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Abstract
Current research in process mining and event detection offers excellent interfaces and algorithms
for discovering and improving real-world processes. However, these methods assume that the
very activities that make up the processes are already captured in data. Algorithms capable of
extracting event log data from generic tabular data sources are limited and often require significant
manual effort or input from domain experts. A generic, easy-to-use approach that can transform
tabular data into event log data is currently lacking.

This thesis addresses the gap through a case study conducted in collaboration with the Dutch
railway infrastructure manager ProRail. ProRail oversees the maintenance, traffic control, man-
agement, and expansion of the Dutch railway network, with safety as its top priority. To ensure
and enhance safety, it is crucial to understand the operational processes on the railway network,
such as driving trains. Currently, ProRail does not automatically and in real-time monitor these
user processes.

The main research question addressed by this thesis is: ‘To what extent is it possible to auto-
matically detect user processes in the data of ProRail?’

This thesis proposes a comprehensive solution by:

1. Formalising a methodology to convert any generic tabular data source into event log data.
2. Formalising operational processes and their activities as process models.
3. Implementing a rule-based system (RBS) to extract activities from data.
4. Matching extracted activity sequences to predefined process models using the longest com-

mon subsequence (LCS) and token-based replay (TBR) algorithms.

The performance of the proof of concept (PoC) is assessed using the macro-averaged F1-score
of fitness and precision. This metric accounts for the imbalance in the number of instances per
process model.

The RBS extracted over 70, 000 activities from 2, 506 process instances (train journeys) present
in the data. The created dataset annotated by the RBS serves as a ground truth for future research,
such as training supervised learning models. The TBR algorithm found a single best process model
for 2, 448 out of 2, 506 train journeys, while the LCS algorithm found 1, 156 single best matches.
The macro-averaged F1-score of the LCS algorithm is 0.120 ± 0.087, while the TBR algorithm
scores 0.104± 0.048.

A two-sided paired t-test (t = 0.564, p = 0.629) indicates no significant performance difference
between the LCS and TBR algorithms. However, the TBR algorithm is preferred as it matches
more than twice as many activity sequences to process models and supports multiple paths, loops,
and parallel activities within a process model, which will be beneficial for future improvements
to the processes. Inter-annotator agreement between two domain experts resulted in a Cohen’s
Kappa coefficient of κ = 0.49, indicating moderate agreement, while the agreement between each
algorithm-expert pair ranged from poor to slight with κ-values between −0.06 and 0.09.

To conclude, it is possible to automatically detect user processes in the data of ProRail to some
extent. Future improvements include refining current process models, incorporating additional
data sources to capture activities currently unable to be implemented, and enhancing the RBS by
allowing a percentage of rules to be true for an activity rather than requiring all rules to be true.
The annotation of more data by the experts will further improve the quality of the constructed
event log dataset. More research is needed to improve the ordering of activities within an event
and the detection of multiple processes within a single train journey. The use of semantic similarity
measures to match activities to dataset columns is very promising and should be further explored.

Keywords: process mining, event log extraction, sequence mining, event detection, longest com-
mon subsequence, token-based replay, ProRail, railways
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1 Introduction
Chapter 1 provides an introduction to the problem that this thesis tries to find an answer to and
to the graduation company. The aim of this thesis is defined in section 1.3. The main research
question and accompanying sub-questions are defined in sections 1.4 and 1.5, respectively.

1.1 Context

This thesis project is conducted in collaboration with ProRail B.V. ProRail is the Dutch national
railway infrastructure manager. Safety on and along the railway track is central to ProRail’s
operations. The following is a summary of the core tasks of the company (ProRail, 2024):

• Maintaining existing railway tracks
• Managing and maintaining railway stations
• Construction of new railway tracks and stations
• Informing passenger and freight operators
• Train traffic control
• Allocation and distribution of capacity on the railway tracks

The research is conducted specifically within the subdivision Logistics Development (Dutch:
Ontwikkeling van de Logistiek) of the division Traffic Control (Dutch: Verkeersleiding). The team
consists of ±30 Full-time equivalent (FTE).

In 2023, ProRail had ±5.071 employees and managed 399 train stations divided across 7.002
kilometres of railway track. In 2023, the cumulative kilometres travelled by trains in the Nether-
lands amounted to 152 million (ProRail, 2024).

1.2 Problem Definition

Driving trains entails a multitude of processes that need to be followed to ensure safety on
and alongside the railway tracks. These operational processes are known as user processes or
gebruikersprocessen (GPs) in Dutch. Each GP describes the activities that need to be conducted
by the train operator, the traffic controller (treindienstleider or Trdl in short) and the systems
they communicate with. The GPs can be seen as a set of agreements and operational rules to
which all stakeholders must adhere (Operationeel Kenniscentrum ERTMS [OKE], 2023). They
prescribe how the stakeholders, such as train drivers and the Trdl, must interact with the system
to minimise risk to those using the transport system.

All processes relevant for this thesis are described in ProRail Assetmanagement (ProRail AM,
2023). This document is designed for the railway track between the Dutch cities of Amsterdam
(Asd) and Utrecht (Ut). The processes describe situations such as a short stop (GP-6) or parking
a train (GP-7). They also describe higher-risk situations such as driving on a slippery railway
track (GP-12) and the procedure after unintendedly driving through a red signal (GP-37).

Currently, incidents are reported after the fact and only when they have been the cause of
a safety breach or caused significant delays. The associated consequences and possible risks are
subsequently identified. Using the reports produced, lessons are drawn for the future. The incident
reports cover whether the appropriate steps have been followed for the processes applicable to the
incident.

While some events1, such as splitting a train into two separate trains, may be detected auto-
matically, the procedures that describe how such an event needs to be handled are not monitored
or reported by an automated system. There is currently no system which monitors if and when
processes are executed. This has multiple downsides:

1This includes but is not limited to, incidents.
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1.3. AIM AND SCOPE CHAPTER 1. INTRODUCTION

• No statistics on how often processes are executed (incorrectly)
• No data-driven risk analysis available for each process
• Error-prone and time-consuming manual incident reporting
• Possibility that not all incidents are currently reported

– I.e. incidents that were deemed insignificant

These downsides can greatly impact the safety and efficiency of the company and all stake-
holders involved.

The original problem definition by ProRail can be found in Appendix 6.1.

1.3 Aim and Scope

This thesis project aims to develop a general formalisation and methodology for a system that
automatically extracts predefined processes from tabular data. The proposed method is further-
more implemented as a PoC for ProRail.

Once processes are found in the data, they can be monitored and reported. Monitoring the
processes makes it possible to uncover whether and in what way they are executed. The processes
can be reviewed and tested for safety based on real life scenarios found in the data. Furthermore,
unforeseen scenarios and risks can be discovered and exposed. Possible findings based on the
automatic extraction of processes from data include:

• Discovery of unsafe or unknown shortcuts taken by the stakeholders
• Edge cases in the train protection software
• Finding structural errors or missing activities in the description of current processes
• Confirming or reassessing the calculated risk for the various processes

Based on these findings, the activities involving each process can be modified to adhere to
the new scenarios uncovered in data. Furthermore, new findings and irregularities can be shared
with train operators and traffic controllers. This way, a feedback loop emerges of continuous
improvement to the described processes, the staff, and safety in general.

1.3.1 Scope

This thesis is the first of many steps towards the improvement and monitoring of operational
processes. Subsequent steps, such as improving the existing operational processes and the imple-
mentation of a feedback loop, are out-of-scope for this project.

The thesis is specifically focused on developing a general formalisation and methodology and
testing this with a proof of concept (PoC) and not on developing a production-ready application.
Showcasing the PoC’s potential on a subset of processes allows ProRail to evaluate its performance.

Alongside the railway track between Amsterdam and Utrecht, the processes described in Pro-
Rail AM (2023) also apply to the Hanzelijn: the track between the cities Lelystad (Lls) and Zwolle
(Zl). However, this track is outside the scope of the thesis project. The specifications and suppliers
of the trackside equipment differ from those of the track between Amsterdam and Utrecht.

The operational processes across other railway tracks in the Netherlands differ in various
degrees. A developed PoC is however highly applicable to other collections of GPs since the
data source used is homogeneous across the Netherlands. Furthermore, the developed theory and
methodology can be applied to other domains with similar input data formats.

2 UU Master Thesis



CHAPTER 1. INTRODUCTION 1.4. RESEARCH QUESTION

1.4 Research Question

Based on the problem definition, aim and scope of the thesis, the following main research question
is formulated:

To what extent is it possible to automatically detect
user processes in the data of ProRail?

1.5 Sub-questions

To answer the main research question, the following sub-questions are formulated:

RQ1 What data sources provide predictive information about the user processes?
RQ2 How can the description of a user process and its activities be encoded into a formal defini-

tion?
RQ3 How can the formal definition be used to extract a sequence of activities from data?
RQ4 Which algorithm is best in identifying user processes in the retrieved sequences of activities

using the formal definitions?
RQ5 What evaluation metric is best to determine the performance of the system?

The available data is examined and formalised in the first research question (RQ). Translating
the predefined user processes into a general and formal definition is covered in RQ2. The formal
definition can then be used to extract a sequence of activities from the data, as covered in RQ3.
RQ4 examines the classification of retrieved sequences of activities to processes using a variety
of algorithms. To determine the overall performance of the PoC, suitable evaluation metrics are
required. This is discussed in RQ5.

1.6 Readers Guide

Section 2.1 gives a general overview of the Dutch railway system. This section provides additional
context to the problem at hand and introduces various concepts relevant to the thesis. Section 2.2
is a deeper dive into the operational processes regarding this thesis. The data used for the PoC is
presented in section 2.3.2 The scientific basis of this study is described in section 2.4. Based on
this literature review, the research gap is presented in section 2.5. Section 2.6 gives an overview
of the ethical considerations that are made for this thesis.

Chapter 3 describes the various steps taken to answer each research question. These steps in-
clude the data collection and the development of the PoC along with various formalisations and
definitions. The chapter concludes with the methods used to evaluate the PoC.

Chapter 4 presents the results obtained for each of the sub-questions. The results were obtained
through the literature review in the theoretical framework and the methodology constructed in
Chapter 3.

We start Chapter 5 with the findings on each of the sub-questions and provide an answer to
the main question in section 5.1. Section 5.2 is dedicated to the discussion. We conclude the
chapter with suggestions for further research in section 5.3.

2Any processing of the data will however be described in the methodology in Chapter 3.

UU Master Thesis 3



2 Theoretical Framework
Section 2.1 gives a general overview of the Dutch railway system. This section provides additional
context to the problem at hand and introduces various concepts relevant to the thesis. Section 2.2
is a deeper dive into the operational processes regarding this thesis. The data used for the PoC is
presented in section 2.3.1 The scientific basis of this study is described in section 2.4. Based on
this literature review, the research gap is presented in section 2.5. Section 2.6 gives an overview
of the ethical considerations that are made for this thesis.

2.1 The Dutch Railway System

The railway track between Amsterdam and Utrecht is a dual signalling track, which means that
two signalling systems are used: both NS’54 and ERTMS. A dual signalling system allows two
types of trains to be run on the same track: trains using the NS’54 system and trains using
ERTMS.

Figure 2.1: A passenger and freight train travelling side by side on the dual signalling track
between Amsterdam and Utrecht (ProRail ERTMS Integratie Lab, 2020, p. 5).

2.1.1 NS’54 and ATB

The NS’54 signalling system, as specified by Rijksoverheid (2023), consists of light signals and
signs that direct train traffic. The standard was first implemented in 1955 (Middelraad, 2000,
p. 22) and is still in use today. Almost the entire Dutch railway network is equipped with the
NS’54 signalling system.

This signalling system is often used in combination with automatische treinbëınvloeding (ATB),
Dutch for automatic train control. There are several versions of ATB, which prevent trains from
exceeding the speed limit or passing a red signal. If a train exceeds the speed indicated by the
NS’54 system, ATB will intervene and apply an emergency brake. The train will then automatically
come to a complete stop.

1Any processing of the data will however be described in the methodology in Chapter 3.
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CHAPTER 2. THEORETICAL FRAMEWORK 2.2. USER PROCESSES

2.1.2 ERTMS and ETCS

For historical reasons, each Member State of the EU has its own unique and proprietary National
Train Control (NTC) system. ATB is the NTC system of the Netherlands. International trains
therefore need to be equipped with several NTC systems, one for each country the train passes
through on its journey. In addition, the train operator needs to be properly trained and certified
for all the different signalling systems they may encounter.

The European Rail Traffic Management System (ERTMS) is a set of specifications for both the
signalling system and the train control system (ProRail, 2019). The specifications are designed by
the European Union (EU) and enable the interoperability of trains across the EU. By streamlining
the signalling and automatic train control systems across all Member States, train operation will
become more efficient, more flexible, cheaper and, above all, safer.

Part of the ERTMS specification is the European Train Control System (ETCS) (European
Union Agency for Railways [ERA], 2023). This will replace the NTC of all participating countries.
Replacing ATB with ETCS will require major modifications to both the tracks and trains in the
Netherlands. According to the latest planning, ERTMS is expected to be implemented on all
tracks in the Netherlands in 2050 (ERTMS NL, 2022). The current status and distribution of
automatic train control systems in the Netherlands can be found in Appendix 6.2.

2.1.3 Trains Driving Under ETCS

Currently, only a limited number of trains can run under the ETCS regime. It is important for
the data selection process in section 3.1 to know which trains are equipped with ETCS. The GPs
used for this thesis are only applicable to trains equipped with ETCS. The following trains are
known to be equipped with ETCS:

• Sprinter Nieuwe Generatie (SNG) (Nederlandse Spoorwegen [NS], 2023b)
– Scheduled to run between Asd and Ut in the 2023 and 2024 timetables

• Intercity Nieuwe Generatie (ICNG) (NS, 2023a)
– Not scheduled to run between Asd and Ut in the 2023 and 2024 timetables

• International freight and passenger trains that pass through the Netherlands
– These trains are often equipped with ETCS to ensure interoperability across multiple

countries
• Older generations of trains from NS that are currently being retrofitted with ETCS (NS,

2022)

Occasionally, other trains are also equipped with ETCS such as trains for trackside maintenance
and testing. In the last quarter of 2023 (ProRail, 2022), a project called ‘Ervaringsrijden’, Dutch
for ‘Experience Driving’, was launched. During this project, train operators were trained to drive
using ETCS. After completing their training, the train operators regularly drive using ETCS in
order to gain and maintain their experience (NS, 2022). The project is carried out on the track
between Amsterdam and Utrecht and on the Hanzelijn.

2.2 User Processes

This section provides an in-depth overview of the GPs and further elaborates on them.

2.2.1 Definition of a User Process

In total, there are forty GPs described in ProRail AM (2023). A table of all forty processes and
their (translated) names can be found in Appendix 6.3.

A GP consists of a text describing when the process is applicable, a set of prerequisites, and
a sequence diagram containing all activities of the process. This sequence diagram only visualises
a single flow of the process. Some processes have accompanying notes that describe possible
deviations and the actions to be taken in such cases. The sequence diagram in Figure 2.2 shows
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2.2. USER PROCESSES CHAPTER 2. THEORETICAL FRAMEWORK

the first four out of fifteen activities that are part of GP-1. As the diagram originates from ProRail
AM (2023), the text is in Dutch. It does however provide a clear overview of the interactions
between the actors involved in the process.

Figure 2.2: First four out of fifteen activities of GP-1: Heading towards a normally set route
with known train position from ProRail AM (2023). An arrow from one actor to another
indicates an interaction between the two. The arrow is annotated with the activity that
takes place between the two actors. Notes can be added to the diagram for additional
information, as can be seen on the right side of the fourth activity.

The processes described will need to be revised once the track is eventually upgraded from dual
signalling to an ETCS-only system. Not all described processes are relevant for the Amsterdam –
Utrecht railway track. For example, some processes describe situations around railway crossings
or tunnels, both of which are not present between Asd – Ut.

2.2.1.1 Interaction Between Actors

Every activity of a process describes the communication from one actor to another actor. The
actor can be either a Trdl, a train operator, or the system. The system refers to all equipment
with which the Trdl and train operator can interact. Furthermore, the Trdls and train operators
can interact with each other via phone calls.

