
Utrecht University

Institute for Theoretical Physics

Theoretical Physics Master Thesis

Soft Threshold Limit of Drell-Yan Angular

Distributions

First examiner:
E.L.M.P. Laenen
Second examiner:
U. Gursoy
Daily supervisor:
J.K.L. Michel

Candidate:
Carlotta Casi

In cooperation with:
Nikhef

8 July, 2024





Abstract

The angular distribution of the final state leptons in the Drell-Yan process
plays a key role in testing the QCD dynamics of Z/W bosons production
and in measuring the values of masses and couplings of the EW sector of the
SM. This angular distribution is in one-to-one correspondence to the set of
production cross-sections for vector bosons of definite helicity (helicity cross
sections) which feature sensitivity to soft and collinear QCD radiation. In this
thesis, we calculate radiative corrections to the helicity cross sections up to
next-to-next-to leading order (NNLO) in the strong coupling, focusing on the
emission of a single and double gluon from the initial state quark-antiquark
pair. We then study the behavior of these corrections in the soft threshold
limit, where the dilepton pair invariant mass approaches the available center of
mass energy. Finally, we use Soft-Collinear Effective Theory (SCET) to derive
soft factorization theorems for Drell-Yan helicity cross sections ranging from
the leading-power (LP) to the next-to-next-to-leading power (NNLP) in the
soft expansion, perturbatively evaluate the relevant subleading soft functions,
and perform a comparison to our expanded full-QCD results.
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Chapter 1

Introduction

The main achievement of modern particle physics is the formulation of the Standard
Model (SM) of fundamental interactions, which describes the electromagnetic, weak, and
strong forces in a unique, renormalizable gauge theory with symmetry group U(1) ×
SU(2) × SU(3). Despite its success, the SM is known to be incomplete, leaving several
fundamental questions unanswered, and depends on several parameters that need to be
extracted from experiments.

In this situation, it is therefore crucial to pursue the search for new physics beyond
the Standard Model. High-energy particle physics experiments, such as those conducted
at the Large Hadron Collider (LHC), aim to uncover phenomena that the SM cannot
explain. A recent breakthrough in this direction has been the discovery of the Higgs
boson [1, 2] and the determination of its properties [3], which appears to confirm the
mechanism of electroweak symmetry breaking.

Whether the goal is to search for new physics or to test the SM as the fundamental
theory of (almost all) fundamental interactions, if on one side we benefit from the great
amount of data collected from particle colliders, on the other it is necessary to properly
relate experimental verification with the theoretical predictions. In this sense, precision
calculations for the strong (QCD) and electroweak (EW) sectors play a key role in
determining the value of the SM couplings and masses, improve the understanding of
parton distribution functions (PDFs), and enhance the overall precision of theoretical
models. An important group of processes for the precision program are the ones involving
the production and decay of intermediate Z/W bosons. Indeed, the production rates
and properties of these bosons are sensitive to both QCD and EW corrections, making
them ideal for testing the accuracy of higher-order calculations.

One of the main channels for Z/W bosons production is the Drell-Yan process [4],
where the intermediate vector bosons are produced in an unpolarized proton-proton
collision and decay into a lepton pair. We distinguish between neutral-current and
charged-current Drell-Yan processes, respectively given by

pp→ Z/γ∗X → `+`− pp→W +X → `+νX pp→W −X → `−νX, (1.1)

with X generic hadronic radiation in the final state. A key aspect in the study of
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4 CHAPTER 1. INTRODUCTION

this process is the angular distribution of the leptons in the final states. This angular
distribution is typically analyzed in the Collins-Soper frame [5], which is designed to
minimize the influence of the initial state hadron motion and to facilitate the application
of factorization techniques. At the Born level and at leading order in the electroweak
interactions, this angular distribution can be written as

dσ

dcosθdϕ
∝ (1 + cos2θ) +Acosθ, (1.2)

with θ, ϕ polar and azimuthal angles, respectively, in the vector boson rest frame and
A an angular coefficient. The inclusion of higher-orders QCD corrections results in
a significant modification of this angular distribution, and additional terms must be
included. It was shown in [6] that the general form of this distribution can be decomposed
into a sum of nine real spherical harmonics, that is

dσ

dcosθdϕ
∝ (1 + cos2θ) + A0

2
(1 − 3cos2θ) +A1 sin2θcosϕ +

A2

2
sin2θcos2ϕ+

A3 sinθcosϕ +A4 cosθ +A5 sin
2θ sin2ϕ +A6 sin2θ sinϕ +A7 sinθ sin2ϕ (1.3)

whose coefficients Ai depend on the lepton pair invariant mass, transverse momentum,
and rapidity. In particular, because these coefficients encode all the sensitivity on the
initial state QCD dynamics, their precise calculation and measurement provide critical
tests of perturbative QCD and on the disentanglement of electroweak effects from QCD
corrections.

This thesis is organized as follows. In chapter 2 we present the main results and
techniques for treating scattering processes involving hadrons in the initial state. These
include the discussion of the basic principle of Quantum Chromodynamics and of the
Soft-Collinear-Effective-Theory. In chapter 3, we use the notation of [6] and [7] to relate
the Drell-Yan angular coefficients to a set of production cross sections of definite helicity
by decomposing the hadronic tensor into a set of Lorentz scalar structure functions.
These cross-sections are then calculated at the Born level. In chapter 4 we then calculate
these same cross sections in the presence of single and double real gluon emissions and
study them in the soft threshold limit. In chapter 5 we rederive the LP factorization
formula and derive the NNLP factorization formula. The prediction for the helicity cross
sections computed in this formalism is then checked against the ones calculated in full
QCD.

We conclude by discussing our results and future applications in chapter 6. Notation
and conventions used in this thesis are then given in the two appendices A and B.



Chapter 2

Hadron Scattering

In this chapter, we present the principal results and mathematical formalism for treating
scattering processes involving hadrons in the initial state. In section 2.1 we outline the
main features of Quantum Chromodynamics (QCD), such as the QCD running coupling,
the nature of infrared divergences, and factorization. In section 2.2 we instead review
the Soft Collinear Effective Theory (SCET), the effective field theory describing soft and
collinear degrees of freedom, and discuss its application to soft factorization theorems.

2.1 Quantum Chromodynamics

2.1.1 Degrees of freedom of QCD

Quantum Chromodynamics is the fundamental theory of strong interactions and is
a gauge theory with symmetry group SU(3). Its dynamical degrees of freedom are
the quarks, that is the fermion fields representing the matter content of the theory,
and the gluons, the massless spin 0 vector bosons mediating the interaction. Unlike
electrically neutral photons, gluons carry the QCD conserved charge, the color charge,
and can therefore couple with themselves. On the other hand, quarks, which come into
three flavors organized in three generations of increasing masses, carry several quantum
numbers, such as color charge, electric charge, and isospin. Because of these quantum
numbers, quarks can interact through strong, electromagnetic, and weak force.

In the context of QCD, each quark flavor is represented by a three-component spinor
field q(x) = (q1(x), q2(x), q3(x))T -where each component is associated to one of the
three colors ”red”, ”blue”, ”green”- which transforms in the fundamental representation
of the gauge group,

qi(x) Ð→
3

∑
j=1

Uij(x) qj(x), U ∈ SU(Nc) (2.1)

with Nc = 3 numbers of colors. Antiquarks are described by a three components row
vector q̄i(x) and trasform according to q̄ Ð→ q̄ U †, suppressing the color indices. Gauge
fields instead, are Lie algebra valued 1-form, and as such can be written as Aµ = Aa

µ(x) ta,

5



6 CHAPTER 2. HADRON SCATTERING

Flavor Q T3 Mass [GeV]

First Generation up (u) 2/3 1/2 0.003
down (d) -1/3 -1/2 0.005

Second Generation charm (c) 2/3 1/2 1.2
strange (s) -1/3 -1/2 0.1

Third Generation top (t) 2/3 1/2 172
bottom (b) -1/3 -1/2 4.5

Table 2.1: Quarks quantum number, where Q denotes the charge and T3 the isospin.
Anti-quarks quantum numbers are not listed, as they have the same absolute value of
the quantum numbers as their corresponding quark but with opposite signs.

where Aa
µ(x) are local differential forms, the gluon fields, transforming in the adjoint

representation of SU(Nc),

Aa
µ(x) Ð→ U(x)Aa(x)U †(x) + i

g
U(x)(∂µU †(x)), (2.2)

where a is an internal index and runs from 1 to the dimension of the algebra (for
SU(N) this is N2 − 1) and ta are the generators of the color algebra in the fundamental
representation. These generators are 3×3 hermitian traceless matrices defined as ta = λa/2,
with λa Gell-Mann matrices [8], and obey the following commutation relations,

[ta, tb] = ifabctc (2.3)

with fabc structure constants of the color algebra. These structure constants are real,
totally anti-symmetric in all the indices, and determine the adjoint representation of the
color algebra generators T a, represented by (N2

c − 1) × (N2
c − 1) matrices defined by

(T a)bc = −ifabc (2.4)

and which oìalso obey eq.(2.3). The normalization of these generators, in the fundamental
and adjoint representation, is respectively defined by

Tr[tatb] = TF δab TF =
1

2
Tr[TaTb] = TA δab TA = Nc . (2.5)

In addition, given a representation Ra, we can define the quadratic Casimir operator
C(R) = RaRa, which commutes with all the other generators in the same representation
and, as such, is proportional to the identity via the Shur’s lemma. For Ra = ta and
Ra = T a, the Casimir operator is equal to

tata = CF I CF =
N2

c − 1
2Nc

T aT a = CA I CA = Nc . (2.6)
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2.1.2 QCD lagrangian

We now start building the theoretical framework which describes the dynamics and the
interactions of the quarks and gluon degrees of freedom. For this purpose, we need two
more ingredients. The first is the covariant derivative

Dµ = ∂µ − igsAa
µta , (2.7)

which is a gauge invariant operator, that is it is invariant under the transformations
eq.(2.1),(2.2), that transforms covariantly under the action of an element of the color
group, i.e. Dq → U(Dq). This derivative realized the matter fields-gauge fields coupling
in a locally invariant manner via minimal substitution, and contains the term responsible
for the quark-gluon vertex. The other ingredient is the field strength for the gluon fields.
In geometric terms, the vector field Aµ in eq.(2.7) plays the role of a connection on the
principal color bundle describing our SU(Nc) gauge theory [9]. The curvature on this
color bundle can thus be obtained canonically from the commutator between covariant
derivatives acting on an arbitrary smooth function f , that is

[Dµ,Dν]f(x) = −igsFµνf(x) . (2.8)

Being a Lie-algebra valued 2-form, the field strength can be expressed as Fµν = F a
µν(x)ta,

where the coefficients are determined by the above commutator to be of the following
form,

F a
µν = ∂µAa

ν − ∂νAa
µ + igsfabcAb

µA
c
ν . (2.9)

Compared to the field strength of QED, these coefficients display a term proportional to
the structure constants of the algebra. It is exactly this term that generates the vertices,
i.e. the three- and four-gluons vertex, describing the self-coupling of the gauge bosons,
which are indeed absent in abelian gauge theories.

Figure 2.1: QCD vertices

The QCD Lagrangian can now be built according to a general prescription: to write
down all the possible operators up to dimension four, constructed out of the degrees of
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freedom of the theory and their four-derivatives, which are compatible with the given
symmetries. For the strong force these symmetries are Poincarè invariance, local SU(3)
gauge symmetry and the discrete P and T symmetries1. This leaves us with with only
one possible choice of operators which, including the canonical normalization for kinetic
terms, leaves us with the Yang-Mills Lagrangian [10]

LYM = ∑
f

q̄f(x)(i /D −mf)qf(x) −
1

4
(F a

µν)2, (2.10)

with f labeling the flavor.
The Yang-Mills Lagrangian correctly describes the interactions of quarks and gluons

in a purely classical formalism. In the quantized theory however, we must face two crucial
issues due to the redundancy of degrees of freedom that local gauge symmetry brings with
them. The first is how to deal with functional integrals over gauge field configurations
that are not physically distinct. This overcounting of degrees of freedom does not affect
calculations of gauge invariant quantities, as these are obtained through normalized par-
tition functions, but it leads to ambiguities when computing gauge-dependent quantities
obtained through generating functions, like the vector boson propagator. The second is
that, unlike in QED, the amplitudes to produce timelike and longitudinally polarized
gluons do not cancel out in intermediate matrix elements, thus implying that these
unphysical states can be obtained with a non-zero probability. Both these problems
can be simultaneously addressed through the Faddeev-Popov method [11]. This method
consists of plugging in the path integral for the gluon propagator a delta function of the
form δ(G(A)), where G(A) is the gauge condition, to restrict the integration domain
to only physically distinct field configurations. The outcome is the appearance of an
additional term in the action which, in the Feynman gauge, is of the form

Lg.f. = −
1

2ξ
(∂µAa

µ) (2.11)

and where ξ is a continuous parameter. In principle, there are many possible choices of
gauges one can make, but from now on we will always work in the Feynman gauge as it
has the advantage of preserving Lorentz symmetry. If we then include eq.(2.11) into the
Lagrangian eq.(2.10), we get that the inverse gluon propagator is a non-singular matrix,
which can therefore be inverted thus yielding to

k
a,µ b, ν = −iδab

k2 + iε(gµν − (1 − ξ)
kµkν

k2
) . (2.12)

In practical calculations, the gauge parameter ξ is always set equal to a finite constant,
which we choose to be ξ = 1 (the Feynman-’t Hooft gauge). If we were dealing with
Abelian gauge theories, this would be the end of the story. In the nonabelian case

1QCD also displays an additional number of flavor symmetries with symmetry group SUL(Nf) ×

SUR(Nf) × UB(1) × UA(1), but since these are not relevant for studying the properties of quarks and
gluons, they won’t be taken into account.
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however, the determinant of the Jacobian factor which accompanies the delta function of
the Faddeev-Popov method depends on the gluon field, and therefore cannot be brought
out of the path integral. A way out, is to express this determinant as a functional integral
over anticommuting Grassmann fields, and this comes at the expense of supplementing
the lagrangian with the term

Lgh = −η̄a(∂2δac + g∂µfabcAb
µ)ηc . (2.13)

Ghost η and anti-ghost η̄ fields are fermionic fields in the adjoint representation of the
gauge group. Hence, they cannot be associated with physical propagating particles, but
they couple with the gauge fields. It can be shown that the contribution of diagrams
containing ghost fields exactly compensates, to all orders in perturbation theory, with the
one of diagrams involving unphysical polarized gluons, so that only transversely polarized
gluons have to correctly be considered in computing S-matrix elements for scattering
amplitudes.

The proof of this statement makes use of the Slavnov-Taylor [12, 13] identities, i.e.
non-abelian generalization of the Ward-Takashi identities for QED, which in turn follow
from a residual global symmetry displayed by the lagrangian

LQCD = LYM + Lgh + Lg.f., (2.14)

the BRST symmetry [14, 15]. This (super-)symmetry is furthermore crucial for estab-
lishing the renormalizability of non-abelian gauge theories, as it can be shown that the
N -loops effective action has the same form as the tree-level action with renormalized
parameters. Thus, in QCD, all the UV-divergences arising from loop diagrams can be
absorbed in the bare parameters at the level of the lagrangian by a finite number of
counterterms, while sub-divergences of many-loops graphs are canceled order by order in
powers of the renormalized coupling.

The freedom we have in incorporating in the counterterms any finite part coming
from divergent loop integrals is what determines the renormalization scheme. In this
thesis, we adopt the minimal subtraction (MS) scheme [16], in which the bare strong
coupling is related to the renormalized coupling by

g2s(ε)
4π

= µ2εαs(µ)Zαs(µ, ε) . (2.15)

Here, the symbol µ denotes the renormalization scale and it is introduced by the regulator,
which we take here as dimensional regularization [17] in d = 4 − 2ε dimensions, to adjust
the mass dimension of the action. The counterterm Zαs is instead defined as

Zαs(µ, ε) =
eεγE

(4π)ε [1 +
αs(µ)
4π
( − β0

ε
) +O(α2

s)] . (2.16)

The coefficient involving the Eulero-Macheroni constant γE can be defined in several ways
within the MS scheme, which are all equivalent in the limit ε→ 0; here we adopt the same
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Figure 2.2: Dependence of the strong running coupling αs(µ) on the energy scale in GeV.
Data from [19]

convention as in [18]. Unlike the renormalized coupling, which is a measurable parameter
characterizing the strength of the interaction, the bare coupling is not a physical quantity
and therefore it does not depend on the energy scale. Accordingly, the derivative of
eq.(2.15) with respect to µ must vanish, thus determining

β(µ, ε) = µdαs(µ)
dµ

= −2εαs(µ) − µ
d

dµ
lnZαs(µ, ε)

= −2εαs(µ) − 2αs(µ)
∞
∑
n=0

βn(
αs(µ)
4π
)
n+1

(2.17)

This equation is the QCD beta function [20, 21] and its solution determines the explicit
dependence of the running coupling αs on the energy scale µ. If we set ε = 0, that is in
four spacetime dimensions, the beta function corresponds to an expansion in powers of
the coupling constant, whose coefficients βn can be calculated from a set of elementary
Green’s functions, at present known up to five-loops [22, 23, 24]. Truncating the series
at n = 1, we get the one-loop beta function

β1−loop(µ) = µdαs(µ)
dµ

= −2β0
αs(µ)2
4π

, (2.18)

where the one-loop coefficient β0 is given by

β0 =
11

3
CA −

4

3
TF nf , (2.19)

and it is positive (for nf < 17). Accordingly, the QCD beta function is negative, which
means that the strength of the strong coupling αs decreases as the energy scale µ increases.
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This behavior, which persists also at higher orders, is characteristic of non-abelian gauge
theories and is due to the fact that the contribution to the vacuum polarization from
gauge boson self-interactions, which tends to make the coupling weaker at high energies,
dominates over the contributions from fermions and scalars, which tend to screen the
coupling. Indeed, the solution of eq.(2.18),

αs(µ) =
αs(µ0)

1 + αs(µ0) β0

2π ln(µ/µ0)
(2.20)

displays a UV fixed point at zero coupling, where µ0 is some initial reference energy scale,
conventionally taken as the Z boson mass, at which αs(MZ) ≃ 0.1181 [25]. Theories
whose coupling becomes weaker at high energies are called asymptotically free [26, 27]
and in the case of QCD this implies that, at sufficiently high energy scales, quarks and
gluons behave as free, non interacting particles. On the other hand, as the energy scale
decreases, the coupling constant becomes so large that it cannot be used as an expansion
parameter anymore. The scale at which the coupling becomes strong is usually taken as
the scale at which the coupling becomes infinite, that is

Λ1−loop
QCD = µ0 exp[ − 2π

αs(µ0)β0
] ≈ 200 MeV . (2.21)

Perturbation theory is thus valid only at physical scales Q ∼ µ ≲ 1GeV, below which
quarks and gluons are bounded together into color-singlet states, mesons (quark-antiquark
pair) and baryons (three-quarks bound state), collectively referred to as hadrons. The
fact that hadrons are color neutral is a phenomenon called (color) confinement [28] and
indeed prevents colored particles, such colored hadrons, quarks and gluons, from being
realized as physical observed states. Hence, in QCD, the asymptotic degrees of freedom
are different from the degrees of freedom that initiate the scattering process. Because
of this dichotomy, the description of the long-distance behavior of the theory requires
particular care, as we will see in the next section.

2.1.3 Infrared Divergences

So far, we have only talked about UV divergences, which arise in loop diagrams and are
induced by unconstrained momenta picking arbitrarily high values. QFTs of massless
particles however also display another kind of divergences, namely the ones characterizing
the long-distance behavior of the theory. These infrared divergences can appear both
in loop diagrams and phase space integrals and are caused by external states being
degenerate. As these degeneracies cannot be treated in perturbation theory, we cannot
simply reabsorb these singularities at the level of the lagrangian, as previously done for
their high-energy counterparts, but we have to come up with a different strategy. In
general, the solution involves summing over a sufficiently large set of states, but how this
sum is performed crucially depends on whether we are dealing with a process involving
initial state or final state radiation. In this section we will focus on the first situation
and see, applying it to the process e+e− → hadrons, how and to which extent it leads to
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IR finite quantities. A discussion on the second case will instead be carried out in the
next section.

