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Abstract

Carroll symmetry emerges as a consequence of the limit where the speed of light tends to zero,

starting from Poincaré symmetry. Further, it is expected that the Carrollian thermodynamics

description in the strict Carroll limit in different frameworks gives a cosmological equation of state

E + P = 0. To establish a rigorous thermodynamic setup, both for the individual particles and

massless scalar quantum field theories we employ an imaginary chemical potential conjugate to

momentum. Then we focus on the diagonality condition of the stress energy tensor in the Carroll

regime and the leading term in
(
c
v

)
- expansion. The conjecture linking Carroll conformal field

theories with flat space holography regarding the BMS3 group, potentially extending to de Sitter

spacetime is gaining traction. This study holds seeds for the relevance of Carroll physics to dark

energy and inflation. To make this master thesis self-consistent there is a brief review including

Carroll particles and Carroll quantum field theories that contains some new material. The electric

and magnetic sectors are presented and in thermodynamics, they appear to exhibit uniform behavior

in the massless case.
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Chapter 1

Introduction

In inflationary cosmology, the pressure and the energy density are related by the equation of state.

This relation determines the time evolution of an expanding universe via the Friedmann-Lemâıtre-

Robertson-Walker(FLRW) metric and the evolution through Einstein field equations. Moreover, in

a universe solely driven by the cosmological constant, often denoted by Λ, the energy-momentum

tensor acquires the form of a perfect fluid and the equation of state reads

E + P = 0 . (1.1)

Depending on the constituents of the universe, the relation between energy density and pressure

varies. To parametrize this variance, the equation of state parameter is introduced that measures

the relation between the two quantities

P = wE . (1.2)

The case with w = −1 produces an exponentially expanding universe with a scale factor a(t) ∼ eH0t

withH0 denoting the Hubble constant and the scale factor defined within the line element for FLRW

spacetime

ds2 = −c2dt2 + a(t)dxidx
i, i = 1, ..., d . (1.3)

An exponentially expanding universe introduces a horizon beyond which information cannot reach

a static observer. It is formulated by the introduction of the Hubble radius

RH =
c

H0
. (1.4)
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Every particle situated beyond the Hubble radius cannot be observed. Effectively, any particle

could be viewed as a tachyon when lying outside of the Hubble radius, moving with recessional

speeds greater than the speed of light, v ≫ c or equivalently c
v ≪ 1.

From this perspective, the super-Hubble scales allow for a Carrollian physics description. In

Carrollian physics the strict limit c → 0, keeping H0 fixed, becomes manifest and an intuitive way

to think about it is to state all the particle speeds in the spacetime to be much greater than the

speed of light, hence tachyonic (Figure 1.1).

v ≫ c

RH

Figure 1.1: Tachyonic speeds in super-Hubble scales.

Ultimately, when the strict Carroll limit is considered, the whole Hubble radius shrinks down

to a single point and all of the spacetime becomes super-Hubble. Therefore, it can be described by

a Carroll framework.

An additional motivation to make such an attempt is the fact that if instead of a cosmological

constant Λ, a scalar field is introduced to parametrize the exponential expansion, for instance, the

inflaton, then the equation of state parameter becomes

w =
1
2c

2π2
ϕ − V (ϕ)

1
2c

2π2
ϕ + V (ϕ)

c→0→ −1 . (1.5)

Here the πϕ denotes the conjugate momentum to the scalar field, defined by πϕ = 1
c2 ϕ̇

2. And in the

strict Carroll limit, c → 0, it acquires the very same form as the equation of state parameter for an

exponentially expanding universe [1], provided that in the limiting procedure, it is kept fixed. The

same result is extracted for slow-roll inflation in which the scalar field is slowly varying, typically

when the condition ϕ̇ ≈ 0 is satisfied.

When Carroll conditions are applied to an energy-momentum tensor it obtains a diagonal form

that is needed in a spacetime dominated by dark energy. Different frameworks for which Carroll
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conditions are satisfied and Carroll symmetry is present should lead to a model for inflationary

cosmology.

As was initially presented in [1] the Carroll limit is also relevant to de Sitter spacetime and

therefore it provides seeds to study de Sitter features through a Carrollian model. Therefore, besides

the BMS (Bondi-Metzner-Sachs) algebra matching the Carroll algebra, indicating a potential duality

to asymptotically flat space [2, 3], de Sitter space and cosmology and their relation to Carrollian

physics gain traction.

The intention of this master thesis is to provide a well-defined thermodynamics description for

two settings: the single particle and the conformal field theory (CFT), under the Carroll limit.

Following the establishment of thermodynamics and after writing down a partition function for

each case, the Carroll limit is taken in order to conclude an equation of state and check the validity

of E + P = 0. The limits we take have to be on dimensionless quantities to make sense, thus some

extra care is required than naively writing c → 0. This point will be analyzed separately for the

single particle and the conformal field theory (CFT).

Some quantities diverge in the strict Carroll limit c → 0. Some results will be presented in the

leading order of the
(
c
v

)
-expansion which we will refer to as the Carroll regime. The Carroll regime

appears as the opposite procedure to the classical or Galilei limit. The Galilei limit describes the

transition from relativistic mechanics to classical or Newtonian mechanics. The strict Galilei limit

leads to divergences in physical quantities. Thus, special care is required when taking the limit.

To begin with, this thesis project starts with a brief review of Carroll particles and Carroll

quantum field theories, adding reason to the results in the main body and making it overall self-

consistent.
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Chapter 2

Carroll symmetry and particles

2.1 Carroll boosts

The Carroll limit modifies the Lorentz transformations and changes the Poincare symmetry to the

so-called Carroll symmetry [2, 4]. The lightcone under the Carroll limit closes up. However, there

is still some room for formulating a sensible concept of particles and the respective laws they are

subjected to. The Carroll symmetry can be viewed as the opposite limit to the limit c → ∞ that

Initial Lightcone

=⇒

Closed Lightcone

Figure 2.1: Light Cone as c → 0.

gives the Galilei group. As argued in [5], starting off from the Poincare group, a different symmetry

group arises, the Carroll group. For example in 1+1 dimensions, the Lorentz transformations are
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x′ = γ
(
x− t

c2

v

)
, (2.1)

t′ = γ
(
t− x

v

)
, (2.2)

where v is the rescaled velocity v → c2

v compared to the usual Lorentz boost parameter and the

Lorentz factor γ = 1√
1− c2

v2

. The rescaled velocity has the interpretation of the rate of motion of

an event measured at a different frame at a fixed instant of time, ∆t′ = 0. The initial value was

valid in the range 0 ≤ |v| < c, while the rescaled lies in the range |v| > c. The Carroll limit can be

obtained by considering the limit to the dimensionless ratio |v|
c → ∞, yielding

x′ = x , (2.3)

t′ = t− x

v
. (2.4)

In higher spatial dimensions, a reciprocal vector b⃗ to the velocity v⃗ that we call the Carroll boost

parameter is suitable, such that the Lorentz transformations become

x⃗′ = x⃗ , (2.5)

t′ = t− b⃗ · x⃗ . (2.6)

As opposed to a Galilei universe where time is absolute, in a Carroll universe space is absolute. In

this way, the time ordering of events does not necessarily work for different observers.

Together with spatial rotations, the Lorentz boosts form a group. Taking the Carroll limit in d

spatial dimensions, the general transformations that form the Carroll group readx⃗′ = Rx⃗

t′ = t− b⃗ · x⃗
(2.7)

where R is a three-dimensional orthogonal matrix. The transformation matrix to the basis (ct, x⃗)

is

U (⃗a,R) =

1 a⃗T

0 R

 (2.8)
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where a⃗ := b⃗
c . The set of matrices U (⃗a,R) form a group with the properties:

• unit element: U(0, I)

• inverse element: U (⃗a,R)−1 = U(−Ra⃗,RT )

• group composition: U(a⃗′, R′) · U (⃗a,R) = U(RT a⃗′ + a⃗, R′R)

The elements U (⃗a, I) form a subgroup that is isomorphic to the Abelian group of d-dimensional

vector space. The total group is then realized as being an extension of the Abelian group of

d-dimensional vector space by the operator group of d-dimensional orthogonal matrices.

2.2 Velocity transformation

The velocity of a Carroll particle can be readily derived by writing

u⃗′ =
dx⃗′

dt′
=

u⃗

1− b⃗ · u⃗
. (2.9)

The transformation in the velocity of a particle exhibits different behavior depending on whether

the particle velocity is zero or non-zero. If it is zero, it will remain zero regardless of Carroll

boosts (as analyzed in [6]). For non-zero velocities, the Carroll boost may result in arbitrarily large

velocities. It can even flip the sign and change the direction of the vector if the denominator in the

transformation becomes negative, namely for b⃗ · u⃗ > 1.

2.3 Energy, momentum & tachyons

Following the analysis as presented in [1] and departing from the Lorentz transformations on time

and position, the transformations on energy and spatial momentum read

p⃗∥
′ = γ

(
p⃗∥ − b⃗E

)
, p⃗⊥

′ = p⃗⊥ , (2.10)

E′

c
= γ

(E
c
− c⃗b · p⃗

)
. (2.11)

Then in the Carroll limit these transformations acquire the form

p⃗′ = p⃗− b⃗E , (2.12)

E′ = E . (2.13)
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These are the transformations dictated by the Carroll group as viewed from the representation

U (⃗a, I) defined in equation (2.8). Hence, without taking into account the extension through the

d-dimensional orthogonal matrices.

One thing noted here is that energy is a Carroll invariant. Again there are two distinct cases

similar to the velocity transformation rule to be taken into account: E = 0 and E ̸= 0.

1. For E = 0, the momentum becomes Carroll invariant and the states can be described exclu-

sively by the momentum and the helicity around the axis parallel to the momentum direction.

2. For E ̸= 0, we can Carroll boost to vanishing momentum and the states are fully described

by the spin and the spin along a single axis.

In both cases, the energy and spatial momentum can be deduced from special relativity through

the well-known relations 
p⃗ = mu⃗√

1−u2

c2

E = mc2√
1−u2

c2

(2.14)

where u =
∣∣∣dx⃗dt ∣∣∣ = √

u⃗ · u⃗ and denotes the velocity of a particle in the usual way that is presented

for relativistic particles. The reason we review these relations at this point is to highlight the

appropriate way to make the transition from relativistic particles to Carrollian particles.