Interaction is not necessarily between one Trdl and one train operator. For example, if a train
is split into two separate trains (GP-51), two train operators are involved. Sometimes the rail
carrier is also involved in a process. For example, if the freight or passenger carrier notifies their
train operator of a slippery track (GP-12). Furthermore, the boundary between the dual signalling
track and ATB can coincide with the boundary of two traffic control posts (GP-12 & GP-15). In
these cases, not one but two Trdls are involved.

2.2.1.2 Prerequisites

Most processes contain a set of prerequisites. These are conditions that are assumed to be true at
the start of the process. For instance, GP-15 Transition from Level 2 to level NTC ATB, assumes
the following prerequisites:

• A train is driving in a dual signalling protected area under Level 2 (L2), mode FS.
• The train needs to enter an ATB-EG protected area.
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2.3 Data

ProRail’s largest data warehouse is called Sherlock. It brings together over 250 data sources from
90 different systems. This data includes both infrastructure and traffic information from the past,
present, and future. Data is stored in tabular form and consists of 733 columns, totalling over 125
Terabyte (TB) of data. Sherlock was originally designed to investigate the cause of delays and the
true arrival times of trains (ProRail, 2023, p. 274). Today, the data warehouse has evolved into a
data provider for a wide range of use cases, including this thesis.

Each row in the tabular data represents a step in the timetable of each train. These timetable
steps are called dienstregelpunten (DRPs). A DRP is a geographical point on the track. Typical
locations for a DRP to be situated include railway stations, bridges, and rail junctions (Infrasite,
2021). A train can perform various DRP activities. Each new DRP activity at a DRP is logged
as a new entry, the DRP activities include:

• (Short) arrival at DRP
• (Short) departure from DRP
• Passage of DRP
• Shunting at DRP

Information that is logged while at a DRP includes the planned and actual time the DRP
activity happened. The track between Amsterdam and Utrecht consists of 22 DRPs which can be
seen in Appendix 6.4.

Each train journey is assigned a train number. This number is unique for that day and remains
the same for the entire journey. On each journey, the train passes several DRPs. An excerpt of
the data from Sherlock is shown in Table 2.1.

Train
Number

DRP DRP activity Planned Actual . . .

5732 Vspa Passage 18-12-2023 11:30:00 18-12-2023 11:30:13 . . .
5739 Dmnz Short Departure 18-12-2023 11:29:30 18-12-2023 11:30:30 . . .
7339 Bkla Passage 18-12-2023 11:28:42 18-12-2023 11:30:33 . . .
220 Ut Arrival 18-12-2023 10:59:42 18-12-2023 11:30:35 . . .
3139 Bkl Passage 18-12-2023 11:30:42 18-12-2023 11:30:45 . . .
3139 Bkla Passage 18-12-2023 11:30:54 18-12-2023 11:30:57 . . .
3934 Aco Passage 18-12-2023 11:31:18 18-12-2023 11:30:58 . . .
. . . . . . . . . . . . . . . . . .

Table 2.1: Adapted excerpt of the data from Sherlock. The first column contains the
unique identifier for a train journey. The ‘DRP’ column contains the unique identifier for
the current DRP. The ‘DRP activity’ is the type of DRP activity that was performed while
at the DRP. The ‘Planned’ and ‘Actual’ columns contain the planned and actual time of
the DRP activity. The actual data contains more columns and rows than shown here.

2.4 Literature Review

This section provides a literature review of the relevant topics for this thesis. We start this section
with the introduction of process mining in subsection 2.4.1. We then continue with introducing
event detection in subsection 2.4.2 and conclude with the theoretical background of sequence
matching in subsection 2.4.3.
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2.4.1 Process Mining

Process mining focuses on discovering, monitoring, and improving real processes. Van der Aalst
et al. (2012) provides a process mining framework to extract knowledge from event log data. An
event log is a sequential record of events that stores activities, i.e. steps of a process, and is related
to a specific case, i.e. a process instance Van der Aalst et al. (2012, p. 174). Additional data such
as timestamps may also be stored in the event log. An example event log can be seen in Table 2.2.
The framework defines the following concepts:

• Process model: A model consisting of activities that are ordered in time and formally
describe a process

• Activity: An event from an event log; A well-defined step in some process (Van der Aalst,
2010)

• Case: An instance of a process model
• Resource: The actor that performs the activity. Also referred to as the originator or

performer (Van Dongen et al., 2005; Weijters et al., 2006)
• Timestamp: The time at which the activity was performed
• Data elements: Additional data that is associated with the activity

Case ID Activity ID Resource Timestamp

1 A John 09-03-2004 15:01
3 A Sue 09-03-2004 16:03
3 B Carol 09-03-2004 16:07
1 B Mike 09-03-2004 18:25
1 C John 10-03-2004 09:23

Table 2.2: An example event log, adopted from Weijters et al. (2006). Entries with the
same Case ID belong to the same process instance. The ‘Resource’ is the actor initiating the
event described in the column ‘Activity ID’. The activity was performed at the timestamp
described in the column ‘Timestamp’.

Process mining techniques can be divided into three categories (Van der Aalst et al., 2012):

• Discovery: Discover a process model based on event log data, without any prior formal
knowledge of the process.

• Conformance checking: Comparing whether the event log data and the process model
are in line with each other.

• Enhancement: Improving the process model based on the event log data.

In the subsequent sections, we will first discuss the visualisation of process models in sub-
subsection 2.4.1.1. We then continue with an overview of the three categories of process mining
mentioned above.

2.4.1.1 Visualising process models

As textual descriptions of processes can often be ambiguous, it is common to visualise process
models graphically (Dumas et al., 2018, p. 16). This is often done using Petri Nets (Petri, 1962) or
the Business Process Model and Notation (BPMN) standard (Object Management Group [OMG],
2011). An example of a process model in BPMN can be seen in Figure 2.3.

BPMN differs from the sequence diagrams of the GPs in several ways. Firstly, BPMN is
more expressive. It allows for the modelling of multiple start and end activities, multiple paths,
and loops. The current sequence diagrams only model a single flow of each process. Furthermore,
variations and exceptions are described in separate notes and are not part of the sequence diagrams.
This could lead to inconsistencies between the sequence diagrams and the accompanying notes
(Van der Aa et al., 2017).
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Figure 2.3: Example of a BPMN process model, extracted from Carmona et al. (2018, p. 24).
The process starts with the ‘Application submitted (As)’ activity on the left. It ends at the
right with the ‘Application finished (Af)’ event. Multiple paths can be observed.

Secondly, BPMN is more formal as it has a well-defined syntax and semantics that is easier
for computers to understand. BPMN can be parsed and interpreted by a computer, whereas the
sequence diagrams, in their current pdf form, cannot. This makes the BPMN standard more
suitable for automated analysis.

Petri nets are constructed with places, transitions, arcs and tokens. The arcs connect places
to transitions and vice versa. Arcs are directional edges and never connect places to places or
transitions to transitions. The place at the start of a process is often referred to as the source
place. The sink place is the place at the end of a process. Places that have an arc to a transition
are its input places, and places that come out of a transition are its output places.

A token can be created in the source place at the start of the process. A token can also be
created for any output place if the connected transition fires. The token at an input place is
consumed when a transition fires. A transition can only fire when all input places have sufficient
tokens. A sufficient amount of tokens is defined by the multiplicity of the arc. The multiplicity of
an arc is the number of tokens needed for that arc to satisfy the transition. If multiple transitions
can be fired, they are fired in a non-deterministic order. This is one of the reasons why Petri nets
are often used to model concurrent systems (Peterson, 1977). Petri nets furthermore “provide a
comprehensive mathematical foundation” and also offer a “plethora of formal results and analysis
techniques” according to Carmona et al. (2018, p. 109). An example of a Petri net can be seen in
Figure 2.4.

Figure 2.4: Example of a Petri net from Peterson (1977, p. 235). The Petri shown is defined
as C = (P, T, I,O) where P = {p1, p2, p3, p4, p5}, T = {t1, t2, t3, t4}, I(t1) = {p1}, I(t2) =
{p2, p3, p5}, I(t3) = {p3}, I(t4) = {p4}, O(t1) = {p2, p3, p5}, O(t2) = {p5}, O(t3) = {p4},
O(t4) = {p2, p3}.

Formally, a Petri net, as defined by Peterson (1977, pp. 234–235), is a tuple C = (P, T, I, O)
where P is a set of places, T is a set of transitions, I is an input function and O is an output
function. The input function I defines the set of input places for any transition tj ∈ T . Likewise,
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the output function O defines the set of output places for any transition tj . The set of input and
output places of a transition tj are defined as I(tj) and O(tj) respectively. As a place can never
be a transition and vice versa, the sets P and T are disjoint. Petri nets are thus not only directed
graphs but also bipartite graphs as two distinct groups of nodes exist: places and transitions (Berti
& van der Aalst, 2019).

Instead of the input and output functions I and O, we can define the Petri net as C = (P, T, F )
where F is a set of arcs F ⊆ (P × T )∪ (T × P ). This definition can be easily extended to include
the multiplicity of each arc: W : F → N. In this case, the Petri net is defined as C = (P, T, F,W )
where W is the multiset of arcs F . The count of each arc in the multiset is the weight of the arc
(Berti & van der Aalst, 2019). Peterson (1977, p. 246) refers to this as generalized Petri Nets and
is visualised by drawing multiple arcs between places and transitions. In this case, the number of
arcs between a place and a transition indicates the weight of the arc.

2.4.1.2 Discovery

Process discovery algorithms focus on extracting a process model from event log data (Van der
Aalst, 2010; Van der Aalst et al., 2012) and enable the discovery of new information such as
alternative paths (Van der Aalst et al., 2004). This is often done without any a priori knowledge
of the process model itself. However, the activities that make up the processes are often already
identified within the data. Process discovery thus focuses on finding the processes that consist of
sequences of activities and not on finding the activities themselves.

The α-algorithm by Van der Aalst et al. (2004) was one of the first process discovery algorithms
ever proposed. One of the limitations of the algorithm is that it cannot detect short loops of length
one and two (Van der Aalst et al., 2004, p. 1138). This should pose no problem for the thesis as
none of the processes covered in this thesis contain loops.

HeuristicMiner by Weijters et al. (2006) is a process discovery algorithm that uses heuristics
to handle noise. It does this by focusing on the primary behaviour of processes and not on details
and exceptions. The algorithm tries to discover the different roles that resources can have within a
process model. This way, relationships between different resources become more clear which adds
to the predictive power of the algorithm.

Măruşter et al. (2006) propose a rule-based approach to process discovery. The algorithm
automatically induces two rule sets from data to predict the relations between various activities.
The first rule set tries to detect causal relationships between activities whereas the second rule
set tries to detect both parallel and exclusive relationships. Subsequently, the model applies the
α-algorithm by Van der Aalst et al. (2004) to construct a final process model.

2.4.1.3 Conformance checking

Conformance checking is the process of verifying whether an event log and a process model are in
line with each other. Following Carmona et al. (2018), conformance checking tries to investigate
the following: “How do the modelled behaviour of a process and its recorded behaviour relate to
each other?”. Rozinat and van der Aalst (2006) describe two metrics to measure the conformance
between event log data and a process model:

• Fitness: the extent to which the log traces can be associated with execution paths specified
by the process model

• Appropriateness: the degree of accuracy in which the process model describes the observed
behaviour, combined with the degree of clarity in which it is represented

– Split into (1) structural appropriateness and (2) behavioural appropriateness

In this definition, log traces are the sequences of activities that make up a process instance in
the event logs. The execution paths are the possible paths that can be traversed in the process
model. Rozinat and van der Aalst (2006) state that fitness could be measured with string distance
measures, such as described below in subsection 2.4.3, but that they have a limited applicability.
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String distance measures will show poor performance when a process model contains parallels or
loops (Rozinat & van der Aalst, 2006).

Appropriateness focuses on minimising both the structure as well as the behaviour of a process
model. A minimal structure will result in clearer behavior as a too-detailed structure will be
hard to interpret. Minimal behaviour will ensure that the process model closely follows the actual
behaviour of the process in real life, i.e. in the data (Rozinat & van der Aalst, 2008).

Carmona et al. (2018) considers two quality metrics to quantify the conformance between a
process model and event log data, similar to the definition of Rozinat and van der Aalst (2006):

• Fitness: Has the recorded behaviour been modelled?
• Precision: Has the modelled behaviour been recorded?

An ideal process model will have a high degree of both fitness and precision. In this act of
balancing, as mentioned by Carmona et al. (2018, p. 43), a similarity can be observed to precision,
recall and their harmonic mean: the F1-score (Chinchor & Sundheim, 1993; Stein Dani et al.,
2023; Van der Aa et al., 2017). Fitness is defined as the fraction of log traces allowed by the
process model:

Fitness =
|L ∩M |
|L|

(2.1)

Here, L is the recorded behaviour in the event log data. M is the modelled behaviour of the
process model. Fitness falls within the range of [0, 1]. A value of 1 indicates that all behaviour of
the event log data is captured by the process model, i.e. L = M . A value of 0 indicates that none
of the recorded behaviour is captured by the model (Carmona et al., 2018, p. 46), i.e. no overlap
between L and M .

Precision is defined as the fraction of modelled behaviour that is also recorded in the event log
data. It is defined as:

Precision =
|L ∩M |
|M |

(2.2)

Precision too falls within the range of [0, 1]. A value of 1 indicates that all behaviour of the
process model is captured in the event log data. I.e., all possible paths in the process model are
present in the event log data. A value of 0 indicates that none of the behaviour of the model is
captured in the data.

A process model that achieves both a high fitness and a high precision score is not guaranteed to
perfectly capture the actual real life process. An example of an overfitted situation is visualised by
Carmona et al. (2018) in Figure 2.5. In the case of overfitting, a process model perfectly captures
the log data behaviour and vice versa but does only minimally capture real process behaviour.

Figure 2.5: An example of overfitting. The behaviour of the log data L and the process
model M are perfectly aligned. They do however only capture parts of the actual process
S. Extracted from Carmona et al. (2018, p. 56).

A popular approach to determine the conformance between an event log and a process model
is to investigate their alignment (Carmona et al., 2018; Van der Aalst, 2012). A perfect alignment
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is found when the log trace can be exactly followed by a path in the process model. Alignment
algorithms try to find the path with the least amount of deviations: the optimal alignment.

An example of a perfect alignment can be seen in Table 2.3. A move where the activity of the
log trace and process model are identical is called a ‘synchronous move’ (Carmona et al., 2018).

Log trace T R A I N S
Process model path T R A I N S

Table 2.3: A perfect alignment between a log trace and a path in the process model. Each
letter indicates an activity. Six synchronous moves can be observed.

A move where an activity of the log trace is not executed when it should have according to the
process model is referred to as a ‘model move’. Likewise, an activity executed in the log trace but
not in the process model is referred to as a ‘log move’. An example alignment with both model
and log moves can be seen in Table 2.4.

Log trace T R A I ≫ N S
Process model path T R A ≫ M ≫ S

Table 2.4: An alignment between a log trace and a path in a process model. This alignment
contains four synchronous moves, two log moves, and one model move. Deviations are
indicated with ≫, following the conventions of Carmona et al. (2018).

Instead of using model and log moves to detect deviations, Rozinat and van der Aalst (2008)
elaborates on a method called token-based replay (TBR). This algorithm tries to replay a log trace
on the Petri Net representation of a process model. In doing so, it keeps track of the number of
produced, consumed, missed and remaining tokens.

At the start of a process instance, a token is created for the source place. Thus, increasing
the number of produced tokens from zero to one. The tokens of the input places of a transition
are consumed once the transition fires, increasing the number of consumed tokens. A new token
is produced for each output place of the fired transition. It could occur that a transition should
have fired according to the replayed trace but could not as not enough tokens were present in any
of its input places. In this case, missing tokens are inserted and the count of missing tokens is
increased accordingly. Tokens that are produced but not consumed after the process instance has
ended are considered remaining tokens.

To measure the conformance of a log trace to a process model based on the TBR algorithm,
Berti and van der Aalst (2019) have defined the following metric:

fitnessPN =
1

2
(1− m

c
) +

1

2
(1− r

p
) (2.3)

Here, m is the total number of missing tokens after the replay of a log trace on a process model,
c is the number of consumed tokens, r is the number of remaining tokens, and p is the number of
produced tokens. The fitness metric falls within the range of [0, 1]. A perfect score of 1 indicates
that all produced tokens are consumed and no tokens are missing or remaining.

