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Abstract 

 In psychiatry, the diagnostic journey of the patient is recorded by documenting it in 

comprehensive clinical notes, making it a vital source of diagnostic information. This study 

explores the automation of extracting diagnostic categories through the implementation of 

Large Language Models (LLMs). Specifically, Dutch-trained Transformers were fine-tuned 

to predict eight diagnostic categories across three types. Three attributes that could have an 

impact on model performance are compared with one another: the training data of a pre-

trained Transformer, the classification method (Named Entity Recognition vs. Multi-Label 

classification) and the implementation of an oversampling technique. Findings show that 

RobBERT, a model pre-trained on the general Dutch language, performs better than 

MedRoBERTa.nl, a model pre-trained on Dutch medical data. Additionally, making 

classifications per token (Named Entity Recognition) performs better than predicting the 

presence of each label per text (Multi-Label classification). The impact of oversampling 

remains inconclusive. This thesis aims to establish a foundation for utilizing Transformers in 

psychiatric text processing.  

 

Introduction 

 Imagine that you have broken your arm in a minor incident. After you visit the 

general practitioner, a clear diagnosis and corresponding treatment plan is delivered to you 

based on physical symptoms and evidence. Now, imagine seeking help for an overwhelming 

sense of dread or persisting feeling of emptiness. This may be an indication of a mental 

illness, but one that is much harder to categorize due to the lack of physical indicators. This is 

a challenge that patients and professionals within psychiatry face every day, as they try to 

navigate and treat these complex situations.  

To tackle this issue, professionals make a distinction between classifications and 

diagnoses (Nederlandse vereniging voor psychiatrie, 2014; Stein et al., 2013). Classifications, 

such as those found in the DSM or ICD-10, categorize symptoms based on standardized 

criteria, providing a concrete framework for labeling mental health conditions. Diagnoses 

capture the situation of an individual more broadly by describing symptoms and relevant 

personal events. In this case, the representation of the mental illness provides more personal 

context and does not need to be tied to a pre-defined category. Unfortunately, when the 

differences between these concepts are not made clear, they tend to be used interchangeably. 

In the current age of automatization, documenting classifications is as easy as letting 

psychiatrist take care of some drop-down menus, as these are captured within pre-defined 



categories. However, with diagnoses, this may not be as easy. They provide context and 

personal details of a patient’s condition that cannot be captured within automated systems. 

Therefore, the documentation of clinical notes is necessary, enabling a psychiatrist to 

adequately record a patient’s diagnosis.  

Regrettably, certain diagnoses carry a negative social stigma, presenting difficulty for 

psychiatrists when assigning them and for patients when receiving them. One example of this 

is Borderline Personality Disorder (BPD). Often, the assumption is made that people with 

BPD are irresponsible, weak and unstable, regardless of their personality or history 

(Clearview Treatment Programs, 2019). Another general belief is that the mental illness is 

untreatable, even though this is not the case anymore. These stigmas can lead to negative 

consequences for the patient, such as being misunderstood, bullied, or misdiagnosed. 

Additionally, they can encounter various challenges caused by their undiagnosed condition 

that arise from reluctance to seek help. 

The PsyData team in the Department of Psychiatry at University Medical Center 

Utrecht (UMCU) aims to investigate whether diagnoses that are socially stigmatized are truly 

more difficult to provide. Evidence is sought through quantifying instances of classifications, 

misclassifications, and second opinions in the field. Yet, there is one main obstacle that needs 

to be overcome before this task can be properly executed. Classifications of patient’s (mental) 

illnesses can be found in their Electronic Health Records (EHR). However, these 

classifications do not often represent the situation of the patient accurately. This situation 

generally arises from the requirement imposed by insurance companies for patients to receive 

treatment only after providing classifications. These classifications are often inaccurate, 

serving more as a procedural necessity rather than an accurate representation of the patient’s 

situation. Consequently, documentations are often rushed without proper confirmation of the 

diagnosis and can become outdated when subsequent diagnoses are confirmed but not 

updated. Additionally, they do not keep track of classifications that have been considered 

during the diagnostic journey of the patient. The most comprehensive and accurate 

representation of the diagnosis and classifications of a patient often lies within the detailed 

clinical notes of a psychiatrist. Unfortunately, gathering extensive diagnostic information 

from these clinical notes would consume too much valuable time. Therefore, the aim of this 

research will be to automate this process of extracting classifications from clinical notes by 

using current state of the art Large Language Models (LLMs). First, the theoretical 

framework of language processing will be discussed, including the evolution of Language 

Models (LLMs) and why the mechanism called ‘Transformers’ will be implemented in the 



final assessments. Secondly, methods for text analysis will be outlined, providing the data 

and analytical approaches used. Thirdly, results will be showcased in terms of evaluation 

metrics and detailed interpretations of predictions. Lastly, conclusions will be drawn based on 

the findings, along with recommendations for future implementations. 

 

Theoretical framework 

When machine learning started to take over the world, it was mostly designed to 

process structured data, such as numerical data places within columns and rows. Eventually, 

the question arose if one could process unstructured data as well, like text. Researchers 

started making advances in that area, which is now called Natural Language Processing 

(NLP). NLP tasks include the interpretation of human language with computer science 

methods. The aim of these tasks is to make processes more efficient by saving time spent on 

manual labor and better allocating resources. Tasks such as text summarization, text 

classification, sentiment analysis, entity recognition, question answering, and text generation 

are all methods that can help automate text analysis. 

Bag of Words model 

The processing of text within the field of computer science can be traced back to the 

early 1950s, with the introduction of one of the most fundamental processing techniques 

called the Bag of Words (BOW) model (Harris, 1954). This method can analyze a set of 

documents, called a corpus, and numerically represents each document with a fixed-length 

vector. For illustration, figure 1 shows a two-dimensional vector, which consists of two 

values. While vectors can have many more dimensions, visualizing such high-dimensional 

data can often be too complex. 

 

 

 

 

 

 

 

 

 

 

 



Figure 1 

A Two-Dimensional Vector 

Note. From Lesson explainer: Vectors in terms of fundamental unit vectors mathematics, by 

Nagwa, n.d., (https://www.nagwa.com/en/explainers/578165351487/) 

 

In the simplest version of the BOW model, the length of the vector corresponds to the 

number of unique words that are present in the corpus. The numbers within the vector 

represent the count of the unique word within the document, creating a numerical 

representation of the document. This principle is illustrated with a relatively simple example 

in table 1, but these vectors often grow to extremely large sizes when it covers a collection of 

texts containing many different unique words, taking up an excessive amount of memory.   