The denominator shared among the energy and spatial momentum expressions does not have

a well-defined behavior under the strict Carroll limit. The quantity in the denominator should

not be confused with the Lorentz factor, since it contains the velocity of a particle instead of a

boost parameter. The leading term in the Carroll expansion in powers of c gives the value of the

denominator as √
1− u2

c2
→ ±i

u

c
(2.15)

The energy and momentum therefore vanish in the strict Carroll limit c → 0. In the leading

contribution, they generically acquire complex values. There are two interesting cases to discuss at

this point:

• For u⃗ → 0 in the strict Carroll limit the particles are at rest and if we decide to keep the rest

energy fixed in the strict Carroll limit then

E = mc2, p⃗ = 0 (2.16)
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• For u⃗ ̸= 0 and in the leading term expansion that was discussed we get

p⃗ = ±imc
u⃗

u
, E = 0 (2.17)

In the latter, the energy vanishes due to the relativistic dispersion relation:

E2 = p⃗2c2 +m2c4 =⇒ E2 = −m2c4 +m2c4 = 0 (2.18)

In this case, the combination mc has to be kept fixed in the Carroll limit and the velocity has

to be made imaginary for the momentum to make sense as a physical quantity. Namely, the

mass of the particle becomes imaginary since m2 < 0 is the only resolution. This requirement is

also needed for (2.10) expansion to be valid with u2 > c2. Then, the module of the velocity u⃗

is interpreted as independent from the momentum and arbitrarily valued, but non-zero. It only

assigns to the momentum a direction through the unit vector u⃗
u . These particles keep on moving

and they continue moving after any Carroll boost. A similar result works also for massless particles

for which the relativistic dispersion relation reads

E = pc (2.19)

These particles will become important in a later discussion on this thesis.
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Chapter 3

Carroll quantum field theories

In this Chapter, we present the main observables of massless Carroll quantum field theories to review

the well-known classification of the ”electric” and ”magnetic” sectors that emerge. A combination

of magnetic and electric Lagrangian terms builds up the sector of combinations and they will

not be reviewed in this thesis. The intention is to build up a setting that allows for a thermal

quantum field theory assigned to the two sectors to be deduced later on. This classification in

”electric” and ”magnetic” theories arises from considering the Carroll limit to the Maxwell theory

of electrodynamics. Two Carrollian limits result in Maxwell field equations to reduce to a vanishing

electric field and a vanishing magnetic field respectively [1, 4, 7].

In a more general setting, these two distinct limiting procedures correspond to the timelike

or spacelike structure of the relativistic theory right before taking the Carroll limit. As a result,

”electric” theories are ultralocal in space, meaning that different space points are independent

of each other in terms of their dynamics, while ”magnetic” theories exhibit a non-trivial space

dependence.

In this Chapter and this thesis, only massless scalar fields will be discussed. Hence, the subset

of QFTs where conformal symmetry is manifest; namely conformal Carroll field theories (CFTs).

Aspects of Carroll CFTs have been studied in [8–13]. Higher spin representations of the Carroll

algebra have also been studied. For instance, Carroll fermions have been studied in [14–17], Carroll

Yang-Mills in [18] and super symmetry (SUSY) results were presented in [19].

12



3.1 Electric massless scalar field

Starting from the Klein-Gordon field ϕ with action in Hamiltonian formalism

S =

∫
dtddx

(
πϕϕ̇−H

)
, with H =

∫
ddx

1

2

(
c2π2

ϕ + ∂iϕ∂
iϕ
)

(3.1)

and i = 1, 2, ..., d where the indices are contracted with the flat metric. Rescaling the fields as

ϕ → cϕ, πϕ → 1

c
πϕ, (3.2)

and taking the Carroll limit c → 0, the electric limit is concluded

Se =

∫
dtddx

(
πϕϕ̇− 1

2
π2
ϕ

)
. (3.3)

On a flat Carroll background the action of a massless scalar field that corresponds to the electric

limit and an ultra-local field theory can be expressed by reducing the canonical momentum field πϕ

as

Se =

∫
dtddx

1

2
ϕ̇2 . (3.4)

The equations of motion, derived as a result of the variation of the action give

ϕ̈ = 0 (3.5)

and therefore we can compute the propagator by the corresponding Green’s function to assign it

the most general solution.

∂2
tG(x⃗− x⃗′; t− t′) = δd(x⃗− x⃗′; t− t′) . (3.6)

It is easy to solve this equation in momentum space and then transfer back to position.

G(x⃗− x⃗′; t− t′) =

∫
dω

∫
ddx
(
− 1

ω2 + ϵ2

)
eiω(t−t′)eik⃗·(x⃗−x⃗′)

=
i

2

(1
ϵ
− |t− t′|

)
δd(x⃗− x⃗′) . (3.7)

This is divergent, primarily because the theory is ultra-local since the Lagrangian density does not

contain any spatial derivatives on the scalar field. A way to regulate this result is to omit the
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divergent term of the propagator

G(x⃗− x⃗′; t− t′) = − i

2
|t− t′|δd(x⃗− x⃗′) . (3.8)

This analysis provides the physical part of the correlator of the electric Carroll sector for a massless

scalar field. A similar approach was followed in [20] to argue about the correlators of asymptotically

flat space, with a vision of a holographic description of the electric theories on the null boundary

of a (d+1) flat space to correlators in the bulk.

Remarks:

• The ultralocality of the electric Carroll theories makes the integral in (3.4) diverge. To make

a physical connection with the result, the divergent term gets omitted by the propagator

expression.

• The time dependence of the correlator is a unique feature of the massless Carrollian CFT but

appears useful for flat space holography.

• The three-point function vanishes as one can show, while the higher order correlators can be

inferred by considering symmetry arguments, following from a discussion in [21].

3.2 Magnetic massless scalar field

Departing again from the Klein-Gordon field (3.1) and without performing field rescalings this time,

the Carroll limit c → 0 results in

Sm =

∫
dtddx

(
πϕϕ̇− 1

2
∂iϕ∂

iϕ
)

. (3.9)

By introducing an auxiliary field χ to make contact with the reference [22]

πϕ = χ+ πL(ϕ) , (3.10)

the general form of a magnetic scalar field theory is described by the action

S =

∫
dtddx(χϕ̇+ L(ϕ)) , (3.11)
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where L can be any term in the Lagrangian density that depends only on the scalar field. For

simplicity we can consider the simplest example, omitting the arbitrary Lagrangian part

S =

∫
dtddxχϕ̇ . (3.12)

It is a Carroll boost invariant since it transforms as a total derivative. The Green’s function between

the fields is again through a similar approach to the electric case

Gχϕ(x⃗− x⃗′; t− t′) =
i

2
sgn(t− t′)δd(x⃗− x⃗′) . (3.13)

Remarks:

• The χϕ correlator exhibits time discontinuity. This is a general feature of magnetic theories

as can be seen in [8].

• The correlator containing only ϕ fields vanishes in a general magnetic field theory, whereas

the one containing only χ fields generically exhibits a polynomial form in time as shown in

[22].

The correlators were also derived in [23] where it is also shown that the two sectors; ”electric” and

”magnetic” originate from one higher dimensional Bargmann invariant action.

3.3 Unified Lagrangian parametrization of electric and mag-

netic sectors

To illustrate the thermodynamics of the electric and magnetic massless scalars we can write the

Lagrangian density as

L = a2ϕ̇2 − b2(∇ϕ)2 . (3.14)

To understand how it leads to the magnetic case, it is convenient to rewrite the Lagrangian density

with the auxiliary field Lχ = χϕ̇ − 1
4a2χ

2, whose equations of motion can be used to eliminate it.

Then to reach the two sectors, the following limits to the parameters a and b have to be considered:

• For the electric case: b → 0

• For the magnetic case: a → ∞
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• For the relativistic case: a → 1
c and b → 1

This is a parametrization initially used in [22] that provides a straightforward formulation for the

limits in the thermodynamics of the two sectors.

Comment: Both electric and magnetic sectors obtained through the limiting procedure that was

discussed are Carroll invariant theories. There are two ways to achieve Carroll invariance; either the

spatial derivatives have to be dropped and only the time derivative remains, or in other words the

canonical momentum field (electric limit). Or the canonical momentum field has to be eliminated

while keeping the spatial derivatives (magnetic limit).

The kinetic term πϕϕ̇ is present in both sectors. The difference lies in the energy densities

E that remain. Both of them satisfy the Poisson bracket relation [E(x), E(x′)] = 0 which is key

to Carroll invariance [7]. Moreover, both the kinetic energy density and potential energy density

are independently invariant under translations and rotations. Therefore, the electric and magnetic

sectors are overall Carroll invariant.
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Chapter 4

Partition function for massless

Carroll particles

4.1 A massless relativistic particle

Starting with a simple example, we consider the free massless1 relativistic particle. Initially, a

relativistic particle has a Hamiltonian H1(p) =
√
p2c2 +m2c4.

Thus, the constituents of a Boltzmann gas for free relativistic particles have the following expression

for their 4-momentum and the 4-velocity:

Uµ = γ(1, vi) ,

Pµ = (−E, pi) , (4.1)

with the square of the 4-momentum satisfying P 2 = −m2c2. Then the partition function for a

single particle is defined with the introduction of a generalized chemical potential vi conjugate to

the conserved spatial momentum pi

Z1 =
1

hd

∫
ddx

∫
ddpeβ̃U

µPµ =
V

hd

∫
d3pe−βH1(p)+βvipi . (4.2)

At this point, we can define a modified temperature β = 1
kBT = γβ̃ = γ

kB T̃
which makes the

partition function Lorentz invariant (more details in Appendix B). By setting the mass equal to

1for simplification and easier to make the transition to the conformal case.
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zero we have H1(p) =
√

p2c2 = c|p⃗| for the Hamiltonian which results in the partition function in

three spatial dimensions acquiring the following form:

Z1 =
V

h3

∫
d3pe−βc|p⃗|+βvipi

=
2πV

h3

∫ ∞

0

dp⃗

∫ +1

−1

d(cosθ)|p⃗|2e−βc|p⃗|+β|v⃗||p⃗|cosθ

=
2πV

h3

∫ ∞

0

dpp2
1

βvp
[eβ(v−c)p − e−β(v+c)p]

=
4πV

h3βv

[
− eβ(v−c)p

β2(v − c)2
+

e−β(v+c)p

β2(v + c)2

]∞
0

(4.3)

• for chemical potential v < c: the partition function takes eventually the final form

Z1 =
4πV

h3β3v

1

2

v2 + c2 + 2vc− v2 − c2 + 2vc

(v2 − c2)2

=
8πV

h3β3v

vc

(v2 − c2)2

=
8πV γ4

h3β3c3
, γ =

1√
1− ( vc )

2
(4.4)

• for chemical potential v > c: the integral does not converge. One way to make it work is to

choose β and v to lie in the complex plane. Then, the problematic exponential eβ(v−c)x as

x → ∞ may still converge, if the condition Re[β(v − c)] < 0 is fulfilled.

In other words, if the following relation is satisfied [22]:

Re(βv)−Re(βc) < 0 ⇒

Re(β)Re(v − Im(β)Im(v)− cRe(β) < 0 ⇒

Re(β)Re(v − c)− Im(β)Im(v) < 0 (4.5)

One way to satisfy the above condition is to keep real values for the temperature (real β) and at the

same time switch to purely imaginary chemical potential v while keeping c non-zero2 as suggested

in [22]. It is no longer appropriate to think about v as a particle velocity as in the 4-velocity (4.1),

but rather as an imaginary chemical potential.

2Later we would have to consider the Carroll regime (leading term in c → 0 expansion) and not the strict Carroll
limit for such a consideration.
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In that case, to extend to a converging and sensible expression for the partition function of

massless Carroll particles, a separate treatment is needed for v > c for which the partition function

is

Z1 =
V

hd

∫
d3pe−βc|p⃗|+iβvipi . (4.6)

Here each component vi ∈ R and the imaginary unit i is explicitly written in the front of the term in

the exponential. As will be shown in section 4.4, in d = 3 spatial dimensions, the partition function

with an imaginary chemical potential is

Z1 =
8πV γ4

h3β3c3
, γ =

1√
1 +

(
v
c

)2 . (4.7)

Hence, the difference lies in the change to the sign of the γ factor, or in other words it can be

reached by an analytic continuation to the chemical potential.

