈
4, figure 19 suggests that the osmotic pressure would drive a phase separation. We find
the boundaries of the regions of negative compressibility by calculating the zeros of the
ϕ-derivative of equation 37. We find that

ϕ± =
ϕm

2

(
1±

√
1− 2π

3a∗ϕm

)
=

ϕm

2

(
1±

√
1− 4

1 + 6B∗ϕm

)
. (44)

We can compare these values to the spinodal line in the phase diagram by Harich et al.,
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Figure 19: Top left panel: osmotic pressure for different well depths V0 of the depletion potential,
as indicated by the legend. Lower left panel: compressibility corresponding to these pressures, the
colored areas corresponds to a negative compressibility, and the dashed black line to its minimum
(for any interaction strength). The full lines correspond to the Dieterici equation of state (eq 37).
For comparison, those corresponding to the VdW equation (eq 35) are plotted on the right, and the
inset show correspondence in the low-ϕ regime.

figure 8. Observing that 1 − b2 = 1 + 3B∗, we find a qualitative correspondence between
the spinodals, visually supported by figure 18. At higher interaction strength, the osmotic
pressure favors a separation into a very dense phase, close to the maximum packing fraction,
and a colloid-poor phase. The ‘separating strength’ as predicted by the osmotic pressure
is small, as can be seen from the near-zero value of ∂ϕΠ in the intermediate-ϕ range for
higher values of V0. Again, this corresponds to the experimental observation that this phase
separation is arrested due to crowding effects. We conclude that the osmotic pressure is a
good candidate for explaining the (macroscale) dynamics of a gel. We will discuss its role in
further detail after providing additional information on the space-dependent model.

5.2 Theoretical framework

In this section, we present the theory that is used to describe the behaviour of colloidal
particles in a Newtonian liquid. We work in the quasi-hydrostatic regime, and use the
correspondingly simplified Cauchy momentum equations, see appendix A.2. In order to
describe space inhomogeneities, we let ϕ be a function of time t and space z, where z is
the vertical distance from the bottom of the sample. Note that we make use of a continuum
model, which describes collective behaviour rather than that of a single particle. For example,
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when we speak of the colloid velocity, we refer to the average velocity of the colloidal phase
in a given unit volume. In our model, a unit volume is a horizontal slice of the sample, with
a height that we refer to as grid size.

5.2.1 Mass conservation

Similar to the homogeneous model, we consider a binary mixture consisting of a solid colloidal
phase and a liquid phase. The volume fraction of the solid phase is again ϕ, and volume
conservation implies that we have a liquid volume fraction ϕl = 1− ϕ. The height and time
dependence of these variables are implicit to ease the notation. The respective (constant)
densities of these phases are ρc and ρl, and mass is conserved by the following continuity
equations, ˆ

V

dV ∂t [ρl(1− ϕ)] = −
ˆ
∂V

dA · [ρl(1− ϕ)vl] , (45)
ˆ
V

dV ∂t [ρcϕ] = −
ˆ
∂V

dA · [ρcϕvc] . (46)

Note that these equations hold for any volume V , but we will apply them to horizontal slices
of the sample. Vector quantities are indicated by bold characters, and ‘·’ indicates the inner
product. The velocities of colloid and liquid phase are indicated by vc and vc, respectively.
Note that the densities30 of both phases are assumed to be constant, such that equation 46
can be written as ˆ

V

dV
∂ϕ

∂t
= −
ˆ
∂V

dA · [ϕvc]. (47)

This shows that ϕ only changes in time by flow-mediated flux though the boundaries of the
control volume, and thus it is our goal to integrate this equation in time. That leaves us with
the task of defining the velocity vc, for which we will need to study the local momentum
equations. Taking a closer look at the mass continuity equations provide us with a divergence-
free velocity. We recall the divergence theorem,˛

∂V

dA · f =

ˆ
V

dV ∇ · f , (48)

such that adding equations 45 and 46 results inˆ
V

dV ∂t 1 = −
ˆ
∂V

dA · [ϕvc + (1− ϕ)vl] ,ˆ
V

dV 0 = −
ˆ
V

dV ∇ · [ϕvc + (1− ϕ)vl] . (49)

This suggests the definition of a volume-fraction weighted velocity ω as in equation 50 below.
Equation 49 holds for any volume V , so we can drop the volume integral, which shows ω to
be divergence-free.

ω = ϕvc + (1− ϕ)vl (50)

∇ · ω = 0 (51)
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We note that this simplifies significantly in one spatial dimension, equation 51 implies that
ω is constant (in space). Mass conservation implies the boundary condition31 ω(t, 0) = 0,
since colloids and liquid are not able to permeate the bottom. These conditions combined
imply ω(t, z) = 0, such that

(1− ϕ)(vl − vc) = −ϕvc − (1− ϕ)vc = −vc (52)

The careful reader may observe that equation 52 violates Galilean invariance, since a velocity
difference is equated to a velocity, which can only hold in a specific reference frame. However,
this equation does not need to be Galilean invariant, since the reference frame was fixed by
the boundary condition ω(t, 0) = 0.

5.2.2 Momentum balance

In order to integrate equation 49 in time, we need an expression for the velocity of the
colloidal phase, vc. We express the total density of the mixture as

ρm(ϕ) = ϕρc + (1− ϕ)ρl = ρl + ρbϕ, (53)

where ρb is the buoyant density of the colloidal particles. Using the density as a weighting
factor32, we define the average momentum of the mixture as

u =
ρcϕvc + ρl(1− ϕ)vl

ρm(ϕ)
. (54)

Using the above definitions, we express the momentum balance equation of this system as

d

dt

ˆ
V

dV ρm(ϕ)u =

ˆ
V

dV (ρm(ϕ)g +∇ · σ) , (55)

where g is the gravitational acceleration, and σ the stress tensor. First we consider the
simplified case of a colloid-free system, where ϕ = 0, in equilibrium, where d/dtu ≈ 0 on the
scale we treat the system. In this case, we can neglect the left hand side and we recognise this
as the hydrostatic case, where σ = −pI, with p is the hydrostatic pressure, and I the identity
matrix. We say that gravity introduces an external stress, that is redistributed internally
according to the divergence of σ.

In the quasi-hydrostatic limit, the left-hand side of equation 55 can also be neglected,
which is discussed in further detail in appendix A.2. However, in this regime, the fluid is
not necessarily static, and possible strain must be accounted for in the stress response. This
contribution is defined in terms of the rate-of-strain tensor ε(∇u) = 1/2

(
∇u+ (∇u)T

)
,

with the dynamic viscosity coefficient µ as a prefactor. In appendix A.2, we show that
an incompressible fluid does not have other contributions. The gel network also has an

30The mass densities are constant, not to be confused with a constant volume fraction.
31Recall that ϕ, vc and vl all have an implicit time- and height-dependence.
32It it worth noting that this choice is by no means unique. Other choices of weighting have a different

physical interpretation and have different mathematical expressions. However, outcomes with the same
physical interpretation are independent of this choice.
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explicit contribution to the stress tensor, and we model this as an elastic (non-Newtonian)
contribution, the osmotic pressure. This is a ϕ-dependent term that is zero when ϕ = 0,
leading to the following equation

∇ · σ ≡ −∇p+ 2µ∇ · ε+∇Π(ϕ) = −∇p+ 2µ∇ · ε+ ∂ϕΠ(ϕ)∇ϕ. (56)

We observe that the osmotic pressure does indeed vanish in colloid-free systems. Now we
divide equation 55 into the separate contributions of the different phases. We introduce the
momentum-exchange terms Σij between phases i, j ∈ {l, c}, where l and c refer to the liquid
and colloidal phase, respectively.

d

dt

ˆ
V

dV ρcϕvc =

ˆ
V

dV (ρcϕg +Σcc +Σcl) (57)

d

dt

ˆ
V

dV ρl(1− ϕ)vl =

ˆ
V

dV (ρl(1− ϕ)g +Σll +Σlc) (58)

Since we are working within in the quasi-hydrostatic regime, the left-hand sides of these
equations can be neglected. Newton’s third law states that any momentum that is transferred
from phase i to j must be equal to the momentum that phase j receives from phase i, so
Σcl = −Σlc. Substituting equation 56 into equation 55 and subtracting equations 57 and 58,
we identify

Σll = ∇ · (−pI + 2µε) and Σcc = ∇Π(ϕ). (59)

Now we take a closer look at the momentum exchange between the different phases. In
section 4.1, we studied fluid flow through porous media, where we found a relation between
pressure and fluid flow. We interpret the gradient of this pressure as a force that comes
from microscale dynamical friction between the different phases. Darcy’s law provides a
coarse-grained description of this friction, and we write it in terms of this force,

FD = µ
(1− ϕ)(vl − vc)

k(ϕ)
, (60)

where µ is the viscosity of the liquid phase. As in section 4.1, k(ϕ) is a scalar function that
depends on the microstructure of the porous medium, in this case the colloidal phase. Based
on the discussion in that section, we write

k(ϕ) =
σ2

k0

(1− ϕ/ϕm)
3

ϕ
. (61)

Recall that k0 is a scaling constant, σ is the (mean) particle diameter, and ϕm the maximum
packing fraction of the colloids. We use Darcy’s law to model the dynamical friction contri-
bution of the momentum exchange terms, complemented by a hydrostatic contribution, such
that

Σcl = −ϕ∇p+ FD. (62)

Using this definition, we can remove the hydrostatic contribution from the momentum bal-
ance equations. First, we drop the ε, since we are in the quasi-hydrostatic regime, see
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appendix A.2. Then, we multiply equation 57 by (1− ϕ) and equation 58 by ϕ and subtract
the latter from the former. This leads to

FD = −(1− ϕ) [ϕρbg +∇Π(ϕ)] (63)

and using equation 60, we write

vc − vl =
σ2

k0µϕ

(
1− ϕ

ϕm

)3

[ρbϕg +∇Π(ϕ)] (64)

If we consider the case of a single sedimenting colloid, where ϕ → 0, we wish to recover
Stokes’ law, stating that v = 2ρbσ

2g/(9µ), where v is the (terminal) velocity difference. This
verifies the form of equation 61, and we conclude that k0 = 9/2 in the colloid-free limit. We
conclude the theoretical part of this model by the velocity of the colloidal phase, which we
find by combining equations 52 and 64.

vc =
(ϕ− 1)σ2

k0µϕ

(
1− ϕ

ϕm

)3

[ρbϕg +∇Π(ϕ)] (65)

Combining the above with equation 47 leads to the partial differential equation that we want
to integrate numerically. Before we discuss the computational challenges of this problem, we
compare this to the space homogeneous model.

5.2.3 Comparison to the space homogeneous model

We observe that in the space-dependent model, we treat ϕ as a local variable. In the space
homogeneous model, it can be treated as the average of this local variable. This suggest a
correspondence between these models, and a way of comparing these is through the interface
height, which we will do explicitly in the results section. Another way of comparing these
models is to assume space homogeneity in the current model and compare variables that have
the same physical interpretation. We will do so below, where we write the space dependence
of ϕ explicitly to differentiate between the colloid volume fraction that does and does not
depend on space. The assumption of homogeneity implies that h(t) = ϕ0h0/ϕ(t) again, such
that ḣ(t) = −ϕ0h0ϕ̇(t)/ϕ

2(t), so we have that

ϕ̇(z, t) =

{
0 if z > h(t)

ḣ(t)ϕ2(t)/(ϕ0h0) if z ≤ h(t)
(66)

We substitute this into the left-hand side of equation 47 and integrate over the colloid-rich
region to find

ˆ
V

dV
∂ϕ(z, t)

∂t
= h(t)Aḣ(t)ϕ2(t)/(ϕ0h0)

= Aϕ(t)ḣ(t), (67)
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where A is the horizontal area of the sample. Now we equate this to the right-hand side of
equation 47,

= −
ˆ
∂V

dA · [ϕvc(z, t)]

= Aϕvc(h, t), (68)

where the minus sign is canceled by the opposite directions of A and vc. The only nonzero
contribution to the surface integral is from the interface, since eitherA·vc = 0 or vc(0, t) = 0.
We conclude that under the assumption of space homogeneity, the velocity of the colloids
at the interface is equal to the time derivative of the interface height. The expression for
the time derivative of the interface height in the space homogeneous model is equation 25,
repeated here for convenience,

ḣ(t) = −k(ϕ)ρbgϕ/µ. (25, repeated)

In the space-dependent model, the velocity of the colloids near the interface is expressed by
equation 65. Note that ∇Π(ϕ) = 0 under the assumption that ∇ϕ = 0, such that

vc = −(1− ϕ)k(ϕ)ρbgϕ/µ. (69)

We observe that these results differ by a factor (1−ϕ), which is still surprisingly close, given
the approximations and different approaches. However, the space dependent model is not
solvable analytically, as soon as the distribution of colloids is no longer homogeneous. This
means that we can calculate the first time step analytically, and from there, we must use
numerical methods. Following the idea of Torre et al. [87], this will also serve as a method
to verify the accuracy of our integration scheme by comparing the analytical and numerical
result of the first time step.