 

Table 1 

Text Vectors in the Bag Of Words (BOW) Model 

  The Cat Dog And Other I Love Saying 

The cat and the dog 2 1 1 1 0 0 0 0 

The dog and the other dog 2 0 2 1 1 0 0 0 

I love saying cat: cat cat cat 0 4 0 0 0 1 1 1 

 

 

 It is expected that documents with similar vectors will be similar in content as well, 

as they will contain similar words that are represented in the vector space in a resembling 

manner.  

Using mathematical measures like cosine similarity, vectors of documents can be compared 

with the aim of finding documents similar in word usage (Hackeling, 2017).  



Although a good first step in the right direction, the method is far from perfect. The 

method can give an idea about the discussed topics in the documents, but it has a harder time 

differing between documents with different contexts. For example, a document that is pro-

cats and a document that is anti-cats could still receive similar vectors, as they are both 

discussing the same topic: cats.  

The TF-IDF framework 

A popular method for enhancing the performance of the BOW model is by using the 

TF-IDF method (Hackeling, 2017). By emphasizing rarer words, such as 'cat' or 'train', 

documents are more likely to be matched on similar topics, as the focus on common words 

that do not relate to specific topics is reduced. These include words such as ‘the’, ‘a’ or ‘I’. 

Sometimes, these common words known as ‘stopwords’ are removed during preprocessing 

altogether. The main limitation of the BOW model remains, as the model still is unable to 

process the order of words and the context in which they are used. 

Tokenization 

Additional enhancements were made to the BOW model, including the 

implementation of different tokenization methods. Tokenization is the process of breaking up 

a piece of text into multiple ‘tokens’, such as words, subwords or characters. For instance, in 

the most basic format, a text can be broken up into separate words, where every token is then 

equal to a word. The same applies to using subwords or characters as tokens.  

Another option is to not only break up the text into parts, but also to homogenize 

words that are different in spelling, but similar in meaning. One example of such a collection 

could be ‘walking’, ‘walk’ and ‘walked’. Some techniques, amongst others, that exist to 

address these phenomena are stemming or lemmatization (Hackeling, 2017). Using stemming 

might change the word ‘walked’ to ‘walk’, whereas implementing lemmatization is more 

relevant with special conjugations, such as changing ‘are’ and ‘is’ to ‘be’. In the 

aforementioned collection, both methods would shorten the words so they may all be 

represented the same way. This way, multiple variations of the same term may be grouped 

together in the vector space, increasing the accuracy when comparing documents with one 

another. 

Word2vec 

With the rise of neural networks in computer science, researchers began exploring 

their implementation for text processing. A crucial method that paved the way for future 

advancements was Word2Vec (Mikolov et al., 2013). It trains artificial, data-driven neural 

networks to create vector representations of words based on context words, also known as 



word embeddings. It trains on a large collection of text data, and consists of two main 

architectures: Continuous Bag-of-Words (CBOW) and Skip-Gram. CBOW predicts a target 

word based on the context words surrounding it using a hidden layer and an output layer, 

whereas Skip-Gram predicts the context words given a target word. This way, words that are 

used in similar context will have similar meaning, and therefore similar vector 

representations. This notion is visualized in figure 2, using two-dimensional vectors to 

represent specific words, where similar words end up being close to each other within the 

vector space. Note that in Word2Vec, it is common practice to implement vectors ranging 

between 100 and 300 dimensions (Kwan, 2023). 

 

Figure 2 

Word embeddings of similar words 

Note. From Finding the optimal number of dimensions for word embeddings, by M, Kwan, 

2023, Medium (https://medium.com/@matti.kwan/finding-the-optimal-number-of-

dimensions-for-word-embeddings-f19f71666723) 

 

 A common example of showcasing the ideas behind CBOW is using a sentence with 

made-up words to exemplify how humans intuitively estimate what the word represents. 

Like, ‘Susan ate the blorple and it was delicious’, or ‘I petted the flumbar and it wagged its 

tail’. Humans are able to predict that a blorple might be a kind of food, whilst a flumbar 

might be an animal, purely based on the words that surround them. They would, respectively, 



receive similar embeddings as ‘cake’ or ‘banana’, and ‘giraffe’ or ‘dog’. Skip-gram works the 

other way around, which is attempting to predict context words given a specific word. For 

example, if a person mentions a particular animal (such as a flumbar), others might think of 

associated words like 'pet' and 'tail'. Combining both methods results in word embeddings 

that have a more nuanced understanding of context and these embeddings can in turn be used 

to perform NLP tasks such as sentiment analysis or text classification. By taking words’ 

context into account while creating contextually relevant word embeddings, Word2Vec 

outperforms the BOW model (Jurafsky and Martin, 2019). 

Even though the word embeddings are created based on the surrounding context, an 

embedding eventually ends up being a fixed, static representation of a word. This means that 

it may not work as well on so-called ‘polysemous’ words that can differ in meaning based on 

context. An example of this is ‘bank’, which can be able to refer to either a financial 

institution or the side of a river. 

Recurrent Neural Networks 

To address the limitations of the Word2Vec method, Recurrent Neural Networks 

(RNNs) were created. RNNs were designed to further optimize the use of word embeddings 

and turned out to be specifically useful for performing translation tasks. This accomplishment 

is mainly achieved by their use of the encoder-decoder architecture and a feedback loop 

(Tunstall et al., 2022).  

The encoder-decoder framework 

The encoder-decoder framework consist of an encoder and a decoder. These are two 

separate neural networks with their own distinct responsibilities, which can then collaborate 

to perform NLP tasks, such as text translation. The encoder serves to create a numerical 

representation of the input sequence, called ‘the last hidden state’, which are then forwarded 

to the decoder that performs its job of generating an output sequence. For this thesis, the 

focus is on text processing, but the encoder-decoder framework can also handle other types of 

input, such as images. 

The feedback loop 

The feedback loop was invented to take the word order into account within text 

sequences, as these sequences may differ in meaning depending on the order of the words it 

contains. For example: “The girl liked only him” and “Only the girl liked him” consist of the 

same words, but are interpreted differently. The feedback loop gathers information while 

creating an embedding of a word or token and uses it to create the next embedding of the 



subsequent word or token in the sequence. By taking into account the word order, the model 

creates word embeddings that more accurately represent the sequence at hand. 

The main limitation of the RNN is the presence of an ‘information bottleneck’ at the 

final hidden state created by the encoder, which is also referred to as the ‘vanishing gradient’ 

problem. The aim of the encoder is to represent an entire input sequence, allowing the 

decoder to generate an output from it. Unfortunately, the model processes the sequence, 

earlier information can gradually diminish and be forgotten. This becomes specifically 

challenging with longer sequences, as the gap between the beginning of the input and the 

creation of the final representation at the end of the sequence increases. 