The electron-positron annihilation and subsequent decay into a quark-antiquark pair
can be mediated by any charge and color-neutral vector boson, i.e. either by a virtual
photon γ∗ or a Z boson. Assuming the center of mass energy of the process to be much
lower than the production of the Z boson, we thus only consider

e+e− Ð→ γ∗ Ð→ qq̄ (2.22)

where, long after the collision, the qq̄ pair then hadronize into singlet-coloured particles.
At leading order in the electromagnetic coupling and in the center of mass frame of the
virtual photon, the cross-section can be computed using

σ = 1

2E2
cm
∫ ∑

c,s,p

∣M∣2 dΦ (2.23)

with E2
cm the center of mass energy, dΦ the final state phase space, and where the square

matrix-element for the production and decay of the intermediate vector boson is averaged
over spin, color, and polarization indices. Notice that the cross-section of eq.(2.23) is an
example of inclusive observable, namely it is obtained by summing over every possible
final state. At leading order in the strong coupling, and leaving the sum over quark
species implicit for simplicity, the cross-section is equal to

σ0 =
Nc(e2Q2

q)
4πE2

cm

(4πµ
2

E2
cm

)
ε (1 − ε)2
(3 − 2ε)

Γ(1 − ε)
Γ(2 − 2ε) (2.24)

and is indeed finite in the limit ε→ 0. If we want to extract accurate predictions from
the process eq.(2.22) however, we have to go beyond tree level and compute higher terms
in the perturbative expansion. The NLO cross section receives contributions from all
the real emission diagrams, which feature real on-shell radiation, and the diagrams
including virtual corrections at first order in αs. Both these contributions are displayed
in Fig.2.3. Starting from the real emission case, if we insert the matrix element for the
emission of a gluon from either quark and the anti-quark in eq.(2.23), we get the following
cross-section

σR = σ0
αsCF

2π
(4πµ

2

E2
cm

)
ε
Γ(1 − ε)
Γ(1 − 2ε)[

2

ε2
+ 3

ε
+ 19

2
− 2π2

3
+O(ε)] . (2.25)

This expression is not finite in four spacetime dimensions as it contains divergences,
which show up as single and double poles in ε. To see where these singularities come
from, we notice that the amplitude for the one gluon bremsstrahlung contains the quark
and the antiquark propagator, which are proportional to

(p1 − k)−2 = Q2(1 − x1)−1

(p2 − k)−2 = Q2(1 − x2)−1 . (2.26)
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Figure 2.3: On the right, is the real emission diagram, where the gluon is emitted from
the anti-quark. There is another real graph, where the gluon is emitted from the quark,
which has not been reported. On the left, the virtual corrections feature the vertex
correction.

In the rhs of this expression we have introduced the variables xi = 2p0i /Q, with i = 1,2, p1,
p2 momenta of the quark and antiquark respectively, while we will label x3 = 2k0/Q, with
k momentum of the emitted gluon. These variables represent the fraction of the total
center of mass energy carried by the quarks and the gluon and satisfy x1 + x2 + x3 = 2.
The amplitude is singular in the limit x1 → 1 or x2 → 1, that is when all the energy
available is retained either from the quark or from the antiquark. This is equivalent to
stating that the propagators go on-shell, that is

(pi − k)−2 ∼ Eg(1 − cosθk,pi) = 0, i = 1,2 (2.27)

with θk angle between the quark/antiquark and the emitted gluon. Eq.(2.27) is satisfied
if Eg ∼ 0, in which case we talk about soft singularity or if cosθk,p1 = cosθk,p2 = 1,
which we call collinear singularities. The cross-section eq.(2.25) is therefore divergent
because the final state is degenerate, indeed a configuration with a qq̄ pair and a qq̄ pair
accompanied by (any amount of) soft and collinear gluons are indistinguishable from each
other. A more thorough characterization of IR singularities involves Landau equations
and pinch surfaces and can be found in [29, 30, 31].

However, we are not yet done, as we still have to calculate the contribution to the
cross-section arising from the virtual diagram. A direct calculation shows that this is
equal to

σV = σ0
αsCF

2π
(4πµ

2

E2
cm

)
ε
Γ(1 − ε)
Γ(1 − 2ε)[ −

2

ε2
− 3

ε
− 8 + 2π2

3
+O(ε)] . (2.28)

Remarkably, even though the real and virtual cross-sections are individually singular,
their divergent part cancels out when they are added together, thus making the NLO
cross-section infrared finite.

For observables like the inclusive cross section, this cancellation between collinear and
soft divergences can be proved to hold at all orders in perturbation theory. This property
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is guaranteed by the Kinoshita-Lee-Nauenberg (KLN) theorem [32, 33], which states that
any unitary theory is infrared finite if all the possible initial and finite states defined
in a finite energy interval are summed over. Nonetheless, there are also some major
observables for which this theorem does not apply. One of the most notable examples is
the cross-section of a scattering process involving hadrons in the initial state. The reason
why KLN theorem does not hold in this case is that, even though hadrons are the colliding
particles, only their components, that is quarks and gluons, effectively participate in the
interaction. At the same time, quarks and gluons do not exist as asymptotic states with
definite energy and momentum, and the way they form into hadrons is non-perturbative.
To compute such observables, we therefore rely on a property of the parton model known
as factorization.

2.1.4 Factorization for hadron-hadron collision

Factorization refers to a universal procedure that consists of separating (more specifically,
convoluting) long-distance non-perturbative effects from short-distance physics when
calculating hadronic cross-sections. So far, factorization theorems have only been proven
for a couple of inclusive processes, such as deep inelastic scattering, single particle
inclusive annihilation, and Drell-Yan processes, provided all kinematics invariants are
large and comparable with each other [34, 35].

We consider here a generic scattering process with two colliding hadrons A, B that
produce a final state X with invariant mass

Q2 = qµqµ , (2.29)

which sets the characteristic energy scale of the process, with qµ the momentum of the
intermediate vector boson. In the framework of the parton model [36], protons, like all
the other hadrons, are described as bound states of constituents called partons. In fact, a
parton can be either a quark or a gluon. In high energy scattering, where the momentum
transfer is large, asymptotic freedom tells us that the protons’ constituents behave as
free particles and, since they do not exchange momenta, each of them can be thought as
carrying a certain longitudinal2 fraction x of the total hadron momentum, with 0 < x < 1.
If the density of the partons inside the proton is not too high, we can beside consider
with a good approximation that only one parton from each proton participates in the
interaction, with the other ones just passing through. We label the momentum fractions
of the interacting partons a, b as

pµa = xaPµ
a pµb = xbP

µ
b . (2.30)

with Pa and Pb the hadrons A and B momenta respectively. On the other hand, in a
suitable reference frame, such as the center of mass frame, the hadrons are moving at a
relativistic speed, and therefore their length is contracted in the direction of the collision
and their internal interactions are time-dilatated. In this frame, the characteristic time

2We assume that the hadrons carry zero or negligible transverse momentum before the collision.
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Figure 2.4: Diagram representing the collision A(pa)+B(Pb), where the extracted parton
a, b interact to produce a final state X. Picture adapted from the reference [37].

scale of the annihilation process is much shorter than the time scale for the formation of
any partonic intermediate state. Also, the interactions between the remaining partons
occur too long after the annihilation to affect it. Because long-distance and short-distance
physics do not influence each other, we can express the hadronic cross-section in terms of
probabilities instead of amplitudes and write it as a series in powers of ΛQCD/Q whose
leading term is

dσAB→X = ∑
i,j
∫

1

xa

dξa∫
1

xb

dξb fi/A(ξa)fj/B(ξb) dσ̂ij→X(
xa
ξa
,
xb
ξb
) . (2.31)

This expression is known as the factorization formula and is valid in the approximation
that the hard scattering scale Q is much greater than the non-perturbative scale ΛQCD.
Here, the non-perturbative physics is encoded in the parton distribution functions (PDFs)
fi/H(ξ), corresponding to the probability density to find a parton i inside the hadron
H carrying a fraction between ξ and ξ + dξ of the total hadron momentum. Since these
distributions describe the internal structure of the hadron, they are universal, in the sense
that they only depend on the type of parton inside the hadron but not on the specific
scattering process and, being non-perturbative objects, they have to be determined from
experiments [38, 39] or from lattice QCD calculations [40]. The term dσ̂ab→X represents
instead the partonic cross section for the process (i + j →X), that is

dσ̂ij→X =
1

2s
⟨∣Mi+j→X ∣2⟩dΦ (2.32)

with dΦ Lorentz invariant phase space and ⟨∣Mi+j→X ∣2⟩ matrix element averaged over all
relevant internal and external indices, including spin and color. In particular, dσ̂ij→X is
calculable in perturbation theory and UV finite because divergences from loop diagrams
can be removed through the renormalization procedure. However, this is not true for
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Figure 2.5: Factorization in presence of radiative emissions. Picture adapted from the
one of reference [37].

IR divergences, and this cross section will indeed generally display uncancelled collinear
divergences.

To describe where these IR divergences originate from, we refer to Fig.2.5. There, the
two extracted parton a, b with momenta

pµa = ξaPµ
a pµb = ξbP

µ
b (2.33)

undergo a collinear splitting splitting, that is they emit a daughter partons i, j which
then interact and produce the final state X. Being ξa,b the total momentum fractions
of the partons within the hadron and xa,b the momentum fractions of the interacting
partons, we can define the variables

za =
qa
pa
= xa
ξa

zb =
qb
pb
= xb
ξb
, (2.34)

with za, zb ∈ [0,1] representing the total fraction of the parton momenta pa and pb that
participate in the interaction after the collinear emission. Because the splitting happens
at longer time scales than the hard scattering collision, we can write the partonic cross
section as a convolution in turn, i.e.

dσ̂ij→X = ∑
i,j
∫ dza∫ dzb Γik(za) dσ̂Hkl→X(za, zb) Γlj(zb) . (2.35)

In this formula, dσ̂Hij→X denotes the cross-section relative to the hard scattering process,
while Γij(z) are called transition functions, and describe the probability that the parent
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Figure 2.6: Leading order Altarelli-Parisi splitting functions. Picture taken from [41]

parton j emits the daughter parton i with a fraction z of its momentum. While the hard
scattering cross section is ultraviolet dominated (and therefore admits an expansion in
powers of αs) and infrared free, the transition functions are the objects containing the
IR divergences. Indeed, expanding these functions in powers of αs, one has that

Γij(z) = Γ(0)ij (z) + (
αs

4π
) Γ(1)ij (z) +O(α

2
s) , (2.36)

where n indicates the number of collinear splittings and whose coefficient, up to NLO in
the MS scheme, contains collinear divergences which manifest themselves as 1/ε poles,

Γ
(0)
ij (z) = δij δ(1 − z)

Γ
(1)
ij (z) = [ −

1

ε
− ln( µ

2

Q2
)] P (0)ij (z) . (2.37)

The functions Pij(z) in the NLO coefficient are the Altarelli-Parisi splitting functions (or
DGLAP kernels) and are computable in perturbation theory, with P (0)ij (z) indicating the
leading term in their power expansion. Since i, j = q, g, there are in total four possible
splitting functions, which are displayed in Fig. 2.6 and whose explicit expression depends
on the specific parent and daughter parton i, j. If we now expand dσ̂ and dσ̂H up to
first order in αs and use eq.(2.36), (2.37), the partonic cross section eq.(2.35) reads

dσ̂
(0)
ij→X + (

αs

4π
) dσ̂(1)ij→X = dσ̂

H,(0)
ij→X + (

αs

4π
){dσ̂H,(1)

ij→X + [ −
1

ε
− ln( µ

2

Q2
)]

× [∑
k
∫ dza P

(0)
ik (za) dσ̂

H,(0)
kj→X(za, zb)

+∑
l
∫ dzb dσ̂

H,(0)
il→X (za, zb) P

(0)
lj (za)]} (2.38)

up to corrections O(α2
s). Even though the partonic cross section is not finite, by

convoluting it with the parton distribution functions one can eventually obtain a finite
hadronic cross section by reabsorbing the 1/ε pole into the PDFs. These functions can
indeed be defined by hadron matrix elements of operators acting on hadronic states and
counting the number of partons carrying a fraction ξ of the hadron’s momentum [42].
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When treated in dimensional regularization, they exhibit both UV and IR divergences,
which cancel in dimensional regularization. The UV divergences can be absorbed into
the definition of the PDF, and therefore have to be treated via renormalization and
acquire a dependence on the unit mass µR. The dependence of the PDFs on the energy
scale µR is given by the famous DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)
equations [43, 44, 45], describing how the PDF evolve with changes in the energy scale
accounting for the emission and absorption of partons. The IR divergence instead, which
is not removed by renormalization, can be incorporated into the PDF by defining the
renormalized PDF,

f reni (ξ, µ) = fi(ξ) −
1

ε
(αs

4π
)∑

h
∫

1

0

dz

z
fi(

x

z
)P (0)ih (z) . (2.39)

In this way, and after the renormalization procedure, we obtain that the hadronic cross
section is indeed finite. Especially, since the PDFs depend on the specific parton but
not on the hadron, one can consider the hadronic cross section eq.(2.31) and write it
for colliding partons instead of for colliding hadrons. Expanding the hadronic cross
section in powers of αs, and matching all the terms of its expansion with their respective
convolution of renormalized PDFs and partonic cross section, the hadronic cross section
is found to be equal to

dσAB→X = ∑
i,j
∫

1

xa

dξa∫
1

xb

dξb f
ren
i/A (ξa, µ)f

ren
j/B (ξb, µ) dσ̂ij→X(

xa
ξa
,
xb
ξb
,Q2, µ) , (2.40)

with the partonic cross section given by

dσ̂ij→X(za, zb,Q2, µ) = dσ̂H,(0)
ij→X(za, zb,Q

2) + (αs

4π
)dσ̂H,(1)

ij→X(za, zb,Q
2)

+ (αs

4π
) ln( µ

2

Q2
) ∑

k
∫ dza P

(0)
ik (za) dσ̂

H,(0)
kj→X(za, zb)

+ (αs

4π
) ln( µ

2

Q2
) ∑

l
∫ dzb dσ̂

H,(0)
il→X (za, zb) P

(0)
lj (za)] . (2.41)

Hence, factorization exploits the separation of scales, the non-perturbative one encoded in
the parton distribution functions, and the hard scale encoded in the partonic cross-section,
to find a finite expression for the hadronic cross-section. Nonetheless, as clear from the
cross-section of eq.(2.41), the presence of radiative emissions implies the existence of
multiple energy scales. Indeed, only the hard scattering cross section σ̂Hij ∼ Q2, while
collinear and soft modes have an infrared origin, and therefore happen at scales << Q2.
The natural implementation of the description of physical processes involving multiple
energy scales is given by effective field theories, which are discussed in the next section.
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2.2 Factorization in the Soft Collinear Effective Theory

2.2.1 What is an EFT?

An effective field theory (EFT) is a quantum field theory that describes physics at some
energy scale Λl while systematically incorporating the effects of higher energy scales
∼ Λh. This separation of scales is achieved by an expansion in powers of Λl/Λh, which
is ensured to be small provided the low energy Λl and the high energy scale Λh satisfy
Λl << Λh. In this way, physical quantities can be calculated up to a finite order in the
power expansion, which can be chosen to be as small as desired, thus enabling one to
adjust the accuracy of the theoretical prediction. Generally, the low energy scale is taken
to be the one of a typical momentum scale p, while the hard scale corresponds to the
hard scattering scale Q.

Being a QFT in all regards, an EFT admits its lagrangian, as well as renormalization
and regularization schemes [46]. However, unlike normal QFTs, the effective lagrangian
can include operators of dimension greater than d, which are however suppressed by
powers of the high energy scale Q, that is

LEFT = LD≤d +
Ld+1
Q
+ Ld+2
Q2
+ ... . (2.42)

where every term of this sum can be written as

LD = ∑
i

ciOi
D . (2.43)

The dimension D of the operators Oi depends on the power counting parameter of the
EFT, while ci are the coefficients of the effective lagrangian, which are determined by
the underlying high energy theory and incapsulate the effects of high-energy degrees of
freedom. According to the method used in the construction of the EFT, these coefficients
can be either determined experimentally or derived analytically. In particular, we
distinguish between:

● top-down EFT: A top-down EFT is the low energy limit of a known high-energy
theory. Notable examples are the Fermi Theory of Weak Interactions [47], which
is a low energy theory of the SM, where the masses of the W , Z boson have been
integrated out, and the HQET (Heavy Quark Effective Theory) [48, 49, 50], derived
from QCD. Because the full theory is known, the coefficients ci are determined by
comparing a set of Green functions in the EFT and the full theory, known as the
matching procedure.

● bottom-up EFT: In the bottom-up approach, the high energy theory is not known.
Therefore, an effective lagrangian is constructed by including higher-dimensional
operators consistent with the symmetries of the theory and the coefficients ci are
treated as free parameters that are constrained by experimental data. Examples of
this approach are the chiral perturbation theory (χPT) [51, 52] used to describe
low-energy QCD interactions among pions, and the Standard Model Effective Field
Theory (SMEFT) [53].
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In this section, we review SCET [54, 55, 56, 57, 58, 59], which is a top-down effective
theory describing QCD in the infrared. Unlike in the HQEF, where high momentum
modes of heavy quarks are integrated out, in SCET we do not integrate out entire
degrees of freedom, but only off-shell modes. In this way, this effective theory can
describe multiple momentum regions, such as soft, ultrasoft, and various collinear modes.
For this reason, it can be used to describe a wide range of physical processes, such as
hard scattering inclusive processes, jet production, and beta decays, and has multiple
applications, such as the resummation of Sudakov logarithms and factorization theorems.
In this thesis, SCET will be used to formulate soft factorization theorems for pp collisions.
Our discussion follows mainly reference [60] with some integrations from references [61]
and [18]. The power expansion will be performed in position space, as done in ref.[60],
unlike in the more usual label momentum formalism.

2.2.2 SCET degrees of freedom

SCET describes the dynamics and interactions of soft and collinear degrees of freedom in
the presence of a hard interaction. Particles involved in these kinds of processes carry
energies much larger than their masses and therefore are better described in terms of
lightcone coordinates. A basis for these coordinates is constructed by picking a lightlike
vector nµ = (1, n⃗) which describes the direction of motion of one of the colliding particles,
and another auxiliary vector n̄ = (1,−n⃗), satisfying n2 = n̄2 = 0, n ⋅ n̄ = 2. A common
choice for this basis is

nµ = (1,0,0,1) n̄µ = (1,0,0,−1) . (2.44)

In this way, every four vector p can be decomposed into a collinear component, pro-
portional to nµ, an anti-collinear one, proportional to n̄µ and a transverse component
orthogonal to both as

pµ = (n̄ ⋅ p)n
µ

2
+ (n ⋅ p) n̄

µ

2
+ pµ⊥ . (2.45)

with p⃗⊥ = (0, p1, p2,0). In general, we will represent four momenta in terms of their
components by writing pµ = (p+, p−, p⃗⊥), where p+ = (n̄ ⋅ p) and p− = (n ⋅ p). In this
notation, and using the properties of the vectors eq.(2.44), we can easily derive the
following product rules

p ⋅ q = 1

2
(p−q+ + p+q−) − p⃗⊥ ⋅ q⃗⊥ p2 = p+p− − p⃗2⊥ (2.46)

using the standard euclidean metric, while in Minkowski metric p2⊥ = −p⃗2⊥. In addition, we
can also decompose the metric and the gamma matrices in lightcone coordinates, which
are equal to

gµν = n
µn̄ν

2
+ n̄

µnν

2
+ gµν⊥ γµ = /̄nn

µ

2
+ /nn̄

µ

2
+ γµ⊥ . (2.47)
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Lightcone coordinates can now be used for describing the infrared degrees of freedom
of SCET, which include collinear and soft particles. For example, considering the collision
between two protons of momenta Pa and Pb in the center of mass frame, these can
be parametrized as Pµ

a = (0, P −a ,0,0) and Pµ
b = (P

+
b ,0,0,0), assuming the proton of

momentum Pa moves in the direction nµ and the proton of momenta Pb in direction n̄µ.
Hence, since for n-collinear particles the dominant component is the minus component,
we have that p− ≫ ∣p⃗⊥∣ ≫ p+ satisfying p+p− ∼ p2⊥, so that n-collinear modes have scaling

pn ∼ (λ2,1, λ)Q (2.48)

in terms of the power counting parameter λ≪ 1. The same argument holds the other
way around for anti-collinear modes, which satisfy p+ ≫ ∣p⃗⊥∣ ≫ p− and therefore

pn̄ ∼ (1, λ2, λ)Q . (2.49)

The precise definition of the power counting parameter λ is not unique and depends on
the process under consideration. For examples, assuming pn and pn̄ are the modes inside
the colliding protons, we have λ = ΛQCD/Q. On the other hand, unlike collinear modes,
soft modes have no preferential direction and therefore scale homogeneously in λ. We
call soft modes the ones with scaling

ps ∼ (λ,λ, λ)Q . (2.50)

Note that soft modes have the same virtuality as collinear modes, that is p2s ∼ p2n ∼ λ2Q2

and are both consistent with the fact that SCET degrees of freedom describe off-shell
fluctuations with p2 ≪ Q2. However, since the plus and minus components of soft
momenta are larger than the corresponding n and n̄ collinear ones, interactions between
soft and collinear modes must be integrated out and incorporated into the matching
coefficient. In addition, the condition that SCET modes satisfy p2 ≲ Q2 allows the
presence of ultrasoft modes

pus ∼ (λ2, λ2, λ2)Q (2.51)

and, unlike soft modes, their interactions with collinear modes are indeed included in the
effective lagrangian.

According to the specific process and observables under consideration, the relevant
modes of the effective theory can be either the collinear and ultrasoft ones or the collinear
and soft ones. These effective theories are known respectively as SCETI and SCETII,
whose relevant modes are displayed in Fig. 2.7. In particular, because the perpendicular
component of soft and collinear modes has the same virtuality (while for ultrasoft modes
this component is always power suppressed) SCETII is used for studying processes
involving transverse momentum dependent observables.

2.2.3 SCET Lagrangian

Because in SCET the hard interaction is disentangled from the infrared dynamics, the
general form of the SCET lagrangian is given by

LSCET = Lhard + Ldyn . (2.52)
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Figure 2.7: Modes of SCETI (right) and SCETII (left) in the (p+, p−) plane, with
p2 ∼ p2⊥ ∼ p+p− indicating their virtuality. Note that in SCETII all the modes lie in the
same hyperbola. Red, green, and grey dots correspond to (ultra)soft, collinear, and hard
modes respectively. Image taken from ref. [37].

