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ABSTRACT 

Response inhibition, an essential component of cognitive control, can be studied using machine 

learning algorithms like Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis 

(QDA). This projects investigates the impact of different preprocessing and regularization techniques 

on the performance of these classifiers. The aim of the project was to increase accuracy to 

significantly above chance level (50%) for the binary classification of EEG power data into successful 

or failed trials, derived from a Stop Signal Task (SST). Notably, frontal theta power at the FCz 

electrode was identified as significantly different between these two trial types. Therefore, average 

theta power was used for the classification algorithms. Performance evaluation showed that outlier 

treatment, Synthetic Minority Over-Sampling Technique (SMOTE), and L2 regularization improved 

classification accuracy. Average weight vector analysis showed that the focus of the classifiers was 

distributed across frontal electrodes as well as central and left parietal and occipital electrodes. Future 

research should explore individualized optimization. 
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Introduction 

Response inhibition 

An essential feature of human cognition and action is that they can be used to achieve certain 

goals. Notably, goals can change rapidly and in their entirety. Fortunately, people can readily stop 

their actions in response to changes in their internal state or in the environment. For example, when a 

red traffic light suddenly turns green upon approaching, a driver is able to stop (their intention of) 

braking and move their foot to the gas paddle.  

The ability of stopping an action is commonly referred to as response inhibition. Response 

inhibition involves the cancelation or suppression of behaviors that are inappropriate, unsafe, or no 

longer required (Verbruggen & Logan, 2008). The ability underlies a range of behaviors crucial for 

adaptive functioning and has a key role in the ability to respond flexibly in ever-changing 

environments (Congdon et al., 2012). Moreover, failures in response inhibition have been associated 

with ADHD, OCD, as well as addiction (Chambers et al., 2009). 

The stop-signal task 

The Stop-Signal Task (SST) is commonly employed to operationalize response inhibition 

(Logan et al., 1984). In this task, participants respond to a Go stimulus with a button press. However, 

in a subset of the trials (usually 25%), the Go stimulus is followed by a Stop signal after a varying 

delay interval. In these trials, participants attempt to withhold their response and restrain the button 

press. Performance is usually measured by calculating the Stop Signal Reaction Time. Performance in 

the SST can be modeled as a race between a ‘go process’ and a ‘stop process’, triggered by the 

stimulus and the stop signal respectively. The model assumes that the response is inhibited if the stop 

process finishes before the go process (Verbruggen & Logan, 2008). By dynamically manipulating the 

Stop Signal Delay (SSD), the task difficulty can be modified in a way that every participant’s success 

rate is approximately 50%. To establish a reliable prepotent response, it is recommended to use a two-

choice reaction time task. Furthermore, the Stop signal should be salient and is therefore often 

auditory (Verbruggen et al., 2019).  
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Neural markers of response inhibition 

Combining the SST with electroencephalography (EEG) has allowed researchers to identify 

neural markers associated with response inhibition. Identifying these markers has several benefits. 

Event related potential (ERP) components can be used for the clinical evaluation of patients with 

inhibition-related disorders, like ADHD and OCD (Chikara & Ko, 2020). Furthermore, neural 

markers of response inhibition are important for the development of brain-computer interface (BCI) 

systems. BCI systems depend on the recognition and classification of ERPs. For example, robotic 

arms can be moved based on left-hand and right-hand motor imagery. However, these mental states 

cannot stop the movement of BCI devices. Neural markers of response inhibition could be used as a 

stop command in BCI devices (Chikara & Ko, 2019). 

 Several ERP components have been associated with the response inhibition process. 

Differences in latency, amplitude, and scalp topography in the N2 and P3 ERP components have been 

observed between successful and failed stop trials (Kok et al., 2003). In addition, N1 amplitude has 

been found larger for successful stop trials than failed stop trials (Bekker et al., 2005; Skippen et al., 

2020).  

Furthermore, extensive research has investigated which frequency band activities are 

associated with response inhibition. In an SST, increased beta power has been observed following the 

stop signal (Raud et al., 2020). Specifically, right frontal beta power has been found to increase after 

the stop signal and before the time of stopping and is absent on go trials. Moreover, this beta power 

increase was significantly larger for successful compared to failed stop trials (Wagner et al., 2018). In 

addition, beta-burst volume has been found predictive of successful and fast stopping (Enz et al., 

2021). Furthermore, a study using the Go/No-Go paradigm for response inhibition found elevated pre-

stimulus occipital alpha activity preceding false alarms, so a response to the No-Go stimulus. In 

addition, such errors were associated with a post-error increase in frontal theta and decrease in 

posterior alpha activity (Mazaheri et al., 2009). They found no significant differences for pre-stimulus 

theta and beta activity between false alarms and correct withholds.  
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Proactive response inhibition 

Most EEG studies using the Go/No-Go paradigm or SST focus on the time period following 

stimulus presentation, the No-Go or stop stimulus. However, pre-stimulus frequency band activities 

may reveal relevant information regarding the response inhibition process.  

 It is suggested that a distinction can be made between proactive and reactive mechanisms of 

response inhibition (Kenemans, 2015). The proactive mechanism involves top-down control signals 

that potentiate inhibitory sensory-motor connections, depending on whether a motor response 

inhibition is anticipated (Kenemans, 2015). Similarly, a distinction is made between proactive and 

reactive cognitive control, an umbrella term that includes response inhibition. Reactive control 

processes are required for conflict resolving and overcoming interference, whilst proactive control 

processes are involved in preparing the system to be sensitive to future relevant features of the 

environment (Braver, 2012). Previous research has shown that proactive control is associated with 

frontoparietal theta activity (Cooper et al., 2015; Cooper et al., 2017).  

The pre-stimulus time window in the SST may reflect the proactive mechanism of response 

inhibition. 

Localization of response inhibition 

Proactive response inhibition is likely to originate from the right inferior cortex (Kenemans, 

2015). Indeed, an MRI study using patients with lesions in the right frontal lobe showed that response 

inhibition can be localized to the right inferior frontal gyrus (rIFG) (Aron et al., 2003). The extent of 

damage to the rIFG correlated significantly greater than other regions of interest with task 

performance in the SST. Furthermore, a review of several fMRI studies shows that both the inferior 

frontal region and the pre-supplementary motor area (pre-SMA) are consistently related to response 

inhibition in the Go/No-Go task and the SST (Huster et al., 2013). 

EEG and Multivariate Pattern Analysis (MVPA) 

As described before, previous research has used EEG to investigate response inhibition. EEG 

is a low cost method that records electrical activities of cortical regions in the brain through electrodes 
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placed on the scalp, with advantages including non-invasiveness and high temporal resolution. 

However, EEG signals are complex, non-linear, non-stationary, and have a low signal-to-noise ratio 

as well as inter-individual variability (Saeidi et al., 2021).   

To overcome the low signal-to-noise ratio, traditional EEG analyses rely on averaged 

segments of data. Furthermore, such analyses often require a priori selection of an electrode or set of 

electrodes. In contrast, Multivariate Pattern Analysis (MVPA) is a machine learning approach that 

enables the analysis of raw or decomposed segmented data without averaging (Takacs et al., 2020). 

Moreover, MVPA considers the relationship between multiple variables instead of treating them as 

independent (Grootswagers et al., 2017), which allows training classifiers on all channels, eliminating 

bias associated with a priori electrode selection (Takacs et al., 2020). 

Linear Discriminant Analysis (LDA) 

A specific MVPA method is linear discriminant analysis (LDA). LDA is used to find linear 

combinations of features that most effectively separate two or more classes (Saeidi et al., 2021). This 

technique is usually based on the assumption that the data density follows a normal distribution, with 

equal covariance for all classes. LDA creates a separating hyperplane by maximizing the distance 

between the two classes and minimizing the distance points within each class (Saeidi et al., 2021). 

LDA can be used as a classifier and as a dimensionality reduction method before other classification 

methods. LDA stands out for its simplicity, interpretability (Carlson et al., 2003), and low 

computational requirements (Saeidi et al., 2021). More powerful classification method exist, such as 

Support Vector Machines. However, such methods are often more complicated and less interpretable. 

Unlike LDA, which provides a single axis of voxel weight offering a direct measure of the voxel’s 

contribution to the classification, other methods may involve generating regions of activity space 

associated with a stimulus category. These regions are difficult to visualize and interpret, requiring a 

distinct activity map for each point within the region (Carlson et al., 2003). The main limitation of 

LDA is its linear nature, which may hinder effectiveness when dealing with nonlinear EEG data 

(Saeidi et al., 2021). 
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Previous findings using discriminant analyses 

Nevertheless, the LDA approach has previously been used to classify EEG signals measured 

during an SST. Chikara and Ko (2019) compared the accuracy of several classification algorithms in 

classifying post-stimulus EEG data into successful and failed stop trials. They used the Phase Locking 

Value (PLV) method to quantify neural activities between the EEG signals of two electrodes. The 

PLV values were calculated using P3 waves during successful and failed stops and used as features 

for classification. Intra-participant classification accuracies of the algorithms were evaluated by the 

leave-one-out cross validation (LOOCV) method. Notably, participants had to respond with their right 

hand to half of the Go stimuli and with their left hand to the other half. The researchers found that 

performance of quadratic discriminant analysis (QDA) was best, with an average accuracy of 88.88% 

in the left occipital temporal cortex (electrode pair T7-O1) for right-hand response inhibition and in 

the right occipital temporal cortex (T8-O2) for left-hand response inhibition. Other brain regions also 

yielded high average accuracies. LDA performed above chance for EEG signals derived from the 

frontal cortex and the motor cortex (Chikara & Ko, 2019).  

