
Exploring the Potential of Large Language
Models in Supporting Domain Model Derivation

from Requirements Elicitation Conversations

Sander van Nifterik

A master thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science
with the

Master Business Informatics
of

Utrecht University.

Department of Information and Computing Sciences

July 18, 2024

Declaration

No portion of the work contained in this document has been submitted in support of an application

for a degree or qualification of this or any other university or other institution of learning. All

verbatim extracts have been distinguished by quotation marks, and all sources of information have

been specifically acknowledged.

ChatGPT will only be used clarify concepts unknown to the author, or to help rewrite an

original sentence. It’s output will in not be used verbatim.

Signed:

Date: July 18, 2024

Abstract

In the last few years, digital meetings to elicit requirements for a system-to-be have become com-

monplace. This allows for collecting data about the system-to-be; sometimes in the form of con-

versation transcripts. After such conversation have taken place, domain models are created in order

to represent the domain in which the system-to-be will operate. This thesis aims to semi-automate

this process by exploring the potential of Large Language Models (LLMs) to support the domain

model derivation task from requirements elicitation conversations.

To evaluate effectiveness, we devised metrics for comparing domain models created by a

human with domain models created by an LLM. The results indicate that LLMs can aid in the

creation of domain models, showing high levels of agreement with human-generated models re-

garding entities, attributes, and relationships. However, LLMs also produced several unusable

elements, highlighting the necessity of human oversight.

The study concludes that LLMs offer substantial promise in enhancing domain modeling

efficiency, but require careful integration to mitigate errors. Key limitations include the rapid evo-

lution of LLM technology and the specific contexts of the datasets used. Future work should focus

on including more than one human modeler, or including people from the industry. Recommenda-

tions include developing best practices for LLM use in the field of requirements engineering, and

exploring the balance between automated assistance and human expertise.

Acknowledgements

I would like to thank my first supervisor Fabiano Dalpiaz for all the support throughout this project.

I really appreciated the in which he supervised the project. This has really helped me a lot.

Furthermore, I would like to thank Tjerk Spijkman. Although not an official supervisor, his

input has been greatly appreciated.

Contents

1 Introduction 11
1.1 Background . 11

1.1.1 Conversational requirements engineering 11

1.1.2 Domain modelling in RE: An Overview 12

1.1.3 This research . 13

1.2 Research gap . 13

1.3 Aims and objectives . 14

1.3.1 Research questions . 14

1.4 Significance . 15

1.5 Limitations . 16

1.6 Outline . 17

2 Literature review 18
2.1 Introduction . 18

2.2 Procedure . 18

2.3 Requirement elicitation interviews . 19

2.3.1 Success criteria . 21

2.3.2 Conversation types . 22

2.4 Large Language Models . 23

2.4.1 Introduction . 23

2.4.2 Types of LLMs . 23

2.4.3 BERT . 24

2.4.4 GPT . 26

2.4.5 Prompt engineering . 27

2.4.6 Patterns . 28

2.4.7 Zero-shot, one-shot, few-shot . 30

2.5 Domain modelling . 31

2.5.1 Introduction . 31

2.5.2 Modelling languages . 31

2.5.3 Model quality . 31

3 Research method 37
3.1 Introduction . 37

3.2 Research philosophy and type . 37

CONTENTS 6

3.3 Research design . 37

3.3.1 Preamble . 37

3.3.2 General . 38

3.3.3 Procedure . 38

3.3.4 Research Instrument . 40

3.3.5 Considerations . 40

3.3.6 Data analysis guidelines . 40

4 Results 42
4.1 Introduction . 42

4.2 Initial Experimentation . 42

4.2.1 Start . 42

4.2.2 Traceability . 44

4.2.3 Normalization . 49

4.2.4 Prompts . 56

4.3 Primary experiment . 58

4.3.1 Introduction . 58

4.3.2 Hypotheses . 58

4.3.3 Agreement H1 . 58

4.3.4 Usable element creation H2 . 62

4.3.5 Unusable element creation H3 . 66

5 Discussion 70
5.1 Discussion . 70

5.1.1 Key findings . 70

5.1.2 Interpretation & Validity . 70

5.1.3 Recommendations for implementation 72

5.1.4 Summary . 72

6 Conclusion 73
6.1 Overall findings in relation to the research aims 73

6.1.1 Research aims and questions . 73

6.1.2 Broader implications . 74

6.2 Contributions . 74

6.3 Limitations . 75

6.4 Recommendations for future research . 76

A Ethics and privacy quick scan 87

B Online Appendix 95
B.1 Elaboration . 95

B.2 Experiment Cases . 95

B.3 Initial experimentation . 96

B.4 Normalization . 96

CONTENTS 7

B.5 Normalization testing . 96

B.6 Prompts . 96

B.7 Quantification . 96

B.8 Quantified Results . 96

B.9 Traceability . 96

C Scenarios 97
C.1 Elaboration . 97

C.2 Shorthands . 97

C.3 Scenarios . 97

D Prompt guideline information 99

List of Tables

2.1 Procedural prompt for requirement elicitation interviews [34]. 20

2.2 A comparison between Traditional ML, Deep learning, and LLMs [49]. 23

2.3 An approach to capture prompt patterns systematically [63]. 29

2.4 Exclusion criteria for classes in UML diagrams [74]. 32

2.5 The mapping of requirements artifacts to state machine diagram concepts [79]. . 33

2.6 Ontological guidelines for the use of association classes in UML diagrams [85]. . 34

2.7 The mapping of ontological concepts to the modelling objects [85]. 35

4.1 The percentage of agreement per modelling element. 59

4.2 The number of entities based on direct knowledge for each case. 59

4.3 The number of attributes based on direct knowledge for each case. 60

4.4 The number of relationships based on direct knowledge for each case. 60

B.1 Experiment cases elaboration . 95

List of Figures

1.1 An overview of conversational RE research. 12

2.1 An overview of the scope of the thesis, with the three essential parts of the litera-

ture review highlighted. 18

2.2 A visualization of the transformer architecture [51] 24

2.3 A visualization of BERT’s bi-directional versus GPT’s unidirectional nature[47]. 25

2.4 A visualization of the BERT architecture [47] 25

3.1 A Venn diagram showing the foundation on which the knowledge types and sce-

narios are based. 39

3.2 An overview of experiment procedure. 40

4.1 A generated model made with the initial prompt. 43

4.2 A manually made domain model to use for comparison. 47

4.3 A generated domain model. 48

4.4 A generated domain model using the improved prompts and the normalization

prompts. 57

4.5 Visualizations showing the agreement and disagreement between the human and

the LLM when modeling (a) entities, (b) attributes, and (c) relationships. 61

4.6 A visualization showing the overall agreement and disagreement, between the hu-

man and the LLM, when modelling elements. 62

4.7 A visualization of the distribution of usable entities modelled. 63

4.8 A visualization of the distribution of usable attributes modelled. 64

4.9 A visualization of the distribution of usable relationships modelled. 64

4.10 A visualization of the distribution of usable cardinalities modelled. 65

4.11 A visualization of the distribution of usable elements created. 66

4.12 A visualization of the distribution of unusable elements created, between the hu-

man and the LLM, when modelling entities. 67

4.13 A visualization of the distribution of unusable elements created, between the hu-

man and the LLM, when modelling attributes. 67

4.14 A visualization of the distribution of unusable elements created, between the hu-

man and the LLM, when modelling relationships. 68

4.15 A visualization of the distribution of unusable elements created, between the hu-

man and the LLM, when modelling cardinalities. 69

LIST OF FIGURES 10

4.16 A visualization of the distribution of unusable elements created, between the hu-

man and the LLM, when modelling. 69

Chapter 1

Introduction

The process of designing software systems typically starts with having conversations to elicit

requirements. Requirements elicitation is concerned with the activities of seeking, uncovering,

acquiring, and elaborating requirements [1]. Domain modelling is another initial activity that

takes place early on in this process. It can be done without input requirements, for example

as a synthesis of a requirements elicitation conversation, based on a initial set of requirements.

Domain modelling helps getting to a more concrete overview of the domain/environment in which

the system will operate [2].

The extraction of useful information from requirements elicitation conversations is a time

consuming task. This task relies almost completely on the notes and memory of the analyst(s)

present at these conversations. This research aims to identify if such Large Language Models

(LLMs) form an opportunity to support the derivation of domain models from requirement elici-

tation conversations transcripts.

This chapter will introduce the research topic by discussing first the background and context,

followed by the research problem, aims, and objectives. Thereafter, the significance and limita-

tions will be discussed.

1.1 Background
1.1.1 Conversational requirements engineering

The research that is conducted in this thesis is closely related to a larger research effort: the PhD

research that is being conducted by Tjerk Spijkman. Relevant to this research is the focus on

conversational RE. The aim of conversational RE part of his research is to try and build an under-

standing of the processes that are conducted by humans, in order to guide possible automation and

tool supported designs. Examples of such processes are domain modelling, process modelling,

or conducting elicitation interviews. The first paper on this topic provided an empirical under-

standing of the fit-gap analysis elicitation technique [3]. Through the analysis of transcripts of

requirements elicitation conversations, they defined requirements categories, each with their own

keywords and phrases. This set of keywords and phrases is offered as a potential starting for the

possible automation of identifying such categories. The second paper focused on the development

of Trace2Conv, a (prototype) tool that used Natural Language Processing (NLP) to identify con-

cepts in transcripts [4]. The third paper focuses on pre-requirements specification traceability. It

introduced a NLP tool that allows for tracing certain user story requirements back to the relevant

1.1. BACKGROUND 12

speaker turns in the transcript [5]. Lastly, the fourth paper focuses on the summarizing require-

ment elicitation conversations [6]. They have created a prototype which summarizes transcribed

requirements elicitation conversations, using NLP. An overview of the research on conversational

RE, and how this research relates to the thesis, can be found in Figure 1.1. In the visualization, it is

illustrated how all the research starts with requirement elicitation conversations. Next, the general

direction of the paper is shown, followed by the output of paper. Lastly, the general outcome of

the paper is mentioned.

Figure 1.1: An overview of conversational RE research.

1.1.2 Domain modelling in RE: An Overview
To understand the relevance of this research, it is important to highlight the relevance of domain

modelling in the RE process. In earlier research, several studies focused on the relationship be-

tween requirements engineering and conceptual modelling [7]–[10]. An example is the use of a

requirements engineering based conceptual modelling approach to improve the software produc-

tion process [7]. Another example looks into extending standard conceptual model elements, such

as data, process, event, with extra elements [8]. These extensions can be used to create enriched

conceptual models.

Later, research efforts were focused on the relationship between requirements engineering

and the agile way of working [11]–[14]. An example of this is research that aimed to enhance

the body of knowledge in software development by evaluating the engagement of stakeholders

and users in Agile Requirements Engineering (RE) [11]. The study offered methods to apply ag-

ile software development with a human centered focus. Furthermore, it presented an overview on

how to do requirements management within agile software development. De Lucia et al. examined

the challenges that can be encountered in agile requirements engineering [13]. It is a systematic

literature review that looked into the requirements engineering practices in agile software develop-

ment, and the challenges that agile team members face when working on requirements engineering

1.2. RESEARCH GAP 13

activities.

More recently, research efforts are more focused on automation, traceability, and NLP [15]–

[17]. For example, using a LLM to check for requirement completeness [17] or using AI in order

to trace back domain modelling decisions to problem descriptions, or vice versa [16].

Overall, it becomes clear that the focus of current research efforts into domain modelling for

RE, are now looking into AI supported automation.

1.1.3 This research
As mentioned before, extracting important information from requirements elicitation conversa-

tions is a time-consuming activity. Imagine having to work through all the physical contents

produced in a meeting, for example handwritten notes, flip-over papers, or lo-fi prototypes. More

recently, however, virtual meetings have become more and more commonplace [18]. During the

recent COVID-19 pandemic, virtual meetings have even become mainstream [19]. These digital

meetings, for example via Microsoft Teams, can be recorded and transcribed automatically, and

with good accuracy [20], [21]. This has made it easier to keep data on these conversations without

effort. With the emergence of LLMs, processing of text, or leveraging a model to generate text,

has become a bigger research interest. Researchers from all kinds of domains, such as education,

health care, real-estate, and software production, are studying the potential applications and the

effects of LLMs in their field [22]–[25]. The same goes for the field of RE [17], [26], [27].

1.2 Research gap
As established in the background, research into LLMs is very active at the moment. However,

since research into LLMs is relatively new, there is still a lot left to explore. This is also true

for LLMs in conjunction with requirements engineering, as will become clear in this section.

Examples of current research, and their shortcomings, can be found taking different kinds of per-

spectives.

An example of this is letting a LLM deal with incompleteness of requirements [26]. In this

study, a LLM is being trained to recognize incompleteness in requirements by means of a masked-

word prediction task. The incompleteness of a requirement was simulated by leaving out words,

instead of analyzing human made mistakes. According to the researchers, this limited their ability

to generalize the findings to a more practical application. Furthermore, it was stated that more

research should be done in order to test their approach. This example clearly shows that there is

still a need for validation of LLM approaches in a real world setting with human participants, and

that the practical implications of LLM in RE is not established on a large scale.

Another perspective that is currently looked into is prompt patterns. A study was done to

try and identify prompt patterns for software engineering (SE) tasks, such as: improving code

quality, refactoring, requirements elicitation, and software design [27]. The authors identified

various prompt patterns and the format in which these were presented. One of the two primary

conclusions of the study was the big potential LLMs have in the SE life-cycle. According to the

authors, the potential of LLMs is not widely understood/appreciated. According to them, LLMs

hold an immense potential for automating common tasks in the SE life-cycle. Furthermore, they

state that, although such patterns are helpful, strong human involvement is still required in order to

leverage LLMs effectively. This example validates the relevancy and potential that LLMs have, in

1.3. AIMS AND OBJECTIVES 14

the field of requirements engineering. Furthermore, it emphasizes the point that the full potential

of LLMs in RE/SE, is yet to be uncovered.

Research akin to the topic of this thesis has explored the extraction of domain models from

textual requirements [17]. In this work, Arulmohan et al. compared three approaches: Conditional

Random Field (CRF), GPT 3.5, and Visual Narrator, on how well they were able to extract domain

concepts from agile product backlogs. Next to their more technical findings on the performance

of each of the approaches, the relevance of further research became clear from their concluding

statements. In their future directions, they suggest to look into which type of solution to choose,

e.g. a cheaper and easier to adopt of-the-shelf solution, or a more expensive tailor made solution

that takes a longer time to build. Even though this example is closely related to the topic of this

thesis, it gets a clear message across: this research direction is still open ended, and there is still a

lot left to discover. Once again, it demonstrates a need for researching the practical implications

of using LLMs in RE. Specifically, identifying important considerations in the decision making

process, of deciding if and how to implement a LLM.

To summarize, there is a clear research gap in the current literature, that justifies further re-

search on the topic. The high-level issues that are prevalent in current research, revolve around two

things: the rapid developments in LLM techniques, and the difficulties that arise when trying to

integrate research into practice. Because of the potential that LLMs hold in RE/SE, it is important

to get a better understanding of the possibilities for implementation into practice.

1.3 Aims and objectives
Given the rapid development of LLM techniques, and the potential they seem to hold for the field

of RE, this thesis aims to explore the potentials of LLMs when extracting domain models from

requirements elicitation conversations.

1.3.1 Research questions
In order to try and contribute to closing the gap in the current research, the following main research

question has been established.

MRQ: "What is the potential of Large Language Models in supporting the derivation of

domain models from requirements elicitation conversations, and what factors influence their ef-

fectiveness in this context?"

To help answer the main research question, the following sub-research questions have been

established.

• SQ1: What are the best practices for designing an LLM-based approach that supports do-

main model derivation from requirement elicitation conversation transcripts?

• SQ2: What is the effectiveness of the LLM compared to the human, when deriving domain

models from requirement elicitation conversation transcripts?

• SQ3: What is the similarity between the LLM and the human, when deriving domain mod-

els from requirement elicitation conversation transcripts?

In the research questions above, some terminology is used that needs some further elab-

oration. In SQ2 effectiveness is mentioned. Effectiveness means the production of modelling

1.4. SIGNIFICANCE 15

elements. Both the human and the LLM will create modelling elements that can either be usable

or not usable. The creation of those elements is what is captured in the term effectiveness. In SQ3

similarity is mentioned. Similarity means the extent to which the human and the LLM agree on

modelling decisions. By comparing the effectiveness and the similarity, between the human and

the LLM, it will become clear what the potential of the LLM is; whether or not adopting a LLM

supported approach makes sense or not.

By identifying best practices for designing a LLM-based approach to support the domain

model derivation task, it might become clear what the factors are that may influence the perfor-

mance of the LLM. This could influence the extent to which the full potential of the LLM can be

unlocked.

Furthermore, having a good perspective of the effectiveness of the LLM, helps understand

the capabilities of the LLM. Understanding this will help get a better idea of the potential of the

LLM.

Similarly, comparing the similarity between the human and the LLM, when it comes to per-

forming the domain model derivation task, will help get a better understanding of the potential

of the LLM in supporting the domain model derivation task. It will give a good idea of whether

or not the LLM is capable to create acceptable domain models, or whether the human needs to

intervene more often.

Altogether these sub-questions help answer the main research question.

1.4 Significance
The fast development of LLM techniques and their potential applications in RE/SE is in itself

already a reason to pursue this research direction. As highlighted in the research gap section, ex-

isting studies on LLMs in RE show that there is still room for further refinement. The significance

of this study lies in addressing these gaps, and contributing to the ongoing effort of research in the

field. Several key aspects emphasize the importance of this research.

Identifying the gap between research and practice The identified research gap sheds light

on the challenge of integrating LLM research findings into practical applications effectively. De-

spite the promises and potential benefits of LLMs in RE/SE, there remains a need to understand

how to translate theoretical developments into real-world solutions. This study aims to identify this

gap by exploring the potential that LLMs might have in deriving domain models from requirement

elicitation conversation transcripts.

Validating LLM approaches In the research gap section, multiple studies are discussed that

are all struggling with identifying the practical implications of their findings. By trying to identify

prompt patterns for using LLMs for domain model extraction, the gap between theory and practice

could become smaller. If such prompt patterns can be established and tested, it might be possible

to generalize those findings to other SE domains.

Decision-making considerations in LLM implementation The complexity of deciding

whether and how to implement LLMs in RE is another point of interest this research could help

improve. As identified in the research gap, current research is already proposing new research to

focus on decision making. This includes identifying factors influencing the choice of LLM so-

lutions, offering insights that can guide organizations in making informed decisions aligned with

1.5. LIMITATIONS 16

their specific needs and goals. Being able to contribute to answering this question, by for example

coming up with best practices, the decision making process will become easier.

In summary, this research aims to significantly contribute to the ongoing research on LLMs

in RE by providing practical insights, validating approaches, and uncovering the full potential of

LLMs. By addressing these aspects, the study aims to make way for a more seamless integration

of LLM research into practical applications, fostering advancements in the field, and contributing

to the broader landscape of requirements engineering.

1.5 Limitations
While this research aims to make meaningful contributions to the understanding and application

of LLMs in RE, it is essential to acknowledge certain limitations that may impact the scope and

generalizability of the findings.

Rapidly developing nature of LLMs The field of LLMs is characterized by rapid develop-

ments, with new techniques and models emerging frequently. The ongoing research efforts, make

it so that it could be a challenge to come up with a definitive deliverable. Consequently, the thesis

may not be able capture the most recent innovations, potentially limiting the completeness of the

findings in regards to the ever-evolving landscape of LLM technologies.

Generalizability The empirical validation of LLM approaches in real-world settings, while

great to strive for, may cause challenges in achieving broad generalizability. Factors such as

varying datasets, evolving LLM architectures, but primarily diverse application contexts, may

impact the extent to which the findings can be applied to different scenarios. It is important to

acknowledge the potential limitations in terms of generalizability of specific outcomes. The study

aims to explore the practical implications of LLMs in the context of RE. However, the diversity of

applications of LLMs within RE could be very broad. They could also be limited on account of

organizational practices, or certain confidentiality agreements. Therefore, it could be the case that

the findings are context dependent, and that it ends up being uncertain whether or not the findings

can be used in other contexts.

Ethical considerations LLMs The ethical implications that come with the use of LLMs,

could significantly limit the usefulness of the findings. Despite efforts to address ethical concerns,

the study may not be able to take all ethical considerations associated with LLMs into account.

Limitations in understanding and mitigating ethical issues may impact the practical recommen-

dations derived from the study. Ethical issues in this case, would be about privacy concerns and

dealing with sensitive data.

Resource constraints The scope of this research is bounded by resource constraints, includ-

ing time and access to specific datasets. While efforts have been made to provide a thorough

examination of LLMs in RE, these constraints may limit the depth of analysis in certain aspects.

Consequently, the study may not fully explore all potential avenues or delve into exhaustive details

in specific areas of interest, due to time constraints.

In conclusion, while this research endeavors to contribute significantly to the discourse on

LLMs in RE, it is necessary to recognize and acknowledge possible limitations. By acknowledging

these constraints, the study aims to provide a realistic framework for interpreting its findings,

encouraging future research to build upon, and address these limitations.

1.6. OUTLINE 17

1.6 Outline
In chapter two, a literature study will follow, that functions as the scientific foundation of this

research. It will focus on elicitation interviews, large language models, and domain modelling.

In chapter three, the research method will be discussed and elaborated upon. It will also go into

detail on the design of the research.

In chapter four, the results of the research will be shown. Furthermore, it will give an expla-

nation of the results.

In chapter five, the results are discussed. It will elaborated on the results and the factors that

might have affected them.

In chapter six the conclusion follows. It will look back at the research and discuss what can

be learned from it.

Chapter 2

Literature review

2.1 Introduction

Figure 2.1: An overview of the scope of the thesis, with the three essential parts of the literature
review highlighted.

In Figure 2.1, an overview can be found of the primary concepts that are relevant to the research.

First, Interviews takes place in which a business analyst gathers information about the client com-

pany. The function of an interview may be different from interview to interview. The domain

model, and its function, could therefore also change depending on the goal of the interview(s). It

is therefore important to establish a proper understanding of interviews within RE.

Next, a Transcript is created. This transcript captures the information from the interview

meeting. This is either done manually, or automated if the interview is recorded. In this research,

the assumption is made that such techniques exist. The literature review will therefore not go into

detail on how recorded requirements elicitation conversations are transcribed.

The third concept is the LLM. The LLM takes the transcript and uses it to generate the

domain model. The literature review will delve into this topic further to get to know the state of

art of LLMs in RE better. Furthermore, it will consider important related concepts such as, prompt

engineering, types of LLMs, and protocols for using LLMs. Lastly, the literature review will focus

on the different domain modelling languages within RE to get an understanding of the differences

between them.

To summarize, from the four primary concepts relevant to this thesis, three of them will be

elaborated upon in a more detailed manner. This will serve as a common understanding of the

concepts throughout the rest of this thesis.

2.2 Procedure
For each of the three primary concepts of this research, as defined in Figure 2.1, literature was gath-

ered. By querying Google Scholar with terms directly relating to the concept, e.g. "requirements

2.3. REQUIREMENT ELICITATION INTERVIEWS 19

elicitation interviews", literature was found. Next, it’s relevance was taken into consideration. A

paper needed to have a professional appearance, and needed to be cited in other research. Further-

more, the theme of the paper needed to be relevant to the theme of the section it was going to be

in. Only papers originally written in English were considered. Furthermore, since requirements

elicitation through interviews for example, is not necessarily a new topic, there was not real con-

straint in place limiting the age of a paper. However, for concept such as LLMs or GPT models,

a time constraint was in place. Papers about these topics needed to be from 2018 or later. This is

due to the highly volatile nature of such concepts.