Long Short-Term Memory Networks (LSTMs) 

To address this limitation, Long Short-Term Memory Networks (LSTM) were 

introduced. LSTMs are based on RNNs, with a slight modification. LSTMs are designed to 

better capture context in longer sequences and minimize the effect of the vanishing gradient 

problem. The models make use of gates, placed at every feedback point, that can decide 

which information is relevant to feed forward and which information can be forgotten about. 

By only transmitting the most relevant information, it is less likely that the context that is 

present in the start of the sequence will be forgotten. 

The attention mechanism 

Another technique to lessen the impact of the vanishing gradient problem is 

‘attention’. Attention is based on the notion to give the decoder more access to information of 

the input sequence than solely the last hidden state of the encoder. This would enable the 

decoder to receive a more comprehensive representation of the context within the input 

sequence and therefore, generate output sequences with greater accuracy.  

However, granting access to all the existing hidden states  the encoder will create an 

input for the decoder that is too large, which might increase computational load significantly 

(Tunstall et al., 2022). To keep this impact to a minimum, the decoder is enabled to assign 

different weights to the hidden states of the encoder, called ‘attention’. For instance, within 

the context of translation, the decoder will find a higher level of attention between a word in 

the original sequence and its translation, even if these are positioned differently within the 

sentence. For example, the Dutch translation for “I am eating a banana” is “Ik ben een banaan 

aan het eten”. Regardless of the varying position of the word ‘banana’, attention will still link 

both instances together. Even though the quality of translations increased due to this 

implementation, the time it took for computation was far from ideal. Because each processing 



step must wait for the preceding step to complete, this "sequential processing" can consume a 

significant amount of time. 

Transformers 

In 2017, Vaswani et al. introduced the Transformer architecture, which outperformed 

RNNs in NLP tasks and is currently considered the state of the art in language processing. 

The Transformer's goal is to overcome the limitations of sequential processing by utilizing a 

special form of attention called ‘self-attention’ (Tunstall et al., 2022). This mechanism is 

based on ‘attention’, but applies the method within the input sequence, as opposed to linking 

words in the input sequence to the output sequence. It weighs the importance of each word 

within a sentence based on its relevance to other words in the same sentence, depending on 

context. For instance, in the following sentence: “The banana was put on the table and it 

turned brown”, the self-attention mechanism will display a higher level of self-attention 

between ‘banana’ and ‘it’. This technique is not bound to sequential processing, as, it can 

consider the connection between any two words in the sentence, regardless of their distance. 

The encoder and decoder both have their own self-attention mechanisms. 

A Transformer model can implement multiple self-attention mechanisms 

simultaneously and this is referred to as ‘multi-head attention’. The use of multiple heads 

allows for the model to compute the self-attention within the input data synchronously, which 

is called ‘parallel processing’. Consequently, the Transformer provides a more 

comprehensive interpretation of the input sequence and reduces the runtime significantly. 

Transfer learning 

Another advantage of the Transformer architecture is that it enables transfer learning, 

making the need of training the model from scratch for every single task redundant. The 

model is divided into a ‘body’ and a ‘head’, which differs from the concept of a ‘head’ within 

self-attention, each having their own responsibilities. The body is designed to be ‘pre-trained’ 

on a large dataset, such as millions of rows of unsupervised text, from which it will create an 

underlying understanding of the text embeddings. After the pretraining is done, the head can 

undergo a process called ‘fine-tuning’, as the head is meant to be trained on a specific NLP 

task based on a relatively smaller labeled dataset. The head of an existing model can be 

reinitialized to be fine-tuned on a variety of NLP tasks, which makes this method specifically 

useful within domains where there is a lack of labeled data. 

Encoder and Decoder models 

There are transformers that only use the decoder part of the architecture, such as 

Generative Pre-trained Transformers (GPT), meaning it only performs the job of decoding 



sequential representations. Additionally, transformers exist that solely employ the encoder 

part, like Bidirectional Encoder Representations from Transformers (BERT), which is 

pretrained on the BookCorpus and English Wikipedia. BERT utilized a unique form of 

language modelling called ‘masked language processing’, of which the aim is to predict 

randomly masked words in a text. For instance, such a sentence may look like this: “I 

watched a movie on [MASK], and it was called the [MASK]”.  

Whereas decoder models like GPT might be utilized to create new text, encoder 

models like BERT are usually preferred for classification tasks due to their superior 

knowledge of text embeddings (Raschka, 2023), which is also observed in research (Benayas 

et al., 2024). Researchers have begun implementing their own modifications and 

enhancements to these models since their release, such as DistilBERT (Sahn et al., 2019) or 

RoBERTa (Liu et al., 2019). DistilBERT is, as is said in the name, a distilled version of 

BERT. By only keeping the most effective and relevant parameters, the model requires less 

computational resources while keeping most of BERT’s original performance. As for 

RoBERTa (Robustly Optimized BERT Approach), it is an improved version of BERT. 

Though maintaining the same architecture as BERT, it implements several training and 

optimization techniques. These techniques include more training data, larger batch sizes and 

elimination of the next-sentence prediction task, which allows for more computational 

resources to focus on the masked language processing task. Due to these methods, RoBERTa 

is able to outperform BERT on certain NLP tasks (Raschka, 2023). 

Performance factors 

Language of the training data 

The performance of a model might not only depend on its underlying architecture, but 

also on the data that is used as input for the model. Firstly, a distinction can be made between 

models that are trained solely on one particular language (monolingual models) and models 

that contain multiple languages within their training data (multilingual models). Whereas 

multilingual models are ideal for translation tasks, research shows that monolingual models 

perform better than a multilingual model on a multitude of tasks that requires the text analysis 

of a singular language (Martin et al., 2019). The same is shown for Dutch language with 

models like BERTje (de Vries et al., 2019). BERTje is a Dutch model based on the original 

BERT architecture, but trained on Dutch text sources like Wikipedia, books and web News. 

This model outperformed mBERT (multilingual BERT), which is based on the same 

architecture, but trained on data from multiple languages. Another well-performing Dutch 

model is RobBert (Delobelle et al., 2020), which consists of the RoBERTa architecture, but 



trained from scratch on a larger proportion of the OSCAR corpus, which is an online 

repository of multilingual resources and datasets designed for applications in machine 

learning (ML) and artificial intelligence (AI) (Abadji, 2022). This model was trained on a 

dataset four times as big as the one BERTje was trained on and outperformed the model on 

various tasks. 

Domain of the training data 

Secondly, there is a preference for selecting a model that is trained on domain-specific 

text. Studies in the biomedical sector indicate that this approach enhances the performance by 

capturing contextual representations more effectively, due to the inclusion of domain-centric 

linguistic features within the text (Lee et al., 2019; Alsentzer et al., 2019; Si et al., 2019). 