Here, Lhard is composed of hard scattering operators encoding short-distance physics
that arise from matching QCD onto SCET, while Ldyn described the dynamics of soft
and collinear degrees of freedom. According to the discussion carried out in the next
section, the dynamical Lagrangian describes the interaction of soft and ultrasoft modes
among themselves and of collinear and ultrasoft modes. At leading order in the power
counting parameter λ, we then have that

L(0)dyn = ∑
j=c,c̄
L(0)j + L

(0)
us + L(0)s , (2.53)

where c, c̄ label the individual collinear sectors.
The degrees of freedom that enter the Lagrangian, are the quarks and gluon fields.

However, unlike in QCD, in SCET quarks and gluons are represented by multiple fields,
whose power counting can be determined from the ones of the relevant SCET modes. In
particular, following the notation of [60], we have

collinear quark ∶ ξn ∼ λ
ultrasoft quark ∶ ψs ∼ λ3

collinear gluon ∶ Ac = (n ⋅Ac, n̄ ⋅Ac,Ac,⊥) ∼ (λ2,1, λ)
ultrasoft gluon ∶ As = (n ⋅As, n̄ ⋅As,As,⊥) ∼ (λ2, λ2, λ2) . (2.54)

Note that the collinear and ultrasoft gluon fields have the same scaling as the collinear
and soft modes of eq.(2.48), (2.51), which is necessary for constructing the covariant



2.2. FACTORIZATION IN THE SOFT COLLINEAR EFFECTIVE THEORY 23

derivative. In particular, since the theory comprises both collinear and soft fields, we
introduce the following covariant derivatives

iDs
µ = i∂µ + gAs

µ iDc
µ = i∂µ + gAc

µ (2.55)

where four derivative ∂µ and the gluon fields have the same scaling. In turn, these
covariant derivatives can be used for constructing the field strengths

F s
µν = ig[iDs

µ, iD
s
ν] F c

µν = ig[iDc
µ, iD

c
ν] . (2.56)

For our purposes, it is sufficient to look at the collinear part L(0)ni only, where for
simplicity, we restrict our discussion to a single collinear sector ni = n. This Lagrangian
is then given by

Lc = Lcξ + Lcg (2.57)

where the first denotes the dynamics and interactions of collinear quarks and the second
the ones for collinear gluons. For the derivation of factorization theorems in chapter 5,
Lnξ suffices. In order to determine the form of this lagrangian, we have to write down all
the possible LP operators consistent with the symmetry of the theory. For SCET, these
are SU(Nc) gauge invariance and reparametrization invariance, where this last is related
to the fact that the choice of the directions n and n̄ explicitly breaks Lorentz invariance.
These symmetries are treated in e.g. chapter 4.4 of reference [60], and we won’t discuss
them further here. Instead, we will report the form of the leading power lagrangian for
collinear ξ fields, that is

L(0)cξ = ξ̄
/̄n
2
[in ⋅D + i /Dc,⊥

1

in̄ ⋅Dc
i /Dc,⊥]ξ . (2.58)

Here, the first term denotes the interaction between collinear and soft particles and
the second of collinear particles with other collinear particles. The covariant derivative
appearing in this expression is given by

in ⋅D = in ⋅ ∂ + gn ⋅Ac(x) + gn ⋅As(x−), (2.59)

where As(x−) is the leading power term in the power expansion of the ultrasoft gluon
field around the point xµ− = (x ⋅ n̄)nµ/2.

One of the main characteristics of SCET is the presence of Wilson lines. Wilson lines
are path-ordered exponential of gauge fields over a continuous path that transform as

W (x, y) Ð→ U(x)W (x, y)U †(y) (2.60)

with U ∈ SU(N) and x, y point in the path. In SCET, we generally deal with Wilson
lines extending to infinity, that is x = −∞ or y = +∞. In particular, one has

Wc(x) = P [ig∫
0

−∞
ds n̄ ⋅Ac(x + sn̄)]

Sc(x) = P [ig∫
0

−∞
ds n̄ ⋅As(x + sn̄)] (2.61)
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which denote respectively the collinear and soft Wilson lines, with P path-ordering
symbol. In the effective theory, these exponentials of gauge fields serve a double purpose.
First, they can be used for constructing non-local gauge invariant building blocks, which
can then be employed for building a gauge invariant lagrangian. For example, one can
define the following gauge invariant combination involving collinear and anti-collinear
fields,

χc(x) ≡W †
c (x)ξc(x) χc̄(x) ≡W †

c̄ (x)ξc̄(x) . (2.62)

In addition, Wilson lines can be used to factorize the contribution of ultrasoft gluons
from the leading power collinear lagrangian, which is known as decoupling transformation.
To show how these transformations work, consider the Lagrangian

Lc+s = ξ̄
/̄n
2
in ⋅Dξ = ξ̄ /̄n

2
(in ⋅ ∂ + gn ⋅Ac(x) + gn ⋅As(x−))ξ (2.63)

describing the interaction between collinear quarks and ultrasoft gluons, and apply the
following field redefinitions

ξ(x) → Sn(x−)ξ(0)(x)
Aµ

c (x) → Sn(x−)A(0),µc (x)S†
n(x−) . (2.64)

By using that the covariant derivative along a Wilson line vanishes, one can prove that
this substitution has the effect of decoupling the ultrasoft gluons from the leading power
lagrangian, as

Lc+s → ξ̄(0)
/̄n
2
n ⋅D(0)c ξ(0)(x) = ξ̄(0) /̄n

2
(in ⋅ ∂ + gn ⋅A(0)c (x))ξ(0)(x), (2.65)

where indeed the ultrasoft gluon field As(x−) no longer appear. However, it is important
to remark that this only holds at leading power, and the subleading power terms of
the collinear Lagrangian still feature interactions between collinear quarks and ultrasoft
gluons. Eventually, one can generalize the form of the decoupling transformations eq.(2.64)
to the gauge-invariant collinear fields of eq.(2.62), case in which they have the following
form

χc(x) → Sn(x−)χ(0)c (x) χc̄(x) → Sn̄(x+)χ(0)c̄ (x) . (2.66)



Chapter 3

Drell-Yan angular distributions

In this chapter, we introduce the neutral current Drell-Yan process and derive the helicity
decomposition of the amplitude that leads us to the definition of helicity cross-section
and Drell-Yan angular coefficients. This decomposition at the amplitude level enables us
to map the dileptons’ angular coefficients into the fully differential cross section in terms
of the Collins Soper (CS) frame angles. For this reason, it represents the main and most
crucial ingredient in the derivation of our results in the full QCD framework.

3.1 Overwiew

The Drell-Yan (DY) process was introduced in the early ’70s by S. Drell and T.M.Yan
[4] and refers to the massive dilepton production from unpolarized proton-proton (pp)
scattering, which produce an intermediate vector boson via qq̄ annihilation. In this thesis,
we are interested in the kinematic region where the intermediate vector boson that carries
the interaction is produced at small or moderate transverse momentum qT << Q, with Q
hard scale. This choice is motivated by two main reasons. The first is that the majority of
the events contributing to the total cross section occur when the vector boson is produced
at small qT . The second is that, assuming the colliding protons carry negligible transverse
momentum, the vector boson acquires a small transverse component after additional
particles, such as soft gluons, are radiated from the initial state partons. Therefore, the
study of low-qT vector boson production is particularly relevant for understanding the
dynamics of single and multiparticle soft radiation from the colling quark-antiquark pair.
At the same time, the angular distribution of the final state lepton is highly sensitive
to initial state radiation. Indeed, at the Born level, this distribution is symmetric with
respect to the polar angle ϑ of the vector boson rest frame, and the differential cross
section is proportional to dσ/dΩ ∝ 1 + cos2ϑ, with Ω solid angle. We explicitly derive
this distribution in section 3.3.3, when treating the Drell-Yan process at the tree level.
On the other hand, if qT ≠ 0, the lab frame no longer corresponds to the frame where
the vector boson is at rest, which leads us to introduce the Collins-Soper (CS) frame in
section 3.2.1. In this frame, the dilepton angular distribution also acquires a dependence
on the azimuthal angle ϕ, and the differential cross section can be written as a linear

25
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combination of spherical harmonics in the CS angles ϑ, ϕ, whose coefficients Ai (angular
coefficients) encodes all the dependence of the cross-section on the initial state QCD
dynamics, as shown in section 3.2.3. The connection between angular coefficients and soft
radiation is made explicit by showing that these angular coefficients are in one-to-one
correspondence to the set of production cross-sections for vector bosons of definite helicity.
These helicity cross sections can be derived by carrying out a full decomposition of the
leptonic and hadron tensors into structure functions of definite helicity, as we show in
section 3.2.2. The decomposition into Lorentz-scalar structure functions already appears
in the literature for the study of the angular dependence of dilepton production [6, 62, 63].
Here, we closely follow the discussion of ref.[18] and ref.[64], of which the material of
section 3.2 is a short review.

3.2 Factorization and CS decomposition
We now consider the production of the intermediate vector boson from the unpolarized
pp scattering and its subsequent decay into a lepton pair. Since the decomposition we
are going to derive holds as well for the more general case of a set of colorless particles,
we will refer to the final state simply as L. The intermediate vector boson V created in
the collision is created by the annihilation of a quark and antiquark pair extracted from
the colliding protons and can be either an (off-shell) virtual photon γ∗ or an electroweak
boson Z, W ±. In this thesis, we only consider the neutral current Drell-Yan process

qq Ð→ γ∗/ZX Ð→ LX (3.1)

where V = γ∗/Z and with X denoting a generic undetected final state radiation. At
leading order in the EW interaction, the matrix element factorizes into

M(pp→ γ∗/ZX → LX) =Mµ
V→L ⟨X ∣JV,µ∣pp⟩, (3.2)

where Mµ
V→L is the amplitude for the propagation and decay of the vector boson V ,

while Jµ
V denotes the electroweak current that couples with the qq̄ pair. Including the

charges and electroweak couplings, the current for V = γ/Z has the following expression

Jµ
γ = ∣e∣∑

f

Qf q̄f γ
µ qf Jµ

Z = −∣e∣∑
f

q̄f γ
µ(vf − afγ5)qf (3.3)

with the sum over f extending to all the quarks flavor and where vf and af denote the
vector and axial coupling. Integrating the amplitude over phase and working at fixed
values of the vector boson momentum, the hadronic cross section in the lab frame, which
we take here as the center of mass frame, can be written as

dσ

d4q
= 1

2E2
cm
∑
V V ′

Lµν,V V ′(q)Wµν
V V ′(q, pa, pb) (3.4)

with E2
cm = (Pa + Pb)2. To obtain testable theoretical prediction, we will frequently

parametrize the cross-section in terms of the lab frame quantities, such as the invariant
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mass of the dilepton final state Q2 = q2 > 0, the rapidity Y and the vector boson
transverse momentum q⃗T , which are in one-to-one correspondence with the Lorentz
invariants constructed out of the momenta q, Pa and Pb.

Looking back at eq.(3.4), the tensor Wµν
V V ′ is the hadronic tensor, which encodes the

initial state QCD dynamics of the qq̄ annihilation and is given by

Wµν
V V ′(q,Pa, Pb) = ⨋

X

⟨pp∣Jµ†
V ∣X⟩ ⟨X ∣J

ν
V ′ ∣pp⟩ δ4(Pa + Pb − q − pX) , (3.5)

considering the averaged over spins implicit. Here, the integral sum runs over all possible
hadronic final states X of total four-momentum pX integrated over their respective phase
space. After this integration, the hadronic tensor indeed depends only on the vector
boson four-momentum q and the protons momenta Pa and Pb parametrized by

Pµ
a =

Ecm

2
(1,0,0,1) Pµ

b Pµ
b =

Ecm

2
(1,0,0,−1), (3.6)

where the momentum fractions ξa and ξb have been introduced in section 2.1.4.
In the fully differential cross-section, the hadronic tensor appears together with the

leptonic tensor Lµν
V V ′(q), which describes the propagation of the vector boson and its

decay into the final state L. This tensor is given by

LV V ′(q) = ∫ dΦL(q)Lµν
V V ′(ΦL)

Lµν
V V ′(ΦL) =Mµ∗

V→LMν
V→L (3.7)

and is obtained from the full leptonic tensor Lµν
V V ′(ΦL) after integration over the dilepton

phase space. Since the final state consists of two particles, we can parametrize this phase
space as

dΦL(q) = [ ∏
i=1,2

d4pi
(2π)3 θ(p

0
i ) δ(p2i )] (2π)4 δ4(q − ∑

i=1,2
pi) (3.8)

which depends on the four momentum of the vector boson q so that, after the integration,
Lµν indeed depends on q. Note in particular that we consider the leptons to be massless,
a convention that we will adopt throughout the rest of the thesis.

A clear separation of the hadronic and leptonic contributions to the cross-section can
be obtained by carrying out a decomposition of these tensors into structure functions.
In particular, as we will see in section 3.2.3, the contribution of the leptonic tensor to
the helicity differential cross sections merely corresponds to a constant prefactor, and
therefore this decomposition will be carried out for the hadronic tensor only. Moreover,
this choice makes the application of factorization theorems more effective, as done in
chapter 5. Therefore, our goal now is to decompose Wµν

V V (q,Pa, Pb) into a set of Lorentz
scalar structure functions by projecting it into a frame constructed out of the momenta
q, Pa, Pb and their invariants. It directly follows that, since the hadronic tensor also
depends on this set of momenta, any Lorentz scalar structure function constructed in
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this way must depend on the Lorentz invariants formed out of q, Pa, Pb. Out of these six
invariants, three of them contain non-trivial kinematical information, that is

q2 = Q2

saq = 2q ⋅ pa = EcmmT e
−Y

sbq = 2q ⋅ pb = EcmmT e
Y (3.9)

which are in one-to-one correspondence with the lab-frame kinematic variables Q2, Y ,
q2T . The other three instead encode the beam parameters

P 2
a = P 2

b = 0 sab = 2pa ⋅ pb, (3.10)

where we consider the protons (and consequently also the quark and antiquark) to be
massless.

In addition, since the current Jµ
γ is conserved in QCD, that is ∂µJµ

γ = 0, gauge
invariance implies that

qµW
µν
γγ = qνWµν

γγ = 0 . (3.11)

The same however does not straightforwardly hold for Jµ
Z as the axial-vector current is

not conserved in QCD. Consequently, the hadronic tensor can be generally written as a
sum of a conserved part, satisfying eq.(3.11), and a non-conserved part. proportional to
qµ or qν , that is

Wµν =Wµν
cons. + (terms∝ qµ or qν)

qµW
µν
cons. = qµWµν

cons. = 0, (3.12)

where Wcons. is obtained from squaring the conserved part of the current Jµ
Z . The same

can be likewise adapted to the leptonic tensor, which can be decomposed into a conserved
part satisfying qµLµν

cons. = qµLµν
cons. = 0 and a non-conserved part, which only survives when

is contracted with the non-conserved part of the hadronic tensor. However, as a result of
considering leptons masses to vanish m` = 0, the leptonic current is always conserved, so
that the non-conserved part of the hadronic tensor can be consistently ignored as it does
not contribute to physical observables. This fact has the important consequence that we
only need to introduce three (instead of four) polarization vectors to describe the vector
boson polarization state.

3.2.1 Collins-Soper frame

In this section, we construct the reference frame onto which project the hadronic tensor.
We start by picking one time-like vector and three-spacelike vectors, which we label tµ
and xµ, yµ, zµ respectively. We then align the timelike vector with the direction of the
vector boson propagation by setting it equal to

tµ = qµ√
q2
. (3.13)
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This choice ensures that the timelike vector is properly normalized and provides a natural
covariant basis for analyzing the vector boson decay products. The remaining vectors are
instead chosen to be linear combinations of the momenta Pa, Pb, and q. Starting from
the z axis, this is chosen to lie in the direction of the colliding proton, that is we write it
as a linear combination

zµ = λaPa + λbPb, (3.14)

with λa and λb functions of the kinematic invariants. Requiring the vector to be spacelike
z2 = −1 and orthogonal to the timelike vector z ⋅ t = 0, we obtain that

zµ =
sbq P

µ
a − saq Pµ

b√
sabsaqsbq

(3.15)

up to an overall conventional minus sign. Indeed, zµ is not symmetric under Pa ↔ Pb, and
it changes sign when the quarks momenta are exchanged. To complete the orthonormal
basis, we only need to determine xµ and yµ. We choose xµ to be invariant under the
exchange Pa ↔ Pb, ensuring that it remains aligned with a specific direction in the
transverse plane that does not distinguish between the two protons. Thus, we can write
it as a linear combination,

xµ = cx√
q2
(qµ − κa Pµ

a − κb P
µ
b ) (3.16)

whose coefficients cx, κa and κb can be fixed by imposing the constraints x2 = −1 and
t ⋅ x = z ⋅ x = 0, which leaves us with

xµ =
saqsbqq

µ − sbqq2Pµ
a − sbqq2Pµ

b

[saqsbqq2(saqsbq − sabq2)]1/2
. (3.17)

At this point, the remaining spacelike vector yµ can be simply picked to form a right-
handed coordinate system with tµ, xµ and zµ, that is we set it equal to

yµ = εµνρσtνxρzσ . (3.18)

Here, ε refers to the totally antisymmetric Levi-Civita symbol (for which we adopt the
convention ε0123 = +1), so that it straightforwardly holds that yµ satisfy t ⋅ y = x ⋅ y = z ⋅ y
and that y2 = −1. Thus, we have just constructed a reference frame of normalized and
mutually orthogonal unit vectors, which define a frame where they have components
tµ = (1,0,0,0), xµ = (0,1,0,0), yµ = (0,0,1,0) and zµ = (0,0,0,1). In particular, since tµ
is given by eq.(3.13), this frame corresponds to the reference frame where the vector boson
is at rest, that is qµ = (

√
q2,0,0,0). The proof that {tµ, xµ, yµ, zµ} actually corresponds

to the Collins Soper (CS) frame [5] can be found in [7], where the derivation of the CS
frame has been carried out for the general case of colliding hadrons h(Pa), h(Pb) with
potentially distinct masses.
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Figure 3.1: In the lab frame (right) the hadron plane is defined by the (x, z) plane where
the scattering p(Pa)p(Pb) → V (q)X(pX) takes place. The z axis corresponds to the
direction of the protons collision and V has non-vanishing three momentum q⃗. In the CS
frame (left) instead, the vector boson is at rest, and the protons’ directions form angles
γa, γb with respect to the zµ axis and equal in the massless limit mp = 0. The lepton
plane is the plane where spanned by the momenta of the leptons p1 and p2, which are
emitted back to back. The angles ϑ and ϕ correspond to the CS angles. Picture taken
from ref.[7].

3.2.2 Hadronic tensor decomposition

We now construct polarization vectors from the orthonormal basis of the Collins-Soper
frame, which ensures that they are covariant. We define these polarization vectors as

εµ± =
1√
2
(xµ ∓ iyµ), εµ0 = z

µ, (3.19)

which corresponds to positive/negative helicity and longitudinal polarization with respect
to the zµ axis. Using these vectors, we decompose the hadronic tensor into its components
corresponding to different helicity states,

Wλλ′(q, sab, sbq) ≡ εµλε
∗
λ′

ν
Wµν(q,Pa, Pb), λ = {+,−,0} . (3.20)

Because Wµν is hermitian, that is Wµν∗ =W νµ as it follows from its definition eq.(3.5),
its symmetric components are purely real and its antisymmetric purely imaginary, so
that Wλλ′(q, sab, sbq) corresponds to nine real-valued Lorentz scalar structure functions.
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Here, following ref. [7], we use the following combinations:

W−1 =W++ +W−− = (xµxν + yµyν)Wµν

W0 = 2W00 = 2zµzνWµν

W1 = −
1√
2
(W+0 +W0+ +W−0 +W0−) = −(xµzν + xνzν)Wµν

W2 = −2(W+− +W−+) = 2(yµyν − xµxν)Wµν

W3 = −
√
2(W+0 +W0+ −W−0 −W0−) = 2i(yµzν − yνzµ)Wµν

W4 = 2(W++ −W−−) = 2i(xµyν − xνyµ)Wµν

W5 = −i(W+− −W−+) = −(xµyν + xνyµ)Wµν

W6 = −
i√
2
(W+0 −W0+ −W−0 +W0−) = −(yµzν + yνzµ)Wµν

W7 = −i
√
2(W+0 −W0+ +W−0 −W0−) − 2i(xµzν − xνzµ)Wµν . (3.21)

which correspond to the tensor components of the hadronic tensor evaluated in the CS
frame. For this reason, we refer to this expression as CS decomposition. In addition,
we define the inclusive hadronic structure function, which describes an unpolarized or
longitudinally polarized vector boson, and is therefore proportional to the total inclusive
scattering probability irrespective of the helicity states of the initial and final-state
particles,

Wincl =W++ +W−− +W00 =W−1 +
1

2
W0 . (3.22)

The second equality of eq.(3.21) is what defines the projectors Pµν
i , i = −1, ..7. These

projectors are orthogonal operators satisfying PµνiP
µν−1 = I, where the inverse Pµν

i
−1 ≡

Pµν
i differ from its corresponding Pµν

i by a mere costant factor. Using this identity, we
find that

LµνW
µν =

7

∑
i=−1

Pµν
i Lµν PµνiW

µν = ∑
i=−1

LiW
i , (3.23)

where we have defined the leptonic structure functions as

Li(q) = ∫ dΦL(q) Pµν
i Lµν(ΦL) . (3.24)

Inserting now eq.(3.23) into eq.(3.4), the differential cross section can be written in terms
of the following sum

dσ

d4q
= 1

2E2
cm

7

∑
i=−1

Li(q2)Wi(q2, saq, sbq) . (3.25)

This formula is totally general and it is valid for every value of the transverse momentum
qT and for any number of radiative emissions from the colliding quark in the initial state.
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These radiative emissions, which will be studied in chapter 4, lead to a modification
of the hadronic tensor and hence to the hadronic structure functions Wi(q2, saq, sbq).
However, since the leptonic sector is not modified, they leave the leptonic functions Li(q)
unchanged. For this reason, we analyze the leptonic tensor in the next section of this
chapter, where the results we derive are valid for all the processes considered in the rest
of this thesis.