For each of the gathered papers, relevant meta-data, such as year, authors, title, context, or

quotes, was entered into an excel file. Altogether, this formed a literature catalog that could be

called upon when writing the literature review. Furthermore, it helped identify recurring themes,

or recurring authors, both of which could be used as a lead to related papers. Lastly, it not only

allowed for gathering information quickly, it also helped find other relevant papers through snow-

balling. All of the reference data for each paper was stored immediately into Overleaf.

2.3 Requirement elicitation interviews
When it comes to software engineering, requirements elicitation is one of the most important

activities in the life-cycle [28]. It is also one of the first major activities that takes place when

producing software [28]. When eliciting requirements, the focus is on identifying the needs of

the stakeholder(s) for the software to be built [1]. This is still a difficult task, since it deals with

complex factors such as: the limited memory of the business analyst, the limited capability of the

analyst to take notes, or the limited capability of the client to sufficiently express his/her needs

[29]. First, the boundaries of what is known, are explored. Second, an analyst needs to deal with

people who posses the knowledge. Lastly, the gathered knowledge are turned into requirements,

meaning that they need to be organized and managed in an appropriate way.

One of the most common and effective ways to elicit requirements is through interviews [30].

Essentially, there are three primary types of interviews, structured interviews, semi-structured

interviews, and unstructured interviews [1].

Structured interviews feature a set of predetermined questions in order to gather specific

information. Whether or not such interviews are successful depends knowing the right questions

to ask, when you should ask those questions, and who to ask the questions. In general, structured

interviews seem to be rigorous and effective. A possible downside is that they could possibly limit

the exploration of new concepts.

Unstructured interviews are more akin to a conversation, where the power to direct the

interview is a lot lower than in a structured interview. While the flow of such an interview can feel

a lot more natural, there are downsides to unstructured interviews. The emphasis put on certain

topics can cause problems. Putting too much emphasis on a topic could make it so that there is

too much focus being put on the topic. On the other hand this can other topics to be neglected, or

even entirely ignored [31]. In general unstructured interviews are best used to explore a domain,

or as a starting point before conducting more structured interviews.

Semi-structured interviews fit in between structured and unstructured interviews, borrowing

elements from both other types of interviews.

2.3. REQUIREMENT ELICITATION INTERVIEWS 20

Interview prompts play an important role in requirements elicitation interviews. The use of

information-specific prompts is a recommended practice in requirement elicitation interviews [32].

Furthermore, the different types and categories of prompts have been captured in previous research

[33], [34]. A technique for prompting that could be used, is questions using interrogatories such

as: "Why", "How","What" ,"Who", "When", and "Where" [33]. Such interrogatories can be used

to make questions such as "What should the user see when X", or "Who should be able to access

the database". However, follow-up research on this, by Pitts and Browne [34], has proposed

procedural prompts. These are prompts that should help overcome the cognitive limitations that

analysts face. An overview of the types of procedural prompts, and examples of such prompts,

can be found in Table 2.1.

Table 2.1: Procedural prompt for requirement elicitation interviews [34].

Strategy Sample prompts

Summarization and Feedback
Can you summarize the functions and capabilities of

the system?

Can you summarize the features necessary for a suc-

cessful system?

When using the system, what type of feedback or

information would you expect to get?

Repetition and rephrasing
Tell me again, what are the important features of the

system?

Can you restate, in detail, the steps for using the sys-

tem?

What decisions will you make while using the sys-

tem?

Scenario building/Elaboration
What can you do now, but will not be able to do with

the new system?

Under what circumstances would (a specific func-

tion/capability) be necessary?

Imagine that it is 6 months from now and you are

evaluating the success of the system. What measures

would you use to make that assessment?

Counterargument
Can you think of any reasons for not using the sys-

tem?

Why would you not want to use the system?

Can you think of any reason that the system would

fail or malfunction?

Furthermore, the procedural prompts as mentioned in Table 2.1, have been evaluated in the

work of Pitts and Brown [34]. Summarization and Feedback helps elicit more complete infor-

mation. It also lead to the discovery of unique alternatives. Repetition and rephrasing is helpful

by providing evaluation of the reliability and validity of requirements. It could potentially help

2.3. REQUIREMENT ELICITATION INTERVIEWS 21

discover insufficiency’s. Scenario building/Elaboration is helpful for elicitation of richer, and

more detailed, requirements. It also stimulates consideration of circumstances and consequences.

Counterargument(s) help validates requirements by generating disconfirming evidence. Lastly,

it also forces the consideration of unique viewpoints. Furthermore, applying prompt in general is

also found to be beneficial. It provides structure and focus to requirements elicitation, and it is

applicable to a broad range of development environments.

2.3.1 Success criteria
Distanont et al. [35] provide a comprehensive overview of requirements engineering challenges.

However, there are two challenges in particular that seem to be prevalent in requirement elicitation

research: the influence of ambiguity [30], [36], [37] and domain knowledge [33], [38], [39]. The

importance of both of those factors is highlighted in the work of Distanont et al. [35]. Under-

standing how to deal with such factors may be helpful, for example when trying to understand

such complexities in LLMs. Therefore, both these challenges will be discussed in greater detail.

Ambiguity
When an analyst is conducting an interview, there is a knowledge transfer between the interviewer

and the interviewee [35]. Ambiguity is one of the major obstacles that can arise in communication

that can influence the transferring of knowledge [30], [36], [37] When something, expressed in

natural language, can be interpreted in more ways than one, it is considered ambiguous. When

something is expressed by the customer, and not understood properly by the analyst, there is

subconscious disambiguation [40]. This phenomenon occurs, for example, when someone reads

a document and thinks to have understood it because it did not appear to be ambiguous [41].

According to the work of Ferrari et al. [30], there are several types of ambiguity that can occur in

requirement elicitation interviews. Unclarity refers to a situation where the interviewer is unable

to give an interpretation to the information that the interviewee expresses. This can be because the

information is expressed using domain jargon, or unfamiliar language. Multiple understanding is

a type of ambiguity where the analyst is able to give more than one interpretation to the information

that is expressed by the interviewee. An example of this could be the statement "I want to have

a modern design". In the case of designing an app, this could mean that the app needs to look

modern, or that the technologies in the back-end of the app need to be modern. Both are valid

interpretation, but it does not become clear which one is meant. Incorrect disambiguation occurs

when the analyst interprets a statement by the interviewee in the wrong way. In other words,

the analyst assigns the wrong interpretation to what is expressed by the customer. Taking the

previous example, it means that the analyst would assume one interpretation, while the other is

the one meant by the interviewee. Such ambiguity can "occur" both detected and undetected. This

means that it is either noticed and addressed during the interview, or that it becomes clear later

on. Correct disambiguation occurs similarly to incorrect disambiguation in the sense that it is a

statement made by the interviewee, that has more than one possible meaning. However, in the case

of correct disambiguation, it is clear to the analyst what the interviewee meant with the statement,

and the correct requirement can be elicited without further interruption.

Furthermore, the work of Berry et al [42], mentions two concepts that are related to ambi-

guity. Generality, occurs when a sentence needs extra explanation in order to make sense. For

example, "The system should be fast.". Does this mean that the server the software should run on

2.3. REQUIREMENT ELICITATION INTERVIEWS 22

should be fast, or that the software itself needs to be optimized to be fast? Vagueness: An ex-

pression is considered vague if there are cases where it’s challenging to determine the truth value.

In other words, it occurs in cases where it is unclear whether the expression is true or false. This

happens when the criteria for satisfying the expression are not precisely defined, or when the lan-

guage used in the expression is ambiguous. For example, "The system should be fast.". It cannot

be determined when such an expression holds true or not, since it is vague what is meant by fast.

Domain knowledge
It could be that business analysts have domain knowledge before starting the elicitation process. In

general, it is assumed that this has a positive effect on the requirements engineering process [38].

Another example can be found in the work of Browne and Rogich [33], where different prompting

schemes for requirement elicitation interviews are compared. In their work, they compare context-

dependent and context-independent interviews. In this case, the context refers to the domain that

is discussed in the interview. It was found that context-dependent prompting schemes were more

powerful than the context-independent ones. However, in order to construct such a prompting

scheme, the analyst needs to have significant domain knowledge to succeed. Furthermore, they

have come up with a methodology to create prompts for interviews, independent of the skill of

the analyst. Generally, it fosters communication and it creates shared understanding in terms of

the needs of the customer. However, to some extent, prior domain knowledge can also have a

negative impact. In the work of Wiley [39], domain knowledge was found to inhibit creative

problem solving to a certain extent. Subjects were asked to perform a creative problem solving

task, with the goal to produce something, with the task being easy enough for less skilled subjects

to participate. Having domain knowledge turned out to not only bias the first attempt, it also

causes to narrow down the search space when trying to come up with a solution. Furthermore, it

was found that novices, with little domain knowledge, were more flexible in their way of thinking

and came closer to finding the correct solution.

To summarize, interviews play a very important role in the elicitation of requirements. How-

ever, this does not mean they are always successful. This section has introduced the concept of

requirements elicitation interviews, and some important shortcomings.

2.3.2 Conversation types
Next to interviews, there are other types of requirements elicitation conversations, from which

requirements can be elicited. Zhang [43] defines the following conversational requirements elic-

itation techniques: "interviews", "workshop/focus group", and "brainstorming". Interviews have

been discussed before, but what about the other two? When conducting a workshop/focus group,

you bring stakeholders together to have a short, and focused, session to come up with, or review,

high level aspects of the system to be [44]. In a brainstorming session, stakeholders are brought

together to discuss idea more rapidly. Through quickly discussing ideas, and creating a broad list

of ideas. it fosters a more creative way of thinking, that may lead to new ideas that may not have

come up otherwise [45].

What these conversational elicitation techniques share is that they are commonly used, and

that people usually are willing to talk about their work in a conversational setting [43]. This means

that they are effective techniques to use to try and elicit non-tacit requirements.

However, such techniques are quite labor intensive [44]. Various challenges arise, such as:

2.4. LARGE LANGUAGE MODELS 23

scheduling meetings, producing notes/transcripts, analysing notes/transcripts. Furthermore, get-

ting all the stakeholders in the same place at the same time, may prove to be challenging.

2.4 Large Language Models

2.4.1 Introduction

Language Models (LMs) learn to predict a word given a certain context, the previous sentence or

in some cases the following sentence for example [46]. Furthermore, they are capable of under-

standing, and generating, natural language. LMs have the transformative ability to predict the next

word or sequence of words, as well as the ability to generate new text, given a certain input [47].

Large Language Models (LLMs) are an advanced version of LMs. The word ‘large’ refers to the

fact that they have many more parameters, or variables, to learn from the data that they are trained

on. This makes them more advanced because by being able to learn a lot more from the train-

ing data, the performance across natural language tasks improves significantly [48]. In Table 2.2,

some high level differences show the comparison between machine learning, deep learning, and

LLMs.

Table 2.2: A comparison between Traditional ML, Deep learning, and LLMs [49].

Comparison Traditional ML Deep learning LLMs
Training Data Size Large Large Very large

Feature Engineering Manual Automatic Automatic

Model Complexity Limited Complex Very Complex

Interpretability Good Poor Poorer

Performance Moderate High Highest

Hardware Requirements Low High Very High

As mentioned in Chapter 1, the use of such models is being researched in different sectors,

as well as in RE. This section will go over the different types of LLMs, prompt engineering for

LLMs, and protocols for leveraging LLMs, in order to get an understanding of the concepts that

influence the output of an LLM.

2.4.2 Types of LLMs

When it comes to LLMs, there are two types that are most prevalent, the Generative Pre-trained

Transformer (GPT) language representation model, and the Bidirectional Encoder Representations

from Transformers (BERT) language representation model [50]. This section serves to provide a

high level understanding of these concepts. Because the aim of this research is not to build a LLM,

highly technical details will be simplified. The following section will go into further detail on how

the BERT and GPT language representation model work. It is important to understand that both

models use a transformer as the foundation. A visualization of the architecture of a transformer

can be found in Figure 2.2.

2.4. LARGE LANGUAGE MODELS 24

Figure 2.2: A visualization of the transformer architecture [51]

2.4.3 BERT

The BERT model first processes the input it is given. By breaking down textual input into tokens,

which can be words, sub-words, or even characters, the input is represented in tokens. These to-

kens are then converted into a numerical vector, also called embeddings, which allow the model

to understand the meaning, and relationship, between words [52]. There are three types of embed-

dings that a BERT model uses: positional, segment, and token embeddings. Positional embeddings

are given to each token in the input, this makes it so that the model knows the position of a word

in a sentence. Segment embeddings are embeddings of the first and second sentence of an input,

which allow the BERT model to distinguish between. BERT makes this distinction to know to

which segment of the input a token belongs. This can also be done with other sentence pairs.

Lastly, token embeddings are the embeddings of the words, or sub-words, as mentioned before.

Together, this forms an embedding scheme that offers a lot of knowledge about the input. The

BERT language representation model is different from others because it is bi-directional. This

means that it does not only take into account the left context, but also the right context [47]. This

means that when evaluating a certain word, it takes into account the words before it and the words

after it. Unlike a GPT model, that only takes the following words into account. This difference

is visualized in Figure 2.3. In the visualization the following is represented: the yellow elements

E are the input embeddings, the blue elements Trm are the transformer blocks, and the green

elements T are the output tokens.

2.4. LARGE LANGUAGE MODELS 25

Figure 2.3: A visualization of BERT’s bi-directional versus GPT’s unidirectional nature[47].

After the creation of the embedding scheme, the model performs a Masked Language Mod-

elling (MLM) task [26], [47], [52]. This means that certain tokens from the input are masked. It

is up to the model to predict the masked tokens based on the context around the masked token.

It masks 15% of the words of the input. That 15% is made up of 80% masked words, 10% ran-

domized words, and 10% retained words [52]. This is done so that token representation for the

"non-masked" words is not affected too much. The next step is Next Sentence Prediction (NSP).

This is a similar task to the word prediction task, except that this task predicts the next sentence

instead of a single word [52]. This step is conducted in order to give the model an understanding

of the relation between the sentences that the input contains. In order to accomplish this, half of

the inputs consist of pairs where the second sentence follows the first sentence in the original doc-

ument. Meanwhile, the remaining 50% of inputs are formed by pairs where the second sentence

is selected randomly from the document, with the assumption that the randomly chosen second

sentence is unrelated to the first sentence.

Figure 2.4: A visualization of the BERT architecture [47]

Together, these steps form the pre-training of the BERT model. Broadly speaking, pre-

training means training the model to understand the way language is represented in the input it

2.4. LARGE LANGUAGE MODELS 26

is given [53]. In this case, input means a large corpus of text where the text is not labeled. A

visualization of the pre-training architecture can be found in Figure 2.4.

After the fine-tuning phase, the adapted BERT model is ready to be deployed for inference

on new data. During inference, the model takes in raw text input and processes it, utilizing the

learned representations and task-specific parameters acquired during fine-tuning.

For text classification tasks, the fine-tuned BERT model applies softmax activation to the

output layer to produce probabilities for each class, indicating the likelihood of the input belonging

to each category. In question answering tasks, the model utilizes its understanding of contextual

information to identify the most relevant segments of text containing the answer.

Under the hood, the fine-tuned BERT model computes these predictions through a process

called forward propagation. This involves passing the input text through the neural network lay-

ers, where each layer applies a series of mathematical transformations to the input data, gradually

transforming it into representations that are increasingly tailored to the specific task at hand. Fi-

nally, the output layer produces the desired output.

Once the predictions are generated, they are typically post-processed to improve their read-

ability or usability. For instance, in question answering tasks, the model may output the start and

end positions of the answer span within the input text, which can then be extracted and presented

to the user in a more intuitive format.

2.4.4 GPT
A GPT model is an autoregressive language, which uses deep learning to create natural language

[54]. What makes a GPT model different from the aforementioned BERT model, is that a trans-

former is used in the architecture of the model [51], which the explanation below will be based on.

The visualization of the transformer architecture, as explained below, can be seen in Figure 2.2.

Similarly to the BERT model, the first steps for processing an input, is embedding the input

and encoding the position of the tokens. The transformer part consists of two stacks, the encoder

stack which process the input, and the decoder stack which generates the output. The encoder

stack consists of two layers, the multi-head self-attention mechanism, and the position-wise fully

connected feed-forward network. The decoder layer is similar, but with an additional layer where

it performs multi-head attention. In simple terms, the multi-head self attention part allows the

model to determine the importance of the different parts of the input sequence when it processes

all the tokens within the input. The mechanism runs multiple linear projections of the input,

in parallel. Doing it, ensures that the model can capture the different relationships between the

tokens. After the attention mechanism has been leveraged, the input goes through a position-wise

feed-forward network. This means that the input tokens are all processed independently from one

another. After the input has gone through both the attention mechanism and the position-wise

feed-forward network, for both the encoder and the decoder layer, the outputs are normalized.

The second to last step is the extra attention mechanism that the output of the encoder layer goes

through. Lastly, the output is generated. This is done by taking the output of the decoder and

linearly transforming them into probabilities for the next token. Then based on those probabilities

the output is produced.

What makes a GPT model stand apart from other models, is the attention mechanism [55].

This helps the model understand the relationships between words that are far apart. Furthermore,

2.4. LARGE LANGUAGE MODELS 27

the transformer is built in a modular fashion. For example, the attention mechanism and the

position-wise feed-forward network, are both sub-layers to the encoder and decoder stacks. This

means that it is easier to modify these modules of the GPT model. Furthermore, the attention

mechanism allows for differentiating between the important and lesser important words in an

input. Lastly, the parallel nature of the transformer makes a GPT model a lot faster in terms of

time it takes to compute the inputs it is given.

2.4.5 Prompt engineering

Prompt engineering is a flexible, and intuitive way for users to interact with a large language

model [56]. In other words, a prompt refers to a specific instruction or question that you give to a

language model, directing its actions to produce the desired results. On the very surface, a prompt

consists of a few elements [56], the instruction, the context, the input data, and the output indicator.

The instruction is for example the task you want the LLM to perform. This guides the behavior

of the model and it directs the model to towards the output the user wants. Second, the context
refers to extra information that the user gives the model to provide background knowledge. This

helps the response be more accurate. The input data refers to the question or input the model

needs to process. This is a core element to the prompt. Lastly, the output indicator refers to the

format the user wants the response to be in.

There are more sophisticated prompt types, with each their own characteristics. A distinc-

tion can be made here between hard prompts and soft prompts. Hard prompt are created either

manually or automatically, in natural language, and soft prompt are vector representations [57]

Soft prompts
Adjusting soft prompts is also referred to as prompt tuning [57]. Prompt tuning is a technique

proposed as a simplification for adapting language models to downstream tasks [58]. In prompt

tuning, the entire pre-trained model is frozen, meaning its parameters remain fixed. Instead of

fine-tuning all model parameters as in traditional model tuning, prompt tuning only allows for a

small number of additional tunable tokens, denoted as "k," to be added to the input text for each

downstream task.

These additional tokens, referred to as a "soft prompt," are appended to the input text and are

trainable during the adaptation process. By doing so, the model can capture task-specific infor-

mation while still benefiting from the pre-trained knowledge encoded in the frozen model. This

approach enables prompt tuning to leverage the signal from a full labeled dataset, thus outper-

forming few-shot prompts and narrowing the performance gap with traditional model tuning.

One of the key advantages of prompt tuning is that it allows for the reuse of a single pre-

trained model for all downstream tasks. This contrasts with traditional model tuning, which re-

quires maintaining separate copies of the model for each task. Therefore, prompt tuning retains the

efficiency benefits of frozen models while achieving competitive performance with model tuning

[58].

Hard prompts
In the scope of this research, the focus will be on natural language (hard) prompts. Hard prompts

are easily understandable pieces of text that can be a added before an input. An example of this is:

"Rewrite the following paragraph to be shorter: [input]" Furthermore, the work of Gu et al. [57],

2.4. LARGE LANGUAGE MODELS 28

defines four sub-types of hard prompts, task instruction prompting, in-context learning, retrieval-

based prompting, and chain-of-thought computing.

Task instruction prompting When using such a prompt, the LLM is given an natural lan-

guage input that describes a desired output [59]. Furthermore, the input consists of instructions

and resources which can be used to give the model a better context, and guide the model towards

the desired output. An example of this is "Create a shopping list for dinner. Include ingredients

for spaghetti.". In this case the instruction is to create a shopping list, and the addition of including

ingredients for spaghetti is a resource to guide towards the desired output.

In-context learning This type of prompting relies on the LLM to learn from examples [60].

The LLM is given a few examples that together form a context. Then, a piece of one of the given

example is taken together with a question to form a prompt. The LLM is expected to take the

examples, or rather the context, into account and decipher a pattern. That pattern is then used in

order to make the correct prediction when producing the output. An example of this could be that a

LLM is fed five haiku’s, and comes up with a new haiku. The context helps define the grammatical

structure of a haiku, and the prompt gives the LLM the topic of the haiku. Through subjecting the

model to a series of interconnected examples and/or prompts, the in-context learning technique

enhances its performance in comprehending and generating responses [61].

Retrieval-based prompting means that the prompts that are being used for a certain task that

a user might want a LLM to perform, is retrieved from a retrieval base [57], [62]. The retrieval

base consists of pairs of inputs and responses that have been established before. When working

with retrieval-based prompts, the LLM is given context by making it aware of the contents of the

retrieval base that match with a certain similarity to the task the user wants to perform. Whatever

examples are chosen by the prompt retriever, are used in order to give the LLM context. This is

similar to few-shot prompting in the sense that the LLM is made aware of a certain context through

examples. However, it is something different than few-shot learning. In the case of retrieval-based

prompting, the output is generated with previous answers and responses. In the case of few-shot

learning, the LLM is given examples of something, and then asked to do a similar task. In this

case only a similar output is given to the LLM, and not the input, as is the case with retrieval-based

prompting.

Chain-of-thought computing, refers to a method in which the LLM is given instructions

in a iterative manner [61]. Throughout the process of using this method, the focus narrows, and

the context is being enriched constantly. By "building" a conversation this way, the LLM is able

to build a more coherent understanding of the context, and is able to keep up with an evolving

context.

2.4.6 Patterns
White et al. [63], state that prompt patterns, to be used with LLMs, are similar to software patters

used in software engineering. In both cases, patterns offer a reusable solution to a specific problem.

While prompt patterns are used for generating output from LLMs, they both offer a systematic

approach to solving challenges. Prompt patterns offers a systematic approach to customize the

output of LLMs, and interact with LLMs.

White et al [63] introduce an approach to represent prompt patterns. An overview of this can

be found in Table 2.3.

2.4. LARGE LANGUAGE MODELS 29

Table 2.3: An approach to capture prompt patterns systematically [63].

Category Description
Name and classifi-
cation

The prompt pattern name uniquely identifies the pattern and ide-

ally indicates the problem that is being addressed.

Intent and context describes the problem the prompt pattern solves and the goals it

achieves. The most direct translation of software pattern structure

to prompt patterns is the naming, intent, motivation, and sample

code. The structure and classification, however, although named

similarly, require more adaptation. should ideally be independent

of any domain, though domain-specific patterns may also be doc-

umented with an appropriate discussion of the context where the

pattern applies.

Motivation The motivation provides the rationale for the problem and ex-

plains why solving it is important. The motivation is explained

in the context of users interacting with a conversational LLM and

how it can improve upon users informally prompting the LLM

in one or more circumstances. Specific circumstances where the

improvements are expected are documented.

Structure and key
ideas

The structure describes the fundamental contextual information,

as a series of key ideas, that the prompt pattern provides to the

LLM. These ideas are similar to “participants” in a software pat-

tern. The contextual information may be communicated through

varying wording (just as a software pattern can have variations in

how it is realized in code), but should have fundamental pieces of

information that form a core element of the pattern.