This implies that to optimize text analysis within psychiatry, a Transformer should be trained 

on a substantial volume of psychiatric text data. However, data available for training in the 

clinical sector is scarce, as the data is protected due to their sensitive nature.  The data 

includes information about patients' physical and mental health, as well as confidential details 

about their personal lives and potentially, their families. If this information were to be leaked 

to the public, the patient or their family members could endure severe negative consequences, 

such as social stigmatization, financial exploitation and emotional distress (Corrigan, 2002). 

Within psychiatry, the impact could be even more severe, as individuals undergoing 

treatment are typically mentally vulnerable and could be less resilient to the potential 

emotional fallout. To minimize the risk of such occurrences, the General Data Protection 

Regulation (GDPR, 2018) was implemented, placing strict conditions under which sensitive 

data can be accessed. This thesis aims to investigate whether privacy concerns can be 

circumvented by assessing the performance of available pre-trained Transformers in the task 

of extracting diagnoses1 from psychiatric texts. If this proves to be insufficient, the need to 

train a Transformer from scratch on domain-specific data within psychiatry remains. 

 

 

 

 

 
1 From this point onwards the term ‘diagnoses’ will be used in this paper, 

acknowledging that these can be technically defined as ‘classifications’. This choice was 

made to emphasize the psychiatric environment and avoid repetitive references to 

'classifications based on diagnostic criteria'. 



Data and Methods  

Data   

Due to both privacy concerns and constraints in time and resources, the decision was 

made to choose a pre-trained transformer model to be fine-tuned to extract diagnoses from 

clinical, psychiatric notes. For this objective, text data was provided by the psychiatry 

department of University Medical Center Utrecht (UMCU), through the research-based 

subdivision known as PsyData. PsyData aims to conduct research that enhances the 

effectiveness and accessibility of data analysis within the psychiatry. Among other things, the 

team is responsible for the creation of  an anonymization algorithm called ‘DEDUCE’ (DE-

identification method for DUtch mediCal tExt). The algorithm can be applied to Dutch 

medical texts to mask names, places, institutions, ages, dates, patient numbers, contact 

information and URLs (Menger et al., 2018). This was done with the intent of minimizing the 

amount of personal and potentially retraceable information.  

The obtained data consisted of the conclusion sections extracted from anonymized 

Dutch psychiatric letters, containing summarizing information about the treatment of a 

patient. The conclusions were extracted from the texts by identifying the conclusion headers 

and retrieving the text that followed up to four line breaks. A distinction can be made 

between discharge letters and outpatient letters, which are concluding letters about patients 

that have been discharged after admission or those that had treatment appointments without 

admission, respectively. These letters were chosen as they contain the most concise and 

complete overview of the final established diagnoses, along with the diagnoses that were 

considered throughout the diagnostic process. These texts are deemed suitable for fine-tuning 

the transformer, as they comply with the intent to retrieve the most accurate diagnostic 

representations from texts. Additionally, by only retrieving the conclusions, duplicate patient 

information can be avoided.  

Annotation and classification categories   

Before these conclusions can be used as input data for the transformer model, the 

conclusions had to be annotated and labeled so the model could train on such a classification 

task. Within the available time frame, it was deemed realistic to randomly sample 500 

conclusions from the psychiatric letters and annotate them based on a set of predetermined 

diagnostic categories. These categories were determined with the help of a psychiatric 

professional to decide which collection of categories were encapsulating the most relevant 

diagnoses, without making them too specific to optimize model performance. This process is 

outlined within the master’s thesis of van Ginkel, E. (2024), which is unpublished at the time 



of writing this thesis. It will be available in the Utrecht University Student Theses Repository 

(UU, 2024) after this thesis is submitted. Eventually, the following categories were created 

along with their labels based on their Dutch namesake: Attention Deficit Hyperactivity 

Disorder (ADHD), Autism Spectrum Disorder (ASS), Bipolar I Disorder (BIP1), Borderline 

Personality Disorder (BORD), Major Depressive Disorder (DEPR), Post-Traumatic Stress 

Disorder (PTSS), Schizophrenia (SFR), and ‘Other Diagnoses’ (ANDI).   

An additional distinction was also made for the type of diagnosis, with the aim of 

capturing the context in which the diagnosis was mentioned. This consisted of following 

categories: Diagnosis, Consideration and Not relevant. The category ‘diagnosis’ (d) covers all 

the diagnoses which are definite, whereas ‘consideration’ (o) covers all diagnoses that are 

still being assessed. Lastly, the ‘not relevant’ (nvt) category covers all diagnoses that were 

discarded or concern family members or friends of the patient that are described in the 

conclusion.    

Eventually, every classification label that is processed by the transformer 

model consists of a combination of the diagnosis and its accompanying type, meaning the 

model will be trained to make distinctions between 24 different labels, as there are 8 

diagnosis classes and 3 possible types. 

Model selection   

Based on the information previously stated in this paper, it becomes clear that 

multiple aspects should be taken into account when choosing the pretrained model to 

optimize the performance of the NLP tasks in question. It is expected that the performance of 

a model increases if it is trained on a vast amount of both domain and language specific data. 

In addition, an encoder model is preferred when training for a classification task, as it has 

been shown that their general performance in classification is superior to that of decoders 

(Benayas et al., 2024; Raschka, 2023). 

One such model which meets these requirements, is MedRoBERTa.nl. The model is 

based on the RoBERTa architecture, but trained on 13GB of hospital notes from the 

Amsterdam University Medical Center (Verkijk and Vossen, 2021). The model was created 

with the intention of capturing the specific terminology and context that is more prominent in 

clinical settings, which can differ significantly from generically used Dutch language. It 

seems to be ideal choice for this research, as the discharge conclusions may contain clinical 

terms. Additionally, it meets the requirements of serving as an encoder and being language-

specific.  



However, it remains unclear what proportions of the clinical training data actually fall 

under the psychiatric domain, and this may affect model performance due to domain-specific 

nuances. Therefore, all models executed with MedRoBERTa.nl were also tested with 

RobBERT, which shares the same architecture but is trained on general Dutch language 

(Delobelle et al., 2020). This approach enables a direct comparison of model performance. 

Both MedRoBERTa.nl (Computational Lexicology & Terminology Lab VU, 2023) and 

RobBERT (Delobelle, 2023) are publicly available for implementation on the Hugging Face 

website. Hugging Face also developed the Transformers library, containing programming 

tools to easily download and train the available pretrained models (Hugging Face, 2024). 