3.2.3 Leptonic tensor and angular distribution

The full differential leptonic tensor LV V ′(ΦL) for the decay Z/γ∗ → `+`− given in eq.(3.7),
parametrized in terms of the leptons momenta p1 and p2, is equal to

Lµν(p1, p2) =
24π

q2
[L+(q2)(pµ1p

ν
2 + pν1p

µ
2 − g

µν(p1 ⋅ p2)) + iL−(q2) εµνρσ(p1)ρ(p2)σ] (3.26)

. In this expression, L+(q2) and L−(q2) are scalar coefficients for the parity-conserving
and parity-violating part of the leptonic tensor and they are respectively given by the
contraction of the leptonic tensor with the symmetric (antisymmetric) projectors Pµν

i .
Consequently, L+(q2) can only appear in combination with the parity even hadronic
structure function W−1,0,1,2,5,6 and L−(q2) with the parity odd W3,4,7. The normalization
is instead chosen in accordance with ref.[7], where these scalar coefficients have been
explicitly calculated for V = γ∗, Z and are reported below,

parity even ∶ L+γγ(q2) =
2

3

αem

q2
, L+ZZ(q2) =

2

3

αem

q2
(v2l + a2l )∣PZ(q2)∣2

L+γZ(q2) =
2

3

αem

q2
(−vl) PZ(q2), L+Zγ(q2) = L∗+γZ(q2)

parity odd ∶ L−γγ(q2) = 0, L−ZZ(q2) =
2

3

αem

q2
(−2vlal)∣PZ(q2)∣2

L−γZ(q2) =
2

3

αem

q2
(al) PZ(q2), L−Zγ(q2) = L∗+γZ(q2) , (3.27)

where we have introduced the shorthand notation PV (q2) for the reduced propagator

PV (q2) =
q2

q2 −m2
V + iΓVmV

. (3.28)

The angular dependence of the leptonic tensor can be now pointed out by parametrizing
the leptons momenta and the leptonic phase space in terms of the CS angles ϑ and ϕ, in
terms of which they are respectively given by

dΦL(q) =
dcosϑ dϕ

32π2
, p1,2 =

Q

2
(tµ ± xµ sinϑ cosϕ ± yµ sinϑ sinϕ ± zµ cosϑ) (3.29)

where the negatively charged lepton of momentum p1 has been chosen to move in the
hemisphere where cosϑ > 0. In virtue of the orthonormality of the CS frame basis vectors,
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the contraction of the projectors Pµν
i with the leptonic tensor eq.(3.26) integrated over

the phase space allows one to write the leptonic structure functions of eq.(3.24) as

Li(q2) = ∫
1

−1
dcosϑ∫

2π

0
dϕ Li(q2, ϑ,ϕ) (3.30)

where the functions Li(q2, ϑ,ϕ) are equal to

Li(q2, ϑ,ϕ) =
3

16π
L±(i)(q2)gi(θ,ϕ) =

3

16π

⎧⎪⎪⎨⎪⎪⎩

L+(q2)gi(θ,ϕ) i = −1,0,1,2,5,6
L−(q2)gi(θ,ϕ) i = 3,4,7

(3.31)

with gi(θ,ϕ) denoting spherical harmonics in terms of the CS angles, which are listed in
app.B.1 and L±,V V ′ given by eq.(3.27).

We can now investigate the dependence of the cross-section on the CS angles by
plugging eq.(3.30) and eq.(3.31) into eq.(3.25), which let us obtain a fully differential
cross-section, namely a cross-section differential in the vector boson four-momentum and
solid angle, as

dσ

d4q
= ∫

1

−1
dcosϑ∫

2π

0
dϕ

dσ

d4q dcos dϕ
dσ

d4q dcos dϕ
= 1

2s

7

∑
i=−1

Li(q2)W i(q2) = 3

16π

7

∑
i=−1

dσ(i)

d4q
gi(ϑ,ϕ) (3.32)

where in the last step we have defined the helicity cross sections

dσ(i)

d4q
= 1

2s
L±(i)(q2)W i(q2) . (3.33)

Accordingly, we will call

⟨∣M∣2⟩i = L±(i)(q2)W i(q2) (3.34)

helicity matrix elements, which are the objects we are going to calculate and check in the
soft threshold limit. As anticipated in 3.1, the helicity cross sections will be the main
subject of our further investigation, being in bijection with the angular distributions of
the final state dilepton. To prove this correspondence, we expand the fully differential
cross section eq.(3.32) and write it as a linear combination of the spherical harmonics
gi(θ,ϕ). This yields to

dσ

d4q dcos dϕ
= 3

16π

dσincl

d4q
[(1 + cos2ϑ) + A0

2
(1 − 3cos2ϑ) +

7

∑
i=1
Ai gi(ϑ,ϕ)], (3.35)

where the inclusive cross section (that is, the cross-section obtained from Wincl of eq.(3.22)
has been factored out. Here, the symbols Ai denote precisely the angular coefficients,
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defined as the ratio of the helicity cross sections (3.33) and the inclusive helicity cross-
section dσ̂incl,

Ai =
dσ(i)

dσincl
≡ dσ(i)

dσ−1 + 1
2dσ

0
. (3.36)

These angular coefficients have already been calculated up to O(α2
s) for both the neutral

and charged Drell-Yan process [6, 65] and experimentally determined by the ATLAS
collaboration [66]. The study of these angular coefficients in soft threshold limit will be
carried out in the next chapter. Instead, we dedicate the end of the present one to the
application of the setup carried out in this section to the Drell-Yan scattering at tree
level.

3.3 Tree-level Drell-Yan process

3.3.1 Tree level amplitude

As discussed in section 2.1.3, only interactions between quarks and gluons are computable
in perturbative QCD, but not between hadrons. Therefore, we now focus on the partonic
process

q(pa)q̄(pb) → V (q)X(pX) . (3.37)

The relevant quantities, such as hadronic tensor and differential cross sections, which
depend on the initial QCD dynamics can be calculated by using the same expression
derived before provided we replace all the hadronic variables with partonic variables (e.g.
protons momenta with partons momenta Pa → pa, Pb → pb, E2

cm → s,...). The connection
between the quantities we derive here and the ones presented in the previous section is
then obtained by convoluting the first with the parton distribution functions, as shown
in section 2.1.4.

The total amplitude for the neutral Drell-Yan process is given by the sum of the
amplitude for the production and decay of an off-shell photon and the one for the
production and decay of a Z boson. Starting from the case in which the intermediate
vector boson is a virtual photon, we obtain that the amplitude for this process reads

iMγ = δijQfe
2[v̄(pb)γµu(pa)]

i

q2 − i0[ū(p1)γµv(p2)] (3.38)

where the sum over flavors and color indices is left implicit. The relation γ0(γµ)†γ0 = γµ
and that γ0 is self-adjoint γ0 = (γ0)†, allows us to compute the conjugate of the bispinor
product appearing in the expression above. Averaging over color indices and using the
completeness relations for spinors app.A.2.2 for the average over spin indices, we then
obtain that the matrix element squared for V V ′ = γγ is given by the product of aleptonic
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Figure 3.2: Drell Yan process at tree level.

tensor and hadronic tensor, respectively given by

Lµν =
e2

q4
Tr[γµ/p1γ

ν /p2] (3.39)

Wµν
γγ LO

=
Q2

fe
2

4N2
c

Tr[γµ/pbγ
ν /pa] . (3.40)

where we have chosen the normalization of these tensors to include all the numerical
factors and couplings in their definition. Moreover, we only reserve the label referring
to the order of the perturbative expansion in αs to the hadronic tensor as, as stated in
section 3.2.2, the leptonic tensors we derive in this section are the same we obtain for
single/multiple gluon emissions.
If the vector boson is instead a Z boson, the amplitude at tree level is equal to

iMZ = e2δij[v̄(pb)γµ(vf − afγ5)u(pa)] i
PZ(q2)
q2

[ū(p1)γµ(vl − alγ5)v(p2)], (3.41)

where the Dirac matrix γ5 is hermitian and anticommute with all the other Dirac matrices,
{γ5, γµ} = 0, for µ = 0,1,2,3. Using this property, we can easily compute the conjugate
matrix, so as to obtain

Lµν
ZZ =

e2

q4
∣PZ(q2)∣2Tr[/p1γ

µ(vl − alγ5)/p2γ
ν(vl − alγ5)] (3.42)

Wµν
ZZLO

= e2

4Nc
Tr[/pbγ

µ(vf − afγ5)/paγ
ν(vf − afγ5)] . (3.43)

To compute the full square matrix element for the tree-level DY process we now only
miss the contribution of the interference matrix elements. This contribution is equal to

MγM∗
Z +MZM∗

γ =MγM∗
Z + (MγM∗

Z)∗ = 2 Re(MγM∗
Z), (3.44)

whose expression can be computed explicit from the amplitudes eq.(3.38) and eq.(3.41),



36 CHAPTER 3. DRELL-YAN ANGULAR DISTRIBUTIONS

and is equal to the product of the following tensors,

Lµν
γ/Z =

e2

q4
PZ(q2)Tr[/p1γ

µ/p2γ
ν(vl − alγ5)] Lµν

Zγ = (L
µν
γ/Z)

∗ (3.45)

Wµν
γ/ZLO

= Qfe
2

4Nc
Tr[/pbγ

µ/paγ
ν(vf − afγ5)] Wµν

ZγLO
= (Wµν

γ/ZLO
)∗ . (3.46)

Now that we have the full amplitude for the process, we can project the hadronic tensor
into hadronic structure functions.

3.3.2 Hadronic tensor decomposition at tree level

For the decomposition into structure functions, we proceed as in the previous section,
namely working the single cases V,V ′ = γ∗/Z separately. Starting from V V ′ = γγ, we we
can express the trace of eq.(3.40) as

Tr[γµ/pbγ
ν /pa] = 4(p

µ
ap

ν
b + pνap

µ
b − g

µν(pa ⋅ pb)) . (3.47)

This shows that the hadronic tensor Wµν
γγ LO is symmetric, consistently with the require-

ment that electromagnetic interactions are parity conserving. At its turn, this implies
immediately that the contraction with the antisymmetric projectors must vanish, that is
we can immediately set W3,4,7 = 0. Moreover, being the photon a massless particle, it can
only carry transverse polarization, so that zµWµν

γγ LO = zνW
µν
γγ LO = 0, namely the helicity

projection of the hadron tensor along the beam axis vanish, and therefore also W0,1,6 = 0.
Likewise, also the quark and antiquark (since we work in the massless case) can only be
polarized either in the x or the y direction, which results in four possible initial states
∣ ++⟩, ∣ −−⟩, ∣ +−⟩, ∣ −+⟩. The corresponding projections of the hadronic tensor onto these
helicity states are accordingly W++, W−−, W+−, W−+. The photon however is a boson
of spin 1, so the only way two massless spinors can annihilate into such a particle is if
they carry the same polarization. As a result W+− =W−+ = 0, so the only non-vanishing
structure function turns out to be

W −1
γγ LO

=
4παemQ

2
f

Nc
q2 (3.48)

where we have used that αem = e2/4π.
Considering now the hadronic tensor Wµν

ZZLO
given by eq.(3.43), this can be written

as a sum of a symmetric part and an antisymmetric part as follows

Wµν
ZZ =

e2

4Nc
[(v2f + a2f)Tr[/pbγ

µ/paγ
ν] − 2vfafTr[/pbγ

µ/paγ
νγ5]] (3.49)

by exploiting the linearity of the trace. In particular, the symmetric part is equal to the
electromagnetic hadronic tensor apart from a factor 1/Q2

f , while the antisymmetric one is
proportional to the Levi-Civita tensor εµνρσ in virtue of the identities eq.(A.6). Because
the Levi-Civita symbol is antisymmetric in all the indices, this second term survives
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only when contracted with Pµν
3,4,7 and vanishes otherwise. Among these projectors, the

one including zµ, that is Pµν
3,7 yields zero, again because quarks only carry transverse

polarization so that the vector boson cannot be produced longitudinal. This leaves us
with only two non-vanishing structure functions,

W −1
γγ LO

= 4παem

Nc
q2 (v2f + a2f)

W 4
γγLO

= 4παem

Nc
q2 (−4vfaf) . (3.50)

As last, we consider the tensor for the case V V ′ = γ/Z (the other one follows trivially)

Wµν
γ/ZLO

= Qfe
2

4Nc
[vfTr[/pbγ

µ/paγ
ν] − afTr[/pbγ

µ/paγ
νγ5]], (3.51)

which is equal to the tensor of eq.(3.49) apart from a different normalization involving
EW couplings. According to the results previously obtained for the hadronic structure
functions, is now easy to derive that

W −1
γ/ZLO

= vfW −1
γγ LO

= 4παemQf

Nc
q2 vf

W 4
γ/ZLO

=
Q2

f

2vf
W 4

ZZLO =
4παemQf

Nc
q2 (−2af) . (3.52)

3.3.3 LO hadronic cross section

The main purpose of this section is to highlight the general steps that lead to the
calculation of the hadronic cross section based on the formalism developed in section
3.2. The relevant formulas, concepts, and normalization choices presented here directly
generalize for higher orders in αs. Firstly, we work out the phase space. At tree-level,
the total phase space is simply given by the dileptons phase space, in which we insert
the identity

1 = ∫ d4q δ4(q − (p1 + p2)) . (3.53)

where we have used that pa+pb = p1+p2. As a result, the total phase space factorizes into
the phase space for the decaying leptons and the phase space of the intermediate vector
boson, that is dΦ = dΦL × d4, plus a delta function involving momentum conservation.
If we remain differential with respect to the vector boson momentum and integrate the
matrix element square over the leptonic phase space, we obtain that the total hadronic
cross section can be written as

dσLO

d4q
= ∑

ij
∫

1

0
dξa ∫

1

0
dξb fi(ξa)fj(ξb)

dσ̂LO

d4q
δ4(q − (pa + pb)) . (3.54)
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Focusing now on the total partonic cross-section, this is given in eq.(2.32) by summing
over all possible combinations of intermediated vector bosons V,V ′ = γ/Z. Also, we have
seen in eq.(3.35) that this cross-section can be factorized into an angular-dependent part
and a part depending on the hard dynamics of the process. Putting everything together,
this implies that we can write

dσ̂LO

d4q
= ∑

V V ′

dσ̂LO
V V ′

d4q
= 3

16π
∑
V V ′
∫

1

1
cosθ∫ dφ

dσ̂
(i)
V V ′

d4q
gi(θ, φ) . (3.55)

Plugging now this equation into eq.(3.54) and expressing the helicity cross sections in
terms of the helicity matrix elements eq.(3.34), we hence obtain that the total hadronic
cross section can be expressed as the following sum

dσLO

d4q
= 3

16π
∑
V V ′
∫

1

1
cosθ∫ dφ

dσLO
V V ′,i

d4q
gi(θ, φ) (3.56)

where we have defined the hadronic helicity cross sections as

dσLO
V V ′,i

d4q
= 1

2E2
cm
∑
ij
∫

dξa
ξa
∫

dξb
ξb

fi(ξa)fj(ξb)⟨∣M∣2V V ′⟩i δ4(q − (pa + pb)) (3.57)

In the last step, we have used that the flux factor is related to the hadronic center of mass
energy by s = ξaξbE2

cm. As stated in section 3.2, we want to express this cross-section in
terms of the invariant mass Q2 and the transverse momentum q⃗T of the vector boson
and of the rapidity Y . To do so, it is useful to work in lightcone coordinates, defined
in section 2.2.2. From the definition eq.(3.6), we notice that the protons momenta Pa

and Pb only admit minus and plus components respectively, so that the vector boson
momentum can be written as

qµ = (q−, q⃗T , q+) = (xaP −a , q⃗T , xbP +b ) , (3.58)

where the energy fractions xa and xb have been defined in eq.(2.30) and we recall
correspond to the momentum fractions of the partons that participate in the annihilation.
Using this parametrization, we can easily derive the following identity

d4q = 1

2
dq−dq+d2q⃗T = (

P +a P
−
b

2
)dxadxbd2q⃗T . (3.59)

In addition to the volume element, we also have to express the delta function in lightcone
coordinates. This can be done by noticing that the normalization condition imposes that

1 = ∫ d4q δ(q) = ∫
1

2
dq−dq+d2qT [2 δ−(q−)δ+(q+)δ2(q⃗T )] (3.60)

and therefore in four dimensions, the delta function in lighcone coordinates is always
accompanied by a factor 2. Moreover, using the scaling properties of the delta function,
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we obtain

δ4(q − (pa + pb)) = 2δ−(q− − ξaP −a )δ+(q+ − ξbP +b )δ2(q⃗T )

= 2

P −a P
+
b

δ−( q
−

P −a
− ξa)δ+(

q+

P +b
− ξb)δ2(q⃗T ) . (3.61)

In this expression, not only does the numerical factor in front of the delta functions
exactly cancel the Jacobian factor of the change of coordinates (which is crucial to
restoring the correct mass dimension of the cross-section), but also the plus and minus
delta function set

ξa = xa =
q−

P −a
ξb = xb =

q+

P +a
. (3.62)

This is indeed what we expect from a tree-level process where, without any parton
splitting, the momentum fraction of the parton extracted from the proton is the same
one that carries the parton participating in the interaction. Integrating now the δ− and
δ+ distributions against the momentum fractions ξa and ξb, the cross sections eq.(3.57)
can be written as

dσLO
V V ′,i

dxadxbdq⃗T
= 1

2E2
cm
∑
ij

fi(xa)
xa

fj(xb)
xb

⟨∣M∣2V V ′⟩i δ2(q⃗T ) . (3.63)

where the delta function δ(q⃗T ) enforces that the vector boson is produced at zero
transverse momentum. We will see that this is no more true at higher orders. Recalling
now that in section 3.3.2, we have found that the hadronic structure functions are only
non-vanishing for i = −1 (V V ′ = γγ) and for i = −1,4 (V V ′ = ZZ and V V ′ = γ/Z,Z/γ), it
follows that these are also the only indices for which the hadronic helicity cross-section
do not vanish. According to eq.(3.56), these helicity cross-section are related to the total
hadronic cross section by integration over the solid angles. For g1(θ,ϕ) = 1 + cosθ2 and
g4(θ,ϕ) = cosθ this integration yields respectively

∫
1

−1
dcosϑ∫

2π

0
dϕ gi(ϑ,ϕ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

16π

3
i − 1

0 i = 4
(3.64)

implying that the projection of the hadronic tensor with i = −1 solely contributes to the
whole final hadronic cross-section. Hence, using this fact and inserting now eq.(3.63) into
eq.(3.56), we obtain

dσLO

dxadxb dq⃗T
= 1

2E2
cm
∑
V V ′
∑
ij

fi(xa)
xa

fj(xb)
xb

⟨∣M∣2V V ′⟩−1 δ2(q⃗T ) . (3.65)

From now on we will generally consider cross-sections inclusive in the momentum q⃗T ,
which we therefore integrate over. In this way, the cross-section is only differential
in the parameters xa and xb that, since the protons momenta Pa and Pb are fixed,
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can be determined experimentally if the four-momentum of the vector boson is known.
Nonetheless, due to the difficulties of determining q in collider experiments, it is more
useful to express this cross-section in terms of the invariant mass Q2 and the rapidity of
the lepton pair Y . The relevance change of coordinates in this case is

Q2 = q2 = xaxb S Y = ln
√

xa
xb

(3.66)

with S = E2
cm = (Pa + Pb)2 center of mass energy, which features the following Jacobian

factor

dQ2dY = Q2

xaxb
dxadxb . (3.67)

Hence, eventually using that i, j = q, q̄ we can finally write the cross section as

dσLO

dQ2dY
= 1

E2
cm
∑
q

σ̂B [fq(xa)fq̄(xb) + fq̄(xa)fq(xb)] . (3.68)

where we have defined the total Born cross section σ̂B as the sum over all the intermediate
vector bosons V V ′ of the cross sections σ̂V V ′

B . These cross-section can be finally evaluated
using eq.(3.33), (3.27) and the results of the previous section, and are equal to

σ̂V V ′

B = 1

2Q2
⟨∣M∣2V V ′⟩−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4πα2
emQ

2
f

3Nc Q2
V V ′ = γγ

4πα2
em

3Nc Q2
∣PZ(q2)∣2 ⋅ (v2f + a2f)(v2l + a2l ) V V ′ = ZZ

4πα2
emQf

3NcQ2
Re{PZ(q2)} (−vlvf) V V ′ = γ/Z, Z/γ

.

