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Abstract

Consider a number field K with ring of integers OK . Call an ideal of OK h-ful if all exponents in its prime
factorization are at least h. In this thesis, we will find an asymptotic expression with one main term for the
number of h-ful ideals of norm at most x ≥ 0. To do this, we will use the two papers [ES34] and [BG58]
which have explored this problem in K = Q, and we will adapt their methods to arbitrary number fields.

Furthermore, we will consider elements α ∈ OK where the principal ideal (α) is h-ful. We will explore but
not fully solve the problem of finding the number of such α of height ≤ x for some x ≥ 0, with height function
given by

H(α) =
∏

v∈Ω∞

max(1, ||α||v),

where Ω∞ denotes the set of infinite places.
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1 Introduction

Mathematicians have often been interested in numbers that have various properties, and their distribution
within the integers or reals. This thesis starts with just such a question. Namely, given some positive integer
h, consider the set of numbers k ∈ Z such that if a prime p divides k, then ph also divides k. Alternatively,
this can be phrased as the set of numbers for which all (nonzero) exponents in their prime factorization are
at least h. Numbers with this property are often called h-ful or h-full, and we will use the former term in
this thesis. The question that starts our thesis is the following: how many of these numbers are less than
some bound x?

In 1933, Erdős and Szekeres decided to investigate this question (along with counting the number of abelian
groups with a given cardinality), and they published a paper [ES34] concerning these two problems, where
they use manipulation of nested sums. Their findings are as follows.

Denote
Nh(x) = #{k ∈ Z>0 : k ≤ x, p | k =⇒ ph | k}.

Then Erdős and Szekeres find the following result.

Theorem 1.1 (Erdős, Szekeres)

Nh(x) = C1(h)x
1
h +O

(
x

1
h+1

)
,

where

C1(h) =
∏
p

1 +

2h−1∑
j=h+1

p−j/h

 .

Erdős and Szekeres actually represented C1(h) somewhat differently, but the expression used here is easier
to state and is equal in value.

In 1957, Bateman and Grosswald decided to expand upon this result in their paper [BG58]. Rephrasing
the manipulation of nested sums into sums of coefficients of Dirichlet series, they proved a more detailed
asymptotic expression.

Theorem 1.2 (Bateman, Grosswald)

Nh(x) = C1(h)x
1
h + C2(h)x

1
h+1 +O

(
x

1
h+2

)
,

where

C1(h) =
∏
p

1 +

2h−1∑
j=h+1

p−j/h

 ,

and where

C2(h) = ζ

(
h

h+ 1

)∏
p

1 +

2h−1∑
j=h+2

p−
j
h −

3h∑
j=2h+2

p−
j

h+1

 .

Just like how mathematicians are interested in numbers with certain properties, they are also interested in
generalization. To what extent does this problem rely on the specific structure of the integers? Can we adapt
it to other settings?

In this thesis, we find that we can, in fact, adapt the problem to other settings. Namely, to rings of integers of
various number fields. After all, these have a lot of properties in common with Z, but they also have certain
new difficulties. For example, in general, rings of integers of number fields do not have a finite number
of units, they do not have unique factorization of elements, and they do not have a total ordering that is
compatible with the ring structure.
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We will see that, despite these complications, we can have a sensible analogue to the h-ful numbers that are
less than or equal to some x ≥ 0, by looking at ideals. Namely, we can have h-ful ideals (which will be defined
more precisely in Section 3), and we can use the ideal norm to only consider ideals of norm at most x ≥ 0.

In this thesis, we will work towards the following result (which is Theorem 5.6):

Theorem 1.3 (Main Theorem) Let K be a number field of degree dK with ring of integers OK . Let ZK be
the residue of the Dedekind zeta function ζK(s) at s = 1. Let NK,h(x) denote the number of h-ful ideals I of
OK of norm at most x ≥ 0. Then we have

NK,h(x) = ZKγx
1
h +O

(
xα(log(x+ 1))β

)
,

where

γ =
∏
p

1 +

2h−1∑
m=h+1

N(p)−
m
h

 ,

where

α =

{
1

h+1 if 2h+ 1 ≥ dK
dK−1

h(dK+1) if 2h+ 1 < dK
,

and where

β =


0 if 2h+ 1 > dK

dK if 2h+ 1 = dK

dK − 1 if 2h+ 1 < dK

.

After this, we will consider elements α of the ring of integers that generate h-ful ideals, rather than looking
at the ideals themselves. Instead of using a norm function like we did for ideals, we will use a height function,
defined as

H(α) =
∏

v∈Ω∞

max(1, ||α||v),

where Ω∞ denotes the set of infinite places of K.

In this setting, we cannot easily use similar methods to those of [ES34] and [BG58], so we will try various
new methods. We will explore in what ways the number of h-ful elements α of height at most x differs from
the number of h-ful ideals of norm at most x, though we will not find a general asymptotic formula for this
quantity.

The division into chapters is as follows.

Chapter 2 will introduce the notation used throughout the thesis.

Chapter 3 will introduce the necessary definitions to talk about h-ful ideals of bounded norm in number
fields, so that we can properly define the quantity we want to find an asymptotic formula for.

Chapter 4 will adapt the methods from Erdős and Szekeres, though not yet reach a desirable asymptotic
formula, and then will rephrase the problem in the language of Bateman and Grosswald using Dirichlet series,
along with proving the tools necessary to get a nice asymptotic function.

Chapter 5 will finally state and prove the asymptotic formula we are after, by showing that the conditions
for using the tools from Chapter 4 are fulfilled, and then applying them.

Chapter 6 will introduce the aforementioned height function, then explore in which ways it is similar or
different to the ideal norm, and explore various avenues that bridge one or more differences between the
number of h-ful ideals of bounded norm and the number of h-ful elements of bounded height, unfortunately
without providing a full solution.
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2 Notation

In this section, we define some notation and conventions that will be used throughout the thesis.

If a, b ∈ Z, then we use a | b to indicate that a divides b, and we use a ∤ b to indicate a does not divide b.
This notation will extend to ideals once we define division for them.

Every product
∏

p ranges over all positive prime numbers in Z.

Given two sets A,B, we will use A \B to indicate the set difference {a ∈ A : a /∈ B}.

A ring is assumed to have a multiplicative identity 1.

In a number field K, its ring of integers is always denoted by OK , its Dedekind zeta function is denoted by
ζK(s), and its degree is denoted by dK . The set of (integral) ideals of OK is denoted by IK . The number of
real embeddings is denoted by r1 and the number of pairs of complex embeddings is denoted by r2, so that
dK = r1 + 2r2. The residue of the Dedekind zeta function at s = 1 is denoted by ZK . The class number of
K is denoted by hK .

The class of an ideal I in the ideal class group is denoted by [I].

The notation
∑

N(I)≤x is shorthand for
∑

I∈IK ,N(I)≤x. Every product
∏

p ranges over all prime ideals p of

OK . If a ∈ OK , then let (a) denote the ideal generated by a. The notation I ̸= 0 is shorthand for I ̸= (0)
and the notation

∑
I ̸=0 is shorthand for

∑
I∈IK ,I ̸=0. Similarly, IK \ {0} is shorthand for IK \ {(0)}.

Let ΩK denote the set of infinite (Archimedean) places of K, and for all α ∈ K, denote ||α||v := v(α). These
places are normalized in such a way that if v ∈ ΩK corresponds to a real embedding, then ||k||v = |k| for all
k ∈ Z, and if v corresponds to a pair of complex embeddings, then ||k||v = |k|2 for all k ∈ Z.
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3 Defining h-fulness and norm in number fields

In the introduction, we considered the problem of finding an asymptotic formula for the number of h-ful
numbers that are less than or equal to some x ≥ 0. If we want to translate this problem to number fields,
the first thing we have to do is to define what h-fulness means in a number field.

Let K be a number field with ring of integers OK . Then we know that primes are, in general, no longer
numbers, but ideals in the ring of integers. Since Z is a principal ideal domain, the prime ideals correspond
to the positive prime numbers, but such a correspondence is not possible for all rings of integers.

We see that prime ideals in rings of integers have some desirable properties with these classical lemmas.

Lemma 3.1 Let K be a number field with ring of integers OK . Then all nonzero prime ideals are maximal.

Proof. For a proof, see any book on Algebraic Number Theory or Commutative Algebra, for example [ST02,
§5.2, Theorem 5.3].

Definition 3.2 Let R be a ring and let I, J ⊆ R be two ideals. We call I and J comaximal if I + J = R.
If R is the ring of integers of a number field, we may use the term coprime as well, since all nonzero prime
ideals are maximal, and all maximal ideals are nonzero primes.

Remark 3.3 Since 1 ∈ R, two ideals I and J being comaximal implies there are r ∈ I, s ∈ J such that
r+ s = 1. If I = (a) and J = (b) are principal, then this implies there exist m,n ∈ R such that ma+nb = 1,
which matches the definition of coprimality in Z.

Lemma 3.4 Let R be a ring and let I, J ⊆ R be two comaximal ideals. Then for all m,n ∈ Z>0, we have
that Im and Jn are comaximal.

Proof. Consider (I + J)m+n = R, due to comaximality of I and J . We also see

(I + J)m+n = Im+n + · · ·+ ImJn + · · ·+ Jm+n,

where all terms contain a factor of Im or Jn. Hence, each term is contained within either of those two, and
it follows that all terms are contained in Im + Jn. Therefore, (I + J)m+n ⊆ Im + Jn and thus Im + Jn = R,
proving comaximality.

Corollary 3.5 Let K be a number field and let OK be its ring of integers. Let p, q ∈ IK be two prime
ideals. Then for all m,n ∈ Z>0, we have that pm and qn are comaximal.

To define h-fulness on a number field, we will also have to define divisibility of ideals, since the primes are
now ideals rather than numbers.

Definition 3.6 Let R be a ring, with I, J ⊆ R two ideals. Then we say that I divides J or I | J if J ⊆ I.

Remark 3.7 If I, J are principal, such that I = (r) and J = (s), then J ⊆ I implies that there exists
k ∈ R such that s = kr, in other words, r | s. So this is equivalent to the usual definition in principal ideal
domains.

We will use the following definition for h-fulness in number fields:

Definition 3.8 Let K be a number field with ring of integers OK . Let I ∈ IK \ {0} be an ideal. Then we
call I h-ful if for all prime ideals p ⊆ OK , we have p | I =⇒ ph | I.
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Ideals are a logical choice in this definition, because ideals have unique factorization into prime ideals, which
mirrors the unique factorization that is useful for integers and h-fulness.

Lemma 3.9 Let K be a number ring, with ring of integers OK . Let I ∈ IK \ {0} be an ideal. Then there
exist unique ep ∈ Z≥0, with only finitely many nonzero ep, such that

I =
∏
p

pep .

Proof. See for example [ST02, §5.2, Theorem 5.6].

Next, we need to find an analogue to the bound we had in Z, where we would estimate the number of h-ful
numbers up to x. But number fields do not necessarily come with such an ordering, especially as they can
contain complex numbers, which have no natural ordering. The simplest thing to do would be to find a map
from K to R and then do comparisons there.

Definition 3.10 Let K be a number field, with ring of integers OK , and let I ∈ IK \{0} be an ideal. Then
the norm N(I) of the ideal I is given by N(I) := [OK : I] = #(OK/I).

Remark 3.11 The norm is finite for all nonzero ideals in a ring of integers (see for example the proof of
part (d) of [ST02, §5.2, Theorem 5.3]). In Z, we have that if I = (k), then N(I) = |k|, so it reduces to the
norm we already know.

The ideal norm is also multiplicative.

Lemma 3.12 Let K be a number field, with ring of integers OK , and let I, J be two nonzero ideals. Then
N(IJ) = N(I)N(J).

Proof. See for example [ST02, §5.3, Theorem 5.12].

With the ideal norm and h-fulness condition we now have for number fields, we can define the following
quantities.

Definition 3.13 Let
SK,h = {I ∈ IK \ {0} : p | I =⇒ ph | I}

and
NK,h(x) = #{I ∈ IK \ {0} : N(I) ≤ x, p | I =⇒ ph | I}.

We will try to find an asymptotic formula for NK,h(x) in the next chapter.
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4 Tools for approximating NK,h(x)

In this section, we will first consider the methods of [ES34] and how they transfer to number fields. Then,
we will see how this is in fact a specific case of the methods in [BG58] and explore those, which will also give
us a nicer expression for NK,h(x).