2.4.1.4 Enhancement

Whereas conformance checking only investigates the alignment between a process model and an
event log, process enhancement goes one step further and tries to improve or extend an existing
model based on data. Often, this is done by adding additional information to the process model,
such as timestamps or other relevant data stored in the event logs (Van der Aalst et al., 2012).

Enhancing the current processes is out-of-scope for this thesis. Process enhancement algorithms
are however very relevant for future research.
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2.4.1.5 Event log extraction

Process discovery, conformance and enhancement algorithms all rely on event log data in which
activities are already annotated. Making data suitable for process mining and transforming it in
event log data often requires substantial amounts of work (Stein Dani et al., 2022). A series of
steps that describe the human effort required to transform raw data into event log data is described
by Stein Dani et al. (2022). This includes steps such as ‘Assess Data Quality’, ‘Define Activity
Names’ and ‘Anonymize Data’ and is split into the following five topics:

• Context and Scope Definition
• Data Source Assessment
• Attribute Selection
• Data Source Extraction
• Event Log Assessment

These guidelines help to transform data into event log data in a structured and reproducible
way. By examining the role of humans in event log extraction, it becomes clearer which parts of
the extraction process can be automated (Stein Dani et al., 2022). Automated event log extraction
has the potential to save time and reduce the risk of human error.

Stein Dani et al. (2023) automatically matches an existing process model to tables in a database
using natural language processing (NLP) techniques based on various syntactic similarity scores
such as the Levenshtein distance and Jaccard index.2 Matches are then evaluated against the
author’s gold standard mappings using the F1 score. Stein Dani et al. (2023) state that although
automated matching between different representations is common in research areas outside of
process mining, they are the first to perform automated matching between data and a process
model.

Whereas Stein Dani et al. (2023) is interested in matching activities of a process model to
database tables, this thesis is interested in matching activities to columns contained within a
single table. As suggested by Stein Dani et al. (2023), instead of matching on syntactic similarity,
semantic similarity scores such as using the transformer neural network architecture (Vaswani
et al., 2017) could potentially be used to improve performance.

A literature review on event log extraction by Dakic et al. (2020) shows that 80% of the pro-
posed methods “require extensive programming knowledge”. The authors conclude that only three
of the methods reviewed (Buijs et al., 2010; González López de Murillas et al., 2019; Rodrıguez
et al., 2012) have the potential to be used on any generic dataset. However, these methods still
require significant manual input from domain experts.

2.4.2 Event Detection

Event detection, also referred to as anomaly detection or outlier detection, has been extensively
applied to log data (Landauer et al., 2023; Papers With Code, 2024; Zhang et al., 2019). It focuses
on finding events that are different from regular, expected behaviour and flow in data. The events
can be anomalies, incidents, or any other data entry or log different from standard operation.
Event detection is most relevant for processes that describe incidents or abnormalities.

Often, event detection methods perform some kind of classification and require labelled data
to train a model. Since for this research, events are not yet identified in the dataset, supervised
learning methods are not suitable.

A straightforward way to find events that does not require labelled data is to check if conditions
relevant to the event are met. This can be done via a rule-based system (RBS) and is often referred
to as an expert system (Preece et al., 1992). If the conditions are met, the event is found. If the
conditions are not met, the event is not found. This would mean that for each event, a set of
conditions needs to be defined, either by a domain expert or by an algorithm.

Many RBSs consist of two parts: (1) a rule base or knowledge base and (2) an inference engine
(Masri et al., 2019). The knowledge base is a representation of specific domain knowledge via

2Both of which will be introduced in subsection 2.4.3.
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rules by which events can be found. An inference engine can derive new facts or rules from an
existing knowledge base and add these to or remove facts from the knowledge base (Rattanasawad
et al., 2018). The inference engine takes actions based on input data and the rules defined in the
knowledge base.

Unsupervised approaches to event detection include Lin et al. (2016) for instance. The authors
cluster logs to make the identification of anomalies easier via the use of a knowledge base that
checks for reoccurring log sequences. Xu et al. (2009) clusters anomalies via Principal Component
Analysis. The proposed method is however designed for raw and unstructured textual console
logs. Du et al. (2017) uses LSTMs to artificially generate the next log based on previous logs and
compare this to the actual next log. If the difference between the two is too large, an anomaly is
detected. Lu et al. (2019) clusters log traces of hospital data using sample patient data provided
by domain experts and frequent sequence patterns.

Clustering algorithms will require additional postprocessing to link retrieved clusters to specific
events or processes and require some sort of human input. The processes in this thesis do not
only cover anomalies or incidents but also describe day-to-day operations. As such, algorithms
that can only detect anomalies are not suitable. These algorithms should also alert on common,
regular events.

2.4.3 Sequence Matching

Finding the best match of a sequence within a set of target sequences is a common problem in
computer science. It is often referred to as (approximate) string matching (Hall & Dowling, 1980;
Van der Loo et al., 2014) or calculating string similarity (Alberga, 1967; Cheatham & Hitzler,
2013). In essence, a string consisting of characters and a process consisting of activities are both
an ordered sequence of elements.

This section describes several alternatives to process mining to match a retrieved activity
sequence to the correct process. Van der Aalst (2010, p. 1) however states that “(. . . ) simple
techniques such as sequence mining are unable to capture the underlying process adequately”.
Although maybe not among the best performers, sequence matching algorithms are still relevant
as they can be used as a baseline to compare the performance of various process mining algorithms.
As the algorithms described are relatively simple, their interpretability and ease of implementation
are also beneficial for this thesis.

A popular way to find the best match is to calculate the longest common subsequence (LCS)
between a query sequence and a database with target sequences. The target sequence correspond-
ing to the LCS with the most elements can be regarded as the best match. The LCS is the longest,
ordered, sequence of elements that is present in both input sequences. The elements of the LCS
do however not need to be consecutive in the input sequences, as long as they are in the same
order. For instance, the LCS of two sequences (T,R,A, I,N, S) and (T,R,A,M, S) is (T,R,A, S).
Many LCS algorithms have a time complexity of O(n2) or O(n log n) (Hunt & Szymanski, 1977).

The problem of sequence matching is often described as the minimum number of elements
that need to be changed to transform one sequence into another. This is often referred to as the
edit distance (Cormode & Muthukrishnan, 2007) or the Levenshtein distance (Levenshtein et al.,
1966). It has been used for spelling checkers (Chaabi & Ataa Allah, 2022; Santoso et al., 2019) and
optical character recognition (OCR) (Haldar & Mukhopadhyay, 2011), amongst other use cases.
Possible operations to transform one sequence into another include:

• Insertion of an element
• Deletion of an element
• Substitution of an element

For instance, to transform the sequence (T,R,A, I,N) to (T,R,A,M), one deletion (I) and one
substitution (N →M) is needed. The Levenshtein distance between these two sequences is thus 2.
The lower the distance, the better the match between two sequences. Later improvements allow
for the transpositions of two elements (Damerau, 1964) or add a weighting mechanism to favour
similar elements (Haldar & Mukhopadhyay, 2011). In the case of OCR, similar-looking elements
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can be the characters ‘U’ and ‘V’ (Haldar & Mukhopadhyay, 2011). Concerning this thesis, similar
elements can be activities that have similar semantics. Cormode and Muthukrishnan (2007)
propose an improvement by approximating the distance and adding the possibility of moving
complete subsequences from one position to another. This algorithm has a time complexity of
O(n log n).

Other popular methods to calculate the similarity between two sequences include the Hamming
distance (Hamming, 1950) and the Jaccard index (Jaccard, 1912). The Hamming distance is the
number of positions at which two equal-length sequences differ. This algorithm however only
works for sequences of the same length. The Jaccard index or the ‘coefficient of community’ does
have support for unequal-length sequences. It is defined as the intersection of two sets divided by
the union of the two sets. The resulting similarity score falls within the range of [0, 1]. A value
of 0 means that the two sets are completely dissimilar, while a value of 1 means that they are
identical. As the Jaccard index utilises set operations, it does not capture the characteristics of
sequences with duplicate elements or where order is important. For instance, the Jaccard index
of the sequences (A,B) and (A,B,A,B,A,B) is 1 even though one sequence has three times as
many elements as the other.

2.5 Research Gap

Despite advancements in process mining and event detection, a significant gap remains in the auto-
mation of event log data extraction from generic tabular data sources. Many software products,
such as ProM (Van Dongen et al., 2005) and Disco (Günther & Rozinat, 2012), provide excellent
ready-to-go user interfaces for analysing event log data using process mining. However, they as-
sume that the event log data itself is readily available, making existing process mining techniques
such as conformance checking not directly applicable to generic tabular data.

Consequently, the development of algorithms and interfaces that can easily convert generic
tabular data into event log data has been minimal, often requiring substantial manual input and
domain-specific expertise. The Process Mining Manifesto, written by the author of the seminal
work on process mining, further highlights this issue by stating that “process mining is a relatively
new paradigm and most of the currently available tools are still rather immature” (Van der Aalst
et al., 2012).

For the Dutch railway infrastructure manager ProRail, there is a critical need for automated,
real-time monitoring of operational processes to enhance safety. ProRail currently cannot auto-
matically detect and monitor the execution of operational processes without extensive manual
work, causing a blind spot for data-driven insights into these processes.

To address this gap, this thesis proposes a comprehensive methodology by:

• Formalising a methodology to convert generic tabular data into event log data.
• Formalising operational processes and their activities as process models.
• Implementing a PoC to extract activities from data using the defined formalisms
• Matching extracted activity sequences to predefined process models using various algorithms.
• Assessing the performance of the PoC using quantitative metrics and domain expert annota-

tions.

By automating the annotation of log data as much as possible, this approach allows domain
experts to focus on more complex and ambiguous cases where the PoC is not able to automatically
annotate the data correctly. This assists in reducing the time and effort required to transform
tabular data into event log data, making process mining techniques more accessible to a wider
audience.
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2.6 Ethical Considerations

This section discusses the ethical considerations made for the thesis.

2.6.1 Automation Bias

According to Goddard et al. (2011), automation bias is the tendency to over-rely on automation.
This can lead to not questioning decisions and advice of an AI system, resulting in accidentally
agreeing to incorrect or suboptimal decisions.

AI-suggested improvements to the processes described in the case study should be critically
evaluated before being implemented, especially considering the extremely safety-critical nature of
ProRail’s operations. The potential for automation bias should be considered when evaluating
these improvements. The PoC should be used as a tool to aid the identification and refinement of
process models, not as a replacement for the domain experts who create and improve the processes.

2.6.2 Implicitly Evaluating Employee Performance

When investigating if processes are executed correctly, it is important to consider the ethical
implications for the various actors involved. If the PoC detects that certain employees are de-
viating from a process description, it is important to consider the potential consequences of this
information.

Possible consequences involve reprimanding or even firing the employee. The PoC could also
be used to improve the performance of the employee by providing feedback on how to execute
the process correctly. The PoC could of course be wrong in its assessment of the employee’s
performance, which could lead to unfair consequences for the employee.

Possible mitigations include the anonymisation of data used by the PoC. Hence making it
impossible to trace the data back to a specific employee. Having a human-in-the-loop, where
the PoC’s suggestions are reviewed by a human before any action is taken, is another possible
mitigation. This would allow for the human to (hopefully) correct any mistakes made by the PoC.
One needs to be aware that the problem of automation bias, as discussed in subsection 2.6.1, could
still occur in this case.

2.6.3 Environmental Impact

Training and evaluating AI models can have a significant environmental impact as it often requires
large amounts of computational resources and thus electricity (Lacoste et al., 2019). Following
the philosophy of Occam’s razor (Duignan, 2024), of two algorithms that perform equally well,
the simpler algorithm should be chosen. A simpler (but equally performant) algorithm is likely to
have a smaller environmental impact.

2.6.4 Data Breach

As large amounts of data are used during this thesis, there is a risk of an unintentional data
breach. Caution should be taken to ensure that no sensitive data is breached during the research.
Risks emerging from a data breach include reputation damage, legal consequences, and financial
loss to ProRail. Possible mitigations include anonymising data used in this thesis and ensuring
that data is stored securely and locally.

2.6.5 Ethics and Privacy Quickscan

The Ethics and Privacy Quick Scan of the Utrecht University Research Institute of Information
and Computing Sciences was conducted (Utrecht University [UU], 2023). It classified this research
as low-risk with no fuller ethics review or privacy assessment required.
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3 Methodology
Chapter 3 describes the various steps taken to answer each research question. These steps in-
clude the data collection and the development of the PoC along with various formalisations and
definitions. The chapter concludes with the methods used to evaluate the PoC.

3.1 What data sources provide predictive information about
the user processes?

For this sub-question, the research focuses on formalising a general format for tabular log data. A
proper data formalisation provides a general approach for future research on event log extraction.
We furthermore describe the process of selecting the most suitable data source for the PoC of the
formalisms.

3.1.1 Data Formalisation

Let us formally define the input dataset as a sequence of two-dimensional matricesM = [M1,M2, . . . ,Mi].
Each matrix Mi has dimensions j×k, where j is the number of rows and k is the number of columns.
Each matrix is the event log of a process instance whose activities are not yet identified. Each
Mi ∈M has the same number of columns k but can have a different number of rows j.

Each row of a matrix is a feature vector Fj = [fj,1, fj,2, . . . , fj,k] and can be seen as a single
event in the event log. The feature vectors are ordered in time, F1 being the first row and Fj the
last row of a matrix.

The k columns of a matrix Mi are represented as C(Mi) = {c1, c2, . . . , ck}. The descriptions
of the columns are represented as D(M) = {d(c1), d(c2), . . . , d(ck)}, where d(ck) is the textual
description of the k-th column in each matrix. The column descriptions define the attributes of the
event log, such as the resources, timestamps, and other data elements defined in subsection 2.4.1.

An example of a matrix Mi can be seen in Eq. (3.1).

Mi =


f1,1 f1,2 · · · f1,k
f2,1 f2,2 · · · f2,k

· · · · · ·
. . . · · ·

fj,1 fj,2 · · · fj,k

 (3.1)

Each feature fj,k is a value stored in column ck at timestep j in a matrix. The value fj,k can
be of any type, such as numerical, categorical or textual.

Since activities are not yet found in the dataset, their associated processes can also not yet be
identified. It is therefore possible for a single row to contain zero to ∞ activities. This allows a
matrix to contain zero to ∞ activities and thus zero to ∞ processes. Ideally, a process will not
start until the previous process has finished. However, this cannot be guaranteed as the data is
not yet enriched with annotated activities and thus processes.

3.1.2 Data Selection

For practical and computational reasons, the PoC does not use all of the data available in Sherlock.
A subset of the available data is selected based on the criteria defined below.

• The data must cover the period from 1 September 2023 to 31 December 2023.
– As during this period the project ’Ervaringsrijden’ has been active in which ETCS has

been used (subsection 2.1.3).
• The data may only include the 22 DRPs mentioned in Appendix 6.4.
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– As these DRPs cover the entire route between Asd and Ut.
– Parts of a train journey outside this subset of DRPs are deemed irrelevant.

• Only train journeys are included for which ETCS was enabled during the passage of at least
one of the DRPs mentioned in Appendix 6.4.

3.2 How can the description of a user process and its activ-
ities be encoded into a formal definition?

GPs are described in natural language and are visualised using sequence diagrams. In order to
better understand the flow of these processes and to identify recurring activities, the sequence
diagrams of the processes are converted into a structured format. BPMN diagrams are the format
of choice to visualise process models for this thesis. Converting sequence diagrams into BPMN
diagrams is the first step in formalising the GPs. They help to (1) identify similar activities
across the different GPs and (2) capture alternative flows that are currently only described in the
accompanying notes of ProRail AM (2023).

A subset of the forty GPs is used for the PoC. The three processes below are chosen in
collaboration with domain experts:

• GP-3: Departure with unknown train position
• GP-5: Passing a stop signal without MA
• GP-9: Turning or reversing a train

3.2.1 Formalising Activities Across Process Models

A unique type of activity can be part of zero to ∞ process models. For example, the activity
‘Inschakelen stuurstroom’, Dutch for ‘Switch on control current’, is present in eight different
processes. Ideally, we can easily identify the same activity across all eight process models and use a
consistent notation. This is not possible with the sequence diagrams as activities are inconsistently
described in natural language. Furthermore, activities are not guaranteed to be consistent across
the different sequence diagrams as activities are not labelled with a unique ID.