5.3 The space-dependent discretization scheme

This introduces vectorial variables, which are typeset in bold, where the size of the vector
corresponds to the amount of boxes, and height indicates which box we are referring to.
Note that height was defined differently in section 4, where it referred to the height of the
interface. Here, we define it to be the distance from the bottom of the sample.

The space-dependent theoretical framework requires an appropriate discretization scheme
in order to produce physically realistic results. The appropriateness of the discretization
scheme can be expressed in terms of a few conditions. The most important of these are
conservativeness, boundedness and transportiveness. Besides these, the accuracy is an im-
portant characteristic, usually given in terms of the Taylor series truncation error of the
approximation (a more detailed discussion can be found in appendix B).

In terms of this study, conservativeness corresponds to volume conservation of the col-
loids33. For this reason, we chose to apply an integration scheme that lies in the class of finite
volume methods (FVMs). This name of this method refers to a discretization in which the

33Note that the total volume is a parameter of our system, such that colloid volume conservation implies
solvent volume conservation.
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space is divided into small volume elements (or cells) that constitute the mesh of elements
on which the equations are solved [168]. This method has been extensively used in several
engineering fields, such as fluid mechanics [169], heat and mass transfer [170] or petroleum
engineering [171], since it can be used on arbitrary geometries, does not require a structured
mesh and leads to robust schemes [172]. Most importantly, numerical fluxes going into a
cell is equal to the flux coming out of its neighboring cell along an adjoining boundary. In
other words, fluxes through a common face of adjacent control volumes are represented in a
consistent manner, which is not in general true for all discretization methods.

The boundedness criterion states that (in the absence of sources34), the internal nodal
values of property ϕ should be bounded by its boundary values. In the current context, this
is understood to be a limitation on the local colloid volume fraction, such that 0 < ϕn <
ϕmax. Realizing that the numerical scheme is a set of algebraic equations, we can express
boundedness in terms of these coefficients. An essential requirement for boundedness is that
all coefficients have the same sign, with the following physical implication. An increase of ϕ at
a given node and time step should result in an increase of ϕ at neighboring nodes at the next
time step [173]. The values of the coefficients are determined by the specific problem and the
choice of discretization scheme. This means that the boundedness condition limits parameters
that define the system, which we will discuss in more detail in appendix C. In the context
of our transient35 problem, the boundedness property is generalized to the requirement of
stability, which means that a solution does not ‘blow up’, i.e. grow unbounded. In this case,
a similar requirement in terms of the coefficients leads to a restriction of the time step size in
terms of the grid size, which we will discuss in further detail in section 5.3.3. This condition is
not sufficient to guarantee stability, and a more sophisticated mathematical approach called
Von Neumann stability analysis is required, discussed in more detail in appendix D.

The transportiveness requirement can be explained as the ability of the discretization
scheme to take the relative influence of nodes into account [174]. Rather than FDMs, where
direction is usually taken into account based on a static assumption based on the space
variable (where ‘up’ may be defined as the positive or forward36 direction), FVMs typically
take the flow direction into account. This will be discussed in further detail in section 5.3.2.

5.3.1 Finite volume methods

To introduce the finite volume method, we use the visual representation that is claimed
to be foundational to its development by the Imperial College group in the 1960s [175],
the tank-and-tube model. This analogy relates computational grid points to tanks that are
continuously stirred, making sure that ϕ is uniform in each tank. The tanks are connected
by tubes that transport the fluid between tanks, representing convective flow, as illustrated
in figure 20. In this analogy, diffusive transport is represented by permeable tank walls.

34Sources correspond to the creation or destruction of colloids, often used take boundary conditions into
account. In our case of non-permeable walls, we do not need sources at all.

35Transient or unsteady is the opposite of steady, which is used to describe a system in equilibrium. It
is important to note that equilibrium does not imply that the system is static, i.e. nothing happens. An
example of a steady system is a solution in a pipe, where the diffusion of a high concentration is balanced by
convection through the pipe, such that the concentration profile is constant.

36See appendix B for more details
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Figure 20: Visual representation of the tank-and-tube model as introduced in 1969 [176].

The mathematical description of the FVM is given below, from which we will see the
similarities with this model. The basis of the FVM is to define a local balance equation in
terms of divergences, which is to be integrated over the cell volume. This volume integral
is converted to a surface integral of fluxes through the cell boundaries using the divergence
theorem. Since the flux through a common boundary of adjacent cells is defined in exactly
the same way, this method is guaranteed to be conservative.

We give the full derivation of this method of an example problem, general one-dimensional
convection, i.e. diffusion-free flow. In section 5.2.2, we will show that the problem of interest
is of this category. In our example, we study the general differential equation that describes
this problem,

dϕ

dt
+

df

dx
= 0, t ≥ 0 (70)

where ϕ represents the state variable of interest and depends on space x and time t. f is
a function of ϕ, and describes the flux of ϕ. Since this is a one-dimensional problem, we
discretize space in the following way. We consider ϕ to be a function of the cell average of
cell i at time point t, defined as the following line integral,

ϕi(t) =
1

xi+ − xi−

ˆ xi+

xi−

ϕ(x, t)dx (71)

where xi+ and xi− denote the upper and lower cell boundaries of cell n. By integrating
equation 70 with respect to time, we discretize the time evolution of ϕ.

ϕ(x, t2) = ϕ(x, t1) +

ˆ t2

t1

df

dx
dt (72)

Now we integrate this expression over cell i to find a relation between cell averages of ϕ at
different times.

ϕi(t2) =
1

xi+ − xi−

ˆ xi+

xi−

(
ϕ(x, t1) +

ˆ t2

t1

df

dx
dt

)
dx

= ϕi(t1) +
1

xi+ − xi−

ˆ xi+

xi−

ˆ t2

t1

df

dx
dt dx (73)



5 THE SPACE-DEPENDENT MODEL 45

Now we assume that f is well-behaved in such a way that we can change the order of
integration, and we define the cell width of cell i as ∆xn = xi+ − xi−.

= ϕi(t1) +
1

∆xi

ˆ t2

t1

ˆ xi+

xi−

df

dx
dx dt

In one dimension, we evaluate f at the integration limits. In higher dimensions, we apply the
divergence theorem,

´
V
∇ · fdV =

¸
∂V

f · dS, also reducing the problem to the boundaries of
the cells.

= ϕi(t1) +
1

∆xi

ˆ t2

t1

f(ϕi+)− f(ϕi−)dt

Finally, since ϕ does not change during a time step37, we assume f to be constant in the time
interval ∆t = t2 − t1. This leads to the following integration scheme:

ϕi(t2) = ϕi(t1) +
∆t

∆xi

(f(ϕi+)− f(ϕi−)) (74)

Note that no approximations we made during this derivation, so the solution will be exact in
the limit of ∆t → ∞, however not for the state variable ϕ, but for its cell averages. We note
the similarity with the tank-and-tube representation (see figure 20), where f in equation 74
represents the convective flow through a tube. This is a common feature for all integration
schemes that belong to the class of FVMs, with some freedom in choosing the flux values at
cell boundaries, and this may in fact greatly affect the performance of the algorithm [173].
In convection-diffusion problems, the choice of integration scheme may affect the ability to
solve the problem at all [177].

5.3.2 Upwind-biased integration schemes

In appendix C, we study the convection-diffusion problem more thoroughly, providing the
theoretical justification of the reasoning in this section. Here, we repeat the governing equa-
tion of this problem,

dϕ

dt
=

d

dx
(ρuϕ)− d

dx

(
Γ
dϕ

dx

)
, (75)

where we note that our current discussion will be mostly limited to the steady case, in which
dϕ
dt

= 0. Most of the reasoning here applies equally well to the transient case, which we will
discuss later on.

37Note that this is a physical assumption when time steps are small enough.
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Figure 21: Density distribution in the vicinity of
two sources located at grid points i− 1 and i+ 1,
for different Péclet numbers.

The most important parameter in this prob-
lem is the Péclet number, which is defined
as follows:

Pe =
convective transport rate

diffusive transport rate
=

ρu

D

In the case of interest, mass transfer, u is the
local flow velocity and D = Γ/L the diffu-
sion coefficient in terms of the characteristic
length L. For our purposes, the character-
istic length is the cell size, which allows us
to tune the Péclet number, being limited
by the increase of computational cost of de-
creasing cell size. The Péclet number is an
interesting parameter because is it related
to the domain of dependence, the ‘source
cells’ that have influence on a given cell.

This concept is illustrated in figure 21. When there is no fluid flow, the only contribution
to the mass transport is diffusion, and the concentration profile consists of concentric rings
around the source. Upon increasing convective flow, the profiles will become more ‘smeared
out’ in the direction of the flow, which illustrates that the influence of the sources decreases
in the ‘upstream’ cells, and increases in ‘downstream’ cells. The ability of an integration
scheme to take this dependence into account is called the transportiveness property.

It is important to note that we have thus far considered the diffusion to have a negligible
effect, such that D ≈ 0, and Pe → ∞. If the convective flow is uniform with velocity u to the
right and D = 0, equation 74 applies, and figure 20 illustrates our problem well. The flux
f(ϕi+) at the boundary between tanks i and i+1 is simply ρuϕi. This is to be compared to the
central difference (CD) scheme, where it is defined as ρu(ϕi + ϕi+1)/2. Looking at figure 21,
and considering points i− 1 and i+1 to be neighboring cells with point i their boundary, we
see that the CD scheme is a good approximation for low Péclet numbers, and is even exact for
Pe = 0, the purely diffusive case. In appendix B, we study how the accuracy of our solution
depends on the choice of integration scheme. We find that the CD scheme has a higher
accuracy than the upwind-biased difference (UD) scheme, but in appendix C.1, we show that
the CD scheme is not bounded for Pe > Pec. These schemes can be combined by determining
a critical value of Pec above which the UD scheme is used, and the CD scheme below38 Pec,
which utilises the favourable properties of both [178]. This idea was further developed to
provide the exact solution to the steady-state convection-diffusion problem [179, 173].

38Note that the Péclet number becomes negative for convective flow to the left in a completely symmetric
way, so this condition actually separates the domains |Pe| > Pec and |Pe| < Pec
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Since our problem is currently diffusion-free, we will
use the UD scheme. We can also increase the accu-
racy of this scheme by incorporating the ϕ values of
next-nearest neighbors. For our currently discussion of
steady problems, this is pretty straightforward. The in-
crease of accuracy is discussed in appendix B. Here we
demonstrate how these schemes define the value of our
state variable ϕ at the cell boundaries, ϕi−, which will in
turn define the flux through that boundary, according
to f(ϕi−) in equation 74. We have already seen that the
upwind scheme corresponds to ϕi− = ϕi−1, and we will
consider the linear upwind difference (LUD) scheme, in
which ϕi− = (−ϕi−2 + 3ϕi−1)/2. An even higher accu-
racy is achieved using the quadratic upstream interpola-
tion for convective kinetics (QUICK) scheme [180], with
the definition ϕi− = (−ϕi−2 + 6ϕi−1 + 3ϕi)/8.
The nomenclature linear and quadratic is illustrated in
figure 22, in which the horizontal distance corresponds
to the distance on the grid, and the height of vertical
lines correspond to the value of ϕ.

Figure 22: Visual representation
of f(ϕi−) for the LUD and QUICK
scheme. The heights of the vertical
lines correspond to ϕ values.

It should be noted that we use a uniform grid, such that cells have equal sizes and
boundaries lie exactly in the middle of grid points. Under these conditions, we see that in
the LUD scheme, ϕi− is the linear interpolation of ϕi−1 and ϕi−2. In the QUICK scheme,
we consider the quadratic profile that passes through the three points ϕi−2, ϕi−1 and ϕi, and
define ϕi− as its height at the cell boundary.

We have now seen that the relation between the Péclet number and the domain of depen-
dence can be used to define schemes that meet the transportiveness requirement, independent
of the type of flow. This cleared the path to more accurate schemes by considering next-
nearest neighbors as well, which have the drawback that they have stability issues under
certain conditions, leading to unbounded results [173]. There are methods to overcome these
issues for steady problems [181], and many other stable schemes with higher accuracy have
been developed without great increase in computational cost [182–186]. We will however not
pursue that here, since we are interested in the unsteady problem, which comes with new
stability criteria.