4.1 NK,h(x) as sum

To start, we recall Lemma 3.9: every ideal can be written uniquely as a product of nonnegative powers of
prime ideals. For h-ful ideals, we can separate all the nonzero exponents into a nonnegative multiple of h
and remainder that is strictly between h and 2h. In other words, if I ∈ IK \ {0} is h-ful, then

I =
∏
p

ep ̸=0

pep =
∏
p

ep ̸=0

pkph
∏
p

ep ̸=0

pe
′
p ,

with kp ∈ Z≥0, e
′
p ∈ Z, h+ 1 ≤ e′p ≤ 2h− 1, and kph+ e′p = ep for all p.

Define
DK,h = {I ∈ IK \ {0} : I =

∏
p

pep , ep = 0 or h+ 1 ≤ ep ≤ 2h− 1 for all p}.

We can now write the following:

NK,h(x) =
∑

N(I)≤x
I∈SK,h

1 =
∑

N(I)≤x
I∈DK,h

∑
N(J)≤x/N(I)

∃J̃: J=J̃h

1

=
∑

N(I)≤x
I∈DK,h

∑
N(J)≤(x/N(I))1/h

1 =
∑

N(I)≤x
I∈DK,h

#

J ∈ IK \ {0} : N(J) ≤
(

x

N(I)

) 1
h

 .

So if we have an expression for #{J ∈ IK \ {0} : N(J) ≤ y} for arbitrary y, then we can get a formula
for NK,h(x). Luckily, this is a fairly classic problem, and there are many papers that include the result we
desire. For example, we can use Theorem 3 from [LDTT22]:

Theorem 4.1 (Lowry-Duda, Taniguchi, Thorne) Let K be a number field of degree dK . Let ∆K be the
discriminant of K and recall from Section 2 that we set ZK := ress=1ζK(s). Then, for y ≥ 2,

#{J ∈ IK \ {0} : N(J) < y} = ZKy +O

(
|∆K |

1
dK+1 y

dK−1

dK+1 (log y)dK−1

)
,

where the implied constant depends only on dK .

We can immediately remark that the theorem also applies to #{J ∈ IK \ {0} : N(J) ≤ y}. Namely, if y /∈ Z,
then this is equal to #{J ∈ IK \{0} : N(J) < y}, and if y is an integer, we can say #{J ∈ IK \{0} : N(J) ≤
y} = #{J ∈ IK \ {0} : N(J) < y + ε} for some 0 < ε < 1 and since we assume y ≥ 2, we have

O

(
|∆K |

1
dK+1 (y + ε)

dK−1

dK+1 (log(y + ε))dK−1

)
= O

(
|∆K |

1
dK+1 y

dK−1

dK+1 (log y)dK−1

)
.

Since #{J ∈ IK \ {0} : N(J) ≤ 1} = 1 and #{J ∈ IK \ {0} : N(J) ≤ 0} = 0, we may extend the result to
y ∈ R≥0 by using log(x+ 1) rather than log(x) in the error term. For our purposes, the independence of the
implied constant of ∆K is also not important, so we may as well use the following corollary:

Corollary 4.2 (Lowry-Duda, Taniguchi, Thorne) Let K be a number field of degree dK and recall from
Section 2 that we set ZK := ress=1ζK(s). Then, for y ∈ R≥0, we have

#{J ∈ IK \ {0} : N(J) ≤ y} = ZKy +O

(
y

dK−1

dK+1 (log(y + 1))dK−1

)
.
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Putting this into our expression for NK,h(x), we find that

NK,h(x) =
∑

N(I)≤x
I∈DK,h

#

J ∈ IK \ {0} : N(J) ≤
(

x

N(I)

) 1
h



= ZKx
1
h

∑
N(I)≤x
I∈DK,h

N(I)−
1
h +

∑
N(I)≤x
I∈DK,h

O

( x

N(I)

) dK−1

h(dK+1)

log

( x

N(I)

) 1
h

+ 1




dK−1


= ZKx
1
h

∑
N(I)≤x
I∈DK,h

N(I)−
1
h +O

x
dK−1

h(dK+1)
(
log(x+ 1)

)dK−1 ∑
N(I)≤x
I∈DK,h

N(I)
− dK−1

h(dK+1)

 .

This is not yet in a form that is useful to us, as the main term still has a sum that depends on x of which we
do not know the behavior. We could prove that∑

I∈DK,h

N(I)−
1
h

converges, which would eventually give us a nice main term of order x
1
h . However, the error term is still

tricky to deal with, due to the sum that is included. The infinite sum∑
I∈DK,h

N(I)
− dK−1

h(dK+1)

does not necessarily converge.

We can find a bound for the sum ∑
N(I)≤x
I∈DK,h

N(I)
− dK−1

h(dK+1)

in the error term, but this requires some effort. In order to find such a bound, we will use the methods from
[BG58]. They rephrase the problem of finding NK,h(x) in a clearer and more generalizable way, namely as
the sum of coefficients of a Dirichlet series, which we will introduce in the next subsection.

4.2 NK,h(x) and Dirichlet series

We must first define what a Dirichlet series in a number field is.

Definition 4.3 Let K be a number field with ring of integers OK . Then a Dirichlet series on OK is a
sum of the form ∑

I ̸=0

a(I)N(I)−s,

where s ∈ R and for each ideal I ∈ IK \ {0}, a(I) is a given complex number.

Remark 4.4 If we consider OK = Z and take the positive representative for each ideal, then we get

∑
I ̸=0

a(I)N(I)−s =

∞∑
n=1

ann
−s,

so this reduces to the standard definition on Z.
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Lemma 4.5 Let K be a number field with ring of integers OK . Let a(I) : IK \ {0} → C be a function.
If a(I) is multiplicative on comaximal ideals, in other words, a(I)a(J) = a(IJ) if I + J = OK , then on the
abscissa of absolute convergence of

∑
I ̸=0 a(I)N(I)−s, we have∑

I ̸=0

a(I)N(I)−s =
∏
p

∞∑
j=0

a(pj)N(p)−js.

Proof. Due to the norm being multiplicative by Lemma 3.12 as well as a(I) being multiplicative on comaximal
ideals, it is clear that for every tuple (ep)p where only finitely many elements are nonzero, we have∏

p

a(pep)N(p)−eps = a(I)N(I)−s,

where
I =

∏
p

pep .

Due to unique prime factorization of nonzero ideals, comaximality of distinct nonzero prime powers, and the
ability to rearrange terms due to absolute convergence, we find that the claim indeed holds.

Remark 4.6 Since there can be multiple ideals with the same norm in a number ring, we can have∑
I ̸=0

a(I)N(I)−s =
∑
I ̸=0

b(I)N(I)−s

even if we do not have that a(I) = b(I) for all I. This is a problem especially when multiplying two Dirichlet
series. Hence, we specifically define multiplication in the following way.

Definition 4.7 LetK be a number field with ring of integersOK . Let
∑

I ̸=0 a(I)N(I)−s and
∑

I ̸=0 b(I)N(I)−s

be two Dirichlet series. Then define their product∑
I ̸=0

c(I)N(I)−s :=
∑
I ̸=0

a(I)N(I)−s ·
∑
I ̸=0

b(I)N(I)−s

specifically with

c(I) =
∑

J1J2=I

a(J1)b(J2).

Definition 4.8 Let K be a number field with ring of integers OK . For all prime ideals p and all j ∈ Z≥0,
let a(pj) be some complex number. Let∑

I ̸=0

b(I)N(I)−s :=
∏
p

∞∑
j=0

a(pj)N(p)−js

be a Dirichlet series, where a(OK) = 1. Then for a given I =
∏

p p
ep , we define b(I) specifically as

b(I) =
∏
p

a(pep).

Remark 4.9 Note that in the above definition, the numbers b(I) are well-defined, since only finitely many
ep are nonzero, and for all p where ep = 0, we have a(pep) = a(OK) = 1. Therefore, the numbers b(I) are
actually finite products.

Also note that b(pj) = a(pj) for all p and j, so we may as well write∑
I ̸=0

a(I)N(I)−s :=
∏
p

∞∑
j=0

a(pj)N(p)−js,

and extend the a(pj) to a(I) defined for all ideals I ̸= 0.
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Definition 4.10 Since we only really care about the coefficients of Dirichlet series and not about the
convergence, we will define all further equalities of Dirichlet series to be equalities of coefficients.

Let c(I) be equal to 1 if I is an h-ful ideal (so if I ∈ SK,h), and 0 otherwise. Let bh(I) be equal to 1 if
I ∈ DK,h and 0 otherwise. Then we can consider the Dirichlet series∑

I ̸=0

c(I)N(I)−s,

and by the reasoning in the previous subsection, this is equal to∑
I ̸=0

N(I)−hs
∑
I ̸=0

bh(I)N(I)−s.

The numbers bh(I) are multiplicative on comaximal ideals, hence, Lemma 4.5 applies. So we can write

∑
I ̸=0

c(I)N(I)−s = ζK(hs)
∏
p

1 +

2h−1∑
j=h+1

N(p)−js

 .

Note that the right side consists of two Dirichlet series, with the second written as a product over all primes.
But if we multiply this out, we see that it is actually equal to a Dirichlet series (at least on the abscissa
of absolute convergence). As it turns out, if we can show that both of these Dirichlet series have certain
properties, we can estimate NK,h(s) =

∑
N(I)≤x c(I). This can be seen in the following lemma, which is

adapted from Lemma 1 in [BG58]:

Proposition 4.11 (Generalization of Bateman and Grosswald) Suppose that∑
I ̸=0

a(I)N(I)−s ·
∑
I ̸=0

b(I)N(I)−s =
∑
I ̸=0

c(I)N(I)−s,

with the c(I) defined as in Definition 4.7. Let A(x) =
∑

N(I)≤x a(I) and similarly for B(x) and C(x).

Suppose
A(x) = α0x

λ0 + · · ·+ αrx
λr +O(xλ(log(x+ 1))µ)

and ∑
N(I)≤x

|b(I)| = O(xν),

with λ, µ, ν ∈ R≥0 and with all other constants arbitrary complex numbers.

Then
C(x) = γ0x

λ0 + · · ·+ γrx
λr +O(xmax(λ,ν)(log(x+ 1))µ

′
),

where

γj =

{
0 if Reλj ≤ ν,

αj

∑
I ̸=0 b(I)N(I)−λj if Reλj > ν,

µ′ =


µ if λ > ν,

µ+ 1 if λ = ν,

0 if λ < ν and for all j,Reλj ̸= ν,

1 if λ < ν and there is some j with Reλj = ν.

Before we can complete this proof, though, we will need to generalize partial summation to number fields,
and use it to get some basic results.
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Proposition 4.12 Let K be a number field with ring of integers OK . Let IK be the set of ideals of OK ,
let J ⊂ IK be a subset of the set of all ideals, and let f : J → Z>0 be a function such that f−1({k}) is finite
for all k ∈ Z>0. Let g : [1, x] → C be a continuously differentiable function. For each ideal I ∈ J , let a(I) be
a complex number, and for x ∈ R, define

A(x) =
∑

f(I)≤x

a(I).

Then for x ≥ 1, we have ∑
f(I)≤x

a(I)g(f(I)) = A(x)g(x)−
∫ x

1

A(t)g′(t)dt.

Proof. This proof is based on the one in [Eve20, §2.1]. Set y = ⌊x⌋. Then

∑
f(I)≤x

a(I)g(f(I)) =

y∑
k=1

∑
f(I)=k

a(I)g(k) =

y∑
k=1

g(k)
∑

f(I)=k

a(I)

=

y∑
k=1

g(k)(A(k)−A(k − 1)) =

y∑
k=1

g(k)A(k)−
y∑

k=1

g(k)A(k − 1).

Note that A(0) = 0, since the minimum value f can attain is 1. Thus, we can rewrite as follows:

y∑
k=1

g(k)A(k)−
y∑

k=1

g(k)A(k − 1) =

y∑
k=1

g(k)A(k)−
y−1∑
k=1

g(k + 1)A(k)

= g(y)A(y)−
y−1∑
k=1

A(k)(g(k + 1)− g(k)).

Since A(t) is constant on the interval [k, k + 1) with k integer, we know that∫ k+1

k

A(t)g′(t)dt = A(k)

∫ k+1

k

g′(t)dt = A(k)(g(k + 1)− g(k)).

