
UTRECHT UNIVERSITY

Faculty of Science

Game and Media Technology Master Thesis

Thread Divergence Reduction in Path Tracer using

Custom Thread Scheduler

First examiner:

Peter Vangorp

Second examiner:

Jacco Bikker

Candidate:

Georgios Psomathianos

July 12, 2024

Abstract

This master thesis’ main purpose is to research, implement and experiment

improved and innovative methods to reduce thread divergence in the path

tracer algorithm. The main research question this work aims to answer

is how to make the path tracer algorithm more memory and control flow

coherent. Better ray coherency would utilize the SIMT model better, thus,

ensuring higher performance of the GPU.

The main suggested method includes the incorporation of thread reorder-

ing compute shaders that aim to group threads into the same warps based

on the last bounce’s spatial information. For the sorting algorithm, a par-

allel bitonic sort is used and the current state-of-the-art radix sort is sug-

gested as an alternative. The sorting elements include sorting keys that

derive from the position and direction of the rays.

Specifically, the sorting keys involve the estimated termination points of

the rays from the previous bounce. We start with using a fixed length that

derives from the scene’s bounds to confirm our hypothesis, whether ray

reordering can reduce thread divergence and improve the overall perfor-

mance. Furthermore, three distinct formulas are examined and compared.

These include calculating and caching the average, the moving average,

and approximated gaussian distributions of the rays’ lengths. Finally, we

examined clamping the spatial grid’s values based on a fixed distance from

the camera’s position, as it could potentially yield interesting results.

Contents

1 Introduction 3

2 Related Work 6

2.1 Sampling . 6

2.2 Post-Processing . 13

2.3 Thread Divergence . 17

3 Method 24

3.1 Overview . 24

3.2 Software . 25

3.3 Path tracer . 26

3.4 Sorting Keys . 27

3.5 Sorting Stage . 35

4 Results 38

4.1 Experiment Description . 38

4.2 Ground Truth . 40

4.3 Comparison . 42

4.4 Evaluation . 49

5 Conclusion 51

5.1 Discussion . 51

5.2 Future Work . 52

Bibliography 56

2

1. Introduction

Through the years many advancements have been made in the field of com-

puter graphics for both real-time and offline applications.

Real-time applications such as video-games have high framerate as the

main requirement. Specifically, 60 f ps is the minimum standard for players

to ensure smooth gameplay without motion sickness. Furthermore, stud-

ies have shown that high framerate is associated with higher player perfor-

mance [1] and quality of experience [2]. Therefore, computationally cheap

and fast rendering algorithms can only be used to remain within that small

frame time window (16msec), with the significant drawback of sacrificing

image and lighting quality. The rasterization algorithm has been the dom-

inant method and a lot of research had been conducted to make both the

software and hardware efficient in that algorithmic direction. However, as

mentioned above it suffers from capturing the physically-based global illu-

mination of the scene.

Offline applications, especially in the film industry, do not have that

hard framerate constraint, as high fidelity is at the highest desire. At these

applications a different algorithm is used, called path tracer. This algo-

rithm incorporates rays as its main component and accurately approximates

light propagation and the underlying light physics perfectly capturing the

scene’s radiance. This is why film graphics exhibit a higher level of real-

ism and physical fidelity comparaed to their counterparts in video-games.

However, it is an expensive algorithm as thousand of samples need to be

computed to render a high quality and noise-free image, thus it had been

mostly used in offline applications.

The gap in real-time and offline applications had been significant enough

in render quality. However, reducing that gap has been more possible now

in the last 5 years with the introduction of RTX-cards [3]. NVIDIA managed

3

Introduction

to redesign its gpu cards to support native hardware ray tracing accelera-

tion. This includes hardware that accelerates ray/triangle intersections and

bounded volume hierarchy traversal. Real-time ray tracing has been more

possible ever since, as more research has been focused to enable real-time

ray tracing in lower framerates and higher resolutions. A lot of video-games

have been made over the last half decade, in which their superiority over

global illumination is evident[4].

Even with the advancement of the hardware, real-time global illumina-

tion is still not as impeccable as in offline and production rendering. Specif-

ically, only a few rays/samples per pixel can be calculated to be able to

satisfy the real-time constraint. This obviously either introduces bias (the

resulting image has less or more light energy, thus not correct) or variance

in a form of spatial and temporal noise.

Many innovations have been made in the last years trying to increase the

fidelity of real-time rendering. One approach aims to make the path tracer

algorithm more efficient in regards to sampling. State-of-the-art path trac-

ers focus on calculating samples that yield the greatest contribution to the

final result. Another approach is reducing the resulting variance by either

conventional image processing techniques or deep learning architectures.

These methods vary from reusing previous pixels, denoising to resolution

upscaling, as will be also discussed in greater detail in section 2. The final

approach, which is also the one that will be studied in this thesis is modi-

fying the path tracer algorithm with respect to hardware capabilities. GPUs

consist of thousand of thread units enabling massive parallelism. However,

threads are organized in threadgroups (waves/warps in AMD/NVIDIA ar-

chitectures) and execute in lockstep under the SIMT(Single Instruction Mul-

tiple Threads) model. This means that threads within the same threadgroup

need to execute the same code instructions. If a single thread needs to exe-

cute another line of code (e.g. due to an if statement) then the others need

to enter to a stall status, waiting for the other one to finish. In the literature,

this is known as thread divergence and has a significant performance impact

on the modern GPU hardware. Basically, threads remain idle underutiliz-

ing the GPU instead of executing useful work. Common techniques include

4

dividing different part of the algorithm into separate kernels instead of an

ubershader and thread reordering.

5

2. Related Work

In this section they will be a short background of the path tracer algorithm

and a detailed explanation of the state-of-the-art techniques in the three dif-

ferent approaches that were presented previously.

2.1 Sampling

2.1.1 Background

The global illumination problem consists of solving the rendering equa-

tion[5].

Lo(x, ωo) = Le(x, ωo) +
∫

Ω
fr(x, ωi)Li(x, ωi)(ωi · n)dωi (2.1)

The equation 2.1 is a simplified version of the rendering equation of the

outgoing radiance Lo of a point x from an outgoing direction ωo, where Le

is the emission term, fr the bidirectional distribution function and Li the

incoming radiance [6]. A critical observation is that there is no analytical

solution for it. Meanwhile, the term Li can either be caused due to direct

lighting or indirect lighting from light bouncing off surrounding surfaces.

In the latter case, recursiveness occurs, making the equation not trivial to

solve. Hence, only iterative methods like Monte Carlo estimators [7] that

can approximate the result can be used even in offline rendering.

Lo(x, ωo) = Le(x, ωo) +
1
N

N

∑
i=0

fr(x, ωi)Li(x, ωi)(ωi · n) (2.2)

6

2.1 Sampling

In the equation 2.2 random samples are being drawn using a uniform

distribution, hence the division by N. This is a naive approach, since there

are samples that offer almost negligible contribution to the equation’s esti-

mation, wasting computation time. In practice, there might be only a frac-

tion of the total samples that could greatly contribute to the final image. The

importance sampling technique tries to mitigate this by drawing samples

from a distribution that better approximates the function at issue.

Lo(x, ωo) = Le(x, ωo) +
N

∑
i=0

fr(x, ωi)Li(x, ωi)(ωi · n)
pi

(2.3)

In equation 2.3 pi is the probability of drawing the sample i from the

distribution that was used.

There are many distributions that can be used to approximate the prod-

uct of fr · Li · (ωi · n). The inverse method, a widely adopted technique in

probability theory, is commonly employed for sampling from a proposed

distribution:

1. Compute the CDF P(x) =
∫ x

0 p(x′)dx′

2. Compute the inverse P−1(x)

3. Sample a uniformly distributed random number ξ ∈ [0, 1]

4. Compute sample Xi = P−1(ξ)

It is trivial to understand that the best distribution would be P ∼ 1
C · fr ·

Li · (ωi · n), where C is the normalization factor(probabilities need to inte-

grate to 1). However, it is not possible to calculate the normalization factor

and the CDF, because the specific product and hence the integral is too com-

plex. For example the Li factor depends on the scene. The most common

method is to use a combination of distribution functions. For example, light

source sampling for direct lighting (Li approximation) or brdf sampling for

indirect lighting (fr approximation).

7

Related Work

(a) BRDF Distribution (b) Cosine-Weighted Distribution

Figure 2.1: Common distributions

There are cases, in which sampling from just one distribution does not

greatly result in variance reduction. For example, there cases in which a

light source might be very small when projected to a surface, however with

high intensity. Sampling from the brdf in that case would yield poor results

since hitting such a small light source is statistically unlikely. Similarly, a

very smooth surface with a a very thin specular lobe would have high vari-

ance, if samples are drawn from e.g. a light source.

Figure 2.2: From left to right increasing the light source. From top to bottom
increasing the material’s roughness

Veach tried to tackle this issue in his thesis[8] by proposing a new method

called, multiple importance sampling. The main idea is that multiple sam-

ples can be drawn from multiple distributions.