Each activity consists of the interaction from one resource to another. For example, the
aforementioned activity ‘Switch on control current’ is an interaction of the train operator to the
system. We label the activity as MSid, where M stands for ‘train operator’, S stands for ‘system’
and id is the unique identifier for this specific activity. Semantically equal activities are numbered
the same across all process models. Following this reasoning for all possible combinations of
resources, the scheme in Table 3.1 is created.

Receiving Resource
Train operator
(machinist)

System
(systeem)

Traffic controller
(Trdl)

Sending
Resource

Train operator
(machinist)

MM MS MT

System
(systeem)

SM SS ST

Traffic controller
(Trdl)

TM TS TT

Table 3.1: Scheme to model the interaction between different resources. The initiating
resource is on the left, the receiving resource is on the top. The labels are a combination of
the first letter of the initiating resource and the first letter of the receiving resource.
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3.2.2 Formalisation of a User Process

Based on the descriptions of ProRail AM (2023), as elaborated in section 2.2, and in the literature
study of section 2.4, a GP is defined to have the following properties:

• A GP is defined as the combination of a sequence of activities and a set of prerequisites.
• A sequence of activities consists of activities defined in Table 3.1. It is ordered in time.

– E.g. MS1 → ST4 →MS2 → TM2 → . . .
• Each GP has a set of prerequisites.

– E.g. {‘The train is driving in L2’, ‘The position of the train is unknown’}
• Each GP has a unique identifier.

– E.g. GP-1, GP-2, GP-3, . . .
• The combination of the sequence of activities and set of prerequisites is unique to each GP.

– I.e. no two GPs have the same sequence of activities and the same set of prerequisites.

More formally, each GP, denoted as Gid, has a corresponding ordered sequence of activities,
denoted as Aid and a set of prerequisites, denoted as Pid. The id of any Gid is a positive integer
where id is the unique identifier of the process model.

If id ∈ D, the id falls within the domain of all unique identifiers of the GPs described in ProRail
AM (2023). Since ProRail AM (2023) consists of forty GPs, |D| = 40. Furthermore, AD is the
superset of all activities present in ProRail AM (2023) and PD is the superset of all prerequisites
in ProRail AM (2023).

3.2.2.1 Formalisation of a Sequence of Activities

A sequence of activities Aid of Gid is ordered in time. It is denoted as follows:

Aid = (a1, a2, . . . , an−1, an) (3.2)

where n is the number of activities in Gid. A sequence of activities always has a length of
0 < n <∞.

An activity ai refers to any of the activities that follow from the resource scheme in Table 3.1.
For instance, ai = MS1 is a valid activity and Aid = (MS1, ST4,MS2, TM2) is a valid sequence
of activities for Gid.

Since a sequence of activities is ordered in time, ai happens before aj if i < j. It is thus not a
set but rather a tuple or a sequence. Within the GPs in D, the sequence of activities is unique to
each GP. This is formalised as follows:

∀x∀y[(x ∈ D ∧ y ∈ D ∧ x ̸= y)→ Ax ̸= Ay → Gx ̸= Gy] (3.3)

3.2.2.2 Formalisation of a Set of Prerequisites

The set of prerequisites Pid belonging to Gid is a set of propositions. A proposition is a statement
that is either true or false. The prerequisites are denoted as follows:

Pid = {p1, p2, . . . , pn−1, pn} (3.4)

where pi is the i-th prerequisite of Gid and n is the total number of prerequisites of Gid.
Unlike the sequence of activities, the prerequisites are not ordered. It is thus defined as a set.
Furthermore, the set of prerequisites can be empty. The empty set Pid = ∅ means that there are
no prerequisites applicable for Gid. If any of the propositions in Pid are false, the corresponding
process is automatically not applicable.

UU Master Thesis 19



3.3. HOW CAN THE FORMAL DEFINITION BE USED TO EXTRACT A SEQUENCE OF
ACTIVITIES FROM DATA? CHAPTER 3. METHODOLOGY

3.2.2.3 Equality of Two User Processes

Two processes are equal if and only if they have the same sequence of activities and the same set
of prerequisites. This can be formalised as follows:

∀x∀y[(Px = Py ∧Ax = Ay)→ (Gx ↔ Gy)] (3.5)

Note that we do not take D into account in Eq. (3.5). The equation is useful to determine
whether a retrieved sequence of activities and set of prerequisites from data is equivalent to a
process from ProRail AM (2023). Currently, no two processes in D are equal.

3.3 How can the formal definition be used to extract a se-
quence of activities from data?

To find and annotate activities in data, we follow the process mining definitions in subsection 2.4.1
and the formalisations in subsection 3.1.1 and subsection 3.2.2.

As described in section 2.3, data is stored in a tabular form. Each row in the data represents
all the information about one step of a particular train journey. If we extract the data for train
220 on Monday the 18th of December 2023, we retrieve all data from the start until the end of
that train journey. An extract of this journey can be seen in Table 3.2.

Train
Number

Track DRP DRP activity Planned Actual

220 5 Ut Arrival 18-12-2023 10:59:42 18-12-2023 11:30:35
220 5 Ut Departure 18-12-2023 11:02:30 18-12-2023 11:31:52
220 1 Utzl Passage 18-12-2023 11:04:30 18-12-2023 11:33:52
220 801 Mas Passage 18-12-2023 11:07:18 18-12-2023 11:36:22
220 AD1 Bkla Passage 18-12-2023 11:09:54 18-12-2023 11:38:26
220 1 Bkl Passage 18-12-2023 11:10:06 18-12-2023 11:38:37
220 AC1 Aco Passage 18-12-2023 11:16:12 18-12-2023 11:43:41
220 671 Ac Passage 18-12-2023 11:16:48 18-12-2023 11:44:14

Table 3.2: Adapted extract of the data from Sherlock, similar to Table 2.1. This excerpt
contains the data of a train journey with train 220 on Monday the 18th of December 2023.
The actual data contains more columns and rows than shown here.

Relating the above table to the formalisations of subsection 3.1.1, each matrix Mi represents
a unique train journey i where each step of the journey is a row of that matrix. As noted in
section 2.3, Sherlock consists of a total of 733 columns. Each row or feature vector is therefore of
length k = 733. Example features, as shown in Table 3.2, include the train number, the DRP the
train is at and the DRP activity. These features can change over time, the rows are thus ordered
in time as defined in subsection 3.1.1.

3.3.1 Rule-Based System

To find and annotate all activities that have occurred within a matrix Mi, an RBS as described
in subsection 2.4.2 is used. RBSs are a straightforward way of annotating data.

There are however some drawbacks to an RBS. Firstly, it is not very efficient. Even though
simple and fast if-then statements are used, the dataset has to be iterated once for each activity
to check if its conditions are met. This can be very computationally demanding, especially when
the dataset is very large.

Secondly, the code to check all conditions will consist of a large number of if-then statements.
This can be both a positive and a negative feature. The use of if-then statements makes the
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reasoning of a system explainable to the user. The reasoning can also be compared and verified
with the reasoning of domain experts, adding a layer of validation to the system. However, an
RBS could be difficult to maintain and scale, particularly when the number of activities and their
complexity increases.

The RBS is described in the pseudocode of Algorithm 1. The system can be used for any
sequence of matrices M and any superset of activities AD. The system tries to identify a set of
activities for each feature vector of a matrix Mi ∈M. The system automatically proceeds to the
next activity an+1 if any rule of activity an is false for the given feature vector. Thus, all rules for
a given activity must be true for the activity to be retrieved. This increases the efficiency of the
system as it reduces the number of rules that need to be checked. The rules for an activity an are
defined as R(an,Mi, Fj) = {r1(Mi, Fj), r2(Mi, Fj), . . . , rm(Mi, Fj)}.

If all rules of an activity are evaluated as true, the activity is automatically appended to the
list of retrieved activities AFj

belonging to row Fj . In this way, the system can be used to find all
activities for each row in a matrix Mi, stored as AMi

. As a last step, the system returns a list of
lists of retrieved activities AM for all matrices Mi ∈M.

Algorithm 1 Rule-Based System

1: M← [M1,M2, . . . ,Mi] ▷ Dataset as a sequence of matrices
2: AD ← {a1, a2, . . . , a|AD|} ▷ All unique activities in the domain D
3: AM ← [. . . ] ▷ Empty list of retrieved activities for dataset M
4: for all matrices Mi ∈M do
5: AMi ← [. . . ] ▷ Empty list of retrieved activities for matrix Mi

6: for all feature vectors Fj ∈Mi do
7: AFj

← {. . . } ▷ Empty set of retrieved activities for row Fj

8: for all activities an ∈ AD do
9: R(an)← all rules necessary to retrieve activity an from Fj

10: for all rules rm(Mi, Fj) ∈ R(an,Mi, Fj) do
11: if rule rm(Mi, Fj) is true then
12: continue ▷ Continue to next rule rm+1(Mi, Fj)
13: else
14: break ▷ Continue to next activity an+1

15: end if
16: end for
17: Append activity an to AFj ▷ Since no rule of an is false for Fj

18: end for
19: Append AFj

to AMi
▷ All activities for feature vector Fj

20: end for
21: Append AMi to AM ▷ All activities for matrix Mi

22: end for
23: return AM ▷ All activities for dataset M

To determine whether a rule is true for a given feature vector Fj , data from other vectors
may be required. It is therefore essential to provide the rule-checking function with the entire
matrix Mi and not just the vector Fj . A rule rm(Mi, Fj) can thus be seen as a function that takes
the entire matrix Mi and the target row Fj as input. This way, the rule-checking function can
access all data of matrix Mi but is still focused on determining whether the rule is applicable for
a particular vector Fj .

For the PoC, the rules associated with each activity in AD are defined in collaboration with
domain experts. Dataset M refers to the Sherlock dataset where each train journey is a matrix
Mi.

Let us consider activity MS10 = ‘Acknowledge mode OS’ as an example. This activity describes
the timestamp at which the train operator acknowledges ETCS mode OS. The exact timestamp
of this event is not stored in the data but can be approximated by identifying the column that
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stores the current ETCS mode of the train. If the current ETCS mode is equal to OS and is
different from the previous entry, we can conclude that the activity has occurred since the last
feature vector. More formally, the rule can be defined as follows:

r1(Mi, Fj) =

{
True if Fj,290 = “OS”

False otherwise

r2(Mi, Fj) =

{
True if Fj,290 ̸= Fj−1,290

False otherwise

R(MS10,Mi, Fj) = {r1(Mi, Fj) ∧ r1(Mi, Fj)} (3.6)

In this example, Eq. (3.6) assumes that column c290 stores the current ETCS mode of the
train. Rulesets can be defined for all activities in the domain AD in a similar way.

3.4 Which algorithm is best in identifying user processes
in the retrieved sequences of activities using the formal
definitions?

The activity sequences gathered from data using the methods described in section 3.3 are not
necessarily exact matches to any of the activity sequences specified by the process models. This
section investigates how to match a retrieved sequence to those of the GPs. Both sequence mining
(subsection 2.4.3) and process mining (subsection 2.4.1) techniques are considered and discussed
in this section.

Suppose that we want to check if Gid is applicable for a retrieved activity sequence Aretrieved.
An ideal match would then be when Aretrieved = Aid, both in content as well as in order. The
possibility of an exact match is however slim as there is a high chance not all specified activities
are retrieved, due to data limitations for instance. Likewise, there is a high chance that not all
retrieved activities for a matrix Mi belong to the same process as a matrix captures a multitude
of events and not necessarily a single process. The goal is thus to find the best match for Aretrieved

from the three previously chosen process models.

3.4.1 Sequence Matching

Many different sequence matching algorithms can be used to compare two sequences, as discussed
in section 2.4. The most promising sequence matching method investigated is the LCS algorithm
as it takes the order of elements into account. The resulting subsequence found by the LCS al-
gorithm furthermore generates valuable insights for future research into investigating the described
processes.

Other methods researched, such as the Levenshtein distance, only result in a single number:
the distance between two sequences. The Jaccard index furthermore does not capture duplicate
elements or the order of elements and the Hamming distance only works for sequences of equal
length. The LCS algorithm is thus the most informative and promising sequence matching method
for this research. An example to find the best match for a retrieved sequence is given in Table 3.3.

As can be seen in Table 3.3, two of the example process models achieved the same rank
and are thus considered to be equally good matches for Aretrieved. This tie is problematic since
we want to determine the single best match. A tie indicates the inability of the algorithm to
distinguish between process models. We annotate retrieved sequences as ambiguous in cases where
the algorithm is uncertain or unable to determine a single best match.

This method is preferred over forcing the algorithm to strictly select from the three implemen-
ted process models for multiple reasons. Firstly, there is a chance that the process captured in the
retrieved sequence is not one of the three chosen processes. This would force the algorithm to make
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Process Model Aid LCS Rank

GP-X AX = (ST5,MS1, ST3,MS2, TM2) (MS1,MS2, TM2) #1
GP-Y AY = (MS1, ST4,MT3, TM2) (MS1, ST4, TM2) #1
GP-Z AZ = (ST4,MS3, TM2,MS1) (ST4, TM2) #2

Table 3.3: Example of using the LCS method to find the best match for an example sequence
Aretrieved = (MS1, ST4,MS2, TM2). The rank is based on the length of the LCS. The
longest LCS is considered the best match.

an incorrect decision as it cannot select the correct process model. Integrating a second algorithm
as a tie-breaker would furthermore make it more difficult to investigate the results achieved by
the LCS algorithm. The results would then be skewed by the results of the tie-breaker algorithm
making it harder to interpret.

3.4.2 Process Mining

Conformance checking algorithms are used to investigate deviations between data and a process
model. As we have a collection of process models to choose from rather than a single process
model, we do not know which process model we should compare the data to, adding an extra layer
of complexity.

The alignment method is not used for this research. The number of synchronous moves in the
alignment of any two sequences is equal to the length of their LCS, making it too similar to the
proposed method in subsection 3.4.1. For example, let Z be the LCS of sequences X and Y . Each
element of Z refers to indices i and j in X and Y respectively, where X[i] = Y [j]. Each subsequent
element in Z refers to indices k and l in X and Y respectively with k > i and l > j, meaning
that the order of elements is preserved. Again, X[k] = Y [l] means that another synchronous move
has occurred. Since X[i] = Y [j] holds for every element in Z, the number of synchronous moves
is equal to the length of Z. Thus, no additional information is gained by using the alignment
method as opposed to the LCS method.

We however compare the LCS to the TBR algorithm. A retrieved sequence of activities is
replayed on the Petri net of each process model. The pair with the highest fitnessPN score, using
Eq. (2.3), is then considered the best match. In the case of a tie, we annotate the retrieved
sequence as ambiguous for the same reasons as discussed in subsection 3.4.1.

The Petri net of a process model is constructed by utilising the formal definitions of a GP, as
established in subsubsection 3.2.2.1. Each activity ai in the ordered sequence Aid is represented
by a transition ti in Tid with Tid = {t1, t2, . . . , tn} where n = |Aid|. Places are inserted for each
transition, this includes before the first and after the last transition. This results in a set of places
Pid such that Pid = {p1, p2, . . . , pm} where m = |T |+ 1. The input and output functions for each
ti in Tid are defined as Iid(ti) = {pi} and Oid(ti) = {pi+1} respectively. The Petri net of Gid

is thus defined as PNid = (Pid, Tid, Iid, Oid). Petri nets of each process model are visualised in
Appendix 6.5.

3.5 What evaluation metric is best to determine the per-
formance of the system?

In this section, we discuss various evaluation metrics used to assess the performance of the PoC.
We also discuss the reasoning behind the choice of these metrics.

Determining proper evaluation metrics to assess the performance of a system is important
for multiple reasons. Firstly, an improper metric can lead to a biased estimate of a system’s
performance. An overestimation of the performance of a system can lead to a false sense of
security and trust, as discussed in subsection 2.6.1.
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Secondly, the choice of evaluation metric can influence the development of a system. If the
evaluation metric is not properly chosen, a system could be optimised for the wrong goal. This
can lead to an overfitted system that performs well according to the chosen metric, but poorly
in real-world scenarios. The metric of choice should thus be aligned with the world it is trying
to represent and the goals of the stakeholders. A proper evaluation metric furthermore helps to
set a baseline for future research. An important factor for this is to make the evaluation process
reproducible and transparent.