Example imple-
mentation

This example demonstrates how the prompt pattern is worded in

practice.

Consequences This summarizes the pros and cons of applying the pattern and

may provide guidance on how to adapt the prompt to different

contexts.

In addition to the overview of how to structure prompt patterns, White et al. provide an initial

overview of prompt classifications and corresponding prompt patterns [63]. Since this is a rather

extensive list, a few interesting ones will be highlighted rather than listing them all.

• The meta language creation pattern is intended to be used to learn the LLM to understand

another "language", for example shorthand notation used in graphs. The LLM understand-

ing such a language can be useful if a user wants it to perform a domain specific task, or

if it allows a user to express things more unambiguously. Such a pattern could be useful

for the domain model derivation task. By making the LLM learn a shorthand notation for

the relationships between a model, it would become easier to leverage the LLM to answer

questions about a domain model.

2.4. LARGE LANGUAGE MODELS 30

• The question refinement pattern aims to leverage the LLM in order to refine the questions

that the user asks the LLM, in order to generate a potentially better output. If the user

lacks domain knowledge, or is not able to come up with the right words for a question, the

LLM might be able to do suggestions of what could be meant by the user. By implementing

such suggestions in the prompt, the output the LLM provides could be of better quality/more

fitting, than the output based on the original question. This could be beneficial to the domain

model derivation task when the modeler runs into less explicit modelling decisions, the LLM

could possibly provide a solution based on output of a refined question.

• The alternative approaches pattern is intended to help users take another perspective away

from the solution that they would normally choose. More often than not humans suffer from

cognitive bias, which may lead them to opting for a solution that may not be optimal given

the situation. This pattern aims at dissolving such cognitive biases by providing the user

alternative solutions for solving a problem. It may be a handy addition to have more than

one possible solution for a certain problem when making domain models. Having multiple

perspectives on how to handle a certain modelling decision could lead to better domain

models.

Other work, more specifically on requirements engineering, allows the user to leverage an

LLM to identify ambiguity in a requirements specification [27]. It can be used to review a re-

quirements specification document, or parts of it, to identify any potential vagueness or ambiguity.

Such vagueness/ambiguity may also appear in requirements elicitation conversation transcripts,

therefore this pattern could also be useful for this research.

2.4.7 Zero-shot, one-shot, few-shot

The concept of zero-shot learning refers to classifying instances on which the LLM has not been

trained [64]. As mentioned before, a LLM is trained on a large set of data, in order to identify

relationships between the words and sentences in the input [51]–[53]. However, in practice it

occurs rather often that a LLM is asked about something that it has not been trained on [64].

While this is not really an issue for certain tasks, it can be an issue for others. In the case of visual

recognition, it has been found that the fewer examples a LLM has, the more difficult it becomes

to recognize something [65].

With one-shot learning, the assumption is made that there is only one example of each cate-

gory available [66]. In other words, it means that of each category that an LLM is trained on, there

is only one example of that category that the LLM knows. For example, if an LLM is trained on

animals, and the animal in the task is a panda, the LLM is only trained on one example of a panda.

In few-shot learning, a LLM is trained on a few examples [67]. It can learn to perform new

tasks based on the prior training of the model, together with the few examples it is provided. This

allows the LLM to learn the more rare cases, and decreases the need for large supervised training

data sets.

2.5. DOMAIN MODELLING 31

2.5 Domain modelling
2.5.1 Introduction
Domain modelling for a system or a software development task is about creating domain descrip-

tions [68]. The creation of domain models serves as a method to generate an abstract understanding

of the "world" in which the system to be will operate. It allows to reason, and validate, assumptions

about the domain. Furthermore, it could allow analysts to reuse requirements within a domain.

A domain model generally consist of two parts [69]. First, the domain specific rules, termi-

nology, and notions, that describe the taxonomy of the domain, and the specific rules and principles

that apply to it. Things such as functions, data types, and concepts are included in this. Second,

the domain model consists of the context model. This part of the model describes the general

properties of the systems environment. Elements such as actors, users, software systems, and

physical systems are included in this part of the model. Altogether, this captures all the required

knowledge about the problem domain in which the system to-be is going to operate, which allows

for capturing the requirements for the system to-be. Domain-specific models have proven to be an

essential ingredient in the creation of automated tools, because of they allow tractable reasoning

[70].

"Ultimately, the domain model is a
collection of knowledge about the
application domain at an adequate level of
abstraction—including the use of
modeling techniques where useful."

Manfred Broy

2.5.2 Modelling languages
According to the International Requirements Engineering Board (IREB), there are various differ-

ent modelling languages/notations, that can be used to model the domain [71]. Important things

to consider when deciding on which model type to use are, "What is the purpose of the model?",

"Which requirements need to be modelled?", and "Who is the audience to which to model should

cater?". Based on these, and other, considerations, the IREB mentions modelling languages that

could be used to model requirements. To model systems of a highly reactive nature, UML state

machine diagrams can be used. Such models an be supplemented by including use case diagrams,

or activity diagrams. For systems that are not reactive in nature, for example loan application

software, diagrams that allow modelling complex information structures should be used. IREB

suggests using UML class diagrams. In order to model more process-oriented requirements, Busi-

ness Process Management Notation (BPMN) is suggested. For both these types of models, state

machine diagrams can be included in order to model the reactive parts of the domain.

Overall, universal modelling approaches, such as UML, are used very often [69].

2.5.3 Model quality
In similar work [72], the quality of model is assessed using the work of Lindland, Sindre, and

Sølvberg [73]. There are three types of quality in the framework that they propose.

• Syntactic quality

2.5. DOMAIN MODELLING 32

• Semantic quality

• Pragmatic quality

Syntactic quality refers to the correct structure, grammar, and syntax of a conceptual model.

A syntactically sound model ensures that the elements and relationships are represented in a man-

ner that adheres to the modeling language’s rules and guidelines. Semantic quality deals with

the meaning and interpretation of the elements and relationships within a conceptual model. A se-

mantically rich model accurately represents the real-world entities and their relationships, ensuring

that the model conveys a meaningful and correct understanding. Pragmatic quality focuses on the

alignment of the conceptual model with the intended purpose and goals for which the model is cre-

ated. A pragmatically effective model serves its purpose, providing relevant and valuable insights

for the targeted stakeholders and/or developers. In summary, assessing the quality of conceptual

models involves evaluating syntactic correctness, semantic accuracy, and pragmatic effectiveness.

A well-crafted conceptual model not only adheres to the formal rules of the modeling language

(syntactic quality), but also accurately represents the real-world entities and their relationships

(semantic quality), and serves the intended purpose effectively (pragmatic quality).

In the work of Rumbaugh and Blaha [74], criteria are given which a modelling element

should, or should not meet. There are criteria for elements such as, classes, associations, and

attributes. Whilst all of them are relevant, a short example will be provided in Table 2.4 that shows

exclusion criteria for candidate classes.

Table 2.4: Exclusion criteria for classes in UML diagrams [74].

Criteria Explanation
Redundant classes Eliminate redundant classes by favoring the most de-

scriptive name when two classes express the same

concept.

Irrelevant classes Remove irrelevant classes that have little relevance

to the problem at hand. Consider the context, as a

class may be important in another scenario.

Vague classes Refine vague classes by ensuring specificity. Classes

with ill-defined boundaries or broad scopes should

be avoided.

Attributes Transform names primarily describing individual

objects into attributes.

Operations Differentiate between classes and operations.

Classes should represent intrinsic natures, while

operations should be modeled separately if they

have distinct features.

Roles Ensure class names reflect intrinsic nature rather

than roles played in associations.

2.5. DOMAIN MODELLING 33

Implementation constructs Be cautious with implementation constructs, re-

moving implementation elements from the analysis

model.

Derived classes Minimize derived classes unless essential, marking

them with a preceding slash (’/’) in the class name.

UML State Machine Diagrams
State Machine Diagrams are one of the most useful, most widely used, UML diagrams within the

field of RE [75]. Such a diagram can be created to show the behavior of a single class. It can also

show the behavior of an object between different use cases. In terms of software modelling, UML

State Machine Diagrams have been found to be used a lot for code generation [76]. A drawback

of State Machine Diagrams is, that they are not suited to describe behavior related to collaboration

between objects [77].

In a more detailed manner, State Machine Diagrams, show the different states that a system,

or a component of a system can be in [78]. Furthermore, it also captures the transition between

states, where each state represents a condition or mode of operation. There are events that might

occur, that determine the state of the part that is modelled in the diagram. There are conditions

(guards), that are related to these events. These guards act as decision points on whether a certain

transition will take place or not. Lastly, actions represent activities that are related with transi-

tions. Actions are performed when an event triggers a transitions. They can for example represent

changes in the internal state of the system, or other behavior that may be relevant.

Similar to the ontological mapping of object oriented concepts to UML class diagram el-

ements, a framework has been made that maps UML state diagram concepts to requirements

artifacts [79]. Requirements artifacts, such as a business object lifecycle or a business rule, are

mapped to a state machine and a constraint. An overview of how the requirements artifacts are

mapped to state machine diagram concepts, can be found in Table 2.5.

Table 2.5: The mapping of requirements artifacts to state machine diagram concepts [79].

Requirements artifact UML concept
Business object lifecycle State Machine

Business process Activity

Business task Action

Business rule Constraint, Guard

Usage scenario Activity, Interaction

GUI navigation schema State Machine

2.5. DOMAIN MODELLING 34

UML Class Diagrams
When it comes to the development, analysis, and design of software systems, UML is is the

most popular modelling language to use [80]. Research often focused on the translation from

natural language requirements into UML class diagrams [81], [82]. Furthermore, automating the

generation of UML class diagram from natural language requirements has been research often

[80], [83], [84]. It is important to understand that the UML modelling language family consists of

14 types of diagrams, as of version 2.4, and that they can both cover structure and behavior [69].

Some automated techniques are able to generate UML elements and models [84]. However,

others require consistent human intervention and interaction, to be able to come up with UML

models. Overall, it became clear that there is currently not a solution that is able to generate all

the UML model elements, e.g. class names, operations, relationships etc.

UML modelling guidelines have been established, in order to improve the quality of created

models. It seems relevant to include guidelines on UML modelling, in order to be somewhat able

to asses the quality of a UML model.

Ontological guidelines have been established for the use of association classes [85]. An

overview of the established guidelines can be found in Table 2.6.

Table 2.6: Ontological guidelines for the use of association classes in UML diagrams [85].

Category Description
Mutual properties must be
represented as attributes of as-
sociation classes

In UML, association class attributes correspond to

slots in links connecting objects. The concept of mu-

tual property aligns with these link slots, as their val-

ues describe connections between ontological enti-

ties. The association class attributes collectively em-

body mutual properties. It’s important to note that

the association class is a structural container with-

out inherent ontological significance.

An association class must not
possess methods or operations

Association classes, representing sets of mutual

properties rather than substantial things, lack the ca-

pacity for methods or operations. Only actual things,

not their properties, can engage in action and inter-

action ontologically.

An association class must pos-
sess at least one attribute

An association class without attributes would repre-

sent an empty set of mutual properties. Such a class

is ontologically meaningless

An association class must not
be associated with another
class

In ontology, association classes with attributes rep-

resenting mutual properties should not be linked to

other association classes. In UML terms, this means

an association class must not own properties that

serve as member ends in other associations.

2.5. DOMAIN MODELLING 35

An association class must not
participate in generalization
relationships

In UML, properties and associations can be general-

ized and specialized, but in ontology, mutual prop-

erties cannot be generalized. Therefore, association

classes with attributes representing sets of mutual

properties should not be generalized in ontology.

Association classes model mu-
tual properties from the same
interaction among class in-
stances. Different interac-
tions with distinct sets of mu-
tual properties should be rep-
resented using separate associ-
ation classes.

Previous research, proposes that mutual properties

arise from interactions between entities. We refer

to sets of mutual properties resulting from the same

interaction event as concurrent mutual properties.

Each association class and its attributes represent a

set of concurrent properties. Therefore, distinct as-

sociation classes and their attributes should be em-

ployed when mutual properties are not concurrent.

Furthermore, ontological concepts have been mapped to domain modelling concepts. In pre-

vious work, researchers have tried to come up with a foundation for ontology based object-oriented

domain modelling [86]. This is interesting because it matches ontological concepts to objects used

in the UML class diagram. This is relevant for the second phase of the research. An overview of

the ontological mappings can be found in Table 2.7

Table 2.7: The mapping of ontological concepts to the modelling objects [85].

Category Description
Thing Object

Property Attribute

Intrinsic property Attribute of ‘ordinary’ class

Mutual property Attribute of association class

Emergent property Class attribute

Functional schema Class

Natural kind Set of objects (extension of object-class)

Composition Aggregation/Composition

Re-classification
Object creation

Object destruction

Object identifier

Association

2.5. DOMAIN MODELLING 36

BPMN
Business Process Model and Notation, or BPMN, is a modelling language that is based on flow-

charts [87]. It can be used to describe different scenarios that define business processes. Further-

more, it can be used to identify user tasks, that may or may not be computer supported, which

can be linked to use cases. In recent years, BPMN has become one of the most applied general

purpose modelling languages, in the business process management discipline.

"Such business process models enable the
common understanding of the kind of
business activities underlying a business
process, including their mutual
relationships."

Koschmider and Reijers

Since business process modelling can be done for all sorts of domains, e.g. healthcare,

software development, retail, considerable effort has been put into researching extensions of the

BPMN language [88]. The BPMN language allows for the extension of the language with do-

main specific elements [89]. Through the "extension by addition" mechanism, the definition and

integration of domain specific elements is made possible, without harming the validity of the core

BPMN concepts. For domain modelling, the BPMN language is mostly used for capturing the

process related parts of the domain [71], and the structure and coordination of the domain [90].

When taking a process oriented perspective on requirements engineering, BPMN is often the

go-to modelling language [71], [91]. Intrigila et al., provide an extension to the BPMN language

that mitigates the risk of ambiguous- and incomplete requirements [91]. They provide a solution

where data properties are annotated within the model, by means of constraints. These constraints

are the pre-and post-conditions that the activities within the business processes must satisfy. This

easy way of adding extra behavioral, and data, properties, to a BPMN model, foster communica-

tion between stakeholders.

Chapter 3

Research method

3.1 Introduction
This chapter will serve as an explanation of the systematic framework that is chosen, to inves-

tigate and address the research questions and objectives outlined in Chapter 1. It serves as the

blueprint for the research design, data collection, and analysis processes, by offering a compre-

hensive overview to understanding the rigor and validity of the study. By elaborating on the

intricacies of the chosen research approach, this chapter aims to provide a transparent overview of

how the practical part of this research will be conducted.

3.2 Research philosophy and type
This research will take a pragmatic approach. This means that it will be more flexible, to focus

more on the usefulness and applicability of the findings. Furthermore, there is still a big need for

research into the use of LLMs, and how to use them effectively, as has become clear in Chapter 1.

Continuing, this research will be inductive, taking a bottom-up approach. Since there are no real

proven theories when it comes to domain model derivation by using LLMs, it makes sense to

adopt a bottom-up approach. This means an experiment will be conducted to gather data and

make observations, which then will be analyzed to see what can be learned from it.

3.3 Research design
The research design is partly based on the case study protocol, as presented by Maimbo and

Pervan [92]. It offers a Case Study Protocol (CSP), that helps build the design of the research.

Furthermore, it elaborates on the procedures, the research instrument(s), and the data analysis.

While this research may not be a true case study, building the research design based on such a

framework, allows for structuring the practical part of this research in a rigorous manner. Each of

the parts defined in the CSP, will be elaborated upon, creating a solid overview of the protocol for

this research.

3.3.1 Preamble
Confidentiality and data storage are very important. Personal information and all other kinds of

personal information that might occur, will be treated with confidentiality. This means that they

will only be shared in an anonymized manner, and that the principal investigator is the only one

with direct access to all that information. Data will always be stored in a closed off environment

that is not accessible by anyone from the outside. If, and when, this research will be published,

all data related to participants will all be presented in an anonymized manner. Furthermore, the

3.3. RESEARCH DESIGN 38

Ethics and Privacy Quick Scan of the Utrecht University Research Institute of Information and

Computing Sciences was conducted, and can be found in Appendix A. It classified this research

as low-risk with no fuller ethics review or privacy assessment required.

3.3.2 General

The research aims, and the relevance of the research, are elaborated upon in Chapter 1. The goal

of the primary experiment, is to gather quantitative data to analyze, in order to answer the research

questions. The data that is used for the experiment comes from a dataset in which each case is

about a different software system to be built. Each case contains interview transcripts and docu-

mentation, that is used to create a domain with. For each case, a manually made domain model

is created, without any pre-existing knowledge of the case, but only based on the two transcripts

(one per interview) and a vision document that the stakeholders prepared for the interviewees prior

to the interviews. This domain model should try to capture the data structure of the system to be

built, as much as possible. After the manually made model has been established, ChatGPT will be

asked, through several fine-tuned prompts, to also create a domain model for the same case. After

a model is generated for the case, both models are compared on their modelling components. This

comparison results in a set of quantitative results. These results are used to compare the human

made models, with the models generated by ChatGPT.

3.3.3 Procedure

Start-Up Phase The procedure is the same for each case. After creating and improving the

prompts, and making sure the results are somewhat similar to what is expected, the experiment

can commence. This step is unstructured and can depend on what the goal is of what one might

want to accomplish. In the case of this research, it is meant to refine the prompts, and to get a

better understanding of ChatGPT’s capability to model a domain.

Modelling After this initial start-up phase, the procedure for the primary experiment starts.

For each of the cases, first the vision document is studied, followed by transcripts one and two.

For each of these parts notes will be gathered, that can be used throughout the manual modelling

process. Furthermore, it might be used in order to refresh the memory of the researcher during

the quantification of the results. After going through the transcripts and the vision document, a

domain model is created in Draw.io. After this manually created model is established, ChatGPT

is used to generate a domain model. By applying the prompts, as can be found in Appendix B in

Section B.6, ChatGPT gives an output in PlantUML code. This code is then entered into the online

PlantUML web server, which is able to visualize the model specified in the code. All intermediate

steps, answers, and models, are saved in the same document as the manually created model. This

ensures that all information belonging to each case is stored together.

Quantification After both models have been created the models can be compared, and the

results of the modelling parts will be quantified. To do so, a quantification method has been

established. All cases are put side by side, in order for easy comparison. Then all components are

marked step by step. Each entity, attribute, relationship, and cardinality, is analyzed and marked

as matching with a certain scenario. The various scenarios that have been established are based

on the types of knowledge, and the modeler. In Figure 3.1, the foundation of the scenarios can

be found. Something can (not) be modelled by the human only, by ChatGPT only, or by both.

3.3. RESEARCH DESIGN 39

Furthermore, the distinction can be made between the types of knowledge that an element can

be modelled upon. There is direct knowledge, meaning that an element can be traced back to

the transcripts or the vision document, domain knowledge, meaning something cannot be traced

back to the domain model but can reasonably be assumed to be a fitting choice, or missing/wrong

knowledge, meaning that something is clearly missing from the model or something that cannot

reasonably be assumed to be a fitting choice for the model. On these foundations, scenarios have

been established, an overview of them can be found in Appendix C.

Figure 3.1: A Venn diagram showing the foundation on which the knowledge types and scenar-
ios are based.

Scoring For each case, the elements are scored individually. Meaning that each case has four

tables, one for each modelling element, where each individual entity, for example, is matched with

a scenario. Going through all the cases, this will result in a sheet for each case with four tables. In

essence, each table counts the number of occurrences for each scenario. These numbers are then

combined into various tables, in order to highlight for example the performance of the human, or

the types of knowledge that the LLM has relied on in order to model a certain case.

Analysis After the aforementioned steps have been taken, the results will be analyzed. This

is done by performing statistical tests on the data, in order to test the hypotheses that have been

established in.

The entire process has been visualized in Figure 3.2.

3.3. RESEARCH DESIGN 40

Figure 3.2: An overview of experiment procedure.

3.3.4 Research Instrument
The research instrument for this project is the quantification method. There were ready-made

solutions that can be used in order to do this experiment. The method relies on the interview

transcripts and the vision document, in order for the domain models to be created. These are all

the same for each case. Each case consists of two interview transcripts in the range of 30 minutes

to 1 hour, and 1 vision document. This provides an equal foundation for both the human modeler,

as well as the LLM. The scenarios are specular, meaning that they are the same for both the human

and the LLM. This part is also easily adjustable, in case any unforeseen issues arise. The Excel

sheet allows for the easy creation of tables, and keeping track of all the statistics for each individual

case. An overview of the scenarios can be found in Appendix C, and the Excel sheet can be found

in Appendix B, section Section B.7.

3.3.5 Considerations
One of the choices that needed to be considered was the use of ChatGPT. There are many different

LLMs out there, as has become clear in Chapter 2. However ChatGPT was deemed an appropriate

choice. Prior use of ChatGPT, as well as the familiarity of the researcher with ChatGPT, have led

to the choice of using it. Furthermore, ChatGPT is able to handle documents, which is required to

perform the experiment. Lastly, it also allows to upload images for analysis, which is deemed a

useful feature.

3.3.6 Data analysis guidelines
There are three different aspects that are going to be analyzed: the agreement between the human

and the LLM, the usable element creation of both the human and the LLM, and the unusable ele-

ment creation of both the human and the LLM. The usable and unusable element creation is tested

by performing the Wilcoxon signed-rank test. The Wilcoxon signed-rank test is a non-parametric

statistical test, used to compare two related samples or repeated measurements on a single sample

to assess whether their population mean ranks differ. This is useful because it cannot be assumed

that the data is distributed normally. The test works by calculating the differences between paired

observations, ranking the differences, and then analyzing the ranks of the positive and negative

3.3. RESEARCH DESIGN 41

differences. By focusing on the ranks rather than the raw data, the Wilcoxon signed-rank test is

able to handle skewed distributions and outliers. This makes the test useful for comparing means,

and handling changes in the central tendency of the data.

Agreement The agreement between the human and the LLM can only be measured using

the modelling elements that are modelled based on direct knowledge, because both parties can

only agree on elements that exist in either the transcripts/documentation. Therefore only the oc-

currences of the scenarios relation to direct knowledge, are taken into account. To measure the

agreement, the percentage of the amount of elements that both the human and the LLM have

modelled based on direct knowledge, is used. This is done for each of the modelling elements

separately, as well as for all the elements combined.

Usable element creation Usable element creation, means the amount of elements based on

both direct knowledge and domain knowledge, are compared between the human and the LLM.

This is done to highlight the differences in usable/correct element creation when modelling. To

measure this, a Wilcoxon Signed-Rank Test is performed for each of the modelling elements, as

well as all elements combined.

Unusable element creation Unusable element creation, means the amount of elements based

missing/wrong knowledge, are compared between the human and the LLM. This is done to high-

light the differences in unusable/wrong/missing element creation when modelling. To measure

this, a Wilcoxon Signed-Rank Test is performed for each of the modelling elements, as well as all

elements combined.

Chapter 4

Results

4.1 Introduction
To get a better understanding of the capabilities of ChatGPT to generate domain models, and to see

how that compares to manually created domain models, initial experimentation has been done. The

term initial experimentation refers to a process of free-form experimentation in order to narrow

the scope, and define boundaries. This meant narrowing what would be possible to research, for

example is it possible to compare more than one LLM or is it possible to compare multiple LLMs.

Defining the boundaries was about setting a limit for what would be considered acceptable; does

a model need to be near perfect, or should it simply be a decent model. This section will elaborate

more on this process, and the insights that have been gained from going through this process. By

showing the progression, and elaborating on the improvements that were made with each iteration,

the foundation of further research in this thesis becomes clear. The initial experimentation can be

divided into three parts, start, traceability, and normalization.