5.3.3 The convection-dominated unsteady flow equation

As in the previous section, we attempt to illustrate the reasoning that underlies our choice
of integration scheme, with a theoretical justification provided in appendix D. We start our
discussion with equation 75 again, but now we do not assume dϕ

dt
= 0. Instead, we first

consider the diffusion-free case, i.e. Γ = 0, and later on introduce a diffusive term.
Discretizing equation 75 presents us with more options if we do not consider the time

derivative of ϕ to be zero. Similar to the space discretization, we can define this derivative
in terms of surrounding nodes, with a weighting depending on the problem. Adding time as
a dimension, we could follow a similar procedure, but we only consider explicit, i.e. time-
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forward39, schemes. The simplest and most natural way to discretize a time step is first-order
time-forward. This corresponds to the discretization of a steady problem, where one iteration
is replaced by a time step of duration δt. In general, we discretize ϕ(x, t) in space and time
at cell i and time step n in the following way,

ϕn
i =

1

δx

ˆ xi+

xi−

ϕ(x, tn) dx. (76)

The most important parameter in the current discussion is the Courant-Friedrichs-Lewy
(CFL) number σ = a δt/δx, where a is the convective velocity. In our case, (mass transport,
equation 75,) we have that a = ρu. Note that δt and δx refer to computational step sizes.
The CFL number is restrained to be smaller40 than one for most schemes, known as the CFL
condition. This condition stems from the Von Neumann analysis of explicit41 schemes. This
analysis is based on a Fourier analysis of the spatial error terms of the numerical solution,
providing a thorough method for the analysis of accuracy of numerical schemes. A further
explanation and application to several schemes is provided in appendix D.

Even though the Von Neumann analysis is quite mathematical, the CFL condition has
a very clear physical interpretation. The real system has a convective velocity a, and thus
propagates a distance a · δt during each time step. With this in mind, we define the ‘domain
of influence’ as the inverse of the domain of dependence introduced before. This means that
the domain of influence of a grid point P is the region containing all grid points that have
P in their domain of dependence. The visual representation of this region for a diffusion-
free equation is indicated by the light blue area in figure 23. The discretized solution also
has a natural velocity that is described well by a domain of influence. This domain is the
collection of grid points that are (directly or indirectly) related by the discretized equation.
As an example, we consider the scheme that is spatially first order upwind biased, first order
time-forward (FOU), which is given by42

ϕn+1
i = ϕn

i − a
δt

δx

(
ϕn
i − ϕn

i−1

)
. (77)

The domain of influence of this scheme is indicated in red in figure 23.
We see that the CFL condition can be written as a requirement on the mesh ratio δt/δx.

This ratio must be chosen such that the domain of influence of the differential equation is
contained in that of the discretized equation. This means that the FOU scheme is stable if we
choose large enough δx and small enough δt. However, choosing a larger δx results in a larger
diffusive error, which is not desirable. Choosing δt smaller results in a longer computation
time by the increased number of required iterations. Also, the error grows due to the increased
number of iterations. Due to these limitations, first order schemes may give unwanted results,
and are even claimed to be useless for convection-dominated problems [187, p. 311]. We note

39Explicit or time-forward means that all nodes in the future have a weighting of zero.
40Like the Péclet number, the CFL number can also become negative in a completely symmetric way. Note

that upwind-biased schemes require that a > 0 and thus σ > 0 for stability.
41Note that the less natural alternative, an implicit scheme, is often much more stable. This allows larger

time steps, but each step is computationally much more expensive. For a system of N nodes, a matrix of
dimension N2 must be inverted for every step.

42Note that this corresponds to equation 74 with f(ϕn−) = aϕn−1 and f(ϕn+) = aϕn.
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Figure 23: Illustration of the domain of influence of equation 75 with ρu = a, indicated by the
blue area. The numerical domain of influence of the FOU scheme is indicated by the red area. The
CFL condition is met when the blue domain is contained within the red domain.

that this is not in agreement with the error analysis of steady problems, since the type of error
we discuss here can be termed ‘overdamping’. For steady problems, this desirably suppresses
numerical errors and transients, but in the unsteady case, it creates a numerical diffusion. A
solution to this problem lies in higher-order schemes, that typically have a larger ‘accuracy
region’ in terms of δx. A more detailed discussion is given in appendix E.1.

5.3.4 The second-order upwind scheme

Following the discussion above, we present a scheme that has a higher order of accuracy. We
have already seen the FOU scheme that is second order accurate in space and upwind-biased,
but only first order accurate in time. Due to its historical significance in the field of CFD, we
follow the work of Lax and Wendroff [188]. In 1960, they introduced the first scheme with
two time levels that is second order accurate in space and time. The derivation is based on
a Taylor expansion in time up to second order, so we start with

ϕn+1
i = ϕn

i + δt (ϕt)
n
i + (δt)2/2 (ϕtt)

n
i +O(δt3), (78)

where the subscript t indicates a time derivative. The second order accuracy in time comes
from the third term on the right hand side. We replace the time derivatives by equivalent spa-
tial derivatives using the differential equation ϕt = −aϕx, and for the double time derivative
we observe that

ϕtt = (−aϕx)t = −a(ϕt)x = a2ϕxx. (79)

Using these substitutions, equation 78 is written in terms of spatial derivatives,

ϕn+1
i = ϕn

i − aδt (ϕx)
n
i + (aδt)2/2 (ϕxx)

n
i +O(δt3). (80)
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The Lax-Wendroff scheme follows by the substitution of the second-order accurate central
definitions of (ϕx)

n
i = (ϕn

i+1 − ϕn
i−1)/(2δx) and (ϕxx)

n
i = (ϕn

i+1 − 2ϕn
i + ϕn

i−1)/(δx)
2. We are

interested in an upwind-biased scheme, however, and thus use the upwind-biased, second-
order accurate definitions

(ϕx)
n
i = (3ϕn

i − 4ϕn
i−1 + ϕn

i−2)/(2δx), (81)

(ϕxx)
n
i = (ϕn

i − 2ϕn
i−1 + ϕn

i−2)/δx
2. (82)

We recall that σ = aδt/δx, leading the the following scheme,

ϕn+1
i = ϕn

i − σ/2
(
3ϕn

i − 4ϕn
i−1 + ϕn

i−2

)
+ σ2/2

(
ϕn
i − 2ϕn

i−1 + ϕn
i−2

)
. (83)

This scheme is time-forward, upwind biased, and second order accurate in space and time. It
is commonly referred to as the second-order upwind biased (SOU) scheme, and was introduced
by Warming and Beam in 1976 [189]. Comparing this to the FOU scheme, we conclude that
the higher order temporal accuracy is achieved by an additional term that resembles diffusion.
Note that the space indices are off when comparing this term to actual diffusion, proportional
to the central definition of (ϕxx)

n
i . Besides the higher order of accuracy, the SOU scheme also

has a larger region of stability, expressed by the slightly more lenient CFL condition σ < 2.
The stability analysis that underlies this claim can be found in appendix E. In terms of a
FVM scheme, we define the volume fraction at the lower boundary as

ϕn
i− = σ/2

(
3ϕn

i−1 − ϕn
i−2

)
− σ2/2

(
ϕn
i−1 − ϕn

i−2

)
. (84)

From the above equation, we clearly see the correspondence with the LUD scheme, with an
additional term that ensures second order accuracy in time.

5.3.5 Introducing diffusive terms in upwind biased schemes

In the FOU scheme, equation 77, we can easily implement a diffusive term. Naturally, these
depend on (ϕxx)

n
i , such that we can generally express a diffusive term as

Γ(ϕn
i+1 − 2ϕn

i + ϕn
i−1)δt

2/δx2, (85)

where Γ is some parameter that describes the magnitude of the diffusion. From the analysis in
appendix E, it follows that this term does not influence the accuracy of the scheme. However,
for the SOU scheme, this is not the case. The alternative definition of (ϕxx)

n
i as in equation 82

does not provide a solution, as the prefactor is fixed, while we need a free parameter. We
choose to model the diffusive term as

Γ(ϕn
i+1 − 3ϕn

i + 3ϕn
i−1 − ϕn

i−2)δt
2/δx2, (86)

corresponding to (ϕx)
n
i− = ϕn

i − 2ϕn
i−1 + ϕn

i−2 in terms of a FVM scheme. In our system, the
term that corresponds to actual diffusion is due to the osmotic pressure, such that Γ ∝ ∂ϕΠ.
In appendix E, we provide a more detailed discussion of implementing diffusive terms without
affecting the accuracy of the scheme. We also show that the choice of implementation,
together with the magnitude of the diffusion influences the stability of the scheme. It will
turn out that stability requires the CFL number σ to be bounded by a parameter that
depends on the Péclet number.
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5.3.6 Implementation

We have discussed the theory of both the physics and the computation at length, but there
is still a gap to bridge. Most of our discussion on the computational part concerned linear
schemes, but the velocity of the colloidal phase, equation 65, is clearly not. We overcome
this difficulty in the following way. Each time step consist of two steps, of which the first is
the computation of the colloidal velocity vc. We consider this velocity to be constant during
each time step, and we observe that it is defined at the centers of the cells. We define the
velocity of the colloids at the boundary of neighboring cells in the following way. We regard
the cells as tubes through which the colloids move with a velocity given by vc. The weighted
velocity is then given by (ϕ1vc(ϕ1) + ϕ2vc(ϕ2))/(ϕ1 + ϕ2). Using this velocity, we apply our
discretization techniques to equation 47 in order to numerically integrate the colloidal volume
fraction in time. Since this equation is linear in ϕ, we can use the integration schemes that
we have discussed in this section. It is important to observe that σ is now space-dependent
and defined as vcδt/δx.

In order to keep track of the interface height, we define a threshold volume fraction below
which we consider a cell to contain no gel network. After each time step, we compare ϕ in
the cells below the interface to this threshold and update the interface height accordingly.

5.4 Results

In this section, we present the results of the numerical computations that we performed, using
the different models as discussed in the previous sections. Before we discuss these results, we
take a closer look at the role of the osmotic pressure in our model.

5.4.1 Osmotic pressure

When we limit the spatial dependence to one dimension, our model is described by equa-
tion 65, repeated here for convenience.

vc =
(ϕ− 1)σ2

k0µϕ

(
1− ϕ

ϕm

)3

[ρbϕg +∇Π(ϕ)] (65, repeated)

From this equation, it is readily observed that we have two contributions that determine the
dynamics of our system, the first of which is an external gravitational stress. This stress is
partially internally redistributed by osmotic pressure and the remainder causes relative flow
of the suspending liquid. We are interested in the magnitude of the osmotic stress, compared
to the gravitational stress.

The first term in the square brackets of equation 64 is of the order of 104 kgm−2s−2. The
second term is equal to ∂ϕΠ∇ϕ, where ∇ϕ is of the order of one. From figure 19, we observe
that the magnitude of the osmotic energy density ∂ϕΠ is of the order of kBT/σ

3. In our
system, we have that T ≈ 300K and σ ≈ 10−6, such that kBT/σ

3 ≈ 4 × 10−3 kgm−2s−2.
Since the stress contribution of the osmotic pressure is seven orders of magnitude smaller
than that of the gravitational stress, we expect this to have a negligible role in the dynamics
of a gel.

It is worth noting that the osmotic energy density diverges near ϕm, which would ensure
that ϕ(z, t) < ϕm. We will observe peaks of local colloid volume fraction in that range, so
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the osmotic pressure may play a role in explaining the dynamics in that range. Also, there is
experimental evidence for dense clusters, so these peaks are physical results. However, these
clusters are reported to have a colloid volume fraction of ∼ 1.1ϕ0 [27, 18], much lower than
ϕm.

We conclude that the osmotic pressure is expected to have a negligible effect on the
dynamics of a real gel, of which ϕ is bounded well below ϕm. Te verify this claim, we
numerically integrated equation 47 for a few initial conditions in the range ϕ0 ∈ [0.1, 0.5].
We expressed vc by equation 65 and used the FOU scheme, in which diffusive terms are
easily implemented, with and without an osmotic contribution to the stress. The divergence
of the osmotic energy density was modeled as ∂ϕΠ(ϕ) = 108 for ϕ − ϕm < 10−15, since
∂ϕΠ(ϕm < 10−15) ≈ 108, with V0 = 6. We integrated over 5× 106 time steps, approximately
14 real hours, and saved the volume fraction profile ϕ(z)t each 105 time steps.

Visually, no differences were detectable in the local volume fraction, when plotted against
height at different time steps. Comparing the numerical values of a few macroscopic variables
that we calculate from ϕ(z)t, we found that the differences are indeed negligible. We denote
the average volume fraction by ϕav and use superscripts in and ex to denote including and
excluding osmotic effects, respectively. Note that we expect ϕin,ex

av ≈ ϕ0, since otherwise the
scheme is not conservative. We find that (ϕin,ex

av − ϕ0)/ϕ0 < 10−8, as expected. Then we
compare the maximum local volume fraction, ϕmax, which we expect to be bounded by ϕm.
We find that |ϕin

max − ϕex
max|/ϕm < 10−4, and observe that these deviations are damped. We

conclude that the osmotic pressure has a very small effect on the dynamics of our model of
gel collapse, and expect that the influence on the dynamics of a real gel is negligible.