(3.69)

The tree-level calculation constitutes the only case of this thesis where we explicitly
compute the total hadronic cross-section. Indeed, as we have seen, the integration over
the CS angles generally involves a loss of information on the angular distribution of
the dilepton pair due to the vanishing of some of the spherical harmonics gi(θ,ϕ). For
this reason, for the single and double gluon emission, we will only focus on the helicity
hadronic cross sections.



Chapter 4

Radiative corrections to the
Drell-Yan process

In this chapter, radiative corrections to the Drell-Yan cross section are calculated at NLO
in section 4.1, and NNLO in section 4.2 of its perturbative expansion. In both cases,
we first compute the relevant cut diagrams contributing to the square matrix element
and determine the hadronic tensor, which we project into structure functions. Using
the scaling properties of soft and collinear fields derived in SCET, the behavior of these
structure functions is then studied in the limit of soft threshold. The soft expanded
helicity cross sections σ̂i(za, zb) are finally computed explicitly, providing the full-theory
calculation that we will test in the next section by means of soft factorization theorems.

4.1 One-gluon emission

4.1.1 Amplitude at O(αs)
The first order real correction to the DY process is similar to the one already seen in
section 2.1.3 for the case of the qq̄ annihilation into hadrons, but with the gluon being
emitted from the initial state quark/antiquark. This is the only contribution we have to
account for, as other types of processes1 are forbidden by γ, Z being neutral. Therefore,
we now focus on the subprocess

q(pa) + q̄(pb) Ð→ V (q) + g(k), (4.1)

with g emitted gluon of momentum k. The amplitude for this partonic subprocess is
constructed by summing the amplitudes relative to the two processes displayed in Fig.
4.1, namely one where the gluon is emitted by the quark and one where is emitted by
the antiquark. In the case the vector boson is a virtual photon, the amplitude reads

iMR,γ = gse2Qf [v̄(pb)Sµα
γ u(pa)]ε∗α(k)

i

q2
[ū(p1)γµv(p2)] (4.2)

1If the vector boson is a charged W boson, one should also consider the subprocess q + g Ð→W + q

41
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Figure 4.1: Diagrams contributing to the amplitude for the first order radiative correction
to the DY process.

where the tensor Sµα describes the spin states of the emitting particle and the emitted
gluon and is given by

Sµα
γ = [γµ

/pa − /k
(pa − k)2

γα − γα /pb − /k
(pb − k)2

γµ](ta)ji (4.3)

including the color generators. Taking the complex conjugate or the matrix element
eq.(4.52), the spinor product [v̄Sµαu] transforms as [ūSαµv], while the complex conjugate
of color generators is equal to their transpose taij = taij† = taji∗, being these matrices
hermitian. The multiplication of MR,i with M∗

R,i, averaged over spin, color, and
polarization indices, leaves us with the matrix element squared, which factorizes into a
leptonic tensor of the same form as the tree level one, given by eq. (3.39), and a hadronic
tensor of the form

Wµν
R,γγ = −g

2
s

Q2
fe

2

4Nc
CFTr[/pbS

µα
γ /paSγ,α

ν] . (4.4)

The minus sign comes from the sum over polarizations, where every cut gives a factor
(−gαβ), with α, β polarization indices, while the factor CF comes from the color structure
(tata)jj of the cut diagrams, that after color average indeed gives

1

Nc

N2
c −1
∑
a=1

Tr[tata] =
Nc−1
∑
a=1

δaa
N2

c

TF =
N2

c − 1
Nc

TF = CF ,

where eq.(2.5), (2.6) have been used.
If V V ′ = ZZ, we replace the QED current Jµ

γ with the EW current Jµ
Z of eq.3.3,

which leaves us with an amplitude of the same form as the one of eq.(4.2) but with the
tensor of eq.(4.3) replaced by

Sµα
Z = vfS

µν
γ − afS

µα
5 . (4.5)

and with the vector boson propagator replaced by the reduced propagator for Z boson
production. This tensor is now given by the combination of a parity-conserving part,
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Figure 4.2: Set of cut diagrams arising from the Drell-Yan process matrix element at
O(αs).

proportional to the vector coupling and given by the Sµν
γ tensor for the electromagnetic

interaction, and a parity-odd part proportional to the axial coupling, where

Sµα
5 = [γ

µγ5
/pa − /k
(pa − k)2

γα − γα /pb − /k
(pb − k)2

γµγ5] . (4.6)

Squaring amplitude and averaging over all the indices, the leptonic sector does not modify,
so that the leptonic tensor is again equal to the tree level one of eq.(3.42), while the
hadronic tensor is given by

Wµν
R,ZZ = −g

2
s

e2

4Nc
CF Tr[/pbS

µα
Z /paSα

ν
Z] . (4.7)

Our main purpose is now to study the power expansion in soft gluon momentum of the
structure functions in which the hadronic tensors eq.(4.4) and eq.(4.7) factorizes onto.
Moreover, the cross sections we are going to derive restrict to the cases V V ′ = γγ and
V V ′ = ZZ, which we want to compare to analyze how the angular distribution of the
lepton gets modified when introducing a parity-violating interaction, such as the EW one,
compared to the parity conserving QED interaction. For this reason, the computation of
the interference term contributing to the total αs square amplitude is not carried out
here but can be found instead in app.B.2.
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4.1.2 Hadronic tensor decomposition at O(αs)
For one gluon emission, momentum conservation reads q = pa + pb − k, where q, pa, and
pb are the variables we have chosen the hadronic tensor to depend on. However, because
the fourth kinematic variable, namely the gluon momentum, is automatically constraint
by the other ones, we can exploit this freedom to decide on which set of three momenta
we want to specify the kinematic dependence of the hadronic tensors Wµν

R,γγ and Wµν
R,ZZ .

For taking the soft limit, the most obvious choice is to pick pa, pb, and k. In this
section however, we first derive structure functions in terms of q, pa, and pb and then use
momentum conservation to restore the gluon momentum k when considering the limit
of small gluon momentum in section 4.1.3. The reason for this choice will become clear
soon. For the moment, we as usual start by treating the photon case and rewrite the
Dirac structure of eq.(4.3) as

Sµα = γµ /
q − /pb
(pb − q)2

γα − γα /q − /pa
(pa − q)2

γµ . (4.8)

In addition, because the projectors Pµν
i depends on the Lorenz invariants q2, saq and sbq,

we define partonic-like Mandelstam variables s, t, u related to these invariants by

s = (pa + pb)2 = sab t = (pb − q)2 = −sbq + q2 u = (pa − q)2 = −saq + q2 (4.9)

and satisfying s + t + u = q2. Using these identities, we can express both the hadronic
tensor of eq.(4.4) and the projectors in terms of s, t, and u. Thus, performing their
contraction and isolating the function of the kinematic variables from constant factors
and couplings, we obtain that the structure functions can be written as

W i
R,γγ = g2s CF (

8παemQ
2
f

Nc
) T i

R i = incl, ...7 (4.10)

where the functions T i are equal to

T incl
R = ((q

2 + u)2 + (q2 + t)2
ut

)

T 0
R = (

q2 − u
q2 − t +

q2 − t
q2 − u)

T 1
R =
√

q2s

tu
(q

2 − u
q2 − t −

q2 − t
q2 − u)

T 2
R = (

q2 − u
q2 − t +

q2 − t
q2 − u) (4.11)

and the ones with i = 3,4,5,6,7 vanish identically. As a result of the transverse mo-
mentum contribution introduced by the emitted gluon, some structure functions, which
were equal to zero in the tree-level calculation, have now switched on. These correspond
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to the projection of the hadron tensor onto longitudinal (i = 0) and transverse (i = 2)
polarization states and a combination of both (i = 1). In particular, we notice that
the transverse and longitudinal projections are the same at this order, thus implying,
according to our discussion of section 3.2.3, that also A0 = A2. This equality is known as
Lam-Tung relation [67] and has been proven to hold only up to NLO [68].

Focusing now on the Z boson production case, we can write the tensor eq.(4.7) interms
of the dirac structure Sµν

γ and Sµν
5 . This operation allows us to once again decompose

the hadronic tensor into a symmetric and an antisymmetric part,

Wµν
R,ZZ = −g

2
s

e2

4Nc
CF [(v2f + a2f)Tr[/pbS

µα
γ /paSα

ν
γ] − 2vfafTr[/pbS

µα
γ /paSα

ν
5]] . (4.12)

where the symmetric part is proportional to the tensor Wµν
R,γγ . Accordingly, the structure

functions with i = {incl,1,0,1,2} will have the same form as the ones of eq.(4.11) apart
from a multiplying factor involving coupling terms, that is

W i
R,ZZ = g2s CF (

8παem

Nc
(v2f + a2f)) T i

R, i = incl,0,1,2 . (4.13)

The antisymmetric part instead, is responsible for the function with i = 4, also present at
tree level and quantifying the difference between left-handed and right-handed helicity
states, and turns on the one with i = 3 as well, and which corresponds again to a
combination of transverse and longitudinal helicity states. For these two indices, we thus
have that

W i
R,ZZ = g2s CF (

8παem

Nc
(−4vfaf)) T i

R, i = 3,4 (4.14)

with

T 3
R =
√
(q2 − u)(q2 − t)

ut
(q

2 − u
q2 − t −

q2 − t
q2 − u)

T 4
R =
¿
ÁÁÀ q2s

(q2 − t)(q2 − u)(
(q2 − u)2 + (q2 − t)2

ut
) . (4.15)

The other structure functions, with indices i = 5,6,7 instead vanish. Hence, the projections
of the hadronic tensor for both photon and Z boson production can be written in terms
of the same functions of the kinematic variables, which divide into parity-even and
parity-odd ones, respectively given by eq.(4.11) and (4.15). Moreover, the reason we have
decided to write these functions in terms of the Mandelstam variables eq.(4.9) and the
invariant mass q2 is to directly compare them with the ones calculated in [6], with which
they agree apart from constant factors involving powers of 2.
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Figure 4.3: Drell-Yan process at soft threshold. Image taken from reference [69].

4.1.3 Soft limit

In section 2.2.2, we have seen that the hierarchy of the momentum components of collinear,
anticollinear, and soft fields is encoded in the powers of the small parameter λ that
defines their scalings. In the case of the Drell-Yan process at soft threshold, the modes pn
and pn̄ correspond to the collinear and anticollinear modes inside the colliding protons,
and therefore λ = ΛQCD/Q. On the other hand, protons do not contain soft degrees of
freedom, and therefore the scaling of the soft modes ps cannot be expressed in terms of
the same small power counting parameter. Instead, we notice that, using conservation of
momentum pa + pb − pX = q, the plus and minus component of the hadronic radiation pX
can be written as

p−X = (1 − za)Q p+X = (1 − zb)Q . (4.16)

Using that the radiation is on shell p−Xp+X ∼ p2⊥ and that in SCETII soft radiation scale
homogeneously in λ, the scaling of soft and collinear modes is given by

pµc ∼ (
Λ2
QCD

Q
,Q,ΛQCD) pµc̄ ∼ (Q,

Λ2
QCD

Q
,ΛQCD) pµX ∼ (λ,λ, λ)Q (4.17)

with λ =
√
(1 − za)(1 − zb). These modes are depicted in fig. (4.3). Because at NLO

the hadronic radiation pµX is equal to the emitted gluon momentum kµ, we can use the
scaling just derived to identify distinct regions of momentum space where different types
of particles dominate, and eventually to isolate the gluon’s contribution to the structure
functions T i in the regime where it is emitted at soft threshold. To see this, let us first
pick T incl and use the identity q2 = t + u + s and the definition of these Mandelstam
variables in eq.(4.9) to express this structure function in terms of k, pa, and pb. The
result is

T incl
R = [(pa ⋅ pb) − (pa ⋅ k)]

2 + [(pa ⋅ pb) − (pb ⋅ k)]2
(pa ⋅ k)(pb ⋅ k)

. (4.18)
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This expression features three distinct products of the collinear and soft momentum,
which can be worked out using the scalings eq.(4.17) which, in lightcone coordinates give

(pa ⋅ k) = p−ak+ ∼ λQ2 (pb ⋅ k) = p+b k− ∼ λQ2 (pa ⋅ pb) = p−ap+b ∼ Q2 . (4.19)

Therefore, in the numerator of T incl
R , the products (pa ⋅k) and (pb ⋅k) are power suppressed

with respect to (pa ⋅ pb) and only amount to small corrections and can thus be discarded.
Hence, in the limit of soft gluon momentum, the inclusive hadronic structure function
can be written as

T incl
R = 2 (pa ⋅ pb)2

(pa ⋅ k)(pb ⋅ k)
[1 +O(λ)] (4.20)

where the result has been expressed in lightcone coordinates and only the LP term
has been written explicitly. We can now repeat the same steps for the other structure
functions. In particular, since the variables s, t and u are in bijection with the scalar
products (pa ⋅ pb), (pa ⋅ k) and (pb ⋅ k) respectively, the scalings of eq.(4.19) are sufficient
for treating the T is for all the indices i. For example, considering i = 0,2, we have that

T 0
R = T 2

R =
[(pa ⋅ pb) − (pa ⋅ k)]2 + [(pa ⋅ pb) − (pb ⋅ k)]2
[(pa ⋅ pb) − (pa ⋅ k)] ⋅ [(pa ⋅ pb) − (pb ⋅ k)]

= 2[1 +O(λ2)], (4.21)

where the correction of order λ is absent in this case. The last function, among the
parity even ones, which we still have to determine the scale of, is T 1

R. From its explicit
expression in eq.(4.11), we notice that this is similar to T 0

R, but unlikely to this last
it features a difference of ratios (q2 − u)/(q2 − t) and (q2 − t)/(q2 − u), which makes it
vanishing at leading power. Hence, in this case, instead of directly useing the scaling
of eq.(4.19), we expand in powers of the dimensioneless ratios (pa ⋅ k)/(pa ⋅ pb) ∼ λ and
(pb ⋅ k)/(pa ⋅ pb) ∼ λ. This results in

T 1
R =
¿
ÁÁÀ q2(pa ⋅ pb)
(pa ⋅ k)(pb ⋅ k)

([(pa ⋅ pb) − (pb ⋅ k)]
2 − [(pa ⋅ pb) − (pb ⋅ k)]2

[(pa ⋅ pb) − (pa ⋅ k)][(pa ⋅ pb) − (pb ⋅ k)]
)

=
¿
ÁÁÀ q2(pa ⋅ pb)
(pa ⋅ k)(pb ⋅ k)

[ − 2( (pa ⋅ k)(pa ⋅ pb)
− (pb ⋅ k)(pa ⋅ pb)

) +O(λ2)]

= 2 [
√

pb ⋅ k
pa ⋅ k

−
√

pa ⋅ k
pb ⋅ k

] +O(λ) (4.22)

where in the last step we have used that at soft threshold q2 = (pa ⋅ pb) + O(λ). The
scaling of the remaining antisymmetric structure functions is now easy to determine by
noticing that their explicit form can lead back to one of the symmetric ones we have just
examined. In particular, we find that in the soft limit, the functions T 4 and T incl, and
T 3
R and T 1

R have the same LP term. This can shown by noticing that

T 4
R = C T incl T 3

R

T 1
R

= C (4.23)
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where C depends on the kinematic invariants and has scaling

C =
¿
ÁÁÀ q2(pa ⋅ pb)
[(pa ⋅ pb) − (pa ⋅ k)][(pa ⋅ pb) − (pb ⋅ k)]

= 1 +O(λ), (4.24)

which proves our statement. Eventually, we thus have determined the expression and the
relative scaling of the LP power term of the expansion in soft gluon momentum of all the
structure functions T i. In particular, we have found that

T incl
R ∼ T 4

R ∼ λ−2 T 0
R ∼ T 2

R ∼ T 1
R ∼ T 3

R ∼ λ0, (4.25)

where T incl
R and T 4

R are the most singular hadronic function in the limit λ → 0 and
therefore are the most sensitive to soft emissions. This fact should be of no surprise since
these functions are also the only ones that do not vanish at LO, and that therefore provide
the most dominant contribution to the cross-section and leptons angular distribution.
Instead, according to the EFT prediction, every contraction of the hadronic tensor with
zµ produces a structure function whose scaling is suppressed by a power of λ with
respect to the inclusive structure functions. However, the more general relation holds
W 1,3 ≤ λnW incl with n ∈ N(for every number of emissions). Therefore, even though we
would expect W 1,3 ∼ λW incl if the inequality would be saturated, we have a suppression
of two powers of λ with respect to the inclusive structure function.

These soft expanded hadronic functions can be now used to construct soft helicity
matrix elements which we will use for calculating the helicity cross-section at soft threshold.
We first notice that the expansion of the T is always gives a factor of 2 which we can
incorporate in the overall normalization of the matrix elements. Instead, we include the
Casimir invariant CF into the definition of soft hadronic structure function and define

T i
R ≡

2

CF
T i
R, soft[1 +O(λ)] . (4.26)

If we now insert this relation into eq. (4.10) for the hadronic structure functions W i
R,γγ ,

and then use these to construct helicity matrix elements according to eq.(3.34), for
V V ′ = γγ we can parametrize soft helicity matrix elements as follows

⟨∣Mγγ ∣2R⟩i = g2s 8 σ̂
γγ
B T i

R, soft, (4.27)

where i ∈ {incl,0,1,2} and where the explicit expression for the Born level cross section is
given in eq.(3.69). The same can be done for the hadronic structure functions W i

R,ZZ of
eq.(4.14) and eq.(4.14). In this case however, the functions with i ∈ {incl,0,1,2} feature
a different functions of the coupling vl,f and al,f with respect to the ones with i ∈ {3,4}.
To introduce the same notation for both sets of indices, we define

σ̂ZZ
B,± ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ̂ZZ
B,+ = σ̂ZZ

B i = incl,0,1,2

σ̂ZZ
B,− = σ̂ZZ

B ⋅ 8vfvlafal

(v2f + a2f)(v2l + a2l )
i = 3,4 (4.28)
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where the explicit expression of the Born cross section σ̂ZZ
B is also given in eq.(3.69). With

this definition, we can eventually write the soft helicity matrix elements for V V ′ = ZZ as

⟨∣MZZ ∣2R⟩i = g2s 8 σ̂
ZZ,±
B T i

R, soft , (4.29)

with i ∈ {incl,0,1,2,3,4}. Notice that these matrix elements have the same normalization
for the cases V V ′ = γγ and V V ′ = ZZ as they should be, and the only difference in their
expression is given by the value of the Born cross section. Specifically, since the soft
structure functions T i

soft are the same in both cases, we can simply write

⟨∣M∣2R⟩i = g2s 8 σ̂ T i
R, soft, (4.30)

where it is clear that, if we consider the vector boson is a photon, we have σ̃B = σ̂γγB and i ∈
{incl,0,1,2} and if the vector boson is a Z boson σ̃B = σ̂ZZ

B,± and and i ∈ {incl,0,1,2,3,4}.
In virtue of this simplified notation we have introduced, we will also drop the label V V ′
in the calculation of the cross-section we will carry out in the next section since this is
specified from the specific choice we make for σ̃B.