Each part will be elaborated upon in the following section.

4.2 Initial Experimentation
4.2.1 Start

The first part of the initial experimentation process served to try and get an understanding of

what ChatGPT could do when asked to create a model based on provided transcripts. By using

a minimal prompt, and attaching the first one of two transcripts of a case, ChatGPT generated

PlantUML code that could be inserted into a modelling tool. By adjusting the first prompt, also

the information of the second transcript was given to ChatGPT. The first prompt was written as

follows:

"The following txt document contains an interview between

business analysts and client. They are discussing a software sys-

tem to be built. I want you to create a UML class diagram,

in PlantUML code, that describes the data structure (database) of

this system to be built. Based on the conversation provided

in the txt file.". (file included)

When extending the model with information from the second transcript, it was stated explic-

itly that the model needed to be extended based on that information. With knowledge of both the

transcripts, ChatGPT manages to give a PlantUML code as output, which was then put into the

4.2. INITIAL EXPERIMENTATION 43

PlantUML web server demo. This visualized the generated code as a UML class diagram model,

as can be seen in Figure 4.1.

Figure 4.1: A generated model made with the initial prompt.

At this stage the model is not yet specific enough, and there are still mistakes in the model.

For example, the relationship between the employee and order is wrong. The way that it is mod-

elled now means that the employee orders products. It should be an employee handles an order.

Furthermore, the cardinalities suggest that an order should always consist of multiple orderItems.

This is not always the case, for example when a customer order just one item. The goal is to be

able to generate a domain model that captures the data structure for a system to-be. One of the

things that can still be changed to do so, is to for example model employee and customer as one

class, user. At this stage, such improvements were made by adding small prompts, in order to fix

noticeable issues. This is an example of such a prompt:

"Keep in mind the Plant UML code you provided in the previous

answer. Now change that code so that an order contains a product.

With the product class containing a stock level."

4.2. INITIAL EXPERIMENTATION 44

It has also not become clear what parts of the model are based on which type of knowledge.

These types of knowledge are elaborated upon in Chapter 3. ChatGPT can for example make

things up as well as use knowledge in the transcripts. In order to get a better idea of the modelling

decisions that ChatGPT makes, the next iteration focused on traceability.

4.2.2 Traceability

Traceability in this case refers to getting an understanding on what knowledge ChatGPT makes

certain modelling decisions. Does ChatGPT base everything on the transcripts, does it make up

things based on it’s own knowledge of such systems, or does it make things up that do not make

sense? To try and understand this better, the experimentation evolved to a more structured ap-

proach. A domain model was made by the primary researcher based on the transcripts, extra

documentation (the vision document), and domain knowledge outside of the two aforementioned

sources. After that was done, improved prompts were used in order to generate a model. Then

afterwards, both the model could be compared. Now not only ChatGPT’s own elaboration of it’s

output could be used, but also a human model. The structure of the generation process remained

the same, one prompt with the first transcript attached, and one prompt with the second transcript

attached. The first prompt is as follows:

The following txt document contains an interview between business

analysts and client. They are discussing a software system to be

built.

I want you to model a UML class diagram, in PlantUML code,

that describes the data structure (database) of this system to be

built. Based on the conversation provided in the txt file.

When you process this prompt, build/extend on the previous

PlantUML code you’ve provided.

Please take into account the following context when modelling.

The following context is split up into three parts, context on mod-

elling the right classes, context on modelling the right associa-

tions (relationships), and context on keeping the right attributes.

All this context needs to be taken into account.

Now discard unnecessary and incorrect classes according to the fol-

lowing criteria. Adjust you modelling choices accordingly.

(Example of a guideline) Redundant classes. If two classes

express the same concept, you should keep the most descriptive

name. For example, although Customer might describe a person tak-

ing an airline flight, Passenger is more descriptive. On the

other hand, if the problem concerns contracts for a charter airline,

4.2. INITIAL EXPERIMENTATION 45

Customer is also an appropriate word, since a contract might

involve several passengers. ATM example. Customer and User

are redundant; we retain Customer because it is more descriptive.

guideline 2

guideline N

Now discard unnecessary and incorrect associations, using the fol-

lowing criteria. Adjust your modelling choices accordingly. As-

sociations between eliminated classes. If you have eliminated one

of the classes in the association, you must eliminate the associ-

ation or restate it in terms of other classes. ATM example. We

can eliminate Banking network includes cashier stations and ATMs,

ATM dispenses cash, ATM prints receipts, Banks provide software,

Cost apportioned to banks, System provides recordkeeping, and Sys-

tem provides security.

guideline 2

guideline N

Eliminate unnecessary and incorrect attributes with the following

criteria. Adjust your modelling choices accordingly.

Objects. If the independent existence of an element is important,

rather than just its value, then it is an object.

For example, boss refers to a class and salary is an attribute.

The distinction often depends on the application.

For example, in a mailing list city might be considered as an at-

tribute, while in a census City would be a class with

many attributes and relationships of its own. An element that has

features of its own within the given application is a class.

guideline 2

guideline N

These are some further rules that your output should adhere to.

• Make sure that there are not isolated classes, i.e. a class

should always be related to at least one other class.

• Make sure that for each of the relationships proper cardinal-

ities are included.

• Make sure that attributes are ordered the following way.

4.2. INITIAL EXPERIMENTATION 46

attribute: type, with attribute being the attribute and type

being the datatype.

When you have analyzed the document and have created the output

UML code, I want you to elaborate on each component in the model,

for the following elements:

• For each of the individual classes explain if it came from the

document directly or whether it came from your

own knowledge base.

• For each of the individual attributes explain if it came from

the document directly or whether it came from your own knowl-

edge base.

• For each individual association (relationship) class explain if

it came from the document directly or whether it came from your

own knowledge base.

• For each individual cardinality explain if it came from the doc-

ument directly or whether it came from your own knowledge base.

Please give me the following number as well, to show you

have fully taken into account the whole prompt 1465. (requesting

a number as a check)

The second prompt is similar, and is like this:

Prompt transcript 2

The following txt document contains an interview between business

analysts and client. They are discussing a software system to be

built.

I want you to model a UML class diagram, in PlantUML code, that

describes the data structure (database) of this system to be built.

Based on the conversation provided in the txt file.

Keep in mind that this is a follow up interview to the other

file I provided earlier. So when you process this prompt, build/ex-

tend on the previous Plant UML code you’ve provided.

Please take into account the following context when modelling.

The following context is split up into three parts, context on mod-

elling the right classes, context on modelling the right associa-

tions (relationships), and context on keeping the right attributes.

All this context needs to be taken into account.

(Same guidelines as the previous prompts) Please give me the fol-

lowing number as well, to show you have

fully taken into account the whole prompt 1959. (requesting a dif-

ferent number as a check)

4.2. INITIAL EXPERIMENTATION 47

The improved prompts gave a better model as output. The following examples highlight

the improvements: there is no redundancy when it comes to users, there is only the customer,

and other users are left outside of the scope. This makes it less prone to mistakes, since there

is only a single relationship going to each of the classes. Furthermore, the entities that have

been modelled are all directly related to the transcripts. This shows that the model has improved.

Lastly, all relationships are named and have corresponding cardinalities. In earlier versions this

was not always the case. The most important change that was made, is the inclusion of background

information and guidelines, on how to properly create a domain model. By including this, the

modelling guidelines that are provided to ChatGPT are similar, even across different chats. For

all the prompts that included either a transcripts, or the vision document, these guidelines where

provided. This way all the modelling is done based on the same guidelines. The final model for

one of the cases can be seen in Figure 4.3. The manually made model can be found in Figure 4.2.

Figure 4.2: A manually made domain model to use for comparison.

4.2. INITIAL EXPERIMENTATION 48

In Figure 4.3, the generated model can be found. This model was generated by using the

improved prompts as found in Appendix B in Section B.6.

Figure 4.3: A generated domain model.

Upon comparing both models, the primary issue with the generated model was that it did not

reflect the data structure for a system to-be sufficiently. In professional use, a single user class is

modelled, and roles are added to that class in order to differentiate the customer and the employee

for example. Another example is the inclusion of the order, stock, and orderItem classes. In order

to simplify the model, these could be abstracted, for example, by adding a stockLevel attribute to

the product class. Ideally a generated model should be of the quality that it could be uploaded

into a modelling tool and used straight away, with adjustments only to be made because of taste

or case specific differences. As of this point in the initial experimentation, generated models were

not on that level of quality yet. They could be useful as a reminder of what the interview was

about, but they were not useful as a starting point of modelled data structure. This means that the

4.2. INITIAL EXPERIMENTATION 49

models were not of a quality that was directly usable to implement into a modelling tool, without

significant intervention of a human to revise the model. To try and get closer to such a model. The

next step was to normalize the models to represent a data structure better.

4.2.3 Normalization
By adding two extra prompts, the output generated by the improved prompts handling the first and

second transcript, evolved into something resembling the domain model of a data structure better.

A third prompt was also added in, in order to include the information from the vision document.

The prompt for including the vision document in similar to the previous two prompts, and is as

follows:

The attached document contains a vision statement for a system

to be built. It contains the wishes of the customer of the soft-

ware company who is going to build the system.

I want you to model a UML class diagram, in PlantUML code, that

describes the data structure (database) of this system to be

built. Based on the vision document provided in the file.

Please take into account the following context when modelling.

The following context is split up into three parts, context on

modelling the right classes, context on modelling the

right associations (relationships), and context on keeping the

right attributes.

All this context needs to be taken into account.

(Same guidelines as the previous prompts)

Please give me the following number as well, to show you

have fully taken into account the whole prompt 1234.

This prompt is applied before the two previous prompt mentioned before, and makes use of

the vision document that is analyzed. After the prompt for the vision document, and the prompts

for the two transcripts are applied, there are two further normalization prompts that are applied

after the documents have been handled. The first one of these has a set of guidelines on how to

normalize models to be more uniform. For example, making sure that the naming conventions are

the same across the models, or making sure the right data types are included. The second prompt

addresses some of the remaining issues, like forgetting to model cardinalities, or not naming rela-

tionships.

normalization prompt 1 I want you to refine the previously gen-

erated PlantUML code.

My goal, and what you should try and give me as output, is to have

the code of model that captures the data structure and the appli-

cation logic of the system discussed in the previously analyzed

interview transcripts.

I want the model you provide to be usable as the blueprint for a

4.2. INITIAL EXPERIMENTATION 50

database, that can you used during the software development

process.

To do so, I will give you guidelines.

The guidelines aim to ensure that developers set up

high quality data models.

High quality means: Logical, Consistent, Well structured and, Un-

ambiguous.

I want you to consider all of the following categories

of modelling guidelines.

• Data Modelling: The first step is making a distinction

between the following:

Strong entities, Weak entities, Link tables, and inheritance ta-

bles.

An entity is strong when its existence does not depend on the

existence of any other entity in a database.

For example, sales_order, or sales_invoice.

A weak entity depends on a strong(er) entity for its existence.

For example, sales_order_line, or sales_invoice_line.

A link table maps two or more tables together by referencing the

primary key (PK) of each data table.

In effect, it contains a number of foreign keys (FK), each in

a many-to-one relationship from the link table to the individ-

ual data tables.

The PK of the link table is typically composed of the FK columns

themselves. For example: customer_product, linking customer,

and product. Or, company_group_company linking company_group,

and company. Sometimes there are multiple types of entities

which have certain attributes or relations in common. Using

"sub-type" tables is a simple way to implement table

inheritance in SQL Server.

For example: Company, with customer, supplier, debtor, and cred-

itor.

In the following section Strong and Weak entities form the ba-

sis of many of the Guidelines.

• Strong Entity:

A Strong entity, has 1 primary key column ,and does not have for-

eign key columns in the primary key.

• Weak Entity:

4.2. INITIAL EXPERIMENTATION 51

1. A weak entity, has more than 1 primary

key column.

2. The primary key columns are ordered

from strong to weak.

3. The last primary key column is not

a foreign key, the other primary key columns are.

4. Has exactly 1 primary column more

than his ’parent’.

5. Has the name of its ’parent’ plus

an addition.

• Link Table:

1. Link tables have all primary key

columns from both source tables.

2. All primary columns are also foreign

keys

3. Have the name of one table combined

with the name of the other table, if another name is more

suitable, then this table should probably be a Strong

or Weak Entity.

• Inheritance Table (One to One Relationship

(1 : 0..1)):

1. Target table has his own name. This

means that his name is not derived from the ’parent’

entity.

2. The number of primary key columns is

equal to the ’parent’.

3. All primary columns are also

foreign keys.

• Foreign Key Relation:

1. Each foreign column has its own reference,

so if a table has 5 foreign key columns, there

must also be 5 references, and a column may be

part of multiple references.

2. The database check must be enabled

for every reference, there are situations

where the check is not allowed, for example

with a reference to a view. Then the check can be

turned off.

4.2. INITIAL EXPERIMENTATION 52

• Recursive Relation:

Last foreign key column has a new name: the column does

not have a derived name.

• All entities:

1. The name must be self-explanatory

2. Names singular

3. Names lowercase

4. No abbreviations

(a) Unless platform limits are

exceeded

5. Divide a name into small words

(subnames). Place an underscore between the words.

(a) Good: sales_order_line

(b) Not good: salesorder_line, or

salesorderline

6. No meta information in names

• Columns:

1. The name must be

self-explanatory

2. Names lowercase

3. No meta information in names

4. Divide a name into small words

(subnames). Place between the words an underscore.

5. No abbreviations, except no,

and id.

6. No table name in the column

for non-key columns

• Primary Keys:

1. Name primary key column is

table name + _id.

2. Type of column is preferably an

identity with an INT as the data type.

For tables with more than

2 billion expected rows or data mutations,

use BIGINT. Only primary key columns that are not foreign

keys may be an identity column.

4.2. INITIAL EXPERIMENTATION 53

• Foreign Keys:

1. The referring foreign key

column has the same name as the primary key of the parent

table. If the corresponding reference has

an addition, then this

addition must also be added in front of

the column name.

• Domains:

1. No DTTP in the name, except XML,

DATE, or IMAGE

2. No length in the name

3. No meta information

in name

4. Primary key columns which are not

foreign key columns have the same

domain name as the column.

• Datatypes:

1. Use DATETIME2 instead of DATETIME

2. Use NVARCHAR instead of VARCHAR,

unless performance is a key factor

3. Use INT or BIGINT for identities

4. Use NUMERIC for numbers with digits

after the decimal point

5. Don’t use CHAR, FLOAT, NCHAR without

a specific reason

When you have analysed the document and have

created the output UML code, I want you to elaborate

on each component in the model, for the following elements:

• For each of the individual

classes explain if it came from the document directly

or whether it came from your own knowledge base.

• For each of the individual

attributes explain if it came from the document directly or

whether it came from your own knowledge base.

• For each individual association

(relationship) class explain if it came from the

4.2. INITIAL EXPERIMENTATION 54

document directly or whether it came from

your own knowledge base.

• For each individual cardinality

explain if it came from the document

directly or whether it came from your

own knowledge base.

normalization prompt 2 I am not quite satisfied with

the model (the PlantUML code) output you’ve just provided.

I will give you a list of things

I want you to change, please incorporate all items on that list,

and provide met with the improved PlantUML code and elaborate

on all the changes you’ve made.

1. Remove all isolate classes

(classes that are not connected to any other class,

OR classes that are connected to other classes but are

separate from another group of connected classes that is big-

ger)

2. Make sure to abstract

classes as much as possible. For example if you model a cus-

tomer and 2 types of employees, model them as one class called

user.

All three,

albeit different, are users of the system. Make sure that it

makes sense to do this. In some cases the customer

may not interact with/use the system, but still be important to

model. In such a case a customer should be modelled as

a separate class, and not as a user.

3. An address should be a

class not an attribute, a user can have more than one address,

for example a billing address and a shipping address. Impor-

tant: Only in cases where it makes sense to have two differ-

ent

addresses, for example with an online store where you order

things, it makes sense to have two different addresses. Make

sure to think about this.

4. Make sure that all the

relationships are named properly, and all the

cardinalities make sense.

4.2. INITIAL EXPERIMENTATION 55

5. Make sure to not mess with

other parts of the model that are good already.

6. Make sure that each

of the classes that you model are filled with all the

possible attributes

that make sense for that class. Give me as many attributes

as possible,

within reason.

Give me the sum of all the different

things in the list that I have provided, to show that you’ve

incorporated all the changes that I want you to make

to the model.

To reiterate the what I want you

to do once more, make sure you improve the model (PlantUML code)

you most recently provided, based on the things I have provided in

the list above.

When you have analyzed the document

and have created the output UML code, I want you to elaborate

on each component in the model, for the following elements:

• For each of the individual

classes explain if it came from the document directly or

whether

it came from your own knowledge base.

• For each of the individual

attributes explain if it came from the document directly or

whether it

came from your own knowledge base.

• For each individual association

(relationship) class explain if it came from the document

directly or whether it came from your own knowledge base.

• For each individual cardinality

explain if it came from the document directly or whether it

came from your own knowledge base.

Good luck!

4.2. INITIAL EXPERIMENTATION 56

In order to illustrate the evolving nature of the domain throughout the generation process,

a full example will be provided. The process to get to the final model was as follows: run the

first three prompts with the accompanying vision document and transcripts attached, run the two

normalization prompts, insert the final PlantUML code into the PlantUML web server demo. The

visualization of this final output was used to compare with the manually made model.

The difference between the model generated only with the improved prompts, and the model

after the normalization prompts have been applied, is quite remarkable. With the normalization

prompts, the goal was to improve the generated output, to be closer to a model that would be

usable in professional use. E.g. a model that would need less human intervention, before it would

be sufficiently representing a data-structure of a system-to-be. In Figure 4.3 and in Figure 4.4, a

direct comparison can be seen between the models with Figure 4.3 not having been generated with

the normalization prompts, and Figure 4.3 generated with the normalization prompts. It becomes

clear that for example the customer class, has been abstracted to the user class. This is a more

common phenomenon in professional use. This is a good practice because it simplifies the data

structure, and mitigates the risk for redundancy. For example instead of keeping separate tables

for each type of user, only one type of users column is needed. By creating an extra row in the user

table, for example a role column, you’d already be able the distinguish the different types of users.

Furthermore, it can be seen that the classes have been extended by the addition extra attributes.

4.2.4 Prompts
In the previous sections of this chapter, the prompts have been mentioned. Throughout the initial

experimentation phase, the prompts have been improved through various iterations. The initial

approach to creating a model, was to use prompts to build a model, e.g. using 5 prompts to

create a model of the first transcripts, and using 5 prompts to improve the model based on the

information in the second prompt. The 5 prompts formed a restriction in order to limit the amount

human intervention. The goal is to semi-automate the modelling process after all. The issue

with this approach is that it is different for each time you create a model. This meant that there

was still a lot of human intervention needed. Instead of writing prompts specifically tailored to

each of the cases, the prompts were improved to a point where they would be suitable for all

different cases, as far as possible. These prompts included guidelines. In the prompts as shown

above, only a few examples have been mentioned, the full guidelines can be found in Appendix D.

Lastly, the normalization prompts were applied. These prompts, which also consists of data model

normalization guidelines, further enhanced the domain model that the LLM created. Overall, the

initial experimentation phase has iteratively improved the prompts. The approach that was taken

in the end, was to include guidelines for modelling and normalization. This ensured that the LLM

modelled according to the same guidelines, even across different domains.

4.2. INITIAL EXPERIMENTATION 57

Figure 4.4: A generated domain model using the improved prompts and the normalization
prompts.

4.3. PRIMARY EXPERIMENT 58

4.3 Primary experiment
4.3.1 Introduction
This section presents the results of the primary experiment of this research. Individual cases and

scores will not be elaborated upon in great detail. All the raw data can be found in Appendix B in

Section B.8. It will however go over several distinct perspectives, and showing their results.

This chapter is divided into five distinct sections. First, it covers the results on the four mod-

elling elements: Entities, Attributes, Relationships, and Cardinalities. Lastly, the overall results

are presented.

Each section will feature a visualization of the related data. In each of the sections hypothesis

will be answered, comparing the performance of the human, and the LLM. In addition to compar-

ing the differences in performance, the agreement between the human and the LLM is analyzed.

There is one important change that was made after the conduction of the experiment. The

scenarios, as defined in Chapter 3, were made so that there was a distinction between elements

that should have been modelled, for example entities that are direct knowledge, and for example

attributes based on domain knowledge. When it comes to comparing performance, it is not fair to

include elements that are not mentioned directly in the transcripts/documentation. How can either

party be expected to model something if it is not explicitly mentioned? However, these scenarios

are included when comparing element creation, since that is about the amount of elements each

party creates.

4.3.2 Hypotheses
These are the hypotheses that have been established. It is important to note that the hypotheses are

generalized, and will be answered for each modelling element individually. E.g. hypothesis 1 will

be answered for each element, and will be denoted as follows, H1E: (Entities), and so on.

Null hypotheses:

H10: There is substantial agreement between the human and the LLM.

H20: The human models significantly more usable elements than the LLM.

H30: The LLM models significantly more unusable elements, than the human.

In H1, substantial means 50% agreement or more.

Alternative hypotheses:

H11: There is no substantial agreement between the human and the LLM.

H21: The human does not model significantly more usable elements than the LLM.

H31: The LLM does not model significantly more unusable elements, than the human.

4.3.3 Agreement H1
To measure the agreement between the human modeler and ChatGPT, only the direct knowledge

will be taken into account. This choice was made because we want to measure the agreement

based on those inputs that both the human modeler and ChatGPT had access to: the transcripts

and the documentation.

For each of the modelling elements, the overall agreement is measured as a percentage. This

percentage stands for the percent of modelling elements that both the human modeler, as well

4.3. PRIMARY EXPERIMENT 59

as the LLM, have modelled. This is then also converted into an average across all 10 cases. In

Table 4.1, the agreement percentages per case can be found. The raw data for each of the modelling

elements can be found in Table 4.2, Table 4.3, and Table 4.4.

When it comes to cardinalities, it is not possible to a meaningful analysis. There were no

cases where cardinalities were modelled based on direct knowledge. This would mean that the hu-

man and the LLM would have 100% agreement. Because of the lack of usable cases, cardinalities

are not taken into account any further, when it comes to analyzing the agreement.

Table 4.1: The percentage of agreement per modelling element.

Case/Category Entities % Attributes % Relationships %
1: CRM 57.14 66.67 100.00

2: CRM 66.67 null 50.00

3: CRM 72.73 50.00 100.00

4: CRM 55.56 100.00 100.00

5: Market Place 42.86 null null

6: ERP 37.50 null null

7: Market Place 75.00 100.00 null

8: Customer App 55.56 null null

9: Subscription service 54.55 null null

10: ERP 50.00 66.67 null

Combined Average 56.76 76.67 87.50
Standard Deviation 11.42 20.00 21.65

Table 4.2: The number of entities based on direct knowledge for each case.

Case/Category Human Both LLM Total Agreement %
1: CRM 3 4 0 7 57.14

2: CRM 3 6 0 9 66.67

3: CRM 2 8 1 11 72.73

4: CRM 4 5 0 9 55.56

5: Market Place 4 3 0 7 42.86

6: ERP 5 3 0 8 37.50

7: Market Place 6 6 0 8 75.00

8: Customer App 4 5 0 9 55.56

9: Subscription service 5 6 0 11 54.55

10: ERP 3 4 1 8 50.00

Average 3.5 5.0 0.2 8.7 56.76
Std. Dev. 1.02 1.48 0.40 1.35 11.42

4.3. PRIMARY EXPERIMENT 60

Table 4.3: The number of attributes based on direct knowledge for each case.