8

2.1 Sampling

F =
n

∑
i=1

1
ni

ni

∑
j=1

wi(Xi,j)
f (Xi,j)

pi(Xi,j)
(2.4)

In equation 2.4, n are the number of different distributions or sampling

strategies being used. The term wi(Xi,j) is a weighting term for taking into

consideration the importance of each strategy’s sample. Veach concluded

that the power heuristic yielded the best results

wi =
q2

i

∑k q2
k

(2.5)

The multiple importance sampling does provide better results compared

to single importance sampling. However, it is more computationally heavy,

as multiple samples (from different distributions) must be evaluated. In

the path tracer usually it is applied during the direct lighting estimation,

in which both light and brdf sampling is taking into consideration. In most

cases MIS proves to be a substantial variance reduction technique, justifying

the computational overhead.

2.1.2 State-Of-The-Art

So far the path tracer can yield satisfying results with the modern hard-

ware capabilities and good sampling techniques. However, challenges arise

as the number of light sources that must be considered increases. Due to

real-time constrains, the feasibility is limited to sampling from a single light

source. In cases of a few lights or when lighting is uniform among the var-

ious light sources, 1 sample per pixel with the combination of temporal re-

projection and denoising, which will be discussed in the next section, can

yield decent rendering results. In more complex lighting scenarios, where

hundreds of lights exist within the scene, hundreds or more samples are

required.

9

Related Work

The suggested method called ReSTIR[9] aims to reuse samples across

neighboring pixels and frames within the path tracer. Its goal aligns with

that of a denoiser, however it does not operate as an image post-process

stage, thereby there is not any image blurring and bias introduced, preserv-

ing lighting detail. It is claimed that this method can yield 100x to 1000x

sample count multiplier, hence enabling the possibility of having hundreds

of lights in the scene, while remaining real-time with low variance.

The main concept in ReSTIR is that we can generate a set of samples from

a cheap approximation(e.g. uniform) and through the process of reuse and

reweighting, estimate a target function. For example, the target function

could be the complex product that is impractical to sample from.

(a) Uniform distribution and target function (b) Approximation of target function

Figure 2.3: Reusing samples drawn from a uniform distribution can be
reweighted as if they have been drawn from a target distribution

The significance of ReSTIR stems from the fact that cheap samples can

be drawn and by reusing and reweighting them it can be observed as if

they were drawn by a distribution function
−
p which is normalized and inte-

grates to 1, satisfying the requirements of a valid distribution function. As

more samples are being used the probability function approximates the tar-

get function
′
p. This is indeed important, because the target function does

not have to be a distribution function. In other words, we do not need to

know the normalization factor and know in advance the formula of calcu-

lating the probability of a sample drawn from that target function. A better

approximation of the product fr · Li · (ωi · n) can be used without having

to transform it to a distribution function. Another important observation is

10

2.1 Sampling

that ReSTIR can be combined with MIS(Multiple Importance Sampling), if

samples are drawn from various PDFs.

So far sample reusage was specified only within the same frame and

same pixel. Furthermore, samples can be used from neighboring pixels and

previous frames, resulting in a significant number of samples. Basically, this

algorithm aggregates many samples from past frames and surrounding pix-

els giving an even better approximation of the target function, thus yielding

significant variance reduction. However, samples from previous frames and

neighboring samples might contain invalid samples. Specifically, their path

domain might be different and only partially overlap with the sample we

want to aggregate with. Samples from different domains need to be tested

whether they are eligible for path vertex connection and later a shift map-

ping domain function need to be applied to them so that they can be used

[10]

2.1.3 AI

In ReSTIR, it was explained that samples can be reused to better approxi-

mate a target function (perfect importance sampling). However, a sample is

being drawn by aggregating previously samples (spatiotemporal reusage)

and calculating an unbiased weight value. The true probability and there-

fore the distribution is not known and can not be calculated, which seemed

fine according to the results it produced. A different method called "path

guiding" [11] aims to learn a better distribution from which samples can be

drawn, as more samples are being used. Specifically, there are decent sam-

pling techniques like brdf, light sampling and next event estimation. How-

ever, the radiance term Li in the rendering equation is not known a-priori,

because it is scene dependent. This technique aims to approximate a bet-

ter distribution function with that term considered from previously drawn

samples like in a typical machine learning problem.

The basic concept consists of Gaussian mixture models that can be used

to guide the sampling of a new direction when path tracing [12].

11

Related Work

GMM(s|θ) =
K

∑
j=1

πjN (s|µj, Σj) (2.6)

New directions can be drawn using the trained Gaussian mixture models

that are stored in a spatial cache. Importance and radiance distributions are

being trained on the fly using the EM algorithm [13].

Figure 2.4: The training pipeline of the GMM distributions.

In the paper [14]] which is based on the same method, stores the distri-

butions in framebuffers instead of caching them in spatial data structures.

So their algorithm is on a pixel-basis instead of surfaces and points in the

scene. Specifically the distributions parameters (e.g. mean value, standard

deviation) are stored in a Γ buffer and the radiance estimations are stored as

VPLs(Virtual Point Lights) in a Π buffer.

12

2.2 Post-Processing

Figure 2.5: Parameters are loaded from the Γ buffer to sample a new direction.
The estimated radiance is stored in the Π buffer, which will be used during the
training phase to calculate the updated values of the distributions.

2.2 Post-Processing

2.2.1 Denoising

The previous methods focused on making the path tracer more efficient by

introducing better sampling methods to reduce the variance. Even with per-

fect important sampling, post-processing stages are required to temporally

reproject and accumulate previous frames and blur the remaining noise.

The Spatio-Temporal Variance Guided Filter (SVGF) [15] has been a pop-

ular standard in the industry of real-time ray tracing.

The first stage is temporal reprojection, in which pixels using motion

vectors from the G-Buffer are being reprojected in the previous frame to

match the same surface. Frames are being accumulated based on the tem-

poral integration function C′i = α · Ci + (1− α) · C′i−1. The temporal accu-

mulation factor expresses the influence previous frames have on the final

accumulated frame. Hence as long as pixels are correctly reprojected and

remain valid, more samples are accumulated, thus reducing the variance.

Pixels are valid when they refer to the same surface by checking their nor-

mal and depth values. If they are not, the accumulation factor becomes zero,

instantly dropping the accumulated samples of the pixel.

13

Related Work

For spatial denoising, a first stage is required to approximate each pixel’s

variance. Finally, a multi-pass a-trous wavelet filter is applied to blur any

remaining noise. Specifically, a pixel’s value is estimated by a weighted sum

of its neighboring pixels, which are influenced by edge-stopping functions.

The edge-stopping functions reduce the neighbors’ contribution based on

Gaussian blur kernels that their mean and variance values depend on the

absolute difference of normals, depth, luminance and luminance variance

that was estimated at the previous stage.

wz = exp(− |z(p)− z(q|
σz|∇z(p) · (p− q)|+ ϵ)

(2.7)

wn = max(0, n(p) · n(q))σn (2.8)

wl = exp(− |li(p)− li(q)|
σl
√

g3x3(Var(li(p)) + ϵ
) (2.9)

Above we can see the edge-stopping functions. The σ values are user-

defined variables that control the influence of each of the function. The

variance in the luminance function is being prefiltered in a gaussian 3x3

kernel.

NVIDIA introduced another method to temporally accumulate and de-

noise, caled ReBLUR [16]. It is 50% faster, more efficient in temporal stabil-

ity than the SVGF variant, while yielding decent results even at 0.5 ray per

pixel.

14

2.2 Post-Processing

Figure 2.6: Pipeline overview of REBLUR.

It is worth noting that diffuse and specular lighting is handled differ-

ently during the reprojection process. This is due to the fact that surface

reprojection works as expected with diffuse lighting, however, on reflec-

tions the lighting is not consistent introducing ghosting and lagging arti-

facts when using only motion vectors. Specifically, the maximum number

of accumulated frames is clamped based on the camera movement and the

distance between the camera and the surface. Later, virtual-motion based

position technique was introducted to reproject to the previous frame, in

which the motion of the reflected world is taken into consideration instead.

This method works for perfect mirrors, however, in case of rough reflec-

tions a scaling factor is calculated that states how close to the surface the

reprojected position should be.

Xvirtual = X−V · dhit · f (2.10)

where X is the current position, V is the view vector, dhit is the hit distance

and f is the scaling factor. The scaling factor is calculated using a formula

that takes into account the material roughness, and the dot product between

the normal and view vector.

A common problem of denoisers is that they tend to overblur some de-

15

Related Work

tails. This is more apparent in the SVGF denoiser. Common technique to

minimize this is to demodulate albedo (material details) and store just the

lighting in the resulting texture buffers. After denoising filtering is applied

to the resulting buffers, modulation occurs by just multiplying them with

the albedo to retrieve the final result.

2.2.2 Upsampling

A different, though standard, approach is to use an upsampling stage. The

cost of the path tracer is analogous to the resolution. In other words, what

if we could render in lower resolution to minimize the work load and use a

cheaper upsampling stage that brings the path traced image to the desired

resolution.

NVIDIA managed to achieve sufficient results in record time with their

Deep Learning Super Sampling architecture (DLSS) [17]

Figure 2.7: DLSS performance gain in popular games for 3840x2160 resolution.

Obviously the picture is not crystal clear and perfect compared to the

ray traced image at the same resolution. However, the temporal and spatial

artifacts are not that noticeable. The gained performance is definitely worth

the reduced image quality.