The same researchers (Chikara & Ko, 2020) compared classifiers using the power spectral 

density of post-stimulus (1-500 ms) EEG signals (1-50 Hz) as features in classifying successful and 

failed stop trials on a modified SST. They assessed intra-participant classification accuracies for eight 

channels separately (F3, F4, C3, C4, P3, P4, O1, and O2). The average classification accuracy was 

above chance for both the QDA and LDA classifiers at all investigated EEG channels, with average 

accuracies of around 69% for the QDA and 66% for the LDA classifier.  

Research questions and hypotheses 

The current research aims to improve an existing LDA classifier to where it can classify pre-

stimulus EEG signals into successful and failed stop trials from an SST with significant accuracy. 

More specifically, this research will extend the LDA classifier created by Galama (2021) and 

modified by Caspani (2022), which has not yet been able to reach a classification accuracy above 

chance level (50%).  
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Caspani (2022) implemented two workflows. In workflow 1, all data was used for training 

and for testing, yielding an average accuracy of 73%. In workflow 2, LOOCV was implemented to 

assess the performance of the LDA. Workflow 2 resulted in an average accuracy of 50%. Despite 

each time leaving only one row out in workflow 2, the resulting accuracy was significantly lower than 

that of workflow 1. Here, a row corresponded to a specific frequency within one trial. 

 The first question to address is why workflow 1 yields much better accuracies than workflow 

2. The hypothesis is that the weight vectors and cutoff values of Workflow 2 can differ significantly 

from those of Workflow 1, despite only leaving out one row at a time. This expectation arises due to 

the large variability in the datasets and their relatively small size, where even a single row can 

significantly impact the computation of the weight vector and cutoff value, leading to 

misclassifications and explaining the substantial difference in accuracy between the two workflows. 

Based on this answer and on the assumptions of LDA, several methods will be employed in 

order to increase classification accuracy of the LDA classifier in combination with the LOOCV 

procedure. It is expected that reducing the variability of the data will improve performance. In 

addition, it is expected that leaving out an entire trial in the LOOCV, instead of a row that 

corresponds to a specific frequency within a trial, will improve performance. Furthermore, feature 

selection, such as selecting only the frontal electrodes, might improve performance. Finally, changing 

the LOOCV method to k-fold cross validation might increase performance by reducing variance. 

The features that a successful classifier relies on will be investigated to give insights into the 

neural markers of proactive response inhibition, such as theta power. It is expected that, if a 

significant classification accuracy is reached, the classifier will uncover predictors of response 

inhibition that remain undetected when using univariate methods. 

Methods 

Participants 

 Data was acquired from Kenemans and colleagues (2023). For this dataset, 32 healthy 

participants were recruited from the student population at Utrecht University. All participants declared 
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to have normal hearing and normal or corrected-to-normal vision and signed an informed consent 

form which was approved by the Ethics Committee of the University Medical Centre Utrecht. 

Participants were paid 21 euros by means of compensation.  

Materials 

Stop Signal Task (SST) 

The data used for the classifier were acquired from the auditory condition of the SST in 

Kenemans et al. (2023). Here, the primary task was a two-choice reaction time task. Participants had 

to discriminate between two go-stimuli by pressing either the left or right button with their left or right 

index finger, respectively. The go-stimuli were the letters “X” and “O” and were presented for 150 

ms. On 25% of the trials, a stop signal was presented after the go stimulus. The stop signal was a 1000 

Hz and 72 dB tone, presented binaurally trough in-ear headphones for 150 ms. The condition lasted 

for 128 trials and the trial-to-trial interval varied between 1.5 and 1.8 s. The SSD was dynamically 

manipulated to yield a success rate of approximately 50% for all participants.  

EEG 

During the task, electroencephalographic activity was recorded using the Active-Two system 

(Biosemi, Amsterdam, The Netherlands) with 64 Ag-AgCl electrodes. The electrodes were placed 

following the 10/10 system and referenced to the CMS and DRL. Signals were sampled at 2048 Hz 

and a low pass filter of 400 Hz was applied. EOG electrodes were placed above and below the left eye 

and at the outer canthi of both eyes, to record eye movements.  

Procedure 

Participants were asked to provide standard demographic information. After this, the EEG cap 

was placed and they were seated in a dark-attenuated room, approximately 90 cm from the computer 

screen. Participants received the instruction to respond as quickly and accurately as possible to the go-

stimuli but withhold a response after a stop signal. The experiment (Kenemans et al., 2023) 

counterbalanced 3 conditions across participants. After each experimental block, participants received 
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instructions to either slow down or speed up, depending on their reaction time and success rate. Refer 

to Kenemans et al. (2023) for a complete description of the procedure and the SST. 

Preprocessing 

Preprocessing was similar to Galama (2021) and Caspani (2022). The preprocessing of the 

EEG data was executed using BrainVision Analyzer version 2.3. Signals were re-referenced to the 

right mastoid. The EEG data was down sampled to 64 HZ and a low cut-off filter of 0.5 Hz and high 

cutoff filter of 28.8 Hz were applied.  

The first segmentation had a position of -1000 to -1500 ms relative to go-stimuli reference 

markers. Overlapping segments were allowed. The effects of eye blinks on the EEG data were 

removed with the Gratton and Coles method.  

Although Galama (2021) and Caspani (2022) used no other artifact rejection procedures, the 

current project employed automatic artifact rejection to reduce noise in each participant’s dataset. 

Specifically, trials were marked as bad if they contained a voltage step exceeding 50 µV/ms, if they 

had an amplitude above 200 µV or below -200 µV or if, within a 100 ms interval, the absolute 

difference between two values exceeded 100 µV or activity was below 0.5 µV. If, for a participant, 

more than 1/3 of failed trials or 1/3 of successful trials were marked as bad, problematic electrodes 

were removed until at least 2/3 of these trials were artifact free. Hereafter, all trials marked as bad 

were removed.  

Then, the second segmentation selected all 1000 ms intervals preceding go-stimuli in stop 

trials. These segments were separated in failed and successful stop trials. A Fast Fourier 

Transformation was executed on these segments, using the half-spectrum with a resolution of 1 Hz 

and a periodic Hanning data window of 10 % length (with variance correction). This resulted in non-

complex power values for all segments preceding the go stimuli, divided into failed and successful 

stop trials. An extended description of all preprocessing steps can be found in Appendix A. 

Two participants were excluded from further analysis. One of these had only 6 successful 

trials. The data of the other participant contained artifacts in all trials and across all electrodes. An 
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overview of which electrodes were removed and how many trials remained for each participant can be 

found in Appendix B. 

Initial LDA classifier 

The EEG data was classified using an LDA classifier initially designed by Galama (2021), 

who used the frequencies 1-20 Hz, and altered by Caspani (2022), who focused on frequencies from 

the theta band (4-8 Hz). 

In the initial approach, data was projected onto a line orthogonal to a projection vector 𝑤. To 

derive 𝑤, the mean vectors  𝑀𝑓  and 𝑀𝑠 for failed and successful stop trails were computed by 

summing all values of the trials 𝑋𝑖  per class and dividing by the number of trials 𝑛 (𝑀𝑓 =

(
1

𝑛𝑓
) ∑ 𝑋𝑖 𝑖,𝑋𝑖∈ 𝐶𝑓

, 𝑀𝑠 = (
1

𝑛𝑠
) ∑ 𝑋𝑖  𝑖,𝑋𝑖∈ 𝐶𝑠

). Covariance matrices 𝑆𝑓 and 𝑆𝑠 for each class were 

calculated, and the within-class covariance matrix 𝑆𝑤 was found by adding these covariance matrices 

together ( 𝑆𝑤 = 𝑆𝑓 + 𝑆𝑠). The weight vector 𝑤 was calculated by 𝑤 = 𝑆𝑤
−1(𝑀𝑓 − 𝑀𝑠). The 

discriminant criterion 𝑐 was computed by projecting 𝑤 onto the average of the mean vectors (𝑐 = 𝑤 ∙

(
𝑀𝑓+𝑀𝑠

2
)). A data point 𝑑 was classified by projecting 𝑤 on 𝑑 by taking the dot product of the two 

vectors and comparing it to the discriminant criterion 𝑐: 

𝑤 ∙ 𝑑 < 𝑐 ⇒ 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑎𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 

𝑤 ∙ 𝑑 > 𝑐 ⇒   𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑎𝑠 𝑓𝑎𝑖𝑙 

Caspani (2022) introduced several modifications. Firstly, the frequency range was changed to 4-8 Hz 

(theta band), and outliers were removed from the data. Caspani (2022) then implemented six different 

LDA workflows: 

1. The LDA classifier was trained on all data within each participant. 

2. Leave-one-out cross-validation (LOOCV) was applied. 

3. Cells containing outliers were filled with the mean of the non-outlier values of the same 

column, followed by LOOCV. 