Case/Category Human Both LLM Total Agreement
1: CRM 1 2 0 3 66.67

2: CRM 0 0 0 0 null

3: CRM 2 2 0 4 50.00

4: CRM 0 5 0 5 100.00

5: Market Place 0 1 0 1 null

6: ERP 1 0 0 1 null

7: Market Place 0 2 0 2 100.00

8: Customer App 9 0 0 9 null

9: Subscription service 2 0 0 2 null

10: ERP 1 2 0 3 66.67

Average 1.60 1.30 0.10 3.00 76.67
Std. Dev. 2.58 1.55 0.30 4.43 20.00

Table 4.4: The number of relationships based on direct knowledge for each case.

Case/Category Human Both LLM Total Agreement
1: CRM 0 2 0 2 100.00

2: CRM 1 1 0 2 50.00

3: CRM 0 2 0 2 100.00

4: CRM 0 3 0 3 100.00

5: Market Place 0 0 0 0 null

6: ERP 0 0 0 0 null

7: Market Place 0 0 0 0 null

8: Customer App 0 0 0 0 null

9: Subscription service 0 0 0 0 null

10: ERP 0 0 0 0 null

Average 0.10 0.80 0.00 0.90 87.50
Std. Dev. 0.30 1.08 0.00 1.14 21.65

From what can been seen in Table 4.1, the overall average agreement, for modelling entities,

is 56.76%. This indicates that H1E 0 is accepted, and that there is a substantial agreement be-

tween the human and the LLM, when modelling entities. A visualization of this can be found in

Figure 4.5.

Furthermore, Table 4.1 shows that there is an average agreement of 76.67%, when it comes

to modelling attributes. This indicates that H1A 0 is accepted and the alternative hypothesis is

rejected. This means there is a substantial agreement between the human and the LLM, when it

comes to modelling attributes. A visualization of this can be found in Figure 4.5.

4.3. PRIMARY EXPERIMENT 61

(a) Agreement and disagreement when modeling entities

(b) Agreement and disagreement when modeling attributes

(c) Agreement and disagreement when modeling relationships

Figure 4.5: Visualizations showing the agreement and disagreement between the human and the
LLM when modeling (a) entities, (b) attributes, and (c) relationships.

Continuing, Table 4.1 also shows that there is an average agreement of 76.67%, when it comes

4.3. PRIMARY EXPERIMENT 62

to modelling relationships. This indicates that H1R 0 is accepted, and the alternative hypothesis is

rejected. This means that there is a substantial agreement between the human and the LLM, when

it comes to modelling relationships. A visualization of this can be found in Figure 4.5.

Given the averages for each modelling element, E: 56.75%, A: 76.67%, and R: 87.5%, the

overall agreement between the human modeler and ChatGPT, is 73.64%. This means that H1O

0 is accepted and the alternative hypothesis is rejected. This means that there is a substantial

agreement between the human and the LLM. A visualization of this can be found in Figure 4.6.

Figure 4.6: A visualization showing the overall agreement and disagreement, between the hu-
man and the LLM, when modelling elements.

It is important to note that for attributes and relationships, a smaller amount of cases could

be taken into account. Since no agreement or disagreement could be measured. Similarly, the

cardinalities have not been taken into consideration. Because in the dataset, there were no cases

were any agreement, or disagreement, could be distinguished.

4.3.4 Usable element creation H2
Next to the agreement between the human and the LLM, the usable element creation can be com-

pared. With usable element creation, all the elements modelled using direct knowledge, and do-

main knowledge, are meant. By comparing the usable element creation between the human and

the LLM, it becomes clear what possible differences are between the human and the LLM. Fur-

thermore, it may nuance other results. For example, if it turns out to be the case that the LLM

makes a lot more mistakes, but it also creates a lot more elements, it may be an explanation for the

amount of mistakes the LLM makes.

For each of the modelling elements, as well as overall, a Wilcoxon Signed-Rank test was

done. The Wilcoxon signed-rank test is a non-parametric statistical test, used to compare two

related samples or repeated measurements on a single sample to assess whether their population

mean ranks differ. This is useful because it cannot be assumed that the data is distributed normally.

4.3. PRIMARY EXPERIMENT 63

The test works by calculating the differences between paired observations, ranking the differences,

and then analyzing the ranks of the positive and negative differences. By focusing on the ranks

rather than the raw data, the Wilcoxon signed-rank test is able to handle skewed distributions and

outliers.

Entities A Wilcoxon Signed-Rank test was conducted, in order to compare the performance

of the human and the LLM, when it comes to creating usable entities. In Figure 4.7, a visualization

of the distribution of usable entities created, by the human and the LLM, can be found. The

descriptive statistics showed that the mean score for the human was 8.7 with a standard deviation

of 1.25, while the mean score of the LLM was 7.4 with a standard deviation of 1.65. The test

results indicated that there were 6 instances where human scores were higher, 2 instances where

LLM scores were higher, and 2 ties.

The test statistics showed a Z-value of -1.995 and a p-value of 0.046. Since the p-value is

less than 0.05, H2E 0 is accepted, and the alternative hypothesis is rejected. This suggests that the

human creates a significantly higher number usable entities than the LLM, in this context.

Figure 4.7: A visualization of the distribution of usable entities modelled.

Attributes A Wilcoxon Signed-Rank test was conducted, in order to compare the perfor-

mance of the human and the LLM, when it comes to creating usable attributes. In Figure 4.8, a

visualization of the distribution of usable attributes created, by the human and the LLM, can be

found. The descriptive statistics showed that the mean score for humans was 4.0150 with a stan-

dard deviation of 0.73485, while the mean score for the LLM was 2.9050 with a standard deviation

of 0.60421. The test results indicated that there were 8 instances where human scores were higher,

1 instance where LLM scores were higher, and 1 tie.

The test statistics revealed a Z-value of -2.192 and a p-value of 0.028. Since the p-value is

less than 0.05, H2A 0 is accepted, and the alternative hypothesis is rejected. This suggests that the

human creates significantly more usable attributes than the LLM, in this context.

4.3. PRIMARY EXPERIMENT 64

Figure 4.8: A visualization of the distribution of usable attributes modelled.

Relationships A Wilcoxon Signed-Rank test was conducted, in order to compare the perfor-

mance of the human and the LLM, when it comes to creating usable relationships. In Figure 4.9,

a visualization of the distribution of usable relationships created, by the human and the LLM, can

be found. The descriptive statistics showed that the mean score for humans was 0.9290 with a

standard deviation of 0.29153, while the mean score for the LLM was 0.4840 with a standard

deviation of 0.09755. The test results indicated that there were 9 instances where human scores

were higher and 1 instance where the LLM score was higher, with no ties.

The test statistics revealed a Z-value of -2.601 and a p-value of 0.009. Since the p-value is

less than 0.05, H2R 0 is accepted, and the alternative hypothesis is rejected. This suggests that the

human creates significantly more usable relationships than the LLM, in this context.

Figure 4.9: A visualization of the distribution of usable relationships modelled.

4.3. PRIMARY EXPERIMENT 65

Cardinalities A Wilcoxon Signed-Rank test was conducted, in order to compare the perfor-

mance of the human and the LLM, when it comes to creating usable cardinalities. In Figure 4.10,

a visualization of the distribution of usable cardinalities created, by the human and the LLM, can

be found. The descriptive statistics showed that the mean score for humans was 0.8730 with a

standard deviation of 0.33609, while the mean score for the LLM was 0.3420 with a standard

deviation of 0.12017. The test results indicated that there were 9 instances where human scores

were higher and 1 instance where the LLM score was higher, with no ties.

The test statistics revealed a Z-value of -2.701 and a p-value of 0.007. Since the p-value is

less than 0.05, H2C 0 is accepted, and the alternative hypothesis is rejected. This suggests that the

human creates significantly more usable cardinalities than the LLM, in this context.

Figure 4.10: A visualization of the distribution of usable cardinalities modelled.

Overall A Wilcoxon Signed-Rank test was conducted, in order to compare the performance

of the human and the LLM, when it comes to creating usable elements. In Figure 4.11, a visual-

ization of the distribution of usable elements created, by the human and the LLM, can be found.

The descriptive statistics showed that the mean score for humans was 14.5160 with a standard

deviation of 1.61719, while the mean score for the LLM was 11.1290 with a standard deviation of

1.92374. The test results indicated that there were 8 instances where human scores were higher

and 2 instances where LLM scores were higher, with no ties.

4.3. PRIMARY EXPERIMENT 66

Figure 4.11: A visualization of the distribution of usable elements created.

The test statistics revealed a Z-value of -2.497 and a p-value of 0.013. Since the p-value is

less than 0.05, H2O 0 is accepted, and the alternative hypothesis is rejected. This suggests that the

human creates significantly more usable elements than the LLM, in this context.

4.3.5 Unusable element creation H3

Finally, the unusable element creation be compared. By taking the numbers of missing knowledge

for each of the cases, and comparing the scores of the human and the LLM, it becomes clear who

has made more mistakes. For each of the modelling elements, as well as overall, a Wilcoxon

Signed-Rank test was done.

Entities A Wilcoxon Signed-Rank test was conducted, in order to compare the performance

of the human and the LLM, when it comes to creating unusable entities when modelling. In

Figure 4.12, a visualization of the distribution of the unusable entities created, by the human and

the LLM, can be found. The descriptive statistics showed that the mean score for humans was

0.200 with a standard deviation of 0.42164, while the mean score for the LLM was 4.200 with

a standard deviation of 1.31656. The test results indicated that in all instances, the LLM scores

were higher than human scores, with no ties. The test statistics revealed a Z-value of -2.842 and

a p-value of 0.004. Since the p-value is less than 0.05, H3E 0 is accepted, and the alternative

hypothesis is rejected. This suggests that the LLM does make significantly more mistakes when

creating entities than the human, in this context.

4.3. PRIMARY EXPERIMENT 67

Figure 4.12: A visualization of the distribution of unusable elements created, between the hu-
man and the LLM, when modelling entities.

Attributes A Wilcoxon Signed-Rank test was conducted, in order to compare the perfor-

mance of the human and the LLM, when it comes to creating unusable attributes when modelling.

In Figure 4.13, a visualization of the distribution of the unusable attributes created, by the human

and the LLM, can be found. The descriptive statistics showed that the mean score for humans

was 0.0490 with a standard deviation of 0.06385, while the mean score for the LLM was 0.2520

with a standard deviation of 0.29442. The test results indicated that there were 2 instances where

human scores were higher, 7 instances where LLM scores were higher, and 1 tie. The test statistics

revealed a Z-value of -1.838 and a p-value of 0.066. Since the p-value is greater than 0.05, H3A 0

is rejected, and the alternative hypothesis is accepted. This suggests that the LLM does not make

significantly more mistakes when creating attributes than the human, in this context.

Figure 4.13: A visualization of the distribution of unusable elements created, between the hu-
man and the LLM, when modelling attributes.

4.3. PRIMARY EXPERIMENT 68

Relationships A Wilcoxon Signed-Rank test was conducted, in order to compare the per-

formance of the human and the LLM, when it comes to creating unusable relationships when

modelling. In Figure 4.14, a visualization of the distribution of the unusable relationships created,

by the human and the LLM, can be found. The descriptive statistics showed that the mean score

for humans was 0.0130 with a standard deviation of 0.04111, while the mean score for the LLM

was 0.0830 with a standard deviation of 0.19551. The test results indicated that there was 1 in-

stance where human scores were higher, 2 instances where LLM scores were higher, and 7 ties.

The test statistics revealed a Z-value of -1.069 and a p-value of 0.285. Since the p-value is greater

than 0.05, H3R 0 is rejected, and the alternative hypothesis is accepted. This suggests that the

LLM does not make significantly more mistakes when creating relationships than the human, in

this context.

Figure 4.14: A visualization of the distribution of unusable elements created, between the hu-
man and the LLM, when modelling relationships.

Cardinalities A Wilcoxon Signed-Rank test was conducted, in order to compare the perfor-

mance of the human and the LLM, when it comes to creating unusable cardinalities when mod-

elling. In Figure 4.15, a visualization of the distribution of the unusable cardinalities created, by

the human and the LLM, can be found. The descriptive statistics showed that the mean score for

humans was 0.0640 with a standard deviation of 0.07321, while the mean score for the LLM was

0.1770 with a standard deviation of 0.15755. The test results indicated that there was 1 instance

where human scores were higher, 7 instances where LLM scores were higher, and 2 ties. The test

statistics revealed a Z-value of -2.100 and a p-value of 0.036. Since the p-value is less than 0.05,

H3C 0 is accepted, and the alternative hypothesis is rejected. This suggests that the LLM does

make significantly more mistakes when creating cardinalities than the human, in this context.

4.3. PRIMARY EXPERIMENT 69

Figure 4.15: A visualization of the distribution of unusable elements created, between the hu-
man and the LLM, when modelling cardinalities.

Overall A Wilcoxon Signed-Rank test was conducted, in order to compare the performance

of the human and the LLM, when it comes to creating unusable elements when modelling. In

Figure 4.16, a visualization of the distribution of the unusable elements created, by the human and

the LLM, can be found. The descriptive statistics showed that the mean score for humans was

0.3250 with a standard deviation of 0.44826, while the mean score for the LLM was 4.7110 with

a standard deviation of 1.20585. The test results indicated that in all instances, the LLM scores

were higher than human scores, with no ties. The test statistics revealed a Z-value of -2.803 and

a p-value of 0.005. Since the p-value is less than 0.05, H3O 0 is accepted, and the alternative

hypothesis is rejected. This suggests that the LLM does make significantly more mistakes when

creating elements than the human, in this context.

Figure 4.16: A visualization of the distribution of unusable elements created, between the hu-
man and the LLM, when modelling.

Chapter 5

Discussion

5.1 Discussion
5.1.1 Key findings
The statistical tests that were performed on the data suggest that there are significant differences

in the performance of humans and the LLM when deriving domain models from requirements

elicitation conversations.

The analysis identifies that the human modeler created significantly more usable entities, at-

tributes, relationships, and overall usable elements compared to the LLM. Specifically, the human

had higher mean scores and lower standard deviations, indicating more consistent performance.

The Wilcoxon Signed-Rank tests consistently indicate the the human outperforms the LLM.

Furthermore, the LLM was found to make significantly more mistakes in creating unusable

elements. The statistical test indicate that the LLM made significantly more mistakes when it came

to modelling unusable entities and cardinalities. It also indicated that there was no significant

difference when it came to modelling unusable attributes and relationships. Overall, the statistical

test indicates that the LLM made more mistakes than the human.

These results highlight some of the current limitations of ChatGPT, when the prompts as

stated earlier are applied, in deriving domain models from requirement elicitation conversations.

A positive highlight is the agreement between the human and the LLM, when it comes to modelling

entities, attributes, and relationships. It is however a bit more nuanced, since the cardinalities could

not be taken into account. Furthermore, the attributes and relationships percentages are not based

on all 10 cases, on account of some cases not having occurrences of elements modelled based on

direct knowledge. Overall, the results seem to suggest that the LLM is not yet capable to create

quality domain models without a human being in the loop.

5.1.2 Interpretation & Validity
The results will be further interpreted. For each of the subsections of the primary experiment, a

more in depth interpretation of the results will be given. In addition to interpreting the results,

threats to the validity of the research will also be taken into consideration. This gives a more

nuanced perspective of the results.

Because of the exploratory nature of this research, there is no substantial foundation of other

research projects that have conducted a similar experiment. It is therefore rather difficult to say

whether these results are similar to previous work. Such comparisons are therefore not made in

the sections below.

5.1. DISCUSSION 71

Agreement

What becomes apparent from the results in Chapter 4, is that there is a substantial agreement

between the human and the LLM, when it comes to modelling entities, attributes and relationships.

Despite the substantial agreement between the human and the LLM when it comes to modelling

entities, attributes, and relationships, there is still a significant amount of work that needs to be

done. This means that a human would have to remain closely involved with the generation process,

and possibly iteratively improve on the outputs, in order to get a more agreed upon domain model.

This is consistent with current work [27].

One of the main factors that might have affected the agreement between the human and the

LLM, is the "strictness" of the researcher, when it comes to matching a certain modelling element

with a scenario. In the case of this research, elements did not need to match exactly, meaning

that for example a phoneNumber attribute is equal to a telephone attribute. Another factor that

might have influenced the amount of agreement is the abstraction level of the model itself. If for

example the human and the LLM model on a different level of abstraction, it might occur that

certain attributes for example, are not modelled by the LLM.

Usable element creation

In Chapter 4, it became apparent from the statistical tests that the human creates more usable

elements than the LLM. One of the explanations of why this could be the case, has to do with

the creative aspect of domain modelling. It is definitely up to the human modeler to decide how

elaborate a model is going to be. One modeler might choose to model everything that comes

up, while another modeler might strictly constrain themselves to what originates directly in the

transcripts/documentation. While in the case of this research a similar level of detail has been

applied for all cases, changing the modeler and conducting the same experiment would definitely

yield different results.

Unusable Element creation

In Chapter 4, it became apparent from the statistical tests that the LLM makes significantly more

mistakes when modelling entities and cardinalities. However, the fact that the LLM makes signif-

icantly more mistakes, shows that in order to have generated models be closer to a human made

model, the human still needs to be involved more to correct during the generation process. The

need for the human to remain involved with the LLM, is something that has become apparent from

previous research [27]. Whilst there is no significant difference in mistakes made when modelling

attributes and relationships, the LLM does make significantly more mistakes overall, than the

human.

A big factor, that changes the results if it where changed, are the prompts that one could try

and use when generating the domain models. This goes for all the results mentioned above. The

possibilities for prompts are almost endless. The results are therefore definitely dependent on the

prompts that someone might choose to use. A specific example of such case is the inclusion of the

guidelines for domain modelling. These could be exchanged for other guidelines in future work.

Doing so would most certainly influence the generated models.

5.1. DISCUSSION 72

5.1.3 Recommendations for implementation
The findings from this study highlight the potential of LLMs in supporting domain model deriva-

tion from requirements elicitation conversations. Practically, it might be possible to apply the

findings in several ways:

Focusing human effort LLMs can serve as valuable tools for business analysts and domain

modelers by generating initial drafts of domain models. These preliminary models can signifi-

cantly reduce the time and effort required for the manual creation of models, allowing human ex-

perts to focus on refining and validating the models. This hybrid approach combines the strengths

of both human intuition and machine efficiency, leading to a quicker initial model, and more focus

on model refinement.

Training The results of the experiment indicate that the model generated by the LLM are

mostly not of a similar quality as the models created by the human. An interesting implementation

of the approach, like the one taken in this thesis, is to use it when training people to model a

domain. By letting students or business analysts work with ChatGPT for example, they not only

familiarize themselves with using a LLM to create domain models, but they also learn to recognize

mistakes and modelling patterns. This could possibly lead to a better understanding of domain

modelling.

Tool integration Software development tools and platforms can incorporate LLMs to assist

in the early stages of system design. Integrating LLM support into a modelling software for

example, might lead to a more efficient and less error-prone domain model creation process. This

can be particularly useful in areas where rapid iteration and prototyping are essential, such as an

agile development environment.

5.1.4 Summary
This thesis explored the potential of LLMs in supporting the derivation of domain models from

requirements elicitation conversations. The key findings indicate that while LLMs can assist in

generating initial domain models, they are not yet capable of matching human performance in

terms of usable and unusable element creation. Specifically, the human created more usable ele-

ments, while the LLM made more mistakes.

The experiment that was conducted highlighted significant differences in performance be-

tween the human and the LLM, showing the necessity of human involvement in refining and

validating the models generated by LLMs. The effectiveness of LLMs is also heavily influenced

by the quality of prompts used. Furthermore, the impact that the human modeler has on the models

it produces, also influences the results.

Several limitations were noted, including the volatile nature of LLMs, generalizability issues

due to specific datasets, ethical considerations, and resource constraints. Despite these limita-

tions, the modelling approach could be useful when applied into a practical setting, such as initial

model generation to reduce manual effort, training tools for domain modeling, and integration into

modelling tools.

Future research directions include improving prompt engineering, validating results in prac-

tical settings, addressing privacy concerns, and exploring multi-modal inputs to enhance the relia-

bility and applicability of LLMs in domain model derivation.

Chapter 6

Conclusion

In this chapter the conclusion of the thesis will be given. The results and the discussion of the

results, have given an in depth look at the results. What will follow is a more high level, more

general view of what the findings of this research mean. The relations between these key findings,

with the research aims and questions, will be summarized. Furthermore, the value and contribu-

tions of these key findings will be discussed. Continuing, the limitation of this research will be

addressed, and recommendation for future research will be given.

6.1 Overall findings in relation to the research aims
6.1.1 Research aims and questions
This thesis aimed to explore the potential of LLMs in supporting the derivation of domain models

from requirements elicitation conversations. The primary research question was: "What is the

potential of Large Language Models in supporting the derivation of domain models from require-

ments elicitation conversations, and what factors influence their effectiveness in this context?"

To address this overarching question, the study focused on several sub-questions:

• SQ1: What are the best practices for designing an LLM-based approach that supports do-

main model derivation from requirement elicitation conversation transcripts?

• SQ2: What is the effectiveness of the LLM compared to the human, when deriving domain

models from requirement elicitation conversation transcripts?

• SQ3: What is the similarity between the LLM and the human, when deriving domain mod-

els from requirement elicitation conversation transcripts?

Through performing the experiment, several best practices have been identified. (SQ1) One

of the most important ones is the inclusion of modelling guidelines in the prompts. By adding

modelling guidelines, the LLM is consistently modelling elements in a way as defined by the

human. This decreases the need for human intervention. This also goes for the use of the normal-

ization prompts. The normalization prompts are there to "normalize" the generated output towards

a certain desired outcome. For example, enforcing the use of a certain naming convention, or spec-

ifying the data types. By adding in these prompts, the generated domain model can be adjusted in

way that the human prefers.

In terms of effectiveness, the LLM was found to be less effective than the human. When

it comes to usable element creation, the LLM was found to create a significantly lower amount

6.2. CONTRIBUTIONS 74

of usable entities, attribute, relationships, and cardinalities.(SQ2) While this does not necessarily

mean that the usable element creation of the LLM is bad, it shows that there is still a considerable

need for human intervention if the generated models need to be of the same quality.

Continuing, the results show that the LLM makes significantly more mistakes than the hu-

man. The LLM creates a significantly higher amount of unusable entities and cardinalities. This

further underlines the point made earlier; there is still a considerable amount of human intervention

needed if the generated models are to be of a similar quality than that of the LLM. (SQ2)

In terms of similarity, the results showed that there was a substantial agreement between the

human and the LLM, when it came to modelling entities, attributes, and relationships.(SQ3) This

means that modelled more than 50% of the elements similarly. However, not all 10 cases could

be taken into account for attributes and relationships, and the cardinalities did not have a usable

amount of data to be taken into account. This means that although the results indicate a substantial

agreement between the human and the LLM, further human intervention is needed to increase the

agreement.

The answer to the main research question; LLMs demonstrate potential in supporting the

derivation of domain models from requirements elicitation conversations, by producing models

comparable to those created by human analysts. Initial experimentation shows that the effective-

ness of an LLM is influenced by factors such as the quality of prompt engineering, and the type

of learning approach used (zero-shot, one-shot, or few-shot), but further research needs to be con-

ducted to properly assess the effect. Despite being less effective when it comes to creating usable

elements, and creating more unusable elements, the LLM shows potential to be of value when used

in a semi-automated approach. Continuing, the similarity between the human and the LLM, when

deriving domain models, seems to suggest that the generated models are of a sufficient quality to

use them as a starting point. Overall, LLMs hold the potential to enhance efficiency and accuracy

in deriving domain models, if properly managed.