4.2 Many particles- Boltzmann gas

Using the canonical ensemble, we could generalize the Carroll particles partition function to N

particles (in such non-discredited system of relativistic particles). Namely, one way to express it is

by writing

Z(N,T, V, vi) =
1

N !
(Z1)

N . (4.8)

Then, adding a chemical potential µ to the description of the gas dynamics, or in other words

manifesting the grand canonical potential, the suitable partition function becomes:

Zgr(µ, T, V, vi) =

∞∑
N=0

1

N !
eβµNZ(N,T, V, vi) =

∞∑
N=0

1

N !
(eβµZ1)

N . (4.9)

Therefore, the partition function describing the gas would be

logZgr(µ, T, V, vi) = eβµZ1(T, V, vi) (4.10)
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and the corresponding grand potential obeys the following rules

Ωgr = −PV , (4.11)

Ωgr = −kBT logZgr . (4.12)

Combining them together, we arrive to

PV = −kBT logZgr(µ, T, V, vi) (4.13)

The thermodynamic quantities of the gas macroscopically can be obtained by the 1st thermody-

namic law, expressed in the following way following the definition of the grand potential

dΩgr = −SdT − PdV − pidv
i −Ndµ (4.14)

For instance, the momentum of the center of mass of the Boltzmann gas is

−pi =
∂Ωgr

∂vi

∣∣∣
T,V,µ

= −kBTe
βµ 8πV

h3β3c3
4γ3 ∂γ

∂vi
= −kBTe

βµ 32πV

h3β3c3
γ6 vi

c2

For the two velocity cases that were discussed the 1st law of thermodynamics holds, given the

form of (4.10) for both v < c and v > c. In the end, all the thermodynamic quantities become

real-valued. The difference that was manifest in the two cases of the analysis is the fact that the

Lorentz factor is defined as γ = 1√
1−( v

c )
2
for v < c, while for v > c, the minus sign gets converted

to a plus in practice, namely γ = 1√
1+( v

c )
2
.

4.3 Partition function in d = 2

We investigate the tachyonic form of the partition function for single particles in two spatial di-

mensions. We consider the Hamiltonian

H1(p) = c|p⃗| . (4.15)
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Then the partition function takes the form

Z1(V, T, v) =
V

h2

∫
d2pe−βc|p⃗|+iβp⃗·v⃗

=
V

h2

∫ ∞

0

pdp

∫ 2π

0

dθeβcp+iβcpv1 cos θ+iβpv2 sin θ . (4.16)

To integrate over the angle θ, we have to make use of the integral representation of the Bessel

function of the first kind

J0(z) =
1

π

∫ π

0

eiz cos θdθ . (4.17)

This observation leads to the expression

Z1(V, T, v) =
V

h2

∫ ∞

0

pdpe−βcp2πJ0(βp|v⃗|) . (4.18)

Finally, to treat the integration on the radial p, we make use of the Laplace transform of the Bessel

function of the first kind. This can be obtained by applying the Laplace transform to the Bessel

differential equation; as pointed out in the textbook of reference [24]. The result then is

Z1(V, T, v) =
2πV

h2

1

c2(1 + v2

c2 )
3
2 β2

=
2πV

c2h2β2
γ3 . (4.19)

This result is compatible with the one produced by the authors of [22] for an arbitrary number of

dimensions.

An alternative approach would be to view the initial integral as a multivariable Fourier trans-

form, by defining the Fourier transform to be F [f(x⃗)](v⃗) = 1
2π

∫∞
−∞ f(x)e−iv⃗·x⃗. That concludes as

a result that

Z1(V, T, v) =
V

h2

2π

β2
F [e−βc|x⃗|](v⃗)

=
2πV

c2h2β2
γ3 , (4.20)

which straightforwardly agrees with the result obtained by using the first integration method.

Again here, what changes from the case with v < c to the one with chemical potential values

v > c is the definition of the gamma factor γ. For the latter, the usual expression γ = 1√
1−( v

c )
2

turns into γ = 1√
1+( v

c )
2
.

Comment: The partition function is no longer Lorentz invariant. However, we can still preserve
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Lorentz invariance if instead of β we introduce an effective inverse temperature β̃ = γβ which

adopts the transformation law under a Lorentz boost of a usual Lorentz factor γ. More details are

explained in Appendix B.

4.4 Generalizing to arbitrary dimensions

By working in 2 spatial dimensions we realized that the integral is a multivariable Fourier transform.

Namely, it can be written as

Z1 =
V

hd

∫
ddpe−βc|p⃗|+iβv⃗·p⃗ . (4.21)

To be more specific, it is the Fourier transform of a radial function (one that only depends on the

modulus of the integration variable). Using spherical coordinates in d dimensions we may write:

Z1 =
V

hd

∫ ∞

0

dppd−1eβcp
(
Sd−2

∫ π

0

dθsind−2θeiβupcosθ
)

. (4.22)

Here Sd−2 is the area of the Sd−2 sphere. The inner integral in the angle θ can be deduced using

the representation of Bessel functions

∫ π

0

dθsind−2θeiβupcosθ =
2

d−2
2
√
π

(puβ)
d
2

J d−2
2
(puβ)Γ

(d− 1

2

)
. (4.23)

The partition function of the single relativistic particle induces now a Hankel transform. A Hankel

transform of a radial function f(r) is defined by the integral

Hν [f(r)](k) =

∫ ∞

0

drrf(r)Jν(kr) . (4.24)

In our case the function to be Hankel transformed is f(p) = p
d−2
2 e−βcp. The way to explicitly

perform the integral is challenging and it involves the series expansion of the Bessel function. This

step induces a Laplace transform for each term of the series. More details are discussed in Appendix

A. Using also the fact that the area of a Sd−2 sphere is Sd−2 = 2π
d−1
2

Γ

(
d−1
2

) the final result for the

partition function of a single massless relativistic particle becomes

Z1(V, T, v) =
V 2dπ

d−1
2

(βhc)d
γd+1Γ

(d+ 1

2

)
, (4.25)
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which agrees with the results we produced for the d = 2 and d = 3 spatial dimensions cases and

with the result presented in reference [22].

The strict Carroll limit v → 0 makes the partition function vanish for non-zero chemical potential

v. To be more concrete

Z1 ∝ γd+1

cd
=

c(
v2 + c2

) d+1
2

c→0→ 0 . (4.26)

However, for vanishing chemical potential v, the partition function diverges. This fact stresses the

difference between v = 0 and v ̸= 0 particles if v is interpreted as a velocity.

In the Carroll regime, or in other words in the leading term of
(
c
v

)
expansion, the partition

function is

Z1(V, T, v) =
V 2dπ

d−1
2

(βhv)d
c

v
Γ
(d+ 1

2

)
. (4.27)

4.5 Equation of state

In the canonical ensemble, the energy of the gas can be expressed in the following way

E = V E = U −Nvi < pi > , (4.28)

where we denote by U the internal energy of the system, vi the chemical potential (associated with

the mean velocity of the particles of the gas), N the number of particles (which is fixed in a thermal

bath and not allowed to fluctuate) and < pi > is the mean momentum of each of the constituents

of the gas.

The internal energy is U = N ∂
∂β logZ1, while the mean momentum can be computed by the

relation < pi >= 1
β

∂
∂vi logZ1.

In the Carroll regime (where v ≫ c and v ̸= 0), the linear approximation of the Lorentz factor

is

γ =
1√

1 + (v/c)2
v ≫ c
≈

∣∣∣ c
v

∣∣∣ (4.29)

and then the energy of the system reads

V E = E = −d
N

β
+ (d+ 1)

N

β

vivi
|v|2

=
N

β
. (4.30)
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Using the fact that P = N
β

∂ logZ1

∂V = N
V β , with P denoting the pressure, we finally get the equation

state that is established for the Carroll regime:

E + P = 0 . (4.31)

4.6 Stress-energy tensor

The stress-energy tensor for a perfect fluid can be written with translation and rotation symmetry.

For what follows there is no further assumption for boost invariance of any kind. The components

of the stress-energy tensor are written as studied in [25]

T 0
0 = −E , (4.32)

T 0
j = Pj , (4.33)

T i
0 = −(E + P)vi , (4.34)

T i
j = Pδij + viPj . (4.35)

In inflationary cosmology the stress-energy tensor describing the matter distribution ought to be

diagonal. Therefore, it is expected that the off-diagonal components vanish in the strict Carroll

limit.

As we have seen, the equation of state in the strict Carroll limit is of the following form

E + P = 0 . (4.36)

Thus, straightforwardly, the energy flux vanishes. One way to acquire a diagonal structure is by

a vanishing momentum Pj . This condition is fulfilled for the particles description that we have

constructed

Pj = ±N

β
(d+ 1)vjγ

2 . (4.37)

Analyzing the gamma factor in the strict Carroll limit for the case v > c shows that it straightfor-

wardly vanishes

γ2 =
( c
v

)(( c
v

)2
+ 1
)−1 c

v→0
→ 0 . (4.38)
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That is to be expected because from Lorentz symmetry Tµν = Tνµ and additionally the Carroll

Ward identity that corresponds to the Carroll boost generator is

∂µ(T
µ
ν C

ν
i ) = ∂µ(T

µ
0 C

0
i ) =

∂µ(T
µ
0 x

i) = (∂µT
µ
0 )x

i + Tµ
0 ∂µx

i . (4.39)

The first term vanishes because of the conservation law of the stress energy tensor and only the

second one survives and has to be equated to zero.

Tµ
0 ∂µx

i = Tµ
0 δ

i
µ = T i

0 = 0 . (4.40)

As a conclusion, the stress-energy tensor becomes diagonal in the strict Carroll limit

Tµ
ν =


−E 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 . (4.41)

4.7 First order correction to the equation of state

As we have seen, starting with a Hamiltonian H1(p) = c|p⃗| and employing an imaginary chemical

potential, the partition function ends up taking the following form:

Z1(V, T, vi) =
V 2dπ

d−1
2

(βhc)d
γd+1Γ

(d+ 1

2

)
, (4.42)

where the gamma factor gets a plus sign compared to the real chemical potential case, namely

γ =
1√

1 +
(
v
c

)2 . (4.43)

Without considering any Carroll limit yet, we aim to derive an equation of state for the general d

dimensional case. First, we define the generalized energy

Ẽ = E − iPiv
i , (4.44)
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where Pi = N < pi >1 the generalized momentum. Giving it a closer look, Ẽ = N
∑

s PsEs

counts all the microscopic configurations indexed by s and weighs them with their probability Ps.