4. The dataset was pivoted to bring frequency range information into the column names, 

followed by LOOCV. 
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5. A combination of workflow 3 and 4 was used. 

6. Only data from the FCz electrode was considered.  

Additionally, all these workflows were applied to data from only the frontal electrodes. 

Further modifications by Caspani (2022) of workflow 2 included applying a Principal 

Component Analysis (PCA) to the preprocessed data, replacing the LOOCV procedure by holdout 

cross-validation, setting all off-diagonal elements of 𝑆𝑤 to zero to only consider variances, averaging 

the preprocessed data, and modifying the weight vector computation to 𝑤 = 𝑀𝑓 − 𝑀𝑠. However, none 

of these modifications resulted in classification accuracies above chance. 

Workflow 1 vs. workflow 2 

To investigate why there is a substantial difference in accuracy between workflow 1 and 2 by 

Caspani (2022), a single participant was selected for further analysis from the dataset. Participant 1 

was selected from the dataset without artifact rejection. The preprocessing steps were consistent with 

those in Caspani (2022), including the frequency range of 4-8 Hz, the inclusion of all electrodes, and 

the removal of rows containing values greater than 5. It is important to note that Caspani (2022) 

separated each trial into four rows, corresponding to each theta frequency. This means that accuracy 

was assessed over each row, which corresponds to a specific trial and frequency combination. 

Therefore, this section uses the term row instead of trial, which would not be the appropriate term. 

Classes were balanced by randomly removing rows from the majority class. To ensure that the same 

rows were removed for workflow 1 and 2, a fixed random seed was set. Removing the same rows for 

both workflows promotes reliable comparison. 

To asses the variability in the dataset of participant 1, a boxplot for each electrode was 

created. 

The accuracy for each workflow was computed. Additionally, one-sample t-tests were 

performed to test the significance of the averaged accuracy against chance level (0.5). For these tests, 

the accuracy of each single row was used, meaning that the rows were the source of variance. 

For the comparison between the 2 workflows, it should be noted that workflow 1 involved 

training the LDA classifier on the entire dataset of participant 1, resulting in a single weight vector 
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and cutoff value. Workflow 2 implemented LOOCV, generating 216 different weight vectors and 

cutoff values, each calculated after leaving one of the 216 rows out.   

For workflow 1, the single weight vector and cutoff value (discriminant criterion 𝑐) were 

recorded. For workflow 2, descriptive statistics of the 216 different weight vectors and cutoff values 

were computed. Specifically, the analysis included the largest weights in workflow 1, representing 

electrodes P1, P2, and P03. 

The cutoff values from workflow 2 were compared to the cutoff value of workflow 1 using 

one-sample t-tests, both when considering all rows and when only considering the misclassified rows. 

These misclassified rows were rows that were correctly classified in workflow 1 but misclassified in 

workflow 2 and might thus show a significant difference in cutoff value or weight vector. Cosine 

similarity was used to compare the 216 weight vectors from workflow 2 to the weight vector of 

workflow 1, with the mean cosine similarity computed both for all rows and for the misclassified 

rows. 

Sixty out of 216 rows were correctly classified in workflow 1 but misclassified in workflow 2. 

A detailed analysis of nine of these rows was conducted by displaying their corresponding cutoff 

values, and weights for P1, P2, and PO3. These rows included three with extremely low cutoff values, 

three with cutoff values close to the one from workflow 1, and three with extremely high cutoff 

values. 

For the three rows with cutoff values very close to that of workflow 1, the dot products of 

these rows with their weight vectors were computed. Additionally, the dot products with slightly 

altered weights and the weight vector from workflow 1 were calculated to understand how specific 

weights influence classification. 

LDA classifier development 

To improve the accuracy of the existing LDA classifier, several methods were employed. 

Based on the observation that some weights were irrationally large and that these weights 

corresponded to the electrodes with the lowest power values and least amount of variance, the 

computation of the weights in the LDA was altered. The quadratic nature of EEG power values 
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indicates that the weight vector needs to be normalized by the square root of the covariance matrices. 

This normalization approach adjusts for the influence of low-variance electrodes, which can 

disproportionately affect the weights.  

 Based on the difference between workflow 1 and 2 by Caspani (2022), modifications to the 

preprocessing of the data were considered, including outlier detection and the before mentioned 

artifact rejection. In addition, regularization techniques for the LDA were considered. LDA requires 

that a dataset has less features than samples. Therefore, an oversampling technique as well as outlier 

replacement were considered to keep as many samples as possible, as well as feature selection to 

reduce the number of features. Furthermore, LDA assumes a normal distribution, therefore a 

normalization technique was considered. Finally, because LDA assumes that the data is linearly 

separable whilst the collected data might not be linearly separable, the use of a Quadratic 

Discriminant Analysis (QDA) was considered. 

A link to the code implementing all that is described in this methods section can be found in 

Appendix C.  

Computation of LDA weights 

 Similar to the initial LDA, the mean vectors  𝑀𝑓  and 𝑀𝑠 for failed and successful stop 

trails were computed by summing all values of the trials 𝑋𝑖  per class and dividing by the 

number of trials 𝑛 (𝑀𝑓 = (
1

𝑛𝑓
) ∑ 𝑋𝑖 𝑖,𝑋𝑖∈ 𝐶𝑓

, 𝑀𝑠 = (
1

𝑛𝑠
) ∑ 𝑋𝑖 𝑖,𝑋𝑖∈ 𝐶𝑠

).  Covariance matrices 𝑆𝑓 

and 𝑆𝑠 for each class were calculated. However, the square root of these matrices were used 

and the within-class covariance matrix 𝑆𝑤 was found by taking the average of these 

covariance matrices ( 𝑆𝑤 =
√𝑆𝑓+√𝑆𝑠

2
 ), instead of adding them together. The weight vector 𝑤 

was calculated by 𝑤 = 𝑆𝑤 
−1(𝑀𝑓 − 𝑀𝑠). The discriminant criterion 𝑐 was computed by 

projecting 𝑤 onto the average of the mean vectors (𝑐 = 𝑤 ∙ (
𝑀𝑓+𝑀𝑠

2
)). 
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Outlier treatment 

Although the dataset was subjected to artifact rejection, outlier treatment was used on top of it 

because this might further improve classification accuracy. Even after artifact rejection, there can still 

be outliers in the data. Handling these outliers can further reduce variability in the data and make the 

data distribution more normal, which aligns better with the assumptions of LDA. 

Caspani (2022) addressed outliers by either removing rows with values above 5 or replacing 

such cells with the column mean. This threshold is arbitrary and the removal of rows reduced the 

datasets considerably in size. 

To statistically detect outliers, the current project uses the Interquartile Range (IQR) method. 

For each electrode-frequency column, the first quartile (Q1), median, and third quartile (Q3) were 

identified, and the IQR was calculated (Q3 - Q1). Upper (Q3 + 1.5 * IQR) and lower (Q1 - 1.5 * IQR) 

bounds were set, with outliers above or below these bounds. Instead of removal, outliers were 

winsorized by replacing values above the upper bound with the upper bound and values below the 

lower bound with the lower bound. 

Normalization 

Given that LDA assumes normally distributed data and the current data does not follow a 

normal distribution, normalization seemed necessary. Since the datasets contain power values 

(amplitudes squared), a log transformation was applied to each column in the dataset. 

Oversampling 

 Most participants' datasets have an unequal number of successful and failed trials. To prevent 

classifier bias towards the majority class, Galema (2021) balanced the data by randomly removing 

trials from the majority class. To retain more data, the current project used the Synthetic Minority 

Over-sampling Technique (SMOTE; Chawla et al., 2002) to oversample the minority class, generating 

synthetic samples close to the original samples in feature space. When this oversampling step was 

used, it was placed after making the train and test split in the data and applied to only the train set, to 

ensure that no data leakage was possible.  
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Regularization techniques 

The LDA classifier by Caspani (2022) showed overfitting, evidenced by a significant drop in 

accuracy from 73% (using all data) to 50% (using LOOCV). To address this, a variant of LDA was 

implemented where only the variances of the data were used, setting all off-diagonal values in the 

covariance matrices to zero. 

Another regularization method was also considered to prevent overfitting. L2 regularization, 

also known as ridge regression, adds a penalty term to the computation of the weight vector. This 

penalty term is the sum of the squares of the covariance matrix combined with a regularization 

parameter λ, which controls the strength of the penalty.  