16

2.3 Thread Divergence

Figure 2.8: DLSS comparison with popular image processing upsampling
techniques.

2.3 Thread Divergence

The cost of the path tracer algorithm comes from the tremendous number of

rays and samples that are required to achieve an unbiased and low variance

result. The above techniques have been suggested to achieve a plausible

result just with 1 ray per pixel (or even a half or a quarter). However, a sig-

nificant impact to performance stems from the inefficiency of the algorithms

when they are executed on the graphics cards. On the GPU, the threads are

organised in threadgroups and executed in lockstep. Algorithms, shader

and kernel programs that follow the SIMD model can achieve a sufficient

utilization of the hardware. The path tracer at its nature is not cohesive,

meaning that work of threads within the same threadgroup will diverge.

When control flow changes within the threadgroup, threads have to stall

by being masked out. Basically, they remain idle not producing any useful

work. Extensive research has been conducted, trying to innovate methods

and techniques that try to redesign the algorithm to achieve a better GPU

utilization taking into consideration the hardware capabilities and restric-

tions.

Aila et al. [18] examined the performance of the trace method, which is

responsible for traversing the acceleration structure in order to find which

primitive a ray intersects. Any tests and experiments were compared with

17

Related Work

a hardware simulation in order to calculate an upper bound of the cost and

investigate how close to that theoretical bound a practical implementation

is. They noticed that only the most coherent part near the root gets accel-

erated, getting more incoherent rays the deeper the acceleration structure

goes.

Packet traversal is a common strategy, in which rays form groups and

follow the same path in the tree. Memory accesses are more coherent, how-

ever, rays visit nodes that do not actually intersect, thus not doing useful

work. The actual performance was not consistent to the simulated counter-

part, revealing that there might be limitations due to memory bandwidth.

On the other hand, per-ray traversal rays are handled independently and

visit exactly the nodes visited. Although the latter is less memory coherent,

performs better compared to the former, proving that the cost is not due

to memory. Specifically, the if-if trace variant compared to the while-while

one is even less memory coherent and performs the best. The reason for

that is in the if-if case there are less long-running warps that might cause

starvation.

(a) If-if Trace (b) While-while trace

Figure 2.9: Per-ray traversal

Speculative traversal bypasses the thread scheduler by launching only

enough threads in the beginning to fill the GPU once. Work is being fetched

from a global pool using atomic operations. This strategy is superior, unless

the memory subsystem starts being the bottleneck.

Laine et al.[19] examined the benefits of splitting the whole ray tracing

process into smaller kernels instead of a megakernel. Specifically, a megak-

ernel would introduce a lot of divergence to control flow, thus masking out

threads and limiting the latency-hiding of the GPUs. Furthermore, a megak-

ernel would require a lot of resource usage (e.g. registers) limiting the num-

18

2.3 Thread Divergence

ber of active threads that can reside simultaneously at the stream processors.

Overloading of the caches is, also, another possible scenario. Basically, they

split the whole process into 3 smaller stages/kernels; logic, material and ray

cast. The logic state is at mostly responsible for everything besides material

evaluation. Expensive materials can have their own kernels so that rays can

be grouped together and eventually evaluate the same material and thus ex-

ecute the same instructions. Shadow casting is done in the final stage. The

drawback of this is a path state of each ray needs to reside in global memory

so kernels can communicate and transfer data. However, according to their

results this strategy outweighs the above overhead.

Figure 2.10: Smaller kernels design

Frey et al. [20] investigated branch and termination divergence. The

strategy for tackling termination divergence is similar to speculative traver-

sal [18]. Tasks are being fetched from a task pool, whenever a thread fin-

ishes with a task a new one is being fetched. There are different types of

task pools; local, global and hybrid.

1. Local: Task pools are statically initialized and assigned to each thread

block. Since they reside in block memory, task fetching is cheap, how-

ever, it does not yield the best performance in cases of high divergence.

2. Global: A global task pool resides in global memory. Each thread has

a private task pool from which tasks are fetched. Whenever a private

pool becomes empty it fetches a chunk of tasks from the global pool.

This strategy offers a very fine-granular of task distribution, leading to

19

Related Work

a decent iteration length divergence compensation. However, it can be

expensive due to many global memory accesses. Furthermore, tasks

within the same warp might be scattered leading to incoherent mem-

ory accesses.

3. Hybrid: Combines a local and global task pool. Basically, instead of

private pool each warp has a local pool that fills tasks from the global

whenever its empty. One thread (smallest id) within a warp is respon-

sible to refill the local pool. This strategy minimizes global memory

accesses while preserving locality within the warp.

Meister et al.[21] proposed reordering rays in order to better utilize the

SIMD model. Rays can be mapped into 1-D array based on sorting keys.

The rays’ origin, direction and/or combination with simple bit interleav-

ing can be used as input into hashing functions that calculate those sorting

keys. The main concept is that rays with similar origin or direction can have

almost identical indices of the array, for instance by differing only in 1 bit

(e.g. with Morton code). That way, similar rays reside in the same memory

blocks, ensuring data locality. The suggested method concluded that the

actual ray data reodering process is the most expensive step. This is due

to the incoherent memory accesses in order to create coherent ray buffers.

Reducing this overhead could be key to increase the overall performance.

Despite that the speedup is noticeable in big and complex scenes.

Figure 2.11: Different sorting key computation methods, where o is the ori-
gin, d the direction and t the termination point. Mixing different methods is
achieved with bit interleaving.

A scheduler can also mitigate divergence in loops according to Blanleuil

et al.[22]. Within a loop, there might be change to the control flow due to if

statements. Within one iteration some threads will have to execute one code

20

2.3 Thread Divergence

block or the other. A path table can be used to store for each iteration the

path a thread has to take due to divergence. A scheduler can use the path

table to either delay or advance threads to the next iteration if they execute

the warp’s current condition.

Figure 2.12: Diagram from the paper [22]

From the figure above, we can see that the conventional scheduler Y

stalls threads that have to execute the other condition. The suggested sched-

uler, on the other hand, advances threads to the next iteration, if they exe-

cute the same condition. It is clearly observed that the number of cycles are

reduced.

Wald [23] showed that threads from different warps can be compacted

to fewer warps. This can improve SIMD efficiency when there are a lot of

partially filled warps that occur due to early thread termination. In practice

this is done by executing a parallel prefix sum to find the number of active

threads. He uses shared memory to store the path data of the active threads

as well as a flag of indicating which paths are active. This minimizes the

global memory accesses, however, it was reported that too much shared

memory usage might drop GPU’s occupancy and performance.

Mansson et al.[24] experimented on improving coherency of secondary

rays by caching and sorting them into packets using various heuristics.

Specifically, packets are sorted using a coherency measure. In other words

21

Related Work

rays that that will probably follow similar paths form a group in order to

take fully advantage of packet traversal. The results show that this system

can reduce the calls to the traversal unit and optimize the scene traversal.

Figure 2.13: Overview of the design [24]: cached rays are being sorted in pack-
ets and stored in FIFO queues. Post-shading handles shadow rays by accumu-
lating the final result depending on the shadow tests.

Similarly, Gribble et al. [25] group rays into streams via stream filter-

ing methods. During the stream filtering process rays are being masked out

using user-specific conditions. The output stream consists of rays that will

follow the same code path, ensuring fully SIMD utilization. Their method

can be used not only for scene traversal but for any other process during

the ray tracing algorithm such as material evaluation, light sampling and

more. Furthermore, filters with different masking out conditions can be ag-

gregated resulting in eliminating inactive rays in a combination of different

ray tracing stages.

22

2.3 Thread Divergence

(a) Stream filter takes as an input a ray
stream and outputs a stream which has the
inactive and the active rays (based on the
masking condition) separated.

(b) Filters can be stacked producing a finer
active-inactive ray output stream.

Figure 2.14: Stream filtering in ray tracing.

A new technological advancement on hardware named "shader execu-

tion reordering" (SER) by NVIDIA [26] manages to reorder threads in order

to increase SIMD utilization. They manage to reduce memory and thread

divergence on the fly without a significant overhead, since newer gpu ar-

chitectures were designed with this feature. This innovative addition to the

graphics APIs, compared to older automatic hidden thread reordering and

scheduling, gives explicit control to the application and the developer on

how thread reordering can occur.

Figure 2.15: SER example of reordering based on the hit location of the pri-
mary rays.

23

3. Method

3.1 Overview

The main focus of this thesis is optimizing the path tracer algorithm. As

mentioned in earlier sections, the goal is to make the path tracer more thread

and memory coherent. That way, the hardware can be better utilized under

the SIMD model and increase the stream processors’ occupancy, warp effi-

ciency and overall performance of the algorithm.

As mentioned in earlier work, ubershaders suffer from low performance

due to maximizing the stream processors’ register capacity and thread di-

vergence. Hence, the first step includes splitting the path tracer into smaller

steps and processes as also proposed by Laine and Karras [19] when dealing

with a wavefront path tracer. In this case the focus will be entirely splitting

the path tracer into single bounces.