4.1.4 Hadronic Cross Section for single real emission

As anticipated at the end of section 3.3.3, we now only focus on the partonic helicity
cross sections. We choose to express these cross sections as differential with respect to the
parameters xa and xb and to integrate over the transverse momentum of the intermediate
vector boson. We start by considering the total phase space dΦ2→3, which we split into a
phase space for the decaying leptons, a phase space for the emitted gluon, and phase
space for the intermediate vector boson by inserting the delta function eq.(3.53). As a
result, we get that

dΦ2→3 = dΦL × [
d4q

(2π)4
d4k

(2π)3 θ(k
0)δ(k2)](2π)4δ(q + k − pa − pb) . (4.31)

Keeping q fixed, we can apply the change of coordinates of eq.(3.59) and integrate
immediately over q⃗T . Both the integration over the gluon momentum and over the
transverse momentum are going to be performed in dimensional regularization as the
cross section will display infrared divergences. This follows from the discussion of section
2.1.3, where we have seen that the NLO cross section is finite only if real and virtual
contributions are added together. Consequently, we here generalize the definition given
in eq.(3.57) for the helicity hadronic cross section at tree level to

dσiR
dxadxb

= ∑
ij
∫

dξa
ξa
∫

dξb
ξb

fi(ξa) fj(ξb) σ̂iR(
xa
ξa
,
xb
ξb
,Q2, ε) (4.32)

where

σ̂iR(
xa
ξa
,
xb
ξb
,Q2, ε) = µ2ε

4(2π)2 ∫
d(d−2)qT
(2π)d−2 ∫ dΦg ⟨∣M∣2R⟩i . (4.33)
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With this choice of normalization, the jacobian factor coming from the change of coordi-
nates cancels against the flux factor E2

cm in front of the hadronic helicity cross-section.
At the same time, all the ε dependence is absorbed into the regularized partonic cross
section, which after the integration over q⃗T only depends on the ratios xa/ξa and xb/ξb
and Q2. In addition, we add a µ(d−4) for every power of the coupling constant g2s when
working in dimensional regularization. Focusing on eq.(4.33), we first write the gluon
phase space d dimensions, which based on eq.(4.31) reads

∫ dΦd
g = ∫

ddk

(2π)d−1 δ(k
2) θ(k0)(2π)dδd(q + k − pa − pb) . (4.34)

Expressing it in lightcone coordinates, both the volume element ddk and the d-dimensional
delta function δd factorize into a plus and minus and a transverse component in (d − 2)
dimensions. Therefore, integrating out dd−2(q⃗T − k⃗T ) against dd−2kT and leaving out for
the moment the theta function θ(k0), we obtain

∫ dΦg = (2π)∫ dk+dk−δ(k+k− − q2T )δ−(q− + k− − p−a)δ+(q+ + k+ − p+b ) . (4.35)

Hence, inserting this identity into eq.(4.33) and integrating over the plus and minus
components of the gluon momenta, we obtain that

σ̂iR =
g2s
(4π)µ

2ε 4 σ̃DY
B ∫

dd−2qT
(2π)d−2 T

i
R, soft(k+, k−) δ(k+k− − q2T ), (4.36)

where we have used eq.(4.30) for expressing the soft matrix element in terms of the soft
hadronic functions T i

R, soft. Also, as seen in the previous section, these function only
depends on the scalar products (pa ⋅ k) and (pb ⋅ k) and thus only on the components k+,
k− of the gluon momenta. After the integration over the gluon phase space, the value of
these components is fixed by the δ+ and δ− distribution to be equal to

k− = p−a − q− = (ξa − xa)P −a = (ξa − xa)
p−a
ξa
= (1 − za)p−a = z̄a p−a

k+ = p+b − q+ = (ξb − xb)P +b = (ξb − xb)
p+b
ξb
= (1 − zb)p+b = z̄b p+b (4.37)

where the variables zi = xi/ξi have been defined in section 2.1.4 and z̄ab are short-hand
notations for (1−zab). As last, we perform the integration over the transverse momentum
in eq.(4.36). We notice that dd−2qT denotes the integral over the (d − 2) components
of the vector q⃗T while in the argument of the delta function, we have its modulus
q2T = q⃗T ⋅ q⃗T = ∑d−2

i (qT )i. Hence, it is now useful to express the volume element dd−2qT in
lightcone coordinates, that is

d(d−2)q⃗T = dqT q(d−2)−1T dΩ(d−2) =
1

2
dq2T (q2T )(d−4)/2dΩ(d−2) (4.38)
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where dΩ(d−2) denotes the angle subtended by a (d − 1) dimensional unit sphere in a d−
dimensional Euclidean space. Using the general formula

∫
Ωn

dΩn =
2πn/2

Γ(n/2) , (4.39)

and the identity eq.(4.38), the normalized volume element over qT can be written as

∫
dd−2qT
(2π)d−2 =

(4π)ε−1
Γ(1 − ε) ∫ dq2T (q2T )−ε . (4.40)

Thanks to this relation,we can now easily integrate out the delta function of eq.(4.64),
which fixes the value of the transverse momentum to q2T = k+k− and gives back a theta
function θ(k+k−), which ensures that q2T > 0. In the MS eq.(4.36) therefore becomes

σ̂iR = (
αs

4π
) e

εγEµ2ε

Γ(1 − ε) 4 σ̃B T
i
R, soft(k+, k−)(k+k−)−ε θ(k0)θ(k+k−), (4.41)

after reinstating the Heaviside theta functions. At this point, consistently with eq.(4.37),
which defines a bijection between the gluon momenta k± and the parameters za and
zb, we can rewrite the whole cross-section in terms of these dimensionless ratios. Using
the definition of the variable za,b = xa,b/ξa,b, the real hadronic cross sections of eq.(4.32)
becomes

dσiR
dxa dxb

= ∑
ij
∫

dza
za
∫

dzb
zb

fi(
xa
za
)fj(

zb
xb
) σ̂iR(za, zb,Q2, ε) (4.42)

and where the cross sections σ̂iR(za, zb,Q2, ε) are given by using eq.(4.37) into eq.(4.41). In
addition, we can absorbed the factor (Q2z̄az̄b)−ε coming from dimensional regularization
into the soft hadronic functions T i

R, soft, which at their turn gain an ε dependence,

T i
R, soft(za, zb,Q2, ε) = Q−2ε(1 − za)−ε(1 − zb)−ε T i

R, soft(za, zb) . (4.43)

The cross-section σR(za, zb,Q2, ε) can be then calculated by expanding these regularized
soft structure functions around ε = 0. As we have seen in the previous section, T i

R, with
i = 0,1,2,3 scale as λ0, and therefore their cross-section is finite in this limit. Expressing
these functions, i.e. eq.(4.21) and (4.22) in terms of the variables z̄a and z̄b according to
the normalization prescription defined in eq.(4.26), we thus have that

T 0
R, soft = T 2

R, soft = CF (Q2z̄az̄b)−ε +O(λ)

T 1
R, soft ∼ T 3

R, soft = CF (Q2z̄az̄b)−ε(
√

z̄a
z̄b
−
√

zb
za
) +O(λ) (4.44)

Hence, expanding around four spacetime dimensions, we obtain the following partonic
cross-sections

σ̂0R(za, zb,Q2) = (αs

4π
) 4CF σ̃B θ(z̄a)θ(z̄b)

σ̂1R(za, zb,Q2) = (αs

4π
) 4CF σ̃B (

√
z̄a
z̄b
−
√

zb
za
)θ(z̄a)θ(z̄b) (4.45)
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where σ̂0R(za, zb,Q2) = σ̂2R(za, zb,Q2) and σ1R(za, zb,Q2) ∼ σ3R(za, zb,Q2) is understood.
Focusing now on T incl

R, soft ∼ T 4
R, soft, they have scaling λ−2. Clearly, in the limit of vanishing

gluon momentum λ→ 0, these functions are singular. The finite part of the cross sections
σsoftR and σsoftR can thus be obtained by the λ0 term of their power expansion. Hence,
expanding eq.(4.18) up to zeroth order in λ and changing variable to z̄a, z̄b, the inclusive
soft hadronic function reads

T incl
R, soft = CF (Q2z̄az̄b)−ε[

1

z̄a z̄b
− 1

z̄a
− 1

z̄b
+ 1

2
( z̄a
z̄b
+ z̄b
z̄a
)] +O(λ) . (4.46)

From the discussion carried out in section 2.1.4, we know that the inclusive cross section
displays a UV pole, which cancels out against the UV pole of the virtual contribution,
and a double IR pole, which gets canceled by the one of the lowest order Altarelli-Parisi
kernel. To make this double pole manifest, we use the identity

1

z1+ε
= −δ(z)

ε
+ L0(z) − εL1(z) +O(ε2) (4.47)

where the distributions L0 and L1 are defined in terms of the plus distribution (see
app.A.1) and are given by

L0(z) = [
1

z
]
+

L1(z) = [
ln(z)
z
]
+
. (4.48)

We now plug the identity eq.(4.47) into the soft inclusive hadronic function eq.(4.46) and
expand around ε = 0 up to the first order. The expression we obtain in this way can in
turn be inserted into eq.(4.41) and, minimally subtracting the singular part,

[σ̂inclR ]sing(za, zb) = (
αs

4π
) 4 σ̃B CF ×

[ 1
ε2
δ(z̄a)δ(z̄b) +

1

ε
[δ(z̄a)(1 − z̄b/2 − L0(z̄b)) + (z̄a ↔ z̄b)]] (4.49)

we obtain that the finite inclusive hadronic cross section is equal to

σ̂inclR (za, zb) = (
αs

4π
) 4 σ̃B CF { −

1

12
δ(za)δ(zb)(π2 − 6 ln2M2) + δ(z̄a)L1(z̄b) + δ(z̄b)L1(z̄a)

L0(z̄a)L0(z̄b) + [ − δ(z̄a)[(lnM2 + log(z̄b))(1 −
z̄b
2
)

+ L0(z̄b)lnM2 + L0(z̄a)(1 −
z̄b
2
) + (z̄a ←→ z̄b)]} (4.50)

where M2 is a shorthand notation for M2 = µ2/Q2. Clearly, the leadinf power cross
section σ̂4R(za, zb) has the same form.
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4.2 Two-gluons emission

4.2.1 Amplitude at O(α2
s)

We now consider the order α2
s radiative correction to the DY process in the case the

vector boson is a virtual photon. This choice is supported by the fact that, as we have
seen in section 4.1.3, the LP contribution of the (only non-vanishing) parity-odd structure
functions T 3

R and T 4
R is, except from terms of order λ, the same as the parity-even

structure functions T 1
R and T incl

R . Therefore, we can simply focus on the QED process
knowing that, apart from a normalization factor involving the vector and axial couplings,
the results we derive also hold if the intermediate vector boson is a Z-boson. The second
order real correction to the unpolarized proton-proton scattering is given by the 2 gluons
emission process

q(pa) + q̄(pb) Ð→ γ(q) + g(k1) + g(k2), (4.51)

where the two gluons can be radiated either from the quark/antiquark or by an additional
gluon emitted from the quark/antiquark line. The relevant vertices are dispalyed in
fig.4.4. The amplitude can be now written as

iMRR = g2sQfe
2 v̄(pb)[ ∑

perm
∑
●
Sµα1α2
● ε∗α1

(k1)ε∗α2
(k2)]u(pa)

i

q2
[ū(p1)γµv(p2)] (4.52)

where the first sum accounts for the permutation of the external gluon lines (α1 ←→ α2)
and the second for the topologically independent types of vertices, i.e. ● = {ggγ}, {γgg},
{gγg}, {2gγ}, {γ2g}. Again, we label Sµα1α2

● the tensors constructed out of momentum
vectors and Dirac matrices which describe the spin structure of the vertices. Including
their color structure, these tensors are given by

Sµα1α2
ggγ = [γµ /

p
a
− /k1 − /k2

(pa − k1 − k2)2
γα1

/pa − /k2
(pa − k2)2

γα2](tatb)lm

Sµα1α2
γgg = [γα1

/pb − /k1
(pb − k1)2

γα2
/pb − /k1 − /k2
(pb − k1 − k2)2

γµ](tatb)lm

Sµα1α2
gγg = [ − γα1

/pb − /k1
(pb − k1)2

γµ
/pa − /k2
(pa − k2)2

γα2](tatb)lm

Sµα1α2

2gγ = [γmu /pa − /k1 − /k2
(pa − k1 − k2)2

V α1α2

(k1 + k2)2
]([ta, tb])lm

Sµα1α2

2gγ = [ −V
α1α2

(k1 + k2)2
/pb − /k1
(pb − k1)2

γµ]([ta, tb])lm

V α1α2 = gα1α2(/k2 − /k1) + γα1(2k1 + k2)α2 − γα2(2k2 + k1)α1 (4.53)
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Figure 4.4: 2-gluons emission vertices. The diagrams constructed out of the vertices in
the first two lines include both C2

F and CFCA color structure. Diagrams constructed
out of the vertices of the third and fourth lines only include CFCA color structure. In
particular, the abelian contribution of the total 2-gluon emission amplitude does not
include the vertices of the last two lines.
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where, for the vertex involving the three-gluon coupling, eq.(2.3) have been used. Squaring
the matrix element (4.52) and averaging over spin, color and polarization leaves us with
the following hadronic tensor

WRR =
g4se

2Q2
f

4N2
c
∑

perm
∑
●, ⋆

Tr[/pbS
µα1α2
● /paS̃ν

α1α2,⋆] (4.54)

where S̃ν
α1α2,● = γ0(S

νβ1β2
● )∗γ0gα1β1gα2β2 . Having two possible permutations and five

independent vertices, this tensor is given by the sum of (2 × 5)2 = 100 traces. Also, the
permutation of the external gluon lines implies the permutation of the vertices, so that
tatb → tbta, while the complex conjugate of the color generators is equal to their transpose
(as these are self-adjoin matrices) as we have already seen for the one-gluon emission
case. Accordingly, each of the traces making up the hadronic tensor eq.(4.54) carry one
of the following two color structures,

(tatb)lm(tbta)ml (tatb)lm(tatb)ml (4.55)

In the first case, the first (second) emitted gluon is color-connected to itself, while cut
diagrams involving the second have crossing gluon lines. When summing over the color
indices, these two structure can be explicitly evaluated using eq.(2.5) and eq.(2.6) and
correspond to

1

Nc
Tr[tatatbtb] = C

2
F

Nc
Tr[I] = C2

F

1

Nc
Tr[tatbtatb] = − 1

4N2
c

N2
c −1
∑
a=1

δaa = CF (CF −CA/2) . (4.56)

In particular, since C(F ) ∼ Nc and (C(F ) −C(A)/2) ∼ N−1c , cut diagrams with crossing
gluon lines are suppressed by a factor 1/N2

c relative to the diagrams with non-crossing
lines. On the other hand, Sµα1α2

● tensors with ● = {2gγ},{γ2g} are proportional to the
commutator of color generators, so that in reality we have an additional color structure
besides the ones of eq.(4.55), that is ([ta, tb])lm([tb, ta])km. Since this structure though is
not independent from the other two, as

1

Nc
([ta, tb])lk([tb, ta])kl =

2

Nc
(Tr[tatatbtb] −Tr[tatbtatb]) = CFCA (4.57)

we can pick any two out of these three functions of the Casimir operators as color basis.
For practical convenience, we choose this basis to be formed out of C2

F and CFCA, and
therefore any observable depending on the initial state dynamics can be written as a
linear combination of these two terms.

4.2.2 Hadronic tensor decomposition at order O(α2
s) and scaling

The information we now want to extract from the square matrix element of the second
order radiative correction is the form and the scaling of the LP term of its helicity
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components in the soft limit. However, considering the higher complexity of Wµν
RR

compared to Wµν
R , is not practical to first project the hadronic tensor into structure

functions and then take its soft limit as done for the one gluon case. Indeed, this
would only bring to a full power expansion in soft momentum, of which we would then
discard subleading power terms. What we can do instead, is to exploit the fact that the
contraction with the projectors P i

µν and the expansion in powers of the small parameter
λ are commuting operations. Hence, we can first take the soft limit at the amplitude level
by using that kµ1 ∼ k

µ
2 ∼ (λ,λ, λ)Q in the Sµα1α2

● tensors of eq.(4.53). A unique parameter
λ is sufficient as the two gluons are identical. These tensors, and therefore the amplitude,
scale all homogeneously as λ−2, as we expect in the case of two soft singularities, while
the hadronic tensor -which is constructed out of two of these dirac structures- therefore
scales as λ−4. Then, we can expand the projectors P i

µν in the same way, whose leading
power term is proportional to λ0 as they are non-singular. Contracting the soft-expanded
projectors with the soft-expanded hadronic tensor allows us to directly construct the soft
helicity matrix elements as given by eq.(3.34), which can be written as

⟨∣M∣2RR⟩i = g4s 8 σ̂
γγ
B T i

RR, soft, (4.58)

where we have multiplied by 1/2 because the two gluons are identical. Here, we only give
the explicit expression for the abelian term of T incl

RR, soft and of T 0
RR, soft, that is

T incl
RR, soft = C2

F

p−ap
+
b

k+1k
−
1k
+
2k
−
2

+O(CFCA)

T 0
RR, soft = C2

F (
1

k−1k
+
1

+ 1

k−2k
+
2

) +O(CFCA) . (4.59)

Evidently, with the term abelian we refer to diagrams with color structure C2
F , where

the name derives from the fact that the vertices involved in these diagrams also appear
in commutative gauge theories such as QED. All the other functions T i

RR, soft depend
instead on the scalar product between the gluons transverse momenta (k⃗1,T ⋅ k⃗2,T ), which
makes them azimuthally asymmetric. In this case, the derivation of the helicity cross
sections involves integration over the angle spanned by the transverse momenta k⃗T,1 and
k⃗T,2 in dimensional regularization (which should hide additional collinear singularities).
For simplicity, we therefore focus on the C2

F term of T i
RR, soft for i ∈ {incl,0} only. Note

that, as given from eq.(4.59), T incl
RR, soft has the same form of T incl

R, soft (see eq.(4.18)) but
with k+k− replaced by k+1k

−
1k
+
2k
−
2 . The same cannot be stated for T 0

RR, soft, since the
leading power term of T 0

R, soft was simply the identity. The exponentiation properties of
the amplitude are hard to check in QCD but easy to compute using soft factorization
theorems, as these constitute all order ansatz. We will explicitly apply these theorems to
the calculation of the single real and double real emission at LP and NNLP in the next
chapter.
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4.2.3 Hadronic cross section for double real emission

The discussion presented in this section will closely follow the one carried out in section
4.1.4 and, as in that case, we first start by splitting the phase space dΦ2→4 by using the
identity eq.(3.53). As a result, we obtain

dΦ2→4 = dΦL × [
d4q

(2π)4
2

∏
i=1

d4ki
(2π)3 θ(k

0
i )δ(k2i )](2π)4δ4(q + k1 + k2 − pa − pb) . (4.60)

Remaining differential with respect to q, expressing the volume element d4q as dxadxbd2qT
using eq.(3.59) and integrating over transverse momentum, the hadronic helicity cross
sections for the double real emission reads

dσiRR

dxadxb
= ∑

ij
∫

dξa
ξa
∫

dξb
ξb

fi(ξa) fj(ξb) σ̂iRR(
xia
ξa
,
xb
ξb
,Q2, ε) . (4.61)

In total analogy to the single gluon emission, the partonic cross section in this expression
is defined as

σ̂iRR(
ξa
ξa
,
xb
ξb
,Q2, ε) = µ4ε

4(2π)2 ∫
dd−2qT
(2π)d−2 ∫ ddΦ2g ⟨∣M∣2RR⟩i (4.62)

using the same normalizaiton as before and where dΦ2g denotes the two-gluons phase
space. Moreover, we have introduced a factor µ4ε to compensate for the power g4s of the
strong coupling in the double real helicity matrix element. Focusing on the phase space
first, expressing it in lightcone coordinates gives

∫
dd−2qT
(2π)d−2 ∫ ddΦ2g =

1

2
∫

dd−2kT,1

(2π)d−2 ∫
dd−2kT,2

(2π)d−2 ∫ dk+1 dk
−
1 dk

+
2 dk

−
2 δ(k+1k−1 − k2T,1)

× δ(k+2k−2 − k2T,2) (2π)d−2δd−2(q⃗T − k⃗T,1 − k⃗T,2)
× δ−(q− − p−a + k−1 + k−2 ) δ+(q− − p+b + k+1 + k+2 ) (4.63)

leaving the Heaviside theta functions implicit for the moment and where the factor 1/2
is the Jacobian for the change of coordinates. In this equation, can first eliminate the
(d-2)-dimensional delta function by integrating it in qT , so as to get rid of any vector
quantity in the regularized integration measure. Then we can use eq.(4.40) for integrating
the delta functions δ(k21), δ(k22) in k2T,1, k2T,2. After these steps, the cross-section eq.(4.62)
in the MS-scheme is equal to

σ̂iRR = (
αs

4π
)
2 (eγEµ2)2ε
Γ(1 − ε)2 4 σ̂γγB ∫ dk+1 dk

−
1 dk

+
2 dk

−
2 (k+1k−1k+2k−2 )−ε

× δ−(q− − p−a + k−1 + k−2 ) δ−(q+ − p+b + k+1 + k+2 ) T i
RR soft(k±1 , k±2 ) . (4.64)

At this point, we are left with four integrals, over the plus and minus components of the
gluons momenta, and two constraints, given by the two remaining delta functions δ−
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and δ+. Because we want to treat k1 and k2 on an equal footing, it is useful to change
coordinates to the sum and difference of lightcone momenta, so that the integration
measure modifies as

dk+1 dk
−
1 dk

+
2 dk

−
2 =

1

4
d(k+1 + k+2 ) d(k+1 − k+2 )d(k−1 + k−2 ) d(k−1 − k−2 ) . (4.65)

In this way, the delta functions δ+ and δ− now depend only on one of the new variables
and can thus be trivially integrated out. In particular, their argument fixes the value of
the variables za and zb, given by

za =
q−

p−a
= 1 − k

−
1 + k−2
p−a

zb =
q+

p+b
= 1 − k

+
1 + k+2
p+b

. (4.66)

As last, we still have two non-trivial integrals over (k+1 − k−2 ) and (k−1 − k−2 ) to perform.
Their domain is fixed by the Heaviside functions θ(k01), θ(k+1k−1 ) and θ(k02), θ(k+2k−2 ),
which set

k+1 − k+2 < ∣k+1 + k+2 ∣ ∧ k−1 − k−2 < ∣k−1 + k−2 ∣ . (4.67)

Eventually substituting the values of the soft hadronic structure functions T i
RR, soft given

by eq.(4.59) into eq.(4.64) and integrating over (k+1 − k+2 ) and (k−1 − k−2 ), we obtain the
following partonic cross-sections

σ̂inclRR = (
αs

4π
)
2

4 σ̂γγB C2
F [ − 41+2ε

(eγEµ2)2ε
Γ(1 − ε)2

Γ(−ε)Γ(1/2 + ε)
Γ(1/2 − ε)Γ(1 + ε)

p−ap
+
b

(πCot(επ))−1 ](kmpkpp)1−2ε

σ̂0RR = (
αs

4π
)
2

4 σ̂γγB C2
F [21+4ε

(eγEµ2)2ε
Γ(1 − ε)2

πΓ(−ε2)
Γ(1/2 − ε)2 ](kmpkpp)−2ε} (4.68)

where we have introduced the short-hand notation kpp = k+1 +k+2 = p−a z̄a and kmp = k−1 +k−2 =
z̄bp
+
b and divided by the jacobian of the change of coordinates eq.(4.65). Expressing

kpp and kpm in terms of z̄a and z̄b, the cross-sections eq.(4.68) are only functions of
these ratios and the hard scale Q. At this point, the zeroth cross-section can be simply
evaluated by expanding around ε = 0 and is given by

σ̂0RR = (
αs

4π
)
2

4 σ̂γγB CF [
2

ε2
+ 4

ε
ln( µ2

Q2z̄az̄b
) + 4 ln2( µ2

Q2z̄az̄b
) − π2] . (4.69)

Instead, we work the inclusive helicity cross-section by using the distribution identity
eq.(4.47) and then expanding around four spacetime dimensions. Minimally subtracting
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the singular part,

[σ̂inclRR]sing = (
αs

4π
)
2

4 σ̂γγB C2
F{

δ(z̄a)δ(z̄b)
ε4

− 2

ε3
(δ(z̄a)L0(z̄b) + δ(z̄b)L0(z̄a) − δ(z̄a)δ(z̄b)logM2)

+ 1

ε2
{2δ(z̄a)δ(z̄b)[ −

π2

4
+ log2M2] + 4[δ(z̄a)L1(z̄b) + δ(z̄b)L1(z̄a)

+ L0(z̄a)L0(z̄b) − logM2(δ(z̄a)L0(z̄b) + δ(z̄b)L0(z̄a))]}

+ 1

ε
{δ(z̄a)δ(z̄b)[

4

3
log3M2 − πlogM2 − 14ζ(3)

3
] − 8(L0(z̄a)L1(z̄b) + L0(z̄b)L1(z̄a))

+ (δ(z̄a)L1(z̄b) + δ(z̄b)L1(z̄a))[π2 − 4log2M2]+

+ 8logM2(δ(z̄a)L1(z̄b) + δ(z̄b)L1(z̄a) + L0(z̄a)L0(z̄b))}} , (4.70)

where M2 = µ2/Q2 as before, we then obtain that the finite part of the double real
inclusive cross-section read

σ̂inclRR = (
αs

4π
)
2

4 σ̂γγB C2
F{δ(z̄a)δ(z̄b)[

2

3
log4M2 − π2log2M2 − 28ζ(3)

3
logM2 + π

4

24
]

+ (δ(z̄a)L0(z̄b) + δ(z̄b)L0(z̄a))[ −
8

3
log3M2 + 2π2logM2 + 28

3
ζ(3)]

+ (δ(z̄a)L1(z̄b) + δ(z̄b)L1(z̄a) + L0(z̄a)L0(z̄b))[8log2M2 − 2π2]

+ 16L1(z̄a)L1(z̄b)} . (4.71)

These results eventually conclude our full theory calculations.
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Chapter 5

Soft threshold factorization

In this chapter, we derived the LP and NNLP soft functions and compute them at NLO
and NNLO. We expect the inclusive partonic helicity cross-section for real and double
real emission to be exactly reproduced by the LP soft factorization theorem, as these
results are already present in the literature. Instead, the NNLP factorization theorem
will be here derived for the first time. The outcome of its application to the calculation
of the real and double real zeroth cross-section is then tested using the results derived in
the previous chapter in the full QCD theory.