Hence,
y−1∑
k=1

A(k)(g(k + 1)− g(k)) =

y−1∑
k=1

∫ k+1

k

A(t)g′(t)dt =

∫ y

1

A(t)g′(t)dt.

Finally, note that A(y) = A(x) and that∫ x

y

A(t)g′(t)dt = A(y)

∫ x

y

g′(t)dt = A(x)g(x)−A(y)g(y).

It follows that ∑
f(I)≤x

a(I)g(f(I)) = g(y)A(y)−
y−1∑
k=1

A(k)(g(k + 1)− g(k))

= g(y)A(y)−
∫ y

1

A(t)g′(t)dt = g(x)A(x)−
∫ x

1

A(t)g′(t)dt.

This proves the statement.

A direct corollary of this proposition is the following result, where we take f(I) = N(I) and J = IK \ {0}.

12



Corollary 4.13 Let K be a number field with ring of integers OK . Let g : [1, x] → C be a continuously
differentiable function. For each ideal I ∈ IK \ {0}, let a(I) be a complex number, and define

A(x) =
∑

N(I)≤x

a(I).

Then we have ∑
N(I)≤x

a(I)g(N(I)) = A(x)g(x)−
∫ x

1

A(t)g′(t)dt.

We will need to apply partial summation in a few cases which we will then apply in the proof of Proposi-
tion 4.11.

Lemma 4.14 Let K be a field with ring of integers OK . For each ideal I ∈ IK \ {0}, let b(I) be a complex
number, such that for all x ∈ R>0, we have ∑

N(I)≤x

|b(I)| = O (xν) .

Let η ∈ R. Then we get the following bounds for
∑

N(I)≤x |b(I)|N(I)−η.

If ν = η, we get ∑
N(I)≤x

|b(I)|N(I)−η = O(log(x+ 1)).

If ν > η, we get ∑
N(I)≤x

|b(I)|N(I)−η = O
(
xν−η

)
.

And finally, if ν < η, we get the following two results:∑
N(I)≤x

|b(I)|N(I)−η = O(1),

∑
N(I)>x

|b(I)|N(I)−η = O
(
xν−η

)
.

Proof. We use Corollary 4.13. This gives∑
N(I)≤x

|b(I)|N(I)−η =
∑

N(I)≤x

|b(I)| · x−η + η

∫ x

1

∑
N(I)≤t

|b(I)| · t−η−1dt = O
(
xν−η

)
+

∫ x

1

O
(
tν−η−1

)
dt.

We now have two cases: ν = η and ν ̸= η. In the first case,

O
(
xν−η

)
+

∫ x

1

O
(
tν−η−1

)
dt = O(1) +O(log(x)) = O(log(x)) = O(log(x+ 1)),

for x ≥ 1 (which is what we are interested in). In the second case,

O
(
xν−η

)
+

∫ x

1

O
(
tν−η−1

)
dt = O

(
xν−η

)
+O(1),

so if η > ν, we are only left with O(1) for x ≥ 1, and if η < ν, we are only left with O(xν−η).

Additionally, if η > ν, we can use Corollary 4.13 on
∑

n>x |b(I)|n−η as well, which yields∑
N(I)>x

|b(I)|n−η = lim
R→∞

∑
x<N(I)≤R

|b(I)|n−η

13



= lim
R→∞

 ∑
N(I)≤R

|b(I)| ·R−η −
∑

N(I)≤x

|b(I)| · x−η − η

∫ R

x

∑
N(I)≤t

|b(I)|t−η−1dt


= O

(
xν−η

)
+ lim

R→∞

(
O
(
Rν−η

)
+ η

∫ R

x

O
(
tν−η−1

)
dt

)
= O

(
xν−η

)
.

This proves the desired statement.

Now we are ready for the proof of Proposition 4.11

Proof. We know that ∑
I ̸=0

c(I)N(I)−s =
∑
I ̸=0

a(I)N(I)−s ·
∑
I ̸=0

b(I)N(I)−s,

but also ∑
I ̸=0

c(I)N(I)−s =

∞∑
k=1

∑
N(I)=k

c(I)k−s =

∞∑
k=1

k−s
∑

N(I)=k

c(I).

If we use Lemma 3.12, we find that∑
N(I)=k

c(I) =
∑
d|k

∑
N(I)=d

∑
N(J)=k/d

a(J)b(I).

From there, it follows that

C(x) =
∑

N(I)≤x

c(I) =
∑
k≤x

∑
N(I)=k

c(I)

=
∑
k≤x

∑
d|k

∑
N(I)=d

∑
N(J)=k/d

a(J)b(I) =
∑
d≤x

∑
m≤x/d

∑
N(I)=d

∑
N(J)=m

a(J)b(I)

=
∑
d≤x

∑
N(I)=d

b(I)
∑

m≤x/d

∑
N(J)=m

a(J) =
∑

N(I)≤x

b(I)A

(
x

N(I)

)
.

We find

∑
N(I)≤x

b(I)A

(
x

N(I)

)
=

r∑
j=0

αjx
λj

∑
N(I)≤x

b(I)N(I)−λj +
∑

N(I)≤x

b(I)O

xλ

(
log

(
x

N(I)
+ 1

))µ

N(I)−λ



=

r∑
j=0

αjx
λj

∑
N(I)≤x

b(I)N(I)−λj +O

xλ
∑

N(I)≤x

|b(I)|

(
log

(
x

N(I)
+ 1

))µ

N(I)−λ


=

r∑
j=0

αjx
λj

∑
N(I)≤x

b(I)N(I)−λj +O

xλ
∑

N(I)≤x

|b(I)|(log(x+ 1))µN(I)−λ


=

r∑
j=0

αjx
λj

∑
N(I)≤x

b(I)N(I)−λj +O

xλ(log(x+ 1))µ
∑

N(I)≤x

|b(I)|N(I)−λ

 .

The rest of the proof follows using Lemma 4.14 and separating into cases. If we have some λj with Reλj > ν,
then use ∑

N(I)≤x

b(I)N(I)−λj =
∑

I∈IK\{0}

b(I)N(I)−λj −
∑

N(I)>x

b(I)N(I)−λj .

If λ < ν, then we have to slightly alter the error term in the asymptotic for A(x). Namely, since for all ε > 0,
we have log(x+ 1) = O(xε), we can set O(xλ logµ(x+ 1)) = O(xλ′

) for some λ′ with λ < λ′ < ν. Using this
modified error term yields the result we are after.
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With this lemma, we can now start working on the question of estimating NK,h(x). We have already written

∑
I ̸=0

c(I)N(I)−s = ζK(hs)
∏
p

1 +

2h−1∑
j=h+1

N(p)−js

 ,

where each of the two factors on the right are also Dirichlet series. Now we need to write this in the form∑
I ̸=0

c(I)N(I)−s =
∑
I ̸=0

a(I)N(I)−s
∑
I ̸=0

b(I)N(I)−s,

to be able to estimate the sums of the a(I) and b(I). We will do this in the next section.
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5 Estimating sums of coefficients

For the entirety of this section, for I ∈ IK \ {0}, set ah(I) and bh(I) according to Definition 4.8 such that

∑
I ̸=0

ah(I)N(I)−s = ζK(hs) =
∏
p

 ∞∑
j=0

N(p)−jhs


and ∑

I ̸=0

bh(I)N(I)−s =
∏
p

1 +

2h−1∑
j=h+1

N(p)−js


5.1 Dedekind Zeta Functions

We will start with finding the sum of the ah(I). We know that

ζK(hs) =
∑
J ̸=0

N(J)−hs =
∑
J ̸=0

(
N(J)h

)−s

,

so
ζK(hs) =

∑
I ̸=0

ah(I)N(I)−s

where ah(I) = 1 if there is some ideal J such that Jh = I and ah(I) = 0 otherwise. It follows that∑
N(I)≤x

ah(I) = #
{
J ∈ IK \ {0} : N(J)h ≤ x

}
= #

{
J ∈ IK \ {0} : N(J) ≤ x

1
h

}
.

At this point, we can use Corollary 4.2 again. Hence, we get the following lemma:

Lemma 5.1 Let K be a number field with ring of integers OK . Define ah(I) such that

ζK(hs) =
∏
p

∞∑
j=0

N(I)−jhs =
∑
I ̸=0

ah(I)N(I)−s,

as in Definition 4.8. Then ∑
N(I)≤x

ah(I) = ZKx
1
h +O

(
x

dK−1

h(dK+1) (log(x+ 1))dK−1

)
.

Proof. As we saw above, we have ah(I) = 1 if there is some ideal J such that I = Jh and ah(I) = 0 otherwise,
and hence ∑

N(I)≤x

ah(I) = #{J ∈ IK \ {0} : N(J) ≤ x
1
h }.

So by Corollary 4.2, we see that

∑
N(I)≤x

ah(I) = ZKx
1
h +O

(
x

dK−1

h(dK+1)

(
log
(
x

1
h + 1

))dK−1
)

= ZKx
1
h +O

(
x

dK−1

h(dK+1) (log(x+ 1))dK−1

)
.

For the bh(I), we see that when we write
∏

p

(
1 +

∑2h−1
j=h+1 N(p)−js

)
=
∑

I ̸=0 bh(I)N(I)−s as in Definition 4.8,

then the bh(I) are bounded by the coefficients of ζK((h+1)s) . . . ζK((2h−1)s). We will prove this statement
in the next two lemmas.
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Lemma 5.2 Let K be a number field with ring of integers OK . Suppose that for each prime ideal power
pj, we have two complex numbers a(pj), b(pj) with a(pj) ≥ b(pj) ≥ 0 for all j = 0, 1, . . . . Define

∑
I ̸=0

a(I)N(I)−s :=
∏
p

∞∑
j=0

a(pj)N(p)−js,

∑
I ̸=0

b(I)N(I)−s :=
∏
p

∞∑
j=0

b(pj)N(p)−js,

both according to Definition 4.8. Then we have

a(I) ≥ b(I), for all I.

Proof. We know that by our definition concerning Dirichlet series written as products over primes, we have
if I =

∏
p p

ep , then

a(I) =
∏
p

a(pep), b(I) =
∏
p

b(pep).

Since a(pj) ≥ b(pj) ≥ 0 for all j, we have

a(I) =
∏
p

a(pep) ≥
∏
p

b(pep) = b(I),

for all I, which proves the statement.

Lemma 5.3 Let K be a number field with ring of integers OK . For all I ∈ IK \ {0}, set bh(I) and dh(I)
as in Definition 4.8 and Definition 4.7 such that

∑
I ̸=0

bh(I)N(I)−s :=
∏
p

1 +

2h−1∑
k=h+1

N(p)−ks


and ∑

I ̸=0

dh(I)N(I)−s = ζK((h+ 1)s) . . . ζK((2h− 1)s).

Then ∑
N(I)=k

bh(I) ≤
∑

N(I)=k

dh(I).

Proof. We know that

ζK((h+ 1)s) . . . ζK((2h− 1)s) =

2h−1∏
k=h+1

∏
p

∞∑
j=0

N(p)−jks =
∏
p

2h−1∏
k=h+1

∞∑
j=0

N(p)−jks

=
∏
p

1 +

2h−1∑
k=h+1

N(p)−ks +

∞∑
k=2h+2

f(I)N(p)−ks

 ,

where the f(I) are all nonnegative integers, by expanding the product of sums. Clearly,

1 +

2h−1∑
k=h+1

N(p)−ks +

∞∑
k=2h+2

f(I)N(p)−ks ≥ 1 +

2h−1∑
k=h+1

N(p)−ks ≥ 0,

so we can apply Lemma 5.2, which gives us exactly the result we want.
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Now that we can bound the coefficients of our Dirichlet series by the coefficients of a product of Dedekind
zeta functions, we can use the following result:

Lemma 5.4 Let K be a number field with ring of integers OK . Let s ∈ R, a ∈ Z>0, and k ∈ Z≥0. For all
I ∈ IK \ {0}, set f(I, a, k) as in Definition 4.7 and Definition 4.8 such that∑

I ̸=0

f(I, a, k)N(I)s := ζK(as)ζK((a+ 1)s) . . . ζK((a+ k)s).

Then ∑
N(I)≤x

|f(I, a, k)| = O
(
x

1
a

)
.