During our observations, we found that ϕin,ex
max exceeds ϕm, up to about 20%. Our model

does not provide a physical explanation for the peaks exceeding ϕm. We conclude that either
the integration scheme is not bounded, or the theoretical model is missing an element. We
will come back to this point in section 6.

5.4.2 Volume fraction profiles

In our study of the collapse of colloidal gels, we choose to use typical values as given in table 4.
Our numerical units are chosen such that the parameters that appear in our computations
have values close to one. Our numerical units are M = 10−6 kg, L = 10−3 m, and T = 102s.
In order to study the time evolution of a collapsing gel, we plot the volume fraction profile of

ρb g σ µ k0 vs

103 kg/m3 10m/s2 10−6m 10−3 Pa s 1 10−5m/s

Table 4: Typical values of parameters for a colloidal gel. The simulation units were chosen such
that the resulting settling velocity vs in those units is one.

the colloidal phase at a number of time steps. Doing so, we see the following typical behaviour.
Initially, the colloidal phase is homogeneous throughout the sample, and detaches from the
top of the sample under gravitational stress. The bulk of the gel settles freely, such that
an observer at rest with respect to this part of the gel would not observe anything except
for a constant fluid flow through the pores. At the bottom, this freely settling part forms a
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(a) (b)

Figure 24: The volume fraction profile ϕ(z, t) plotted against height z at different times, as
indicated in the legend. This figure shows a setup with initial homogeneous volume fraction ϕ0 = 0.3.
Note that the peaks at the top of the gel can exceed the maximum volume fraction ϕm (not shown
here). a) Using the FOU scheme, there are no visible peaks at the top of the freely settling bulk.
Once this phase has completely collapsed into the compacting regime, large peaks appear near
the gel-supernatant interface. b) Using the SOU scheme, we observe a peak at the top of the
freely settling bulk. Once this phase has completely collapsed into the compacting regime, the
peaks appear smaller than those produced by the FOU scheme. However, the inset shows that this
scheme also produces unrealistic peaks, i.e. ϕ > ϕm.

region of higher volume fraction. The compacting region at the bottom grows as the packing
fraction grows closer to its maximum value ϕm, and the top of the gel moves down with
the velocity of the freely settling bulk. The freely settling bulk thus becomes smaller and
eventually disappears. This process can be thought of as a building that collapses after the
walls suddenly lose their ability to support the structure. After this relatively fast collapse,
the system now consists of a dense, compacting gel and a supernatant region. This process
is illustrated in figure 24, for two different integration schemes. In both cases, the initial
configuration of ϕ0 = 0.3 is indicated by a very light horizontal line, since the colloids are
initially distributed homogeneously. At increasing times, i.e. darker lines, we see that the
freely settling part of constant ϕ collapses into a dense, compacting phase.

In the following discussion, we will use the shorthand ‘interface’ to refer to the interface of
the colloid-rich and colloid-poor phase. At that point, the most interesting behaviour seems to
happen, the forming of a dense layer. Using the FOU scheme, this is mostly suppressed until
the freely settling part has collapsed into the compacting region. When the initial volume
fraction ϕ0 is high enough, that is ϕ0/ϕm ≈ 0.5, peaks can be observed instanteneously. Using
the SOU scheme, we observe peaks at the interface instantaneously, when ϕ0/ϕm ≳ 0.3.

5.4.3 Volume fraction peaks

At this point, it is not clear whether the peaks in volume fraction are numerical defects or
physical effects. In appendix D.2, we saw that the using the FOU scheme tends to numerically
diffuse results. If the peaks show up naturally when using this scheme, this would support
the claim that these peaks are not defects. We study the origin of these peaks by zooming in
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and using a much finer grid, corresponding to 10−7 m, and reduce the time step size to 10−3 s
in order to meet the CFL requirement. We also keep track of the fluxes across the boundaries
of adjoining cells in order to find out how these peaks grow. We define the colloidal flux J c

as

J c(ϕ) = ϕvc |=
−(1− ϕ)σ2

k0µ

(
1− ϕ

ϕm

)3

ρbϕg, (87)

where we used |= to indicate that equality only holds when gradients are negligible. This
is because the values of ϕ and vc at boundaries of the boxes are computed according to a
numerical scheme. When gradients are negligible, all numerical schemes should reduce to the
equation above (and they do).

This also allows us to qualitatively discuss the origin of the peaks at the interface. Assum-
ing that approximation 87 holds, we can plot the local flux as a function of ϕ, see figure 25.
We have given the local (volume) flux in terms of the bare gravitational velocity

vb =
σ2ρbg

k0µ
, (88)

corresponding to the velocity of colloids in a suspending medium where ϕ ≈ 0. Note that a
volume flux has units of velocity, thus we can express it in terms of the bare gravitational
velocity vb.

Figure 25: Plot of Jc, ex-
pressed in terms of vb.

In order to explain the origin of the volume fraction peaks,
we consider an example. We start with a homogeneous mixture
with a colloidal volume fraction ϕ0 = 0.4. As gravity starts to
empty the top cell, its volume fraction decreases, and the flux
across its boundary starts to increase. In the cell below, the
flux coming in thus exceeds the flux going out, increasing the
local volume fraction. This increase reduces the outgoing flux,
and thus a peak grows until the fluxes are balanced again. This
implies that the top cell is emptied out far enough, correspond-
ing to the left side of the peak in figure 25. Based on this,
we would expect peaks to occur when ϕ0 ≳ ϕm/3. We recall
that the SOU scheme produces visible peaks near the interface when ϕ0 is larger than ap-
proximately 0.15ϕm. The FOU scheme damps these peaks for lower volume fractions, but
they show when ϕ0 ≳ ϕm/2. We conclude that the origin of these peaks lies in the theo-
retical framework, and that these are highlighted or suppressed, depending on the choice of
numerical scheme.

In our computations, we keep track of the actual flux, which depends on the numerical
scheme that is used. We normalise this by the ‘bare gravitational flux’ Jg = J c(ϕ0). This is
the amount of colloids that moves across the boundaries of the boxes if the colloids occupy
a volume fraction ϕ0. Thus we expect that the actual flux of colloids J c = ϕvc is close to Jg

initially, and eventually decreases as the volume fraction decreases. Depending on ϕ0, there
may be an initial increase in J c. In figure 26, we see the first few time steps of the numerical
integration, plotted at time intervals of 60 ms.
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(a) (b)

Figure 26: Initial collapse behaviour, where darker colors correspond to later times, at intervals
of 60 ms. The colloidal volume fraction is shown in green, and is defined at the centers of cells. The
normalised flux is shown in blue, and is defined at the boundaries of the cells, hence the offset. a)
The FOU scheme does (eventually) produce a peak at the interface, evidenced by the slight bump
in the four darkest green lines. b) The SOU scheme shows a much more pronounced peak, and is
also clearly visible in terms of the normalised flux.

5.4.4 Time evolution of the interface

From the volume fraction profiles, we can determine the height of the interface at each time
step. That way, we can compare the results of this model to the space-homogeneous model.
Also, we compare the time evolution of the interface height to experimental results, such as
the work of Harich et al. [17]. In order to determine the height of the interface, we can choose
to define it as the lowest grid point where ϕ is lower than some cutoff value c. We define
ϕcut = cϕ0, with some constant c ∈ [0, 0.5]. This range of c is justified by the steep decline
of ϕ at the interface, as can be seen in figure 24. Here, we let c = 0, k0 = 1 and ϕm = 0.7,
and keep track of the interface height for different initial volume fractions ϕ0. The resulting
data is plotted in figure 27 as full lines. For comparison, we have repeated the results from
the space homogeneous model with the same parameters as dotted lines with corresponding
colors. In the left panel, we observe a qualitative correspondence of the different models.
However, there is a sharper transition between the fast collapse and sedimenting regime in
the space-dependent model. It is important to obbserve that this transition is still smooth.

Also, the progression of the interface in the space-dependent model is linear in time, with
a slope equal to vc. Taking a closer look at the initial behaviour, shown in the panel on the
right, we observe a delay time of ∼ 5 minutes, which increases with ϕ0. Another important
observation is that the interface height may drop below the theoretical minimum hm, which
can be explained by the peaks in volume fraction. These peaks allow an unphysically large
amount of colloids to reside in the bottom of the sample, thus occupying less space than
physically possible. Since the width of these peaks seems to be constant, they have a larger
relative influence when the total amount is smaller (corresponding to a lower ϕ0).
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Figure 27: Comparison of the time evolution of the interface height for the space-dependent (full
lines) and -independent (dotted lines) model. We have matched parameters such that equal colors,
corresponding to given initial volume fractions as indicated by the legend, describe the same system.
The interface height decreases linearly until it corresponds to the height of the dense debris at the
bottom of the sample. Especially for small ϕ0, this transition is sudden, but the inset shows that it
is smooth. For small enough ϕ0, the interface height may drop below the theoretical minimum hm.
On the right, we show a selection of these volume fractions in the region indicated by the black box
on the top left. We see a small delay time before the top of the gel detaches from the top of the
sample for the space-dependent model.

5.4.5 Delay times

In order to explain the nature of this delay time, we observe how it depends on the parameters
of our system. We define the delay time td as the amount of time required for the volume
fraction of the top cell to fall below 0.2ϕ0. We have observed the delay time to depend on the
initial volume fraction, and we expect that the grid size should also play a role. The right
panel of figure 28 clearly shows that the delay time is simply a result of the discretization of
the problem.

Figure 28: The delay time td as a function of initial volume fraction ϕ0 and grid size δx. The dots
correspond to data points, the lines serve to guide the eye.
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6 Discussion

We have reproduced the space-homogeneous model from the existing literature. We found
that it captures one of the three collapse behaviours (slow sedimentation) that are found
in experiments. We also see that different definitions of the permeability led to the same
qualitative behaviour, but some choices limit the range of applicability of the model. At the
coarse-grained level of this model, we are not concerned about this.

We improved upon this coarse-grainedness by treating the colloidal volume fraction as a
height-dependent field. This model captures captures another collapse behaviour, the fast
collapse that is followed by a slow compactification. This is characterized by low initial volume
fractions, and a sharp transition from a linear decay of interface height to exponential. This
corresponds to the experimental results from [17, 27], amongst others.

This model also lead to numerical challenges that are typically found in problems with
large gradients (i.e. the gel interface). This leads to peaks in the volume fraction profile that
are higher than its maximum, which we expect to be due to the discontinuity of the colloidal
velocity. This problem is encountered more often in problems where fluid and structure are
coupled, and another numerical scheme could provide a solution [73–75, 190].

However, it is important to note the following. In our study of numerical schemes, we
found that the FOU scheme causes (severe) artificial diffusion in time-dependent problems
such as this one. In that case, we should not expect these peaks, but they do still arise. Also,
refining the grid does not smooth out these peaks. This suggests that the origin of these
peaks lie in the theoretical framework rather than the numerical scheme.

Another important result of this work is the exclusion of the osmotic pressure as a possible
candidate to cause the delay time. It was also proposed that this pressure drives the rapid
collapse after the delay [21]. However, it is a few orders of magnitude too small to play a
significant role.

Similar to the osmotic pressure, other forces are easily implemented, once the effective
contribution is determined. A successful example of this shows that a visco-elastic force
causes delay times (much) larger than the grid artifacts [87].
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7 Summary and outlook

In this thesis project, we have studied a space-homogeneous model that is able to capture the
time evolution of the interface of gels. Since this model is very coarse-grained, it was possible
to solve it analytically. The outcome of this model is a stretched exponential decay of interface
height as a function of time. This was confirmed by others to agree with experimental data
for the range of initial conditions that corresponds to strong gels.

The space-dependent model we studied is more complex and we found no analytical
solution. Solving this convection-dominated model came with more computational challenges.
Most of these challenges have been dealt with, and only minor numerical artifacts remained.
This led to results that are in agreement with experimental data for a wider range of initial
conditions.

These numerical artifacts are the volume fraction peaks near the interface. A different
numerical scheme, the WENO-JS scheme, performs well for convection-dominated problems,
and specifically near interfaces [190]. This adjustment of the model could improve the corre-
spondence to experimentally observed volume fraction profiles.

Another feature of this model was illustrated by the discussion of the influence of the
osmotic pressure. Once the effective contribution of a given microscopic force has been
determined, it is immediately obvious whether it plays a significant role or not.