Inspired by Meister et al.’s work [21] the next step is to sort the pix-

els/threads based on their spatial locality. This consists of including a sort-

ing stage between the bounces in order to form warps and threadgroups

that contain threads that will hit surfaces and objects which are in close

proximity. Specifically, threads within a warp will traverse through the

same nodes of the acceleration structure, thus increasing coherency, mini-

mizing cache misses and thread stalling.

Threads require to calculate and store information that will be used as

sorting keys during the sorting phase. The origin and an approximated

termination point is a valid combination, since they have yielded promising

results according to Meister [21]. In our case only the termination point will

be used that will be stored in a spatial grid and updated temporally using

the origin as a key. Therefore, the research question is focused around the

evaluation of the sufficiency of solely utilizing the termination point as a

24

3.2 Software

sorting key in the reduction of thread divergence.

3.2 Software

The implementation is done in NVIDIA’s framework Falcor [27] in C++.

This framework enables fast experimentation and prototyping of render-

ing algorithms and techniques as it provides an abstraction of modern and

complex graphics APIs such as Vulkan and DX12, hiding entirely the boil-

erplate code of the host. Furthermore, it includes a convenient style of im-

plementing render passes with the usage of a render graph that combines

and aggregates multiple stages of the rendering pipeline. Example passes

and scripts that combine multiple passes such as a path tracer with tem-

poral accumulation and the state-of-the-art denoisers are already available

within the framework. Precisely, the Mogwai tool within Falcor consists of

the main application that executes rendergraphs and renderpasses. Render-

graphs can be created within the application’s graphical user interface or

with Python scripting.

Figure 3.1: Example of a render graph that executes a 2-bounce path tracer in
Python.

For performance evaluation and shader profiling NVIDIA Nsight Graph-

ics [28] is used. It is an industry standard for debugging and optimizing

rendering applications. Various performance markers are included provid-

ing significant insight on what impacts performance and measures can be

25

Method

taken to write more efficient shaders.

3.3 Path tracer

As mentioned in the above section, Falcor has already a minimal path tracer

render graph implemented. Its main components are:

1. A Geometry pass, which is either ray traced or rasterized and stores

the required information of the primary rays such as position, nor-

mals, and material ids. The rasterized variant is used as it adequately

fulfills the objectives of our study.

2. A path tracer, which is multi-bounced and includes simple brdf impor-

tance sampling and uniform light sampling for next event estimation.

3. A temporal accumulation stage, which interpolates the current frame

and previous frames using the exponential moving average formula

as being used in popular TAA algorithms [29]. To maintain simplic-

ity, pixels are not being reprojected and past frames are discarded in

case there is camera movement, scene modifications and pipeline state

alterations (e.g. maximum number of path length).

4. A tonemapping stage to remap from high to low dynamic range.

While ray tracing through the scene, it is vital to store and preserve the

state of the path from each successive bounce to the subsequent one. This

requirement is addressed by introducing a user defined custom data struc-

ture, also referred to as payload in the literature. In order to isolate each

bounce as a separate pass it is essential to store and transmit that data struc-

ture between the bounces. To achieve that 2D textures are being used to

store and load from the payload.

Specifically, the textures used are described below:

1. A RGBA float position texture that stores the xyz position in the first 3

channels and a binary value in the alpha channel that indicates whether

the path is terminated or not

2. A RGB float direction texture that stores the sampled direction that

26

3.4 Sorting Keys

will be used to trace the next hit

3. A RGB float throughput texture that stores the current throughput of

the path. The initial value starts with 1 and it is reduced by the pdf

weight of the samples and the brdf evaluation.

4. A RGB float radiance texture that basically stores the current final

color if that bounce would terminate. It is being calculated as Lo =

thp · Le + thp · Li, where thp is the current throughput Le the emission

if the current surface is emissive and Li the current sampled light’s

contribution.

5. A RGBA unsigned integer seed texture that is required to store the

state of the random number generator for each pixel.

Figure 3.2: Overview of the rendering pipeline.

Apparently, the texture writes and fetches will introduce an overhead,

since global memory is significantly slower than local registers. In the up-

coming results 4 and discussion 4.4 sections will be deduced whether in-

creasing warp occupancy will exceed that added cost.

3.4 Sorting Keys

Drawing inspiration from Meister’s work [21] it is evident that spatial infor-

mation is a necessity when computing and creating sorting keys. For each

pixel, at every bounce, keys are computed and then stored into a global

buffer. This buffer will be sorted in ascending order utilizing a parallel sort-

ing algorithm suitable for the gpu.

Although, there are many options for sorting key selection, this thesis

primary focus is employing an estimated termination point of the rays as

27

Method

the main source of spatial information. This is the main deviation point

from Meister’s method, in which both the origin and termination point of

the path was incorporated to retrieve the sorting keys. Using only the ter-

mination point might be a crucial improvement, since all the bits are used,

enabling a finer precision on the spatial grid. Furthermore, the position’s in-

formation is already incorporated when updating the lengths as explained

in section 3.4.2.

The first critical step is converting 3D spatial information into a scalar

unsigned integer value. This is effectively achieved by constructing an imag-

inary 3D grid with a predefined resolution. As a consequence, retrieving a

scalar integer key is a straightforward task. This is accomplished by initially

identifying the voxel cell to which this point belongs to and later applying

Morton code to transform the 3D index to its scalar equivalent.

For paths that are either early terminated or miss and do not hit any ge-

ometry the same scalar index is assigned to, which in practice corresponds

to the maximum possible value based on the 3D grid’s resolution. This

is necessary to ensure that missed/terminated paths are grouped into the

same warps, since they will no longe generate new paths and trace through

the acceleration structure. The performance impact just by grouping the

terminated path could already be significant.

Algorithm 1 Find cell indices

1: procedure FINDCELLINDICES(point)
2: cellSize← gSceneBounds/gResolution
3: cell Indices← min3(gResolution− 1, f loor(point/cellSize))
4: return cell Indices
5: end procedure

Morton code also known as the Z-order curve is a popular method used

in mapping multidimensional data to one dimension [30], while ensuring

spatial locality. It works by interleaving the bits of 3D index of a point into

1D array index.

28

3.4 Sorting Keys

Algorithm 2 Morton Code

1: procedure MORTON(x, y, z)
2: morton← 0
3: for i← 0, 32 do
4: morton ← morton | (x & 1 ≪ i) ≪ 2 × i | (y & 1 ≪ i) ≪

(2× i + 1) | (z & 1 ≪ i) ≪ (2× i + 2)
5: end for
6: return morton
7: end procedure

The sparsity of the voxels is fundamentally determined by the grid. A

finer resolution enhances the precision, giving a profound representation of

the points by their corresponding indices. However, due to the curse of di-

mensionality, the memory requirements increase exponentially. To illustrate

this, halving the cells’ size yields an 8-fold increase in VRAM. Furthermore,

it is crucial to mention that a big grid with a lot of sparse memory access

will inevitably yield in lower performance, as cache efficiency drops and

therefore the cost of memory fetches increases. Finding the optimal balance

between grid resolution and memory usage is key in the context of path

tracing algorithms.

3.4.1 Fixed Length

It is apparent that the termination point cannot be known in advance. The

main concept is to guess where the rays of the next bounce will intersect in

order to sort them based on that information, in hope of achieving coher-

ent ray traversal. Before the actual intersection tests only the origin and the

sampled direction are known. However, a termination point can be approx-

imated for a fixed length value using the ray equation.

P = O + t f ixed · D (3.1)

Initially fixed length was used as a proof of concept to assess whether

this modification to the path tracer algorithm yields a significant perfor-

29

Method

mance improvement. In our tests, the chosen fixed length derives from the

half of the maximum axis of the scene’s extents. However, Meister et al [21]

suggested a fixed length of 0.25 of the scene’s extent when using both the

origin and termination point.

t f ixed = 0.5 ·max(max(extent.x, extent.y), extent.z) (3.2)

3.4.2 Adaptive Length

While employing a fixed termination length could provide a notable speedup,

it remains a cheap approximation on where the rays will intersect in the next

bounce. A more sophisticated alternative involves dynamically updating

ray lengths based on the actual hit positions of the previous bounces and

propagate that information along the frames. This is conceptually similar

to temporal accumulation. It is required to create a separate data structure

that caches the ray lengths and is being updated and accessed between sub-

sequent bounces and reused in the next frames. Analogous to the sorting

buffer indexed by the termination points, this new data structure incorpo-

rates both ray origins and an additional parameter derived from their direc-

tions.

Similar for the termination point the origin is used to calculate the cell

indices and then convert to 1D array index. However, we deviate from us-

ing Morton code, because our focus is not on preserving proximity between

the values. Additionally, due to memory and performance limitations, us-

ing a fine-grained grid resolution is not achievable. We leverage also the ray

direction to calculate the octant to which the ray belongs. By dividing the

3D grid into eight octants, we can represent efficiently the orientation of the

rays within each voxel. Various surfaces within the same voxel cell could

potentially spawn rays with different directions traversing through differ-

ent nodes within the acceleration structure. This is also evident surfaces

that have wide reflection lobe due to high roughness values. Consequently,

adding the direction information via octants could yield better representa-

30

3.4 Sorting Keys

tion than increasing the spatial grid’s resolution.

For each bounce a sorting key needs to be calculated based on the length

that will be loaded from the data structure. This process applies to all

bounces except for the initial camera rays. The primary rays lacking any

past length information, do not require to update the lengths. At the be-

ginning, the length buffer is being initialized with the fixed length value.