Method selection 

The goal of the project is to extract diagnoses from psychiatric clinical texts. Various 

approaches can be utilized to accomplish this. One straightforward approach would be to 

implement a token classification model that tries to predict the diagnosis for each individual 

token. Token classification, more commonly known as Named Entity Recognition (NER), 

seems to perform well to distinguish between different types of entities, like organizations, 

names and places (Barney, 2023). However, since all diagnoses fall under the same entity of 

'diagnosis', it remains uncertain whether the model can adequately differentiate between the 

various classifications. Therefore, Multi-Label Classification (MLC) was implemented as a 

second method, to allow for a comparison in performance. This method does not classify per 

token; rather, it classifies the text it receives as a whole and can assign multiple labels to it. 

This is applicable to the task at hand, as multiple diagnoses may be stated within the same 

text. However, this method may have drawbacks as well, as the model will not receive input 

on which terms belong to which diagnosis. The model would have to figure this out 

independently.  

Pre-processing   

After annotating the 500 discharge conclusions, some pre-processing steps had to be 

implemented before the data was suitable for fine-tuning both the MedRoBERTa.nl and 

RobBERT model. The first step that was taken was resetting the text to its original format by 

replacing <br> (the symbol representing a line break) with a space. Following steps included 

creating a train-test split, formatting the data, extracting labels and tokenization. 

Train-test split  

First, the available 500 clinical notes were split into a train and a test set. 20% of the 

texts were to be set aside as the test set, and 80% was used for training the model. To ensure 

that diagnoses with relatively low frequencies appear in both the train and test set, the split 



was implemented while retaining the same distribution of label presence in both sets. This 

was done through an iterative train-test split, which ensures similar class distributions in 

multi-labeled datasets. The split does not always result in the same outcome, but as the 

differences are minimal, it has marginal impact on model performance. 

Model size limit 

Firstly, both models are based on the RoBERTa architecture, which has a token limit 

of 512 tokens, each token representing a subword. This means that the model cannot process 

the context of an entire unbroken conclusion if it exceeds this token limit. The psychiatric 

conclusions vary in sizes and it is observed that 24% of the 500 texts surpass this limit. When 

texts exceed the token limit, it is standard practice to truncate the text, which basically means 

that the ‘leftover’ text will be thrown away. This is not an optimal solution, as it can lead to a 

major loss in information, such as missed diagnoses.   

Another option is to split the text into multiple chunks to retain all the information. 

Note, though, that this should be done while leaving overlapping text between the chunks 

belonging to the same original conclusion to preserve context (Dai et al., 2022). However, 

this method may increase the runtime significantly, likely due to processing relatively large 

texts. As the text lengthens, the self-attention mechanism needs to determine a greater 

number of self-attention weights between the input tokens, which leads to a quadratic 

increase in memory requirements and consequently, runtime (Dao, 2023). Regarding these 

text size considerations, different decisions were made for both MLC and NER.  

Named Entity Recognition 

During the implementation of NER, the text was processed in chunks to retain as 

much context as possible. The chunks were appropriately sized to ensure they would not 

exceed the token limit of the model. Full sentences were retained within the chunks to 

prevent loss of context that might occur if a sentence were truncated mid-sentence. The effect 

of chunking would have on the model’s runtime is expected to be minimal, as only 24% of 

the 500 texts exceed the token limit, resulting in 120 additional chunks.  

Next, every individual word in the text data needed to be classified. After splitting the 

text into separate words, a column was added with a list of labels that correspond to the order 

of the words in the sentence. This was achieved by linking annotated words to their annotated 

label. The label ‘NONE’ was created for words that were not annotated and did not represent 

any type of diagnosis. After completing this process, the annotations were removed from the 

texts, to enable the model on training and testing on real-life data, enhancing the 

generalizability of the results. However, to fine-tune a model, it requires numerical inputs. 



Therefore, each label was mapped to a unique number, and then these numerical 

representations were used to replace the original labels. The mapping was stored separately 

so that numerical predictions could be converted back to their original label names when 

necessary. An example of the final format is shown in table 2. 

 

Table 2 

Example Data Structure for NER 

Text Labels 

De diagnose voor ADHD wordt overwogen. Hij werd 

doorverwezen. 

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 

0] 

John werd gediagnosticeerd met PTSS. Zijn broer was bekend met 

een leerstoornis. 

[0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 

0, 0, 3, 0.] 

Er werd PTSS vastgesteld met een eventuele overweging voor 

ADHD. 

[0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 

0] 

Note. Punctuation is labeled as well 

 

Multi-label classification  

To enable the transformer to attach multiple labels to a singular instance of text, 

multi-label classification was implemented. Instead of training the transformer to retrieve one 

classification, the transformer was trained to retrieve all the classifications deemed relevant 

by the model. This is relevant for the current research, as a text can contain multiple 

diagnoses. Instead of creating a list of labels corresponding for every word, as is done with 

NER, a column is added to the text for every label where its value represents the labels 

absence (0) or presence (1). After this process, the annotations are removed from the text, just 

as with NER. It is expected that after fine-tuning a Transformer, the model will be able to 

identify the presence of a label within each text, disregarding its quantity.  

It has previously been established that the texts can be split into chunks to retain 

context and information. However, this may not be the preferred technique to use with this 

particular method. As we apply multi-label classification, the aim is to retrieve diagnoses that 

are explicitly stated. An issue that may occur if the model were to be processing the 

conclusions in their entirety, is that the model might eventually associate the described 

symptoms with the attached labels, even though the same symptoms could be present in 

multiple diagnoses. This might increase the chance of incorrectly labeling certain texts based 



on the described symptoms, even though no exact diagnoses are mentioned. Therefore, the 

text was split into separate sentences, as it expected to minimize the amount of text, or 

‘noise’, that surrounds the explicitly stated diagnoses. Table 3 exemplifies the final format of 

the labeled data. 

 

Figure 3 

Example Data Structure for MLC 

Text 

ADHD

o 

ANDInv

t 

PTSS

d 

De diagnose voor ADHD wordt overwogen. 1 0 0 

Hij werd doorverwezen. 0 0 0 

John werd gediagnosticeerd met PTSS.  0 0 1 

Zijn broer was bekend met een leerstoornis. 0 1 0 

Er werd PTSS vastgesteld met een eventuele overweging voor 

ADHD. 
1 0 1 

    

Label imbalance   

It is expected that not all diagnoses are encountered with similar frequencies during 

annotation, as some are encountered more frequently than others at the Psychiatry department 

of UMCU. This could potentially cause imbalances in the labeled dataset, which might 

impact model performance for the less common diagnoses. This is caused by the model being 

exposed more frequently to common diagnoses, allowing it to learn and predict these more 

accurately. To account for this imbalance, weighting of the loss function was implemented 

(Shrivastava, 2020). Evaluation of the loss function is implemented while training the model, 

where a lower loss represents a better performance. By weighting the function according to 

label occurrences, the model will place more emphasis on the loss of diagnoses with fewer 

occurrences, thereby compensating for the imbalanced data.  