Feature selection 

By means of feature selection, the approach that was implemented across all methods was 

averaging the theta frequency band (4-8 Hz), where the average of frequencies 4, 5, 6, and 7 Hz was 

used. In addition, using only the 26 frontal electrodes (Fp1, AF7, AF3, F1, F3, F5, F7, FT7, FC5, 

FC3, FC1, Fpz, Fp2, AF8, AF4, AFz, Fz, F2, F4, F6, F8, FCz, FC2, FC4, FC6, FT8) for classification 

was considered.  

Cross validation 

 In addition to the LOOCV method, k-fold cross validation was considered to evaluate 

performance. The dataset was randomly divided into five folds. Each fold served as a test set once and 

the remaining four folds were used for training.  

QDA classifier 

QDA was implemented to capture non-linear relationships and potentially improve 

classification performance. 

For each trial in the participant’s dataset, the LOOCV approach was used. One trial was left 

out as the test sample, while the remaining trials formed the training set. 
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For the training set, the mean vector µ𝑐 and covariance matrix Σ𝑐  were computed for each 

class 𝑐 (failed and successful stops) across all features. The square root of the covariance matrices 

were used. 

Next, for each class 𝑐, the quadratic discriminant function 𝑄𝑐 was computed using the 

formula: 𝑄𝑐(𝑥) =  −
1

2
ln|√Σ𝑐| −

1

2
(𝑥 − µ𝑐)𝑇√Σ𝑐

−1
(𝑥 − µ𝑐), where: 

• 𝑥 represents the feature vector of the left-out trial, 

• µ𝑐 is the mean vector of class 𝑐, 

• Σ𝑐 is the covariance matrix of class 𝑐, 

• |Σ𝑐| denotes the determinant of Σ𝑐, 

• Σ𝑐
−1 represents the inverse of Σ𝑐. 

For the left-out trial 𝑥, the quadratic discriminant function 𝑄𝑐 was calculated for each class 𝑐. The 

class ŷ that maximized the quadratic discriminant function 𝑄𝑐 was assigned to the left-out trial. This 

can be represented as:  ŷ = arg max
c

𝑄𝑐(𝑥) 

This process was repeated for each trial in the dataset. The number of correct classifications was 

then counted to evaluate the overall accuracy of the QDA classifier. 

Repeated measures ANOVA 

To evaluate the difference in frontal theta power between failed and successful trials, a 

repeated measures ANOVA was performed across all participants. This was a replication of the 

approach used by Caspani (2022) but with data incorporating artifact rejection and a different outlier 

treatment. The analysis focused on the FCz electrode, representing the frontal area, and used 

frequencies of 4, 5, 6, and 7 Hz. Outliers were detected using the Interquartile Range (IQR) method 

and replaced using winsorization. For each participant, trials were averaged across class and 

frequency, resulting in averaged FCz values. These values were then put into the repeated measures 

ANOVA. 
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Performance assessment  

Accuracy evaluation 

To compare the effectiveness of different preprocessing and classification techniques, each 

algorithm was run ten times. This was necessary due to the balancing of classes procedure, which is 

random. Balancing was performed either by randomly removing trials from the majority class or by 

randomly duplicating trials from the minority class using SMOTE. This randomness could lead to 

variability in the results; thus, running the algorithms multiple times ensured a more reliable 

comparison of their performance. 

For each run, each trial was assigned an accuracy score of 0 (incorrect) or 1 (correct). These 

scores were averaged to determine the accuracy for a single run. The accuracies from the ten runs 

were then averaged to obtain a final accuracy score per participant. To assess whether these average 

accuracies per participant were significantly different from chance (50%), a one-sample t-test was 

performed on the accuracy scores of all trials from the ten runs.  

For instance, if a participant had 150 trials, a total of 1500 accuracy scores were used in the t-

test, compared against a chance level of 50%. Because some trials were included in every run, there 

were duplicates in the t-test, which could artificially inflate the degrees of freedom and affect the 

significance level. To account for this, an alpha level of 0.0001 was set to ensure the test remained 

stringent despite the presence of duplicate data points.  

In addition, across participant accuracies were evaluated. Per classifier, the average accuracies 

for each participant was compared to a chance level accuracy value for each participant using a paired 

t-test. Thus, 30 accuracy values were compared to 30 values of 0.5 to test whether the average 

accuracy of a classifier was significantly different from chance level performance.  

Analysis of weight vectors 

For the methods that resulted in the most participants with significantly above chance 

accuracy, weight vectors were visualized. Per method, for participants that had an accuracy 

significantly higher than chance, the average weight vector over the ten runs was examined. These 
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weight vectors were visualized by plotting the weight components onto scalp electrodes. For 

participants with removed electrodes, the associated weights were set to zero for visualization.  

In addition, averaged weight vectors across participants with significant classification 

accuracy were visualized. For computing this average weight vector, the weights with value zero due 

to missing electrodes were ignored. 

For LDA, the weight vector was directly computed from the training data and represents the 

importance of each feature (electrode) in distinguishing between failed and successful stop trials. The 

average weight vector for each participant was obtained by averaging the weight vectors across the 

ten runs. These averaged weight vectors were visualized to identify the important electrodes. 

Unlike LDA, QDA models quadratic decision boundaries and does not directly use linear 

weights. However, it is possible to derive weights that relate to the linear terms of the QDA decision 

function by focusing on the linear part of the discriminant function: 𝑥𝑇Σ𝑐
−1µ𝑐. Here, Σ𝑐

−1µ𝑐 can be 

seen as an equivalent to the linear weights in LDA, where Σ𝑐 represents the covariance matrix and  µ𝑐 

denotes the mean vector for class 𝑐. This way, per class weight vectors were computed for each 

participant. These two weight vectors were then combined by averaging them to produce a single 

weight vector per participant. The resulting weight vectors were averaged across the ten runs. These 

average weight vectors for QDA were visualized similarly to LDA to identify the important electrodes 

for successful classifications. 

Results 

Comparison of workflow 1 and workflow 2 for participant 1 

Variability in the data of participant 1 is displayed in Figure 1, which shows a box plot for 

each of the 64 scalp electrodes.  

Table 1 displays the accuracies and their statistical significance for workflow 1 and workflow 

2 for participant 1. 

The cutoff value for participant 1 workflow 1 was 0.1187. The descriptive statistics of the 

cutoff values of workflow 2 for participant 1 are summarized in Table 2. 
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Workflow Accuracy P-value  

1 0.75 < 0.001 

2 0.48 0.50 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 

Accuracies for participant 1 in workflow 1 and 2 
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Note. Boxes represent Q1 to Q3 of the data, with a line at the median. The whiskers extend from 

the box to the farthest datapoint lying within 1.5 * IQR. The circles represent flier data points.  

 

Figure 1 

Box Plots of EEG Power Values across the 64 Scalp Electrodes 
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Min 25% Mean  75% Max SD 

-0.230 0.091 0.119  0.149 0.316 0.060 

 
 

The weight vector of workflow 1 is plotted in Figure 2, with specific weights for electrodes 

P1, P2, and P03 being 10.05, 3.02, and 22.22, respectively. Descriptive statistics for these weights in 

workflow 2 are provided in Table 3. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Weight Min 25% Mean  75% Max SD 

P1 -5.97 9.05 10.08  11.27 25.02 2.83 

P2 0.63 2.86 3.03  3.21 5.65 0.44 

PO3 12.89 20.67 22.23  23.41 37.98 2.88 

  
  

Table 2 

Descriptive Statistics of the Cutoff Values of Workflow 2 for participant 1 

Figure 2 

Representation of the Weight Vector for Participant 1 Workflow 1 

Note. Red indicates positive weight values, blue indicates negative weight values. 

 

Table 3 

Descriptive Statistics of Weights P1, P2, and PO3 of Workflow 2 for Participant 1 
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A one-sample t-test comparing the cutoff value of workflow 1 with the cutoff values from 

workflow 2 indicated no significant difference (p = 0.89). This lack of significant difference was 

present even when considering only the misclassified trials in workflow 2 (p = 0.90). 

 The mean cosine similarity between the weight vectors of workflow 2 and the weight vector 

of workflow 1 is 0.99, suggesting a very high degree of similarity. This high similarity remained even 

when analyzing only the weight vectors of misclassified trials (cosine similarity = 0.99). 

 Table 4 presents the cutoff values and weights  for electrodes P1, P2, and PO3 derived from 

workflow 2 for nine specific rows. These rows included three with very low cutoff values, three with 

cutoff value close that of workflow 1, and three with very high cutoff values. All these rows were 

correctly classified in workflow 1 but misclassified in workflow 2. 