Proof. Note that ∑
N(I)≤x

|f(I, a, k)| =
∑

N(I)≤x

f(I, a, k) =
∑

N(I0)a...N(Ik)a+k≤x

1,

since all coefficients are positive.

If k = 0, then we find ∑
N(I)≤x

|f(I, a, k)| =
∑

N(I)a≤x

1 =
∑

N(I)≤x
1
a

1.

From Corollary 4.2, we get that
∑

N(I)≤y 1 = O(y), hence∑
N(I)≤x

1
a

1 = O
(
x

1
a

)
as desired.

Suppose that the claim holds for some k = l − 1. Then∑
N(I)≤x

|f(n, a, l)| =
∑

N(I0)a...N(Il)a+l≤x

1 =
∑

N(Il)≤x
1

a+l

∑
N(I0)a...N(Il−1)a+l−1≤x/N(Il)a+l

1.

By the fact that the claim holds for k = l − 1, we find that there exists a constant C(a, l) such that∑
N(I0)a...N(Il−1)a+l−1≤x/N(Il)a+l

1 ≤ C(a, l)

(
x

N(Il)a+l

) 1
a

.

Therefore, we get ∑
N(I)≤x

|f(n, a, l)| ≤ C(a, l)
∑

N(Il)≤x
1

a+l

(
x

N(Il)a+l

) 1
a

= C(a, l)x
1
a

∑
N(Il)≤x

1
a+l

N(Il)
− a+l

a ≤ C(a, l)ζ

(
a+ l

a

)
x

1
a ,

where we use that a+l
a > 1, which implies that∑

Il ̸=0

N(Il)
− a+l

a = ζK

(
a+ l

a

)
converges.

We find that indeed, ∑
N(I)≤x

|f(I, a, k)| = O
(
x

1
a

)
.
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Combining these results, we find the following:

Corollary 5.5 For all I ∈ IK \ {0}, set bh(I) as in Definition 4.8 such that

∑
I ̸=0

bh(I)N(I)−s =
∏
p

1 +

2h−1∑
j=h+1

N(p)−js

 .

Then ∑
N(I)≤x

|b(I)| = O
(
x

1
h+1

)
.

Proof. This follows directly from Lemma 5.3 and Lemma 5.4.

5.2 h-ful ideals of bounded norm

Now that we have verified that the necessary conditions are satisfied, we can use Proposition 4.11. This will
yield the main theorem:

Theorem 5.6 (Main Theorem) Let K be a number field of degree dK with ring of integers OK . Let ZK be
the residue of ζK(s) at s = 1. Then we have

NK,h(x) = ZKγx
1
h +O

(
xα(log(x+ 1))β

)
,

where

γ =
∏
p

1 +

2h−1∑
m=h+1

N(p)−
m
h

 ,

where

α =

{
1

h+1 if 2h+ 1 ≥ dK
dK−1

h(dK+1) if 2h+ 1 < dK
,

and where

β =


0 if 2h+ 1 > dK

dK if 2h+ 1 = dK

dK − 1 if 2h+ 1 < dK

.

Proof. Let c(I) be 1 if I is h-ful and 0 otherwise. Then

NK,h(x) =
∑

N(I)≤x

c(I).

We know that ∑
I ̸=0

c(I)N(I)−s = ζK(hs)
∏
p

1 +

2h−1∑
j=h+1

p−js

 .

Using Definition 4.8, set ∑
I ̸=0

ah(I)N(I)−s := ζK(hs)

and ∑
I ̸=0

bh(I)N(I)−s :=
∏
p

1 +

2h−1∑
j=h+1

p−js


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Define A(x) =
∑

N(I)≤x ah(I), B(x) =
∑

N(I)≤x bh(I) and C(x) =
∑

N(I)≤x c(I).

Lemma 5.1 gives us

A(x) = ZKx
1
h +O

(
x

dK−1

h(dK+1) (log(x+ 1))dK−1

)
.

Since all bh(I) are positive, Corollary 5.5 gives us that∑
N(I)≤x

|bh(I)| = B(x) = O
(
x

1
h+1

)
.

Now, we can apply Proposition 4.11, with α0 = ZK , λ0 = 1
h , λ = dK−1

h(dK+1) , µ = dK − 1, and ν = 1
h+1 . We

remark that λ > ν if and only if

(dK − 1)(h+ 1) > h(dK + 1) ⇐⇒ −h+ dK − 1 > h ⇐⇒ dK > 2h+ 1.

This completes the proof.

We can now see that the techniques used in this subsection are similar to those in Subsection 4.1. Namely,
we have that

γ =
∏
p

1 +

2h−1∑
m=h+1

N(p)−
m
h

 =
∑

I∈DK,h

N(I)−
1
h ,

which is suspiciously similar to the main term we found there, and we could write∑
N(I)≤x
I∈DK,h

N(I)−
1
h =

∑
I∈DK,h

N(I)−
1
h −

∑
N(I)>x
I∈DK,h

N(I)−
1
h

to actually get the same main term, with an additional error term. We can use Corollary 4.13 and Corollary 5.5
to bound the error term.

The main difference between these methods is that the method involving the sum of Dirichlet series coefficients
can be generalized more easily. Namely, we can factor∑

I ̸=0

c(I)N(I)−s = ζK(hs)ζK((h+ 1)s)
∑
I ̸=0

d(I)N(I)−s,

for some Dirichlet series
∑

I ̸=0 d(I)N(I)−s. While finding a bound on
∑

N(I)≤x |d(I)| is very possible, it is

much more difficult to obtain an asymptotic formula for the sum of the coefficients of ζK(hs)ζK((h + 1)s),
which is necessary to apply Proposition 4.11. This is why we did not explore this further in this thesis, but
it is useful for further exploration, and involves finding a formula for

#{I, J ∈ IK \ {0} : N(IhJh+1) ≤ x}.
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6 Looking at elements

6.1 A new height function

We are also interested in looking at individual elements rather than ideals. However, we cannot use the usual
absolute norm of elements. Namely, most number fields have an infinite number of units and the absolute
norm is invariant under multiplication by units, and hence there would be an infinite number of elements of
bounded norm. Thus, we will need a new norm-like function.

Definition 6.1 Let K be a number field and let Ω∞ be the set of infinite places of K. Then given an
element α ∈ K, define its height as

H(α) =
∏

v∈Ω∞

max(1, ||α||v).

Remark 6.2 We note that this is not too different from the usual norm, since we have that

|N(α)| =
∏

v∈Ω∞

||α||v.

We first want to check that the number of elements of bounded height is finite, to make sure that this height
function fixes the problem of there being an infinite number of elements of bounded norm in most number
fields.

Definition 6.3 Let K be a number field as above. Let Ω∞ be the set of all infinite places of K. Give them
some arbitrary order, such that for each i ∈ {1, . . . , r1 + r2}, we have some place vi. Then define

φK : K → Rr1+r2 , α 7→ (||α||vi
)i.

Definition 6.4 Let K be a number field and let x ∈ R>0. Then define

BK(x) := {α ∈ OK : H(α) ≤ x}.

Lemma 6.5 BK(x) is finite for all number fields K and all x ∈ R>0.

Proof. Consider B̃K(x) := {α ∈ OK : ∀v ∈ Ω∞, max(1, |α|v) ≤ x}. Since max(1, |α|v) ≥ 1 for all v ∈ Ω∞, we
find that max(1, |α|vi) ≤

∏
v∈Ω∞

max(1, |α|v) for all vi ∈ Ω∞. It follows that BK(x) ⊂ B̃K(x), so if B̃K(x)
is finite, we are done.

We can see that B̃K(x) = φK(OK) ∩ C(x), where

C(x) := {(x1, . . . , xn) ∈ Rr1+r2 : |xi| ≤ x, i = 1, . . . , r1 + r2}

and φK is defined as in Definition 6.3. Since OK is discrete, we must have that φK(OK) is also discrete. We
have that C(x) is a bounded region in Rr1+r2 . It follows that their intersection is finite, which completes the
proof.

We can now look at some new quantities.

Definition 6.6 Recall from Definition 3.13 that SK,h is the set of all h-ful ideals. Let

S̃K,h = {α ∈ OK \ {0} : (α) ∈ SK,h}

and
ÑK,h(x) = #{α ∈ OK \ {0} : H(α) ≤ x, (α) ∈ SK,h}.
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Similar to earlier, we can wonder how ÑK,h(x) behaves asymptotically. This new question yields two main
differences compared to the original question, where we used h-ful ideals of bounded norm. Firstly, it concerns
elements, which are linked to principal ideals specifically, so we can try to consider our original question, but
where we restrict ideals to a certain ideal class. Secondly, the height does actually care about units, and we
need to figure out how many representatives of ideals have this bounded height.

We will explore various approaches that will deal with at least one of these problems.

6.2 Comparing height to norm

To see if we can use previous results, it makes sense to compare the norm to the height.

Lemma 6.7 Let K be a number field and let α ∈ OK . Then

H(α) ≥ |N(α)|.

Proof. We have
max(1, ||α||v) ≥ ||α||v

and therefore
H(α) =

∏
v∈Ω∞

max(1, ||α||v) ≥
∏

v∈Ω∞

||α||v = |N(α)|.

We see that we have equality of the height and norm if and only if ||α||v ≥ 1 for all v ∈ Ω∞. The only
number fields where this holds for all nonzero elements of the ring of integers, are those where #Ω∞ = 1.

To prove this, we first need an auxiliary lemma.

Lemma 6.8 Let ζ ∈ C be an algebraic integer of degree n. Let ζ(i), i = 1, . . . , n be the roots of the minimal
polynomial of ζ. Then ζ is a root of unity if and only if |ζ(i)| = 1 for all i.

Proof. Note that if ζ is a root of unity, then all ζ(i) are powers of ζ and thus they all have norm 1. For the
converse, see [Hec81, §34, Lemma (a)], and let K be the splitting field of the minimal polynomial of ζ.

Lemma 6.9 Let K be a number field. Then we have H(α) = |N(α)| for all α ∈ OK \ {0} if and only if
r1 + r2 = 1.

Proof. Suppose that r1 + r2 = 1. Consider some α ∈ OK \ {0}. Since α is a nonzero algebraic integer, we
have |N(α)| ≥ 1, and since r1 + r2 = 1, we have #Ω∞ = 1. Thus,

1 ≤ |N(α)| = ||α||v = max(1, ||α||v) = H(α),

where v is the one element of Ω∞.

Suppose that r1 + r1 > 1. Then we have some fundamental unit η ∈ O×
K that is not a root of unity. Hence,

by Lemma 6.8, there is some v ∈ Ω∞ such that ||η||v ̸= 1. Without loss of generality, let ||η||v = y > 1.
Consider some α ∈ OK \ {0}. Then there exists some m ∈ Z>0 such that ym > ||α||v, and therefore
||αη−m||v = ||α||vy−m < 1. Hence, H(αη−m) > |N(αη−m)|, so there exists some β := αη−m such that
H(β) > N(β).

So in number fields where r1 + r2 = 1, the height and the norm are equal. For all other number fields, we
can still see that the height is unaffected by multiplication by a root of unity.

Proposition 6.10 Consider some ζ ∈ OK . Then we have that ζ is a root of unity if and only if for all
α ∈ OK , we have H(α) = H(ζα).
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Proof. Let dK denote the degree of K over Q. If we embed ζ in C, then it must be an algebraic integer.

If H(α) = H(ζα) for all α ∈ OK , then also H(ζ) = H(1) = 1. But since each factor in the product in the
definition of H is at least 1, we must have that every factor is equal to 1. Hence, ||ζ||v ≤ 1 for all v ∈ Ω∞.
But since ζ is an algebraic integer, we know that

∏
v∈Ω∞

||ζ||v ≥ 1 and thus ||ζ||v = 1 for all v ∈ Ω∞.

Conversely, if ||ζ||v = 1 for all v ∈ Ω∞, then we have that H(α) = H(ζα) for all α ∈ OK . So H(α) = H(ζα)
for all α ∈ OK if and only if ||ζ||v = 1 for all v ∈ Ω∞.

By applying Lemma 6.8, we find that ||ζ||v = 1 for all v ∈ Ω∞ if and only if ζ is a root of unity. Combining
these two equivalences, we retrieve the desired statement.

Looking at the number fields with r1 + r2 = 1 again, consider those with trivial class group. In other words,
those where all ideals of OK are principal.