5.1 LP soft function

5.1.1 Derivation of the LP factorization formula

The derivation of the LP factorization formula presented in this section closely follows the
one carried out in ref.[60], of which it is just a readaptation in terms of our normalization
and conventions. For proving this fomula, we start from the hadronic tensor defined in
eq.(3.5) and write the delta function in terms of its Fourier transform (see app. A). Since
the operator P acting on ∣pp⟩ and ∣X⟩ has eigenvalue (Pa + Pb) and pX respectively, the
hadronic tensor becomes

Wµν = ∫ d4xe−iq⋅x⨋
X

⟨pp∣eix⋅PJµ†(0)e−ix⋅P ∣X⟩ ⟨X ∣Jν(0)∣pp⟩ . (5.1)

In the first matrix element, we can moreover use that the translation operator acting
on the current determines the relation J†

µ(x) = eix⋅PJ†
µ(0)e−ix⋅P . This, together with the

fact that ∣X⟩ forms a complete set of states, implies that we can write

Wµν = ∫ d4xe−iq⋅x⟨pp∣Jµ†(x)Jν(0)∣pp⟩ . (5.2)

In order to derive the LP factorization formula, we now have to write down an explicit
form for this current. Because this factorization formula gives the inclusive cross section,
and for the double real amission case we have only considered V = γ∗, this current just

61
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corresponds to the QED current of eq.(3.3). Writing it in terms of SCET operators and
performing decoupling transformations of eq.(2.66), we hence arrive to the following
expression

Jµ(x) = eQf ∫ dr∫ dt CV (r, t) χ̄c̄(x + rn)S†
n̄(x)Sn(x)γ

µ
⊥χc(x + tn̄), (5.3)

where CV is the hard matching coefficient. This current is the same as the one Jµ(x) used
by Becher in ref.[60] with a different normalization, and describes the electromagnetic
interaction between an energetic quark moving in the direction of Pa with an anti-quark
moving in the direction of Pb. After the decoupling transformations, the collinear and
soft fields do not interact with each other, so that inserting the current eq.(5.3) into the
hadronic tensor eq.(5.2) results in
Wµν

e2Q2
f

= ∫ d4xe−iq⋅x∫ dr dr′ dt dt′CV (r, t)C∗V (r′, t′) ⟨0∣T̄{S†
n(x)Sn̄(x)} T{S

†
n̄(0)Sn(0)}∣0⟩

× ⟨pp∣χ̄c(x + t′n̄)γµ⊥χc̄(x + r′n)χ̄c̄(rn)γν⊥χc(tn̄)∣pp⟩ . (5.4)

Namely, the hadronic tensor factorizes into a collinear matrix element, where the collinear
and anti-collinear field χc,c̄ act on the two protons state, and a soft matrix element where
the soft Wilson lines Sn,n̄ act on the vacuum. Indeed, the two protons only contain
collinear degrees of freedom, being the relevant energy scale of a soft parton much higer
than the energy scale of the hadrons momenta Pa ∼ Pb ∼ ΛQCD. Consequently, soft
partons can only be created from the vacuum. In addition, the soft matrix element
include the anti-time ordering T̄ and time ordering T operator, which order Wilson lines
with +i0 and −i0 propagator prescription respectively.

The bispinor products of collinear operators in the collinear matrix elements can be
now rearranged using Fierz identities. These read,

ū1Γ1u2 ū3Γ2u4 = ∑CABū1ΓAu4 ū3ΓB u2 (5.5)

where u1,2,3,4 are spinors, Γ1,2, ΓA,B are elements of the Clifford algebra and CAB are
numerical coefficients. The lhs of eq.(5.5) in terms of the bilinears of collinear fields
appearing in eq.(5.4), involve Γ1 = γµ⊥ and Γ2 = γν⊥ . Therefore, the rhs must be transverse
as well. Among the elements of the Clifford algebra, there is the identity, gamma matrices
and products of these last, the metric and the Levi Civita symbol, respectively used for
constructing symmetric and antisymmetric bilinears. However, since the collinear fields
satisfy

χ̄cγ
µχc = nµχ̄c

/̄n
2
χc, χ̄cχc = 0, (5.6)

the only tensor structures we can form are the one constructed out of gµν⊥ , εµν and n̄µ,
n̄µ. Moreover, considering that the collinear fields also satisfy /̄nχc̄ = /nχc = 0 and that
the final tensor structure must be a symetric one with two perpendicular indices, we
eventually find that there is only one possibility, that is

χ̄cγ
µ
⊥ χc̄ χ̄c̄γ

ν
⊥χc =

gµν⊥
(D − 2) χ̄c

/̄n
2
χc χ̄c̄

/n
2
χc̄ , (5.7)
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with (D − 2)−1 normalization factor. (The proof that this factor indeed yields to the
correct normalization can be obtained by contracting both sides of the identity with
gµν,⊥). Because the product of bilinears involving collinear fields separate into a collinear
and an anticollinear acting separately on ∣pp⟩ = ∣p(Pa)⟩ ⊗ ∣p(Pb)⟩, the hadronic tensor
becomes

Wµν

e2Q2
f

=∫ d4xe−iq⋅x∫ dr dr′ dt dt′CV (r, t)C∗V (r′, t′)

× ⟨0∣T̄{[S†
n(x)Sn̄(x)]ih } T{ [S

†
n̄(0)Sn(0)]kj }∣0⟩

× gµν⊥ ⟨p(Pa)∣χ̄c(x + t′n̄)i
/̄n
2
χc(tn̄)j ∣p(Pa)⟩

× ⟨p(Pb)∣χ̄c̄(rn)k
/n
2
χc̄(x + r′n)h ∣p(Pb)⟩ (5.8)

expliciting the color indices. Averaging over these indices, the collinear fields satisfy

(χ̄c,i
/̄n
2
χc,j)(χ̄c̄,k

/n
2
χc̄,h) →

1

N2
c

(δijχ̄c,m
/̄n
2
χc,m)(δkhχ̄c̄,n

/n
2
χc̄,n) (5.9)

and, summing over the indices, the delta functions ensures that the color indices of the
soft Wilson lines gets contracted among themselves. This makes sense because the soft
and collinear matrix elements do not interact with each other, and therefore all their
color indices must be individually contracted, leading to color-singlet expressions.

Because our goal is to compare the prediction for the cross section obtained via the
soft factorization formula with the inclusive cross section derived in the full theory, we
contract the hadronic tensor with the metric (−gµν), that gives a factor (D − 2) when
this acts to the transverse metric gµν⊥ . At the end, putting everything together, we arrive
to the following expression

W incl = −
e2Q2

f

Nc
∫ d4xe−iq⋅x∫ dr dr′ dt dt′CV (r, t)C∗V (r′, t′) S̃LP (x)

× ⟨p(Pa)∣χ̄c(x + t′n̄)
/̄n
2
χc(tn̄) ∣p(Pa)⟩ ⟨p(Pb)∣χ̄c̄(rn)

/n
2
χc̄(x + r′n) ∣p(Pb)⟩ (5.10)

where S̃LP (x) denotes the leading power soft function in position space

S̃LP (x) =
1

Nc
Tr ⟨0∣T̄{S†

n(x)Sn̄(x)} T{S
†
n̄(0)Sn(0)}∣0⟩ . (5.11)

As last, one can relate the collinear matrix elements to the quark and antiquark parton
distribution functions by performing an expansion in small momentum components.
Here, we state the result from Becher et. al [60], which use that the conjugate position
variable to the vector boson momentum q scales as xµ ∼ (1,1, λ−1) and that the transverse
momentum of the colliding partons is of order ΛQCD. In this way, the collinear matrix
element is relate to the normalized parton distribution functions via

⟨p(Pa)∣χ̄c(x + t′n̄)
/̄n
2
χc(tn̄) ∣p(Pa)⟩ = n̄ ⋅ Pa∫

1

−1
dξafq(ξa, µ) eiξa(x++t

′n̄−tn̄)⋅Pa , (5.12)
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and a similar expression can be also written down for the anticollinear matrix, except
for a minus sign since antiquark distribution satisfy fq̄(ξ) = f∗q̄ (ξ) = −fq(−ξ). Putting
everything together, and restricting the integration domain over the PDF to only positive
values, we thus obtain that

W incl =
e2Q2

f

Nc
E2

cm∫
1

0
dξa ∫

1

0
dξb∣ C̃V (−ŝ, µ)∣2∫ d4x S̃LP (x)eix⋅(ξaPa+ξbPb−q)

[fq(ξa, µ)fq̄(ξb, µ) + fq̄(ξa, µ)fq(ξb, µ)] . (5.13)

Here, we have used that E2
cm = (n ⋅ Pa)(n̄ ⋅ Pb) = P −a P +b , defined the Fourier transform of

the hard matching coefficient

C̃V (−q̂2) = ∫ dr∫ dt CV (r, t) eix1 t n̄⋅Pa e−ix2 rn⋅Pb (5.14)

where at soft threshold we can replace ŝ with q̂2, and added to the expression the second
term of the current eq.(5.3) where the quark and the antiquark are exchanged, which
is crucial to identify the PDF as probability densities. Now that we have the brought
the inclusive hadronic tensor in the form eq.(5.13), we can calculate the differential cross
section, that according to the definition given in section 3.2 can be written as

dσincl = d4q

(2π)4
1

2E2
cm

Lγγ,+W
incl . (5.15)

Substituting the eq.(5.13), one can also express the LP soft function in momentum space
by taking its Fourier transform. In particular, expressing both the measures d4q and d4x
in lightcone coordinates and using the integral representation of the delta function, it
holds that

∫
d2q⊥
(2π)2 ∫ d2x⊥ S̃LP (x+, x−, x⃗⊥)eiq⃗⊥⋅x⃗⊥ = S̃LP (x+, x−, 0⃗⊥) . (5.16)

In this way, the inclusive cross section is equal to

dσincl

dq+dq−
= ∑

i,j=q,q̄
∫

1

0
dξa∫

1

0
dξb fi(ξa)fj(ξb)[σ̂γγB C̃V (−ŝ, µ)∣2

× 1

4
∫

dx+

2π
∫

dx−

2π
S̃LP (x+, x−, 0⃗⊥)ei(ξa−xa)P−a /2 ei(ξb−xb)P+b /2] (5.17)

where the factor 1/4 is the jacobian of the change of coordinates. Recalling that (ξa −
xa)P −a = k− and (ξb−xb)P +b = k+, the second line of the expression above thus corresponds
to the Fourier transform of the soft function S̃LP (x), which gives the following expression
for the LP soft function in momentum space

SLP (k+, k−) =
1

Nc
Tr ⟨0∣T̄{S†

nSn̄}δ−(k− − p̂−)δ+(k+ − p̂+)T{S
†
n̄Sn}∣0 (5.18)
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where the delta functions enforce that the eigenvalues of the operators p̂+, p̂− acting on
an hadronic state correspond to the lightcone coordinates of the soft radiative emission.
Eventually expressing dq+dq− in terms of the bare momentum fractions xa and xb, which
introduces the jacobian P −a P

+
b = Q2/ξaξb, the hadronic cross section can be written as

dσincl

dxadxb
= ∑
i,j=q,q̄

∫
dξa
ξa
∫

dξb
ξb
fi(ξa, µ) fj(ξb, µ) σ̂inclij (

xa
ξa
,
xb
ξb
,Q2) , (5.19)

where we have kept the same normalization as in the full theory, with the partonic cross
section given by

σ̂inclij (za, zb,Q2) = σ̂γγB Q2 ∣CV (−q̂2, µ)∣2SLP (k+, k−) . (5.20)

5.1.2 LP soft function at NLO

For evaluating the LP soft function at NLO order, we start by inserting a complete set
of hadronic states, that is

⨋
X

∣X⟩⟨X ∣ = 1 (5.21)

into eq.(5.18) before the time ordering operator T . In this way, the soft function separates
into two different matrix elements, related to each other by conjugation, and can therefore
be treated as an amplitude squared. Therefore, using that the integral sum above reads
in full

⨋
X

= ∑
X
∫ d4pX∏

i∈X
∫

d4pi
(2π)3 δ

2(p2i )θ(p0)δ4( ∑
i∈X

pi − pX) (5.22)

and that at NLO the only relevant states ∣X⟩ are the vacuum state ∣0⟩ and rhe single
gluon state ∣`⟩, the soft function SLP (k+, k−) consists of a sum of a real and a virtual
contribution

SLP (k+, k−) = SV
LP (k+, k−) + SR

LP (k+, k−) . (5.23)

Here, the virtual contribution is given by the term ∣X⟩ = ∣0⟩; since there are no particles
in this state, the total phase space only consist and integral over the delta function
δ4(pX), which indeed impose that there is not hadronic radiation pX . The virtual soft
function is therefore equal to

SV
LP (k+, k−) =

1

Nc
Tr ⟨0∣T̄{S†

nSn̄}∣0⟩⟨0∣T{S
†
n̄Sn}∣0⟩ (5.24)

and consists of the diagrams displayed in fig 5.1. Evaluating these diagrams in dimensional
regularization and using the Wilson lines Feynman rules reported in ref.[61], we obtain
that

SV
LP (k+, k−) = −4g2s µ2εCF ∫

ddk

(2π)d
1

(k2 + i0)(n̄ ⋅ k + i0)(n̄ ⋅ k − i0) (5.25)
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Figure 5.1: Virtual diagrams contributing to the LP soft function at NNLO. The self
energy diagrams (top row) vanish due to n2 = n̄2 = 0, so that the function SV

LP (k+, k−) is
only given by the vertex diagrams on the bottom row.

which is a scaless integral, and therefore vanishes in dimensional regularization. The real
contribution instead is determined by the action of the soft Wilson lines on the one gluon
state ∣X⟩ = ∣l⟩. Expressing the gluon phase space in lightcone coordinates, this reads

SR
LP (k+, k−) =

1

2Nc
∫

dd−2`⊥
(2π)d−2 ∫

dk+dk−

2π
δ−(k− − `−)δ(k+ − `+)θ(`0)

× δ(`+`− − `2⊥)Tr ⟨0∣T̄{S†
nSn̄}∣`⟩⟨`∣T{S

†
n̄Sn}∣0⟩ (5.26)

where the matrix element is given by the sum of the diagrams of fig 5.2. Integrating
now the delta functions δ(k− − `−) and δ(k+ − `+) against the integration measure, and
using eq.(4.40) for expressing the integral over the transverse momentum in spherical
coordinates, the real contribution to the LP soft function becomes

SR
LP (k+, k−) =

1

16π2Nc

(4πµ2)ε
Γ(1 − ε) ∫ d`2⊥ δ(k+k− − `2⊥)θ(k0)(`2⊥)−ε(

4g2s
k+k−

Tr[tata]) (5.27)

Eventually integrating out also `2⊥, expressing k+ and k− in terms of z̄a and z̄b and
exploiting that the virtual contribution yields zero, the LP soft function at NLO in the
MS corresponds to

SR
LP (k+, k−) = (

αs

4π
) eεγE

Γ(1 − ε) µ
2ε 4CF θ(z̄a)θ(z̄b)(Q2z̄az̄b)−1−ε . (5.28)
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Figure 5.2: Real cut diagrams contributing the LP soft function at NLO. Similarly to
the virtual ones, the diagrams on the first row vanish as a consequence of the identity
n2 = n̄2 = 0, so that the soft function SR

LP (k+, k−) is only determined by the diagrams on
the second row.

With respect to the inclusive partonic cross section of the full theory, eq.(4.41), eq.(4.46),
the soft function involve an extra power of Q−2 which is however compensated by the
same factor in the inclusive partonic cross section we have obtained via factorization
formula. Therefore, putting everything together, we finally obtain that

σ̂inclR

∣CV (−q̂2, µ)∣2
= (αs

4π
) eεγE

Γ(1 − ε) µ
2ε4 σ̂γγB CF

(Q2z̄az̄b)−ε
z̄az̄b

(5.29)

which, expanded around ε = 0, exactly gives the LP contriution to the inclusive partonic
cross section eq.(4.50).

5.1.3 LP soft function at NNLO

The calculation for the LP soft funciton at NNLO follows the same steps as the NLO
one. Thus, we first insert a complete set of states as in eq.(5.21), (5.22) and use that
virtual diagrams do not contributesince they are scaless. Therefore, the soft function in
d dimensions is equal to

SRR
LP (k+, k−) =

1

Nc
∏
i=1,2
∫

dd`i
(2π)d−1 δ

2(`2i )θ(`0i )δ(k− − (`−1 + `−2))δ(k+ − (`+1 + `+2))

Tr ⟨0∣T̄{S†
nSn̄}∣``⟩⟨``∣T{S

†
n̄Sn}∣0⟩ (5.30)
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Figure 5.3: Soft Wilson line attachments that, together with their permutation (not
showed) determine the LP soft function at NNLO. As for the full theory calculation, the
diagrams on the first row are responsible for the abelian contribution C2

F and the non
abelian CACF , while diagrams on the second row for the CACF only.

where we have used that the only non vanishing contribution is given by the two-gluon
state ∣X⟩ = ∣``⟩ = ∣`⟩⊗ ∣`⟩. The matrix element in the integrand of the soft function above
can be evaluated from the vertices fig.5.3. Selecting the abelian contribution only, we
obtain that the LP soft function is given by

SRR
LP (k+, k−) = µ4ε∫

dd`1
(2π)d−1

dd`2
(2π)d−1 δ

2(`21)δ2(`22)θ(`01)θ(`02)

× δ(k− − (`−1 + `−2))δ(k+ − (`+1 + `+2))[
8g4C2

F

`+1`
−
1`
+
2`
−
2

] . (5.31)

Eventually expressing the differential dd`1 and dd`2 in lightcone coordinates and using
eq.(4.40) to carry out the integration of the delta functions δ(`21), δ(`2) over the gluons
transverse momenta `1,T , `2,T , the soft function in the MS-scheme can be written as

SRR
LP (k+, k−) = (

αs

4π
)
2 (eεγEµ2)2ε
Γ(1 − ε)2 4C2

F ∫ d`+1 d`
−
1 d`

+
2 d`

−
2 (`+1`+2`−1`−2)−ε

× δ−(k− − (`−1 + `−2))δ+(k+ − (`+1 + `+2))[
1

`+1`
+
2`
−
1`
−
2

] . (5.32)

where we have divided by 1/2 because the integration measure is symmetric under the
exchange `1 ←→ `2. Notice that this soft function is the same as the double real cross
section eq.(4.68) apart from a factor Q2 = p−ap+b and the multiplication for born cross
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section σ̂γγB , that comes from the definition of inclusive cross section eq.(5.20). Therefore,
putting everything together, we have indeed that

σ̂inclRR

∣CV (−q̂2, µ)∣2
= (αs

4π
)
2 (eεγEµ2)2ε
Γ(1 − ε)2 4 σ̂γγB C2

F ∫ d`+1 d`
−
1 d`

+
2 d`

−
2 (`+1`+2`−1`−2)−ε

× δ−(k− − (`−1 + `−2))δ+(k+ − (`+1 + `+2))[
p−ap

+
b

`+1`
+
2`
−
1`
−
2

] (5.33)

which is equal to the cross section σ̂inclRR calculated in the full-theory at the integrand
level.