 

 

 

Trial Cutoff value P1 weight P2 weight PO3 weight 

35 0.002 10.67 3.56 19.33 

68 0.014 3.51 3.25 27.63 

109 0.024 7.32 3.69 23.60 

159 0.119 12.50 3.10 18.75 

164 0.123 8.78 2.29 21.16 

116 0.123 7.17 2.12 23.58 

133 0.204 11.42 2.25 24.05 

152 0.266 11.91 3.47 21.12 

137 0.306 13.13 5.60 22.34 

 

 

 

Table 4 

Cutoff Value and P1, P2, and P03 Weights for 9 Misclassified Trials in Workflow 2 

Note. These rows were selected from the 60 trials that were correctly classified in workflow 1 but 

misclassified in workflow 2. 
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Trials 159, 164, and 116, which have cutoff values close to that of workflow 1, were 

misclassified as failed trials in workflow 2. The dot product of these data rows and their respective 

weight vectors resulted in values higher than the cutoff values (0.547, 0.560, 0.587, respectively). 

Changing the weights for P1, P2, and PO3 to those from workflow 1 did not alter the classification 

(0.534, 0.627, 0.582). However, using the entire weight vector from workflow 1, so changing the 

weights for all electrodes, resulted in correct classifications, with dot products of -0.168, -0.319, and -

0.377, respectively. These values were lower than the cutoff value, thus correctly classifying the rows 

as successful trials. 

Repeated measures ANOVA 

A repeated measures ANOVA was conducted to assess the effects of class and frequency on 

frontal theta power taken from the FCz electrode. Results of the ANOVA are summarized in Table 5. 

There was a significant main effect of class, F(1, 29) = 17.47, p < 0.001, η^2 = 0.004. Participants 

exhibited significantly different FCz values between class conditions. However, no significant main 

effect of frequency condition was observed, F(3, 87) = 1.32, p = 0.27, η^2 = 0.005, indicating that 

there were no significant differences in FCz values across frequency conditions. In addition, there was 

no significant interaction between class and frequency condition, F(3, 87) = 0.48, p = 0.695, η^2 = 

0.0002. Sphericity assumption was violated for the frequency condition effect (ε = 0.481), but not for 

the class effect (ε = 1.000). 

 

 

 

 Sum of 

Squares 

Ddof1 Ddof2 Mean 

Square 

F-statistic p-value ng2 eps 

class 2.032 1 29 2.032 17.474 0.00025 0.0035 1.000 

frequency 2.856 3 87 0.952 1.324 0.27189 0.0049 0.481 

Class * 

frequency 

0.110 3 87 0.037 0.483 0.69496 0.0002 0.764 

 

Table 5 

Repeated Measures ANOVA Results Assessing the Effects of Class and Frequency on 

Theta Power from the FCz Electrode 
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Performance assessment  

Accuracy evaluation 

 The average accuracies per participant for various preprocessing techniques applied to 

a variances-only LDA classification algorithm using averaged theta band data and all 64 

electrodes as features are shown in Table 6. Each algorithm was run ten times to account for 

variability due to the random balancing of classes. 

 Table 7 shows the average accuracies per participant for different regularization 

techniques applied to the LDA as well as the SMOTE method, with outlier treatment, again 

using averaged theta band data and all 64 electrodes as features.  

 Table 8 displays the average accuracies per participant QDA combined with different 

regularization techniques as well as the SMOTE method, with outlier treatment and using 

averaged theta and all electrodes. 

 Furthermore, methods that reached relatively high accuracies, LDA with L2 

regularization and SMOTE and QDA with L2 regularization and SMOTE, were applied to 

only the frontal electrodes. In addition, these methods were also tested using k-fold cross 

validation instead of LOOCV, on all electrodes. These results are shown in Table 9. 

 Finally, across participant accuracies were evaluated using paired t-tests. The results 

of these tests are displayed in Table 10.  
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Participant No outlier 

treatment 

Outlier treatment Outlier treatment 

and log-

transformation 

Outlier treatment 

and SMOTE 

Pp01 0,59 0,60 0,58 0,59 

Pp02 0,46 0,51 0,50 0,52 

Pp03 0,50 0,50 0,54 0,51 

Pp04 0,56 0,56 0,55 0,56 

Pp05 0,53 0,54 0,56 0,54 

Pp06 0,50 0,51 0,52 0,51 

Pp07 0,61 0,61 0,62 0,62 

Pp09 0,57 0,56 0,60 0,58 

Pp10 0,54 0,55 0,58 0,56 

Pp101 0,57 0,57 0,57 0,58 

Pp102 0,49 0,45 0,51 0,45 

Pp103 0,51 0,51 0,50 0,54 

Pp106 0,59 0,54 0,54 0,52 

Pp107 0,53 0,53 0,51 0,53 

Pp108 0,55 0,54 0,55 0,54 

Pp109 0,54 0,53 0,52 0,54 

Pp11 0,62 0,62 0,60 0,69 

Pp110 0,49 0,50 0,44 0,50 

Pp111 0,49 0,54 0,52 0,53 

Pp112 0,47 0,45 0,46 0,47 

Pp12 0,51 0,50 0,49 0,50 

Pp13 0,55 0,58 0,58 0,59 

Pp14 0,41 0,47 0,43 0,47 

Pp15 0,56 0,57 0,57 0,56 

Pp16 0,56 0,55 0,59 0,55 

Pp17 0,54 0,56 0,55 0,57 

Pp19 0,49 0,46 0,43 0,45 

Pp20 0,55 0,57 0,59 0,57 

Pp21 0,48 0,53 0,53 0,53 

Pp22 0,52 0,53 0,54 0,55 

Average 0.53 0.54 0.54 0.54 

 

 

 

Table 6 

Average Per Participant Accuracies for LDA Variances Only, Average Theta, 64 Electrodes 

 

 

Note. Colored cells represent accuracies that significantly differ from chance level (50%). Green 

cells contain values significantly higher and red cells contain values significantly lower than 50%. 
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‘ 

Participant No regularization L2 regularization  

 (λ = 10)  

L2 regularization  

(λ = 10) and SMOTE 

Pp01 0,55 0,59 0,59 

Pp02 0,50 0,56 0,60 

Pp03 0,50 0,52 0,54 

Pp04 0,55 0,55 0,57 

Pp05 0,51 0,54 0,54 

Pp06 0,48 0,50 0,51 

Pp07 0,61 0,61 0,61 

Pp09 0,54 0,52 0,54 

Pp10 0,52 0,54 0,55 

Pp101 0,54 0,57 0,57 

Pp102 0,43 0,46 0,45 

Pp103 0,53 0,52 0,52 

Pp106 0,55 0,57 0,55 

Pp107 0,53 0,54 0,54 

Pp108 0,55 0,55 0,55 

Pp109 0,55 0,52 0,53 

Pp11 0,52 0,58 0,69 

Pp110 0,50 0,50 0,49 

Pp111 0,52 0,53 0,53 

Pp112 0,44 0,44 0,47 

Pp12 0,50 0,49 0,49 

Pp13 0,58 0,57 0,57 

Pp14 0,43 0,51 0,47 

Pp15 0,55 0,56 0,55 

Pp16 0,60 0,56 0,55 

Pp17 0,57 0,55 0,56 

Pp19 0,48 0,47 0,46 

Pp20 0,60 0,59 0,59 

Pp21 0,51 0,54 0,54 

Pp22 0,52 0,54 0,56 

Average 0.53 0.54 0.54 

 

 

 

Table 7 

Average Per Participant Accuracies for LDA, Average Theta, Outlier Treatment, 64 electrodes 

 

 

Note. Colored cells represent accuracies that significantly differ from chance level (50%). Green 

cells contain values significantly higher and red cells contain values significantly lower than 50%.  
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Participant No regularization Variances only L2 regularization  

(λ = 10) 

L2 regularization  

(λ = 10) and SMOTE 

Pp01 0,55 0,60 0,59 0,57 

Pp02 0,44 0,49 0,58 0,60 

Pp03 0,50 0,50 0,54 0,53 

Pp04 0,44 0,58 0,51 0,58 

Pp05 0,54 0,54 0,53 0,55 

Pp06 0,45 0,52 0,48 0,52 

Pp07 0,51 0,61 0,59 0,59 

Pp09 0,50 0,55 0,55 0,54 

Pp10 0,46 0,54 0,52 0,52 

Pp101 0,53 0,57 0,56 0,58 

Pp102 0,54 0,45 0,43 0,42 

Pp103 0,52 0,52 0,49 0,52 

Pp106 0,53 0,54 0,55 0,56 

Pp107 0,54 0,55 0,51 0,51 

Pp108 0,55 0,54 0,55 0,54 

Pp109 0,53 0,52 0,52 0,63 

Pp11 0,99 0,59 0,60 0,81 

Pp110 0,45 0,49 0,48 0,59 

Pp111 0,55 0,53 0,53 0,51 

Pp112 0,46 0,46 0,46 0,56 

Pp12 0,55 0,54 0,48 0,50 

Pp13 0,48 0,57 0,57 0,59 

Pp14 0,44 0,42 0,45 0,46 

Pp15 0,44 0,58 0,56 0,57 

Pp16 0,61 0,56 0,59 0,60 

Pp17 0,60 0,55 0,54 0,55 

Pp19 0,40 0,44 0,48 0,53 

Pp20 0,60 0,57 0,58 0,59 

Pp21 0,58 0,51 0,53 0,53 

Pp22 0,56 0,55 0,56 0,57 

Average 0.53 0.53 0.53 0.56 

 