3.5.1 Quantifying Matching Algorithms

We compare the performance of the LCS algorithm to the TBR algorithm following the fitness1

and precision definitions of Eq. (2.1) and Eq. (2.2), discussed in subsubsection 2.4.1.3. We define
|L∩M | as the number of synchronous moves of two sequences, as implemented via the alignment
algorithm of subsubsection 2.4.1.3. This way, |L∩M | is equal to the number of activities that are
perfectly aligned and captures the shared behaviour between the retrieved and actual sequence.
Furthermore, we define |L| as the length of the retrieved sequence. Since only a single path exists
for each of the three currently implemented process models, |M | is defined as the number of
activities in the process model. Once a process model is extended to include multiple paths, |M |
will be defined as the number of activities of the traversed path in the process model.

By definition, |∅| ≤ |L ∩M | ≤ |L| and |∅| ≤ |L ∩M | ≤ |M | meaning that both measures have
a range of [0, 1]. This makes the results easily understandable for the stakeholders, as they are
intuitive and easy to interpret. This method also makes it possible to compare the performance
of the two algorithms generically, as fitness and precision are calculated in the same way for both
algorithms.

As mentioned in subsubsection 2.4.1.3, an optimal algorithm should have both a high fitness
as well as a high precision. Similar to the well-known F1-score within the field of classification
(Chinchor & Sundheim, 1993; Naidu et al., 2023; Stein Dani et al., 2023; Van der Aa et al., 2017),
we use the harmonic mean of fitness and precision to quantify the performance of the algorithms
into a single number:

F1 = 2 · Fitness · Precision

Fitness + Precision
(3.7)

One needs to be cautious, as overfitting can still occur which leads to bad real-world perform-
ance, as presented in Figure 2.5.

For each of the two matching algorithms, we calculate the fitness, precision and F1-score for
every retrieved sequence and their matched process model. We then calculate the macro-averaged
fitness, precision and F1-scores per process model. This way, we obtain a mean fitness, precision
and F1-score per process model, per algorithm.

We report the macro-average F1-score per algorithm by calculating the arithmetic mean of
the three mean F1-scores. A macro-average F1-score is chosen over a micro-average F1-score as it
gives equal weight to each class (Opitz & Burst, 2019). This is important due to class imbalance
as the matched sequences of activities might not be equally distributed over the process models.

Retrieved sequences classified as ambiguous are not included in this evaluation as they are not
matched to a process model and we want to determine the performance per process model. For
each algorithm, we disclose the number of sequences classified as ambiguous.

3.5.2 Statistical Testing

The best algorithm is determined using the two-tailed paired t-test with a significance level of
α = 0.05. We test the difference between the two algorithms based on the distribution of the
macro-average F1-score. This is again to ensure that each process model has equal weight as the

1Please note that this definition of fitness differs from the definition of fitnessPN in Eq. (2.3).
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THE SYSTEM?

2, 506 retrieved sequences are most likely not uniformly distributed over the three process models.
The null and alternative hypotheses are defined as follows:

• H0: There is no significant difference between the macro-average F1-score of the LCS al-
gorithm and the TBR algorithm.

• H1: There is a significant difference between the macro-average F1-score of the LCS al-
gorithm and the TBR algorithm.

If the null hypothesis is rejected, we can conclude that there is a significant difference between
the two algorithms. The algorithm with the highest macro-average F1-score is then chosen as the
best algorithm.

3.5.3 Domain Expert Evaluation

To further investigate the difficulty of the problem at hand, two domain experts are tasked with
annotating a randomly selected subset of the data used for this thesis. Both domain experts are
provided with the same subset of train journeys and are tasked with determining which process
model is most suitable for each train journey. The experts are permitted to discuss their results
with each other to determine the best-fitting process model. This is intended to simulate how they
would perform the task if it were part of their regular duties, without the help of an AI system.

We report the inter-annotator agreement (IAA) between both annotators, as well as the IAA
between each algorithm-annotator pair and the IAA between the two algorithms. The IAA is a
concept to determine the level of agreement between two annotators. For this, we use Cohen’s
Kappa (κ) coefficient to determine the IAA. Cohen’s Kappa coefficient is popular within multiple
research fields including healthcare (Bonnyman et al., 2012; McHugh, 2012), psychology (Min
et al., 2023) and NLP (Artstein & Poesio, 2008; Dahlmeier et al., 2013).

This measure is a better indicator than the percentage of agreement as it corrects for the
agreement that can be expected by chance (Cohen, 1960). Cohen’s Kappa coefficient is defined as
follows:

κ =
po − pe
1− pe

(3.8)

Here, po is the proportion of agreement observed and pe is the proportion of agreement expected
by chance. This means that po−pe is the proportion of agreement that is not due to chance (Cohen,
1960, p. 40).

Cohen’s Kappa coefficient ranges from −1 to 1. A κ of 1 indicates perfect agreement. A value
0 ≤ κ < 1 indicates agreement better than chance. A value of κ = 0 is an agreement equal to
chance and a value of −1 ≤ κ < 0 is an agreement worse than chance.

A popular interpretation of the κ coefficient is that of Landis and Koch (1977). This interpret-
ation is shown in Table 3.4. The domain experts are experts in their field and are thus expected
to have a high level of agreement.

Kappa Statistic Strength of Agreement

< 0.00 Poor
0.00 – 0.20 Slight
0.21 – 0.40 Fair
0.41 – 0.60 Moderate
0.61 – 0.80 Substantial
0.81 – 1.00 Almost Perfect

Table 3.4: Interpretation of Cohen’s Kappa coefficient by Landis and Koch (1977, p. 165).
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If an algorithm classifies a sample as ambiguous, we report the estimated probability for each
of the three process models. This is to be more insightful than just reporting that the sample
is classified as ambiguous. The probability is calculated by applying the softmax function to the
score calculated for each process model. For the LCS algorithm, the scores are the lengths of the
LCS of each process model. For the TBR algorithm, these are the achieved fitnessPN scores.
The softmax function normalises a collection of numbers such that its sum becomes 1. Each value
is then interpreted as the probability of the corresponding process model being the best fit. The
softmax function is defined as follows:

softmax(xi) =
exi∑n
j=1 e

xj
(3.9)

Here, xi is the score for process model i. The total number of scores is defined as n, three in
our case. As we use this method to investigate ambiguous classifications, multiple process models
will achieve an equal maximum probability. I.e., if one process model outperforms all others, the
sample would not have been classified as ambiguous in the first place.

26 UU Master Thesis



4 Results

Chapter 4 presents the results obtained for each of the sub-questions. The results were obtained
through the literature review in the theoretical framework and the methodology constructed in
Chapter 3.

4.1 What data sources provide predictive information about
the user processes?

As mentioned in subsection 2.1.3, only a limited number of trains run under the ETCS regime. A
relatively small amount of data is thus available compared to traditional ATB-trains. On average,
270.7 events (SD = 72.9) involving 20.5 ETCS train journeys (SD = 5.8) occurred daily on
the track between Amsterdam and Utrecht between the 1st of September 2023 and the 31st of
December 2023. An average train journey consists of 13.2 events (SD = 2.3). 33, 025 events
covering |M| = 2, 506 matrices were recorded in total. The number of events and train journeys
per day can be seen in Figure 4.1.
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Figure 4.1: Total number of events (a) and journeys (b) per day covering trains driving
(parts of) their journey under ETCS. Subfigure (c) shows the mean number of events per
train journey per day. Vertical grid lines indicate the Monday of each week.

The distribution of the number of events and train journeys is further visualised in the box
plots in Figure 6.5 of the appendix. In addition, the distribution among the DRPs is visualised
in Figure 6.6 of the appendix. Data for the 1st and 2nd of September 2023 is missing, as track
maintenance was carried out on these days. On the 16th of November 2023, German train drivers
went on strike causing a significant reduction in international train traffic.

Descriptions of the k = 733 columns include d(c3) = ‘basic.drp: Dienstregelpunt’, which cap-
tures the current DRP. The feature value is a string and can be any single of the 22 DRPs

UU Master Thesis 27



4.2. HOW CAN THE DESCRIPTION OF A USER PROCESS AND ITS ACTIVITIES BE
ENCODED INTO A FORMAL DEFINITION? CHAPTER 4. RESULTS

mentioned in Appendix 6.4. Other examples include c11 which is the planned time of the event,
c5 which is the actual time of the event and c290 which is a list of ETCS modes the train has been
in since the last event.

4.2 How can the description of a user process and its activ-
ities be encoded into a formal definition?

Following the formal definition of a process and its activities in section 3.2, all activities of the three
selected process models are manually annotated with a unique label. The annotated activities,
grouped per process model, can be found in Appendix 6.7. A summary of the distribution of
activities among the three selected processes is shown in Table 4.1.

Process Model # Unique Activities Total # of Activities

GP-3 23 32
GP-5 14 14
GP-9 18 19

Table 4.1: Number of unique activities present in each of the three process models and the
total number of activities per process model.

GP-3 contains both the most activities as well as the most unique activities, 32 and 23, respect-
ively. Equal activities in different processes are assigned the same ID. For example, the activity
‘Wijzigt dan wel bevestigt driver-id en treinnummer’ of GP-3 and ‘Bevestigt of wijzigt driver-id
en treinnummer’ of GP-9 are both assigned to activitiy MS2. Both describe the same activity
‘Confirms or changes driver id and train number’ and thus have the same identifier. Merging
similar activities across processes is done in agreement with domain experts. BPMN diagrams of
the three process models can be found in Appendix 6.8.

4.2.1 Annotation results

In total, the three process models consist of 65 activities and are manually grouped and ID’ed into
43 unique activities. Their distribution can be seen in Figure 4.2(a). The distribution of the six
identified combinations of initiating and receiving resources can be seen in Figure 4.2(b). Activity
types SS, MM and TT are not present. The most common combination is SM , which covers
28(43%) of the 65 activities. The MT and TM combinations both only occur once.

The distribution of the initiating and receiving resources can be seen in Figure 4.2(c) and
Figure 4.2(d), respectively. The system is both the most common initiating and receiving resource,
with 33 and 30 occurrences, respectively. The Trdl is the least common initiating and receiving
resource.
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Figure 4.2: Distributions of (a) the 43 unique activities identified, (b) the six combinations
of initiating and receiving resources, (c) the initiating and (d) receiving resources.

4.3 How can the formal definition be used to extract a se-
quence of activities from data?

The activities and their associated rules are implemented in collaboration with domain experts.
The rules for each activity have been finetuned until an agreement was reached with domain
experts. Due to data limitations, it was not possible to implement all activities. In total, 27
(63%) of the 43 activities have been implemented. All rules of the RBS can be found in Appendix
6.9. All implemented activities can be found in Appendix 6.10.

The remaining 16 activities (37%) belong to the Start of Mission (SoM) or the stoptonend
sein (STS) route procedure. The SoM entails all the starting procedures that need to be carried
out before the train can start its journey. The data captured during SoM activities is only stored
locally on the train and is therefore not present in the dataset used for this research. The STS-
route, Dutch for ‘stop signal route’, is a route granted by the Trdl that the train operator can take
to pass a red signal. STS-route information is also not present in the data.

In total, 73, 591 activities have been identified in the dataset. The activities are present in
29, 234 of the 33, 025 events. Activities have not been found for 3, 791 events. Only one of the
2, 506 matrices did not contain any activities. 19, 598 events included more than one activity. The
distribution of the number of activities per event can be seen in Figure 4.3(a).

The top five most common sets of activities per event are shown in Figure 4.3(b). The most
common set is {SM15, }, which is present in 9, 156 events. The most common set with more than
one activity is {SM15, ST1, TS1} with 8, 038 occurrences.

Figure 4.4 is similar to Figure 4.2, but now shows the distribution of the activities retrieved
from data. The distribution of the six unique activities is shown in Figure 4.4(a). The most
common activity is SM15, which is present in 23, 815 events. MS11 and SM12 are the least
common activities, with two occurrences each.

Figure 4.4(b) shows the distribution among the retrieved pairs of initiating and receiving
resources. The most common pair is SM , which covers 36, 594 activities. The least common
combination is MT , which occurs 30 times.

The system is the most common initiating resource, with 54, 455 occurrences, as shown in
Figure 4.4(c). The train operator is the most common receiving resource, with 36, 658 occurrences,
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Figure 4.3: (a) Distribution of number of activities per event. (b) Distribution of the top
five most common sets of activities per event.

as shown in Figure 4.4(d).
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Figure 4.4: Distribution of (a) the six unique activities retrieved from data, (b) the pairs
of initiating and receiving resources, (c) the initiating resources, and (d) the receiving
resources.

4.4 Which algorithm is best in identifying user processes
in the retrieved sequences of activities using the formal
definitions?

The results of the sequence matching algorithm are presented in subsection 4.4.1. This is followed
by the results achieved by the process mining algorithm in subsection 4.4.2.
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4.4.1 Sequence Matching

The LCS algorithm can identify a single best match for 1, 156 of the 2, 506 matrices. The remaining
1, 350 matrices are classified as ambiguous, as multiple best matches are found for these matrices.

Process Model Count Mean LCS length SD of LCS length

GP-3 1,110 5.088 1.780
GP-5 0 N/A N/A
GP-9 46 4.652 1.464
Ambiguous 1350 3.529 0.708

Total 2,506 4.240 1.518

Table 4.2: Table summarising the number of matches divided across four categories. The
Standard Deviation and mean LCS length per category are also shown. The mean and SD
across all 2, 506 matrices is shown in the last row.

As can be seen in Table 4.2, GP-3 is the most common among the three process models, with
1, 110 matches. Most matrices are however classified as ambiguous, with a mean LCS length of
3.529. No matches are found for GP-5. Of the three process models, GP-3 has the longest mean
LCS and biggest SD. A visualisation of the distribution of the length of the LCSs per process
model can be found in Figure 6.10 of the appendix.

4.4.2 Process Mining

For 2, 448 of the 2, 506 matrices, the TBR algorithm is able to determine a single best match. No
best match is found for the remaining 58 matrices.

Process Model Count Mean fitnessPN score SD of fitnessPN score

GP-3 2,344 0.478 0.059
GP-5 20 0.399 0.070
GP-9 84 0.411 0.052
Ambiguous 58 0.092 0.161

Total 2,506 0.466 0.086

Table 4.3: Table summarising the number of matches divided across four categories. The
Standard Deviation and mean fitnessPN score per category are also shown. The mean and
SD across all 2, 506 matrices is shown in the last row.

As can be seen in Table 4.3, GP-3 has both the most matches and the highest mean fitnessPN

score. GP-5 achieved the lowest mean fitnessPN and the lowest number of matches of the three
process models. A total of 43 of the 58 matrices annotated as ambiguous scored a fitnessPN of
0.0. A visualisation of the distribution of the fitnessPN score per process model can be found in
Figure 6.11 of the appendix.

4.5 What evaluation metric is best to determine the per-
formance of the system?

For RQ4, all 2, 506 matrices have been classified by the LCS algorithm and the TBR algorithm. As
proposed in subsection 3.5.1, the macro-averaged F1-score is used to compare the classifications
of the two algorithms.

The results achieved for the LCS and TBR algorithms are shown in Table 4.4 and Table 4.5,
respectively. The LCS algorithm achieves a macro-averaged F1-score of 0.120 ± 0.087. Since no
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matrices were classified as GP-5, fitness and precision could not be calculated for this process
model. We thus regard the mean F1-score of GP-5 as 0.0. GP-9 achieves a higher mean F1-score
of 0.202 than GP-3 while also having a lower spread.

Process Model Mean Fitness Mean Precision Mean F1-score
GP-3 (n = 1110) 0.174± 0.102 0.159± 0.056 0.158± 0.051
GP-5 (n = 0) N/A N/A 0.0
GP-9 (n = 46) 0.187± 0.074 0.245± 0.077 0.202± 0.048

Macro-averaged F1: 0.120± 0.087

Table 4.4: Fitness, Precision and F1-score achieved by the LCS algorithm.

The TBR algorithm achieves a macro-averaged F1-score of 0.104 ± 0.049. What can be seen
is that GP-5 achieves the lowest mean F1-score of 0.036 ± 0.040, while GP-9 and GP-3 have
very similar mean F1-scores of 0.140± 0.026 and 0.137± 0.042, respectively. Distributions of the
F1-scores among GPs for both algorithms can be found in Appendix 6.12.

Process Model Mean Fitness Mean Precision Mean F1-score
GP-3 (n = 2344) 0.151± 0.075 0.132± 0.047 0.137± 0.042
GP-5 (n = 20) 0.027± 0.032 0.057± 0.064 0.036± 0.040
GP-9 (n = 84) 0.120± 0.038 0.178± 0.037 0.140± 0.026

Macro-averaged F1: 0.104± 0.048

Table 4.5: Fitness, Precision and F1-score achieved by the TBR algorithm.