This analysis reveals that the generalized energy of the system is obtained by the derivative of the

logarithm of Z1 with respect to β

Ẽ = N
1

Z

∑
s

Ese
−βEs = −N

Z

∂

∂β
Z1(V, T, vi) = −N

∂ logZ

∂β
. (4.45)

In the particular case of partition function (4.36)

Ẽ = −N
∂

∂β
logZ1 =

d

β
N . (4.46)

The microscopic description is of the form Es = E
(0)
s +λAs for the energies of each particle and with

a similar analysis < A >=
∑

s AsPs = − 1
β

∂
∂λ logZ1. Within our context λ = −ivi and As = pi,

< pi >1=
1

β

1

i

∂

∂vi
logZ1 . (4.47)

Therefore, equation (4.47) adjusts the single particle mean momentum by including the factor i.

Finally, using the ideal gas law, equation (4.46) takes the form:

Ẽ − dP = 0 . (4.48)

Using equation (4.47)

< pi >1 =
1

iβ

∂

∂vi
log γd+1

=
1

iβ

d+ 1

γd+1
γd
(
− 1

2

)(
1 +

(v
c

)2)−3/2 2vi
c2

= i
vi
βc2

γ2(d+ 1) . (4.49)
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Combining equations (4.44),(4.46), and (4.48) we may conclude the equation of state in the following

lines

dPV = E +
N

βc2
viviγ

2(d+ 1)

= E +
PV

c2
viv

iγ2(d+ 1)

= E +
PV

c2
viv

i c2

vivi

(
1− 1

2

( c
v

)2)2
(d+ 1)

= E + PV (d+ 1)
[
1−

( c
v

)2
+O

(( c
v

)4)]
= E + PV (d+ 1)−

( c
v

)2PV (d+ 1) , (4.50)

where we have used the fact that the pressure is derived from the relation:

P = N
1

β

∂logZ1

∂V
=

N

V

1

β
(4.51)

that resembles the ideal gas law. Finally, dividing by the volume we end up with the equation of

state:

E + P =
c2

v2
P(d+ 1) +O

(( c
v

)4)
. (4.52)

In this way, we realize the correction to the Carroll regime that relaxes the strict Carroll limit.

An important remark can be made at this point; the pressure is positive and realised by equa-

tion (4.51). Therefore, for certain values of the chemical potential, the energy density is positive

and after exceeding a critical value it becomes negative. This critical velocity is vc =
√
dc and it

depends only on the dimensions of the theory.

0 c vc

E > 0 E > 0 E < 0

Figure 4.1: Energy density sign vs particle velocity.

Comment: In Figure 4.1 the transition for the sign of the energy density is highlighted with blue

color for the relativistic regime and the region where c < v < vc and with red for the part of the

Carroll regime where v > vc.
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4.8 Equation of state related to the chemical potential

As it has already been obtained for d spatial dimensions the pressure and the energy density in a

single particle state is of the following form:

E =
d

β

N

V
± Nv2

V βc2
γ2(d+ 1) ,

P =
N

V

1

β
. (4.53)

The plus sign in the energy density corresponds to velocities less than the speed of light, while the

minus sign to tachyonic velocities. The plus/minus sign originates from the momentum derivative.

< p1 >1∝
∂

∂vi
logγ , (4.54)

where the gamma factor is the normal Lorentz factor for values of the chemical potential less than

the speed of light and for values greater than the speed of light it is the one that we can obtain

through analytic continuation of the first

γ =


1√

1−
(

v
c

)2 v < c

1√
1+
(

v
c

)2 v > c
. (4.55)

We are interested in the equation of state parameter which is given by the ratio of pressure over

energy density.

w =
P
E

. (4.56)

Hence, we may readily substitute into equation (4.56) the results for pressure and energy density

that are already known, to derive the equation of state parameter with respect to the velocity of

the single particle

w
( c
v

)
=

1

d± d+1
( c
v )

2∓1

. (4.57)

Specializing for spatial dimensions d = 3 the equation of state parameter can be plotted vs the

chemical potential.

As can be seen in Figure 4.2 (a) and (b), for vanishing velocity the equation of state parameter

is w = 1
3 as expected, since for that value of v it can be derived from the partition function for an
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(a) Real chemical potential.

(b) Imaginary chemical potential.

Figure 4.2: Equation of state parameter for the two cases of real/imaginary potential.
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ultra-relativistic particles gas as the imaginary chemical potential is approaching zero

Z = Tr
(
e−βc|p⃗|) . (4.58)

On the other side, we can notice the transition where the chemical potential is becoming equal to

the speed of light and analytical continuation is utilized.

For values of the chemical potential greater than the critical velocity vcr =
√
dc

d=3
=

√
3c (equiv-

alently for c
v < 1√

3
it is smoothly approaching the equation of state parameter that corresponds

to the de Sitter space, which describes the idealized version of the universe that undergoes an

accelerating expansion with w = −1.
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Chapter 5

Carroll conformal field theory

5.1 Second quantization of the scalar field and mode expan-

sions

We start with the general Lagrangian density description for the real scalar

L = a2ϕ̇2 − b2(∂xϕ)
2 . (5.1)

The equations of motion are acquired by varying the action with respect to the field

a2ϕ̈− b2∂2
xϕ = 0 (5.2)

and Fourier transforming the equation of motion of the field gives the relation in momentum space

a2(−ω2)− b2(−k2) = 0 ⇒ ω2(k) =
b2k2

a2
(5.3)

We recognize that (5.2) represents a harmonic oscillator, for which we know the solution. In fact,

the field assigns a harmonic oscillator to each space point.

If we further impose periodic conditions or in other words make the identification ϕ(x) = ϕ(x+2πR),

we discretize the momenta. For each harmonic oscillator

eikx−iωt = eik(x+2πR)−iωt ⇒ eik2πR = 1 ⇒ k2πR = 2πn ⇒ k =
n

R
, n ∈ Z . (5.4)
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The most general solution for the quantized field is the following

ϕ̂(x) =
∑
n∈Z

â†kn
ei(knx+ω(kn)t) + h.c. . (5.5)

Furthermore, this Lagrangian density is translation invariant. The spatial translation transfor-

mation x → x + α, α ∈ R is a symmetry. The field for an infinitesimal transformation becomes

ϕ(x) → ϕ′(x′) = ϕ′(x) + α∂xϕ ⇒ δϕ = α∂xϕ and the Lagrangian density

δL = a2δϕ̇2 − b2δ(∂xϕ)
2

= 2a2ϕ̇δϕ̇− 2b2∂xϕδ(∂xϕ)

= 2αa2ϕ̇(∂xϕ)− 2αb2(∂2
xϕ)(∂xϕ)

= ∂x
(
αa2ϕ̇2 − αb2(∂xϕ)

2
)

, (5.6)

which indeed shows that the Lagrangian density transforms as a total derivative and therefore it is

translation invariant.

The Noether current from this symmetry is

j0 =
∂L
∂ϕ̇

∆ϕ− J0 , (5.7)

with ∆ϕ and Jµ defined in the relations

δL = α∂µJµ , (5.8)

∆ϕ = αδϕ . (5.9)

So J0 = 0 and the conserved current acquires the form

j0 = 2a2ϕ̇(∂xϕ) , (5.10)

which we identify as the spatial momentum operator. To proceed, we have to figure out the mode

expansions of the Hamiltonian and the spatial momentum. The goal is to find a basis that enables

us to simultaneously diagonalize P and H.
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We begin by writing the mode expansion of the derivatives of the field

ˆ̇
ϕ(x) =

∑
n∈Z

(iω)
[
âkn

ei(knx+ωt) − h.c.
]
, (5.11)

∂xϕ̂(x) =
∑
n∈Z

(ik)
[
âkne

i(knx+ωt) − h.c.
]
. (5.12)

Then our goal is to express the P̂ using the mode expansions.

P̂ = Q0 =

∫
dxj0

= −2a2
∫

dx
∑
n∈Z

∑
n′∈Z

ωk′
[
âke

i(kx+ωt) − â†ke
−i(kx+ωt)

][
âk′ei(k

′x+ω′t) − â†k′e
−i(k′x+ω′t)

]
= −2a2

∑
n,n′∈Z

∫
dxωk′

[
âkâk′ei(k+k′)xei(ω+ω′t) + â†kâ

†
k′e

−i(k+k′)xe−i(ω+ω′)−

âkâ
†
k′e

i(k−k′)xei(ω−ω′t) − â†kâk′e−i(k−k′)xei(−ω−ω′t)
]

. (5.13)

In the previous, we used the short-hand notation k = kn, k
′ = kn′ , ω = ω(kn), and ω′ = ω(kn′).

To proceed, we perform the x integration, which results in Kronecker deltas.

P̂ = −2a2(2π)
∑
n∈Z

ωk
[
− âkâ−ke

−2iωt − â†kâ
†
−ke

2iωt − âkâ
†
k − â†kâk

]
= 2a2(2π)

∑
n∈Z

(2â†kâk + [âk, â
†
k])kω(k)

= 8πa2
∑
n∈Z

kω(k)â†kâk . (5.14)

In the first line, the first two terms in the bracket are odd and so they vanish. The commutator of

the creation with the annihilation operator in the second line does not contribute to the zero point

energy of each harmonic oscillator, because it is an odd function together with the coefficients.

Similarly, we can compute the Hamiltonian in terms of the modes that lead to the result that

Ĥ = 8πa2
∑
n∈Z

(
ω2(k)â†kâk +

1

2
ω2(k)

)
. (5.15)
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5.2 Quantum thermal partition function

The ultimate intention is to manage to express the partition function

Z = Tr[e−βH+iβvP ] (5.16)

using a basis for the trace. By the mode expansions that we computed, we notice that there is a

basis that could diagonalize both H and P simultaneously. To be more precise:

ˆ̃ak
† ˆ̃ak |ñ⟩ = ñ |ñ⟩ (5.17)

the number density operator eigenstates will be used. In expression (5.17) the creation and annihila-

tion operators are rescaled compared to the mode coefficients as ˆ̃ak = 2α
√
2πωâ. This is determined

in such a way because the Hamiltonian acting on the ground state obeys H ˆ̃ak
†
|0⟩ = ω ˆ̃ak

†
|0⟩ and

H |ñ⟩ = H( ˆ̃ak
†
)ñ |0⟩ = ñω( ˆ̃ak

†
)ñ |0⟩. The integers ñ are the eigenvalues of the number density

operator.

The trace can be rewritten as the sum in the diagonal of the matrix elements in these eigenstates

|ñ⟩ in the following way.

Z =
∑
ñ

⟨ñ|e−βH+iβvP |ñ⟩ . (5.18)

Using the expressions (5.16) and (5.17) we deduce that

Z = Tr
[
e−βH+iβvP

]
= Tr

[
e−β

∑
n∈Z ω(kn) ˆ̃ak

† ˆ̃ak+iβv
∑

n∈Z kn
ˆ̃ak

† ˆ̃ak

]

= Tr

[ ∏
n∈Z

e−βω(kn)+iβvkn

]
. (5.19)

Here we remark that the modes are independent and the trace can be performed separately for the

microstates of each harmonic oscillator. The trace then has to sum over the modes of the Hilbert

space of the k-th mode.