If we consider two elements α, β ∈ OK , then we have (α) = (β) if and only if there exists some unit η such
that α = ηβ. But in these number fields, OK has only finitely many units, namely only roots of unity.

So we can easily translate our previous result concerning ideals into a result concerning elements and this
new height function.

Corollary 6.11 Let K be either Q or an imaginary quadratic field with trivial class group. Let wK be the
number of roots of unity of OK and let ZK be the residue of ζK(s) at s = 1. Then we have

ÑK,h(x) = wKZKγx
1
h +O

(
x

1
h+1

)
,

where

γ =
∏
p

1 +

2h−1∑
j=h+1

N(p)−
j
h

 .

Proof. We know that OK has a finite number of units, all of which are roots of unity. We can then combine
the fact that for two elements α, β ∈ OK , we have (α) = (β) if and only if there exists some unit η such that
α = ηβ with Proposition 6.10 and Theorem 5.6 to get the desired result. Note that since dK = 1 or dK = 2,
we have that 2h+ 1 > dK and hence we only have that case of Theorem 5.6.

6.3 Densities

If we have an imaginary quadratic field that does not have trivial class group, then we can consider the
distribution of h-ful ideals over the ideal classes to hopefully find an asymptotic for the principal ideals
specifically.

As a start, we can find the density of ideals in a specific class as a subset of all ideals. We find the following
lemma in [MVO07].

Lemma 6.12 Let K be a number field with class number hK . Recall that ZK denotes the residue of the
Dedekind zeta function ζ(s) at s = 1. Let N(x,C) denote the number of ideals of class C with norm at most
x. Then

N(x,C) =
ZK

hK
x+O

(
x

dK−1

dK

)
.

This lemma is true for all number fields, but we are currently mostly interested in imaginary quadratics.

In other words, the ideals are uniformly distributed over the classes of the class group. If a similar thing were
true for the h-ful ideals, then we would be able to find an asymptotic for elements that produce h-ful ideals
in all imaginary quadratics.

Another possibly useful result is the following:
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Lemma 6.13 Let K be an imaginary quadratic number field. Let π(x,C) denote the number of prime ideals
of class C with norm at most x. Then

π(x,C) = A
x

log x
+ o

(
x

log x

)
,

where A ∈ R>0 is a constant that does not depend on C.

Proof. Let m be a OK-submodule of K and let S be a set of primes. Let IS be the group of fractional
ideals of K that are coprime to all primes of S and let H(m) be the subgroup of fractional ideals (α) that are
coprime to all primes of S with α ≡ 1 (mod m) and where also σ(α) > 0 for all real embeddings σ. Then
set hm = #IS/H(m). Now, we can use [CF67, Ch VIII, §2, Thm 4], which tells us that for all classes C̃ of
IS/H(m), we have

#
{
p prime : p ∈ C̃

}
=

1

hm

x

log x
+ o

(
x

log x

)
.

If we take the set S to be empty (or in the language of Cassels-Fröhlich, the set of all infinite primes, since
they mean valuations when they say primes), then the entire coprimality condition is vacuous. Furthermore,
if we take m = K, then the modulo condition is trivially satisfied. Finally, since K is imaginary quadratic
and thus has no real embeddings, the condition that σ(α) > 0 for all real embeddings σ (which is usually
denoted as α being absolutely positive) is also vacuous.

Hence, in this case, IS is just the set of all fractional ideals, and H(m) is the set of all principal fractional
ideals. It follows that hm = hK in this case, and that IS/H(m) is equal to the usual class group. This proves
the statement.

We cannot easily use this result to show that h-ful ideals also have uniform distribution. We could try to
show that tuples of prime exponents yield uniform distributions over classes, but it is difficult to enforce the
norm condition.

6.4 h-th powers

We can consider a simplified version of the problem, where we only look at h-th powers. Here, densities are
actually useful to get a result. We know there is a bijection between ideals that are h-th powers with norm
at most x, and ideals with norm at most x

1
h , by raising the ideals to the h-th power. We know the number

of ideals with norm at most x
1
h is given by ZKx

1
h + O

(
x

dK−1

h(dK+1)
log(x)dK−1

)
by Corollary 4.2, where ZK is

the residue of the Dedekind zeta function at s = 1. We also know that the ideals with norm at most x
1
h are

uniformly distributed over the ideal classes as x tends to infinity, by Lemma 6.12. Hence, we need to consider
the effect of raising ideals to the h-th power on their distribution over the ideal classes.

First, consider a number field with cyclic class group, so it is of the form Z/kZ for some k ∈ Z>0. Raising
ideals to the h-th power amounts to multiplying their ideal class by h in this case. We will use the following
two lemmas.

Lemma 6.14 Let G,H be two abelian groups, and let f : G → H be a group homomorphism. Then for all
h ∈ im f , we have #f−1{h} = #ker f .

Proof. Take an arbitrary element h ∈ im f and take two arbitrary elements g1, g2 ∈ f−1{h}. Then we must
have f(g2 − g1) = 0, so that g2 − g1 ∈ ker f . It follows that f−1{h} ⊆ g1 +ker f , where g1 +ker f = {g1 + a :
a ∈ ker f} is a left coset of the kernel. On the other hand, if a ∈ ker f , then f(g1 + a) = h, and therefore,
g1 + ker f ⊆ f−1{h}.

We conclude that f−1{h} = g1 + ker f , and hence #f−1{h} = #ker f for all h ∈ im f .
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Lemma 6.15 Let h, k ∈ Z>0 and set d = gcd(h, k). Consider the map

mh : Z/kZ → Z/kZ, a 7→ h · a.

Then the following statements are true.

1. mh is a group homomorphism.

2. immh = ⟨d⟩.

3. #kermh = d.

Here, we let ⟨d⟩ denote the subgroup of Z/kZ that is generated by d.

Proof. For Part 1, we see that mh(a+ b) = mh(a)+mh(b) for all a, b ∈ Z/kZ, which shows that mh is indeed
a group homomorphism.

For Part 2, we see that for all a ∈ Z/kZ, we have mh(a) = ha as element of Z/kZ. It follows that when we
take an arbitrary representative r ∈ Z of the equivalence class ha, we have r ≡ 0 (mod k) and hence also
r ≡ 0 (mod d). It follows that ha ∈ ⟨d⟩. This shows that immh ⊆ ⟨d⟩.

To show equality, consider the set S =
{
0, . . . , k

d − 1
}
. Now apply mh to S. Suppose that for a, b ∈ S, we

have mh(a) = mh(b). Then ha − hb must be a multiple of k. Therefore, (ha−hb)
d must be a multiple of k

d ,

and since h
d is coprime to k

d , we must even have that a− b is a multiple of k
d . But |a− b| < k

d , so this is only

possible if a = b. Hence, mh is injective on S, which implies that # immh ≥ k
d . But since immh ⊆ ⟨d⟩ and

since #⟨d⟩ = k
d , we find that immh = ⟨d⟩ as desired.

For Part 3, we use the fact that by the first group isomorphism theorem, we have immh
∼= (Z/kZ)/ kermh,

which tells us that #kermh = #(Z/kZ)
immh

= k
k/d = d, as desired.

We can use these lemmas to find a result about h-th powers of bounded norm in number fields with cyclic
class group.

Corollary 6.16 Let h, k ∈ Z>0 and set d = gcd(h, k). Let K be a number field with class group isomorphic
to Z/kZ. Then for all ideal classes a, we have that

lim
x→∞

#{I ∈ IK : N(I) ≤ x, [I] = a, I = Jh for some J}
#{I ∈ IK : N(I) ≤ x, I = Jh for some J}

=

{
d
k if d | a
0 if d ∤ a

.

Proof. Define mh as in Lemma 6.15. This lemma then tells us that immh = ⟨d⟩ and hence, m−1
h {a} = ∅ if

d ∤ a. If we use Lemma 6.14, we find that #m−1
h {a} = d if d | a.

We remark that

#{I ∈ IK : N(I) ≤ x, I = Jh for some J ∈ IK} = #
{
I ∈ IK : N(I) ≤ x

1
h

}
and similarly

#{I ∈ IK : N(I) ≤ x, [I] = a, I = Jh for some J ∈ IK}

= #
{
I ∈ IK : N(I) ≤ x

1
h , [I] ∈ m−1

h {a}
}

= #

 ⊔
b∈m−1

h {a}

{
I ∈ IK : N(I) ≤ x

1
h , [I] = b

} ,

where this final union is a disjoint union.
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Now, Lemma 6.12 tells us that⊔
b∈m−1

h {a}

#
{
I ∈ IK : N(I) ≤ x

1
h , [I] = b

}
= #m−1

h {a} · ZK

k
x

1
h +O

(
x

dK−1

h·dK

)
,

and Corollary 4.2 tells us that

#
{
I ∈ IK : N(I) ≤ x

1
h

}
= ZKx

1
h +O

(
x

dK−1

h(dK+1)

)
.

Taking their quotient and taking the limit as x goes to infinity yields the desired result.

Now that we have a result for number fields with cyclic class groups, we can also try to expand this to
number fields with other class groups. Since all class groups are abelian, and since all abelian groups are
finite products of cyclic groups, we can expand the previous result without too much effort. We mostly need
to generalize Lemma 6.15. The following lemma does this.

Lemma 6.17 Let h, t ∈ Z>0. Let k1, . . . , kt ∈ Z>0 and set di = gcd(h, ki) for i = 1, . . . , t. Set G :=∏t
i=1 Z/kiZ. Consider the map

mh : G → G, (a1, . . . , at) 7→ (h · a1, . . . , h · at).

We find that

1. mh is a group homomorphism.

2. immh = ⟨(d1, 0, . . . , 0), . . . , (0, . . . , 0, dt)⟩.

3. #kermh =
∏t

i=1 di.

Proof. We see that
mh(a1, . . . , at) = (mh(a1), . . . ,mh(at)).

It follows immediately that mh is a group homomorphism.

For Part 2, we can effectively reuse the proof of Lemma 6.15 on each component separately.

For Part 3, we can also use the same reasoning as in Lemma 6.15, but now #kermh = #G
immh

=
∏t

i=0 ki∏t
i=0 ki/di

=∏t
i=0 di.

Finally, we can apply this to a number field with arbitrary class group.

Theorem 6.18 Let h, t ∈ Z>0. Let k1, . . . , kt ∈ Z>0 and set di = gcd(h, ki) for i = 1, . . . , t. Let K be
a number field with class group isomorphic to G :=

∏t
i=1 Z/kiZ. Then for all ideal classes (a1, . . . , at), we

have that

lim
x→∞

#{I : N(I) ≤ x, [I] = (a1, . . . , at), I = Jh for some J ∈ IK}
#{I : N(I) ≤ x, I = Jh for some J ∈ IK}

=


∏t

i=1 di

hK
if di | ai ∀i = 1, . . . , t

0 else
.

Proof. Repeat the proof of Corollary 6.16 but with Lemma 6.17 rather than Lemma 6.15.

This means that for a number field with class group
∏t

i=1 Z/kiZ with class number hK =
∏t

i=1 ki, we have

#{I ∈ IK : N(I) ≤ x, I principal, I = Jh for some J ∈ IK}

= #{I ∈ IK : N(I) ≤ x
1
h , Ih principal}

=

∏t
i=1 di
hK

ZKx
1
h +O

(
x

dK−1

h(dK+1) log(x)dK−1

)
.

This provides a lower bound on the number of h-ful principal ideals of bounded norm as well, as all h-th
powers are h-ful.
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6.5 Inversion

Recall from Definition 3.13 that SK,h is the set of all h-ful ideals. Define

λK,h(x) := #{I ∈ IK : N(I) ≤ x, I principal, I ∈ SK,h}.

Let ρh be the indicator function of SK,h. In other words, for an ideal I ∈ IK \ {0}, we have that ρ(I) = 1 if
I ∈ SK,h and ρ(I) = 0 else. Then we can express this as

λK,h(x) =
∑

N(I)≤x
I principal
I∈SK,h

1 =
∑

N(I)≤x
I principal

ρh(I).

We would like to use Möbius inversion here, but we first need to prove that it works on ideals in number
fields. For this, we use the techniques from [Apo98, §2.2, §2.6, §2.7] on ideals.

We will first introduce some useful terms.

Definition 6.19 Let K be a number field. We call a function f : IK \ {0} → Z an arithmetic function.

Definition 6.20 (As in [Apo98, §2.6]) Let K be a number field. Then define the following arithmetic
function:

E(I) =

{
1 if I = OK

0 else
.