In addition, the technique of oversampling was utilized, where the model is exposed 

more often to the texts containing uncommon diagnoses by duplicating a proportion of these 

texts one or multiple times. Although this technique aims to enhance performance by 

increasing the model's exposure to minority classes, it also heightens the risk of eventual 

overfitting (Shrivastava, 2020). The models were run both with and without oversampling so 



enable comparison on model performance. Due to the non-uniform outcomes of the 

oversampling technique, label occurrences within the dataset varied for each model run. 

Tokenization   

After splitting the data, the text was tokenized. Both MedRoBERTa.nl and RobBERT 

implement the same tokenizer as RoBERTa, which is a subword tokenizer applying Byte-Pair 

Encoding (BPE) (Liu et al., 2019).  

BPE starts with a base vocabulary of individual characters and progressively merges the most 

frequent pairs of characters or subwords to form longer subwords. This process continues 

until a predefined vocabulary size is reached. Eventually, tokens can consist of either words 

or subwords. For instance, tokenization may be split into ‘token’ and ‘ization’, and RoBERTa 

may be represented as ‘Ro’, ‘bert’ and ‘a’. By using a subword tokenizer, the model can 

handle rare and complex words by splitting them into familiar chunks, making it more 

effective at understanding and processing language. To signify for every new word that is 

added to the sentence after the first one, a ‘Ġ’ is added to the token that belongs to the start of 

the word. Special tokens are used as well, to represent the beginning and ending of a 

sentence, respectively captured by <s> and </s>.   

As a final example, the following sentence: "Tokenizing text is a core task of NLP." 

Will be tokenized as such: ['<s>', 'T', 'oken', 'izing', 'Ġte', 'xt', 'Ġis', 'Ġa', 'Ġcore', 'Ġt', 'ask', '.', 

'</s>']. For the NER models, tokenization will cause for the number of labels per text to 

increase after tokenization, as a labeled word can be split into multiple subwords matched to 

the label.   

Training the model   

The MedRoBERTa.nl model was initialized for sequence classification, meaning that 

only the classification head responsible for the multilabel classification task would be 

modified during fine-tuning. The initial number of epochs was set to two, indicating that the 

model would learn from the train set by iterating over it twice. Upon evaluating the runtime 

of the models, it was found that the NER model ran considerably faster than the MLC model. 

As a result, the number of epochs for the NER models was increased to three. Both models 

implemented a learning rate of 2e^-5 and the weight decay was set to 0.01.   

Evaluating the model 

The model was evaluated based on its performance on the test data. The following 

metrics were collected per model for evaluation: Accuracy, precision, recall and the F1 score. 

The accuracy represents the proportions of the instances that were correctly classified. 

Precision and recall take into account the correctly predicted labels (True Positives and True 



Negatives) and the incorrectly predicted labels (False Positive and False Negative) per label 

to create a more nuanced performance indication. These concepts are visualized in table 4 in 

what is known as a confusion matrix. 

 

Table 4 

A Confusion Matrix with True/False Positives (TP/FP) and True/False Negatives (TN/FN) 

  Predicted 

    Negative Positive 

A
ct

u
al

 

Negative TN FP 

Positive FN TP 

 

Precision indicates the proportion of correct predictions among all predictions made 

for a specific label (TP/TP+FP), whereas recall indicates the proportion of the actual 

instances of the label that were correctly predicted out of all instances with that label 

(TP/(TP+FN). The goal is to maximize both of these metrics, as reflected in a high F1 score, 

which is displayed in figure 3. 

 

 Figure 3 

The Formula for the F1 Score 

Note. From F1 score in Machine Learning: Intro & Calculation, by R, Kundu, 2022, V7 

(https://www.v7labs.com/blog/f1-score-guide) 

 

 Further explorations with the top-performing model 

 The models may exhibit poor performance due to various factors, such as insufficient 

training data for specific labels or challenges in distinguishing between different types within 

the same diagnosis category. To investigate whether mitigating these issues improves 

performance, the top-performing model will be reselected and run without any distinction 

between types among the labels. This step aims to determine if the model can provide a more 

accurate basis by differentiating between the general diagnoses. 

 

 



 

Results 

Iterative train test split 

The dataset used to fine-tune the models comprised 500 clinical texts, of which 457 

contained relevant diagnoses. The texts contained 221 words on average, including numbers, 

with a standard deviation of 134. After labeling each text within this dataset with the presence 

of each label, the iterative train test split was performed. The resulting distribution is 

visualized in figure ? and shows that the distributions of present diagnostic labels between the 

train and test split are indeed quite similar. From the figure it can also be deduced which 

labels are quite uncommon, such as Borderline Personality Disorder, PTSS or Schizophrenia. 

The most common label seems to be ANDI, referring to ‘other diagnoses’. 

 

Figure 4 

Distribution of the Presence of Labels Within the Train and Test Set 

 

 

Data descriptives and label distribution before oversampling 

For Named Entity Recognition, the texts in both sets were split into chunks, resulting 

in 113 additional text chunks in the train set and an addition of 17 in the test set. These 

chunks contained 182 words on average in the train set and 178 words on average in the test 

set.  

Moreover, for Multi-Label Classification, the texts were split into 5503 separate 

sentences in the train set, consisting of an average of 21 words, and 1310 sentences in the test 

set, consisting of 20 words on average.  

Data descriptives and label distribution after oversampling 



For Named Entity Recognition, oversampling resulted in 34 additional duplicates 

within the train set, and an additional 13 duplicates for in the test set. For these sets, chunking 

resulted in 119 additional text chunks in the train set and an addition of 26 in the test set. 

These chunks consisted of an average of 232 words in the train set and 230 words in the test 

set.  

Moreover, for Multi-Label Classification, oversampling resulted in 47 additional 

duplicate sentences within the train set, and 13 additional duplicate sentences within the test 

set. The sentences hold an average of 16 words in the train set and 15 words in the test set. 

 As for the distribution of labels, the effect of oversampling for both NER and MLC is 

visualized in figure 5 and 6, respectively. Note, that NER shows the frequency of words with 

certain labels in all the created chunks, whereas MLC shows the presence of these labels in 

separate sentences. From the figures, it is observed that the number of labels with lower 

occurrences have indeed increased as expected, but very slightly. It seems that the labels with 

higher occurrences experience a stronger increase, likely due to the facts that texts contain 

more common labels alongside less common labels. Therefore, efforts to increase one label 

often increase the other as well. 