Z =
∏
n∈Z

Trkn

(
e−βω(kn)ω(kn) ˆ̃ak

† ˆ̃ak+iβknω(kn) ˆ̃ak
† ˆ̃ak

)
. (5.20)

Finally, this individual tracing procedure can be performed by summing over the trace representa-
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tion realized by the number density operator

Trkn

(
e−βω(kn)ω(kn) ˆ̃ak

† ˆ̃ak+iβknω(kn) ˆ̃ak
† ˆ̃ak

)
=∑

ñ

⟨ñ|(e−βω(kn)ω(kn) ˆ̃ak
† ˆ̃ak+iβknω(kn) ˆ̃ak

† ˆ̃ak |ñ⟩ =

∑
ñ

e−βω(kn)ñ+iβknñ =
1

1− e−βω(kn)+iβkn
. (5.21)

In the last step, the geometric series with a complex argument was used. An important point

to keep in mind is that the quantum Hamiltonian carries information about the vacuum energy.

The essence of it gets captured within the notion of Casimir energy EC , which is expressed by the

sum in the zero point energies of all the harmonic oscillators Ec = 1
2

∑
n ω(kn) and it requires a

regularization to make sense. The quantum partition function takes the final form:

Z = e−βEC

∏
n∈Z

1

1− e−βω(kn)+iβvkn
. (5.22)

5.3 Necessity of an imaginary chemical potential

One may wonder why we introduced an imaginary chemical potential in the partition function. The

main reason is that ultimately we would like to explore the convergence domain for values of v > c

or equivalently |v| > b/a (because b/a = c in the relativistic case).

The analog of the thermal quantum partition function with a real chemical potential excluding

the zero mode is

Z = Tre−βH+βvp =
∑
n>0

⟨n|e−βω(kn)+βvkn |n⟩

=
∏
k∈N∗

1

1− e−β/R( b
a−v)k

∏
k∈N∗

1

1− e−β/R( b
a+v)k

, (5.23)

where N∗ denotes the set of positive integers. The convergence of the products above is determined

by the convergence domain of the Euler function

ϕ(q) :=
∏
k∈N∗

(1− qk) , (5.24)

which is given by the condition |q| < 1. For the two products in (5.23) to converge the following
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two conditions have to be satisfied simultaneously:
∣∣e−β/R( b

a−v)
∣∣ < 1∣∣e−β/R( b

a+v)
∣∣ < 1

, (5.25)

which subsequently implies the condition

− b

a
< v <

b

a
=⇒ −c < v < c . (5.26)

We infer the requirement of an imaginary chemical potential introduction to investigate the behavior

of thermodynamic quantities and ultimately the equation of state for the region |v| > c.

The thermodynamic large R limit corresponds to the asymptotic expansion of the Euler function

(in terms of q-series)[26].

ϕ(q) = (q; q)∞ =

∞∏
k=1

(
1− qk

)
, (5.27)

with the following asymptotic result:

ϕ(q) =

√
2π

t
exp
(
− π2

6t
+

t

24

)
+O(1) , (5.28)

where q = e−t and we denoted exp the exponential function. In our case, we apply this result to

the arguments t = β
R

(
b
a − v

)
and t̃ = β

R

(
b
a + v

)
.

Then, the partition function in the large R limit obtains the form following the expression for

the asymptotic result:

Z =
1

(q; q)∞(q̃; q̃)∞

R→∞→

√
β
R

(
b
a − v

)
2π

√
β
R

(
b
a + v

)
2π

×

exp

(
π2

β
R

(
b
a − v

) − β
R

(
b
a − v

)
24

+
π2

β
R

(
b
a + v

) − β
R

(
b
a + v

)
24

)

=
β

2πR

√
b2

a2
− v2 × exp

(
π2

3

b
a

β
R

(
b2

a2 − v2
) − β

b

12aR

)
. (5.29)

At this point, we introduce the dimensionless quantities on which we are allowed to consider limits
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later on.

x =
βb

aR
, (5.30)

z =
βv

R
. (5.31)

It follows straightforwardly that the logarithm of the partition function in the large R limit is

logZ = log
√
x2 − z2 +

π2

3

x

x2 − z2
− x

12
. (5.32)

The first term is subleading in the large R limit. The second term is the extension of the Cardy

result after the addition of the chemical potential v. And the third term is the inverse temperature

times the Casimir energy.1 The more appropriate answer then is

logZ = log

√
x2 − z2

x
+

π2

3

x

x2 − z2
− x

12
. (5.33)

This will be discussed more in detail in section 5.9 where the modular invariance will be introduced

for the imaginary chemical potential case. The zero mode contribution is the same in the real and

imaginary chemical potential cases.

5.4 Electric and magnetic cases

For well-defined thermodynamics, we would like the logarithm of the partition function to be

extensive. For now, we may ignore the Casimir energy and focus on the rest of the expression. We

are going to investigate what happens when we consider the limits that turn the theory into the

”electric” case (b → 0) and the ”magnetic” case (a → ∞).

The limit b → 0 corresponds to an electric quantum field theory, or in terms of dimensionless

parameters x = bβ
aR → 0. Then the partition function takes the following form

Z =
∏
n∈Z

1

1− e
iβvn
R

=
∏
n∈Z

1

1− eizn
, (5.34)

where the second dimensionless parameter z = βv
R is involved.

In the magnetic case, by considering the limit b → ∞, the dimensionless parameter x → 0,

1If the finite part of the zero mode is included there is a contribution to the first term which still keeps it subleading
in the large R expansion
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and the same holds in the electric case where the partition function looks like the expression (5.34)

again.

We conclude that thermodynamics in these two limits still stands a chance to be well-defined

since there is still a dependence on the dimensionless parameter z which contains the inverse tem-

perature and volume. However, as will become clear later in section 5.10, the partition function

can be expressed in terms of Dedekind eta functions that are defined for strictly x > 0, and the

partition function becomes zero. As a consequence, we can only look at the Carroll regime which

translates to the leading contribution of x → 0. This means that in the strict Carroll limit, we do

not achieve sensible thermodynamics.

Comment: Although the internal energy seems to generate imaginary values by U = −∂ logZ
∂β , a

manipulation in the summation shows that it is real by separating the positive and negative modes

U =
iv

R

∑
n∈Z

n

1− ei
βv
R n

= − v

R

∑
n∈N∗

n sin(βvR n)

1− cos(βvR n)
. (5.35)

5.5 Turning on a mass term

If we were to add a mass term to the Lagrangian density discussed in the previous analysis, then the

only thing that changes is the dispersion relation. Namely, instead of ω2(k) = b2k2

a2 , it generalizes

to ω2(k) = b2k2+m2

a2 .

In the electric case, b → 0 there is an extra dependence on the dimensionless parameter y = mβ
a

added. While for the magnetic case, a → ∞ the partition function can depend on the ratio x/y

that remains finite and the dimensionless parameter z.

5.6 Expanding the logarithm

We may omit the Casimir energy term as subleading in the large volume expansion and ignore it

from the beginning. Later on, this will be formally justified in Section 5.8 through a CFT analysis.

This approach considers as a starting point the partition function expression after the resummation

logZ = −
∑
k∈Z∗

log
(
1− exp

(
− βb|k|

aR
+ i

βvk

R

))
. (5.36)
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The Taylor expansion of the logarithm yields

logZ =
∑
k∈Z∗

∑
n>0

1

n
e−

βb|k|
aR n+i βvk

R n . (5.37)

This expansion is valid for large values of the volume R, in such a way that the module of the

exponential’s argument is less than 1 and the Taylor expansion holds within the convergence region.

Next, we approximate the sum on k ∈ Z∗ by an integral:

logZ ≈
∑
n>0

1

n

∫
dkexp

{
− βb|k|

aR
n+ i

βvk

R
n
}

. (5.38)

At this point, we remind the dimensionless quantities on which we are allowed to consider limits.

x =
βb

aR
, (5.39)

z =
βv

R
. (5.40)

In terms of these dimensionless parameters, the partition function becomes

logZ ≈
∑
n>0

1

n

∫ ∞

−∞
dkexp(−x|k|n+ izkn)

≈
∑
n>0

[ 1
n

∫ ∞

0

dkexp(−xkn+ izkn) +

∫ ∞

0

dkexp(−xkn− izkn)
]

≈
∑
n>0

2

n

∫ ∞

0

dke−xkncos(zkn) . (5.41)

The integral converges for any value of the integer n because the argument of the exponential is

always negative and yields the following

logZ ≈ 2
∑
n>0

x

z2 + x2

1

n2

≈ π2

3

x

x2 + z2
. (5.42)

This answer is essentially the generalization of the standard Cardy result for a c = 1 CFT that does

not contain a chemical potential v. Comparing to the real chemical potential case of chapter 5.3

we notice that it is possible to achieve the result of an imaginary chemical potential by analytically

continuing the chemical potential v → iv =⇒ z → iz.
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Recovering the initial parameters

logZ ≈ π2

3

βb
aR(

βv
R

)2
+
(
βb
aR

)2 =
Rπ2

3β

b
a

v2 + b2

a2

. (5.43)

At this stage, by keeping the leading term in the Carroll regime, we have achieved extensive ther-

modynamics because the logarithm of the partition function is linear in R in the large volume

limit.

5.7 Equation of State

From classical thermodynamics, the Euler equation is known to relate different thermodynamic

quantities. In the case in which we have introduced an imaginary chemical potential as one of the

parameters, it follows that

E + P =
1

βR
S +

iv

R
P . (5.44)

It provides a useful way to derive the equation of state in the large R limit starting with the terms

on the right-hand side: the entropy S and the momentum P (conjugate to the chemical potential

v).

First, we evaluate the entropy:

S = (1− β∂β) logZ =
π2R

3β

b
a

v2 + b2

a2

+
π2R

3β

b
a

v2 + b2

a2

=
2π2R

3β

b
a

v2 + b2

a2

, (5.45)

while the momentum is evaluated by

P =
1

iβ

∂logZ

∂v
= − 1

iβ

2π2R

3β
v

b
a(

v2 + b2

a2

)2 . (5.46)

Plugging the last two answers into the right-hand side of the Euler equation (5.44), we obtain

E + P =
2π2

3β2

(
b
a

)3(
v2 + b2

a2

)2 . (5.47)

Recovering the dimensionless parameter x which is relevant to the Carroll limit, the equation of

state can be written as

E + P =
2π2

3β2

(
xR
β

)3(
v2 +

(
xR
β

)2)2 x → 0−−−−→ 0 . (5.48)
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This is an expected result for any Carroll theory and at this point, we remind that the dimensionless

quantity x when approaching zero represents both the electric and magnetic case for the scalar

quantum field theory.

Another important feature of this result is that in the case of vanishing chemical potential, it

is not continuously connected to the non-vanishing case. This is also a general characteristic of

Carrollian theories. We recovered the same conclusion to the vanishing/non-vanishing chemical

potential as for the Carroll massless particles. The cases of vanishing and non-vanishing chemical

potential should always be studied separately.

5.8 Hamiltonian and momentum revisited

The quantum field theory that is studied here has a special feature. Namely, it does not intrinsically

contain a scale. It is hence a conformal field theory (CFT). In a CFT the partition function should

only depend on a modular parameter τ ∈ C and that should relate to a combination of the physical

quantities of our model. The purpose of this section is to provide these identifications.