Call this function the identity function.

Definition 6.21 (As in [Apo98, §2.7]) Let K be a number field. Then define the arithmetic function u(I)
such that for all nonzero ideals I,

u(I) = 1.

Call this function the unit function.

We can define convolutions of arithmetic functions just like in Z.

Definition 6.22 (As in [Apo98, §2.6]) Let K be a number field. Let f, g : IK \ {0} → Z be two functions.
Then define their convolution f ∗ g as follows:

(f ∗ g)(I) =
∑

J1J2=I

f(J1)g(J2).

Convolution retains its properties from the standard version in Z.

Lemma 6.23 (As in [Apo98, §2.6, Theorem 2.6]) Convolutions are commutative and associative.

Proof. We can simply repeat the proof in Apostol, but with ideals instead of positive integers. This still
works due to the unique factorization of ideals.

The identity function still acts as the identity of convolution.

Lemma 6.24 (As in [Apo98, §2.6, Theorem 2.7]) Let K be a number field. For all arithmetic functions f ,
we have

E ∗ f = f ∗ E = f.
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Proof. This is essentially the same proof as for Z, but Apostol uses the floor function, which makes the
notation unclear for number fields. Essentially, we have

(f ∗ E)(I) =
∑

J1J2=I

f(J1)E(J2) =
∑

J1J2=I
J2=OK

f(J1)E(J2) = f(I),

since E vanishes on all ideals except for OK . The commutativity from Lemma 6.23 completes the proof.

An analogous definition for the Möbius function still works in number fields.

Definition 6.25 (As in [Apo98, §2.2]) Let K be a number field. We define the Möbius function µ :
IK \ {0} → Z as follows.

Let I ∈ IK \ {0} be an ideal. If I = OK , then set µ(I) = 1. Else, denote its prime factorization as
I = pk1

1 . . . pkt
t for some integer t ∈ Z≥0, some prime ideals p1, . . . , pt, and some integers k1, . . . , kt ∈ Z>0. If

k1 = · · · = kt = 1, then set µ(I) = (−1)t, else set µ(I) = 0.

Its main property in Z also still holds.

Lemma 6.26 (As in [Apo98, §2.2, Theorem 2.1]) Let K be a number field and let I ∈ IK \ {0} be an ideal.
Then ∑

J|I

µ(J) = E(I).

Proof. The proof is identical to the one used in Apostol for the normal Möbius function, except we now use
ideals instead of positive integers. Since they still have unique prime factorizarion, all steps of the proof are
still valid.

Finally, we get to Möbius inversion for ideals.

Proposition 6.27 (As in [Apo98, §2.7, Theorem 2.9]) Let K be a number field and let f and g be arithmetic
functions. Then, the following two equations imply each other.

f(I) =
∑
J|I

g(J)

and
g(I) =

∑
J1J2=I

f(J1)µ(J2).

Proof. The proof from Apostol applies directly, since it only uses Definition 6.21, Definition 6.22, Lemma 6.23,
and Lemma 6.26.

We would like to find an arithmetic function µh such that∑
J|I

µh(J) = ρh(I).

Using Proposition 6.27 gives us that this works, so long as we define

µh(I) =
∑

J1J2=I

ρh(J1)µ(J2).

Definition 6.28 Let µh be an arithmetic function such that

µh(I) =
∑

J1J2=I

ρh(J1)µ(J2).
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With some effort, we can prove that µh is multiplicative. We first need an auxiliary lemma.

Lemma 6.29 Let K be a number field, let I1, I2 ∈ IK \ {0} be two coprime ideals and set I = I1I2. Then
we have a bijection between

A := {(J1, J2, J3, J4) ∈
(
IK \ {0}

)4
: J1J2 = I1, J3J4 = I2}

and
B := {(J5, J6) ∈

(
IK \ {0}

)2
: J5J6 = I}

in the form of
f : A → B, (J1, J2, J3, J4) 7→ (J1J3, J2J4).

Proof. It is clear that if (J1, J2, J3, J4) ∈
(
IK \ {0}

)4
such that J1J2 = I1 and J3J4 = I2, then we have that

(J1J3, J2J4) ∈
(
IK \ {0}

)2
with (J1J3) · (J2J4) = I. So f has the correct range.

For surjectivity, take two arbitrary ideals J5, J6 ∈ IK \ {0} so that J5J6 = I. Thus, (J5, J6) ∈ B. Now,
because I1 and I2 are coprime, and because J5 | I1I2, we must have that every prime factor of J5 occurs in
exactly one of I1 and I2. Set J1 to be the ideal formed by the prime factors of J5 that also occur in I1, and
set J3 to be the ideal formed by the prime factors of J5 that also occur in I2. We must have J1J3 = J5. We
can define J2 and J4 similarly based on J6, so that J2J4 = J6. We hence must have that J1J2J3J4 = I1I2,
and since J1 and J2 are both coprime to I2 and J3 and J4 are both coprime to I1, it follows that J1J2 = I1
and J3J4 = I2. We conclude that (J1, J2, J3, J4) ∈ A and that f(J1, J2, J3, J4) = (J5, J6), which proves
surjectivity.

For injectivity, suppose we have f(J1, J2, J3, J4) = f(J̃1, J̃2, J̃3, J̃4). Then we know

� J1J2 = I1 = J̃1J̃2,

� J3J4 = I2 = J̃3J̃4,

� J1J3 = J̃1J̃3,

� J2J4 = J̃2J̃4.

Since J̃1 divides I1, and J3 divides I2, we see that J̃1 must be coprime to J3. Then it follows that J̃1 divides
J1 from J1J3 = J̃1J̃3. But similarly, J1 divides J̃1, hence J1 = J̃1. We can repeat an analogous argument for
the other ideals, which shows that (J1, J2, J3, J4) = (J̃1, J̃2, J̃3, J̃4). We conclude that f is indeed injective.

This proves the statement.

Corollary 6.30 µh is multiplicative.

Proof. Let I1 and I2 be two coprime ideals. Then

µh(I1)µh(I2) =
∑

J1J2=I1

ρh(J1)µ(J2)
∑

J3J4=I2

ρh(J3)µ(J4) =
∑

J1J2=I1
J3J4=I2

ρh(J1J3)µ(J2J4).

By Lemma 6.29, we find ∑
J1J2=I1
J3J4=I2

ρh(J1J3)µ(J2J4) =
∑

J5J6=I1I2

ρh(J5)µ(J6) = µh(I1I2).

Therefore,
µh(I1)µh(I2) = µh(I1I2),

which proves the desired statement.
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This allows us to compute µh for just the powers of primes, and still know the whole function.

Let p be a prime ideal, and let k ∈ Z≥0 be an integer. Consider µh(p
k). Assume that h ≥ 2, since

SK,1 = IK \ {0}, which is not very interesting.

If k = 0, then pk = OK , and by its definition, we have

µ(OK) =
∑

J1J2=OK

ρh(J1)µ(J2) = ρh(OK)µ(OK) = 1.

If k = 1, then

µ(OK) =
∑

J1J2=p

ρh(J1)µ(J2) = ρh(p)µ(OK) + ρh(OK)µ(p) = −1.

If 1 < k < h, then

µ(OK) =
∑

J1J2=p

ρh(J1)µ(J2) =

k∑
j=0

ρh

(
pj
)
µ
(
pk−j

)
= 0,

as ρh vanishes for all j ̸= 0, and there, µ vanishes. If k = h, then

µ(OK) =
∑

J1J2=p

ρh(J1)µ(J2) =

h∑
j=0

ρh

(
pj
)
µ
(
pk−j

)
= 1,

as µ vanishes for all j < h− 1, and for j = h− 1, ρh vanishes. Finally, if k > h, then

µ(OK) =
∑

J1J2=p

ρh(J1)µ(J2) =

h∑
j=0

ρh

(
pj
)
µ
(
pk−j

)
= −ρh

(
pk−1

)
+ ρh

(
pk
)
= 0.

Hence, we see, for the non-trivial case of h ≥ 2, that

µ(pk) =


1 if k ∈ {0, h},
−1 if k = 1,

0 else.

We can now use µh to manipulate our expression for λK,h(x). We see

λK,h(x) =
∑

N(I)≤x
I principal

ρh(I) =
∑

N(I)≤x
I principal

∑
J|I

µh(J) =
∑

N(J)≤x

µh(J)
∑

N(I)≤x
I principal

J|I

1 =
∑

N(J)≤x

µh(J)
∑

N(Ĩ)≤x/N(J)

ĨJ principal

1.

While this formula is exact, we cannot do much with it, so we attempt to find an approximation of the inner
sum. Denote

ν(J, x) :=
∑

N(Ĩ)≤x/N(J)

ĨJ principal

1.

Let ZK denote the residue of the Dedekind zeta function at s = 1 and let hK denote the class number of K.
We are looking for the number of ideals in a certain ideal class, namely [J−1], with bounded norm, so we can
use Lemma 6.12. We find

ν(J, x) =
ZK

hK

x

N(J)
+O

( x

N(J)

) dK−1

dK

 .
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It follows that

λh,K(x) =
∑

N(J)≤x

µh(J)
ZK

hK

x

N(J)
+

∑
N(J)≤x

µh(J) ·O

( x

N(J)

) dK−1

dK



=
ZK

hK
x
∑

N(J)≤x

µh(J)

N(J)
+O

x
dK−1

dK ·
∑

N(J)≤x
µh(J) ̸=0

N(J)
− dK−1

dK

 .

This is problematic, since we expect the main term to be of order x
1
h , which is not yet clear. The error

term is also at the very least O

(
x

dK−1

dK

)
, which is much larger than what we want the main term to be.

Therefore, this method does not seem to be very useful.

6.6 Representatives of ideals

To attempt to find ÑK,h(x), we can express it in the following way.

ÑK,h(x) =
∑

N(I)≤x
I principal
I∈SK,h

#{α ∈ OK \ {0} : H(α) ≤ x, (α) = I}.

The summand can be found by considering the number of units with bounded height. In a specific example,
we see the following.

Example 6.31 Suppose we have a number field K with r1 + r2 = 2, so with a single fundamental unit.
Call this fundamental unit η. We also have valuations ||.||1 and ||.||2. Without loss of generality, assume
||η||1 > 1 and set y := ||η||1. Let wK be the number of roots of unity in OK .

Let x ∈ R, x ≥ 1 and let I be a principal ideal with N(I) ≤ x. Let α be a generator of I and define αk := ηkα.
Then we must have

||αk||1||αk||2 = N(I).

Note that we also have ||η||1||η||2 = 1, so that ||η||2 = y−1. Consider the quantity

H(αk) =

2∏
i=1

max(1, ||αk||i).

Then we know H(αk) ≤ x if and only if max(1, ||αk||i) ≤ x for i = 1, 2. Namely, we know ||αk||1||αk||2 =
N(I) ≤ x. Hence, if ||αk||1 > x, then ||αk||2 < 1 and vice versa, in which case H(αk) > x. And if ||αk||i ≤ x
for i = 1, 2, then there are two options. If ||αk||1 ≤ 1 or ||αk||2 ≤ 1, then H(αk) ≤ x, and if both are greater
than 1, then H(αk) = N(I) ≤ x.

Since we know x ≥ 1, we only care about the variable term in the maximum. Hence, we need ||αk||i ≤ x for
i = 1, 2. This gives us the following conditions:

yk||α||1 ≤ x,

y−k||α||−1
1 N(I) ≤ x.

Solving for k gives us that

k ≤ log x− log ||α||1
log y

,

k ≥ logN(I)− log ||α||1 − log x

log y
.
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The number of integers k such that H(αk) ≤ x is therefore equal to⌊
log x− log ||α||1

log y

⌋
−
⌈
logN(I)− log ||α||1 − log x

log y

⌉
+ 1 =

2 log x− logN(I)

log y
+O(1),

where the implied constant of O(1) is 1.

Recall from Proposition 6.10 that we can always multiply by roots of unity without changing the height, and
recall that a principal ideal has a generator that is unique up to units. By our previous reasoning, it follows
that for this principal ideal I, we have

#{α ∈ OK \ {0} : H(α) ≤ x, (α) = I} = wK
2 log x− logN(I)

log y
+O(1).