6.1.2 Broader implications
The results of this study have broader implications for the field of RE. The demonstrated potential

of LLMs in supporting domain model derivation tasks highlights their potential value as a tool for

improving efficiency and accuracy in the domain modelling process. By identifying factors that

influence the effectiveness of LLMs in this context, this research could contribute to the further

research into the application of LLMs in the field of RE.

6.2 Contributions
The contributions that this research has to the field are not yet proven in practice. Due to the

exploratory nature of this research, the results have only been validated in a "laboratory" type

setting, meaning a controlled environment and not in practice. It cannot definitively say that its

results show that there are significant improvements, that can immediately be applied in practice.

It does however confirm the existing notion that a LLM, when applied to a task, will most likely

need human intervention in order to be of a similar quality as a human performed task.

Despite this, it manages to contribute to the field by opening up this research direction. In the

wake of the rapid developments in LLM research, it has made a start on research what potential

LLMs may have in the field of RE. It has shown that the LLM capable of performing the domain

6.3. LIMITATIONS 75

model derivation task. Despite not being significantly better, and even being worse in several

aspects, it does look promising. It would seem that more research this direction, would have

the potential to make a more significant impact in how a business analyst performs the domain

modelling task.

6.3 Limitations
Despite trying to be a thorough as possible when conducting research, there are as limitations that

constrain the project. These are the limitations that need to be kept in mind when assessing the

value of the outcome of this thesis.

The volatile nature of LLMs The field of LLMs is of a volatile nature, with new techniques

and models emerging frequently. The continuous advancements make it challenging to capture

the most recent innovations within the scope of this thesis. Consequently, the findings may not

fully capture the latest breakthroughs in LLMs, potentially limiting the relevance of the thesis’s

outcomes. Meaning that the conclusions drawn here might need to be revisited as newer LLMs

and techniques are developed and validated in future research.

Generalizability The empirical validation, of the approach that has been used in this thesis,

may prove to be difficult. The experiment relies on specific datasets that may not be representative

of all potential use cases and contexts. The dataset is limited in the sense that it only has two

interview transcripts and one vision document per case. The interviews were also performed by

different people from case to case, meaning that the interview style and questions vary greatly.

Factors such as these, as well as varying datasets, evolving LLM architectures, and diverse appli-

cation contexts, may affect the extent to which the findings can be generalized to other scenarios.

It is important to acknowledge that the practical implications derived from this study may be

context-dependent and might not be directly applicable to different organizational practices or

settings.

Ethical considerations The ethical implications associated with the use of LLMs present

another significant limitation. In practice, it might very well be the case that certain conversation

or conversation topics, are not suited/allowed, to be uploaded to a third party such as ChatGPT. In

practice, companies are often concerned with privacy issues and handling sensitive data. Despite

trying to be as thorough as possible, it may turn out to be impossible to implement the approach as

used in this thesis, due to these concerns. This could potentially limit the usefulness of the findings

in ethically sensitive contexts.

Resource constraints This research is limited due to resource constraints, including time

and access to more varied datasets. While efforts have been made to conduct an as thorough as

possible experiment, these constraints may limit the depth of analysis in certain aspects. The scope

of the study does not cover all potential use cases, and is not able to compare the performance of

different LLMs. This means that this research is by no means able to provide a definitive answer

as to whether or not LLMs should be used to support the domain model creation process. It can

however highlight whether or not it could be a potential direction for further research.

Validation The validation of LLM generated models was conducted under specific experi-

mental conditions, which may not reflect all scenarios in practice. The models still require re-

finement to correct inaccuracies and misinterpretations, particularly in complex relationships and

6.4. RECOMMENDATIONS FOR FUTURE RESEARCH 76

cardinalities. While the results show some potential of LLMs to generate preliminary models, the

outputs often needs substantial human intervention to be practical and accurate. This indicates

that while LLMs can be potentially valuable in supporting domain model derivation, they are not

yet reliable enough to replace human modelers entirely.

6.4 Recommendations for future research
There are several opportunities for future research that could help understand the potential of

LLMs in supporting the domain model derivation task. As has become clear from the research

goals, as well as from the literature discussed in Chapter 1, and Chapter 3, there is a large knowl-

edge gap in the field of LLMs. This thesis has taken an even deeper dive into an application of

LLMs in the field of RE.

Longitudinal study Another recommendation for future research would be to have a more

longitudinal experiment set-up, in which a LLM can be trained on the domain model derivation

task. This could improve the LLM’s ability to recognize important information in the transcript-

s/documentation, potentially improving the amount of direct knowledge that the LLM is able to

derive.

Prompt engineering enhancement The thesis has shown that the effectiveness of LLMs is

heavily influenced by the quality of the prompts used. Future research could focus on developing

more sophisticated prompt engineering techniques to improve the accuracy and reliability of the

models created by LLMs. Points of interest could be developing prompt patterns specifically for

deriving domain models, trying to establish efficient and fast feedback loops, or deriving domain

models from visual inputs.

Validating results in a practical setting The current findings are based on specific datasets

and experimental conditions that are different from a practical setting. Future research could try

to validate these findings across a broader range of datasets, including different domains and more

complex systems. This will help in understanding the generalizability of the results and it could

possibly identify any domain-specific challenges that may arise.

Addressing privacy and ethics concerns Given the ethical implications of using LLMs,

particularly concerning privacy and sensitive data, future studies could try to identify approaches

that could eliminate such concerns. Future research could try to focus on establishing guidelines

for the responsible use of LLMs, when dealing with potentially sensitive data, such as requirements

elicitation conversations. Doing so might help reduce the reluctance of companies when it comes

to adopting LLMs in their processes.

Exploring multi modal inputs Future research can also explore the use of multi modal inputs

that can be processed by the LLM, such as textual requirements, diagrams, and user feedback

through dictation, or images. Researching such an approach could lead to more comprehensive

and accurate domain models.

Types of LLMs There are many different types of LLMs, as has become clear in Chapter 2.

For future research, it might be worth to consider other types of LLMs. An example would be

to try another widely available one, such as Microsoft copilot. Another idea would be to focus

on open LLMs. Open LLMs are made accessible to the public for use, modification, and further

development. The open nature of such an LLM could improve the transparency of the processes

6.4. RECOMMENDATIONS FOR FUTURE RESEARCH 77

going behind the scenes. Furthermore, such an LLM could be used to collaborate across multiple

research projects, potentially allowing to iteratively improving it’s outputs.

By addressing these areas, future research might be able to overcome current limitations and

help further advance the application of LLMs in RE.

Bibliography

[1] D. Zowghi and C. Coulin, “Requirements elicitation: A survey of techniques, approaches,

and tools”, Engineering and managing software requirements, pp. 19–46, 2005.

[2] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Extracting domain models from

natural-language requirements: Approach and industrial evaluation”, in Proceedings of the

ACM/IEEE 19th International Conference on Model Driven Engineering Languages and

Systems, 2016, pp. 250–260.

[3] T. Spijkman, F. Dalpiaz, and S. Brinkkemper, “Requirements elicitation via fit-gap analysis:

A view through the grounded theory lens”, in Advanced Information Systems Engineering,

M. La Rosa, S. Sadiq, and E. Teniente, Eds., Cham: Springer International Publishing, 2021,

pp. 363–380, ISBN: 978-3-030-79382-1.

[4] T. Spijkman, B. Winter, S. Bansidhar, and S. Brinkkemper, “Concept extraction in require-

ments elicitation session recordings: Prototype and experimentation”, in REFSQ Work-

shops, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:

235467673.

[5] T. Spijkman, F. Dalpiaz, and S. Brinkkemper, “Back to the roots: Linking user stories to

requirements elicitation conversations”, in 2022 IEEE 30th International Requirements En-

gineering Conference (RE), 2022, pp. 281–287. DOI: 10.1109/RE54965.2022.00042.

[6] T. Spijkman, X. de Bondt, F. Dalpiaz, and S. Brinkkemper, “Summarization of elicitation

conversations to locate requirements-relevant information”, in Requirements Engineering:

Foundation for Software Quality, A. Ferrari and B. Penzenstadler, Eds., Cham: Springer

Nature Switzerland, 2023, pp. 122–139, ISBN: 978-3-031-29786-1.

[7] E. Insfrán, O. Pastor, and R. Wieringa, “Requirements engineering-based conceptual mod-

elling”, Requirements Engineering, vol. 7, no. 2, pp. 61–72, Jun. 2002, ISSN: 1432-010X.

DOI: 10.1007/s007660200005. [Online]. Available: https://doi.org/10.1007/

s007660200005.

[8] C. Rolland and N. Prakash, “From conceptual modelling to requirements engineering”,

Annals of Software Engineering, vol. 10, no. 1, pp. 151–176, Nov. 2000, ISSN: 1573-7489.

DOI: 10.1023/A:1018939700514. [Online]. Available: https://doi.org/10.1023/A:

1018939700514.

https://api.semanticscholar.org/CorpusID:235467673
https://api.semanticscholar.org/CorpusID:235467673
https://doi.org/10.1109/RE54965.2022.00042
https://doi.org/10.1007/s007660200005
https://doi.org/10.1007/s007660200005
https://doi.org/10.1007/s007660200005
https://doi.org/10.1023/A:1018939700514
https://doi.org/10.1023/A:1018939700514
https://doi.org/10.1023/A:1018939700514

BIBLIOGRAPHY 79

[9] L. M. Cysneiros, J. C. S. do Prado Leite, and J. de Melo Sabat Neto, “A framework for in-

tegrating non-functional requirements into conceptual models”, Requirements Engineering,

vol. 6, no. 2, pp. 97–115, Jun. 2001, ISSN: 1432-010X. DOI: 10.1007/s007660170008.

[Online]. Available: https://doi.org/10.1007/s007660170008.

[10] D. Richards, “Merging individual conceptual models of requirements”, Requirements Engi-

neering, vol. 8, no. 4, pp. 195–205, Nov. 2003, ISSN: 1432-010X. DOI: 10.1007/s00766-

002-0158-5. [Online]. Available: https://doi.org/10.1007/s00766-002-0158-5.

[11] E.-M. Schön, J. Thomaschewski, and M. J. Escalona, “Agile requirements engineering:

A systematic literature review”, Computer Standards & Interfaces, vol. 49, pp. 79–91,

2017, ISSN: 0920-5489. DOI: https://doi.org/10.1016/j.csi.2016.08.011.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0920548916300708.

[12] A. De Lucia and A. Qusef, “Requirements engineering in agile software development”,

Journal of emerging technologies in web intelligence, vol. 2, no. 3, pp. 212–220, 2010.

[13] K. Elghariani and N. Kama, “Review on agile requirements engineering challenges”, in

2016 3rd International Conference on Computer and Information Sciences (ICCOINS),

2016, pp. 507–512. DOI: 10.1109/ICCOINS.2016.7783267.

[14] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband, “A systematic lit-

erature review on agile requirements engineering practices and challenges”, Computers

in Human Behavior, vol. 51, pp. 915–929, 2015, Computing for Human Learning, Be-

haviour and Collaboration in the Social and Mobile Networks Era, ISSN: 0747-5632. DOI:

https://doi.org/10.1016/j.chb.2014.10.046. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S074756321400569X.

[15] R. Saini, G. Mussbacher, J. L. Guo, and J. Kienzle, “Towards queryable and traceable

domain models”, in 2020 IEEE 28th International Requirements Engineering Conference

(RE), 2020, pp. 334–339. DOI: 10.1109/RE48521.2020.00044.

[16] R. Saini, G. Mussbacher, J. L. C. Guo, and J. Kienzle, “Automated traceability for domain

modelling decisions empowered by artificial intelligence”, in 2021 IEEE 29th International

Requirements Engineering Conference (RE), 2021, pp. 173–184. DOI: 10.1109/RE51729.

2021.00023.

[17] S. Arulmohan, M.-J. Meurs, and S. Mosser, “Extracting domain models from textual re-

quirements in the era of large language models”, in 2023 ACM/IEEE International Con-

ference on Model Driven Engineering Languages and Systems Companion (MODELS-C),

2023, pp. 580–587. DOI: 10.1109/MODELS-C59198.2023.00096.

[18] W. C. Lena Waizenegger Brad McKenna and T. Bendz, “An affordance perspective of team

collaboration and enforced working from home during covid-19”, European Journal of

Information Systems, vol. 29, no. 4, pp. 429–442, 2020. DOI: 10.1080/0960085X.2020.

1800417. [Online]. Available: https://doi.org/10.1080/0960085X.2020.1800417.

https://doi.org/10.1007/s007660170008
https://doi.org/10.1007/s007660170008
https://doi.org/10.1007/s00766-002-0158-5
https://doi.org/10.1007/s00766-002-0158-5
https://doi.org/10.1007/s00766-002-0158-5
https://doi.org/https://doi.org/10.1016/j.csi.2016.08.011
https://www.sciencedirect.com/science/article/pii/S0920548916300708
https://www.sciencedirect.com/science/article/pii/S0920548916300708
https://doi.org/10.1109/ICCOINS.2016.7783267
https://doi.org/https://doi.org/10.1016/j.chb.2014.10.046
https://www.sciencedirect.com/science/article/pii/S074756321400569X
https://www.sciencedirect.com/science/article/pii/S074756321400569X
https://doi.org/10.1109/RE48521.2020.00044
https://doi.org/10.1109/RE51729.2021.00023
https://doi.org/10.1109/RE51729.2021.00023
https://doi.org/10.1109/MODELS-C59198.2023.00096
https://doi.org/10.1080/0960085X.2020.1800417
https://doi.org/10.1080/0960085X.2020.1800417
https://doi.org/10.1080/0960085X.2020.1800417

BIBLIOGRAPHY 80

[19] W. Standaert, S. Muylle, and A. Basu, “Business meetings in a postpandemic world: When

and how to meet virtually”, Business Horizons, vol. 65, no. 3, pp. 267–275, 2022, ISSN:

0007-6813. DOI: https : / / doi . org / 10 . 1016 / j . bushor . 2021 . 02 . 047. [On-

line]. Available: https : / / www . sciencedirect . com / science / article / pii /

S0007681321000665.

[20] J. Li et al., “Recent advances in end-to-end automatic speech recognition”, APSIPA Trans-

actions on Signal and Information Processing, vol. 11, no. 1, 2022.

[21] W. Han, Z. Zhang, Y. Zhang, et al., Contextnet: Improving convolutional neural net-

works for automatic speech recognition with global context, 2020. arXiv: 2005.03191

[eess.AS].

[22] L. Yan, L. Sha, L. Zhao, et al., “Practical and ethical challenges of large language models

in education: A systematic scoping review”, British Journal of Educational Technology,

Aug. 2023, ISSN: 1467-8535. DOI: 10.1111/bjet.13370. [Online]. Available: http:

//dx.doi.org/10.1111/bjet.13370.

[23] B. Meskó and E. J. Topol, “The imperative for regulatory oversight of large language models

(or generative ai) in healthcare”, npj Digital Medicine, vol. 6, no. 1, p. 120, Jul. 2023,

ISSN: 2398-6352. DOI: 10.1038/s41746-023-00873-0. [Online]. Available: https:

//doi.org/10.1038/s41746-023-00873-0.

[24] K. S. Cheung, “Real estate insights unleashing the potential of chatgpt in property valuation

reports: The “red book” compliance chain-of-thought (cot) prompt engineering”, Journal

of Property Investment & Finance, vol. ahead-of-print, no. ahead-of-print, Jan. 2023, ISSN:

1463-578X. DOI: 10.1108/JPIF-06-2023-0053. [Online]. Available: https://doi.

org/10.1108/JPIF-06-2023-0053.

[25] D. Russo, Navigating the complexity of generative ai adoption in software engineering,

2023. arXiv: 2307.06081 [cs.SE].

[26] D. Luitel, S. Hassani, and M. Sabetzadeh, “Improving requirements completeness: Auto-

mated assistance through large language models”, arXiv preprint arXiv:2308.03784, 2023.

[27] J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt, Chatgpt prompt patterns for

improving code quality, refactoring, requirements elicitation, and software design, 2023.

arXiv: 2303.07839 [cs.SE].

[28] A. M. HICKEY and A. M. DAVIS, “A unified model of requirements elicitation”, Jour-

nal of Management Information Systems, vol. 20, no. 4, pp. 65–84, 2004. DOI: 10.1080/

07421222.2004.11045786. eprint: https://doi.org/10.1080/07421222.2004.

11045786. [Online]. Available: https : / / doi . org / 10 . 1080 / 07421222 . 2004 .

11045786.

[29] A. Sutcliffe and P. Sawyer, “Requirements elicitation: Towards the unknown unknowns”, in

2013 21st IEEE International Requirements Engineering Conference (RE), 2013, pp. 92–

104. DOI: 10.1109/RE.2013.6636709.

https://doi.org/https://doi.org/10.1016/j.bushor.2021.02.047
https://www.sciencedirect.com/science/article/pii/S0007681321000665
https://www.sciencedirect.com/science/article/pii/S0007681321000665
https://arxiv.org/abs/2005.03191
https://arxiv.org/abs/2005.03191
https://doi.org/10.1111/bjet.13370
http://dx.doi.org/10.1111/bjet.13370
http://dx.doi.org/10.1111/bjet.13370
https://doi.org/10.1038/s41746-023-00873-0
https://doi.org/10.1038/s41746-023-00873-0
https://doi.org/10.1038/s41746-023-00873-0
https://doi.org/10.1108/JPIF-06-2023-0053
https://doi.org/10.1108/JPIF-06-2023-0053
https://doi.org/10.1108/JPIF-06-2023-0053
https://arxiv.org/abs/2307.06081
https://arxiv.org/abs/2303.07839
https://doi.org/10.1080/07421222.2004.11045786
https://doi.org/10.1080/07421222.2004.11045786
https://doi.org/10.1080/07421222.2004.11045786
https://doi.org/10.1080/07421222.2004.11045786
https://doi.org/10.1080/07421222.2004.11045786
https://doi.org/10.1080/07421222.2004.11045786
https://doi.org/10.1109/RE.2013.6636709

BIBLIOGRAPHY 81

[30] A. Ferrari, P. Spoletini, and S. Gnesi, “Ambiguity and tacit knowledge in requirements

elicitation interviews”, Requirements Engineering, vol. 21, no. 3, pp. 333–355, Sep. 2016,

ISSN: 1432-010X. DOI: 10.1007/s00766- 016- 0249- 3. [Online]. Available: https:

//doi.org/10.1007/s00766-016-0249-3.

[31] K. L. McGraw and K. Harbison-Briggs, Knowledge acquisition: Principles and guidelines.

Prentice-Hall, Inc., 1989.

[32] J. C. Wetherbe, “Executive information requirements: Getting it right”, MIS Quarterly,

vol. 15, no. 1, pp. 51–65, 1991, ISSN: 02767783. [Online]. Available: http://www.jstor.

org/stable/249435 (visited on 12/06/2023).

[33] G. J. Browne and M. B. Rogich, “An empirical investigation of user requirements elicita-

tion: Comparing the effectiveness of prompting techniques”, Journal of Management In-

formation Systems, vol. 17, no. 4, pp. 223–249, 2001. DOI: 10.1080/07421222.2001.

11045665. eprint: https://doi.org/10.1080/07421222.2001.11045665. [Online].

Available: https://doi.org/10.1080/07421222.2001.11045665.

[34] M. G. Pitts and G. J. Browne, “Improving requirements elicitation: An empirical investiga-

tion of procedural prompts”, Information Systems Journal, vol. 17, no. 1, pp. 89–110, 2007.

DOI: https://doi.org/10.1111/j.1365-2575.2006.00240.x. eprint: https://

onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2575.2006.00240.x. [On-

line]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-

2575.2006.00240.x.

[35] A. Distanont, H. Haapasalo, M. Vaananen, J. Lehto, et al., “The engagement between

knowledge transfer and requirements engineering”, International Journal of Management,

Knowledge and Learning, vol. 1, no. 2, pp. 131–156, 2012.

[36] A. Ferrari, P. Spoletini, and S. Gnesi, “Ambiguity cues in requirements elicitation inter-

views”, in 2016 IEEE 24th International Requirements Engineering Conference (RE), 2016,

pp. 56–65. DOI: 10.1109/RE.2016.25.

[37] A. Ferrari, P. Spoletini, B. Donati, D. Zowghi, and S. Gnesi, “Interview review: Detect-

ing latent ambiguities to improve the requirements elicitation process”, in 2017 IEEE 25th

International Requirements Engineering Conference (RE), 2017, pp. 400–405. DOI: 10.

1109/RE.2017.15.

[38] I. Hadar, P. Soffer, and K. Kenzi, “The role of domain knowledge in requirements elicitation

via interviews: An exploratory study”, Requirements Engineering, vol. 19, no. 2, pp. 143–

159, Jun. 2014, ISSN: 1432-010X. DOI: 10.1007/s00766-012-0163-2. [Online]. Avail-

able: https://doi.org/10.1007/s00766-012-0163-2.

[39] J. Wiley, “Expertise as mental set: The effects of domain knowledge in creative prob-

lem solving”, Memory & Cognition, vol. 26, no. 4, pp. 716–730, Jul. 1998, ISSN: 1532-

5946. DOI: 10.3758/BF03211392. [Online]. Available: https://doi.org/10.3758/

BF03211392.

[40] D. C. Gause and G. M. Weinberg, “Exploring requirements”, Dorset House, p. 249, 1989.

https://doi.org/10.1007/s00766-016-0249-3
https://doi.org/10.1007/s00766-016-0249-3
https://doi.org/10.1007/s00766-016-0249-3
http://www.jstor.org/stable/249435
http://www.jstor.org/stable/249435
https://doi.org/10.1080/07421222.2001.11045665
https://doi.org/10.1080/07421222.2001.11045665
https://doi.org/10.1080/07421222.2001.11045665
https://doi.org/10.1080/07421222.2001.11045665
https://doi.org/https://doi.org/10.1111/j.1365-2575.2006.00240.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2575.2006.00240.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2575.2006.00240.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2575.2006.00240.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2575.2006.00240.x
https://doi.org/10.1109/RE.2016.25
https://doi.org/10.1109/RE.2017.15
https://doi.org/10.1109/RE.2017.15
https://doi.org/10.1007/s00766-012-0163-2
https://doi.org/10.1007/s00766-012-0163-2
https://doi.org/10.3758/BF03211392
https://doi.org/10.3758/BF03211392
https://doi.org/10.3758/BF03211392

BIBLIOGRAPHY 82

[41] S. F. Tjong, M. Hartley, and D. M. Berry, “Extended disambiguation rules for requirements

specifications.”, in WER, 2007, pp. 97–106.

[42] D. Berry, E. Kamsties, and M. M. Krieger, “From contract drafting to software specifica-

tion: Linguistic sources of ambiguity”, 2003.

[43] Z. Zhang, “Effective requirements development-a comparison of requirements elicitation

techniques”, Software quality management XV: software quality in the knowledge society,

pp. 225–240, 2007.

[44] J. Goguen and C. Linde, “Techniques for requirements elicitation”, in [1993] Proceedings

of the IEEE International Symposium on Requirements Engineering, 1993, pp. 152–164.

DOI: 10.1109/ISRE.1993.324822.

[45] D. Leffeingwell and D. Widrig, Managing software requirements. a use case aproach, 2003.

[46] B. Min, H. Ross, E. Sulem, et al., “Recent advances in natural language processing via

large pre-trained language models: A survey”, ACM Comput. Surv., vol. 56, no. 2, Sep.

2023, ISSN: 0360-0300. DOI: 10.1145/3605943. [Online]. Available: https://doi.

org/10.1145/3605943.

[47] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep bidirectional

transformers for language understanding, 2019. arXiv: 1810.04805 [cs.CL].

[48] M. Chen, J. Tworek, H. Jun, et al., Evaluating large language models trained on code, 2021.

arXiv: 2107.03374 [cs.LG].