Different strategies and methods regarding length approximation were de-

veloped and experimented. They will be described below along with their

performance in the results section.

Figure 3.3: Overview of one bounce. Blue boxes involve data structures, or-
ange are compute shaders and green are processes within the path trace stage

3.4.2.1 Average

The primary and most straightforward method involves calculating the av-

erage length for each octant per voxel. This calculation is being executed by

storing two key pieces of information: the total number of samples and the

cumulative length. Therefore, the approximation of a length value, which is

used to estimate a termination point, is then simply a matter of performing

a division operation. The main advantage of this method lies in its simplic-

ity, as it requires only as single float and one integer per element. However,

a notable limitation is its sensitivity to outliers.

31

Method

3.4.2.2 Gaussian Distribution

As mentioned in section 3.4.2 the spatial grid cannot represent 100% the

scene’s complexity. Specifically, due the path tracer’s stochastic nature, rays

that belong to the same voxel and octant would deviate enough to hit en-

tirely different nodes producing a high variance in observed length values.

Figure 3.4: Example of outlier rays, where the blue box is a voxel cell, the
green circle an object in the scene, the black curve the surface within the voxel
and the purple lines the suggested sampled directions.

In image 3.4, we can observe that most rays will hit the sphere, however,

they are a few rays that will not hit the sphere and the actual intersection

length could be significantly bigger compared to the others. This would

potentially produce a inaccurate length approximation by using just the av-

erage of the observed length values.

This encourages us to try sampling length values from Gaussian dis-

tributions. Storing the number of samples, the sum of all samples and the

sum of the squared samples gives us the capability of calculating a Gaussian

distribution with an estimated mean and variance. This method has poten-

tially a higher cost, as it requires more expensive calculations compared to

using just the average value. Furthermore, one extra float value is required,

32

3.4 Sorting Keys

making the amount of required memory 1.5 times more compared to the

previous method. However, extra conditions and parameters can be used

to tackle the outlier issue. Specifically, after an adequate number of samples

a new sample can be classified as an outlier and thus discarded if the vari-

ance exceeds a user-defined threshold. Also, the distribution itself could

be reset by discarding all the past samples in case it reaches a user-defined

high variance value, making it more sensitive to new data. This, obviously,

introduces a layer of hyperparameter tuning and finding the best values to

get the optimal performance might not be an easy task due to scene depen-

dency.

3.4.3 Camera Clamping Grid

When calculating the termination point there is no guarantee that the es-

timated position will not exceed the scene bounds. To ensure that the esti-

mated point will always be within the scene’s grid, every estimated position

is clamped to the scene bounds and then remapped to positive range, be-

cause the indices need to be a non negative value. A notable issue that may

arise is bigger grid cell size. This could potentially result in a substantial

variance in length values within the same cell. Consequently, parts of the

scene that contain complicated geometry would be misrepresented as more

different surfaces lie within the same cells producing variable length values

as also observed in figure 3.4 . One simple approach is to have different

grid resolution among the three dimensions. This means that the biggest

axis will have more cells and make the grid finer. In our example scene the

bounds in the x and z axis are more than 150, whereas in the y is 50. In-

creasing the x and z resolution of the grid and decreasing the y one is valid

decision.

33

Method

Figure 3.5: Uniform grid along one axis

We took one step further by introducing a camera clamped grid based

on the camera’s position. Specifically, if the estimated termination points

surpass a user-defined distance from the viewer, they are clamped. The

camera’s position is utilized in this context, as it is preferable to have a de-

tailed grid around the surfaces proximate to the viewer. This is due to the

higher likelihood of most rays intersecting these nearby surfaces, since most

rays might not escape the area around the camera due to surrounding walls

and geometry.

minPos = max3(gMinPoint, cameraPos− f loat3(distance)) (3.3)

maxPos = min3(gMaxPoint, cameraPos + f loat3(distance)) (3.4)

Where gMaxPoint and gMinPoint are the minimum and maximum points

in the scene. Any point is being clamped to minPos and maxPos and cell’s

size also takes the updated bounds into consideration during the calculation

of the cell indices.

34

3.5 Sorting Stage

Figure 3.6: Positions’ found in the orange areas are clamped and assigned to
the indices that either correspond to minPos or maxPos.

3.5 Sorting Stage

In the previous section the necessary data structures were described as well

as the sorting key calculation methods that will populate the buffers to be

sorted. The stages between the subsequent bounces include a compute pass

that is responsible for sorting the pixels according to the Morton code pro-

duced values. Choosing the appropriate sorting algorithm is key as the

number of sorting elements is equal to the number of pixels, since the pix-

els represents the rays in a bounce that need to be sorted based on spatial

similarity. Hence, the cost of the sorting algorithm is not insignificant

Researching the state-of-the-art sorting algorithms suitable for the GPU,

we came across Adinets’and Merrill’s work [31] that utilized a novel ap-

proach of a least significant digit radix sort called OneSweep. Generally,

radix sort processes numbers digit by digit, instead of comparing the ac-

tual numbers. The algorithm distributes the numbers into buckets based on

each digit’s value. By continuously sorting digits from least to most signifi-

cant it achieves a final sorted order.

The OneSweep algorithm consists of 3 different kernel stages:

1. An upfront histogram kernel. This compute pass calculates a global

digit histogram for all digit places. Atomic additions and shared mem-

ory is used to maximize performance by minimizing register and shared

memory overhead. The histograms are private block-wide resulting in

less shared memory requirement. Hence, larger histograms are possi-

35

Method

ble, yielding an increase in radix digit size and a decrease in binning

iterations.

2. An exclusive sum kernel. This stage, basically, computes the prefix

sum across each of the digit histograms.

3. A chained scan digit-binning kernel. This kernel is a variation of the

chained scan with decoupled look-back technique [32]. A grid of thread

blocks, where each thread block is one tile of the input. The elements

of each tile are evenly distributed across the warps of the thread block.

Threads then perform warp-wide key ranking using the warp-level

multi-split technique [33]

For the actual implementation of the compute kernels, source code from

this repository [34] was used. However, Falcor is using the Slang shad-

ing and compiling language instead of pure HLSL. This introduced a lot of

errors regarding the intrinsic function that were used in the original imple-

mentation. Specifically, after a thorough technical research, it was revealed

that some of the wave intrinsic functions are not currently supported by

Slang. Furthermore, attempt was made to modify it to make it Slang appro-

priate, however, undefined behavior was observed.

The sorting algorithm is a fundamental important stage in our pipeline,

since it can potentially be a major bottleneck. However, the main research

focus of this thesis is the thread reordering in the context of the path tracer

algorithm and not the actual sorting algorithm. Consequently, a simple par-

allel bitonic sort algorithm is used instead.

The basic concept of the bitonic sort algorithm is that it creates ascending

and descending motonic series of the input data and then merges them. It is

a decent general purpose sorting algorithm, since it is able to sort numbers

of various types not just unsigned integers like radix sort. This could po-

tentially enable more versatility when it comes to the type of sorting keys.

However, multiple sequential compute passes are required making it not

the fastest sorting algorithm in the field [35].

36

3.5 Sorting Stage

Figure 3.7: Example of a bitonic sorting network of 16 input [36]

When sorting the pixels based on their corresponding sorting keys, it is

evident that the pixel spatial proximity is lost. Originally, the simplest ap-

proach would be to create an index buffer that stores the indices of the pix-

els. This method dictates the necessity of updating the index buffer while

swaping the sorting elements. When reading from the path state data struc-

tures, during the next bounce, the index buffer is used to index the cor-

rect memory from which the data will be loaded. The data structures were

created and initialized with the original order of the pixels, leading to sig-

nificant less coherent memory access and poor cache utilization. The path

tracer algorithm’s performance was tested with that approach and it was

observed that it had a negative impact, rendering the whole method signif-

icantly slow.

The solution is to swap the path’s data buffers as well to preserve local-

ity. This is accomplished by additionally passing these data buffers to the

sorting stage and propagating them to the next bounce. Furthermore, it is

required to introduce a single additional compute stage just after the final

bounce and before any screen-space post process effect. The sole purpose

of it, is to restore the order of the pixels back to the original position, oth-

erwise the pixels of the final image would be scattered in entirely different

positions, making the final rendering incomprehensible.

37

4. Results

4.1 Experiment Description

The different methods and heuristics are tested on Unreal Engine’s Sun

Temple scene [37]. It contains PBR textures, emissive materials and com-

plicated enough meshes for the thesis purpose. The experiments were con-

ducted on a NVIDIA RTX3070 Laptop GPU with 8GB Vram on a resolution

of 2048x1024.

The resolution is unusually in the power of two so that bitonic sort can

be easily utilized. With some tweaks the bitonic sort could also sort correctly

if the number of pixels was not a power of two, however, it was not desired

to spend too much time on the sorting algorithm’s implementation.

Using the GPU Trace Profiler a sophisticated tool in NVIDIA NSight

Graphics, 3 snapshots are taken for each individual method. Specifically,

each snapshot involves a specific camera position. Each one of them rep-

resents a different scenario depending on the divergence of the rays when

path tracing.