We can now calculate

ÑK,h(x) = wK

∑
N(I)≤x
I h-ful

I principal

(
2 log x− logN(I)

log y
+O(1)

)
= wK

∑
N(I)≤x
I h-ful

I principal

2 log x− logN(I)

log y
+O

(
x

1
h

)

=
2wK log x

log(y)
#{I ∈ IK \ {0} : N(I) ≤ x, I principal, I ∈ SK,h} −

wK

log y

∑
N(I)≤x

I principal
I∈SK,h

logN(I) +O
(
x

1
h

)
.

We can use partial summation on the sum in the above expression, in other words, Corollary 4.13. For ease
of notation, set NK,h,0(x) := #{I ∈ IK \ {0} : N(I) ≤ x, I principal, I ∈ SK,h}, and for all I ∈ IK \ {0}, set
ρ(I) = 1 whenever I principal and I ∈ SK,h, and set ρ(I) = 0 otherwise. Hence,

∑
N(I)≤x ρ(I) = NK,h,0(x).

Then we see that ∑
N(I)≤x

I principal
I∈SK,h

logN(I) =
∑

N(I)≤x

ρ(I) logN(I) = NK,h,0(x) log x−
∫ x

1

NK,h,0(t)

t
dt.

Since we have that NK,h = O
(
x

1
h

)
, we also have that NK,h,0 = O

(
x

1
h

)
. This yields that∫ x

1

NK,h,0(t)

t
dt =

∫ x

1

O
(
x

1
h−1

)
dt = O

(
x

1
h

)
.

It follows that

ÑK,h(x) =
2wK log x

log y
NK,h,0(x)−

wK

log y

∑
N(I)≤x

I principal
I∈SK,h

logN(I) +O
(
x

1
h

)
=

wK log x

log y
NK,h,0(x) +O

(
x

1
h

)
.

Hence, if we can find an asymptotic for NK,h,0(x), then we can also find one for ÑK,h(x).

We remark that the dependence on log y may seem curious, since y is chosen seemingly arbitrarily. However,
note that ||η||1||η||2 = 1 since η is a unit, and therefore, log ||η||1 + log ||η||2 = 0. Using one or the other will
not end up changing the result, as it will simply flip the sign of all allowed values of k, but not the number
of allowed values. We also see that log y is equal to the regulator RK of the number field. This allows us to
express the formula we have in a form that is more clearly independent from our choices, since we find

ÑK,h(x) =
log x

RK
NK,h,0(x) +O

(
x

1
h

)
.
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Based on Subsection 6.4 and on results from the appendix, Subsection 7.2, one could conjecture that there
is some density of the set of principal h-ful ideals within the set of h-ful ideals. More specifically, one could
conjecture that there exist constants θ ∈ (0, 1], ε ∈ R>0 such that

NK,h,0(x) = θNK,h(x) +O
(
x

1
h−ε

)
.

If this were true, then we could use Theorem 5.6 and we would have that

ÑK,h(x) =
θwKZKγ

RK
x

1
h log x+O

(
x

1
h

)
.
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7 Appendix

7.1 Results when trying approximation by inversion

In Subsection 6.5, we concluded that the error term was most likely too large compared to the main term. If
we do still try the approximation used, we find the following results, with the help of SageMath. This uses
the approximation

#{I ∈ IK : N(I) ≤ x, I principal, I ∈ SK,h} =
ZK

hK
x
∑

N(J)≤x

µh(J)

N(J)
+O

x
dK−1

dK ·
∑

N(J)≤x
µh(J )̸=0

N(J)
− dK−1

dK

 .

The actual values in the following tables are non-integer, but we rounded them to the nearest integer since
they are meant to approximate an integer value.

h 2 3 4 5
log2(x) Actual Approx. Actual Approx. Actual Approx. Actual Approx.
0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
2 2 2 1 1 1 1 1 1
3 3 2 2 1 1 0 1 0
4 5 5 3 3 2 2 1 1
5 8 4 5 2 3 0 2 -1
6 11 10 6 5 4 4 3 3
7 18 12 9 7 6 4 4 3
8 26 20 12 6 8 6 6 5
9 38 25 15 7 9 1 7 2
10 55 38 21 12 12 5 9 2
11 80 68 27 24 14 15 10 13
12 116 57 38 5 20 -4 13 -10
13 166 159 49 52 24 34 16 30
14 240 119 63 10 31 -20 19 -24
15 345 281 85 76 39 59 24 41
16 497 355 109 71 49 29 28 28
17 710 522 142 65 62 24 35 -4

Table 1: For various values of x and h, the number of h-ful numbers less than or
equal to x, both the actual values and the approximations.
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h 2 3 4 5
log2(x) Actual Approx. Actual Approx. Actual Approx. Actual Approx.
0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
2 2 2 1 2 1 2 1 2
3 3 2 2 1 1 1 1 1
4 4 4 3 2 2 1 1 0
5 6 6 4 4 3 2 2 1
6 7 3 5 1 4 0 3 -1
7 11 11 7 7 5 5 4 4
8 14 17 8 9 6 7 5 7
9 19 20 9 7 7 6 6 6
10 27 37 13 9 9 4 7 4
11 36 58 15 21 10 13 8 9
12 50 59 19 12 12 -1 10 -5
13 68 112 25 23 14 4 11 1
14 93 144 30 45 17 25 13 18
15 127 201 38 72 20 53 14 39
16 172 306 48 24 24 -7 16 -8
17 238 502 62 189 30 138 19 128

Table 2: For various values of x and h, the number of principal h-ful ideals in
Q(i) (with ring of integers Z[i] = Z[t]/Z[t2 + 1]) with norm less than or equal to
x, both the actual values and the approximations.

h 2 3 4 5
log2(x) Actual Approx. Actual Approx. Actual Approx. Actual Approx.
0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 3 2 1 1 1 1 1 1
5 4 4 2 1 1 0 1 0
6 6 6 3 3 1 1 1 1
7 7 7 4 3 2 0 1 -1
8 11 13 6 5 4 3 2 2
9 15 22 7 12 4 9 2 6
10 21 21 9 5 6 1 4 -1
11 27 31 10 5 6 2 4 1
12 39 49 14 13 9 5 6 3
13 51 64 18 13 10 3 7 -2
14 72 113 22 40 11 24 8 20
15 99 166 30 60 15 37 10 38

Table 3: For various values of x and h, the number of principal h-ful ideals in
Q(

√
−3) (with ring of integers Z[ 1+

√
−3

2
] = Z[t]/Z[t2 + t+ 1]) with norm less than

or equal to x, both the actual values and the approximations.
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h 2 3 4 5
log2(x) Actual Approx. Actual Approx. Actual Approx. Actual Approx.
0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
2 2 0 1 0 1 0 1 0
3 3 0 2 -1 1 -2 1 -2
4 5 5 3 3 2 3 1 2
5 8 3 5 4 3 3 2 3
6 11 1 6 -3 4 -3 3 -2
7 17 5 9 -4 6 -5 4 -5
8 24 19 12 11 8 10 6 9
9 33 20 15 18 9 14 7 12
10 47 -8 21 -22 12 -30 9 -25
11 64 72 26 13 14 12 10 9
12 88 28 36 17 20 6 13 -3
13 119 136 45 62 24 56 16 50
14 165 -6 57 -69 30 -105 19 -80
15 224 180 75 -5 37 5 24 -36

Table 4: For various values of x and h, the number of principal h-ful ideals in
Q(

√
−5) (with ring of integers Z[

√
−5] = Z[t]/Z[t2 + 5]) with norm less than or

equal to x, both the actual values and the approximations.

h 2 3 4 5
log2(x) Actual Approx. Actual Approx. Actual Approx. Actual Approx.
0 1 1 1 1 1 1 1 1
1 1 0 1 0 1 0 1 0
2 3 0 1 -1 1 -1 1 -1
3 4 3 2 3 1 1 1 1
4 9 3 4 2 3 2 1 0
5 12 -1 7 -2 5 -1 3 -1
6 18 12 8 4 6 0 4 3
7 28 8 12 10 10 10 6 6
8 39 9 18 -3 15 -5 10 -4
9 51 10 23 -5 18 -9 11 -7
10 77 73 31 44 22 31 15 25
11 98 -20 40 -12 28 -7 17 -20
12 137 94 54 -1 39 -10 22 2
13 186 124 69 86 50 49 30 53
14 252 78 84 -12 60 11 35 -42
15 352 94 108 -53 76 -84 44 -45

Table 5: For various values of x and h, the number of principal h-ful ideals in
Q(

√
−23) (with ring of integers Z[ 1+

√
−23
2

] = Z[t]/Z[t2 + t + 6]) with norm less
than or equal to x, both the actual values and the approximations.

7.2 Density of principal h-ful ideals

Though we could not prove that there was some nice distribution of the h-ful ideals over the class group, we
did explore some weaker statements in Subsection 6.3 and Subsection 6.4. With the help of SageMath, we
can explore the densities of principal h-ful ideals within the h-ful ideals, in various number fields. Specifically,
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for various number fields K and for various values of x and h, we calculate

#{I ∈ IK \ {0} : I ∈ SK,h, I principal}
NK,h(x)

.

Since NK,h(x) is much larger for lower h given the same K and x, we needed to lower the highest value of x
for the lower values of h for computational reasons. The script already takes a few hours to come up with
these results, so any higher bounds would not be feasible.

We have the following results.

h 2 3 4 5
log10(x)
0 1.0000 1.0000 1.0000 1.0000
1 0.8000 0.5000 1.0000 1.0000
2 0.7143 0.5556 0.8333 0.6667
3 0.6047 0.5000 0.6429 0.5000
4 0.6020 0.5366 0.6486 0.5714
5 0.5941 0.4842 0.5667 0.5208
6 0.5851 0.5147 0.5665 0.5196
7 0.5843 0.5054 0.5527 0.5174
8 0.5820 0.5025 0.5386 0.5080
9 0.5812 0.5005 0.5272 0.5035
10 0.5805 0.5005 0.5284 0.5026
11 0.4992 0.5223 0.4985
12 0.5007 0.5261 0.5013
13 0.5005 0.5239 0.4988
14 0.5253 0.5030
15 0.5224 0.5020
16 0.5223 0.5020
17 0.5006
18 0.5010
19 0.5007
20 0.5003

Table 6: For various values of x and h, the proportion of h-ful ideals with norm less
than or equal to x that are principal, in Q(

√
−5) (with ring of integers Z[

√
−5] =

Z[t]/Z[t2 + 5]), which has class number hK = 2.
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h 2 3 4 5
log10(x)
0 1.0000 1.0000 1.0000 1.0000
1 0.6667 0.5000 1.0000 1.0000
2 0.7778 0.6000 0.7500 0.6667
3 0.7250 0.4545 0.5714 0.5000
4 0.6812 0.5000 0.6429 0.5000
5 0.6770 0.5244 0.6552 0.5000
6 0.6660 0.5118 0.6429 0.5172
7 0.6594 0.5115 0.6370 0.5738
8 0.6553 0.5063 0.6062 0.5333
9 0.6540 0.5045 0.5926 0.5197
10 0.6529 0.5024 0.5882 0.5143
11 0.5037 0.5802 0.5141
12 0.5037 0.5799 0.5083
13 0.5020 0.5708 0.5031
14 0.5675 0.5039
15 0.5664 0.5071
16 0.5642 0.5078
17 0.5045
18 0.5043
19 0.5044
20 0.5037

Table 7: For various values of x and h, the fraction of h-ful ideals with norm
less than or equal to x that are principal, in Q(

√
−13) (with ring of integers

Z[
√
−13] = Z[t]/Z[t2 + 13]), which has class number hK = 2.

h 2 3 4 5
log10(x)
0 1.0000 1.0000 1.0000 1.0000
1 0.4286 1.0000 1.0000 1.0000
2 0.3750 0.5714 0.3333 0.6000
3 0.3429 0.4000 0.3636 0.4667
4 0.3333 0.3642 0.3425 0.3659
5 0.3382 0.3630 0.3333 0.3673
6 0.3368 0.3676 0.3318 0.3396
7 0.3362 0.3642 0.3326 0.3349
8 0.3340 0.3621 0.3326 0.3318
9 0.3340 0.3617 0.3352 0.3383
10 0.3339 0.3605 0.3355 0.3369
11 0.3586 0.3326 0.3350
12 0.3578 0.3337 0.3352
13 0.3574 0.3341 0.3359
14 0.3335 0.3344
15 0.3333 0.3341
16 0.3334 0.3346
17 0.3338
18 0.3340
19 0.3340
20 0.3340