One obvious way to further improve upon this model is to incorporate the horizontal
spatial dependence of the volume fraction. This would allow us to account for (vertical)
pores and dense debris falling through the network. Also, we can include shear forces, which
are quite likely to be larger than those associated with uniform compression. This is because
compression is distributed through the (bulk) network, but shear forces could affect a single
strand. Another advantage of this model is the ability to initialize the system with a much
wider range of initial configurations.



A THE CAUCHY MOMENTUM EQUATION OF FLUID MOTION 59

A The Cauchy momentum equation of fluid motion

In this appendix, we derive the simplified momentum balance equations that follow from
the full Navier-Stokes equation, the convective form of the Cauchy momentum equation for
incompressible fluids. The momentum equation reads [191]

Du

Dt
=

1

ρ
∇ · σ + f , (A.1)

where ρ is the density of the fluid, σ the stress tensor and f an external stress, in our case
this will be the gravitational stress g. On the left-hand side, we have defined a material
derivative

Du

Dt
≡ ∂tu+ u ·∇u ≃ ∂tu+ ∂tx ·∇u =

du(x, t)

dt
. (A.2)

We see that the material derivative is related to the total time derivative of u, and is equal
when the path x(t) is chosen such that ẋ = u. Being a bit more precise here will turn out
to be useful, and we make this statement more rigorous in the following way. We start with
the Reynolds transport theorem for a (compressible) fluid element [192],

d

dt

ˆ
Ω(t)

f dV =

ˆ
Ω(t)

∂f

∂t
dV +

ˆ
∂Ω(t)

(vb · n)f dA, (A.3)

where Ω denotes the volume of the fluid element. It is an important observation that this
volume is time-dependent, since if it were not, the second term on the right would vanish.
This becomes clear from the definition of vb, the velocity of the boundary, with n its outward-
pointing normal vector. If Ω is time-independent, then obviously vb · n = 0. We also note
that the Reynolds transport theorem holds for any scalar-, vector- or tensor valued function
f [193]. Letting Ω(t) be the volume of a fluid element, the boundaries obey vb · n = u · n,
with u the velocity of the fluid element [194]. Using the identity (b · n)a = (a ⊗ b) · n,
absorbing n into dA and applying the divergence theorem leads to

d

dt

ˆ
Ω(t)

f dV =

ˆ
Ω(t)

∂f

∂t
+∇ · [f ⊗ u] dV. (A.4)

Finally, we observe that ∇ · [a⊗ b] = (a ·∇) b+ (∇ · a) b. This implies that the total time
derivative is equal to the material derivative exactly when the fluid element is incompressible.
Now we turn our attention to the right-hand side of equation A.1, and assume our fluid to
be Newtonian. In this case, the stress tensor σ can be expressed as the sum of a viscosity
term τ , the deviatoric stress, and an isotropic pressure term −pI, the volumetric stress. For
a Newtonian fluid, the viscous stress tensor depends linearly on the the rate-of-strain tensor
ε(∇u) = 1/2

(
∇u+ (∇u)T

)
[195]. Note that ∇u is the deformation rate as introduced in

section 3.1. The most general form of the viscous stress tensor τ for a homogeneous and
isotropic Newtonian fluid is [196]

τN = λ(∇ · u)I + 2µε, (A.5)
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where µ is the dynamic viscosity coefficient, related to the shear viscosity of the fluid. λ
is the second viscosity coefficient, or volume viscosity, related to the dilatational viscosity
ζ [86]. This relation is found in the following way. We use that tr(ε) = ∇ ·u to separate τN

into an isotropic and deviatoric part. The total Newtonian contribution to the stress is now
defined as

σN = −pI + (λ+ 2/3µ)(∇ · u)I + 2µ (ε− 1/3(∇ · u)I) . (A.6)

From this equation, we observe that isotropic dilatations of a volume element produce a
viscous stress. We conclude that the dilatational viscosity coefficient ζ is in this case equal to
λ+2/3µ. For incompressible fluids, the second terms in equation A.6 is zero, since ∇ ·u = 0.
Also for compressible fluids, this term seems to be negligible. Stokes suggested [197] that
ζ = 0, now known as Stokes’ hypothesis, and has become common practice in the study of
compressible fluids [195]. However, in our case, it is worth taking a closer look at the meaning
of this term. We see that ζ∇ ·u can be interpreted as the difference between the hydrostatic
pressure p and the normal stresses on a fluid element. This difference is usually referred to
as the mechanical pressure, and is considered to be due to the time lag of thermodynamic
equilibrium in a motion that implies isotropic dilatation of that element [195]. Torre et
al. [87] show that this pressure, or dilatational viscosity, turns out to play a very important
role in explaining the delay time of a gel’s collapse. However, this type of viscosity is zero
for incompressible fluids, and thus has a different origin. The dilatational viscosity is due to
the presence of the colloidal phase in this case. Following the reasoning of Torre et al., we
define the total stress tensor as

σ = −pI + µε+ σc, (A.7)

where σc is the network contribution to the stress. They define this tensor as

σc = λ(ϕ) (∇ · vc) I, (A.8)

where λ denotes the bulk viscosity, and vc the velocity of the colloidal phase. This term closely
resembles43 the previous definition of the bulk viscosity and can thus also be considered as a
source of mechanical pressure. We note that this definition of σ ensures Galilean invariance,
since it only depends on spatial derivatives of the flow velocity. We combine the equations A.1,
A.2 and A.7 to reproduce the Navier-Stokes equation of an incompressible fluid [198, 86], with
a network stress contribution σc in a gravitational field g. Note that this equation holds for
a single, incompressible phase.

∂tu+ u ·∇u =
1

ρ
∇ · (−pI + σc + 2µε) + g (A.9)

A.1 The general form of the momentum equation

In section 5, we expressed equation A.9 in terms of the mixture and the separate compo-
nents. Then we ignored the inertial terms (the left-hand sides) to arrive at the relations in

43Observe that this term depends on the velocity of the colloidal phase rather than the velocity of the fluid
phase.
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equation 59. Here, we provide the details on the same computation if we cannot a priori
assume that we are in the quasi-hydrostatic regime. We repeat equations 55, 57 and 58 here,

d

dt

ˆ
V

dV ρm(ϕ)u =

ˆ
V

dV (ρm(ϕ)g +∇ · σ) , (55, repeated)

d

dt

ˆ
V

dV ρcϕvc =

ˆ
V

dV (ρcϕg +Σcc +Σcl) , (57, repeated)

d

dt

ˆ
V

dV ρl(1− ϕ)vl =

ˆ
V

dV (ρl(1− ϕ)g +Σll +Σlc) . (58, repeated)

We recall the definitions of the volume-fraction-weighted density ρm = ϕρc + (1 − ϕ)ρl and
density-weighted mixture velocity u = (ϕρcvc + (1− ϕ)ρlvl) /ρm(ϕ). First, we focus on the
left-hand sides of the above equations. From the preceding section, we know that we must
be careful with time derivates of integrals. As in section 5, we consider the following

d

dt

ˆ
V

dV ρcϕvc +
d

dt

ˆ
V

dV ρl(1− ϕ)vl −
d

dt

ˆ
V

dV ρm(ϕ)u. (A.10)

We apply the Reynolds transport theorem in the form of equation A.4,
ˆ
V

dV
∂ (ρcϕvc)

∂t
+

∂ (ρl(1− ϕ)vl)

∂t
− ∂ (ρmu)

∂t
+∇ · [ρcϕvc ⊗ vc + ρl(1− ϕ)vl ⊗ vl − ρmu⊗ u] ,

(A.11)

where all terms belong to the same integral. The time derivatives cancel, and there is a
correspondence between the terms in the square brackets. We multiply the first two of these
terms by 1 = (ϕρc + (1− ϕ)ρl)/ρm and expand u,

∇ · [ρc (ϕρc + (1− ϕ)ρl) /ρmϕvc ⊗ vc] +∇ · [ρl (ϕρc + (1− ϕ)ρl) /ρm(1− ϕ)vl ⊗ vl]−
∇ · [(ρcϕvc + ρl(1− ϕ)vl) ⊗ (ρcϕvc + ρl(1− ϕ)vl) /ρm] . (A.12)

We observe that the outer product is linear, which allows us to separate the above in the
following way,

∇ ·
[(
ϕ2ρ2c + ϕ(1− ϕ)ρcρl

)
/ρmvc ⊗ vc

]
+∇ ·

[(
ϕ(1− ϕ)ρcρl + (1− ϕ)2ρ2l

)
/ρmvl ⊗ vl

]
−

∇ ·
[
ρ2cϕ

2/ρmvc ⊗ vc

]
−∇ · [ρcρlϕ(1− ϕ)/ρmvc ⊗ vl]−

∇ · [ρcρlϕ(1− ϕ)/ρmvl ⊗ vc]−∇ ·
[
ρ2l (1− ϕ)2/ρmvl ⊗ vl

]
. (A.13)

This leads us to the following rather symmetrical expression

∇ · [ρcρlϕ(1− ϕ)/ρmvc ⊗ vc]−∇ · [ρcρlϕ(1− ϕ)/ρmvc ⊗ vl]−
∇ · [ρcρlϕ(1− ϕ)/ρmvl ⊗ vc] +∇ · [ρcρlϕ(1− ϕ)/ρmvl ⊗ vl] . (A.14)

We exploit this symmetry by introducing the velocity difference δv = vc − vl. We conclude
that equation A.10 can be expressed as

∇ · [ρcρl ϕ(1− ϕ)/ρmδv ⊗ δv] (A.15)
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On the right-hand side of the equations, nothing has changed and we refer to section 5 for a
more detailed derivation. Here, we state that

∇ · [−pI + 2µε+ σc + ρcρlϕ(1− ϕ)/ρmδv ⊗ δv] = Σll +Σcc , (A.16)

where the last term in brackets is the additional term that appears when we cannot assume
that our problem lies within the quasi-hydrostatic regime. This non-Newtonian stress re-
sponse is due to the presence of the colloidal phase and is thus captured in Σcc. Also, for
notational convenience, we will use σ̃c = σc + ρcρlϕ(1− ϕ)/ρmδv ⊗ δv.

Now we wish to follow a similar procedure as in section 5 to eliminate the pressure
dependence, but we must take the time derivatives into account. We observe that

d

dt

ˆ
V

dV ρcϕvc =

ˆ
V

dV ρc
∂ϕvc

∂t
+ ρc (∇ · ϕvc)vc + ρcϕ (vc ·∇)vc, (A.17)

and recall that
´
V
dV ∂tϕ = −

´
V
dV∇ · ρcϕvc by mass conservation. Using the chain rule for

the partial time derivative, we find

d

dt

ˆ
V

dV ρcϕvc =

ˆ
V

dV ρcϕ
∂vc

∂t
+ ρcϕ (vc ·∇)vc. (A.18)

This has a clear correspondence to the material derivative, which we explicitly state to be
Di

t = ∂t + vi · ∇, with i = c, l. This gives us the following alternative expressions for the
left-hand sides of equations 57 and 58,

d

dt

ˆ
V

dV ρcϕvc =

ˆ
V

dV ϕDc
t [ρcvc] (A.19)

d

dt

ˆ
V

dV ρl(1− ϕ)vi =

ˆ
V

dV (1− ϕ)Dl
t [ρlvl] (A.20)

Now we can eliminate the pressure dependence in the following way. We substitute these
into equations 57 and 58, and divide the former by ϕ and the latter by (1− ϕ), both inside
the integral. Now we subtract the second relation from the first to arrive at the following

Dc
t [ρcvc]−Dl

t [ρlvl] +
µδv

ϕk(ϕ)
= ρbg +

∇ · σ̃c

ϕ
− 2µ∇ · ε

1− ϕ
(A.21)

A.2 The quasi-hydrostatic regime

We set out to simplify this equation by expressing the terms in equation A.21 as nondimen-
sional variables. In order to do so, we study the procedure that is used to nondimensionalize
equation A.9. This leads us to a set of parameters that is typically used to characterize the
flow regime and then apply these ideas to equation A.21. We introduce the nondimensional
variables as given in table 5.
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u∗ ≡ u/u0 t∗ ≡ tu0/r0 ∇∗ ≡ r0∇ ρ∗ ≡ ρ/ρ0 g∗ = f/g
µ∗ ≡ µ/µ0 λ∗ ≡ λ/µ0 ε∗ ≡ εr0/u0 σ∗ ≡ σr0/(µ0u0) p∗ ≡ p/(ρ0gr0)

Table 5: Overview of parameters that are involved in the nondimensionalization of equation A.9.
Note that the characteristic force is the gravitational force, and the dimensions of the pressure
are based on the hydrostatic pressure equation. The viscosity coefficients λ and µ have the same
dimensions and thus scale with the same scaling coefficient µ0.