 

 

Table 8 

Average Per Participant Accuracies QDA, Average Theta, Outlier Treatment, 64 electrodes 

 

 

Note. Colored cells represent accuracies that significantly differ from chance level (50%). Green 

cells contain values significantly higher and red cells contain values significantly lower than 50%. 
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Participant LDA frontal 

electrodes 

QDA frontal 

electrodes 

LDA k-fold cv 

 (k = 5) 

QDA k-fold cv 

(k = 5) 

Pp01 0,60 0,60 0,58 0,55 

Pp02 0,59 0,59 0,57 0,61 

Pp03 0,57 0,57 0,50 0,48 

Pp04 0,56 0,56 0,57 0,52 

Pp05 0,56 0,56 0,55 0,51 

Pp06 0,50 0,52 0,48 0,50 

Pp07 0,59 0,60 0,61 0,55 

Pp09 0,54 0,56 0,50 0,48 

Pp10 0,54 0,48 0,54 0,51 

Pp101 0,59 0,59 0,57 0,59 

Pp102 0,49 0,42 0,45 0,44 

Pp103 0,53 0,50 0,50 0,48 

Pp106 0,56 0,56 0,56 0,56 

Pp107 0,53 0,52 0,52 0,55 

Pp108 0,55 0,55 0,54 0,56 

Pp109 0,49 0,62 0,51 0,62 

Pp11 0,66 0,76 0,63 0,79 

Pp110 0,50 0,57 0,45 0,58 

Pp111 0,50 0,50 0,52 0,52 

Pp112 0,45 0,49 0,47 0,54 

Pp12 0,48 0,47 0,52 0,46 

Pp13 0,57 0,58 0,58 0,57 

Pp14 0,53 0,51 0,45 0,46 

Pp15 0,56 0,57 0,53 0,55 

Pp16 0,55 0,59 0,55 0,62 

Pp17 0,55 0,55 0,55 0,55 

Pp19 0,49 0,50 0,50 0,51 

Pp20 0,57 0,58 0,58 0,58 

Pp21 0,54 0,54 0,57 0,57 

Pp22 0,56 0,57 0,58 0,59 

Average 0.54 0.55 0.53 0.55 

 

 

 

Table 9 

Average Per Participant Accuracies for LDA and QDA with L2 Regularization  (λ = 10) and 

SMOTE 

 

 

Note. Colored cells represent accuracies that significantly differ from chance level (50%). Green 

cells contain values significantly higher and red cells contain values significantly lower than 50%. 
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Classifier t df p-value 95% CI 

lower 

95% CI 

upper 

mean 

difference 

LDA var. only, no outlier 

treatment 3,4138 29 0,0019 0,0118 0,0469 0,0293 

LDA var. only 4,3559 29 0,0002 0,0187 0,0519 0,0353 

LDA var. only + log-

transformation 3,8267 29 0,0006 0,0163 0,0537 0,0350 

LDA_var. only + SMOTE 4,4641 29 0,0001 0,0219 0,0590 0,0405 

LDA 3,0373 29 0,0050 0,0083 0,0428 0,0256 

LDA + L2 regularization 5,1939 29 <0,0001 0,0221 0,0508 0,0364 

LDA + L2 regularization + 

SMOTE 4,7360 29 0,0001 0,0245 0,0618 0,0431 

LDA + L2 regularization + 

SMOTE + frontal electrodes 5,6638 29 <0,0001 0,0284 0,0606 0,0445 

LDA + L2 regularization + 

SMOTE + k-fold cv 4,0277 29 0,0004 0,0172 0,0526 0,0349 

QDA 1,4505 29 0,1577 -0,0113 0,0662 0,0275 

QDA var. only 3,7637 29 0,0008 0,0149 0,0505 0,0327 

QDA + L2 regularization 3,6195 29 0,0011 0,0130 0,0469 0,0299 

QDA + L2 regularization + 

SMOTE 4,9581 29 <0,0001 0,0341 0,0819 0,0580 

QDA + L2 regularization + 

SMOTE + frontal electrodes 4,6866 29 0,0001 0,0293 0,0747 0,0520 

QDA + L2 regularization + 

SMOTE + k-fold cv 3,8147 29 0,0007 0,0212 0,0701 0,0456 

 

 

 

 

Table 10 

Paired t-test Results for Across Participant Accuracy Evaluation 
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Analysis of weight vectors 

 Weight vectors were visualized by plotting the weight components onto scalp electrodes.  

Figure 3 displays the weight vectors for participants that reached an average accuracy 

significantly above chance level when using the LDA variances only with outlier treatment.  

The weight vectors for participants that reached a significant average accuracy when using the 

LDA with L2 regularization are shown in Figure 4.  

The linear weights derived from the QDA were also plotted onto scalp electrodes. Figure 5 

shows the weight vectors for participants that reached an average accuracy significantly higher than 

50% using the QDA variances only with outlier treatment.  

In addition, weight vectors for participants with significant accuracy when using the QDA 

with L2 regularization and outlier treatment are shown in Figure 6.  

Finally, the averaged weight vectors across participants with significant accuracy for these 

methods are displayed in Figure 7. Here, average weight vectors are displayed for the LDA with 

outlier treatment using variances only (A) or with L2 regularization (B) as well as for the QDA with  

outlier treatment and variances only (C) or with L2 regularization (D). 

Weight vectors for algorithms that included the SMOTE method were visually very similar to 

the same methods without SMOTE, therefore those weight vectors are not shown. 
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Figure 3 

Weight Vectors for Participants with Classification Accuracy Significantly Above 50% for the 

LDA Variances Only and Outlier Treatment 
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Figure 4 

Weight Vectors for Participants with Classification Accuracy Significantly Above 50% for the 

LDA with  L2 Regularization and Outlier Treatment 
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Figure 5 

Weight Vectors for Participants with Classification Accuracy Significantly Above 50% for the 

QDA Variances Only and Outlier Treatment  
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Figure 6 

Weight Vectors for Participants with Classification Accuracy Significantly Above 50% for the 

QDA with L2 Regularization  and Outlier Treatment  
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Discussion 

 In this section, there will first be an explanation for the observed difference in performance 

between workflow 1 and workflow 2 by Caspani (2022). Second, the ANOVA results will be 

interpreted. Next, the accuracies of the different classification algorithms as well as their visualized 

weight vectors will be discussed. Finally, the implications of these results will be considered as well 

as limitations to the current project, and future directions.  

 

 

Figure 7 

Average Weight Vectors Across Participants with Classification Accuracy Significantly 

Above 50% 

Note.  The figure shows the average weight vector for the LDA with outlier treatment using 

variances only (A) or L2 regularization (B) as well as for the QDA with outlier treatment using 

variances only (C) or L2 regularization (D). 
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Comparison of workflow 1 and workflow 2 

To investigate accuracy difference between Caspani’s 2022 workflow 1 and workflow 2, data 

from a single participant (participant 01) without artifact rejection was analyzed. For this participant, 

workflow 1 achieved an accuracy of 75%, which is significantly higher than chance level 

performance, while workflow 2 reached only 48%, which is not significantly different from chance. 

The boxplot analysis in Figure 1 reveals significant variability across electrodes, with values 

ranging from close to zero to the maximum threshold of 5. This variability could lead to considerable 

differences in weight vectors and cutoff values when a single trial is left out. Despite this, no 

significant difference was observed between the average of weight vectors and cutoff values of 

workflow 2 and the single weight vector and cutoff value of workflow 1, even when focusing on 

misclassified trials. However, the considerable variability in the cutoff values of workflow 2, ranging 

from -0.230 to 0.316, may cause misclassifications. 

The most influential weights for classification were those representing the P1, P2 and P03 

electrodes. Notably, altering these weights for trials with cutoff values close to that of workflow 2 did 

not significantly impact the dot product results to get correct classification. Only using the entire 

weight vector of workflow 1 lead to correct classification. This highlights influence of the weight 

vector as a whole, as opposed to individual weights, on classification outcomes.  

A considerable observation is that the largest weights corresponded to the electrodes with the 

lowest power values and least variance, as indicated by Figure 1, which was unexpected.  

To summarize, the accuracy difference between workflow 1 and workflow 2 can attributed to 

a high variability in workflow 2’s cutoff values as well as some variability its weights. Notably, even 

minor alterations across all weights can significantly impact classification outcomes. This variability 

was caused by a large variability in the dataset as well as a model that is prone to overfitting, which 

means that leaving one row out can result in a very different weight vector and cutoff value. 

To attenuate the influence of data variability on the weight vector and cutoff value, several 

techniques can be used. Artifact removal, normalization, and outlier treatment could reduce the 

variability in the dataset. In addition, regularization techniques could decrease the sensitivity of the 
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classifier making it less prone to overfitting. Furthermore, altering the computation of the weights by 

using the square root of the covariance matrices could adjust for the disproportionate influence of 

electrodes with low variance. 