Firstly, we consider the generators of the Witt algebra or to be more specific the zero modes of

the Laurent expansion for the energy-momentum field

l0 = −z∂z ,

l̄0 = −z̄∂z̄ . (5.49)

We then perform a change of variables

z = reiϕ , (5.50)

after which we gain a bit more of the geometric intuition for those generators

l0 = −1

2
r∂r +

i

2
∂ϕ ,

l̄0 = −1

2
r∂r −

i

2
∂ϕ . (5.51)

These lead to the linear combinations of the operators

l0 + l̄0 = −r∂r ,

i(l0 − l̄0) = −∂ϕ (5.52)

41



and we recognize that they generate 2-dimensional dilations and rotations respectively.

The procedure that we have followed in the previous chapters to derive the thermal quantum

partition function involves periodic conditions that essentially map the complex plane to the cylinder

with radius R. To realize the correspondence between the two pictures we have to tailor the above

transformation to the mapping

z = e
x0

R +i x1

R . (5.53)

Here it is easy to check that this transformation ultimately maps the complex plane to the cylinder

of radius R through the identification x1 ∼ x1 + 2πRn with n ∈ Z for the spatial coordinate.

Furthermore, we have defined that

x0 =
b

a
t (5.54)

for two reasons:

• To restore the relativistic case with a factor of c (the speed of light in vacuum),

• To match the dimensionality of the x1 spatial coordinate

Then, going back to the generator combinations we conclude the following

l0 + l̄0 = −e
x0

R Re−
x0

R ∂x0

= −R
a

b
∂t (5.55)

and also in a similar manner

l0 − l̄0 = R∂x1 . (5.56)

Expressions (5.55) and (5.56) lead to the definition of the Hamiltonian and the spatial momentum

since they are the generators of time and space translations respectively. We arrive at the conclusion

that

H =
b

Ra
(l0 + l̄0) + central charge ,

P =
1

R
(l0 − l̄0) . (5.57)

The extension to the Witt algebra that captures the quantum nature of the theory is the Virasoro

algebra V irc characterized by the central charge c. It contributes to the Hamiltonian that gives the
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zero point energy or Casimir energy and can be evaluated via

EC =
b

Ra
⟨(Tcyl)00⟩ =

b

Ra

[
⟨Tcyl⟩+ ⟨ ¯Tcyl⟩

]
= − b

Ra
2
c

24
= − c

12

b

Ra
, (5.58)

where for the first equality the following properties were used

Tcyl =
1

2
(T00 − iT10) ,

¯Tcyl =
1

2
(T00 + iT10) , (5.59)

while for the last equation we used that

Tcyl(w) =
(∂f(w)

∂w

)2
T (f(w)) +

c

12
S(f(w), w) = z2T (z)− c

24
, (5.60)

with z = f(w) = ew and the Schwarzian derivative S(z, w) = − 1
2 for that case.

5.9 Modular parameter

Going back to the partition function we have ended up with for the conformal bosonic case in terms

of the infinite product

Z ′ = e−βEC

∏
n∈Z∗

1

1− exp(−βω(kn) + iβvkn)
, (5.61)

with ω(kn) =
∣∣∣ bkn

a

∣∣∣ and kn = n
R and excluding the zero mode.

On the other hand, the partition function from the conformal field theory analysis (excluding

the zero mode) is in terms of the modular parameter τ

Z ′(τ, τ̄) =
1

|η(q)|2
, (5.62)

with η denoting the Dedekind eta function and q = e2πiτ . That leads to the identification τ1 = βv
2πR

and τ2 = βb
2πaR that forms the modular parameter τ = τ1 + iτ2 with τ1, τ2 ∈ R.

Given those identifications, the partition function corresponds to the one that can be defined

through the modular parameter in the following way

Z(τ) = TrH(e−2πRa
b τ2H+i2πτ1RP ) . (5.63)
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Recovering the Virasoro algebra generators, the partition function is taking the usual form for a

bosonic CFT.

Z(τ) = TrH
(
qL0− c

24 q̄−L̄0− c
24

)
. (5.64)

Attempting to include the finite part of the zero mode back to the partition function, we have to

think that the wavefunction of the zero mode needs to have a free waveform eipx0 . This then leads

to determining the contribution of it by L0 = L̄0 = p2/2. A way to think about it is to remember

the operator-state correspondence that maps the state eipx0 to the normal ordered operator : eipX :

(whose weight coincides with the Virasoro generators L0 and L̄0). The other modes get mapped

one-to-one to the local operators ∂nX, n ∈ N∗. Given the equation (5.64) we realise that the zero

mode behaves like a massless free particle

Z0 =

∫
dpqp

2/2q̄p
2/2

=

∫
dpe−2πτ2p

2

=
A
√
τ2

, (5.65)

where A is a factor that depends on the normalization and is not relevant to our analysis since it is a

constant. The full partition function that now incorporates the holomorphic part, anti-holomorphic

part and the zero mode reads

Z =
1

√
τ2

1

|η(q)|2
. (5.66)

Finally, provided that for a conformal bosonic theory, the central charge is c = 1, the Casimir

energy is taking the form

EC = − b

12Ra
= − π

6β
τ2 . (5.67)

The partition function now has become modular invariant. It ought to satisfy this condition, since

SL(2,Z)/Z2 transformations do not change the cylinder. Therefore, the partition function Z(τ, τ̄)

in the CFT should be modular invariant.
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Figure 5.1: Fundamental Domain of SL(2,Z) in the Complex Plane.

To determine the partition function we only need to study it within the red domain that is

highlighted in Figure 5.1. For any other value of the modular parameter in the upper half plane,

we can find a value of it within the fundamental domain that gives the partition function for any

other value and can be obtained by an element of SL(2,Z).

5.10 Dedekind eta function expansion

Another way to extract the behavior of the quantum partition function in the large volume limit is

to consider the expansion of the Dedekind eta function for R → ∞ or equivalently τ → 0.

To achieve this, we write down the generating function of partitions p(n) with q = e2πiτ .

P (τ) =

∞∑
n=1

p(n)qn =
eπiτ/12

η(τ)
. (5.68)

The above is defined in the domain of convergence of the upper half plane H := {τ ∈ C/Im(τ) > 0}.
The Dedekind eta function is a modular form of weight 1/2, which means that it satisfies the
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following two properties:

η(τ + 1) = e
πi
12 η(τ) , (5.69)

η
(
− 1

τ

)
=

√
−iτη(τ) . (5.70)

Therefore, it is possible to rewrite the generating function of partitions using the second modular

property

P (τ) = e
πiτ
12 P

(
− 1

τ

)√
−iτe

πi
12τ . (5.71)

From the above an asymptotic expansion can be obtained for small values of the modulus of the

modular parameter, namely:

P (τ) →
√
−iτe−

πi
12τ ≈ eπiτ/12

η(τ)
. (5.72)

The total partition function contains both the positive modes part (”chiral”) and the negative

modes part (”anti-chiral”).

Z =
1

√
τ2

1

|η(τ)|2
τ→0→ |τ |

√
τ2

e
πi
12 (

1
τ − 1

τ̄ )e−πi(τ−τ̄)/12 =
|τ |
√
τ2

e
πIm(τ)

6|τ|2 e−πImτ/6 . (5.73)

The logarithm of the partition function in the large R limit is

logZ
τ→0→ log

|τ |
√
τ2

+
πτ2
6|τ |2

− πτ2
6

= log

√
x2 + z2

x
+

π2

3

x

x2 + z2
− x

12
, (5.74)

a result that coincides with the one obtained for the expansion of the logarithm (5.42) in section

5.6 for the leading term and the analytic continuation of the result for a real chemical potential

(5.33) in section 5.3. Again, the first term is subleading in the large R limit and the last one is the

Casimir term.

5.11 Equation of state parameter

The model describing a general massless scalar quantum field theory in 1+1 dimensions is described

by the Lagrangian

L = a2(∂tϕ)
2 − b2(∂xϕ)

2 . (5.75)
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The equation of state after the substitutions for a relativistic setting with parameters

a → 1

c
, (5.76)

b → 1 (5.77)

is the following

E + P =
2π2

3β2

c3(
v2 + c2

)2 . (5.78)

Individually the pressure is extracted from the already known partition function in the large R limit

P = − 1

β

∂logZ

∂R
=

π2

3β2

c

v2 + c2
. (5.79)

Therefore, the equation of state parameter is concluded as a function of the velocity v

w =
v2 + c2

v2 − c2
=

1 +
(
v
c

)2
1−

(
v
c

)2 . (5.80)

As we commented in the Carroll particles analysis; for small values of the velocity v compared to

the speed of light, the equation of state parameter is w = 1 as expected (w = 1
d ) and in the Carroll

limit w = −1 as can be noticed in Figure 5.2.

Figure 5.2: Equation of state parameter vs velocity.
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5.12 Generalizing the dimensions

This section intends to provide the generalization to an arbitrary number of spatial dimensions for

the analogous to a CFT discussed in the previous sections. One way to achieve it is to study the

theory on Rd−1 × S1. In other words, we place the theory in an infinite volume with two parallel

hyperplanes which we identify with each other. Then essentially one of the dimensions is considered

small compared to the other directions. The approach that we follow is equivalent to the one used

in [27] and [28].

Similarly to the prescription for one spatial dimension, the Hamiltonian and spatial momentum

(conjugate to the chemical potential) are given in terms of the modes:

H =
∑
ni

ω(kni)âki

†âki + Ed
c , (5.81)

P =
∑
ni

kdâki

†âki
. (5.82)

At this point, the sum notation is a generalization to include the quantized k’s and the continuous

ones, for which the sum is an integral.

Without loss of generality, we assume that the small dimension is the one carrying the label d.

The dispersion relation is given by

ω(kni) =
b

a

√
k2 + k2d , (5.83)

where k2 contains all the k’s associated with the large dimensions.