[49] Y. Chang, X. Wang, J. Wang, et al., A survey on evaluation of large language models, 2023.

arXiv: 2307.03109 [cs.CL].

[50] E. M. Bender, T. Gebru, A. McMillan-Major, and M. Mitchell, “On the dangers of stochas-

tic parrots: Can language models be too big?”, in Proceedings of the 2021 ACM Conference

on Fairness, Accountability, and Transparency, ser. FAccT ’21, Virtual Event, Canada: As-

sociation for Computing Machinery, 2021, pp. 610–623, ISBN: 9781450383097. DOI: 10.

1145/3442188.3445922. [Online]. Available: https://doi.org/10.1145/3442188.

3445922.

[51] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need”, in Advances in Neural

Information Processing Systems, 2017, pp. 5998–6008.

[52] N. Sabharwal and A. Agrawal, “Bert algorithms explained”, in Hands-on Question Answer-

ing Systems with BERT: Applications in Neural Networks and Natural Language Process-

ing. Berkeley, CA: Apress, 2021, pp. 65–95, ISBN: 978-1-4842-6664-9. DOI: 10.1007/

978-1-4842-6664-9_4. [Online]. Available: https://doi.org/10.1007/978-1-

4842-6664-9_4.

[53] Z. Liu, W. Lin, Y. Shi, and J. Zhao, “A robustly optimized bert pre-training approach with

post-training”, in Chinese Computational Linguistics, S. Li, M. Sun, Y. Liu, et al., Eds.,

Cham: Springer International Publishing, 2021, pp. 471–484, ISBN: 978-3-030-84186-7.

https://doi.org/10.1109/ISRE.1993.324822
https://doi.org/10.1145/3605943
https://doi.org/10.1145/3605943
https://doi.org/10.1145/3605943
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2307.03109
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1007/978-1-4842-6664-9_4
https://doi.org/10.1007/978-1-4842-6664-9_4
https://doi.org/10.1007/978-1-4842-6664-9_4
https://doi.org/10.1007/978-1-4842-6664-9_4

BIBLIOGRAPHY 83

[54] L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and consequences”, Minds

and Machines, vol. 30, no. 4, pp. 681–694, Dec. 2020, ISSN: 1572-8641. DOI: 10.1007/

s11023-020-09548-1. [Online]. Available: https://doi.org/10.1007/s11023-020-

09548-1.

[55] B. Ghojogh and A. Ghodsi, “Attention mechanism, transformers, bert, and gpt: Tutorial and

survey”, 2020.

[56] Y. Zhou, A. I. Muresanu, Z. Han, et al., Large language models are human-level prompt

engineers, 2023. arXiv: 2211.01910 [cs.LG].

[57] J. Gu, Z. Han, S. Chen, et al., A systematic survey of prompt engineering on vision-language

foundation models, 2023. arXiv: 2307.12980 [cs.CV].

[58] B. Lester, R. Al-Rfou, and N. Constant, The power of scale for parameter-efficient prompt

tuning, 2021. arXiv: 2104.08691 [cs.CL].

[59] A. Efrat and O. Levy, The turking test: Can language models understand instructions?,

2020. arXiv: 2010.11982 [cs.CL].

[60] Q. Dong, L. Li, D. Dai, et al., A survey on in-context learning, 2023. arXiv: 2301.00234

[cs.CL].

[61] J. Wei, X. Wang, D. Schuurmans, et al., “Chain-of-thought prompting elicits reasoning in

large language models”, in Advances in Neural Information Processing Systems, S. Koyejo,

S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35, Curran Associates,

Inc., 2022, pp. 24 824–24 837. [Online]. Available: https://proceedings.neurips.

cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-

Conference.pdf.

[62] O. Rubin, J. Herzig, and J. Berant, Learning to retrieve prompts for in-context learning,

2022. arXiv: 2112.08633 [cs.CL].

[63] J. White, Q. Fu, S. Hays, et al., A prompt pattern catalog to enhance prompt engineering

with chatgpt, 2023. arXiv: 2302.11382 [cs.SE].

[64] W. Wang, V. W. Zheng, H. Yu, and C. Miao, “A survey of zero-shot learning: Settings,

methods, and applications”, ACM Trans. Intell. Syst. Technol., vol. 10, no. 2, Jan. 2019,

ISSN: 2157-6904. DOI: 10.1145/3293318. [Online]. Available: https://doi.org/10.

1145/3293318.

[65] X. Sun, J. Gu, and H. Sun, “Research progress of zero-shot learning”, Applied Intelligence,

vol. 51, no. 6, pp. 3600–3614, Jun. 2021, ISSN: 1573-7497. DOI: 10.1007/s10489-020-

02075-7. [Online]. Available: https://doi.org/10.1007/s10489-020-02075-7.

[66] C. Liu, C. Xu, Y. Wang, L. Zhang, and Y. Fu, “An embarrassingly simple baseline to one-

shot learning”, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR) Workshops, Jun. 2020.

[67] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few examples: A survey

on few-shot learning”, ACM Comput. Surv., vol. 53, no. 3, Jun. 2020, ISSN: 0360-0300.

DOI: 10.1145/3386252. [Online]. Available: https://doi.org/10.1145/3386252.

https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1007/s11023-020-09548-1
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2307.12980
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2010.11982
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2301.00234
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2112.08633
https://arxiv.org/abs/2302.11382
https://doi.org/10.1145/3293318
https://doi.org/10.1145/3293318
https://doi.org/10.1145/3293318
https://doi.org/10.1007/s10489-020-02075-7
https://doi.org/10.1007/s10489-020-02075-7
https://doi.org/10.1007/s10489-020-02075-7
https://doi.org/10.1145/3386252
https://doi.org/10.1145/3386252

BIBLIOGRAPHY 84

[68] B. Nuseibeh and S. Easterbrook, “Requirements engineering: A roadmap”, in Proceedings

of the Conference on The Future of Software Engineering, ser. ICSE ’00, Limerick, Ireland:

Association for Computing Machinery, 2000, pp. 35–46, ISBN: 1581132530. DOI: 10 .

1145/336512.336523. [Online]. Available: https://doi.org/10.1145/336512.

336523.

[69] M. Broy, “Domain modeling and domain engineering: Key tasks in requirements engineer-

ing”, in Perspectives on the Future of Software Engineering: Essays in Honor of Dieter

Rombach, J. Münch and K. Schmid, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2013, pp. 15–30, ISBN: 978-3-642-37395-4. DOI: 10.1007/978-3-642-37395-4_2.

[Online]. Available: https://doi.org/10.1007/978-3-642-37395-4_2.

[70] H. B. Reubenstein and R. C. Waters, “The requirements apprentice: Automated assistance

for requirements acquisition”, IEEE Transactions on Software Engineering, vol. 17, no. 3,

p. 226, 1991.

[71] T. Cziharz, P. Hruschka, S. Queins, and T. Weyer, “Handbuch der anforderungsmodel-

lierung nach ireb standard”, Karlsruhe: IREB InternationalRequirementsEngineeringBoard

eV, 2014.

[72] A. González, S. España, M. Ruiz, and Ó. Pastor, “Systematic derivation of class diagrams

from communication-oriented business process models”, in Enterprise, Business-Process

and Information Systems Modeling, T. Halpin, S. Nurcan, J. Krogstie, et al., Eds., Berlin,

Heidelberg: Springer Berlin Heidelberg, 2011, pp. 246–260, ISBN: 978-3-642-21759-3.

[73] O. Lindland, G. Sindre, and A. Solvberg, “Understanding quality in conceptual modeling”,

IEEE Software, vol. 11, no. 2, pp. 42–49, 1994. DOI: 10.1109/52.268955.

[74] J. Rumbaugh and M. Blaha, Object-Oriented Modeling and Design with UML, 1st. Upper

Saddle River, NJ: Prentice Hall, 1999, ISBN: 0-13-015920-4.

[75] M. Kossmann, M. Odeh, A. Gillies, and C. Ingamells, “11.1. 3 ‘tour d’horizon’in require-

ments engineering-areas left for exploration”, in INCOSE International Symposium, Wiley

Online Library, vol. 17, 2007, pp. 1737–1757.

[76] M. Savary-Leblanc, X. Le-Pallec, and S. Gérard, “Understanding the need for assistance in

software modeling: Interviews with experts”, Software and Systems Modeling, May 2023,

ISSN: 1619-1374. DOI: 10.1007/s10270-023-01104-6. [Online]. Available: https:

//doi.org/10.1007/s10270-023-01104-6.

[77] M. Fowler, UML distilled: a brief guide to the standard object modeling language. Addison-

Wesley Professional, 2018.

[78] S. M. White, “Modeling a system of systems to analyze requirements”, in 2009 3rd Annual

IEEE Systems Conference, 2009, pp. 83–89. DOI: 10.1109/SYSTEMS.2009.4815777.

[79] D. Silingas and R. Butleris, “Uml-intensive framework for modeling software require-

ments”, in Proceedings of the 14th International Conference on Information and Software

Technologies, 2008, pp. 334–342.

https://doi.org/10.1145/336512.336523
https://doi.org/10.1145/336512.336523
https://doi.org/10.1145/336512.336523
https://doi.org/10.1145/336512.336523
https://doi.org/10.1007/978-3-642-37395-4_2
https://doi.org/10.1007/978-3-642-37395-4_2
https://doi.org/10.1109/52.268955
https://doi.org/10.1007/s10270-023-01104-6
https://doi.org/10.1007/s10270-023-01104-6
https://doi.org/10.1007/s10270-023-01104-6
https://doi.org/10.1109/SYSTEMS.2009.4815777

BIBLIOGRAPHY 85

[80] R. Sharma, P. K. Srivastava, and K. K. Biswas, “From natural language requirements to uml

class diagrams”, in 2015 IEEE Second International Workshop on Artificial Intelligence for

Requirements Engineering (AIRE), 2015, pp. 1–8. DOI: 10.1109/AIRE.2015.7337625.

[81] A. Abdalazeim and F. Meziane, “A review of the generation of requirements specification

in natural language using objects uml models and domain ontology”, Procedia Computer

Science, vol. 189, pp. 328–334, 2021, AI in Computational Linguistics, ISSN: 1877-0509.

DOI: https : / /doi. org / 10 . 1016 /j . procs . 2021 . 05 .102. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1877050921012266.

[82] V. B. R. Vidya Sagar and S. Abirami, “Conceptual modeling of natural language functional

requirements”, Journal of Systems and Software, vol. 88, pp. 25–41, 2014, ISSN: 0164-

1212. DOI: https://doi.org/10.1016/j.jss.2013.08.036. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0164121213002379.

[83] O. S. Dawood et al., “From requirements engineering to uml using natural language

processing–survey study”, European Journal of Industrial Engineering, vol. 2, no. 1, pp–

44, 2017.

[84] E. A. Abdelnabi, A. M. Maatuk, and M. Hagal, “Generating uml class diagram from nat-

ural language requirements: A survey of approaches and techniques”, in 2021 IEEE 1st

International Maghreb Meeting of the Conference on Sciences and Techniques of Auto-

matic Control and Computer Engineering MI-STA, 2021, pp. 288–293. DOI: 10.1109/MI-

STA52233.2021.9464433.

[85] P. Bera and J. Evermann, “Guidelines for using uml association classes and their effect on

domain understanding in requirements engineering”, Requirements Engineering, vol. 19,

no. 1, pp. 63–80, Mar. 2014, ISSN: 1432-010X. DOI: 10.1007/s00766-012-0159-y.

[Online]. Available: https://doi.org/10.1007/s00766-012-0159-y.

[86] J. Evermann and Y. Wand, “Ontology based object-oriented domain modelling: Fundamen-

tal concepts”, Requirements Engineering, vol. 10, no. 2, pp. 146–160, May 2005, ISSN:

1432-010X. DOI: 10.1007/s00766-004-0208-2. [Online]. Available: https://doi.

org/10.1007/s00766-004-0208-2.

[87] H. M. Arne J. Berre Shihong Huang and H. Alibakhsh, “Teaching modelling for require-

ments engineering and model-driven software development courses”, Computer Science

Education, vol. 28, no. 1, pp. 42–64, 2018. DOI: 10.1080/08993408.2018.1479090.

eprint: https://doi.org/10.1080/08993408.2018.1479090. [Online]. Available:

https://doi.org/10.1080/08993408.2018.1479090.

[88] R. Braun and H. Schlieter, “Requirements-based development of bpmn extensions: The

case of clinical pathways”, in 2014 IEEE 1st International Workshop on the Interrelations

between Requirements Engineering and Business Process Management (REBPM), 2014,

pp. 39–44. DOI: 10.1109/REBPM.2014.6890734.

https://doi.org/10.1109/AIRE.2015.7337625
https://doi.org/https://doi.org/10.1016/j.procs.2021.05.102
https://www.sciencedirect.com/science/article/pii/S1877050921012266
https://doi.org/https://doi.org/10.1016/j.jss.2013.08.036
https://www.sciencedirect.com/science/article/pii/S0164121213002379
https://doi.org/10.1109/MI-STA52233.2021.9464433
https://doi.org/10.1109/MI-STA52233.2021.9464433
https://doi.org/10.1007/s00766-012-0159-y
https://doi.org/10.1007/s00766-012-0159-y
https://doi.org/10.1007/s00766-004-0208-2
https://doi.org/10.1007/s00766-004-0208-2
https://doi.org/10.1007/s00766-004-0208-2
https://doi.org/10.1080/08993408.2018.1479090
https://doi.org/10.1080/08993408.2018.1479090
https://doi.org/10.1080/08993408.2018.1479090
https://doi.org/10.1109/REBPM.2014.6890734

BIBLIOGRAPHY 86

[89] L. J. R. Stroppi, O. Chiotti, and P. D. Villarreal, “Extending bpmn 2.0: Method and tool sup-

port”, in Business Process Model and Notation, R. Dijkman, J. Hofstetter, and J. Koehler,

Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 59–73, ISBN: 978-3-642-

25160-3.

[90] M. W. A. Steen, M. E. Iacob, M. M. Lankhorst, et al., “Service modelling”, in Agile Ser-

vice Development: Combining Adaptive Methods and Flexible Solutions, M. Lankhorst, Ed.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 59–94, ISBN: 978-3-642-28188-

4. DOI: 10.1007/978-3-642-28188-4_4. [Online]. Available: https://doi.org/10.

1007/978-3-642-28188-4_4.

[91] B. Intrigila, G. Della Penna, and A. D’Ambrogio, “A lightweight bpmn extension for busi-

ness process-oriented requirements engineering”, Computers, vol. 10, no. 12, p. 171, 2021.

[92] G. Pervan and H. Maimbo, “Designing a case study protocol for application in is research”,

in Proceedings of the Ninth Pacific Asia Conference on Information Systems, ser. Proceed-

ings of the Ninth Pacific Asia Conference on Information Systems, PACIS, 2005, pp. 1281–

1292. [Online]. Available: http://hdl.handle.net/20.500.11937/45440.

https://doi.org/10.1007/978-3-642-28188-4_4
https://doi.org/10.1007/978-3-642-28188-4_4
https://doi.org/10.1007/978-3-642-28188-4_4
http://hdl.handle.net/20.500.11937/45440

Appendix A

Ethics and privacy quick scan

Response	Summary:

Section	1.	Research	projects	involving	human	participants
	
P1.	Does	your	project	involve	human	participants?	This	includes	for	example	use	of	observation,	(online)
surveys,	interviews,	tests,	focus	groups,	and	workshops	where	human	participants	provide	information	or
data	to	inform	the	research.	If	you	are	only	using	existing	data	sets	or	publicly	available	data	(e.g.	from
Twitter,	Reddit)	without	directly	recruiting	participants,	please	answer	no.	

Yes

	

Recruitment

	
P2.	Does	your	project	involve	participants	younger	than	18	years	of	age?

No

	
P3.	Does	your	project	involve	participants	with	learning	or	communication	difficulties	of	a	severity	that	may
impact	their	ability	to	provide	informed	consent?

No

	
P4.	Is	your	project	likely	to	involve	participants	engaging	in	illegal	activities?

No

	
P5.	Does	your	project	involve	patients?

No

	
P6.	Does	your	project	involve	participants	belonging	to	a	vulnerable	group,	other	than	those	listed	above?

No

	
P8.	Does	your	project	involve	participants	with	whom	you	have,	or	are	likely	to	have,	a	working	or
professional	relationship:	for	instance,	staff	or	students	of	the	university,	professional	colleagues,	or
clients?

Yes

	
P9.	Is	it	made	clear	to	potential	participants	that	not	participating	will	in	no	way	impact	them	(e.g.	it	will	not
directly	impact	their	grade	in	a	class)?

Yes

	

Informed	consent

	
PC1.	Do	you	have	set	procedures	that	you	will	use	for	obtaining	informed	consent	from	all	participants,
including	(where	appropriate)	parental	consent	for	children	or	consent	from	legally	authorized
representatives?	(See	suggestions	for	information	sheets	and	consent	forms	on	the	website.)

Yes

	
PC2.	Will	you	tell	participants	that	their	participation	is	voluntary?

Yes

	
PC3.	Will	you	obtain	explicit	consent	for	participation?

Yes

	

PC4.	Will	you	obtain	explicit	consent	for	any	sensor	readings,	eye	tracking,	photos,	audio,	and/or	video
recordings?	

Yes

	
PC5.	Will	you	tell	participants	that	they	may	withdraw	from	the	research	at	any	time	and	for	any	reason?

Yes

	
PC6.	Will	you	give	potential	participants	time	to	consider	participation?

Yes

	
PC7.	Will	you	provide	participants	with	an	opportunity	to	ask	questions	about	the	research	before
consenting	to	take	part	(e.g.	by	providing	your	contact	details)?

Yes

	
PC8.	Does	your	project	involve	concealment	or	deliberate	misleading	of	participants?

No

	

Section	2.	Data	protection,	handling,	and	storage
The	General	Data	Protection	Regulation	imposes	several	obligations	for	the	use	of	personal	data	(defined	as	any
information	relating	to	an	identified	or	identifiable	living	person)	or	including	the	use	of	personal	data	in	research.

	
D1.	Are	you	gathering	or	using	personal	data	(defined	as	any	information	relating	to	an	identified	or
identifiable	living	person)?

Yes

	

High-risk	data

	
DR1.	Will	you	process	personal	data	that	would	jeopardize	the	physical	health	or	safety	of	individuals	in	the
event	of	a	personal	data	breach?

No

	
DR2.	Will	you	combine,	compare,	or	match	personal	data	obtained	from	multiple	sources,	in	a	way	that
exceeds	the	reasonable	expectations	of	the	people	whose	data	it	is?

No

	
DR3.	Will	you	use	any	personal	data	of	children	or	vulnerable	individuals	for	marketing,	profiling,	automated
decision-making,	or	to	offer	online	services	to	them?

No

	
DR4.	Will	you	profile	individuals	on	a	large	scale?

No

	
DR5.	Will	you	systematically	monitor	individuals	in	a	publicly	accessible	area	on	a	large	scale	(or	use	the
data	of	such	monitoring)?

No

	
DR6.	Will	you	use	special	category	personal	data,	criminal	offense	personal	data,	or	other	sensitive	personal
data	on	a	large	scale?

No

	
DR7.	Will	you	determine	an	individual’s	access	to	a	product,	service,	opportunity,	or	benefit	based	on	an
automated	decision	or	special	category	personal	data?

No

	

DR8.	Will	you	systematically	and	extensively	monitor	or	profile	individuals,	with	significant	effects	on	them?
No

	
DR9.	Will	you	use	innovative	technology	to	process	sensitive	personal	data?

No

	

Data	minimization
	
DM1.	Will	you	collect	only	personal	data	that	is	strictly	necessary	for	the	research?

Yes

	
DM4.	Will	you	anonymize	the	data	wherever	possible?

Yes

	
DM5.	Will	you	pseudonymize	the	data	if	you	are	not	able	to	anonymize	it,	replacing	personal	details	with	an
identifier,	and	keeping	the	key	separate	from	the	data	set?

Yes

	

Using	collaborators	or	contractors	that	process	personal	data	securely

	
DC1.	Will	any	organization	external	to	Utrecht	University	be	involved	in	processing	personal	data	(e.g.	for
transcription,	data	analysis,	data	storage)?

No

	

International	personal	data	transfers

	
DI1.	Will	any	personal	data	be	transferred	to	another	country	(including	to	research	collaborators	in	a	joint
project)?

No

	

Fair	use	of	personal	data	to	recruit	participants

	
DF1.	Is	personal	data	used	to	recruit	participants?

No

	

Participants'	data	rights	and	privacy	information

	
DP1.	Will	participants	be	provided	with	privacy	information?	(Recommended	is	to	use	as	part	of	the
information	sheet:	For	details	of	our	legal	basis	for	using	personal	data	and	the	rights	you	have	over	your
data	please	see	the	University’s	privacy	information	at	www.uu.nl/en/organisation/privacy.)

Yes

	
DP2.	Will	participants	be	aware	of	what	their	data	is	used	for?

Yes

	
DP3.	Can	participants	request	that	their	personal	data	be	deleted?

Yes

	

DP4.	Can	participants	request	that	their	personal	data	be	rectified	(in	case	it	is	incorrect)?
Yes

	
DP5.	Can	participants	request	access	to	their	personal	data?

Yes

	
DP6.	Can	participants	request	that	personal	data	processing	is	restricted?

Yes

	
DP7.	Will	participants	be	subjected	to	automated	decision-making	based	on	their	personal	data	with	an
impact	on	them	beyond	the	research	study	to	which	they	consented?

No

	
DP8.	Will	participants	be	aware	of	how	long	their	data	is	being	kept	for,	who	it	is	being	shared	with,	and	any
safeguards	that	apply	in	case	of	international	sharing?

Yes

	
DP9.	If	data	is	provided	by	a	third	party,	are	people	whose	data	is	in	the	data	set	provided	with	(1)	the	privacy
information	and	(2)	what	categories	of	data	you	will	use?

Yes

	

Using	data	that	you	have	not	gathered	directly	from	participants
	
DE1.	Will	you	use	any	personal	data	that	you	have	not	gathered	directly	from	participants	(such	as	data	from
an	existing	data	set,	data	gathered	for	you	by	a	third	party,	data	scraped	from	the	internet)?	

Yes

	
DE2.	Will	you	use	an	existing	dataset	in	your	research?

Yes

	
DE3.	Do	you	have	permission	to	do	so	from	the	owners	of	the	data	set?

Yes

	
DE4.	Have	the	people	whose	data	is	in	the	data	set	consented	to	their	data	being	used	by	other	researchers
and/or	for	purposes	other	than	that	for	which	that	data	set	was	gathered?

Yes

	
DE5.	Are	there	any	contractual	conditions	attached	to	working	with	or	storing	the	data	from	DE2?

No

	
DE6.	Does	your	project	require	access	to	personal	data	about	participants	from	other	parties	(e.g.,	teachers,
employers),	databanks,	or	files?

No

	
DE9.	Does	the	project	involve	collecting	personal	data	from	websites	or	social	media	(e.g.,	Facebook,
Twitter,	Reddit)?

No

	

Secure	data	storage

	
DS1.	Will	any	data	be	stored	(temporarily	or	permanently)	anywhere	other	than	on	password-protected
University	authorized	computers	or	servers?

No

	

DS4.	Excluding	(1)	any	international	data	transfers	mentioned	above	and	(2)	any	sharing	of	data	with
collaborators	and	contractors,	will	any	personal	data	be	stored,	collected,	or	accessed	from	outside	the	EU?