The two-tailed paired t-test, as described in subsection 3.5.2, shows that there is no significant
difference between the macro-averaged F1-scores of the LCS algorithm and the TBR algorithm
(t = 0.564, p = 0.629). We thus fail to reject the null hypothesis with a significance level of
α = 0.05.

4.5.1 Domain Expert Evaluation

Both domain experts have annotated the same set of 18 train journeys following the procedures
described in subsection 3.5.3. As can be seen in the main diagonal of the confusion matrix in
Figure 4.5(a), the domain experts agreed on 13 of the 18 (72%) samples annotated. This results
in a Kappa coefficient of κ = 0.49, a moderate agreement according to Table 3.4.
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Figure 4.5: Confusion matrices showing the IAA between (a) the domain experts and
between (b) the algorithms.
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Figure 4.5(b) shows the agreement between the LCS and TBR algorithms for all 2, 506 pro-
cess instances. They achieved a coefficient of κ < 0.0 and agreed on 1, 068 of the 2, 506(43%)
classifications. A poor agreement following the interpretation of Landis and Koch (1977).
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Figure 4.6: Confusion matrices showing the IAA between each algorithm-expert pair. The
algorithms are displayed in the rows, while the domain experts are displayed in the columns.

Comparisons between each algorithm-expert pair are shown in Figure 4.6. As the experts
annotated 18 of the 2, 506 samples, the LCS and TBR algorithms have been evaluated on the
same set of 18 samples for this figure. The LCS algorithm achieves a coefficient of κ = 0.09
with the first domain expert and an κ = −0.06 in combination with the second expert. The
TBR algorithm achieves Kappa scores of κ = 0.02 and κ = 0.03 with domain experts #1 and
#2, respectively. Both algorithms thus have a slight agreement with domain expert #1, based
on Table 3.4. The LCS algorithm has a poor agreement with domain expert #2, while the TBR
algorithm has a slight agreement with domain expert #2. All samples, including their classification
by the experts and the algorithms, can be found in Appendix 6.13.
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5 Conclusions
We start Chapter 5 with the findings on each of the sub-questions and provide an answer to the
main question in section 5.1. Section 5.2 is dedicated to the discussion. We conclude the chapter
with suggestions for further research in section 5.3.

5.1 Findings

For this section, we first report and summarise the findings for each of the sub-questions. We then
provide an answer to the main research question.

In RQ1, we have presented a formalisation for any general tabular data source. This form-
alisation is applied to a use case in collaboration with ProRail using its largest data warehouse
Sherlock. Applying the formalisation on a real dataset substantiates the applicability of the form-
alisation to domains with similar input data formats. The data used for this thesis contains 2, 506
train journeys distributed over more than 70, 000 events that cover the last four months of 2023.
It forms the basis for the PoC developed for this thesis.

The formalisation of a gebruikersproces (GP) as a process model is defined in RQ2. This
formalisation is applied to identify 43 unique activities in three of the processes described by
ProRail AM (2023). It furthermore enables the conversion of these processes to BPMN diagrams
which can be easily extended to capture more paths and variations in the future. A scheme is
devised that captures the interaction between traffic controllers, train operators and the system.
The resource scheme can be easily extended to accompany new resources. A majority of the
activities captured by the process models entail interactions between the system and the train
operator.

To retrieve the activities hidden in data, a rule-based system (RBS) is implemented for RQ3
that follows the formalisations defined in RQ1 and RQ2. An RBS is chosen as it is a simple
and effective way to extract activities from data. Furthermore, no labelled dataset was available,
making supervised learning methods infeasible. The annotated dataset created by the RBS does
however enable supervised learning methods to be used in the future. A total of 27 out of the
43 activities are implemented in the RBS. The remaining 16 activities could not be implemented
due to data limitations. The RBS has extracted more than 70, 000 activities from the 2, 506 train
journeys present in the data. Whereas the system was the most common receiving resource for
the process models in Figure 4.2, the train operator is the most common receiving resource in
the data. This is visualised in Figure 4.4 and might be an indication of deviations between the
process model and the data. One reason could be that many of the 16 missing activities are related
to interactions from the train operator and Trdl to the system, creating a blind spot. MT and
TM activities are still the least common activities in the data, which is in line with the described
process models.

For RQ4, two methods are used to match retrieved sequences of activities to process models: the
longest common subsequence (LCS) algorithm and the token-based replay (TBR) process mining
technique. The TBR algorithm found a single best match for 2, 448 out of the 2, 506 retrieved
sequences of activities instead of only 1, 156 for the LCS algorithm. Activity sequences where an
algorithm is incapable of determining a single best match are classified as ambiguous. The LCS
algorithm is relatively fast and easily implementable while still providing more insights than other
string-matching algorithms such as the Jaccard index and the Levenshtein distance. The TBR
algorithm allows for multiple paths to be traversed within a process model. This can be beneficial
for the future if the current process models are extended. The LCS algorithm determined GP-3 to
be the most common process model and found zero matches for GP-5. The TBR algorithm also
identified GP-3 to be the most common process model, finding only 20 and 84 matches for GP-5
and GP-9 respectively. As both algorithms found the most matches for GP-3, it is likely that this
is either the most common process in the data or the most accurately represented. Likewise, as
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GP-5 is the least common process according to both algorithms, it is possible that GP-5 and its
activities are not accurately represented. This could again be due to unimplemented activities or
an indication of deviations between the process model and the data.

The performance of the PoC is assessed in RQ5 using the macro-averaged F1-score of fitness
(Eq. (2.1)) and precision (Eq. (2.2)) of the three process models. This measure is chosen as it takes
class imbalance into account and makes it possible to use an overarching metric to compare the
two algorithms. The macro-average F1-score of the LCS algorithm is 0.120± 0.087 and is heavily
influenced by not matching any sequences to GP-5. The TBR algorithm scores 0.104± 0.048. It
scored lower than the LCS algorithm for both GP-3 and GP-9. A two-tailed paired t-test with a
significance level of α = 0.05 concluded that there is no significant difference between the macro-
average F1-scores of the two algorithms (t = 0.564, p = 0.629). The null hypothesis is thus not
rejected.

A total of 18 train journeys have been annotated by two domain experts to investigate the
difficulty of the task at hand. Their inter-annotator agreement (IAA) is assessed using Cohen’s
Kappa coefficient and is found to be κ = 0.49. This indicates a moderate agreement based on
Landis and Koch (1977). A poor to slight agreement is found for each algorithm-expert pair with
values ranging between κ = −0.06 and κ = 0.09. The agreement between the algorithms resulted
in a coefficient of κ < 0.0, indicating a poor agreement and a need for further investigation. The
agreement between each algorithm-expert pair is expected to increase as the system is further
refined. The agreement between the experts can be further substantiated once more data is
annotated as only 18 of the 2, 506 train journeys have been annotated by the experts.

As introduced in section 1.4, this thesis aims to answer the following main research question:

To what extent is it possible to automatically detect
user processes in the data of ProRail?

Based on Occam’s razor (Duignan, 2024), one could argue that the LCS algorithm is preferred
as it is simpler and faster than the TBR algorithm while equally performant based on the conducted
t-test. The TBR algorithm is however preferred as it matched more than twice as many retrieved
activity sequences to process models. It also allows for multiple paths to be traversed within a
process model which will be beneficial if the current process models are extended in the future.

In conclusion, it is, to some extent, possible to automatically detect user processes in the
data of ProRail. Multiple improvements can be made to the PoC to increase the performance of
both the retrieval and the matching process. The RBS has made the creation of an annotated
dataset possible which can be used to train supervised learning models in the future. Further im-
provements include extending the current dataset, making it possible to implement the remaining
activities. This allows for a more accurate representation of each process model. Extending the
process models with alternative paths will further exploit the capabilities of the TBR algorithm,
distinguishing it from the LCS algorithm. The IAA between domain experts can be improved
by refining the guidelines for the annotation process. The annotation of more data by domain
experts will also increase the reliability of the IAA between domain experts and help in further
substantiating the findings of this thesis.

UU Master Thesis 35



5.2. DISCUSSION CHAPTER 5. CONCLUSIONS

5.2 Discussion

In this section, we discuss several limitations of the research conducted. We also discuss possible
improvements to counter these limitations.

5.2.1 Annotation Scheme

The current scheme to annotate each possible resource-pair, described in Table 3.1, is unable to
distinguish two resources of the same type. It is for instance not possible to distinguish between
two Trdls, both annotated as T . The resource scheme would ID this activity as a TT activity.

Furthermore, if an activity happens more than once in a process, it is impossible to distinguish
between the different occurrences. For example, activity TS1 occurs twice in process model GP-9.
Both times, the activity is labelled TS1, making it impossible to distinguish between the two
occurrences, except for the order in which they occur.

Considering that only a minority of the activities occur more than once in the same process
model, the first drawback was acceptable for this PoC. In only a small number of all forty process
models, two resources of the same type are present. Furthermore, no interaction between two
resources of the same type takes place in the three chosen process models. The second disadvantage
was therefore also acceptable for this PoC.

A downside to a more detailed notation of the activities would be that it can become very
sparse. This could result in an algorithm not being able to learn from it and is a trade-off that
should be considered when deciding onthe level of detail.

5.2.2 Process Models and BPMN Diagrams

The current set of investigated process models is limited to three of the forty GPs described for
the Amsterdam – Utrecht railway track. Extending the number of implemented process models
would provide a more complete overview of the performance of the proposed approach.

GP-8, “Driving over a normally set route”, is one of the 37 process models not yet imple-
mented. This process captures the regular operations of a train and will thus be very common.
Implementing this process model would allow for the filtering out of regular operations, thus
making it possible to focus on the three more advanced process models already implemented.

The BPMN diagrams, presented in Appendix 6.8, are simple representations of the process
models described by ProRail. They only capture a single path through each process and do not
capture loops or parallel paths currently only present in the accompanying notes. An additional
risk to having accompanying notes beside the process models is that the two might not be consistent
with each other (Van der Aa et al., 2017). This could lead to confusion and process models that
incorrectly represent the real world. Extending the diagrams to capture all possible paths of a
process model would especially be beneficial for the TBR algorithm as it inherently supports more
advanced features such as loops and parallel paths.

5.2.3 Implemented Rules and Dataset Quality

Some activities share the exact same set of rules. For example, the two least common activities
MS11 and SM12 both have the ruleset {r14}. Although the two activities have different semantics,
the current dataset does not contain sufficiently detailed information to distinguish between the
two activities. This is a limitation of the current dataset.

As can be seen in Figure 4.3, more than 19, 000 of the 33, 025 events contain more than one
activity. Each event of the dataset represents a new step of a train its timetable. This level of detail
makes it difficult to determine the exact order of activities within an event. The possibly incorrect
order of activities within an event could hurt the performance of both matching algorithms. It
would be beneficial to develop a dataset with a greater level of detail that can capture the exact
timestamp of each activity, thus allowing for a more precise ordering of activities.
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Currently, the RBS only checks which activities are applicable for a matrix Mi. It does not
check which prerequisites are met for a matrix. If not all prerequisites of a process model are
met, the process model can never be applicable to the given matrix. Adding a prerequisites check
would make the RBS more robust and precise, thus reducing the number of false positives per
process model.

5.2.4 Matching Algorithms Evaluation

The evaluation of the matching algorithms was conducted using a two-tailed paired t-test. The
data used for the t-test is possibly not normally distributed. As only three of the forty process
models were used for the evaluation, the number of data points is limited. This means that the
results of the t-test should be interpreted with caution.

The IAA between the two domain experts was calculated to be κ = 0.49. This indicates a
moderate agreement according to Landis and Koch (1977). A possible explanation for an imperfect
agreement could be that the experts were not provided with clear enough guidelines on how to
annotate the data. This could have led to different interpretations of the data and thus a lower
agreement. Furthermore, there is a possibility that a train journey contains more than one process.
Both domain experts could thus have identified the correct process model, but for different parts
of the same train journey. Providing clearer guidelines hopefully increases the agreement between
domain experts and helps to gain more insight into the quality of the dataset.

5.3 Further Research

Several possibilities for future research are discussed in this section.

5.3.1 Extending the Rule-based System

The current pseudocode for the RBS, described in Algorithm 1, is an initial implementation of
the system. It could be extended in many ways.

For example, for an activity an to be true, all associated rules R(an) must be true. This could
be extended to a system where the activity is true if a certain percentage of the rules are true.
For example, if ≥ 50% of the rules are true, then the activity could be considered true. This can
be useful in cases where data is noisy or incomplete as it allows for some uncertainty in the data.

In addition, all rules of an activity are currently considered to be equally important as falsifying
any rule results in the activity being false. This could be altered to a system where each rule has a
weight associated with it. The weight could be based on the importance of the rule or the degree
of certainty the domain expert has in the rule.

A further improvement would be to attach a timestamp to each retrieved activity. This would
allow us to order the activities chronologically instead of relying on the order in which the activities
are retrieved. This would furthermore help solve the issue presented in subsection 5.2.3 where we
highlighted that the order of activities within an event is possibly incorrect. As mentioned in
subsection 5.2.3, the level of detail of the current dataset makes it difficult to determine the exact
timestamp for each activity and thus the exact order of activities within an event.

5.3.2 Dataset Creation and Supervised Learning

The data used in this research is limited to the data available in Sherlock. The dataset can be
extended by adding data from other sources. For example, the onboard systems of the train store
additional data about its SoM. This data could be used to implement the SoM activities currently
missing in the RBS, as discussed in section 4.3.

The annotated dataset created with the PoC is a valuable resource for future research as it
could be used as a ground truth. The dataset could, for instance, be used to train supervised
learning models. This was previously not possible as no annotated data was available. The use of
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domain experts adds a layer of validation to the annotated dataset and ensures that it is of high
quality.

5.3.3 Improving Process Models

Improving the process models requires knowledge from domain experts to ensure that the processes
are modelled correctly. This is a time-consuming task and requires a lot of effort from the experts.
The use of process enhancement, as briefly introduced in subsubsection 2.4.1.4, could potentially
be used to improve the efficiency of this process and improve the process models themselves.

The activities present in any Aretrieved but not in the matched Aid are interesting for future
research. These activities are not specified in the process model but are retrieved from data. This
could be an indication of missing activities in the process model. Both conformance checking and
process enhancement techniques, as discussed in subsection 2.4.1, could be used to investigate
this further. Incomplete or inaccurate process models pose a risk to ProRail’s operations and the
safety of the railway network.

The other way around, activities present in Aid but not in Aretrieved, could also hold valuable
information. These activities are specified in the process model but have not been found in the
data. Activities not found in the data could indicate that the algorithm used is not functioning
properly. This could be an indication of a bug, ill-defined logic rules, or a change in the input
data format. Another possibility could be that the process model is incorrect, which is of interest
for the domain experts to further investigate.

5.3.4 Semantic Similarity

The algorithms mentioned in subsection 2.4.2 calculate the similarity between two sequences using
their syntactic difference. Semantic similarity algorithms go one step further and can find terms
that are similar in meaning. This is particularly useful for synonyms or related terms with different
spellings. For example, syntactic similarity algorithms perform well on matching the terms ‘train’
and ‘tram’ but perform poorly on matching ‘train’ with ‘railway’. Semantic similarity algorithms
therefore help to match not only similar terms but also related terms. Semantic similarity al-
gorithms are not only beneficial for matching two sequences of activities but also for matching
activities to columns or column descriptions of a dataset.

A proposal for future research is elaborated on in Appendix 6.14.
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6 Appendix

6.1 Original Problem Definition From ProRail

“This research project focuses on event detection and classification in the context of railway
operations. This is a collaborative project with ProRail (Traffic Control) in Utrecht. The aim of
the project is to improve the reliability and accuracy of event detection and classification, through
the application of machine learning techniques, so that operational personnel, such as traffic
controllers and traffic managers, can use the detected events to initiate appropriate procedures.
The project will also focus on the integration of these techniques into a prototype user interface,
to test the tool that could facilitate the work of our train traffic operators.