 

Figure 5 

Distribution of Word Occurrences per Label for NER, Differing Between Oversampling 

Method 

 

 

Oversampled 



Figure 6 

Distribution of Label Presence per Sentence for MLC, Differing Between Oversampling 

Method 

 

 

 

 

For each of the eight models, the evaluation metrics are displayed in table 5, sorted on 

the F1 score while taking into account four decimals. 

  

Table 5 

Evaluation Metrics of the Fine-Tuned Models 

Model Method Oversampled F1 score Precision Recall Accuracy 

RobBERT NER Yes 0.18 0.16 0.21 0.96 

MedRoBERTa.nl MLC No 0.17 0.63 0.10 0.99 

RobBERT NER No 0.17 0.16 0.19 0.96 

RobBERT MLC No 0.16 0.62 0.09 0.99 

MedRoBERTa.nl MLC Yes 0.14 0.59 0.08 0.99 

MedRoBERTa.nl NER No 0.01 0.08 0.12 0.96 

MedRoBERTa.nl NER Yes 0.01 0.08 0.11 0.97 

RobBERT MLC Yes 0.01 1.00 0.01 0.99 

 

Oversampled 

 

 

96 

96 



Although evaluation metrics provide a general indication of performance, they do not 

offer specific practically relevant information about prediction accuracy for individual labels. 

To address this, the precision and recall of individual labels are visualized for further 

interpretation. The necessary input needed for these calculations can be retrieved from the 

confusion matrices that correspond with specific models. Table 5 reveals that MLC models 

obtain a noticeably higher precision than NER models. To examine the predictions in greater 

detail and explore this difference further, the precision and recall for each label will be 

compared between the two best performing models as based on the evaluation metrics of 

Table 4: RobBERT, NER, oversampled and MedRoBERTa.nl, MLC, not oversampled, which 

will be referred to as the ‘NER’ model and ‘MLC’ model from this point onwards.  

For the MLC model, individual confusion matrices will be retrieved for each label, 

illustrating the prediction quality for both positive and negative classifications. In contrast, 

NER utilizes a set of predefined classification categories and does not classify the presence or 

absence per label. This means that the confusion matrix can be displayed within a single 

visualization, shown in table 6. 

After reviewing the confusion matrices for the MLC model, it is revealed that no 

Positive predictions are made at all for all labels, except the label ‘ANDId’. The confusion 

matrix for ‘ANDId’ is represented in table 7, whereas the confusion matrix for ‘ADHDd’ is 

displayed in table 8, serving as an exemplary table representing the layout of the other 

confusion matrices that lack positive predictions as well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6 

Confusion Matrix for the Best Performing NER Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7      Table 8 

Confusion Matrix of ANDId for the Best  Confusion Matrix of ADHDd  for the 

Performing MLC Model    Best Performing MLC model 

 

 

The confusion matrices reveal that the NER model makes predictions of a higher 

variety than the MLC model, even though it also fails to make predictions for the following 

labels: ADHD, ASS, BORD and PTSS. 
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 In figure 7, the precision and recall of specific labels between the MLC and the NER 

models are compared. It includes only those labels for which positive predictions were made 

in at least one of the models, as for labels with no positive predictions in either model, the 

precision and recall are automatically set to 0. 

 

Figure 7 

Precision and Recall of Predicted Diagnoses for the Top-Performing NER and MLC Models 

 

 Based on figure 7, it can be observed that the NER model is able to make more 

accurate predictions than the MLC model. Therefore, this model is selected as the top-

performing method out of the selection of eight models, using NER, RobBERT and an 

oversampling technique. Unfortunately, the model is unable to score relatively high for both 

recall and precision on a specific label as the model still makes a substantial number of 

misclassifications.  

Thus, this model is utilized in the next step, where this model is fine-tuned once more 

on a dataset without subtypes in an attempt to increase its performance. The evaluation 

metrics of this model are displayed in table 9. 

 

Table 9 

Evaluation Metrics of the Top-Performing Model without Types 

F1 score Precision Recall Accuracy 

0.44 0.42 0.48 0.98 

 



At first sight, the model seems to be able to make better predictions in general based 

on an increased F1 score. To obtain a more detailed view of their predictions, the confusion 

matrix of the model is displayed in table 10. 

 

Table 10 

Confusion Matrix of the Top-Performing Model without Types 

Label ADHD ASS BIP1 BORD DEPR PTSS SFR ANDI NONE 

ADHD 0 0 0 0 0 0 0 41 16 

ASS 0 0 5 0 7 0 2 101 7 

BIP1 0 0 168 0 2 0 5 36 12 

BORD 0 0 0 0 11 0 0 6 4 

DEPR 0 0 0 0 87 0 0 31 1 

PTSS 0 0 0 0 0 0 17 0 0 

SFR 0 0 0 0 0 0 156 0 0 

ANDI 0 0 0 0 16 0 34 799 121 

NONE 0 0 4 0 25 0 22 330 38112 

 

 The models appears to improve the performance of the original NER model by 

eliminating misclassifications within the same diagnoses, but with incorrect types. However, 

it still struggles with many labels being classified solely under the 'ANDI' label. To once 

again provide a more detailed comparison of the predictive accuracy per label, the recall and 

precision of the predicted labels are visualized in Figure 8. 

 

Figure 8 

Precision and Recall of Predicted Diagnoses for the Top-Performing without Types 

 



Conclusion   

This research aimed to investigate the performance of a Transformer to extract 

diagnoses from Dutch psychiatric text, differing between the effect of model selection, 

classification method and oversampling technique.  

Classification method 

When comparing MLC to NER as the utilized classification method, a clear 

difference is observed. Although the performance metrics of MLC didn’t seem to fall short 

when compared to the NER models, the higher scores were solely based on the predictions 

for ‘Other diagnosis’ with type ‘d’. This is caused by the model’s inability to make False 

Positive predictions by making no positive predictions for the other labels at all. This 

explains why the precision is so high for the MLC models in table 4. The only positive 

predictions are made for ‘ANDId’, for which the precision is 62.5%. Based on these 

observations, it is concluded that the NER model shows more potential in making accurate 

classifications.  

Model selection 

 After establishing NER as the preferred classification method, model performance can 

be compared exclusively within this method. A noticeable divide can be seen in terms of 

model selection, as RobBERT takes the lead in performance over MedRoBERTa.nl. 

Although the F1 are all generally low, RobBERT’s F1 scores seem to be a substantial 

improvement over MedRoBERTa.nl’s, going from 0.09 to 0.18. This aligns with the theory 

that MedRoBERTa.nl has primarily been trained on technical medical texts, whereas 

RobBERT may be better adapted to analyzing psychiatric language. This difference could 

stem from psychiatrists writing their texts in a style similar to the general Dutch language, 

which resembles the public text data used to train RobBERT. And where MedRobBERTa.nl 

is more familiar with technical terms that are absent in psychiatry, RobBERT may have been 

exposed to psychiatric terms through public articles and conversations about mental health. 