The first example shows a narrow alley in which rays will always hit

something and will mostly not miss, generating the maximum bounces, be-

cause there are no windows or openings. However, it mostly contains walls

and floor.

Secondly, a snapshot is taken in the middle of the scene. There are win-

dows, but they are not visible on the camera. The surrounding geometry is

more complicated and the rays can spread in a more chaotic fashion. Basi-

cally, in that scenario, rays could diverge the most and the path tracer could

potentially escape and terminate earlier.

Finally, the camera sees mostly geometry but also the openings. This

means that there will be pixels that will only spawn primary rays and will

38

4.1 Experiment Description

immediately terminate.

Figure 4.1: Example with mostly simple geometry and no openings and win-
dows

Figure 4.2: Example with complicated geometry and with windows not di-
rectly viewed from the camera

Figure 4.3: Example in which some primary rays will terminate.

39

Results

4.2 Ground Truth

Below, the results from Falcor’s minimal path tracer with 4 bounces are pre-

sented. Later they will be compared with the fixed length reordering solu-

tion to evaluate our basic hypothesis.

Metric Example1 Example2 Example3

Path tracer (msec) 38.10 42.49 42.66
Threads/Warp 9.8 8.8 8.7
L1TEX Hit Rate (%) 63.9 62.8 63.0
L2 Hit Rate (%) 64.4 64.1 60.9
L2 from L1 (%) 64.8 64.4 61.1
L1 Throughput (%) 38.3 34.3 29.2
L2 Throughput (%) 38.9 36.8 33.0
RTCORE Throughput (%) 42.1 38.3 35.8
SM Throughput (%) 31.3 28.6 25.8
VRAM Throughput (%) 63.0 57.4 52.8

Table 4.1: Performance Metrics for the Minimal PathTracer

The duration metric involves only the path tracer stage and not the oth-

ers like temporal accumulation and tonemapping. The threads per warp are

the average active threads per instruction within a warp. L1TEX and L2 hit

rate are the percentage of successful cache hits from level 1 and level 2 re-

spectively. L2 from L1TEX metric is the hit rate of data missed in L1TEX and

successfully found in L2, in contrast to L2 hit rate, which involves all level

2 accesses regardless of whether they were missed in L1TEX. The through-

put metrics state the unit’s utilization. For example the RTCORE involves

the utilization of the ray tracing nodes, the VRAM the accesses to the global

memory and the SM is the stream processors utilization, which on mod-

ern hardware 2 warps can reside in a single stream processor. Within the

NVIDIA’s profiler, there is an exhaustive list of other metrics that are more

specific. In the scope of this thesis, the metrics that are considered crucial

to the research topic will be presented to keep the results discussion precise

and as thorough as necessary.

A naive assumption would be that the third example would ideally cost

less, since many pixels will terminate just on their primary rays and will

40

4.2 Ground Truth

not go through the ray tracing process. However, the above results demon-

strate the opposite, proving that thread divergence within warps is indeed

a critical issue. Consequently, it also affects other metrics, like a cascade

effect. Specifically, poorer cache utilization as well as lower throughput val-

ues among various units are noticed. Although, in the first example, all rays

will never miss and will trace 4 bounces, the path tracer performs better, be-

cause the geometry will bounce off the rays in a similar manner, thus less

thread divergence is observed.

Below the table showcases the path tracer performance when it is re-

ordered based on the fixed length solution.

Metric Example1 Example2 Example3

Path tracer (msec) 25.48 26.20 26.01
Threads/Warp 20.74 19.36 18.42
L1TEX Hit Rate (%) 62.38 65.38 65.12
L2 Hit Rate (%) 67.02 65.50 62.82
L2 from L1 (%) 67.4 65.84 62.88
L1 Throughput (%) 36.42 33.20 28.18
L2 Throughput (%) 50.58 45.62 41.82
RTCORE Throughput (%) 47.48 45.94 42.18
SM Throughput (%) 23.38 24.36 22.08
VRAM Throughput (%) 69.14 59.02 59.22

Table 4.2: Performance Metrics for the Fixed Length Solution

The duration is much lower compared to the original algorithm, while

the active threads are significant higher. This confirms our initial hypothesis

whether thread reordering can reduce thread divergence and hence increase

the path tracer’s performance. Furthermore, it is noteworthy to mention

that the other metrics are also positively influenced. The L1 hit ratio is bit

less in the first example while slighly higher in the other two. The L2 ratio is

slightly higher in all examples. The L1TEX throughput is a bit less while the

L2 throughput significant higher. Similar higher values to L2 throughput,

are observed at RTCORE throughput, which could indicate the better per-

formance of the algorithm. The VRAM throughput is also logically higher,

since extra buffers to store the path state are required between the bounces.

It is crucial to mention the cost of the sorting algorithm as well. The

41

Results

bitonic sort of 2048x1024 elements approximately takes from 30 to 35 msec.

For every bounce one sorting stage is required so in total this amounts on

average to 130 msec. The cost of the reorder pass costs roughly 0.8 msec

on average, so it can be ignored. The high cost of the sorting algorithm is

already noticeable, making it the main bottleneck. As mentioned in section

3.5, a faster sorting algorithm is suggested called Onesweep. Interested read-

ers can study the source code as well as how it compares with other high

performance sorting algorithms [38].

4.3 Comparison

The Meister et al’s method [21] is also tested on the specific framework. Out

of all sorting keys, we used the one that combines the origin and direction

of the ray in question, since it achieved the highest performance according

to their results. The lengths are cached using the average formula.

For the Gaussian distribution method, the distribution resets when the

variance exceeds 20. After some hyperparameter tuning, it was concluded

that this threshold achieves the best results.

Below, comparison bar graphs are presented for all the important metrics

by taking the average of the three different examples.

Figure 4.4: Path tracer time comparison bar graph

42

4.3 Comparison

From the graph 4.4, it is observed that the overall thread reordering tech-

nique provides a significant speedup to the path tracing algorithm. The

faster path tracer is achieved by the original Meister et al’s method [21],

which executes the path tracer in just 25.32 msec compared to the ground

truth which takes 41.08 msec. The fixed length solution comes next with

25.90 msec. The slowest one is the Gaussian distribution with the camera

clamped grid with 30.87 msec.

Figure 4.5: Active threads per wap comparison bar graph

The superiority of the thread reordering method is also evident when

examining the warp’s occupancy. All methods achieve close to 60% or more

warp coherence, compared to the ground truth, which achieves half of it,

only 28.29%.

43

Results

Figure 4.6: Sorting stage duration comparison bar graph

The sorting stage is without doubt the bottleneck for all the implemented

methods. However, a significant reduction is achieved when using the Gaus-

sian distribution method on camera clamped grid. Specifically, it only costs

82.95 msec compared to Meister’s 112.47 msec and the fixed length solu-

tion’s 130.32 msec, which is the highest observed from all the other meth-

ods.

Figure 4.7: RTCORE throughput comparison bar graph

44

4.3 Comparison

The RTCORE throughput is increased in all methods compared to the

ground truth. This means that the RT cores are more efficiently utilized by

the thread reordering methods. The fixed length solution achieves the high-

est throughput of 45.19%. From all ray-reordering methods the Gaussian

distribution solution achieves the worse of 40.05%.

Figure 4.8: VRAM throughput comparison bar graph

All methods exhibit higher VRAM throughput compared to the ground

truth. This is explained by the extra buffers that are required to store and

load the current bounce’s path state. Meister et al’s solution and the fixed

length method with the camera clamped grid have the highest VRAM through-

put. In the graphs lower cache utilization is observed which could indicate

the cause of the higher VRAM throughput. Lower cache utilization means

that requested data are not found in cache so they need to be fetched from

global memory, thus higher VRAM utilization.

45

Results

Figure 4.9: SM throughput comparison bar graph

It appears that the original ground truth path tracer achieves higher

throughput of the stream multiprocessor. However, this metric by itself

cannot provide thorough reason of why the ray-reordering methods achieve

less, since this throughput covers the overall utilization of the whole stream

multiprocessor.

Figure 4.10: L1TEX hit ratio comparison bar graph

46

4.3 Comparison

Figure 4.11: L2 hit ratio comparison bar graph

Figure 4.12: L2 from L1 hit ratio comparison bar graph

47

Results

Figure 4.13: L1TEX throughput comparison bar graph

Figure 4.14: L2 throughput comparison bar graph

We do not observe significant difference in the cache metrics among the

different methods. Specifically, the average formula on a camera clamped

grid achieves the highest L1TEX ratio of 67.94 %, while the corresponding

Gaussian method achieves the lowest of 61.38 %, which is even lower than

the ground truth. However, the Gaussian method on a standard grid has

48

4.4 Evaluation

66.63 % hit ratio on L2, which is the highest. In the L2 from L1 hit ra-

tio case, Meister et al’s method has the lowest value, which is almost 6%

less compared to the highest, also achieved by the Gaussian method. The

ground truth path tracer has the highest L1TEX throughput and the lowest

L2 throughput. This could be explained by the minimal usage of buffers

that the other methods require.