The ideal candidate for this position must possess a strong analytical and problem-solving
mindset, with proven experience in data analysis and ideally with programming languages such as
Python, Java, or any that may be appropriate. Additionally, candidates should have a solid under-
standing of machine learning techniques, as well as a keen interest in applying these technologies
to improve rail traffic control room operations.”
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6.2 Distribution of NTC Systems

Figure 6.1: Distribution of various NTC systems across the Dutch railway network (ProRail,
2023, p. 217). The dual signalling track between Amsterdam (Asd) and Utrecht (Ut) is
indicated in blue and orange. Other railway tracks, including the track between Lelystad
(Lls) and Zwolle (Zl), are out of the scope of this thesis.
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6.3 All GPs for the Asd – Ut Track

Process Name (Original) Name (Translated)
Chapter
(Translated)

GP-1 Oprijden naar een normaal
ingestelde rijweg met bek-
ende treinpositie

Heading towards a normally
set route with known train
position

Departure and
arrival

GP-2 Oprijden naar een ROZ-
rijweg met bekende trein-
positie

Heading towards a ROZ
route with known train pos-
ition

GP-3 Vertrek met onbekende trein-
positie

Departure with unknown
train position

GP-4 Oprijden naar normale rijweg
met wissels tussen trein en
vertreksein

Heading towards normal
route with switches between
train and departure signal

GP-43 Vertrek vanuit een niet ont-
trokken vrijgave gebied

Departure from an unused
clearance area

GP-62 Vertrek met de kop voorbij
het sein wanneer er een ROZ-
rijweg “over de trein heen”
kan worden ingesteld

Departure with the head past
the signal when an ROZ route
”over the train” can be set

GP-68 Vertrek met de kop voor-
bij het sein wanneer er geen
ROZ-rijweg “over de trein
heen” kan worden ingesteld

Departure with the head past
the signal when no ROZ route
”over the train” can be set

GP-6 Korte stop Short stop
GP-201 Vertrek onder level NTC Departure under level NTC
GP-207 Oprijden naar een rijweg zon-

der radioverbinding
Heading towards a route
without radio connection

GP-7 Wegzetten van een trein Putting a train away

GP-8 Rijden over een normaal in-
gestelde rijweg

Driving over a normally set
route

Driving the trainGP-10 Overgang ‘normaal rijden’
naar ‘rijden op zicht’

Change from ‘normal run-
ning’ to ‘running on sight’

GP-11 Overgang ‘rijden op zicht’
naar ‘normaal rijden’

Change from ‘running on
sight’ to ‘normal running’

GP-12 Rijden op glad spoor Driving on slippery track
GP-202 Het rijden onder een tijdelijke

snelheidsbeperking
Driving during a temporary
speed restriction

GP-5 De passage van een stop-
tonend sein zonder MA

Passing a stop signal without
MA

Instructions

GP-203 Herroepen van een rijweg
waarbij de trein tot stilstand
komt voor het begin van de te
herroepen rijweg

Revoking a route in which the
train stops before the start of
the route to be revoked

Revoking a route

GP-29 Herroepen van een rijweg
waarbij de trein tot stil-
stand komt in de te herroepen
rijweg

Revoking a route in which the
train comes to a stop in the
route to be revoked

GP-67 Vrijmaken van een restrijweg
onder een L2-trein

Clearing a residual route un-
der an L2 train
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GP-9 Het keren of kopmaken van
een trein

Turning or reversing a train Shunting
movements within
a centrally
controlled area

GP-51 Het splitsen van een trein Splitting of a train
GP-50 Het combineren van twee

treinen
Combining two trains

GP-13 Transitie van level NTC ATB
naar Level 2

Transition from level NTC
ATB to Level 2 Passage of special

locationsGP-15 Transitie van Level 2 naar
level NTC ATB

Transition from Level 2 to
level NTC ATB

GP-204 De passage van een helling
door een zware goederentrein

Passing a slope by a heavy
freight train

GP-208 Inrijden van een niet ont-
trokken vrijgave gebied

Entering a non-denied clear-
ance area

GP-37 De afhandeling van een STS
passage

Handling of an STS passage

Disruptions and
irregularities

GP-36 De afhandeling van het
uitvallen van de verbinding
met het RBC

Handling of the failure of the
connection to the RBC

GP-31 De afhandeling van de trein-
enloop bij een tunnelincident

Handling of the train running
during a tunnel incident

GP-32 Herstel van de treinenloop na
een tunnelincident

Recovery of train running
after a tunnel incident

GP-55 De afhandeling van een voor-
waardelijke noodstop waarbij
de trein stopt voor de nieuwe
EoA

Handling a conditional emer-
gency stop where the train
stops before the new EoA

GP-206 De passage van een gedoofd
sein

The passage of a failing signal

GP-35 De afhandeling van een in-
greep als gevolg van een bal-
isefout

Handling of an emergency
brake due to a balise failure

GP-34 Verder rijden met buiten
bedrijf gesteld ETCS-
systeem na treinstoring

Continuing to run with de-
commissioned ETCS system
after train failure

GP-209 De afhandeling van een rem-
ming als gevolg van een bal-
isegroep inconsistentie door
een trein onder level NTC

Handling of an intervention
due to a balise group incon-
sistency by a train driving
under level NTC

GP-72 Vanaf het CBG een werkge-
bied inrijden met een licht-
sein op de grens

Entering a working area from
the CBG with a light signal
at the border

Driving to and
from a work area

GP-73 Vanaf het CBG een werkge-
bied inrijden zonder lichtsein
op de grens

Entering a working area from
the CBG without a light sig-
nal at the border

GP-74 Vanaf een werkgebied het
CBG inrijden met een licht-
sein op de grens

Entering a CBG from a work-
ing area with a light signal at
the border

GP-75 Vanaf een werkgebied het
CBG inrijden zonder een
lichtsein op de grens

Entering a CBG from a work-
ing area without a light signal
at the border

Table 6.1: Table containing all GPs present in ProRail AM (2023).
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6.4 All DRPs of the Asd – Ut Track

Ac Aco Asa Asb Asdar Asdz Ashd Bkl Bkla Ddm Dmnz
Dvaw Dvaz Dvd Hmlba Mas Mdsa Rai Ut Utma Utzl Vspa

Table 6.2: The 22 DRPs covering the complete track between Amsterdam and Utrecht.
This includes connecting arches and transition areas.

6.5 Petri Nets of Process Models

Figure 6.2: Petri net of GP-3. Transitions are indicated as rectangles, places as circles, and
arcs as arrows. The source place is visible in the top-left corner. The sink place is in the
bottom-right corner.

Figure 6.3: Petri net of GP-5.
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Figure 6.4: Petri net of GP-9.

6.6 Data Exploration Results

Figure 6.5: Spread of the number of events and train journeys per day.
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Figure 6.6: Spread of the number of events among the DRPs.
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6.7 All Activities of GP-3, GP-5 and GP-9

GP
ID

GP
step

Activity
ID

Activity Description

3

1 MS1 Inschakelen stuurstroom
2 SM1 Toont opgeslagen driver-id ter invoer of bevestiging en biedt mo-

gelijkheid voor invoer/bevestiging treinnummer
3 MS2 Wijzigt dan wel bevestigt driver-id en treinnummer
4 SM2 Toont opgeslagen level ter invoer of bevestiging
5 MS3 Kiest/bevestigt Level 2
6 SM3 Toont opgeslagen radioverbindingsgegevens
7 MS4 Bevestigt of wijzigt opgeslagen radioverbindingsgegevens
8 SM4 Verbinding trein/RBC zichtbaar in afwachting van keuze
9 MS5 Kiest invoer treingegevens
10 SM5 Toont opgeslagen treingegevens ter bevestiging en of wijziging
11 MS6 Wijzigt eventueel treingegevens en bevestigt daarna de treingegevens
12 SM6 In afwachting van start
13 MS7 Kiest start
14 SM7 Tekstmelding ”Omschakelen ATB”
15 MS8 Uitschakelen stuurstroom
17 MS1 Inschakelen stuurstroom
18 SM1 Toont opgeslagen driver-id ter invoer of bevestiging en biedt mo-

gelijkheid voor invoer/bevestiging treinnummer
19 MS2 Wijzigt dan wel bevestigt driver-id en treinnummer
20 SM2 Toont opgeslagen level ter invoer of bevestiging
21 MS9 Kiest level NTC met de STM voor ATB
22 SM8 Level NTC met STM voor ATB actief in afwachting van keuze
23 MS5 Kiest invoer treingegevens
24 SM5 Toont opgeslagen treingegevens ter bevestiging en of wijziging
25 MS6 Wijzigt eventueel treingegevens en bevestigt daarna de treingegevens
26 SM6 In afwachting van start
27 MS7 Kiest start
28 SM9 Stelt SN mode voor
29 MS10 Bevestigt SN mode
30 SM10 Schakelt naar mode SN
32 TS1 Opdracht om normale rijweg in te stellen van spoor A naar spoor B

en verder
33.1 ST1 Rijweg is ingesteld
33.2 SM11 Neemt waar dat sein X uit de stand stop is

5

1 MT1 Verzoekt toestemming sein X te mogen passeren (EI 1)
2.1 ST2 Controleert of STS-route van spoor A naar spoor B veilig kan worden

ingesteld
2.2 TS2 Stelt STS-route in
2.3 ST3 Verifieert dat de STS-route beschikbaar is voor de trein
2.4 TS3 Stelt normale vervolgrijweg in van spoor B naar spoor C
2.5 ST4 Verifieert dat de vervolgrijweg beschikbaar is voor de trein
2.6 TM1 Toestemming om sein X te passeren (EI 1)
5 MS11 Activeert override-functie
6 SM12 Omschakeling naar SR en override indicatie
8 SM13 Omschakeling naar OS en OS-voorstel
9 MS12 Bevestigt OS
11 SM14 Omschakeling naar FS
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13 ST5 Stelt vast dat de trein het eindpunt van de STS-route is gepasseerd
14 TS4 Herroept STS-route van spoor A naar B

9

1 TS1 Opdracht om normale rijweg in te stellen van spoor A naar spoor B
2 SM15 FSMA verlengd tot sein Y
4 MS8 Schakelt de stuurstroom af
5 SM16 Trein in SB
7 MS13 Schakelt de stuurstroom aan de andere zijde van de trein in
8 SM1 Toont opgeslagen driver-id ter invoer of bevestiging en biedt mo-

gelijkheid voor invoer/bevestiging treinnummer
9 MS2 Bevestigt of wijzigt driver-id en treinnummer
10 SM4 Verbinding met RBC zichtbaar in afwachting van keuze
11 MS5 Kiest invoer treingegevens
12 SM5 Toont opgeslagen treingegevens ter invoer of bevestiging
13 MS6 Wijzigt eventueel treingegevens en bevestigt daarna de treingegevens
14 SM6 In afwachting van start
15 MS7 Kiest start
16 SM17 Tekstmelding ”Wacht”
18 TS1 Opdracht om normale rijweg in te stellen van spoor B naar spoor A
19 SM18 OS voorstel
20 MS12 Bevestigt OS
21 SM19 Omschakeling naar OS
23 SM14 Omschakeling naar FS

Table 6.3: All activities of GP-3, GP-5 and GP-9. Each activity is assigned a unique ID
according to the resource scheme in Table 3.1. Equal activities have been assigned equal
IDs. GP step refers to the step of the sequence diagram of the relevant GP as denoted in
ProRail AM (2023).
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6.8 BPMN Diagrams of GP-3, GP-5 and GP-9

Figure 6.7: BPMN diagram of GP-3
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Figure 6.8: BPMN diagram of GP-5
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Figure 6.9: BPMN diagram of GP-9
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6.9 All Implemented Rules of the RBS

Rule
ID

Rule Name Rule Description

r1 RuleSB True if ‘qats qpr level’ contains ‘L2SB’
r2 RuleMatTimestamp True if it is the first occurrence of the current timestamp

in ‘mts tijdstip volgensmatnr’
r3 RuleOr(r1 ∨ r2) True if any of the rules in the set pass
r4 RuleGSMRTimestamp True if it is the first occurrence of the current timestamp

in ‘mts tijdstip registratie volgenstreinnr’
r5 RuleMcnReady True if it is the first occurrence of the current timestamp

in ‘stipt sub pers gereedtijd’
r6 RuleFSPreviousSuffix True if ‘qats qpr level’ in the previous event contains

‘L2FS’
r7 RuleOSPreviousSuffix True if ‘qats qpr level’ in the previous event contains

‘L2OS’
r8 RuleOr(r6 ∨ r7) True if any of the rules in the set pass
r9 RuleSRPrefix True if ‘qats qpr level’ starts with ‘L2SR’
r10 RuleAnd(r8 ∧ r9) True if all of the rules in the set pass
r11 RuleFSSR True if ‘qats qpr level’ contains ‘L2FS,L2SR’
r12 RuleOSSR True if ‘qats qpr level’ contains ‘L2OS,L2SR’
r13 RuleOr(r11 ∨ r12) True if any of the rules in the set pass
r14 RuleOr(r10 ∨ r13) True if any of the rules in the set pass
r15 RuleNot(¬r7) Negates the result of the rule
r16 RuleOSPrefix True if ‘qats qpr level’ starts with ‘L2OS’
r17 RuleAnd(r15 ∧ r16) True if all of the rules in the set pass
r18 RuleNot(¬r16) Negates the result of the rule
r19 RuleOS True if ‘qats qpr level’ contains ‘L2OS’
r20 RuleAnd(r18 ∧ r19) True if all of the rules in the set pass
r21 RuleOr(r17 ∨ r20) True if any of the rules in the set pass
r22 RuleDirectionChange True if the direction of the train has changed
r23 RuleGSMRDuration True if a GSM-R call takes longer than 60 seconds
r24 RuleUnplannedStop True if the train made an unplanned stop
r25 RuleMatReady True if it is the first occurrence of the current timestamp

in ‘stipt sub matovergang gereedtijd’
r26 RuleDepartureDelayed True if the cause of delay is ‘vertrekken starter’
r27 RuleSNPreviousSuffix True if ‘qats qpr level’ in the previous event ends with ‘SN’
r28 RuleNot(¬r27) Negates the result of the rule
r29 RuleL2SNPrefix True if the prefix of ‘qats qpr level’ is ‘L2SN’
r30 RuleSNPrefix True if the prefix of ‘qats qpr level’ is ‘SN’
r31 RuleOr(r29 ∨ r30) True if any of the rules in the set pass
r32 RuleAnd(r28 ∧ r31) True if all of the rules in the set pass
r33 RuleNot(¬r29) Negates the result of the rule
r34 RuleNot(¬r30) Negates the result of the rule
r35 RuleSN True if ‘qats qpr level’ contains ‘SN’
r36 RuleAnd(r33 ∧ r34 ∧ r35) True if all of the rules in the set pass
r37 RuleOr(r32 ∨ r36) True if any of the rules in the set pass
r38 RuleSignalSafe True if it is the first occurrence of the current timestamp

in ‘trento av vertrekinrijsein seinveilig’
r39 RuleSRPreviousSuffix True if ‘qats qpr level’ in the previous event ends with

‘L2SR’
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r40 RuleAnd(r16 ∧ r39) True if all of the rules in the set pass
r41 RuleSROSCurrent True if ‘qats qpr level’ contains ‘L2SR,L2OS’
r42 RuleOr(r40 ∨ r41) True if any of the rules in the set pass
r43 RuleFSPrefix True if ‘qats qpr level’ starts with ‘L2FS’
r44 RuleAnd(r7 ∧ r43) True if all of the rules in the set pass
r45 RuleOSFSCurrent True if ‘qats qpr level’ contains ‘L2OS,L2FS’
r46 RuleOr(r44 ∨ r45) True if any of the rules in the set pass
r47 RuleFS True if ‘qats qpr level’ contains ‘L2FS’
r48 RuleRouteDelayed True if the cause of delay starts with ‘rijweg’
r49 RuleDeparture True if ‘basic drp act’ is a departure activity
r50 RuleSBPreviousSuffix True if ‘qats qpr level’ in the previous event ends with

‘L2SB’
r51 RuleAnd(r16 ∧ r50) True if all of the rules in the set pass
r52 RuleSBOSCurrent True if ‘qats qpr level’ contains ‘L2SB,L2OS’
r53 RuleOr(r51 ∨ r52) True if any of the rules in the set pass
r54 RuleRouteNormal True if ‘prl wpk code’ contains ‘N’
r55 RuleNormal-

RouteByPPR
True if ‘prl wpk code’ contains ‘N’ and
‘prl wpk ingestelddoor’ contains ‘PPR’ at the same
index

r56 RuleNormalRouteBy-
BIF

True if ‘prl wpk code’ contains ‘N’ and
‘prl wpk ingestelddoor’ contains ‘BIF’ at the same
index

r57 RuleOr(r55 ∨ r56) True if any of the rules in the set pass
r58 RuleSignalRed True if the signal was red when passed

Table 6.4: Table containing the ID, name and description of each implemented rule of the
RBS. Rules may contain references to previously defined rules. The description contains
the condition that needs to be met for the rule to be true and refers to the columns in the
dataset.
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6.10 All Implemented Activities of the RBS

Activity ID Rules

MS1 {r3: RuleOr(r1 ∨ r2)}
MS2 {r4: RuleGSMRTimestamp}
MS7 {r5: RuleMcnReady}
MS11 {r14: RuleOr(r10 ∨ r13)}
MS12 {r21: RuleOr(r17 ∨ r20)}
MS13 {r22: RuleDirectionChange}
MT1 {r23: RuleGSMRDuration ∧ r24: RuleUnplannedStop}
SM1 {r4: RuleGSMRTimestamp}
SM4 {r2: RuleMatTimestamp}
SM6 {r25: RuleMatReady}
SM7 {r26: RuleDepartureDelayed}
SM10 {r37: RuleOr(r32 ∨ r36)}
SM11 {r38: RuleSignalSafe}
SM12 {r14: RuleOr(r10 ∨ r13)}
SM13 {r42: RuleOr(r40 ∨ r41)}
SM14 {r46: RuleOr(r44 ∨ r45)}
SM15 {r47: RuleFS}
SM16 {r1: RuleSB}
SM17 {r48: RuleRouteDelayed ∧ r49: RuleDeparture}
SM18 {r21: RuleOr(r17 ∨ r20)}
SM19 {r53: RuleOr(r51 ∨ r52)}
ST1 {r54: RuleRouteNormal}
ST4 {r57: RuleOr(r55 ∨ r56)}
ST5 {r42: RuleOr(r40 ∨ r41)}
TM1 {r58: RuleSignalRed}
TS1 {r54: RuleRouteNormal}
TS3 {r57: RuleOr(r55 ∨ r56)}

Table 6.5: Table containing the ID and set of rules defined for each implemented activity
of the RBS. The rules of an activity refer to the rules defined in Appendix 6.9.
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6.11 Matching Algorithms Results

Figure 6.10: Raincloud plot visualising the distribution of the length of the LCSs among
the three process models and sequences classified as ambiguous.