Inserting the above relations into equation A.9 in order to express it in terms of nondi-
mensional variables, we find

u2
0

r0

∂u∗

∂t∗
+

u2
0

r0
u∗ ·∇∗u∗ =

1

ρ0ρ∗r0
∇∗
(
−ρ0gr0p

∗I +
u0µ0

r0
σ∗

c +
u0µ0

r0
2µ∗ε∗

)
+ gg∗;

u2
0

r0g

(
∂u∗

∂t∗
+ u∗ ·∇∗u∗

)
=

1

ρ∗
∇∗
(
−p∗I +

u0µ0

ρ0r20g
(σ∗

c + 2µ∗ε∗)

)
+ g∗. (A.22)

We identify the first coefficient as the square of the Froude number Fr [199], a dimensionless
quantity that is defined as the ratio of the flow inertia to the external field. It is defined as

Fr =
u√
gL

=
u0√
gr0

, (A.23)

where the second equality relates the number to its current use. In the quasi-hydrostatic
limit, we have that Fr → 0, such that we may neglect the left-hand side of equation A.22.
We verify that our system lies in by the quasi-hydrostatic regime in the following way. The
typical velocity in our system is that of a single sedimenting sphere in a viscous fluid. From
Stokes’ law, we observe that u0 ∼ ρ0gσ

2/µ0. Note that σ denotes the diameter of a colloidal
particle, such that σ ∼ 10−6 m, and ρ0 ∼ 103 kg/m, g ∼ 10 m/s2, and µ0 ∼ 10−3 Pas. This
leads to Fr ∼ 10−4, and the prefactor on the left-hand side of equation A.22 is the square of
the Froude number. This implies that we can safely assume the inertial contribution to be
negligible, and thus we can use the quasi-hydrostatic limit. Now we turn our attention to the
prefactor of the stress terms in equation A.22. We define the ratio of the colloid diameter
and r0 as α = σ/r0. In that case, we have

u0µ0

ρ0r20g
=

σ2

r20
= α2, (A.24)

and we observe that α → 0 corresponds to the hydrostatic limit where ∇p = −ρg.
Now we use these ideas to study equation A.21. We divide this equation by ρb and let

ρ = ρb, and observe that all velocities are of the same order of magnitude, thus all scaling
with u0. We note that k(ϕ) ∼ σ2, such that k∗(ϕ) = k(ϕ)/σ2. Now we apply the substitutions
of table 5 to find

u2
0

r0g

(
Dc∗

t [ρc/ρbv
∗
c ]−Dl∗

t [ρl/ρbv
∗
l ]
)
+

µ0u0

ρ0gσ2

µ∗δv∗

ρ∗ϕk∗(ϕ)
=

g∗ +
u0µ0

ρ0r20g

(
∇∗ · σ∗

c

ϕ
− 2µ∗∇∗ · ε∗

1− ϕ

)
+

u2
0

r0g
∇ · [ρcρlϕ(1− ϕ)/(ρmρb)δv ⊗ δv] .

(A.25)
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We observe that we can also write this equation in terms of the parameters α and β, and
thus in the quasi-hydrostatic limit,

lim
β→0

µ∗δv∗

ρ∗ϕk∗(ϕ)
= g∗ + α2

(
∇∗ · σ∗

c

ϕ
− 2µ∗∇∗ · ε∗

1− ϕ

)
. (A.26)

In the limit of α → 0, we find a slightly modified version of the velocity of a sedimenting
sphere. However, we wish to capture the influence of processes on the microscale, thus α is
very small but finite. In this case, we find that the contribution from the deviatoric stress of
the liquid is very small, and thus we neglect it. The contribution of the colloids σc may have
a singularity, especially for volume fractions near ϕm, thus it will probably play an important
role. We also note that the value of α depends on the grid size, so the right-most term may
not drop out for very fine grids.

In our case, we isolate the velocity difference and re-dimensionalise the equation. From
the definition of u0, we observe that ρ∗g∗/µ∗ = −ẑ. For notational convenience, we leave k
and ρ dimensionless, and note that ρ∗ = 1 by assumption. Thus, in the quasi-hydrostatic
limit,

δv ≈ k∗(ϕ)
(
−u0ϕẑ + σ2/µ∇ · σc

)
(A.27)

B The accuracy of discretization schemes

In section 5.3, we mentioned that the choice of defining the flux at cell boundaries can affect
the accuracy of the integration scheme. The accuracy is typically defined as the the Taylor
series truncation error, which arises more naturally when we study finite difference methods
(FDMs). We will use the FDM to introduce the concept, and this discussion also illustrates
that the FVM and FDM are computationally the same, despite their different reasoning. It is
important to note that this is only true for specific cases such as a uniform44 one-dimensional
grid. The FDM is the oldest method of obtaining numerical solutions to differential equations,
of which the first application is attibuted to Leonhard Euler in 1768 [187]. This method
is based on defining derivatives in terms of differences of the state variable over a finite
distance, corresponding to the distances between grid points. That is, we use the following
discretization: (

dϕ

dx

)
i

= lim
δx→0

ϕ(x+ δx)− ϕ(x)

δx
⇒ ϕ(xi+1)− ϕ(xi)

xi+1 − xi

, (B.1)

where ϕ is our state variable, and xi the discretized version of the space variable. The method
above is referred to as first-order forward difference, where forward refers to the choice of
comparing ϕ(xi) with its neighboring value in the positive direction, and first-order to its
Taylor series truncation error. For the sake of completeness, we write the Taylor expansion
of ϕ around xi:

ϕ(xi±1) ≈ ϕ(xi)± δx

(
dϕ

dx

)
i

+
δx2

2

(
d2ϕ

dx2

)
i

± δx3

6

(
d3ϕ

dx3

)
i

+O(δx4)

44A uniform grid is evenly spaced, with cell boundaries exactly in the middle of grid points
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We illustrate the accuracy with the obvious alternative first-order backward difference, which
is based on considering a difference of −δx instead of δx, leading to

ϕ(xi−1)− ϕ(xi)

xi−1 − xi

≈
(
dϕ

dx

)
i

=
ϕ(xi)− ϕ(xi−1)

δx
+

δx

2

(
d2x

δx2

)
i

+O(δx2)

This shows that this approximation is first-order accurate in terms of the truncation error
of the Taylor series, given on the right. The first-order error can be eliminated by averaging
the backward and forward difference, creating a second-order approximation that is referred
to as the central difference (CD) scheme for obvious reasons.

Accuracy of FVM schemes

Having introduced the necessary tools to study the accuracy of an integration scheme, we
turn our attention to FVMs, where we are interested in the cell boundaries. Applying the
CD scheme to the upper boundary of cell i (denoted by i+ again), using a distance of δx/2,
has the following result:(

dϕ

dx

)
i+

=
1

2

(
ϕ(xi+1)− ϕ(xi+)

δx/2
+

δx

8

(
d2x

δx2

)
i

+
ϕ(xi+)− ϕ(xi)

δx/2
− δx

8

(
d2x

δx2

)
i

)
+O(δx2)

≈ ϕ(xi+1)− ϕ(xi)

δx
, (B.2)

which is thus second-order accurate in δx. This relation is used to approximate diffusive
terms that depend on the spatial derivative of ϕ. Confusingly, the RHS of this equation is
exactly the same as that of equation B.1, which is first-order accurate. The difference lies in
the LHS, we define the derivative at the cell boundary instead of the center.

Despite the apparent analogy to FDMs, the reasoning behind FVMs is very different,
which is based on fluxes rather than derivatives. In section 5.3.1, we introduced the mathe-
matical representation of this method, leading to equation 74, which shows that we express
the flux at the boundary of a cell in terms of the state variable ϕ. The central difference is
rather trivial in this case,

ϕ(xi+) = (ϕ(xi) + ϕ(xi+1)) /2 +O(δx2),

which is again second-order accurate since the first-order terms cancel. The upwind-biased
scheme for pure convection, introduced in section 5.3.2, depends on only one term, but is
first-order accurate. We repeat the scheme,

ϕ(xi+) ≈ ϕ(xi+1)

assuming convective flow from right to left. Note that upwind is defined in terms of flow
direction, whereas direction in FDMs is defined in terms of spatial orientation, independent
of the flow direction. Comparing the scheme to the Taylor series of ϕ(xi+), we can trivially
conclude that this approximation is first-order accurate. To increase the accuracy, we can
use the CD scheme, but we lose transportiveness (discussed in section 5.3) of the scheme.
Using that the grid is uniform, we explore different combinations of terms with higher-order
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accuracy, such as the linear upwind difference (LUD) scheme, in which the first-order error
can be shown to cancel in the following way:

ϕ(xi+1) = ϕ(xi+) +
δx

2

(
dϕ

dx

)
i+

+O(δx2)

ϕ(xi+2) = ϕ(xi+) + 3
δx

2

(
dϕ

dx

)
i+

+O(δx2)

Combining these leads to the LUD scheme which is thus second-order accurate,

ϕ(xi+) = (3ϕ(xi+1)− ϕ(xi+2)) /2 +O(δx2)

A similar procedure can be applied to further increase the accuracy while keeping the scheme
biased in the ‘upwind’ direction, leading to the third-order accurate scheme that meets the
transportiveness requirement. An example of this is the quadratic upstream interpolation
for convective kinetics (QUICK) scheme,

ϕ(xi+) = (6ϕ(xi) + 3ϕ(xi+1)− ϕ(xi+2)) /8 +O(δx3)

These results can be generalized to apply to non-uniform grids, but we shall not do so here,
since the grid used in our study is uniform. We also note that increasing accuracy comes at
the cost of computational effort, and we will also show that higher-order schemes are do not
meet the boundedness requirement unconditionally. Also, since higher-order schemes depend
on more neighboring nodes, implementing boundary conditions becomes more involved.

Another important remark is that the polynomial order of accuracy that naturally follows
from the Taylor expansion is a good measure in most situations. However, in convection-
dominated problems, ϕ typically depends exponentially on x, such that a polynomial repre-
sentation is only valid for extremely small values of δx [179]. This is illustrated by the better
performance of the UD scheme in comparison to the CD scheme at higher Péclet numbers,
despite its lower degree of accuracy. More details can be found in appendix C.2.

C The steady convection-diffusion problem

In section 5.3, we claimed that the boundedness property provides clear boundaries on the
applicability of an integration scheme, in terms of parameters that define the system. The
parameters that we will use to define the system are F and D, describing convection and
diffusion, respectively. The definition of these parameters follows from the the differential
equation that governs one-dimensional convection-diffusion problems,

d

dx
(ρuϕ) =

d

dx

(
Γ
dϕ

dx

)
(C.1)

where ρ denotes the density of the transported fluid, u its velocity, ϕ denotes a property of
the fluid per unit mass and Γ denotes the diffusion coefficient. We assume our fluid to be
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incompressible, such that ρ is constant and the property ϕ that we consider is the volume
fraction of colloids. Continuity and incompressibility imply

d

dx
(ρu) =

d

dx
(u) = 0

Since our discussion is largely based on chapter 5.2 from [173], we will also adopt the
notation used there. Figure 29 illustrates a cell, or control volume, around node P and ad-
joining nodes W and E. Following the finite volume method, we need an integral over a local
balance equation in terms of divergences, reducing it to a surface integral, so equation C.1
becomes

(ρuϕA)e − (ρuϕA)w =

(
ΓA

dϕ

dx

)
e

−
(
ΓA

dϕ

dx

)
w

In our one-dimensional case, A is constant, so we may drop that term. The continuity
equation leads to ue−uw = 0, such that in one dimension, the flow velocity must be constant
throughout the sample.

Figure 29: Control volume around node P , with east and west boundaries e and w, respectively.
Image taken from [173], with permission.

Using the above definitions and denote the cell width45 by δx, the parameters defining
the system are

F = ρu and D = Γ/δx

Note that δϕ does depend on the cell boundary at which it is computed, for example, (δϕ)e =
ϕE − ϕP . Using this notation, equation C.1 can now be written as

Feϕe − Fwϕw = De(ϕE − ϕP )−Dw(ϕP − ϕW ) (C.2)

and the continuity equation implies Fe = Fw. Once again, we must make a choice in defining
the flux at the boundaries of the cells, in this case by choosing the volume fraction ϕ at
that boundary. We will illustrate how this choice affects the boundedness of an integration
scheme.