4.4 Evaluation

It can be concluded that the occupancy has the most significant role, when

considering the path tracer’s performance. The duration difference of all

the methods when compared to the original uninterrupted path tracer is

evident. When comparing the different methods with each other, it is de-

ducted that the RTCORE throughput also influences the path tracer’s per-

formance. For example, by examining the graph 4.4 and 4.7, we can clearly

see that methods that have higher utilization of the RT cores have also less

path tracing time. Specifically, Meister et al’s method with the combination

of both the position and termination point as well as the fixed length solu-

tion has the highest RTCORE throughput and thus path tracer performance.

On the contrary, the cache does not seem to greatly correlate to the path

tracer’s performance. Despite the superiority of the methods in regards to

the path tracer’s duration, their cache utilization is lower. Similar obser-

vation can be made when looking at the VRAM metric at graph 4.8. High

VRAM throughput could lead to less performance, because the stream pro-

cessor could be stalled due to the slow memory fetches from the VRAM.

This can also be confirmed when looking at the SM throughput at graph

4.9. The original ground truth algorithm does not have the extra path state

buffers, hence the least VRAM and the highest SM throughput is recorded.

It is crucial to not forget that different methods include more expensive

instructions. A trivial example is the Gaussian distribution, which includes

extra division, multiplication and a square root to calculate the standard de-

viation. Also, random sampling of a uniform variable is as well a necessary

extra cost. This is also consistent, with other methods that require extra in-

49

Results

structions. In other words, there is an apparent overhead for each method

that is not trivial to evaluate, as further investigation is required.

Evidently, the sorting stage is the bottleneck of all the ray-reordering

methods. However, looking at 4.4 and 4.6, it is clear that the methods that

have the lowest path tracer performance, have the highest sorting perfor-

mance. Specifically, the Gaussian distribution method variant on both a

standard and clamped grid have significantly less sorting time. Apparently,

there is an optimal balance between better accuracy on the length approx-

imation and sorting stage speed. Judging by the overall execution time of

both the path tracer and the bitonic sort’s execution, the Gaussian distribu-

tion method on a camera clamped grid is superior when compared to the

all the other ray-reordering methods.

50

5. Conclusion

5.1 Discussion

In this thesis, thread reordering was examined exclusively using the termi-

nation points as sorting keys. All of the formulas and methods achieved

better performance on the path tracer, when compared to Falcor’s mini-

mal path tracer, answering the initial research question. However, the fixed

length solution yielded the fastest path tracer on average. On the adaptive

length formulas more efficient cache utilization and higher RTCore through-

put was noticed, despite the slower execution time. All of the methods

recorded the same 75% warp utilization, proving the significant role of thread

coherency on the path tracer’s performance. Further investigation is re-

quired in order to determine whether the extra cost is due to the overhead

of the extra instructions or due to the inconsistencies of the adaptive termi-

nation point lengths.

Furthermore, an adaptive grid based on the camera’s position was as

well implemented and tested. The results showed slightly worse perfor-

mance on the path tracer compared to their counterparts.

While the adaptive length solutions achieved higher execution times,

they had a positive effect on the sorting stage’s performance. In summary,

they achieved higher memory and thread coherency in both sorting and

path tracer stage. Specifically, calculating length using approximated Gaus-

sian distributions on an adaptive grid, was proved the best method by achiev-

ing the highest execution time reduction in the sorting stage. The signifi-

cance of this reduction stems also from Meister’s observation [21] that the

sorting kernels are indeed the bottleneck of thread reordering.

51

Conclusion

5.2 Future Work

For the purpose of this thesis not the fastest parallel sorting method was

used, increasing a lot the execution time when incorporating thread reorder-

ing. It is crucial to test the fastest algorithm e.g. [31] and investigate whether

we notice a similar performance boost using the adaptive length solutions.

With that information, we can answer whether the total path tracer pipeline

including the sorting stages has a noticeable speedup, when compared to

a path tracer without any ray sorting and hence the expensive overhead of

the compute kernels.

As the memory requirements of 3D spatial grids grow substantially with

the increase of the resolution, adaptive and sparse grids could contribute to

a greater spatial representation of the scene. This could potentially lead to

a more efficient spatial classification of the bounces and meanwhile reduce

the memory requirement and data transfers.

52

Bibliography

[1] M. Claypool, K. Claypool, and F. Damaa, “The effects of frame rate
and resolution on users playing first person shooter games,” Pro-
ceedings of SPIE - The International Society for Optical Engineering,
vol. 6071, Jan. 2006. DOI: 10.1117/12.648609.

[2] S. Liu, A. Kuwahara, J. J. Scovell, and M. Claypool, “The effects of
frame rate variation on game player quality of experience,” in Pro-
ceedings of the 2023 CHI Conference on Human Factors in Computing
Systems, ser. CHI ’23, Hamburg, Germany: Association for Comput-
ing Machinery, 2023, ISBN: 9781450394215. DOI: 10.1145/3544548.
3580665. [Online]. Available: https://doi.org/10.1145/3544548.
3580665.

[3] Jul. 2023. [Online]. Available: https://developer.nvidia.com/
rtx/ray-tracing.

[4] J. Archer, Here are all the confirmed ray tracing and dlss games so far,
Aug. 2023. [Online]. Available: https://www.rockpapershotgun.
com/confirmed-ray-tracing-and-dlss-games.

[5] J. T. Kajiya, “The rendering equation,” in Proceedings of the 13th An-
nual Conference on Computer Graphics and Interactive Techniques, ser. SIG-
GRAPH ’86, New York, NY, USA: Association for Computing Ma-
chinery, 1986, pp. 143–150, ISBN: 0897911962. DOI: 10.1145/15922.
15902. [Online]. Available: https://doi.org/10.1145/15922.
15902.

[6] Aug. 2023. [Online]. Available: https://en.wikipedia.org/wiki/
Rendering_equation.

[7] Aug. 2023. [Online]. Available: https://en.wikipedia.org/wiki/
Monte_Carlo_method.

[8] E. Veach, “Robust Monte Carlo Methods for Light Transport Simu-
lation,” Ph.D. dissertation, Stanford University, 1997.

[9] B. Bitterli, C. Wyman, M. Pharr, P. Shirley, A. Lefohn, and W. Jarosz,
“Spatiotemporal reservoir resampling for real-time ray tracing with
dynamic direct lighting,” ACM Transactions on Graphics (Proceedings
of SIGGRAPH), vol. 39, no. 4, Jul. 2020. DOI: 10/gg8xc7.

[10] D. Lin, M. Kettunen, B. Bitterli, J. Pantaleoni, C. Yuksel, and C.
Wyman, “Generalized resampled importance sampling: Founda-
tions of restir,” ACM Trans. Graph., vol. 41, no. 4, Jul. 2022, ISSN:
0730-0301. DOI: 10 . 1145 / 3528223 . 3530158. [Online]. Available:
https://doi.org/10.1145/3528223.3530158.

[11] J. Vorba, J. Hanika, S. Herholz, T. Müller, J. Křivánek, and A. Keller,
“Path guiding in production,” in ACM SIGGRAPH 2019 Courses,
ser. SIGGRAPH ’19, Los Angeles, California: ACM, 2019, 18:1–18:77,

53

https://doi.org/10.1117/12.648609
https://doi.org/10.1145/3544548.3580665
https://doi.org/10.1145/3544548.3580665
https://doi.org/10.1145/3544548.3580665
https://doi.org/10.1145/3544548.3580665
https://developer.nvidia.com/rtx/ray-tracing
https://developer.nvidia.com/rtx/ray-tracing
https://www.rockpapershotgun.com/confirmed-ray-tracing-and-dlss-games
https://www.rockpapershotgun.com/confirmed-ray-tracing-and-dlss-games
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/15922.15902
https://en.wikipedia.org/wiki/Rendering_equation
https://en.wikipedia.org/wiki/Rendering_equation
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://doi.org/10/gg8xc7
https://doi.org/10.1145/3528223.3530158
https://doi.org/10.1145/3528223.3530158

Bibliography

ISBN: 978-1-4503-6307-5. DOI: 10.1145/3305366.3328091. [Online].
Available: http://doi.acm.org/10.1145/3305366.3328091.

[12] J. Vorba, O. Karlík, M. Šik, T. Ritschel, and J. Křivánek, “On-line
learning of parametric mixture models for light transport simula-
tion,” ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014),
vol. 33, no. 4, Aug. 2014.

[13] P. Liang and D. Klein, “Online EM for unsupervised models,” in
Proceedings of Human Language Technologies: The 2009 Annual Con-
ference of the North American Chapter of the Association for Computa-
tional Linguistics, Boulder, Colorado: Association for Computational
Linguistics, Jun. 2009, pp. 611–619. [Online]. Available: https://
aclanthology.org/N09-1069.

[14] M. Derevyannykh, “Real-time path-guiding based on parametric
mixture models,” CoRR, vol. abs/2112.09728, 2021. arXiv: 2112 .
09728. [Online]. Available: https://arxiv.org/abs/2112.09728.

[15] C. Schied, A. Kaplanyan, C. Wyman, et al., “Spatiotemporal variance-
guided filtering: Real-time reconstruction for path-traced global il-
lumination,” in Proceedings of High Performance Graphics, ser. HPG
’17, Los Angeles, California: Association for Computing Machin-
ery, 2017, ISBN: 9781450351010. DOI: 10.1145/3105762.3105770.
[Online]. Available: https://doi.org/10.1145/3105762.3105770.