Table 8: For various values of x and h, the fraction of h-ful ideals with norm
less than or equal to x that are principal, in Q(

√
−23) (with ring of integers

Z[ 1+
√
−23
2

] = Z[t]/Z[t2 + t+ 6]), which has class number hK = 3.
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h 2 3 4 5
log10(x)
0 1.0000 1.0000 1.0000 1.0000
1 0.4000 0.5000 1.0000 1.0000
2 0.4545 0.5556 0.8333 0.6667
3 0.3636 0.2812 0.5333 0.3000
4 0.3389 0.2857 0.5128 0.3182
5 0.3214 0.2627 0.4000 0.2745
6 0.3238 0.2705 0.3668 0.2679
7 0.3210 0.2559 0.3367 0.2723
8 0.3193 0.2538 0.3182 0.2563
9 0.3186 0.2543 0.3145 0.2636
10 0.3176 0.2535 0.3036 0.2599
11 0.2525 0.3005 0.2548
12 0.2522 0.2966 0.2546
13 0.2518 0.2939 0.2538
14 0.2902 0.2507
15 0.2877 0.2510
16 0.2867 0.2516
17 0.2518
18 0.2514
19 0.2506
20 0.2512

Table 9: For various values of x and h, the fraction of h-ful ideals with norm
less than or equal to x that are principal, in Q(

√
−14) (with ring of integers

Z[
√
−14] = Z[t]/Z[t2 + 14]), which has class number hK = 4.

h 2 3 4 5
log10(x)
0 1.0000 1.0000 1.0000 1.0000
1 0.4000 0.5000 1.0000 1.0000
2 0.4737 0.5556 0.8333 0.6667
3 0.3614 0.2593 0.4615 0.3000
4 0.3574 0.3026 0.5000 0.3500
5 0.3447 0.2823 0.4217 0.3182
6 0.3276 0.2641 0.3717 0.2340
7 0.3301 0.2617 0.3614 0.2717
8 0.3286 0.2577 0.3447 0.2663
9 0.3267 0.2547 0.3244 0.2597
10 0.3262 0.2543 0.3189 0.2562
11 0.2537 0.3108 0.2585
12 0.2527 0.3075 0.2548
13 0.2523 0.3048 0.2559
14 0.3003 0.2508
15 0.2978 0.2514
16 0.2962 0.2528
17 0.2519
18 0.2518
19 0.2519
20 0.2514

Table 10: For various values of x and h, the fraction of h-ful ideals with norm
less than or equal to x that are principal, in Q(

√
−17) (with ring of integers

Z[
√
−17] = Z[t]/Z[t2 + 17]), which has class number hK = 4.
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It seems like the density of h-ful ideals in K is given by 1
hK

, where hK is the class number of K, if h and
hK are coprime. If h and hK are not coprime, then the density is either something different, or it converges
much more slowly.

7.3 Code

Here is the code used to generate the previous results.

1 from time import perf_counter as pf

2 from functools import lru_cache

3

4 def simplify_ideal(ideal):

5 # Represent a SageMath ideal as a tuple of its norm, and its ideal class.

6 return (ideal.norm(), tuple(ideal.ideal_class_log()))

7

8 def change_class(ideal_1, ideal_2, expo, group_struct):

9 # Carry out ideal_1 * ideal_2**expo on the ideal class.

10 return tuple((k + expo * l) % m for k, l, m in zip(ideal_1, ideal_2, group_struct))

11

12 def mu_cases(exp, h):

13 if exp == 0 or exp == h:

14 return 1

15 elif exp == 1:

16 return -1

17 else:

18 return 0

19

20 @lru_cache(None)

21 def mu_h(n, h):

22 # The mu function, the Mobius inverse of the h-fulness indicator function.

23 return product(mu_cases(exp, h) for prime, exp in factor(n))

24

25 def field_prime_range_simple(K, bound):

26 # Find the prime ideals in K up to a bound, and represent them

27 # as a tuple of their norm and their ideal class.

28 all_primes = []

29 for p in prime_range(bound + 1):

30 primes = K.ideal(p).factor()

31 for prime in primes:

32 all_primes.append(prime[0])

33 all_primes = [simplify_ideal(prime) for prime in all_primes if prime.norm() <= bound]

34 all_primes.sort()

35 return all_primes

36

37 def find_h_ful_ideals_simple(K, h, bound):

38 # Find all h-ful ideals of bounded norm. Store ideals

39 # as a tuple of their norm and their ideal class.

40 group_struct = K.class_group().gens_orders()

41 found = {simplify_ideal(K.ideal(1)): 1}

42

43 # We can generate h-ful ideals by looping through the prime ideals in order,

44 # and for each prime p, multiplying our existing h-ful ideals by p**h, p**(h + 1), ...

45 # until we reach the bound.

46 for p in field_prime_range_simple(K, bound ** (1/h)):

47 found_new = found.copy()

48 # Find which power of p is the greatest we can multiply by while keeping

49 # the norm under the bound. By keeping our dictionary found in sorted order

50 # (based on norm), we can break as soon as we find an ideal I such that
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51 # I * p**h has a norm greater than our bound, since all future ideals J

52 # we have yet to loop over, will have a greater or equal norm.

53 for pair, count in found.items():

54 k = int(log(bound / pair[0]) / log(p[0]))

55 if k < h:

56 break

57 for i in range(h, k + 1):

58 new_pair = (pair[0] * p[0]**i, change_class(pair[1], p[1], i, group_struct))

59 found_new[new_pair] = found_new.get(new_pair, 0) + count

60 found = dict(sorted(found_new.items()))

61 return found

62

63 def approx_h_ful(K, h, bound):

64 # Use the formula we get by using Mobius inversion, to see how good

65 # or bad of an approximation this is. We generate all ideals for which

66 # the mu function is nonzero, and then calculate the relevant sum.

67 # Note that we do not include the residue of the Dedekind zeta function

68 # here yet, we will multiply this in later as it is a constant anyway.

69 found = {(1, 1): 1}

70 for p in field_prime_range_simple(K, bound):

71 found_new = found.copy()

72 # Use the same technique as for finding the h-ful ideals.

73 # Generate the relevant ideals based on their prime factorization,

74 # and add on the primes in order of norm.

75 for pair, count in found.items():

76 if pair[0] * p[0] > bound:

77 break

78 new_pair_1 = (pair[0] * p[0], pair[1] * -1)

79 found_new[new_pair_1] = found_new.get(new_pair_1, 0) + count

80 if pair[0] * p[0]**h > bound:

81 continue

82 new_pair_2 = (pair[0] * p[0]**h, pair[1])

83 found_new[new_pair_2] = found_new.get(new_pair_2, 0) + count

84 found = dict(sorted(found_new.items()))

85 return float(sum(count * pair[1] * bound / pair[0] for pair, count in found.items()))

86

87 def approx_h_ful_2(K, h, bound):

88 # Use the formula we get by using Mobius inversion, to see how good

89 # or bad of an approximation this is. This is mostly useful if K = Q,

90 # else the other method is faster.

91 # Note that we do not include the residue of the Dedekind zeta function

92 # here yet, we will multiply this in later as it is a constant anyway.

93 ideals = [ideal for ideals in K.ideals_of_bdd_norm(bound).values() for ideal in ideals]

94 return float(bound * sum(mu_h(ideal, h) / ideal.norm() for ideal in ideals))

95

96 def h_ful_density_simple(K, h, bound):

97 # Find all h-ful ideals up to a bound, and check how many of those are principal.

98 b = find_h_ful_ideals_simple(K, h, bound)

99 total_count = sum(b.values())

100 princ_count = sum(count for ideal, count in b.items() if not(any(ideal[1])))

101 return bound, float(princ_count/total_count), total_count

102

103 def h_ful_density_main():

104 # Find the proportion of principal h-ful ideals of bounded norm

105 # compared to all h-ful ideals of bounded norm, for various fields K,

106 # and various values of h and the bound.

107 t_0 = pf()

108 x = polygen(ZZ, 'x')
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109 K0.<y0> = NumberField(x)

110 K1.<y1> = NumberField(x^2 + 5)

111 K2.<y2> = NumberField(x^2 + 13)

112 K3.<y3> = NumberField(x^2 + x + 6)

113 K4.<y4> = NumberField(x^2 + 14)

114 K5.<y5> = NumberField(x^2 + 17)

115 fields = [K1, K2, K3, K4, K5]

116 for field in fields:

117 print()

118 print()

119 print(field)

120 print(f'Class Number: {field.class_number()}')

121 print(f'Class Group: {field.class_group()}')

122 for h in range(2, 5):

123 print()

124 print(f'h: {h}')

125 # This line has been edited sometimes to calculate

126 # results for larger bounds so does not match

127 # the bounds in the tables. The core logic is

128 # identical, though.

129 for i in range(6, 4*h + 1):

130 print(h_ful_density_simple(field, h, 10**i))

131 print()

132 print(pf() - t_0)

133 return

134

135 def approx_h_ful_main():

136 # Use the Mobius inversion formula for various number fields,

137 # for various values of x and the bound on the norm.

138 t_0 = pf()

139 x = polygen(ZZ, 'x')

140 # K0.<y0> = NumberField(x)

141 K1.<y1> = NumberField(x^2 + 5)

142 K2.<y2> = NumberField(x^2 + 13)

143 K3.<y3> = NumberField(x^2 + x + 6)

144 K4.<y4> = NumberField(x^2 + 14)

145 K5.<y5> = NumberField(x^2 + 17)

146 fields = [K1, K2, K3, K4, K5]

147 for field in fields:

148 # Calculate the residue of the Dedekind zeta function here,

149 # and multiply it in, since we did not do that before.

150 r_1 = len(field.real_embeddings())

151 r_2 = (field.degree() - r_1) // 2

152 constant = 2**r_1 * (2 * pi)**r_2 * field.regulator() / (field.zeta_order() *

sqrt(abs(field.discriminant())))↪→

153 print()

154 print()

155 print(field)

156 print(f'Class Number: {field.class_number()}')

157 print(f'Class Group: {field.class_group()}')

158 for h in range(2, 6):

159 print()

160 print(f'h: {h}')

161 for i in range(16):

162 print(f'{i}: {float(approx_h_ful(field, h, 2**i) * constant)},

{len(find_h_ful_ideals_simple(field, h, 2**i))}')↪→

163 print()

164 print(pf() - t_0)
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165 return

166

167 h_ful_density_main()

168 approx_h_ful_main()

169

170
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[ES34] P. Erdős and G. Szekeres. Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über
ein verwandtes zahlentheoretisches Problem. Acta Univ. Szeged. Sect. Sci. Math., 7(2):95 – 102,
1934.

[Eve20] J. H. Evertse. Lecture notes analytic number theory, chapter 2. https://pub.math.leidenuniv.
nl/~evertsejh/ant20-2.pdf, 2020.

[Hec81] E. Hecke. Lectures on the theory of algebraic numbers, volume 77 of Graduate Texts in Mathemat-
ics. Springer-Verlag, New York-Berlin, 1981. Translated from the German by George U. Brauer,
Jay R. Goldman and R. Kotzen.

[LDTT22] D. Lowry-Duda, T. Taniguchi, and F. Thorne. Uniform bounds for lattice point counting and
partial sums of zeta functions. Math. Z., 300(3):2571–2590, 2022.

[MVO07] M. R. Murty and Jeanine Van Order. Counting integral ideals in a number field. Expo. Math.,
25(1):53–66, 2007.

[ST02] I. Stewart and D. Tall. Algebraic number theory and Fermat’s last theorem. A K Peters, Ltd.,
Natick, MA, third edition, 2002.

44

https://pub.math.leidenuniv.nl/~evertsejh/ant20-2.pdf
https://pub.math.leidenuniv.nl/~evertsejh/ant20-2.pdf

	Introduction
	Notation
	Defining h-fulness and norm in number fields
	Tools for approximating NK, h(x)
	NK, h(x) as sum
	NK, h(x) and Dirichlet series

	Estimating sums of coefficients
	Dedekind Zeta Functions
	h-ful ideals of bounded norm

	Looking at elements
	A new height function
	Comparing height to norm
	Densities
	h-th powers
	Inversion
	Representatives of ideals

	Appendix
	Results when trying approximation by inversion
	Density of principal h-ful ideals
	Code