45Note that we simplify our discussion by the assumption of a regular grid, such that this is a single
parameter.
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C.1 Boundedness of the central difference scheme

The CD scheme has been introduced in appendix B, adopting notation leads to ϕe = (ϕP +
ϕE)/2 and ϕw = (ϕW + ϕP )/2. Substituting this into equation C.2,

Fe(ϕP + ϕE)/2− Fw(ϕW + ϕP )/2 = De(ϕE − ϕP )−Dw(ϕP − ϕW )

Collecting terms of ϕ,

(Fe/2− Fw/2)ϕP + (De +Dw)ϕP =

((Dw + Fw/2) + (De − Fe/2) + (Fe − Fw))ϕP = (Dw + Fw/2)ϕW + (De − Fe/2)ϕE (C.3)

We introduce aW = (Dw+Fw/2) and aE = (De−Fe/2). Note that continuity implies Fe = Fw

here, such that

(aW + aE)ϕP = aWϕW + aEϕE

Some care must be taken at the boundaries of the grid, but these choices are of limited rele-
vance for the performance of the scheme. Especially in our case, where boundary conditions
are relatively simple, since we impose that the walls are not permeable. This also implies
that we can express our problem in terms of these coefficients only, without source terms
(corresponding to the creation or destruction of colloids). The Scarborough condition [200]
is sufficient for convergence of an iterative method, corresponds to diagonal dominance of
the matrix of coefficients, and is expressed in terms of terms of these coefficients a,∑

|anb|
|a′P |

{
≤ 1 at all nodes

< 1 at one node at least

where anb are the coefficients of the neighboring nodes, in this case aW and aE, and a′P is
the net coefficient of node P , taking into account the source term, which is zero in our case,
such that a′P = aP = aW + aE. We note that

∑
|anb| = |aE| + |aW | = |aE + aW | = |aP | if

all coefficients have the same sign, showing that the boundedness and diagonal dominance
are related but do not coincide. In the absence of sources, the CD scheme does not meet
the Scarborough criterion and thus is not diagonally dominant, but is bounded under the
condition that all coefficients are positive, since aP = Dw + De ≥ 0. We have that aE > 0
if Fe/2 < De and aW > 0 if −Fw/2 < Dw. We assume that Γ is constant, such that
De = Dw = D on a uniform grid, and since Fe = Fw = F , we summarize these conditions as

F/D < Pec = 2

Where Pec is the critical value of the Péclet number46, above which not all coefficients are
positive, such that the CD scheme does not meet the boundedness requirement.

46For a discussion of the Péclet number, see section 5.
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C.2 Boundedness of the upwind-biased scheme

The UD scheme was introduced in appendix B as well, expressed in our current notation,
ϕe = ϕE and ϕw = ϕP , assuming flow from east to west (which is the negative direction). We
substitute these relations in equation C.2 to find

FeϕE − FwϕP = De(ϕE − ϕP )−Dw(ϕP − ϕW )

Collecting terms of ϕ,

(De +Dw − Fe + (Fe − Fw))ϕP = (De − Fe)ϕE +DwϕW (C.4)

(aE + aW + (Fe − Fw))ϕP = aEϕE + aWϕW

The UD scheme is also not diagonally dominant in the absence of sources, but since Fe ≥ 0,
we have that all coefficients are positive, independent of the Péclet number that describes
the system. This implies that we expect the UD scheme to produce bounded results under
all conditions.

False diffusion

We observe that there are similarities between equations C.3 and C.4, and that these can
be converted into one another by a transformation of the diffusive terms. If we substitute
De,w = D′

e,w + Fe,w/2 in equation C.4, we find

((D′
w + Fw/2) + (D′

e − Fe/2) + (Fe − Fw))ϕP = (D′
w + Fw/2)ϕW + (D′

e − Fe/2)ϕE,

which correspond to the CD scheme, equation C.3. This substitution can be defined in terms
of the diffusion coefficient as Γ = Γ′ + ρuδx/2. Since the UD scheme can be interpreted
as the CD scheme with an artificial diffusion term, this is sometimes (incorrectly47) referred
to as false diffusion. The problem is the frame of reference, since the CD scheme does not
correspond to the exact solution, except for the case Pe = 0. The additional diffusive term
should rather be considered as a compensation for the error introduced by the CD scheme,
which is necessary at higher Péclet numbers.

The idea of ‘absorbing’ a part of the convection into the diffusive term to ensure bound-
edness, has resulted in new discretization schemes, using the CD and UD schemes as limits.
For Pe = 0, we use the CD scheme and for Pe = ∞, we use the UD scheme. In between, the
correction depends on the Péclet number, e.g. the hybrid scheme employs the CD scheme
for |Pe| < Pec and the UD scheme otherwise [178]. A more sophisticated version is the expo-
nential scheme [201], that reproduces the exact solution of steady-state convection-diffusion
problems (on the grid points) [38]. The power-law scheme reproduces these results very well,
but is computationally less expensive [179]. The accuracy of these methods is illustrated in
figure 30 by considering the very simple case with fixed values ϕW = 1, ϕE = 0 and ϕP is the
derived value, depending on the scheme.

47Following the discussion by Patankar [179, p. 105-109], false diffusion in steady problems can only be
observed on two-dimensional grids. It occurs when the fluid flows at an angle of 45° to the grid lines, where
numerical errors cause results that are more diffused than the exact solution. In the unsteady case, false
diffusion may be observed in one-dimensional problems, which will be further discussed in appendix D.
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Figure 30: The resulting value of ϕP in the simple system with fixed values ϕW = 1 and ϕE = 0.
In this case, ϕP depends on the numerical scheme, as indicated in the legend.

We observe that the flow is characterized by the Péclet number, which affects the accuracy
of the discretization method. In section 5.1, we have shown that the diffusion coefficient is
very small in our problem, corresponding to a very high Péclet number. This suggests that
we can apply the very fast UD scheme without worrying about low accuracy. However, it
will turn out that this statement is only true for time-independent problems. We will study
the time-dependent case in further detail in appendix D.

D A mathematical analysis of numerical schemes

In this appendix, we provide the theoretical justification of the discussion in section 5.3.3,
and we are guided by the book by Hirsch [187]. In order to generalize our results from steady
to unsteady problems, we need a more rigorous definition of requirements on a numerical
scheme. These requirements are of a more mathematical nature, but these are necessary to
ensure physical outcomes. Also, as mentioned in appendix B, FVM schemes on uniform grids
can be transformed into FDM schemes, which changes the interpretation of some terms, but
lead to the same results. We will make use of this correspondence, since this discussion is a
bit more straightforward in terms of a FDM scheme.

The first of three requirements is consistency, which means that the numerical scheme
must tend to the exact differential equation as time and space steps, δt and δx, tend to zero.
The second is stability, which means that for a given δt, δx > 0, all errors must remain
bounded as iteration advances, with the number of time steps n → ∞. The final requirement
is convergence, which means that the numerical solution must tend to the exact solution as
δt, δx → 0. These requirements can be considered to be relations between the following
concepts:
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Condition Relation between and

Consistency Discretized equation Exact differential equation

Stability Numerical solution Exact solution of the discretized
equation

Convergence Numerical solution Exact solution of the differential
equation

Table 6: Overview of the concepts that are related by the requirements that we impose on the
discretization.

The physical requirements that we studied before were mainly relations between the
numerical solution and its exact solution. These conditions shall be replaced by Von Neumann
analysis, which we will further discuss in section D.2. The accuracy requirement falls in the
category of a consistency requirement, and as in appendix B, the Taylor expansion will be
a valuable tool in this analysis. The most important relation is ensured by convergence,
which ensures that our numerical result does actually correspond to the exact solution of the
equation we study. As table 6 already suggests, if a discretization scheme48 is consistent and
stable, it is also convergent. This relation is described by the Equivalence theorem of Lax,

Theorem D.1 For a well-posed initial value problem and a consistent discretization scheme,
stability is the necessary and sufficient condition for convergence.

A proof of this theorem can be found in [202]. This allows us to limit our attention to just
the first two requirements, that can be analyzed with well-defined mathematical procedures.

D.1 Consistency

The requirement of consistency has already been mentioned to be somewhat related to the
accuracy as studied before. In fact, we follow the same procedure of taylor expanding the
function values of ϕ(x′, t′) around ϕ(x, t) for all x′ ̸= x and t′ ̸= t. At this point, we make
use of the discreteness of the problem to introduce a shorthand notation, ϕ(xi, tn) = ϕi

n,
where i thus indicates a spatial index and n the time level. An important difference here
is that we do not only expand in terms of space, but also time. As before, these expanded
forms are entered into the numerical equation, leading to the original plus an extra term, the
truncation error εT = O(δtq, δxp). The numbers q and p are the lowest order of temporal
and spatial terms in the truncation error, i.e. the order of accuracy of the scheme.

Consistency can be stated in terms of the truncation error, so we require that εT → 0 as δt,
δx → 0. This leads to the statement that a scheme needs to have a positive order of accuracy
(in terms of the spatial and temporal errors) to be consistent. This requirement leads to
some more insight if we perform the described procedure, so as an illustrative example, we
consider the linear convection model,

ϕt + aϕx = 0, (D.1)

48Note that a discretization scheme thus consists of a choice of discretizing a differential equation and a
choice of integration scheme, including setting δt and δx.
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where the subscripts denote to temporal and spatial derivatives. We apply the UD scheme
that has been introduced in spatial terms. The time dependency is straightforward up to
first order, as a time step corresponds to an iteration step for a steady problem. The time-
dependent UD scheme is thus

ϕn+1
i − ϕn

i

δt
+ a

ϕn
i − ϕn

i−1

δx
= 0. (D.2)

The Taylor expansions that we need are those of ϕn+1
i and ϕn

i−1,

ϕn+1
i = ϕn

i + δt (ϕt)
n
i + δt2/2 (ϕtt)

n
i +O(δt3) (D.3)

ϕn
i−1 = ϕn

i − δx (ϕx)
n
i + δx2/2 (ϕxx)

n
i +O(δx3) (D.4)

The substitution of these into equation D.2 leads to

ϕn+1
i − ϕn

i

δt
+

ϕn
i − ϕn

i−1

δx
− (ϕt)

n
i − a (ϕx)

n
i = δt/2 (ϕtt)

n
i − δx/2 (ϕxx)

n
i +O(δt2, δx2). (D.5)

We observe the RHS of equation D.5 to be the truncation error εT , which is first order in
both δt and δx. Note that these are not necessarily equal, e.g. the CD scheme with the
same time discretization method has second order accuracy in terms of δx. This means that
the overall order of accuracy of this scheme does now depend on relation between δt and δx.
This relation is important when we want to increase accuracy or reduce the computational
effort with minimal loss of accuracy.

It is important to note that we have not specified the meaning of ϕ so far. It can be
interpreted as the exact variable we are solving for (satisfying equation D.1), or the exact
solution of the numerical scheme (satisfying equation D.2). The first interpretation is common
and rather straightforward, it shows us that the exact solution does not satisfy equation D.2,
and the truncation error describes the deviation. The second interpretation leads to some
more insight, and provides us with a differential equation for the variable ϕn

i , which we can
use to obtain the equivalent differential equation (EDE). The equation we have obtained so
far is

(ϕt)
n
i + a (ϕx)

n
i = −δt/2 (ϕtt)

n
i + aδx/2 (ϕxx)

n
i +O(δt2, δx2), (D.6)

which contains higher order derivatives in time and space. To obtain the EDE, it is common
practice to eliminate the lowest order time derivatives by applying equation D.6 on itself, in
this case abbreviating the RHS by O(δt, δx). Using its time derivative, we find

(ϕtt)
n
i = −a (ϕxt)

n
i +O(δt, δx)

= −a ((ϕt)x)
n
i +O(δt, δx)

= a (ϕxx)
n
i +O(δt, δx) (D.7)

Now we insert this relation in equation D.6, and we find

(ϕt)
n
i + a (ϕx)

n
i =

(
−a2δt/2 + aδx/2

)
(ϕxx)

n
i +O(δt2, δx2)

= aδx/2(1− aδt/δx) (ϕxx)
n
i +O(δt2, δx2) (D.8)
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This is what we refer to as the EDE up to the lowest order, the higher order terms can
be taken into account in a similar way. What we learn from this equation requires a physical
interpretation of the RHS of equation D.8. Comparing this result to the convection-diffusion
equation, we see that our numerical method introduced a diffusive term. This phenomenon
is what can correctly be referred to as false (or numerical) diffusion. Diffusion reduces

Figure 31: Comparison of the exact solution and numerical results of the FOU scheme for a
one-dimensional convection problem, where an iteration corresponds to a time step. The effect of
numerical diffusion is clearly visible, already for a low amount of time steps.

strong gradients and damps oscillations if the coefficient is positive, so if 1− aδt/δx becomes
negative, our scheme favors strong gradients and causes oscillations. This leads to a stability
requirement for this scheme in terms of the CFL number σ = aδt/δx,

0 ≤ σ ≤ 1.

The effect of false diffusion clearly visible in figure 31, where the most extreme case of a
travelling block is illustrated. The procedure of obtaining the EDE becomes a lot more
involved for higher order schemes, a more detailed discussion is given in appendix E.1.