[16] D. Zhdan, “Reblur: A hierarchical recurrent denoiser,” in Aug. 2021,
pp. 823–844, ISBN: 978-1-4842-7184-1. DOI: 10.1007/978-1-4842-
7185-8_49.

[17] [Online]. Available: https://www.nvidia.com/nl-nl/geforce/
technologies/dlss/.

[18] T. Aila and S. Laine, “Understanding the efficiency of ray traver-
sal on gpus,” in Proceedings of the Conference on High Performance
Graphics 2009, ser. HPG ’09, New Orleans, Louisiana: Association
for Computing Machinery, 2009, pp. 145–149, ISBN: 9781605586038.
DOI: 10.1145/1572769.1572792. [Online]. Available: https://doi.
org/10.1145/1572769.1572792.

[19] S. Laine, T. Karras, and T. Aila, “Megakernels considered harm-
ful: Wavefront path tracing on gpus,” in High Performance Graphics,
2013. [Online]. Available: https://api.semanticscholar.org/
CorpusID:11807791.

[20] S. Frey, G. Reina, and T. Ertl, “Simt microscheduling: Reducing thread
stalling in divergent iterative algorithms,” in 2012 20th Euromicro
International Conference on Parallel, Distributed and Network-based Pro-
cessing, 2012, pp. 399–406. DOI: 10.1109/PDP.2012.62.

[21] D. Meister, J. Boksansky, M. Guthe, and J. Bittner, “On ray reorder-
ing techniques for faster gpu ray tracing,” in Symposium on Inter-
active 3D Graphics and Games, ser. I3D ’20, San Francisco, CA, USA:
Association for Computing Machinery, 2020, ISBN: 9781450375894.
DOI: 10.1145/3384382.3384534. [Online]. Available: https://doi.
org/10.1145/3384382.3384534.

54

https://doi.org/10.1145/3305366.3328091
http://doi.acm.org/10.1145/3305366.3328091
https://aclanthology.org/N09-1069
https://aclanthology.org/N09-1069
https://arxiv.org/abs/2112.09728
https://arxiv.org/abs/2112.09728
https://arxiv.org/abs/2112.09728
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1007/978-1-4842-7185-8_49
https://doi.org/10.1007/978-1-4842-7185-8_49
https://www.nvidia.com/nl-nl/geforce/technologies/dlss/
https://www.nvidia.com/nl-nl/geforce/technologies/dlss/
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/1572769.1572792
https://api.semanticscholar.org/CorpusID:11807791
https://api.semanticscholar.org/CorpusID:11807791
https://doi.org/10.1109/PDP.2012.62
https://doi.org/10.1145/3384382.3384534
https://doi.org/10.1145/3384382.3384534
https://doi.org/10.1145/3384382.3384534

Bibliography

[22] L. Blanleuil and C. Collange, “Scheduling paths leveraging dynamic
information in simt architectures,” in COMPAS 2021-Conférence fran-
cophone d’informatique en Parallélisme, Architecture et Système, 2021,
pp. 1–6.

[23] I. Wald, “Active thread compaction for gpu path tracing,” in Pro-
ceedings of the ACM SIGGRAPH Symposium on High Performance Graph-
ics, ser. HPG ’11, Vancouver, British Columbia, Canada: Association
for Computing Machinery, 2011, pp. 51–58, ISBN: 9781450308960.
DOI: 10.1145/2018323.2018331. [Online]. Available: https://doi.
org/10.1145/2018323.2018331.

[24] E. Mansson, J. Munkberg, and T. Akenine-Moller, “Deep coherent
ray tracing,” in 2007 IEEE Symposium on Interactive Ray Tracing, 2007,
pp. 79–85. DOI: 10.1109/RT.2007.4342594.

[25] C. P. Gribble and K. Ramani, “Coherent ray tracing via stream fil-
tering,” in 2008 IEEE Symposium on Interactive Ray Tracing, 2008,
pp. 59–66. DOI: 10.1109/RT.2008.4634622.

[26] Improve Shader Performance and In-Game Frame Rates with Shader Ex-
ecution Reordering | NVIDIA Technical Blog — developer.nvidia.com,
https://developer.nvidia.com/blog/improve-shader-perfo
rmance-and-in-game-frame-rates-with-shader-execution-
reordering/, [Accessed 27-09-2023].

[27] Falcor — developer.nvidia.com, https://developer.nvidia.com/
falcor, [Accessed 03-10-2023].

[28] NVIDIA Nsight Graphics — developer.nvidia.com, https://develope
r.nvidia.com/nsight-graphics, [Accessed 09-10-2023].

[29] L. Yang, S. Liu, and M. Salvi, “A survey of temporal antialiasing
techniques,” Computer Graphics Forum, vol. 39, no. 2, pp. 607–621,
Jul. 2020. DOI: 10.1111/cgf.14018.

[30] J. Baert, A. Lagae, and P. Dutré, “Out-of-core construction of sparse
voxel octrees,” in Proceedings of the 5th High-Performance Graphics
Conference, ser. HPG ’13, Anaheim, California: ACM, 2013, pp. 27–
32, ISBN: 978-1-4503-2135-8. DOI: 10.1145/2492045.2492048. [On-
line]. Available: http://doi.acm.org/10.1145/2492045.2492048.

[31] A. Adinets and D. Merrill, Onesweep: A faster least significant digit
radix sort for gpus, 2022. arXiv: 2206.01784 [cs.DC].

[32] D. Merrill and M. Garland, “Single-pass parallel prefix scan with
decoupled lookback,” 2016. [Online]. Available: https://api.sema
nticscholar.org/CorpusID:51919482.

[33] S. Ashkiani, A. Davidson, U. Meyer, and J. D. Owens, “Gpu multi-
split,” SIGPLAN Not., vol. 51, no. 8, Feb. 2016, ISSN: 0362-1340. DOI:
10.1145/3016078.2851169. [Online]. Available: https://doi.org/
10.1145/3016078.2851169.

[34] GitHub - b0nes164/OneSweep: A simple library-less CUDA implemen-
tation of the OneSweep sorting algorithm. — github.com, https : / /
github.com/b0nes164/OneSweep?tab=readme-ov-file, [Accessed
27-05-2024].

55

https://doi.org/10.1145/2018323.2018331
https://doi.org/10.1145/2018323.2018331
https://doi.org/10.1145/2018323.2018331
https://doi.org/10.1109/RT.2007.4342594
https://doi.org/10.1109/RT.2008.4634622
https://developer.nvidia.com/blog/improve-shader-performance-and-in-game-frame-rates-with-shader-execution-reordering/
https://developer.nvidia.com/blog/improve-shader-performance-and-in-game-frame-rates-with-shader-execution-reordering/
https://developer.nvidia.com/blog/improve-shader-performance-and-in-game-frame-rates-with-shader-execution-reordering/
https://developer.nvidia.com/falcor
https://developer.nvidia.com/falcor
https://developer.nvidia.com/nsight-graphics
https://developer.nvidia.com/nsight-graphics
https://doi.org/10.1111/cgf.14018
https://doi.org/10.1145/2492045.2492048
http://doi.acm.org/10.1145/2492045.2492048
https://arxiv.org/abs/2206.01784
https://api.semanticscholar.org/CorpusID:51919482
https://api.semanticscholar.org/CorpusID:51919482
https://doi.org/10.1145/3016078.2851169
https://doi.org/10.1145/3016078.2851169
https://doi.org/10.1145/3016078.2851169
https://github.com/b0nes164/OneSweep?tab=readme-ov-file
https://github.com/b0nes164/OneSweep?tab=readme-ov-file

Bibliography

[35] Sorting — linebender.org, https://linebender.org/wiki/gpu/sort
ing/, [Accessed 22-06-2024].

[36] Bitonic sorter - Wikipedia — en.wikipedia.org, https://en.wikipedia.
org/wiki/Bitonic_sorter, [Accessed 27-05-2024].

[37] E. Games, Unreal engine sun temple, open research content archive (orca),
http://developer.nvidia.com/orca/epic-games-sun-temple, Oct. 2017.
[Online]. Available: http://developer.nvidia.com/orca/epic-
games-sun-temple.

[38] GitHub - b0nes164/GPUSorting: OneSweep, implemented in CUDA, D3D12,
and Unity style compute shaders. Theoretically portable to all wave/warp/subgroup
sizes. — github.com, https://github.com/b0nes164/GPUSorting,
[Accessed 24-06-2024].

56

https://linebender.org/wiki/gpu/sorting/
https://linebender.org/wiki/gpu/sorting/
https://en.wikipedia.org/wiki/Bitonic_sorter
https://en.wikipedia.org/wiki/Bitonic_sorter
http://developer.nvidia.com/orca/epic-games-sun-temple
http://developer.nvidia.com/orca/epic-games-sun-temple
https://github.com/b0nes164/GPUSorting

	Introduction
	Related Work
	Sampling
	Post-Processing
	Thread Divergence

	Method
	Overview
	Software
	Path tracer
	Sorting Keys
	Sorting Stage

	Results
	Experiment Description
	Ground Truth
	Comparison
	Evaluation

	Conclusion
	Discussion
	Future Work

	Bibliography