Interpretation of ANOVA results 

The repeated measures ANOVA showed a significant main effect of class on frontal theta 

power at the FCz electrode, indicating that participants exhibited significantly different FCz values 

between successful and failed stop trials. This suggests that frontal theta power is a discriminating 

feature between successful and failed stop trials, supporting its use for the improvement of 

classification accuracy of the LDA algorithm. The observed effect size, although small (η^2 = 0.004), 

emphasizes the consistency of this difference across all participants.  

In contrast, the lack of a significant main effect of frequency condition implies that there were 

no meaningful differences in FCz values across the four frequencies (4,5,6 and 7 Hz).  

In addition, the absence of a significant interaction between class and frequency condition 

indicates that the theta band, as a whole, may be a more reliable indicator of trial type than specific 

frequencies within the theta range. 

Interpretation of accuracy evaluations 

The initial exploration of the LDA classifier using only the variances, displayed in Table 6,  

provided insight into the impact of various preprocessing techniques on classification performance. 

Overall, outlier treatment improved classification, with 13 out of 30 participants achieving 

significantly above-chance accuracy compared to 10 without outlier treatment. Log-transformation 

did not improve the algorithm. The SMOTE method did further improve the algorithm, as indicated 

by an increase in participants with significant above-chance accuracies to 15. 

The exploration of combining LDA with L2 regularization, shown in Table 7, revealed 

improved performance compared to a regular LDA. The regular LDA performed worse than the LDA 

using variances only, with only eight participants yielding an accuracy significantly above chance. 

Combining the regular LDA with L2 regularization resulted in performance closer to that of LDA 
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with variances only. Adding the SMOTE method lead to performance very similar to that of the LDA 

with variances only and SMOTE. 

QDA classifier performance, displayed in Table 8, indicates that its performance can be better 

than that of LDA. The highest number of participants (18) with accuracies significantly above chance 

was reached with the QDA combined with L2 regularization and the SMOTE method. 

Finally, as displayed in Table 9, selecting only the frontal electrodes for LDA and QDA did 

not lead to further improvements. Replacing the LOOCV by k-fold cross validation decreased the 

performance of both classifiers slightly. However, computational time decreased significantly. 

Running these algorithms with five-fold cross validation instead of LOOCV resulted in approximately 

a fivefold reduction of computational time. 

Across participant accuracy evaluation, shown in Table 10, indicates that the combination of 

QDA with L2 regularization and SMOTE performed best. This method yielded a mean difference of 

5.8% against chance level performance (p < 0.0001). All other methods, except for the regular QDA ( 

p = 1.577)., achieved across-participant accuracies significantly above chance level. 

 These observations indicate that it is important to ensure large datasets and select the 

appropriate preprocessing and regularization techniques to improve classifier performance. The IQR 

method and winsorization, by means of outlier treatment, improved performance and handled outliers 

without reducing the datasets in size. Normalizing the data by adding a log-transformation decreased 

performance, indicating that this approach may introduce complexities without substantial benefits. 

The SMOTE method for class balancing did further improve performance for both LDA and QDA, 

highlighting the importance of large datasets, as SMOTE results in larger datasets than balancing by 

removal of trials from the majority class. However, SMOTE involves data augmentation which 

introduces increased computational complexity and the risk of overfitting. Therefore, a better 

approach to improve classifier performance would be to ensure that each participant reaches a large 

number of both failed and successful trials in the SST. For both the LDA and QDA, performance was 

best when combining SMOTE with L2 regularization, suggesting that L2 regularization is a good 

method to prevent overfitting. Selecting only the frontal electrodes did not lead to improvements. This 

finding suggests that LDA and QDA in combination with L2 regularization were able to adjust the 
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weights in a way that is better than manual feature selection. Weighing the considerable decrease in 

computational time against the slight decrease in performance when using k-fold cross validation, it 

seems that k-fold cross validation is a viable option when computational time is a consideration.  

Interpretation of weight vectors 

 It was expected that frontal theta was predictive of successful response inhibition in the SST, 

with higher power values in the theta range for successful trials. Trials were classified as successful 

when their dot product with the weight vector was below the cutoff value. This means that negative 

weight values are expected at the frontal electrodes for the LDA.  

 Individual weight vectors for the LDA, displayed in Figure 3 and 4, did not show this pattern. 

While some participants had large negative weights across the frontal electrodes, these weights also 

appeared in more posterior regions. Furthermore, some participants did not have large negative 

weights across the frontal electrodes at all. Finally, each participant’s weight vector differed 

considerably, which complicates their interpretation.  

 Notably, individual weight vectors derived here differ from those in by Caspani (2022) 

(Figure 2), with weights now being more distributed. This suggests that the modification to the 

computation of the weights, which included taking the square root of the covariance matrices, was 

effective in adjusting disproportionate the influence of low-variance electrodes. 

 QDA does not directly use linear weights. However, such weights were derived using the 

linear terms of the QDA decision function in order to visualize which electrodes were important for 

successful classification. Per class weigh vectors were computed and those were averaged per 

participants. The resulting weights are different to interpret than the LDA weights. Here, large 

weights indicate that the corresponding electrodes were important for classification. Thus, large 

weights are expected at the frontal electrodes. 

 As displayed in Figure 5 and 6, for most participants such a pattern was not clearly visible. 

Again, some participants had large weights across the frontal electrodes but also in more posterior 

regions and some participants did not show large weights across the frontal electrodes. Notably, for 

the QDA variances only, for most participants the weights were widely distributed. The QDA with L2 
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regularization shows more of a focus on specific electrodes. Interestingly, for participant 02, a single 

large weight can be found at the Fz electrode. This finding is most consistent with expectations, 

although it is present in only one of the participants.  

 The average weight vectors across participants, displayed in Figure 7, did show a focus on the 

frontal electrodes. In addition, large weights were distributed across the central and left parietal and 

occipital electrodes. These findings are consistent across three of the four visualized average weight 

vectors. Only the QDA with variances only (Figure 7C) does not show such a pattern or any clear 

pattern at all. 

 Thus, when classifying pre-stimulus theta power data into successful and failed response 

inhibition there is an overall focus on frontal and parietal electrodes. This is consistent with previous 

research associating proactive control with frontoparietal theta activity (Cooper et al., 2015; Cooper et 

al., 2017). Furthermore, this finding also aligns with previous research associating the inferior frontal 

region and pre-SMA to response inhibition (Huster et al., 2013).  

Limitations 

The current project has a few limitations. First, while classification accuracies significantly 

higher than chance level were reached, they remained relatively low, with a maximum average 

accuracy of 56%. Although statistically significant, these low accuracies are likely not practically 

significant. Consequently, the visualized weight vectors might not be very meaningful. The weight 

vectors for participants with classification accuracies significantly above chance were visualized. 

However, even those participants had many misclassifications. Therefore, these weight vectors might 

not accurately capture the electrodes of importance in distinguishing between successful and failed 

response inhibition. Another consideration is that each classification algorithm reached significantly 

below chance level accuracies for at least one of the 30 participants, indicating that the classifiers may 

lack robustness. Finally, the observed variability in classifier outcomes across repeated runs suggests 

a degree of instability in the classifiers.  
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Conclusion 

The results of the current project show the importance of selecting appropriate preprocessing 

and regularization techniques to improve classifier performance. Results were consistently improved 

when outlier treatment was employed. In addition, SMOTE further improved accuracy, but its 

application needs to be weighed against the possibility of overfitting and its computational load. 

Ensuring large datasets during experimentation is probably a better option. The effectiveness of L2 

regularization was shown by improved accuracies. Feature selection of the frontal electrodes did not 

improve classification accuracy. While k-fold cross validation decreases classification accuracies 

slightly, its computational efficiency makes it a practical consideration. The best performance was 

obtained when QDA was combined with SMOTE and L2 regularization.  

The observed variability in classifier performance across participants suggests that 

individualized optimization may be beneficial. However, individualized optimization will likely cost 

considerable computational resources and may lack generalizability. A one-size-fits-all approach may 

be less accurate for some individuals but offers more consistency and generalizability. In addition, 

such an approach is easier to implement and prevents ongoing optimization for every participant. 

Future research should focus on further improving preprocessing and regularization methods 

as well as explore (extends of ) individualized optimization, in order to investigate the neural markers 

of proactive response inhibition. Uncovering the predictors of response inhibition, that may remain 

undetected by univariate methods, offers insights into the neural mechanisms underlying this 

cognitive process. 
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Appendix A 

The preprocessing steps performed using BrainVision Analyzer 2.3. 

 

 
 
*** New Reference *** 

Selected channels to include into the new reference: 

EXG5  

The implicit reference is included in the calculation of the new reference. 