D.2 Stability

The next requirement that we study is the stability of a scheme, where a Von Neumann
analysis is considered a sufficient condition for stability (for now). This analysis is based
on a Fourier decomposition of the computed solution49, which is a discrete function, so the
Fourier representation is also discrete. We consider a spatial range of [0, L], and use the
mirror image to extend it to [−L,L]. If we imagine a sinusoidal wave, we conclude that the
smallest wavelength that can be resolved on a uniform mesh of width δx is equal to 2δx. The

49For the sake of completeness, we could also use the decomposition of the error. Consider a numerical
scheme N with exact solution ϕn

i and numerical solution ϕi
n , then N(ϕn

i ) = N(ϕi
n+εni) = N(ϕi

n)+N(εni ) =
N(εni ) = 0. This shows that in the case of linear numerical schemes, the error satisfies the same relation.
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largest wave length that we can represent in this range is equal to 2L, which corresponds
to a lower limit on the the wave number kmin = π/L. The accessible wave numbers for our
solution are thus kj = jkmin for j = 0, 1, 2, . . . , N , where N is the number of grid points. The
parameter that we are interested in is the phase angle θj = kjδx = jπ/N , which allows us to
decompose any function on our finite mesh as

ϕn
i =

N∑
j=−N

V n
j exp(ikjxi) =

N∑
j=−N

V n
j exp(iiθj), (D.9)

where we have used i to denote the imaginary unit, and V n
j is the amplitude of the jth har-

monic. This method now relies on the observation that for linear50 schemes, each individual
harmonic must also satisfy the discretized equation. Now we have all the necessary elements
to express the Von Neumann stability condition: the amplitude of any harmonic may not
grow indefinitely in time, i.e. when n → ∞. A useful parameter in this analysis is thus the
amplification factor,

|G| ≡ V n+1/V n,

in terms of which the Von Neumann stability condition reads

G ≤ 1 for all values of θj, where j = −N, . . . ,+N

Since this condition must hold for each harmonic independently, we drop the j-dependence
from equation D.9, and the condition must hold for all −π ≤ θ ≤ π. This leads us to the
following replacement of the discetized ϕ terms in our scheme,

ϕn+k
i+m ⇒ V n+k exp(i(i+m)θ). (D.10)

We see that for our relatively low-order schemes, we need just a few terms from this rather
general definition. Also, each term will contain a factor exp(iiθ), the removal of which will
greatly simplify the equations we are faced with. As a simple example, we treat the CD
scheme of the pure convection problem, first order forward in time51,

ϕn+1
i = ϕn

i − σ/2
(
ϕn
i+1 − ϕn

i−1

)
, (D.11)

where σ is the CFL number as introduced before. The procedure described above leads to
the following:

V n+1 exp(iiθ) = V n exp(iiθ)− σ/2 (V n exp(i(i+ 1)θ)− V n exp(i(i− 1)θ))

V n+1 = V n − σ/2 (V n exp(iθ)− V n exp(−iθ)) (D.12)

50We stress that this condition is sufficient for linear schemes. For nonlinear schemes, we need to resort to
a stability analysis in small enough regions to consider nonlinearities to be constant, allowing us to consider
these to be locally linear. This implies that the Von Neumann stability analysis is merely a necessary
condition for stability.

51Note that we use the term time-forward for its more intuitive definition, but this is more often referenced
to as explicit. The alternative to explicit schemes are time-forward, or implicit schemes, which presents us
with a trade-off in properties. Implicit schemes are generally more stable, allowing larger time steps, but are
computationally much more expensive per iteration. In this thesis, we will deal only with explicit methods.
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Using this result, we calculate the norm of the amplification factor.

G = 1− σ/2 · (2i sin(θ))
|G| =

√
G ·G∗ = 1 + σ2 sin2(θ) (D.13)

We conclude that this scheme can never satisfy the stability condition except for θ = 0, which
would correspond to a single cell. Note that we discuss the stability of a discretized equation,
which depends not only the scheme, but also on the problem that is being discretized.

D.2.1 Stability of the upwind-biased schemes

Having introduced the time-dependent problem, we must be more careful with the nomen-
clature of our schemes. By upwind-biased, we mean the generalization of the steady UD
scheme, given by equation D.2, which we will refer to as first-order upwind (FOU). To study
its stability, we follow the same procedure as above. For simplicity, we repeat equation D.2
in a more suggestive way,

ϕn+1
i = ϕn

i − σ
(
ϕn
i − ϕn

i−1

)
(D.14)

From which the amplification factor is easily determined, and some algebra leads to

G = 1− σ (1− exp(−iθ)) = (1− σ) + σ cos(θ)− iσ sin(θ). (D.15)

We have written this in a way to suggest a representation in the imaginary plane. Notice
that G is described by a circle with radius σ centered around the point 1−σ on the real line.
We see that |G| ≤ 1 if 0 ≤ σ ≤ 1, which justifies the CFL condition in section 5.3.3.

This stability analysis applies to higher order schemes as well, and would result in 0 ≤
σ ≤ 2 for the second order accurate upwind-biased scheme. In appendix E.1, we study the
stability of this scheme in a more general context.

D.2.2 Numerical diffusion

To conclude our ongoing discussion of artificial diffusion effects, we define the diffusion error
as the modulus of G. If it is smaller than one, there is an artificial damping of all harmonics.
Since the the damping factor is |G|n after n time steps, this may have severe effects. Similar to
the discussion of stability, we represent the diffusion error as a function of θ and σ. Choosing
a mesh corresponding to smaller values of σ is undesirable for practical reasons, so a scheme
that has a damping factor |G| that is (very!) close to one for a large range of θ has a larger
practical value. This leads to the remark that first-order schemes are useless for unsteady
problems, since they are too diffusive [187, p. 311].

E Introducing diffusion in unsteady flow problems

There are many ways in which a diffusive term can be implemented, limited by the accuracy
of the scheme and the number of neighboring nodes that are used. Thus we express these
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different options in terms of one general scheme in the following way. Any explicit scheme
that uses two time levels can be expressed as

ϕn+1
i =

∑
j

bjϕ
n
i+j, (E.1)

where the coefficients bj define the scheme. We use the procedure as described in appendix D.1
to find the equivalent differential equation (EDE). Following Hirsch [187, p. 342 – 346], we
find the following expression

ϕt + aϕx =
∞∑

m=p

am+1δx
m

(
∂m+1ϕ

∂xm+1

)
, (E.2)

where p is the order of accuracy of the scheme and the coefficients a follow from the calculation
of the EDE. Note that that the spatial accuracy corresponds to am = 0 for m ≤ p. These
coefficients are zero when the following conditions are met,∑

j

bjj
m = (−σ)m for 0 ≤ m ≤ p. (E.3)

Thus a scheme with accuracy p requires at least p + 1 nodes, and their coefficients bj are
determined by these constraints. In order to introduce a diffusive term, we requires a free
parameter. We need at least p + 2 contributing nodes for a scheme of accuracy p with a
diffusive term. We will come back to this in our discussion of higher order schemes.

For a scheme of accuracy p, we have the following coefficients a in equation E.2:

ap+1 =
δx

δt

(∑
j

bjj
p+1 − (−σ)p+1

)
1

(p+ 1)!
, (E.4)

ap+2 =
δx

δt

(∑
j

bjj
p+2 − (−σ)p+2

)
1

(p+ 2)!
+ σap+1. (E.5)

As before, we are interested in the lowest order truncation error term, which is equal to the
lowest order δx term on the right-hand side of equation E.2. At this point, we recall the first
step of the Von Neumann stability analysis, where we wrote ϕ as

ϕn
i =

N∑
j=−N

V n
j exp(ikjxi) =

N∑
j=−N

V n
j exp(iiθj). (D.9, repeated)

We observe that even and odd powers of space derivatives of ϕ thus lead to real and imaginary
contributions to the error, respectively. In the context of stability, we are interested in the
real contribution, since that corresponds to the modulus of the amplification factor G as
introduced in section D.2. For the problem under our consideration, the diffusion error is
given by

ϵD = |G| = exp

[∑
m

(−)ma2mϕ
2m δt

δx

]
,

= 1 +
∑
m

(−)ma2mϕ
2m δt

δx
+O(ϕ4m). (E.6)
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With the stability condition |G| ≤ 1 in mind, we find that (to lowest order in ϕ) we must
have

(−)la2l < 0, (E.7)

where 2l corresponds to the lowest even order coefficient a that is nonzero. So if the accuracy
p is uneven, 2l = p+ 1 and 2l = p+ 2 otherwise.

These are the constituents of our more general stability condition. As an example, let
us consider the explicit, first-order accurate CD scheme. In the purely convective case,
this scheme is given by D.11, which we showed to be never stable. If we add a centrally
discretized diffusive term, we find a different result. In terms of equation E.1, this scheme
has the following coefficients,

b−1 = σ/2 + β, b0 = 1− 2β, b1 = −σ/2 + β, (E.8)

where β describes the diffusivity of the system. Since the accuracy p = 1, we have that
2l = 2, so we use equation E.4 and E.7 to find

a2 =
δx

δt

(
2β − σ2

) 1
2
> 0. (E.9)

A further analysis, using ideas introduced in section D.2.2, shows that damping, i.e. |G| < 1,
is desirable for high-frequency oscillations. In particular, this leads to |G(π)| < 1, which can
be shown to correspond to 0 <

∑
j b2j < 1. This gives us the additional condition

0 < 1− 2β < 1 (E.10)

We wish to express these conditions in terms of parameters that have a clear significance
in terms of our discretized problem. We recall our definition of the Péclet number, Pe =
ρuδx/Γ, and the CFL number σ = ρuδt/δx. Comparing equation E.1 and coefficients E.8
to the convection-diffusion problem (equation C.1 in section C), we see that β = Γδt/δx2.
Combining these relations, we observe that β = σ/Pe. We use this relation together with
conditions E.9 and E.10 to find

σ <
Pe

2
and σ <

2

Pe
. (E.11)

The same reasoning applies to any other explicit first-order accurate scheme. We compare
these results to the FOU scheme with the same diffusive term, leading to the following
coefficients,

b−1 = σ + β, b0 = 1− σ − 2β, b1 = β. (E.12)

These coefficients lead to the following conditions,

σ + 2β − σ2 > 0 and 0 < 1− σ − 2β < 1.

Using the relation β = Pe/σ, we rewrite this to the following conditions,

σ < 1 + 2/Pe and σ < (1 + 2/Pe)−1 . (E.13)

For Pe > 0, we see that the right conditions is always more stringent. We compare the regions
of stability of these schemes in figure 32, and observe that the FOU scheme is a better choice
for convection-dominated problems.
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Figure 32: Regions of stability for convection-diffusion problems, where the convective term is
either modeled by the central difference scheme (CDS) or the first order upwind scheme (FOU).
Flows in the opposite direction have both a negative σ and Pe, and the diagram is mirrored. Note
that the cutoff at Pe = 10 is arbitrary and the CDS and FOU stability boundaries converge to
σ = 0 and 1, respectively.

E.1 Diffusion in higher order schemes

For schemes of second order accuracy, equation E.3 results in three conditions. So if we want
to introduce a diffusive term in the SOU scheme, we need (at least) four nonzero coefficients.
If we choose to define our scheme on the support52 j = {−2,−1, 0, 1}, using the SOU scheme
for the convective term, we have the following coefficients

b−2 = σ(σ − 1)/2− β, b−1 = σ(2− σ) + 3β, b0 = (1− σ)(2− σ)/2− 3β, b1 = β
(E.14)

Note that the accuracy of our scheme is even, so the calculation of the stability region requires
an extra step. We have that

a3 =
δx

6 δt

(
6β + 2σ − 3σ2 + σ3

)
, (E.15)

a4 =
δx

24 δt

(
−12β − 6σ + 7σ2 − σ4

)
+ σa3,

a4 =
δx

24 δt

(
−12β − 6σ + 24βσ + 15σ2 − 12σ3 + 3σ4

)
. (E.16)

We simplify this by using β = σ/Pe,

a4 =
δx

8 δt

(
−2σ(1 + 2/Pe) + σ2(5 + 8/Pe)− 4σ3 + σ4

)
. (E.17)

52In this context, ‘on the support’ means that we have nonzero coefficients bj only when j lies in this
support.
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Figure 33: Regions of stability for convection-diffusion problems, for the scheme given by coeffi-
cients in equation E.14. Note that these two separate regions eventually merge, and when Pe → ∞,
the scheme is stable for 0 ≤ σ ≤ 2.

Stability requires that a4 < 0, so we calculate the roots of this polynomial in σ. The resulting
region of stability is illustrated in figure 33. Interestingly, this scheme has distinct regions of
stability, that merge in the limit of Pe → ∞. There, the stability condition is independent of
the diffusive term, and we find that 0 ≤ σ ≤ 2. We conclude that our choice of discretizing
the diffusive term does not affect the accuracy of the scheme, and with a good region of
stability.
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