Oversampling 

 If we look at the oversampling methods within the NER methods, we can see that it 

makes no considerable difference for MedRoBERTa.nl, whereas it makes for a slight 

improvement for RobBERT. However, the difference is too practically small to decide 

whether this is due to the oversampling technique or due to chance, given the non-uniform 

outcomes.  

 

 



Top performing model 

 Based on these results, a top-performing model was selected. This model 

implemented the NER method, utilized RobBERT as the pre-trained Transformer and applied 

an oversampling technique. The model is unable to make any predictions for the following 

diagnoses: ADHD, Autism Spectrum Disorder, PTSD and Borderline Personality Disorder. 

However, the model seems to perform quite reasonable on the following diagnostic 

categories: Bipolar I Disorder (type ‘d’ and ‘o’), Schizophrenia (type ‘d’ and ‘o’), Depressive 

Disorder (type ‘d’), Other Diagnosis (type ‘d’) and NONE. However, the predictions for 

every label fail to simultaneously score high on both their precision and recall scores. 

Meaning that either some instances are missed in the label predictions or the predictions may 

be unreliable due to misclassifications.  

Removing types from labels 

 After removing the types from the labels, the top-performing model was fine-tuned 

once more on the task at hand. This implementation increased model performance, increasing 

the F1 score from 0.18 to 0.44. Predictive accuracy has increased now that the model does 

not have to struggle with differing between types of the same diagnosis. However, it still fails 

to make predictions for the same collection of diagnoses by mainly identifying them as ‘other 

diagnoses’. 

 

Discussion 

Based on these findings, it seems that the performance of a Transformer in extracting 

diagnoses from Dutch psychiatric depends on numerous factors. One of which is the training 

data of the utilized pre-trained transformer. Based on this research, RobBERT comes forward 

as a potential candidate for future implementation. To increase the performance of a 

Transformer within the psychiatric field, it should be trained on a vast number of psychiatric 

texts so it may capture the domain-specific language. However, due to privacy concerns and 

the need for extensive computational resources, pre-trained models like RobBERT seem to be 

an adequate alternative. Additionally, NER shows more potential as a classification method 

than MLC.  

The top-performing NER model, utilizing RobBERT as its pre-trained transformer 

while using an oversampling technique. Although the model scored relatively well on Bipolar 

I Disorder and Schizophrenia, it can be concluded that it cannot be implemented in practice 

due to unreliable results stemming from shortcomings in either precision or recall. The model 

performance on these labels increases when the model does not have to distinguish between 



the types of the diagnoses anymore. This may however reduce practical utility, as it does not 

provide the context in which the diagnoses is discussed. Both of these models can serve as a 

base for future improvements.  

Misclassifications of labels 

An interesting phenomenon is observed in both the original top-performing NER 

model and its revised version after the removal of subtypes in the labels. It can be observed 

that a substantial number of correct predictions were made for Bipolar I Disorder (type ‘o’) 

and Schizophrenia (type ‘d’). This observation is remarkable, as there were relatively few 

instances present in the training data that belonged to these categories. It is expected that the 

model would excel in classifications with more instances to learn from, such as Autism 

Spectrum Disorder (ASS). However, contrary to expectations, no predictions for ASS are 

observed at all. This is likely caused by the use of terminology and the context in which it is 

written. It seems like Bipolar I Disorder and Schizophrenia are discussed in specific and 

distinguishable situations, allowing for the model to pick up on these more easily. The 

opposite might be true for diagnoses like ASS, ADHD, Borderline Personality Disorder and 

PTSD, which are often identified as ‘other diagnoses’ (ANDI). These labels seem to be 

discussed in similar contexts, such as events or symptoms, making them harder to distinguish. 

The tendency for these labels to be classified under ANDI is likely due to the model being 

more adapted to it, having been exposed to this label more frequently than the others. 

Another reason could be the usage of the word ‘stoornis’ (disorder), which frequently 

occurs within both diagnosis categories. However, this remains speculative as the word 

‘stoornis’ also occurs relatively often within the diagnosis of Bipolar I Disorder (BIP1), for 

which an adequate number of predictions was correct.  

Future research 

 This research aimed to provide a baseline for extracting diagnoses from Dutch 

psychiatric text with Large Language Models (LLMs). After fine-tuning a selection of eight 

models, the top-performing model was selected with the best predictive performance. The 

model performs adequately, but leaves enough room for improvement. To increase 

performance, it is recommended to keep experimenting with different pre-trained models and 

oversampling techniques. Implementing other well-performing Dutch pre-trained 

Transformers could also prove to be effective. Towards the end of this research, BelabBERT 

(Wouts et al., 2021), a pre-trained model known for its effectiveness with Dutch psychiatric 

data, was identified. Although it was not initially included in this study due to unfamiliarity 

with its existence, it should be considered for future research endeavors. 



Another area of improvement regards the frequency and distribution of the training 

data. The model struggles when having to distinguish between the types of diagnoses, most 

likely due to contextual similarities and insufficient training data. Gathering more annotated 

data can potentially enhance the model's ability to distinguish between these types. Another 

approach could involve separating the task of extracting diagnoses and classisying their 

respective types, allowing the model to focus more deeply on each task individually rather 

than concurrently. 

Next to this, these is an overrepresentation of instances labeled as ANDI, potentially 

leading to many labels being falsely predicted as ANDI. This is likely due to similarities in 

terminology and the observed class imbalance. The potential impact of terminology on the 

classification of specific labels could be an intriguing subject for psychiatric research to 

explore, aiming to uncover any observable differences in how professionals document certain 

diagnoses and potentially the underlying reasons behind these differences. As for the label 

imbalance, methods need to be implemented that handle this effectively. In the research, an 

oversampling method was implemented. While no clear effect has been found regarding the 

oversampling method, no negative impacts were observed either. Further testing is 

encouraged, as the technique has only shown a slight increase in the frequency of uncommon 

labels. Ideally, the technique should be adapted for implementation without increasing the 

frequency of common labels in multi-labeled data. 

Based on these considerations, this thesis provides the groundwork for the integration 

of LLMs within the field of psychiatry. 
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Appendix 

The appendix consists of the unshown confusion matrices per label of the best 

performing MLC model. Mind, the model was run a second time to retrieve these confusion 

matrices. Due to the non-uniform outcomes of the train test split, these numbers might differ 

slightly with the reported label distribution for MLC. 
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