No

	

Section	3.	Research	that	may	cause	harm
Research	may	cause	harm	to	participants,	researchers,	the	university,	or	society.	This	includes	when	technology	has
dual-use,	and	you	investigate	an	innocent	use,	but	your	results	could	be	used	by	others	in	a	harmful	way.	If	you	are
unsure	regarding	possible	harm	to	the	university	or	society,	please	discuss	your	concerns	with	the	Research	Support
Office.	

	
H1.	Does	your	project	give	rise	to	a	realistic	risk	to	the	national	security	of	any	country?

No

	
H2.	Does	your	project	give	rise	to	a	realistic	risk	of	aiding	human	rights	abuses	in	any	country?

No

	
H3.	Does	your	project	(and	its	data)	give	rise	to	a	realistic	risk	of	damaging	the	University’s	reputation?	(E.g.,
bad	press	coverage,	public	protest.)

No

	
H4.	Does	your	project	(and	in	particular	its	data)	give	rise	to	an	increased	risk	of	attack	(cyber-	or	otherwise)
against	the	University?	(E.g.,	from	pressure	groups.)

No

	
H5.	Is	the	data	likely	to	contain	material	that	is	indecent,	offensive,	defamatory,	threatening,	discriminatory,
or	extremist?

No

	
H6.	Does	your	project	give	rise	to	a	realistic	risk	of	harm	to	the	researchers?

No

	
H7.	Is	there	a	realistic	risk	of	any	participant	experiencing	physical	or	psychological	harm	or	discomfort?

No

	
H8.	Is	there	a	realistic	risk	of	any	participant	experiencing	a	detriment	to	their	interests	as	a	result	of
participation?

No

	
H9.	Is	there	a	realistic	risk	of	other	types	of	negative	externalities?

No

	

Section	4.	Conflicts	of	interest
	
C1.	Is	there	any	potential	conflict	of	interest	(e.g.	between	research	funder	and	researchers	or	participants
and	researchers)	that	may	potentially	affect	the	research	outcome	or	the	dissemination	of	research
findings?

No

	
C2.	Is	there	a	direct	hierarchical	relationship	between	researchers	and	participants?

No

	

Section	5.	Your	information.
This	last	section	collects	data	about	you	and	your	project	so	that	we	can	register	that	you	completed	the	Ethics	and
Privacy	Quick	Scan,	sent	you	(and	your	supervisor/course	coordinator)	a	summary	of	what	you	filled	out,	and	follow	up
where	a	fuller	ethics	review	and/or	privacy	assessment	is	needed.	For	details	of	our	legal	basis	for	using	personal	data
and	the	rights	you	have	over	your	data	please	see	the	University’s	privacy	information.	Please	see	the	guidance	on	the
ICS	Ethics	and	Privacy	website	on	what	happens	on	submission.	

	
Z0.	Which	is	your	main	department?

Information	and	Computing	Science

	
Z1.	Your	full	name:

Sander	van	Nifterik

	
Z2.	Your	email	address:

s.w.b.vannifterik@students.uu.nl

	
Z3.	In	what	context	will	you	conduct	this	research?

As	a	student	for	my	master	thesis,	supervised	by::
Fabiano	Dalpiaz

	
Z5.	Master	programme	for	which	you	are	doing	the	thesis

Business	Informatics

	
Z6.	Email	of	the	course	coordinator	or	supervisor	(so	that	we	can	inform	them	that	you	filled	this	out	and
provide	them	with	a	summary):

f.dalpiaz@uu.nl

	
Z7.	Email	of	the	moderator	(as	provided	by	the	coordinator	of	your	thesis	project):

g.wagenaar@uu.nl

	
Z8.	Title	of	the	research	project/study	for	which	you	filled	out	this	Quick	Scan:

Exploring	the	Potential	of	Large	Language	Models	in	Supporting	Domain	Model	Derivation	from	Requirements
Elicitation	Conversations

	
Z9.	Summary	of	what	you	intend	to	investigate	and	how	you	will	investigate	this	(200	words	max):

I	want	to	investigate	the	potential	that	Large	Language	Models	may	have	in	supporting	the	derivation	of	domain	models
from	requirement	elicitation	conversation	transcripts.	To	do	so	I	want	to	ask	students	to	participate	in	an	experiment
where	they	are	asked	to	perform	a	modelling	assignment,	based	on	a	transcript	of	a	conversation	where	a	database
structure	is	being	discussed.	By	comparing	the	models	that	they	create	with	an	anwer	model,	and	by	interviewing	them
to	ask	about	their	experience,	I	hope	to	get	and	understanding	to	what	degree	large	language	models	can	be	useful.
The	conversations	will	be	fictional,	and	the	names	mentioned	in	the	audio	recordings	can	be	pseudonymized.	The
assignment	itself	will	produce	a	(part	of)	domain	model,	which	is	based	on	those	fictitious	conversations.	Lastly,	he
participants	will	be	interviewed	to	ask	them	about	the	modelling	experience.

	
Z10.	In	case	you	encountered	warnings	in	the	survey,	does	supervisor	already	have	ethical	approval	for	a
research	line	that	fully	covers	your	project?

Not	applicable

	

Scoring
Privacy:	0
Ethics:	0

Appendix B

Online Appendix

B.1 Elaboration
Due to the large amount of external materials related to this project, the choice has been made to

use an online appendix. In the online appendix all related materials can be found and accessed.

All materials are stored in the folder "Online Appendix Thesis 6847064".

In the following section, all the components of the online appendix will be elaborated upon.

B.2 Experiment Cases
In the folder experiment cases, all the materials used for the primary experiment of this thesis can

be found. Inside, folders for each of the 10 cases can be found. The content of each of the case

folder can be found in Table B.1.

Table B.1: Experiment cases elaboration

Filename Description

Case x Files x In this file the manual modelling notes for each of

the three documents are captured, as well as the re-

sponses given by ChatGPT. Furthermore, the final

model generated by ChatGPT, as well as all the in-

termediate ones, can be found.

case x sidebyside This is a PNG of the manually created model side by

side with the ChatGPT generated model. It has been

marked and used for the primary experiment.

model x png This is a PNG of the manually created model for

ease of use, while executing the experiment.

model x This is the Draw.io file used to manually model the

domain model for the case.

REGxx Doc This is the vision document for the case.

REGxx-1 This file contains the transcript of the first interview

of the case.

REGxx-2 This file contains the transcript for the second inter-

view of the case.

B.3. INITIAL EXPERIMENTATION 96

B.3 Initial experimentation
In this folder, the files corresponding to the initial experimentation phase can be found. It has an

Excel sheet with an early attempt at capturing quantitative data, and a Word file containing the

initial prompts and outcomes.

B.4 Normalization
The normalization folder contains the files corresponding to the normalization experimentation

phase. It features Word files, containing both manual modelling notes as well as ChatGPT re-

sponses and models, corresponding to files 09 and 10 of the dataset. Furthermore, it features the

corresponding Draw.io files belonging to each of the two file sets.

B.5 Normalization testing
The files in this folder relate to the testing done with the normalization prompts. Earlier on in

the initial experimentation phase, models had been generated for file sets 01, 03, and 04. These

files contain answers and models which have been made using the improved prompts and the

added normalization prompts. They were used for comparing the improvement between the early

prompts, and the new and improved prompts.

B.6 Prompts
In the prompts folder, Word files can be found containing all the prompts that were used during the

primary experiment. Prompt vision refers to the prompt to use for the vision document, whilst the

prompt 1 and prompt 2 are used in conjunction with the first and second transcript. Finally, nor-

malization prompt 1 and 2 are used, in that order and by themselves, to apply some normalization

to the models.

B.7 Quantification
In the folder quantification, all the materials generated during the process of creating the quan-

tification method can be found. A case 10 side by side was used as a model comparison to mark

and score. Two versions of the method, as well as two versions of the Excel scoring sheet can be

found. Furthermore, a Venn diagram can be found that formed the foundation of the idea for the

scenarios that were used in the primary experiment.

B.8 Quantified Results
In the quantified results folder, the Excel sheet that holds the quantified data gathered during the

primary experiment, can be found. This Excel sheet contains the tables in which all the modelling

elements, entities, attributes, relationships, and cardinalities, have been matched to scenarios. Fur-

thermore, it contains a page where all the numbers have been gathered together. For example how

often a certain scenario has occurred.

B.9 Traceability
In the folder traceability, two iterations of the traceability exercise can be found. This exercise

was done in order keep try and get a better understanding of which modelling decisions ChatGPT

made based on given documents versus its own knowledge base.

Appendix C

Scenarios

C.1 Elaboration
This is an overview of the scenarios that have been established to use in the quantification method.

This is a complete overview of all the options that could be considered. One can choose to add, or

remove from this list. Furthermore, it will offer an overview of the shorthand notations that have

been used in the scenarios, as well as in the excel sheet used to keep track of the scoring.

C.2 Shorthands
H = Human

LLM = ChatGPT (or any other LLM that someone might use)

DiK = Direct Knowledge

DoK= Domain Knowledge

MiK = Missing Knowledge/forgotten

EK = Extra Knowledge

E = Entity

A = Attribute

R = Relationship

C = Cardinality

C.3 Scenarios
The scenarios have been split into two sets. The first set only applies to the entities, while the

second set applies to the attributes, relationships, and cardinalities. This is because if either one

of the two parties misses an entity, that should have clearly be modelled, the other party should

be penalized for it. While that does not go for the other modelling elements. If either one of the

parties misses an attribute, but does not even have the accompanying entity, why should that party

be penalized for not having that attribute? The same goes for relationships and cardinalities.

Entities

1. (Both): H models E(x) DiK and LLM models E(x) DiK

2. (Both): H models E(x) DoK and LLM models E(x) DoK

3. (Human): H models E(x)DiK and LLM does not model E(x) MiK

4. (Human): H models E(x)DoK and LLM does not model E(x) EK

C.3. SCENARIOS 98

5. (Human): H models E(x) MiK

6. (LLM): LLM models E(x)DiK and H does not model E(x) MiK

7. (LLM): LLM models E(x)DoK and H does not model E(x) EK

8. (LLM): LLM models E(x) MiK

9. (Neither): H does not model E(x) MiK and LLM does not model E(x) MiK

Attributes, Relationships, and Cardinalities

1. (Both): H models A(x) DiK and LLM models A(x) DiK

2. (Both): H models A(x) DoK and LLM models A(x) DoK

3. (Human): H models A(x)DiK and LLM does not model A(x) MiK

4. (Human): H models A(x)DiK and LLM does not model A(x) EK

5. (Human): H models A(x)DoK and LLM does not model A(x) EK

6. (Human): H models A(x) MiK

7. (LLM): LLM models A(x)DiK and H does not model A(x) MiK

8. (LLM): LLM models A(x)DiK and H does not model A(x) EK

9. (LLM): LLM models A(x)DoK and H does not model A(x) EK

10. (LLM): LLM models A(x) MiK

11. (Neither): H does not model A(x) MiK and LLM does not model A(x) MiK

In the scenarios above the A for attributes can be swapped with R and C, for all scenarios.

Appendix D

Prompt guideline information

These are the full guidelines that are incorporated in to the prompt applied to the vision document,

the first transcript, and the second transcript.

Now discard unnecessary and incorrect classes according to the following criteria. Adjust

you modelling choices accordingly.

Redundant classes. If two classes express the same concept, you should keep the most de-

scriptive name. For example, although Customer might describe a person taking an airline flight,

Passenger is more descriptive. On the other hand, if the problem concerns contracts for a charter

airline, Customer is also an appropriate word, since a contract might involve several passengers.

ATM example. Customer and User are redundant; we retain Customer because it is more descrip-

tive. Irrelevant classes. If a class has little or nothing to do with the problem, eliminate it. This

involves judgment, because in another context the class could be important. For example, in a

theater ticket reservation system, the occupations of the ticket holders are irrelevant, but the occu-

pations of the theater personnel may be important. ATM example. Apportioning Cost is outside

the scope of the ATM software. Vague classes. A class should be specific. Some tentative classes

may have ill-defined boundaries or be too broad in scope. ATM example. RecordkeepingProvi-

sion is vague and is handled by Transaction. In other applications, this might be included in other

classes, such as StockSales, TelephoneCalls, or MachineFailures. Attributes. Names that primar-

ily describe individual objects should be restated as attributes. For example, name, birthdate, and

weight are usually attributes. If the independent existence of a property is important, then make it

a class and not an attribute. For example, an employee’s office would be a class in an application

to reassign offices after a reorganization. ATM example. AccountData is underspecified but in any

case probably describes an account. An ATM dispenses cash and receipts, but beyond that cash

and receipts are peripheral to the problem, so they should be treated as attributes. Operations. If

a name describes an operation that is applied to objects and not manipulated in its own right, then

it is not a class. For example, a telephone call is a sequence of actions involving a caller and the

telephone network. If we are simply building telephones, then Call is part of the state model and

not a class. An operation that has features of its own should be modeled as a class, however. For

example, in a billing system for telephone calls a Call would be an important class with attributes

such as date, time, origin, and destination. Roles. The name of a class should reflect its intrinsic

nature and not a role that it plays in an association. For example, Owner would be a poor name

for a class in a car manufacturer’s database. What if a list of drivers is added later? What about

persons who lease cars? The proper class is Person (or possibly Customer), which assumes various

D. PROMPT GUIDELINE INFORMATION 100

different roles, such as owner, driver, and lessee. One physical entity sometimes corresponds to

several classes. For example, Person and Employee may be distinct classes in some circumstances

and redundant in others. From the viewpoint of a company database of employees, the two may be

identical. In a government tax database, a person may hold more than one job, so it is important

to distinguish Person from Employee; each person can correspond to zero or more instances of

employee information. Implementation constructs. Eliminate constructs from the analysis model

that are extraneous to the real world. You may need them later during design, but not now. For ex-

ample, CPU, subroutine, process, algorithm, and interrupt are implementation constructs for most

applications, although they are legitimate classes for an operating system. Data structures, such

as linked lists, trees, arrays, and tables, are almost always implementation constructs. ATM exam-

ple. Some tentative classes are really implementation constructs. TransactionLog is simply the set

of transactions; its exact representation is a design issue. Communication links can be shown as

associations; CommunicationsLine is simply the physical implementation of such a link. Derived

classes. As a general rule, omit classes that can be derived from other classes. If a derived class is

especially important, you can include it, but do so only sparingly. Mark all derived classes with a

preceding slash (‘/’) in the class name.

Now discard unnecessary and incorrect associations, using the following criteria. Adjust your

modelling choices accordingly.

Associations between eliminated classes. If you have eliminated one of the classes in the

association, you must eliminate the association or restate it in terms of other classes. ATM ex-

ample. We can eliminate Banking network includes cashier stations and ATMs, ATM dispenses

cash, ATM prints receipts, Banks provide software, Cost apportioned to banks, System provides

recordkeeping, and System provides security. Irrelevant or implementation associations. Elimi-

nate any associations that are outside the problem domain or deal with implementation constructs.

ATM example. For example, System handles concurrent access is an implementation concept.

Real-world objects are inherently concurrent; it is the implementation of the access algorithm

that must be concurrent. Actions. An association should describe a structural property of the

application domain, not a transient event. Sometimes, a requirement expressed as an action im-

plies an underlying structural relationship and you should rephrase it accordingly. ATM example.

ATM accepts cash card describes part of the interaction cycle between an ATM and a customer,

not a permanent relationship between ATMs and cash cards. We can also eliminate ATM inter-

acts with user. Central computer clears transaction with bank describes an action that implies

the structural relationship Central computer communicates with bank. Ternary associations. You

can decompose most associations among three or more classes into binary associations or phrase

them as qualified associations. If a term in a ternary association is purely descriptive and has no

identity of its own, then the term is an attribute on a binary association. Association Company

pays salary to person can be rephrased as binary association Company employs person with a

salary value for each Company-Person link. Occasionally, an application will require a general

ternary association. Professor teaches course in room cannot be decomposed without losing in-

formation. We have not encountered associations with four or more classes in our work. ATM

example. Bank computer processes transaction against account can be broken into Bank computer

processes transaction and Transaction concerns account. Cashier enters transaction for account

D. PROMPT GUIDELINE INFORMATION 101

can be broken similarly. ATMs communicate with central computer about transaction is really

the binary associations ATMs communicate with central computer and Transaction entered on

ATM. Derived associations. Omit associations that can be defined in terms of other associations,

because they are redundant. For example, GrandparentOf can be defined in terms of a pair of

ParentOf associations. Also omit associations defined by conditions on attributes. For example,

youngerThan expresses a condition on the birth dates of two persons, not additional information.

As much as possible, classes, attributes, and associations in the class model should represent in-

dependent information. Multiple paths between classes sometimes indicate derived associations

that are compositions of primitive associations. Consortium shares ATMs is a composition of the

associations Consortium owns central computer and Central computer communicates with ATMs.

Be careful, because not all associations that form multiple paths between classes indicate redun-

dancy. Sometimes the existence of an association can be derived from two or more primitive

associations and the multiplicity can not. Keep the extra association if the additional multiplicity

constraint is important. For example, in Figure 12.8 a company employs many persons and owns

many computers. Each employee is assigned zero or more computers for the employee’s personal

use; some computers are for public use and are not assigned to anyone. The multiplicity of the

AssignedTo association cannot be deduced from the Employs and Owns associations. Although

derived associations do not add information, they are useful in the real world and in design. For

example, kinship relationships such as Uncle, MotherInLaw, and Cousin have names because they

describe common relationships considered important within our society. If they are especially

important, you may show derived associations in class diagrams, but put a slash in front of their

names to indicate their dependent status and to distinguish them from fundamental associations.

ATM example. Bank computer maintains accounts is a statement of action; rephrase as Bank holds

account. Association end names. Add association end names where appropriate. For example, in

the WorksFor association a Company is an employer with respect to a Person and a Person is an

employee with respect to a Company. If there is only one association between a pair of classes

and the meaning of the association is clear, you may omit association end names. For example,

the meaning of ATMs communicate with central computer is clear from the class names. An as-

sociation between two instances of the same class requires association end names to distinguish

the instances. For example, the association Person manages person would have the end names

boss and worker. Qualified associations. Usually a name identifies an object within some context;

most names are not globally unique. The context combines with the name to uniquely identify the

object. For example, the name of a company must be unique within the chartering state but may

be duplicated in other states (there once was a Standard Oil Company in Ohio, Indiana, California,

and New Jersey). The name of a company qualifies the association State charters company; State

and company name uniquely identify Company. A qualifier distinguishes objects on the “many”

side of an association. ATM example. The qualifier bankCode distinguishes the different banks

in a consortium. Each cash card needs a bank code so that transactions can be directed to the

appropriate bank. Multiplicity. Specify multiplicity, but don’t put too much effort into getting it

right, as multiplicity often changes during analysis. Challenge multiplicity values of “one.” For

example, the association one Manager manages many employees precludes matrix management

or an employee with divided responsibilities. For multiplicity values of “many” consider whether

D. PROMPT GUIDELINE INFORMATION 102

a qualifier is needed; also ask if the objects need to be ordered in some way. Missing associations.

Add any missing associations that are discovered. ATM example. We overlooked Transaction

entered on cashier station, Customers have accounts, and Transaction authorized by cash card. If

cashiers are restricted to specific stations, then the association Cashier authorized on cashier sta-

tion would be needed. Aggregation. Aggregation is important for certain kinds of applications,

especially for those involving mechanical parts and bills of material. For other applications aggre-

gation is relatively minor and it can be unclear whether to use aggregation or ordinary association.

For these other applications, don’t spend much time trying to distinguish between association and

aggregation. Aggregation is just an association with extra connotations. Use whichever seems

more natural at the time and move on. ATM example. We decide that a Bank is a part of a

Consortium and indicate the relationship with aggregation.

Eliminate unnecessary and incorrect attributes with the following criteria. Adjust your mod-

elling choices accordingly. Objects. If the independent existence of an element is important, rather

than just its value, then it is an object. For example, boss refers to a class and salary is an attribute.

The distinction often depends on the application. For example, in a mailing list city might be

considered as an attribute, while in a census City would be a class with many attributes and rela-

tionships of its own. An element that has features of its own within the given application is a class.

Qualifiers. If the value of an attribute depends on a particular context, then consider restating the

attribute as a qualifier. For example, employeeNumber is not a unique property of a person with

two jobs; it qualifies the association Company employs person. Names. Names are often better

modeled as qualifiers rather than attributes. Test: Does the name select unique objects from a set?

Can an object in the set have more than one name? If so, the name qualifies a qualified association.

If a name appears to be unique in the world, you may have missed the class that is being qualified.

For example, departmentName may be unique within a company, but eventually the program may

need to deal with more than one company. It is better to use a qualified association immediately.

A name is an attribute when its use does not depend on context, especially when it need not be

unique within some set. Names of persons, unlike names of companies, may be duplicated and

are therefore attributes. Identifiers. OO languages incorporate the notion of an object identifier for

unambiguously referencing an object. Do not include an attribute whose only purpose is to iden-

tify an object, as object identifiers are implicit in class models. Only list attributes that exist in the

application domain. For example, accountCode is a genuine attribute; Banks assign accountCodes

and customers see them. In contrast, you should not list an internal transactionID as an attribute,

although it may be convenient to generate one during implementation. Attributes on associations.

If a value requires the presence of a link, then the property is an attribute of the association and not

of a related class. Attributes are usually obvious on many-to-many associations; they cannot be at-

tached to either class because of their multiplicity. For example, in an association between Person

and Club the attribute membershipDate belongs to the association, because a person can belong to

many clubs and a club can have many members. Attributes are more subtle on one-to-many asso-

ciations because they could be attached to the “many” class without losing information. Resist the

urge to attach them to classes, as they would be invalid if multiplicity changed. Attributes are also

subtle on one-to-one associations. Internal values. If an attribute describes the internal state of an

object that is invisible outside the object, then eliminate it from the analysis. Fine detail. Omit

D. PROMPT GUIDELINE INFORMATION 103

minor attributes that are unlikely to affect most operations. Discordant attributes. An attribute

that seems completely different from and unrelated to all other attributes may indicate a class that

should be split into two distinct classes. A class should be simple and coherent. Mixing together

distinct classes is one of the major causes of troublesome models. Unfocused classes frequently

result from premature consideration of implementation decisions during analysis. Boolean at-

tributes. Reconsider all boolean attributes. Often you can broaden a boolean attribute and restate

it as an enumeration [Coad-95].

	Introduction
	Background
	Conversational requirements engineering
	Domain modelling in RE: An Overview
	This research

	Research gap
	Aims and objectives
	Research questions

	Significance
	Limitations
	Outline

	Literature review
	Introduction
	Procedure
	Requirement elicitation interviews
	Success criteria
	Conversation types

	Large Language Models
	Introduction
	Types of LLMs
	BERT
	GPT
	Prompt engineering
	Patterns
	Zero-shot, one-shot, few-shot

	Domain modelling
	Introduction
	Modelling languages
	Model quality

	Research method
	Introduction
	Research philosophy and type
	Research design
	Preamble
	General
	Procedure
	Research Instrument
	Considerations
	Data analysis guidelines

	Results
	Introduction
	Initial Experimentation
	Start
	Traceability
	Normalization
	Prompts

	Primary experiment
	Introduction
	Hypotheses
	Agreement H1
	Usable element creation H2
	Unusable element creation H3

	Discussion
	Discussion
	Key findings
	Interpretation & Validity
	Recommendations for implementation
	Summary

	Conclusion
	Overall findings in relation to the research aims
	Research aims and questions
	Broader implications

	Contributions
	Limitations
	Recommendations for future research

	Ethics and privacy quick scan
	Online Appendix
	Elaboration
	Experiment Cases
	Initial experimentation
	Normalization
	Normalization testing
	Prompts
	Quantification
	Quantified Results
	Traceability

	Scenarios
	Elaboration
	Shorthands
	Scenarios

	Prompt guideline information