Similarly, we can use the number operators (one for each dimension) to perform the trace in the

partition function

Z = e−βEd
c

∏
ni∈Zd/{0}

∑
Ni∈N

e−β(ω(kni
)−ivkd)Ni = e−βEd

c

∏
ni∈Zd/{0}

1

1− e−β(ω(kni
)−ivkd)

. (5.84)

In the large dimensions, k’s can be integrated over, because they are continuous and the logarithm
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of the partition gains the form

logZ = −βEd
c − Vd−1

(2π)d−1

∫ ∞

∞
dd−1k

∑
nd∈Z

log(1− e−β(ω(kni
)−ivkd)

= −βEd
c − Vd−1

(2π)d−1

2π
d−1
2

Γ(d−1
2 )

∫ ∞

0

dkkd−2
∑
nd∈Z

log(1− e−β( b
a

√
k2+k2

d−ivkd)) , (5.85)

where in the last line we performed the angular integrals that give the volume of a sphere in

(d− 1)-dimensions. Splitting the zero mode:

logZ =− βEd
c +

Vd−1Γ(d− 1)ζ(d)

2d−2π
d−1
2 Γ(d−1

2 )βd−1( ba )
d−1

− Vd−1

2d−2π
d−1
2 Γ(d−1

2 )

∑
nd∈Z/{0}

∫ ∞

0

dkkd−2 log(1− e−β( b
a

√
k2+k2

d−ivkd)) , (5.86)

where we used the integral∫ ∞

0

dkkd−2 log(1− e−λk) = − 1

(d− 1)λd−1

∫ ∞

0

dx
xd−1

ex − 1
= − 1

λd−1
Γ(d− 1)ζ(d) (5.87)

for the parameter value λ = β b
a . The remaining integral cannot be computed in a closed form

and will keep it as a series after expanding the logarithm. The result is involving modified Bessel

function Kν after performing integration

logZ = −βEd
c +

Vd−1Γ(d− 1)ζ(d)

2d−2π
d−1
2 Γ(d−1

2 )βd−1( ba )
d−1

+ 2
Vd−1

Rd/2β
d−2
2

(
b
a

) d−2
2

∑
nd∈Z/0

∑
m∈N/0

( |nd|
m

)d/2
K d

2

(
2π|m| β

R

)
e2πim|nd|β v

R . (5.88)

The transformations of the modular group imply for the parameters of the model the following:

τ ′ = τ + 1 ⇐⇒


(

β b
a

R

)′
=

β b
a

R(
βv
R

)′
= βv

R + 1
(5.89)

and

τ ′ = −1

τ
⇐⇒


(

β b
a

R

)′
=

R a
b

β(( b
a )2+v2)(

βv
R

)′
= − R

β(( b
a )2+v2)

. (5.90)
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Under the second transformation (5.86) the logarithm of the partition function changes in the

following way:

logZ ′ =
βd−1

Rd−1

(( b
a

)2
+ v2

) d−1
2

logZ . (5.91)

Using the explicit form for the left-hand side of (5.87) and solving for logZ we obtain the expression

logZ =
Vd−1R

βd
(
b
a

)−1

Γ
(
d+1
2

)
ζ(d+ 1)

π
d+1
2

(( b
a

)2
+ v2

)− d+1
2

+
Vd−1(

b
a

)d−1
Rd−1

Γ
(
d
2

)
ζ(d)

πd/2

(( b
a

)2
+ v2

) d−1
2

+ 2
( β
R

)− d
2
(( b

a

)2
+ v2

) d−2
2 ×

∑
m∈N/{0}

∑
nd∈Z/{0}

( |nd|
m

)d/2
Kd/2

(
2π|m|R

β

1(
b
a

)2
+ v2

)
e
−2πim|nd|Rβ

1

( b
a

)2+v2
. (5.92)

In the first term, the Legendre duplication formula for the gamma function was used. The second

term is the part deriving from the evaluation of Casimir energy in d spatial dimensions, while the

double summation is exponentially suppressed in the limit of R → ∞. The Casimir energy can be

computed by evaluating the zero point energy based on the Hamiltonian which is defined in (5.81).

Ed
c = ⟨0|H |0⟩ = 1

2

b

a

∑
ni∈Zd/{0}

ωkni
=

1

2

b

a

∑
ni∈Zd/{0}

√
k2 + k2d

=
1

2

b

a
V ol(Sd−2)

∑
nd∈Z/{0}

∫ ∞

0

dk

(2π)d−1

√
k2 + k2d

= − b

a

Vd−1

Rd

Γ
(
− d

2

)
ζ(−d)

π−d/2
= − b

a

Vd−1

Rd

Γ
(
d+1
2

)
ζ(d+ 1)

π(d+1)/2
. (5.93)

This deduction involves zeta function regularization and the Legendre duplication formula for the

gamma function once again.

We desire to deduce the equation of state formula for arbitrary dimensions in the large vol-

ume limit, hence sending R → ∞. By using the proper form of the Euler equation that relates

thermodynamic quantities:

E + P =
1

βV
S +

iv

V
P (5.94)
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and the leading term in the expansion for large R in the logarithm of the partition function

S = (1− β∂β)logZ =
Vd−1R(

b
a

)
βd

(d+ 1)
Γ
(
d+1
2

)
ζ(d+ 1)

π(d+1)/2

(( b
a

)2
+ v2

)− d+1
2

, (5.95)

P =
1

iβ
∂vlogZ =

1

iβ

Vd−1R(
b
a

)
βd

(−d− 1)
Γ
(
d+1
2

)
ζ(d+ 1)

π(d+1)/2
v
(( b

a

)2
+ v2

)− d+3
2

. (5.96)

Inserting these results in the Euler equation and trading b
a → c, which represents a relativistic

setting, we acquire the equation of state below

E + P =
d+ 1

βd+1

Γ
(
d+1
2

)
ζ(d+ 1)

π
d+1
2

c3(
v2 + c2

) d+3
2

∝ 1

βd+1

c3(
v2 + c2

) d+3
2

. (5.97)

Taking the strict Carroll limit (electric or magnetic), meaning x → 0 =⇒ c → 0, in this stage

forces the equation of state to take the form of the one present in inflationary cosmology

E + P c→0→ 0 . (5.98)

Furthermore, if we use the leading order term in the large R expansion to compute the pressure P
separately we can infer the energy density of the framework and compare it to the Carroll particles’

case

P =
1

Vd−1

∂(β−1logZ)

∂R
=

1

βd+1

Γ
(
d+1
2

)
ζ(d+ 1)

π
d+1
2

c(
v2 + c2

) d+1
2

(5.99)

and combining with the equation (5.97)

E =
1

βd+1

Γ
(
d+1
2

)
ζ(d+ 1)

π
d+1
2

c(
v2 + c2

) d+3
2

(dc2 − v2) , (5.100)

which yields the same result for the critical velocity as extracted for the Carroll particles case.

Namely, that the critical value for the chemical potential is vc =
√
dc.

0 c vc

E > 0 E > 0 E < 0

Figure 5.3: Energy density sign vs chemical potential.

Comments:

• The critical value for the chemical potential coincides with the result that we extracted for
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the Carroll particles description vc =
√
dc, which only depends on the dimensions.

• The equation of state is also the same under the strict Carroll limit followed by the large

volume expansion. Intuitively, this is to be expected due to the decoherence of the quantum

effects in the large volume limit.
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Chapter 6

Conclusion and outlook

In this thesis several aspects and consequences of Carroll physics were presented. It is shown how

Carroll symmetry algebra arises from Poincare symmetry algebra by taking the limit c → 0. This

limit however results in the appearance of tachyons. This fact did not come as a surprise because

the Carroll limit has to be ultimately taken into a dimensionless parameter. It thus translates to

comparing with velocities v ≫ c. Effectively, what becomes manifest in this thesis is the comparison

to superluminal recessional velocities in an expanding universe (de Sitter spacetime). The concept

of thermodynamics within Carrollian physics was investigated. Following the logic of Carrollian

physics principles, we dived into two different cases:

1. Carroll Particles (Chapter 3)

2. Carroll conformal field theory (Chapter 4)

In the Carroll particles case, we computed the partition function by adding an imaginary chem-

ical potential that represents the particle’s velocity, as the conjugate quantity to the momentum.

The result is that thermodynamics can be described for finite value of the speed of light, thermo-

dynamic quantities can be evaluated and in the end, the Carrollian limit can be reached from the

relativistic regime. The equation of state parameter is evaluated and exhibits the same form as in

cosmology, E + P = 0 and therefore an equation of state parameter w = −1. Further, there is a

special value for the particle velocity; the critical velocity vc =
√
dc which depends on the spatial

dimensions d and determines the sign of the energy density.

In the conformal field theory, we began by canonical quantization for a massless scalar field that

was initially equipped with periodic conditions for in space. Then we carried on to compute the
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thermal partition function in 1+ 1 dimensions and continued by generalizing the number of spatial

dimensions with one spatial dimension being periodic for the field. Eventually, the large volume

limit has to be considered to avoid boundary effects and on this limit thermodynamics is extensive,

equivalently the logarithm of the partition function is proportional to the volume and generalizes

the Cardy answer with a correction originating from the introduction of an imaginary chemical

potential. Again, the equation of state in the strict Carroll limit is of the form E + P = 0 and the

critical value for the imaginary chemical potential exhibits the same behavior as in the particles’

case. Namely, the critical value is vc =
√
dc when we approach the electric/magnetic sectors from

the relativistic regime.

An important highlight is that the electric and magnetic sectors behave the same under the

thermodynamic formulation that we presented, but it is important to keep in mind that the two

cases are not equivalent in general. As was shown in Chapter 3, the two theories exhibit fundamental

differences even from the point of 2-point correlators. It is however expected to end up with the

very same result for the equation of state in the strict Carroll limit as explained in Chapter 1.

These results verify the relevance of Carrollian frameworks; both semi-classical and quantum to

de Sitter spacetime. There are however several more aspects to be investigated to formally establish

dS/CFT (de Sitter/ Conformal field theory correspondence); linking these two descriptions. Some

parts also require some further motivation to acquire a proper physical interpretation. For instance,

the Carroll particles description is set to define a tachyon gas which lacks physical context. Another

challenge is to assign a meaningful interpretation to the formulation of Carroll field theories in

a similar way to the standard quantum field theories where special relativity clashes with the

principles of quantummechanics. A better understanding in this direction would enable an improved

explanation to our results and the relevance between Carrollian frameworks and de Sitter spacetime.

Certainly, more research is yet to come to give light to the principles of Carroll physics and the

interplay with an expanding universe which looks significantly like our own. The beginning has

been done and this research direction seems promising.
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Appendix A

Hankel Transformation

To be more concrete on the evaluation of the integral encountered in section 4.4 involving Bessel

functions, we provide this descriptive section. The Hankel transform that we had to compute has

the form:

I =

∫ ∞

0

xne−axJn(sx)dx =
1

sn+1

∫ ∞

0

tnJn(t)e
−a/stdt

=
1

sn+1
L[tnJn(t)](p = a/s) , (A.1)

where by L we denote the Laplace transform. To proceed, we expand the function which has to be

Laplace transformed in a series.

tnJn(t) =

∞∑
k=0

(−1)kt2k+2n

k!Γ(k + n+ 1)22k+n
. (A.2)

The Laplace transform then yields

L[tnJn](p) =
∞∑
k=0

(−1)k

k!Γ(k + n+ 1)22k+n
L[t2k+2n](p)

=

∞∑
k=0

(−1)kΓ(2k + 2n+ 1)

k!Γ(k + n+ 1)22k+np2k+2n+1

=
2n√

πp2n+1

∞∑
k=0

(−1)kΓ(k + n+ 1/2)

k!

( 1

p2

)k
. (A.3)
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In the last step we used the Legendre duplication formula for the gamma function. To write the sum

in an analytic form we have to first notice that the coefficients resemble the binomial coefficients(
−l

m

)
=

(−1)ml(l + 1) . . . (l +m− 1)

m!
=

(−1)mΓ(m+ l)

m!Γ(l)
(A.4)

Putting everything back together, the result derived in (4.21) for the partition function of Carroll

particles is concluded. Techniques presented in [24] were used in this Appendix.
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Appendix B

Lorentz invariance

B.1 Total phase space measure

In this section, we would like to demonstrate the transformation law of the partition function of

free massless relativistic particles with a real chemical potential v⃗

Z(β, v, V ) = Tre−β(H−v⃗·p⃗) =
1

hd

∫
ddxddpe−β(H−v⃗·p⃗) . (B.1)

To begin with, we may study the behavior of the measure of the total phase space. First of all,

we have to keep in mind that ddx and ddp are invariant under rotations and we can decide on the

initial conditions before boosting. Boosting along the first spatial dimension x leads to:

p′x = γu(px − ux

c2
E) , (B.2)

p′i = 0 i ̸= x , (B.3)

The determinant of the Jacobian corresponding to the transformation in spatial momenta is there-

fore determined by
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det J =

∣∣∣∣∣∣∣∣∣∣∣

γu
(
1− u

c2
∂E
∂px

)
−γu

u
c2

∂E
∂py

−γu
u
c2

∂E
∂pz

. . .