5.2 Derivation of the NNLP factorization formula
In the previous section, we have found an expression for the inclusive cross section
in terms of the LP soft function to compare with the inclusive cross section we have
calculated in the full theory. The purpose of this section, is to derive an equivalent
expression for the NNLP soft function, which we expect to reproduce the cross section σ̂0.
The reason why we can focus on the NNLP term only, is because the structure function
W 0 is, at both NLO and NNLO in αs, suppressed by two powers of λ with respect to
W incl, and scales as λ0 (after phase space integration).

The derivation of the NNLP factorization formula follows the same steps as in the
derivation of the LP factorization formula of section 5.1.1. Hence, the first thing to do,
is to write down the correct current such that, inserted in the hadronic tensor eq.(5.2)
and contracted with the longitudinal projector P 0

µν = 2zµzν exactly reproduces the cross
section σ0. The complete NNLP current written in terms of power-suppressed operators
that couple with longitudinal polarization states has been calculated in ref.[70]. This
current consists of two contributions, a hard and a hard-collinear contribution. Because
the matching coefficient of this last one is suppressed by one-loop, for describing real
emission only we just retain the hard current. In position space, this current is given by

Jµ(x) = eQf
nµ − n̄µ
2Q

∫ dr∫ dt CV (r, t) χ̄c̄(x + rn) O(1),ρn,n̄ (x)γρ,⊥ χc(x + tn̄) (5.34)

where the operator O(1),µn,n̄ describes the interaction between the collinear and soft sectors
at NNLP and is equal to

O(1),ρn,n̄ = gB
n̄,ρ
s,⊥ S

†
n̄Sn + S

†
n̄Sn gB

n,ρ
s,⊥ (5.35)

Here, the Bniµ
s,⊥ fields are the transverse components of the gluon field strengths in the

soft sector, and are defined by the action of the covariant derivative along the transverse
direction on soft Wilson lines, that is

Bni,ρ
s,⊥ =

1

g
[S⊥ni

iDρ
⊥Sni] ni = n, n̄ . (5.36)
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The one gluon and double gluon Feynman rules for these fields are respectively given by

Bni,µ,c
s,⊥

p

α, a = δca(gµα⊥ −
pi⊥n

α
i

ni ⋅ p
) (5.37)

Bni,µ,c
s,⊥

p

q

α, a

β, b

= igf cab[g
µβ
⊥ nαi
ni ⋅ p

−
gµα⊥ nβi
ni ⋅ q

+ ( pµ⊥
ni ⋅ q

− qµ⊥
ni ⋅ p

)
nαi n

β
i

ni ⋅ (p + q)
] (5.38)

We can now insert the current eq.(5.34) into the hadronic tensor eq.(5.2). As noted before,
soft partons cannot be part of the colliding protons because the energy scale of soft
radiation is much higher compared to the relevant energy scale of the protons momenta.
Analogously, also the transverse momentum gained by the vector boson cannot be given
by the transverse momenta of the protons, since this is also of order ∼ ΛQCD. Therefore,
the hadronic tensor again factorizes into a collinear and soft-transverse part, where the
collinear part is the same as eq.(5.4) and where the soft matrix element features the
operator O(1),µn,n̄ acting on the vacuum state, that is

Wµν = (n
µ − n̄µ)(nν − n̄ν)
4Q2(Qfe)−2 ∫ d4xe−iq⋅x∫ dr dr′ dt dt′ CV (r, t)C∗V (r′, t′) (5.39)

× ⟨0∣O(1),ρn,n̄

†
(x) O(1),σn,n̄ (0)∣0⟩ ⟨pp∣χ̄c(x + t′n̄)γρ,⊥χc̄(x + r′n)χ̄c̄(rn)γσ,⊥χc(tn̄)∣pp⟩ .

Since the collinear matrix element is the same as in the LP case, we can use the Fierz
identity eq.(5.7) to factorize this tensor into a collinear and an anticollinear part and
then average over color indices using eq.(5.9). The delta functions arising from these
identities constraint the product O(1),ρn,n̄

†
(x) O(1),σn,n̄ (0) to be a color singlet, and therefore ,

after color average, the NNLP soft matrix element appears inside a trace. In addition, we
project the hadronic tensor into its zeroth component by contracting it with the projector

P 0
µν = 2zµzν = 2

nµ − n̄µ
2

nν − n̄ν
2

, (5.40)

where in the second equality we have expressed the z axis in lightcone coordinates,
as given in [64]. As a result, eventually using eq.(5.12) to related the collinear and
anticollinear matrix elements to the protons PDFs, we get that

W 0 =
2Q2

fe
2E2

cm

Q2Nc(D − 2) ∫
1

0
dξa ∫

1

0
dξb∣C̃V (−ŝ, µ)∣2∫ d4x S̃NNLP (x)eix⋅(x1P

−
a /2+x2P

+
b /2−q)

[fq/N1
(ξa, µ)fq̄/N2

(ξb, µ) + fq̄/N1
(ξb, µ)fq/N2

(ξa, µ)] (5.41)

where eq.(5.14) has been used and where we have added the second part of the current
with q ←→ q̄. The term S̃NNLP(x) in this expression gives the NNLP soft function, defined
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Figure 5.4: Set of diagrams contributing to the NNLP soft function at NLO. The crossed
circle on the n and n̄ side of the cusp denotes the attachment of the Bn,µs,⊥ and Bn̄,µs,⊥
respectively.

explicitly as

SNNLP(k+, k−) = −
gρσ,⊥

Nc
Tr⟨0∣O(1),ρn,n̄

†
(x)δ−(k − p̂−)δ+(k+ − p̂+)O(1),σn,n̄ (0)∣0⟩ . (5.42)

With the hadronic tensor eq.(5.41) at hand, the cross-section σ0 can be computed in
the same way as given by eq.(5.15) and the momentum space NNLP soft function
SNNLP(k+, k−) can be obtained via performing a Fourier transform done in eq.(5.16),
(5.17). At the end, putting everything together and using that dq+dq− = Q2/ξaξbdxadxb,
the cross section in dimension D = 4 reads

dσ0

dxadxb
= ∑

i,j=q,q̄
∫

dξa
ξa
∫

dξb
ξb
fi(ξa, µ) fj(ξb, µ) σ̂0ij(

xa
ξa
,
xb
ξb
,Q2) , (5.43)

where the partonic cross-section is given by

σ̂0ij = ∣C̃V (−q̂2, µ)∣2 σ̂γγB SNNLP(k+, k−) (5.44)

and indeed, by dimensional analysis, is suppressed by a factor of Q2 with respect to
inclusive one.

5.2.1 NNLP soft function at NLO

After inserting of a complete set of states into the NNLP soft function eq.(5.42), only the
single gluon state ∣X⟩ = ∣`⟩ gives a non-vanishing contribution, and therefore we obtain
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that

SR
NNLP(k+, k−) = −

gρσ,⊥

Nc
g2µ2ε∫

dd`

(2π)d−1 δ(`
2)θ(`0)δ−(k− − `−)δ+(k+ − `+)

×Tr{⟨0∣S†
nSn̄(B

n̄,ρ
s,⊥ )†∣`⟩⟨`∣Bn̄,σs,⊥ S

†
n̄Sn∣0⟩ + ⟨0∣S†

nSn̄(B
n̄,ρ
s,⊥ )†∣`⟩⟨`∣S†

n̄SnB
n,σ
s,⊥ ∣0⟩

+ ⟨0∣(Bn,ρs,⊥ )†S†
nSn̄∣`⟩⟨`∣B

n̄,σ
s,⊥ S

†
n̄Sn∣0⟩ + ⟨0∣(B

n,ρ
s,⊥ )†S†

nSn̄∣`⟩⟨`∣S
†
n̄SnB

n,σ
s,⊥ ∣0⟩} , (5.45)

where we have used the explicit expression of the operator O(1),µn,n̄ in terms of the Bµs,⊥
fields (5.35). The amplitude in the integrand can be then evaulated from the diagram of
Fig.(5.4), which gives

SR
NNLP(k+, k−) =

g2µ2ε

2(2π) 4CF ∫
dd−2`T
(2π)d−2 ∫ d`+d`− δ−(k− − `−)δ+(k+ − `+)

δ(`+`− − `2T )[(D − 2) −
`2T
`+`−
] . (5.46)

Hence, integrating the δ+ and δ− against the integration measure and using the identity
eq.(4.40) for working out the integral over the gluons transverse component `T , we obtain
that in d = 4 − 2ε, the NNLP soft function at NLO is equal to

SR
NNLP(k+, k−) = (

αs

4π
) (1 − 2ε)e

εγEµ2ε

Γ(1 − ε) 4CF (k+k−)−ε θ(k0)θ(k+k−) . (5.47)

Eventually plugging this expression into eq.(5.44) and expanding around ε = 0, we obtain
that the σ̂0 cross section is given by this soft function multiplied by the Born cross section
σ̂B, which make it equal to the full theory cross section σ0R(za, zb) of eq.(4.41).

5.2.2 NNLP soft function at NNLO

As last, we compute the NNLP soft function at NLO, which has the same expression as
the soft function SR

NNLP of eq.(5.45) but with the single gluon state replaced by the two
gluon state ∣``⟩ = ∣`⟩ ⊗ ∣`⟩ and where the phase space in d dimension is

⨋
X

= ∫
dd`1
(2π)d−1 ∫

dd`2
(2π)d−1 δ(`

2
1)δ(`22)θ(`01)θ(`02) , (5.48)

with `1 + `2 = pX . The abelian contribution of the amplitude in the integrand can
be evaluated from the diagrams of Fig.5.5 and their permutations. Hence, expressing
the phase space eq.(5.48) in lightcone coordinates and dividing by 1/2, the NNLP soft
function at NNLO is given by

SRR
NNLP(k+, k−) =

g4µ4εC2
F

4(2π)2 8 ∫ d`+1 d`
−
1 d`

+
2 d`

−
2

× δ−(k− − `−)δ+(k+ − `+)δ(`+1`−1 − `21,T )δ(`+2`−2 − `22,T )

∫
dd−2`1,T

(2π)d−1 ∫
dd−2`2,T

(2π)d−1 [
−2⃗̀1,T ⋅ ⃗̀2,T + `+1`−1 + `+2`−2

`+1`
+
2`
−
1`
−
2

] . (5.49)
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Figure 5.5: Set of diagrams giving the abelian contribution to the NNLP soft function at
NNLO. The attachment of the Bn,µs,⊥ and Bn̄,µs,⊥ is signaled by a crossed circle. The other
attachment correspond to soft Wilson lines Sn and Sn̄.

Comparing the structure function at the integrand with the T i
RR,soft of eq.(4.59), in the

NNLP soft function we have an extra term proportional to ⃗̀1,T ⋅ ⃗̀2,T . However, when
decomposing the d − 2 dimensional integral over the emitted gluons transverse momenta
using eq. 4.38, we have

∫ dΩd−2 ⃗̀1,T ⋅ ⃗̀2,T = 0 (5.50)

by symmetry. Because the other terms of the soft function do not depend on the transverse
momenta, using the identity eq.(4.40) to perform the integral over k⃗1,T and k⃗2,T . Inserting
the expression thus obtained into the definition of the cross section eq.(5.44), we finally
obtain that

σ̂0RR

∣C̃V (−q̂2, µ)∣2
= (αs

4π
)
2

e2εγE

Γ(1 − ε)2 8 σ̂
γγ
B C2

F ∫ d`+1 d`
−
1 d`

+
2 d`

−
2 (`+1`+2`−1`−2)−ε

× δ(k− − `−)δ(k+ − `+)[ 1

`+1`
−
1

+ 1

`+2`
−
2

] . (5.51)

Comparing this expression with the one calculated in the full theory and given in eq.(4.64),
we find that they also agree apart from a factor of 2. However, because the NNLP soft
function exactly reproduced the cross-section σ̂0R at NLO and it is also in full agreement
with the functional form of the NNLO cross-section σ̂0RR, there are strong indications
that that factor might just come from an inaccuracy in our last calculations.
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Chapter 6

Conclusions

In this thesis, we have calculated the soft threshold limit of the Drell-Yan process angular
coefficients in both full QCD and in the Soft Collinear Effective Theory. Because of
their sensitivity to initial state radiation, their calculation provides an important test
for probing the accuracy of perturbative QCD predictions. With the wealth of data
collected from experiments like those at the LHC, precise theoretical predictions of the
angular coefficients allow for stringent tests against experimental results. Discrepancies
between theory and experiment can point to either the need for improved calculations or
hints of new phenomena. In addition, although we have only focused on the case of γ∗
and Z boson production, and lately only on the electromagnetic case, these results can
be straightforwardly extended to W ± bosons production, and could ultimately provide
important tests for the mass and couplings of the electroweak sector of the SM.

In the following, we summarize and discuss the main results of this thesis and point
out possible future research directions.

● Using the CS tensor decomposition, we have calculated the structure functions for
single gluon emission, which agree with the ones already present in the literature,
and the structure functions for double gluons emission. Because the LP contribution
of the parity even and parity odd structure functions was the same, at NNLO we
have restricted our analysis to the case that the intermediate vector boson was a
virtual photon. However, even in this simpler scenario, we have found that the
double real structure functions at soft threshold feature the product of gluons
transverse momenta in the denominator. Therefore, we have furthermore restricted
our attention to the abelian contribution only. Despite these simplifications, the
inclusive and zeroth structure functions still displayed a pattern for verifying the
exponentiation properties of the eikonal amplitude. Nonetheless, the double real
emission case could be more thoroughly studied including Z boson production and
the non-abelian contribution as well, thus obtaining a complete expression for the
helicity cross sections for the neutral current Drell-Yan process at soft threshold.

● That the abelian contribution of the inclusive eikonal helicity amplitude displayed
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an exponential pattern was manifest from the explicit form of the real and double
real form of the inclusive structure functions. However, at NLO order, we have
found that at soft threshold, T 0

R,soft was simply equal to one. Because the eikonal
exponentiation was difficult to point out in this case, we have rederived the helicity
cross sections using effective field theory methods. Specifically, soft factorization
theorems constitute a very powerful tool, as they correspond to an all-order Ansatz.
Using these theorems, we have rederived the LP soft function, already present in
the literature, and applied it to the calculation of the inclusive real and double real
helicity cross sections. Comparing the results obtained within SCET and in full
QCD, we have verified that they agree. What constitute the original contribution
of this thesis, was instead the derivation of the NNLP soft function. In particular,
against using the QCD results to cross-check the ones obtained in the effective
theory, we have verified that the NNLP soft function indeed reproduces the zeroth
real and double real (in this case, except for a factor of 2) structure functions
calculated in the full theory. This factorization formula could be then used for
future studies and for deriving all-order statements on the nature of the projection
of the amplitude into longitudinal polarization states.



Appendix A

Notation and Conventions

A.1 Distributions
In this thesis, we use the following conventions for the Fourier transform

f̃(x) = ∫
d4k

(2π)4 f(k)e
−ik⋅x

f(k) = ∫ d4xf̃(x)eik⋅x . (A.1)

Because by the argument of the function is clear if we are working in position or momentum
space, the tilde will always be omitted. Moreover, the dot product in the argument of
the exponential is in Minkowski metric. That is, we have that

k ⋅ x = kµgµνxν , gµν = diag(+1,−1,−1,−1) (A.2)

with the above convention for the choice of the signature. The Fourier trasform of the
identity gives the delta function, that is

F[1] = ∫ d4xeik⋅x = (2π)4 δ4(k)

F−1[1] = ∫
d4k

(2π)4 e
−ik⋅x = δ4(x) . (A.3)

Alternatively, the delta function can be defined as the derivative of the Heaviside theta
function θ(x), defined by

θ(x) ={
1 x > 0
0 x < 0

(A.4)

In addition, for the application of subtraction schemes, we make use of the plus
distribution [f(ξ)]+, defined as

∫
1

x
dξ g(ξ)[f(ξ)]+ ≡ ∫

1

x
dξ[g(ξ) − g(1)]f(ξ) − g(1)∫

x

0
dξ f(ξ) (A.5)

with g(ξ) smooth test function.
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A.2 Spinors

A.2.1 Dirac Matrices

The Dirac gamma matrices {γ0, γ1, γ2, γ3} are the basis of the spinor algebra. These are
hermitian traceless matrices satisfying the anti-commutation relations

{γµ, γν} = 2gµν

and satisfying the following properties:

Tr(γµ) = 0
Tr(γµγν) = 4gµν

Tr(γ5) = Tr(γµγνγ5) = 0
Tr(γµγνγργσγ5) = −4iεµνρσ

Tr(γµ1⋯γµn) = 0 n odd . (A.6)

A.2.2 Completness relations for spinor fields

The completeness relations for spinors u and v of momentum k are given by

∑
s

usi (k)ūsj(k) = ∑
s

ūsj(k)usi (k) = (/k +mI)ij

∑
s

vsi (k)v̄sj(k) = ∑
s

v̄sj(k)vsi (k) = (/k −mI)ij (A.7)

where the sum runs over spin states s.



Appendix B

Hadronic decomposition

B.1 Spherical harmonics

g−1(ϑ,ϕ) = 1 + cos2ϑ g2(ϑ,ϕ) =
1

2
sin2ϑ cos(2ϕ) g5(ϑ,ϕ) = sin2ϑ sin(2ϕ)

g0(ϑ,ϕ) = 1 − cos2ϑ g3(ϑ,ϕ) = sinϑ cosϕ g6(ϑ,ϕ) = sin(2ϑ) sinϕ
g1(ϑ,ϕ) = sin(2ϑ)cosϕ g4(ϑ,ϕ) = cosϑ g7(ϑ,ϕ) = sinϑ sinϕ

B.2 Interference γ∗/Z at O(αs)
The interferenxe between the virtual photon γ∗ and the Z boson can be calculated in
the same way as at tree level. The amplitude, averaged over spin, color and polarization
indices, is equal to

MγM∗
Z = Lµν,γZW

µν
γZ (B.1)

where the leptonic tensor and the hadronic tensor are defined as

Lµν
γZ,R =

e2

q4
PZ(q2)Tr[/p1γ

µ/p2γ
ν] (B.2)

Wµν
γZ,R = −gs

Qf e
2CF

4N c
Tr[/pbS

µα/paSα
ν
5] . (B.3)

As seen in section 4.1, the tensor Sµν
5 defined in eq.(4.5) consists of a symmetric part

proprtional to Sµν and of an antisymmetric part involving the trace of γ5, so that the
hadronic tensor is explicitly given by

Wµν
γZ,R = −gs

Qf e
2CF

4N c
[vf Tr[/pbS

µα/paSα
ν] − af Tr[/pbS

µα/paSα
ν
5]] . (B.4)

For the decomposition of this tensor into structure functions we just make use of the
previous results. The first trace in the above expression is non vanishing for i ∈ {−1,0,1,2}
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and zero for all the other indices, while the second is non vanishing only for i = 3,4.
Including the correct overall factor, the parity-even structure functions are equal to

W −1
γZ,R =

Qf CF

Nc
16π2αemαs ⋅ vf {(

2(q2 − u)(q2 − t) − ut
ut

) ⋅ (q
2 − u
q2 − t +

q2 − t
q2 − u)}

W 0
γZ,R =

Qf CF

Nc
16π2αemαs ⋅ vf {2 (

q2 − u
q2 − t +

q2 − t
q2 − u)}

W 1
γZ,R =

Qf CF

Nc
16π2αemαs ⋅ vf {2

√
q2s

tu
(q

2 − u
q2 − t −

q2 − t
q2 − u)}

W 2
γZ,R =

Qf CF

Nc
16π2αemαs ⋅ vf {2(

q2 − u
q2 − t +

q2 − t
q2 − u)} . (B.5)

while the parity-odd structure functions and the inclusive structure function are equal to

W 3
γZ,R =

Qf CF

Nc
16π2αemαs (−af){4

√
(q2 − u)(q2 − t)

ut
(q

2 − u
q2 − t −

q2 − t
q2 − u)}

W 4
γ,Z =

Qf CF

Nc
16π2αemαs (−af){4

¿
ÁÁÀ q2s

(q2 − t)(q2 − u)(
(q2 − u)2 + (q2 − t)2

ut
)}

W incl
γZ,R =

Qf CF

Nc
16π2αemαs ⋅ vf{2

¿
ÁÁÀ q2s

(q2 − t)(q2 − u)(
(q2 − u)2 + (q2 − t)2

ut
)} . (B.6)

As expected, these structure functions are proportional to the functions T i
R given in

eq.(4.11), (4.15) with a different normalization factor involving electroweak couplings
and numerical factors.
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