 

Channels to which the new reference applies to: 

AF3 AF4 AF7 AF8 AFz C1 C2 C3 C4 C5 

C6 CP1 CP2 CP3 CP4 CP5 CP6 CPz Cz F1 

F2 F3 F4 F5 F6 F7 F8 FC1 FC2 FC3 

FC4 FC5 FC6 FCz Fp1 Fp2 Fpz FT7 FT8 Fz 

Iz O1 O2 Oz P1 P10 P2 P3 P4 P5 

P6 P7 P8 P9 PO3 PO4 PO7 PO8 POz Pz 

T7 T8 TP7 TP8  

Remaining (non rereferenced) channels are kept. 

 

Name of the new reference channel: right mastoid 

 

*** Formula Evaluator *** 

 

The following formulas were calculated: 

VEOG = EXG4 - EXG3    Unit: µV 

HEOG = EXG1 - EXG2    Unit: µV 

 

The remaining channels were kept. 

The new channels are on top. 

 

*** Edit Channels *** 

 

The following channels have been disabled: 

EXG1 EXG2 EXG3 EXG4 

EXG5 EXG6 EXG7 EXG8 

Status  

 

*** Change Sampling Rate / Resolution *** 

Conversion is based on spline interpolation. 

New Sampling Rate [Hz]: 64 

New Sampling Interval [µs]: 15625 

Data was filtered before downsampling with 28.8Hz, 24dB/oct. 

 

*** IIR Filters *** 

Zero phase shift Butterworth filters. 
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Data stored in continuous filter cache. 

 

Global filter settings: 

Low cutoff: 0.5 Hz, time constant 0.31830988618379069, order 2 

High cutoff: 28.8 Hz, order 2  

Notch filter: --- 

 

*** Segmentation *** 

Segmentation relative to reference marker positions 

Reference markers: 

    Stimulus    S 22 

    Stimulus    S 21 

Advanced Boolean Expression: 

    --- 

Segment size and position relative to reference markers: 

Start: -1000.00 ms, End: 1500.00 ms, Length: 2500.00 ms 

Allow overlapped segments? Yes 

Skip bad intervals?        Yes 

 

Data was not stored but will be calculated on demand. 

 

*** Ocular Correction (Gratton & Coles) *** 

Name of HEOG channel: HEOG 

Common reference 

Name of VEOG channel: VEOG 

Common reference 

 

The following channels have been selected for correction: 

Fp1 AF7 AF3 F1 

F3 F5 F7 FT7 

FC5 FC3 FC1 C1 

C3 C5 T7 TP7 

CP5 CP3 CP1 P1 

P3 P5 P7 P9 

PO7 PO3 O1 Iz 

Oz POz Pz CPz 

Fpz Fp2 AF8 AF4 

AFz Fz F2 F4 

F6 F8 FT8 FC6 

FC4 FC2 FCz Cz 

C2 C4 C6 T8 

TP8 CP6 CP4 CP2 

P2 P4 P6 P8 

P10 PO8 PO4 O2 

 

*** Edit Channels *** 

 

The following channels have been disabled: 

VEOG HEOG  

 

*** Artifact Rejection - Automatic Inspection *** 

 

Used Channels: 64 

AF3 AF4 AF7 AF8 AFz C1 C2 C3 C4 C5 C6 CP1 CP2

 CP3 CP4 CP5 CP6 CPz Cz F1 F2 F3 F4 F5 F6

 F7 F8 FC1 FC2 FC3 FC4 FC5 FC6 FCz Fp1 Fp2 Fpz

 FT7 FT8 Fz Iz O1 O2 P10 P3 P4 P5 P6 P7

 P8 P9 PO4 PO7 PO8 POz Pz T7 T8 TP7 TP8 Oz

 P1 P2 PO3  

Check Gradient:  

Maximal allowed voltage step: 50 µV/ms 

Mark as Bad:   Before Event: 200 ms  After Event: 200 ms 

Check Difference (Max-Min):  

Maximal allowed difference of values in intervals: 100 µV 

Interval Length: 100 ms 

Mark as Bad:   Before Event: 200 ms  After Event: 200 ms 

Check Amplitude:  
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Minimal allowed amplitude: -200 µV 

Maximal allowed amplitude: 200 µV 

Mark as Bad:   Before Event: 200 ms  After Event: 200 ms 

Check Low Activity:  

Lowest allowed activity in intervals: 0.5 µV 

Interval Length: 100 ms 

Mark as Bad:   Before Event: 200 ms  After Event: 200 ms 

 

*** Segmentation *** 

Segmentation relative to reference marker positions 

Reference markers: 

    Stimulus    S 22 

    Stimulus    S 21 

Advanced Boolean Expression: 

    --- 

Segment size and position relative to reference markers: 

Start: -1000.00 ms, End: 1500.00 ms, Length: 2500.00 ms 

Allow overlapped segments? Yes 

Skip bad intervals?        Yes 

 

Data was not stored but will be calculated on demand. 

 

*** Segmentation *** 

Segmentation relative to reference marker positions 

Reference markers: 

    Stimulus    S 22 

    Stimulus    S 21 

Advanced Boolean Expression: 

    S1 (0, 1000) or S2(0, 1000) 

Segment size and position relative to reference markers: 

Start: -1000.00 ms, End: 0.00 ms, Length: 1000.00 ms 

Allow overlapped segments? Yes 

Skip bad intervals?        No 

 

Data was not stored but will be calculated on demand. 

 

*** Fast Fourier Transformation (FFT) *** 

Maximum Resolution 

Power 

Non-Complex Output 

Half Spectrum used 

 

Data Window:  

Hanning Window  

Length = 10 % 

Variance Correction used 

Periodic 

 

*** Generic Data Export *** 

File name parameter: failed$h 

File extension: .dat 

Write header file: yes 

Write marker file: no 

Format: ASCII 

Orientation: VECTORIZED 

Line Delimiter: CRLF (PC style) 

Add channel names: yes 

Overwrite default decimal symbol: no 

Export all channels: yes 

 

*** Segmentation *** 

Segmentation relative to reference marker positions 

Reference markers: 

    Stimulus    S 22 

    Stimulus    S 21 

Advanced Boolean Expression: 

    not S1 (0, 1000) and not S2(0, 1000) 

Segment size and position relative to reference markers: 
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Start: -1000.00 ms, End: 0.00 ms, Length: 1000.00 ms 

Allow overlapped segments? Yes 

Skip bad intervals?        No 

 

Data was not stored but will be calculated on demand. 

 

*** Fast Fourier Transformation (FFT) *** 

Maximum Resolution 

Power 

Non-Complex Output 

Half Spectrum used 

 

Data Window:  

Hanning Window  

Length = 10 % 

Variance Correction used 

Periodic 

 

*** Generic Data Export *** 

File name parameter: successful$h 

File extension: .dat 

Write header file: yes 

Write marker file: no 

Format: ASCII 

Orientation: VECTORIZED 

Line Delimiter: CRLF (PC style) 

Add channel names: yes 

Overwrite default decimal symbol: no 

Export all channels: yes 
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Appendix B 

Per participant removed electrodes and the amount of remaining trials.  
 

Ptp Removed electrodes Failed 

trials 

Success 

trials 

Total Balanced 

total 

Pp01 P1, PO3 80 92 172 160 

Pp02 FPz, F7, F8,  FT7 93 36 129 72 

Pp03 P2 80 69 149 138 

Pp04 - 86 55 141 110 

Pp05 - 102 72 174 144 

Pp06 - 96 82 178 164 

Pp07 - 101 70 171 140 

Pp09 - 93 70 163 140 

Pp10 P1 85 75 160 150 

Pp101 Iz 135 112 247 224 

Pp102 - 115 124 239 230 

Pp103 - 102 135 237 204 

Pp104 Excluded from further analysis. Only 6 successful trials even before artifact rejection. 

Pp106 - 86 101 187 172 

Pp107 - 143 135 278 270 

Pp108 - 125 126 251 250 

Pp109 - 103 180 283 206 

Pp11 T7 141 29 170 58 

Pp110 - 84 137 221 168 

Pp111 - 122 120 242 240 

Pp112 P2 71 142 213 142 

Pp12 - 75 92 167 150 

Pp13 FPz, FP1, FP2, AFz, AF3, AF4, AF7, AF8, F8 60 77 137 120 

Pp14 FPz, FP1, FP2, AFz, AF7, AF8, F1, F3, F4, F5, 

F7, F8,  FC5, POz,  P9, T7 

66 71 137 132 

Pp15 - 64 86 150 128 

Pp16 P1, PO3 76 85 161 152 

Pp17 POz, P03, Pz, P1, P2, CPz, Oz 62 91 153 124 

Pp18 Excluded from further analysis. All electrodes have artifacts for 100% of the trials. 

Pp19 P1, PO3, PO7, PO8 55 89 144 110 

Pp20 Pz, P1, P8, PO3 64 97 161 128 

Pp21 FP1, Pz, P1, P3, P5, PO3, PO7 77 72 149 144 

Pp22 Pz, PO3 105 78 183 156 

 

Appendix C 

The code for the classifiers as well as for the statistical tests can be found here: 

https://github.com/laravancappelle/classification_response_inhibition.git 
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