0 1 0 . . .

0 0 1 . . .
...

...
...

...

∣∣∣∣∣∣∣∣∣∣∣
= γu

(
1− u

c2
∂E

∂px

)

With energy determined by the usual form for a free massless particle

E = c|p⃗| = c

d∑
i=1

√
p2i . (B.4)

Therefore, the transformation law is obtained to be

ddp′ = |detJ |ddp = γu
(
1− c

px
E/c

u

c2
)
=

E′

E
ddp , (B.5)

from which we deduce that the combination

ddp

E
(B.6)

is a Lorentz invariant. Now we have to determine the transformation law for the position of the

measure ddx. Using the Hamilton equations for the Hamiltonian that describes the free massless

particle, we obtain

ẋ =
∂H

∂px
=⇒ ẋ =: v =

c2px
E

(B.7)

and

˙⃗p = −∂H

∂x⃗
= 0 =⇒ p⃗(t) = constant. (B.8)

Their combination results in the trajectory of the particles, which is

x(t) = vt+ x0 . (B.9)

Now, assuming two worldlines given by
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x1(t1) = vt1 ,

x2(t2) = vt2 +∆x . (B.10)

In a primed frame of reference that moves along the x-direction, the usual Lorentz transformations

apply for the x position and time. Working explicitly for the first worldline:

x′
1 = γu(x1 − ut1) ,

t′1 = γu(t1 −
ux1

c2
) .

Inserting the equations for x1(t1) that describe a uniformly moving particle, we get

x′
1 = γu(v − u)t1 ,

t′1 = γu(1−
uv

c2
)t1 , (B.11)

and eliminating t we get the following formula that amounts to the transformation law of the

velocity

x′
1 =

v − u

1− uv
c2

t′1 . (B.12)

Working in an analogous manner for the second worldline we achieve the following:

x′
2 =

v − u

1− uv
c2

t′2 +
1

γu(1− uv
c2 )

∆x , (B.13)

It essentially means that the separation of the worldlines as viewed from the primed frame relative

to the unprimed along the x-direction is given by:

∆x′ =
∆x

γu(1− uv
c2 )

=
E

E′∆x . (B.14)

Hence, the separation between the worldlines is

∆x′ =
E

E′∆x , (B.15)

∆x′
i = ∆xi for i ̸= x . (B.16)
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The conclusion that follows for the position measure is

ddx′ =
E

E′ d
dx . (B.17)

Combining the two results, the total measure of the phase space is invariant

ddxddp = Lorentz invariant , (B.18)

B.2 General Hamiltonian, velocity, and momentum transformations

To induce the transformation of the argument of the exponential we will have to consider the general

transformations of the Hamiltonian, the velocity and the spatial momentum.

The Hamiltonian together with the spatial momentum form a four-vector and their general

transformations follow the analogous transformation rule to four-position transformation. Namely,

H ′ = γu(H − u⃗ · p⃗) , (B.19)

p⃗′ = p⃗+
γ2
u

γu + 1
(p⃗ · u⃗) u⃗

c2
− γu

H

c2
u⃗ . (B.20)

Someone could easily verify that

H ′2/c2 − p⃗′
2
= H2/c2 − p⃗2 (B.21)

is satisfied given the aforementioned transformation rule. By analyzing the velocity to its parallel

and perpendicular components with respect to the boost parameter we further obtain the general

transformation rule for the velocity

v⃗′ =
1

1− v⃗·u⃗
c2

[
γ−1
u v⃗ − u⃗+

1

c2
γu

γu + 1
(v⃗ · u⃗)u⃗

]
. (B.22)

Next, we would like to determine the transformation law for the combination of the two terms
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involved in the exponential of the partition function

H ′ − p⃗′ · v⃗′ =

γu(H − u⃗ · p⃗)− 1

1− v⃗·u⃗
c2

[
γ−1
u v⃗ − u⃗+

1

c2
γu

γu + 1
(v⃗ · u⃗)u⃗

]
·

·

[
p⃗+

γ2
u

γu + 1
(p⃗ · u⃗) u⃗

c2
− γu

H

c2
u⃗

]
(B.23)

To simplify the expression we are going to treat the terms containing the Hamiltonian separately

to the ones containing the momentum. Starting by the terms that multiply the Hamiltonian:

1

1− v⃗·u⃗
c2

[
u⃗ · v⃗
c2

− u2γu
c2

+
1

c4
γ2
u

γu + 1
(v⃗ · u⃗)u2

]
+ γu =

1

1− v⃗·u⃗
c2

[
γu

( u⃗ · v⃗
c2

− u2

c2

)
+ γu − γu

u⃗ · v⃗
c2

]
=

1

1− v⃗·u⃗
c2

γu
(
1− u⃗ · v⃗

c2
)
=

γ−1
u

(
1− u⃗ · v⃗

c2
)−1

. (B.24)

Then, we rearrange the terms containing momentum:

−γuu⃗ · p⃗+ 1

1− v⃗·u⃗
c2

[
p⃗− γ2

u

γu + 1
(p⃗ · u⃗) u⃗

c2

]
·

[
γ−1
u v⃗ − u⃗+

1

c2
γu

γu + 1
(v⃗ · u⃗)u⃗

]
=

−γuu⃗ · p⃗+ 1

1− v⃗·u⃗
c2

[
− γ−1

u p⃗ · v⃗ + p⃗ · u⃗− 2

c2
γu

γu + 1
(v⃗ · u⃗)(p⃗ · u⃗)+

γ2
u

γu + 1
(p⃗ · u⃗)u

2

c2
− γ3

u

(γu + 1)2
1

c2
(p⃗ · u⃗)(u⃗ · v⃗)u

2

c2

]
=

1

1− v⃗·u⃗
c2

[
− γ−1

u p⃗ · v⃗ + 1

c2

(
− γu

γu + 1
− γ2

u

γu + 1
+ γu

)
(p⃗ · u⃗)(u⃗ · v⃗)

]
=

−γ−1
u

(
1− u⃗ · v⃗

c2
)−1

(v⃗ · p⃗) . (B.25)

Putting everything back together we infer the transformation law for the terms in the exponential,

namely

H ′ − v⃗′ · p⃗′ = γ−1
u

(
1− u⃗ · v⃗

c2
)−1

(H − v⃗ · p⃗) . (B.26)
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B.3 The general transformation of the Lorentz factor

We are already familiar with the way that the parallel and perpendicular components of the velocity

with respect to the boost direction transform. To be specific

v⃗′∥ =
v⃗∥ − u⃗

1− u⃗·v⃗
c2

, (B.27)

v⃗⊥ = γ−1
u

v⃗⊥

1− u⃗·v⃗
c2

. (B.28)

Analyzing the velocity within the Lorentz factor in the parallel and perpendicular components and

taking into account that their dot product vanishes,

γv′ =

[
1−

( v⃗∥/c− u⃗/c

1− u⃗·v⃗
c2

)2
−
(√1−

(
u/c
)2
v⃗⊥/c

1− u⃗·v⃗
c2

)2]−1/2

=

=
1− u⃗·v⃗

c2√(
1−

(v∥
c

)2 − ( v⊥c )2)(1− (uc )2)
= γvγu

(
1− u⃗ · v⃗

c2

)
. (B.29)

Here the parallel component of the velocity is

v⃗∥ =
u⃗ · v⃗
v2

v⃗ , (B.30)

while the perpendicular is given by the difference between the total vector minus the parallel part:

v⃗⊥ = v⃗ − v⃗∥ . (B.31)

Multiplying the Lorentz factor with the exponential in the partition function could cancel the

transformation law of the remaining and make the whole partition function Lorentz invariant. One

way to make use of this fact would be to introduce an effective inverse temperature

β̃ = γβ , (B.32)

that acquires the transformation of the Lorentz gamma factor. At this point, there is no need to

give a physical interpretation to the parameter β̃. We can still take derivatives with respect to it

and obtain the expression for the generalized energy.
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This approach would mean that every β parameter should get substituted by a β̃ parameter

in our calculations if we wish to preserve Lorentz invariance. Hence, the partition function for

massless free relativistic particles would result in

Z = 2dV
π

d−1
2

(hcβ̃)d
γd+1
v Γ

(d+ 1

2

)
. (B.33)

Double-checking the final formula, the result is Lorentz invariant as expected; there are d Lorentz

factors that cancel the transformation laws of d factors of β̃ and in the end, all that remains is the

boost transformation contributions from the volume and a single gamma factor. The transformation

in equation (B.29) implies that the remaining factors cancel as well.

B.4 Analytical continuation

The partition function for a massless free relativistic particle is given by equation (B.33) for arbitrary

spatial dimensions and it is invariant under the proper orthochronous Lorentz group SO+(1, d).

This invariance is convenient to assign a Lorentz invariant interpretation to temperature later on.

It would also be convenient to be aware of whether there is a symmetry for chemical potential values

v > c. In other words, to know whether the partition function with imaginary chemical potential

iv is invariant under the action of another symmetry group.

For the following, we will simplify and specialize the problem in 1 + 1 spacetime dimensions.

The question then becomes: what is the analogue to the group SO(1, 1)?

We take a close look at the real matrix representation of the group SO(1, 1) in terms of the

boost parameter

Λ =

 γ −u
c γ

−u
c γ γ

 ∈ SO(1, 1) ,

which transforms the spacetime coordinatesct′

x′

 = Λ

ct

x

 .

These matrices satisfy the following two relations that are crucial to form the group of transforma-
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tions

Λ⊤ηΛ = η , (B.34)

detΛ = 1 , (B.35)

where η is the Minkowski metric in 1 + 1 dimensions. To proceed, we perform an analytical

continuation to the boost parameter u → iu and then the Λ matrix representation becomes

Λ̃ =

 γ̃ − iu
c γ̃

− iu
c γ̃ γ̃

 ,

in which the Lorentz factor denoted by γ̃ = 1√
1+
(

u
c

)2 acquires the usual plus sign in the square

root that we have encountered before. These matrices now belong to another group that admits

complex matrix representations. This group is U(1) and to get there we have to also perform a

Wick rotation. Hence, we need to change the metric

ds2 = −dt2 + dx2 → ds2 = dt2 + dx2 . (B.36)

These requirements are enough to satisfy the two necessary conditions for an element to belong in

U(1). Namely,

Λ̃†Λ̃ = 1 , (B.37)

detΛ̃ = 1 . (B.38)

The conclusion that follows is that the partition function for imaginary chemical potential is invari-

ant under U(1) ≃ SO(2) transformations. The transition from SO(1, 1) requires both an analytical

continuation to the boost parameter and a Wick rotation.
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