Figure 6.11: Raincloud plot visualising the distribution of the fitnessPN score among the
three process models and sequences classified as ambiguous.
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6.12 F1-score Results

Figure 6.12: Raincloud plot visualising the distribution of the F1-score among the three
process models using the LCS algorithm. No distribution can be shown for GP-5 as no
matches were found for this process model.

Figure 6.13: Raincloud plot visualising the distribution of the F1-score among the three
process models using the TBR algorithm.
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6.13 Expert Evaluation Results

Date Train Exp. 1 Exp. 2 LCS TBR Mode(s)

2023-09-06 45702 Amb. GP-5 Amb. (GP-3: 49%,
GP-5: 2%, GP-9:
49%)

GP-3 Amb.

2023-09-06 93244 Amb. Amb. GP-3 GP-5 Amb.
2023-09-08 932101 GP-9 GP-9 Amb. (GP-3: 33%,

GP-5: 33%, GP-9:
33%)

Amb. (GP-3: 33%,
GP-5: 33%, GP-9:
33%)

Amb., GP-9

2023-09-09 93229 GP-9 GP-9 GP-3 GP-3 GP-3, GP-9
2023-09-12 93205 GP-9 GP-9 Amb. (GP-3: 33%,

GP-5: 33%, GP-9:
33%)

GP-3 GP-9

2023-10-02 127 Amb. Amb. Amb. (GP-3: 50%,
GP-5: 1%, GP-9:
50%)

GP-3 Amb.

2023-10-05 43370 Amb. GP-5 Amb. (GP-3: 42%,
GP-5: 16%, GP-9:
42%)

GP-5 Amb., GP-5

2023-10-14 221 Amb. Amb. Amb. (GP-3: 50%,
GP-5: 1%, GP-9:
50%)

Amb. (GP-3: 33%,
GP-5: 33%, GP-9:
33%)

Amb.

2023-10-17 105 Amb. Amb. Amb. (GP-3: 50%,
GP-5: 1%, GP-9:
50%)

Amb. (GP-3: 33%,
GP-5: 33%, GP-9:
33%)

Amb.

2023-10-23 222 Amb. Amb. GP-3 Amb. (GP-3: 33%,
GP-5: 33%, GP-9:
33%)

Amb.

2023-10-30 120 Amb. Amb. GP-3 GP-3 Amb., GP-3
2023-11-09 46256 GP-3 Amb. Amb. (GP-3: 33%,

GP-5: 33%, GP-9:
33%)

GP-3 Amb., GP-3

2023-11-27 41790 Amb. GP-5 Amb. (GP-3: 42%,
GP-5: 16%, GP-9:
42%)

Amb. (GP-3: 33%,
GP-5: 33%, GP-9:
33%)

Amb.

2023-12-03 52411 GP-3 Amb. GP-3 GP-9 GP-3
2023-12-12 44363 Amb. Amb. Amb. (GP-3: 49%,

GP-5: 2%, GP-9:
49%)

GP-3 Amb.

2023-12-20 82301 GP-9 GP-9 GP-3 GP-3 GP-3, GP-9
2023-12-29 125 Amb. Amb. Amb. (GP-3: 49%,

GP-5: 2%, GP-9:
49%)

GP-3 Amb.

2023-12-30 128 Amb. Amb. GP-3 GP-3 Amb., GP-3

Table 6.6: All samples annotated by both domain experts and the LCS and TBR algorithms.
The softmax function is applied to the scores achieved for sequences classified as ambiguous.
The mode or modes across the four classification results are shown in the last column.
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6.14 Semantic Similarity

To calculate the semantic similarity between two sequences, the sequences need to be converted
into numerical representations. Subsequently, the similarity between numerical representations
can be calculated via various distance functions. For example, Reimers and Gurevych (2019) uses
the Bidirectional Encoder Representations from Transformers (BERT) architecture of Devlin et al.
(2018) to embed input strings in vector space. BERT is a transformer-based neural network that
is pre-trained on a large corpus of text. The self-supervised network is trained to predict the next
word in a sentence given the previous words, i.e. the context. In doing so, the network learns to
use this context to place semantically similar words close together within the vector representation.
Subsequently, it can convert a new input sequence into a vector representation as it has previously
learned the context of the elements in that sequence.

Similar sequences will thus ideally have similar vectors and therefore a small distance. Reimers
and Gurevych (2019) calculate the distance between two vectors using the cosine distance or cosine
similarity measure (Li & Han, 2013). The cosine distance is defined as the dot product between
two normalised vectors u⃗ and v⃗:

cosine distance(u⃗, v⃗) =
u⃗ • v⃗

||u⃗|| · ||v⃗||
(6.1)

Similar to the method proposed by Reimers and Gurevych (2019), are the word2vec and
Global Vectors (GloVe) algorithms. Both algorithms convert words into a vector representation
and calculate their similarity using the cosine distance. The word2vec algorithm by Mikolov et al.
(2013) uses a two-layer neural network to represent words as vectors. The GloVe algorithm by
Pennington et al. (2014) represents words as vectors using a co-occurrence matrix. Both algorithms
are predecessors of BERT and have fewer parameters than BERT making them generally faster
to train and use.

Since the development of BERT, many large language models (LLM) have been developed.
Popular models include the multilingual XLM-RoBERTa model by Conneau et al. (2019), the 176
billion parameter BLOOM language model by Scao et al. (2023) that was trained on a supercom-
puter for 3.5 months, Meta’s LLaMA model and the GPT family of models from Microsoft and
OpenAI including the recent arrival of ChatGPT. These LLMs are all pre-trained on large corpora
of text and can be fine-tuned on smaller datasets to improve performance. The LLMs are often
used for various NLP tasks such as text generation and classification.

The vast majority of models focus on the English language (Vanroy, 2023). Since both the
described processes and the dataset columns are in Dutch, there is a need for a LLM that is
fine-tuned for the Dutch language. In this way, vector representations are more in line with the
semantics of the Dutch language. LLMs trained for the Dutch language include BERTje from
de Vries et al. (2019), RobBERT from Delobelle et al. (2020) and GEITje from Rijgersberg and
Lucassen (2023).

Vanroy (2023) conducted a review of several state-of-the-art (SOTA) LLMs to compare their
performance on various Dutch benchmarks for NLP tasks. The review included the aforementioned
LLaMA and GPT models, as well as others. The test data used for the benchmarks was however
machine-translated to Dutch as no Dutch benchmarks were available. Models not fine-tuned for
Dutch performed surprisingly well on the benchmarks, with Zephyr by Tunstall et al. (2023)
performing best overall. However, interactions of the author with the best-performing model fine-
tuned for Dutch, GEITje, showed a more natural conversation than interactions with models not
fine-tuned on Dutch text. Non-fine-tuned models “read more like a poor translation from English
to Dutch” (Vanroy, 2023, p. 10). It is noteworthy that Zephyr and GEITje are both based on the
same Mistral 7B model architecture by Jiang et al. (2023).

6.14.1 Proposed Methodology

Part of designing the rules for the RBS is finding and investigating the most relevant columns
for each activity. The rules are then designed based on these selected columns. This can be a
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time-consuming task for the domain experts designing the rules, especially when the data consists
of a large number of columns. To facilitate this process, an AI system is proposed to suggest the
most relevant columns for each activity. This is done based on the semantic similarity between
the description of an activity and the descriptions of all columns in the dataset. The hypothesis
is that the most relevant column has a description most similar to the description of the activity.
This approach could not only save time for the domain experts but also reduce the chance of
overlooking or missing potentially relevant columns. As mentioned above, semantic similarity
algorithms consist of two parts:

1. Converting the input data to a numerical representation.
• Often in the form of a vector or matrix.
• This includes the pre-processing of the input data.

2. Calculating the similarity or distance between two numerical representations using a simil-
arity function.

The description of a column ck can be retrieved via d(ck), which is elaborated on in subsec-
tion 3.1.1. After converting the descriptions of a target activity a and all columns into numerical
representations and calculating their similarity, the most similar columns to an activity can be
retrieved.

This process can be formalised as follows: given an activity description d(a) and a sequence of
column descriptions D(M), the algorithm converts d(a) to a numerical representation v(d(a)) and
each column description d(ck) ∈ D(M) into a numerical representation v(d(ck)). The similarity
between v(d(a)) and each v(d(ck)) is then computed using a similarity function sim(v(d(a)), v(d(ck))).
The column descriptions with the highest similarity to d(a) are considered the most relevant
columns for a. The columns are presented to the domain expert in descending order of similarity.

The activity description d(a) is any ordered sequence of characters with a length greater than
zero: a non-empty string. Each column description d(ck) is likewise defined as an ordered sequence
of characters with a length greater than zero. A popular similarity function is the cosine similarity
metric, as presented in Eq. (6.1). It has a range between −1 and 1. A value of 1 indicates that
the two vectors are identical, while a value of −1 indicates that the two vectors are completely
dissimilar. A value of 0 indicates that the two vectors are orthogonal. The above process is
captured in the pseudocode of Algorithm 2.

Algorithm 2 Semantic Similarity Algorithm

1: d(a)← target activity description ▷ Activity for which to find the most similar columns
2: D(M)← [d(c1), d(c2), . . . , d(ck)] ▷ Sequence of column descriptions
3: v ← vectorisation function ▷ Convert input characters to a numerical representation
4: sim← similarity function
5: S ← [. . . ] ▷ Sequence to store calculated similarity scores
6:

7: v(d(a))← convert d(a) to a numerical representation ▷ Only done once for d(a)
8: for all column descriptions d(ck) ∈ D(M) do
9: v(d(ck))← convert d(ck) to a numerical representation

10: si ← sim(v(d(a)), v(d(ck))) ▷ Calculate similarity between d(a) and d(ck)
11: Append si to S
12: end for
13:

14: D(M)sorted ← sort D(M) by S in descending order ▷ Sort column descr. by sim. score
15: return D(M)sorted

The algorithms discussed above to convert data into a numerical representation focus on textual
data. However, the methodology described can be applied to any type of data by using the
appropriate algorithm to convert the input into a numerical representation suitable for the chosen
similarity function.
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6.14.2 Quantifying Semantic Similarity Results

Suppose that the set of columns used to design the rules for an activity ai is represented as C(ai) =
{c1, c2, . . . , cn}. Their corresponding descriptions are represented as D(C(ai)) = {d(c1), d(c2), . . . , d(cn)}.
This set thus consists of all relevant column descriptions for the activity ai.

D(C(ai)) can then be compared to the top-n most similar elements of the ordered sequence of
column descriptions D(M)ordered determined for ai. Here, n is the number of columns used by
ai and is equal to the number of descriptions in D(C(ai)). As each activity can use a different
number of columns, n can differ for each activity. For instance, if ai uses three columns, n = 3
and we compare D(C(ai)) to the top three most similar elements of D(M)ordered.

The semantic similarity algorithm is quantified using the harmonic mean of precision and recall:
the F1-score. It is defined as follows:1

P =
TP

TP + FP
(6.2) R =

TP

TP + FN
(6.3) F1 = 2 · P ·R

P + R
(6.4)

Here, TP is the number of true positives, FP is the number of false positives and FN is the
number of false negatives. A true positive is a column present in both D(C(ai)) and D(M)ordered.
A false positive is a column present in D(M)ordered but not in D(C(ai)). A false negative is a
column present in D(C(ai)) but not in D(M)ordered. As with Eq. (3.7), the F1-score has a range
of [0, 1], where a value of 1 indicates a perfect match. Ideally, the F1-score should be as close to 1
as possible indicating that the semantic similarity algorithm can retrieve all relevant columns for
activity ai.

As the column descriptions in D(C(ai)) have no order, we do not need to take this into account
when comparing D(C(ai)) to the top-n of D(M)ordered.

1Note the difference between this formula and the harmonic mean of fitness and precision in Eq. (3.7), which is
written subtly differently as F1 instead of F1 to avoid confusion.
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Acronyms
Ac Abcoude. 20, 43
Aco Abcoude Overloopwissels. 7, 20, 43
AI Artificial Intelligence. v, 16, 25, 57
Asa Amsterdam Amstel. 43
Asb Amsterdam Bijlmer. 43
Asd Amsterdam. 1, 2, 4–7, 18, 27, 36, 40, 43
Asdar Amsterdam ArenA. 43
Asdz Amsterdam Zuid WTC. 43
Ashd Amsterdam Holendrecht. 43
ATB automatische treinbëınvloeding. 4–6, 27, 42, 45

BERT Bidirectional Encoder Representations from Transformers. 56
Bkl Breukelen. 7, 20, 43
Bkla Breukelen Aansluiting. 7, 20, 43
BLOOM BigScience Large Open-science Open-access Multilingual. 56
BPMN Business Process Model and Notation. 8, 9, 18, 28, 34, 36, 47–49

Ddm De Diemen. 43
Dmnz Diemen Zuid. 7, 43
DRP dienstregelpunt. 7, 17, 18, 20, 27, 43, 44
Dvaw Duivendrecht Aansluiting West. 43
Dvaz Duivendrecht Aansluiting Zuid. 43
Dvd Duivendrecht. 43

EG eerste generatie. 6
EI European Instruction. 45
EoA End of Authority. 42
ERTMS European Rail Traffic Management System. 4, 5
ETCS European Train Control System. 5, 6, 17, 18, 21, 22, 27, 28, 42
EU European Union. 5

FS Full Supervision. 6, 45, 46
FTE Full-time equivalent. 1

GloVe Global Vectors. 56
GP gebruikersproces. 1, 2, 5, 6, 8, 18, 19, 22, 23, 28, 31, 32, 34–36, 41–49, 54, 55
GPT Generative Pre-trained Transformer. 56

Hmlba Harmelen-Breukelen Aansluiting. 43

IAA inter-annotator agreement. 25, 32, 33, 35, 37
ICNG Intercity Nieuwe Generatie. 5

L2 Level 2. 6, 19, 41, 42, 45
LCS longest common subsequence. ii, 14, 22–26, 31–35, 53–55
LLaMA Large Language Model Meta AI. 56
LLM large language model. 56
Lls Lelystad. 2, 40
LSTM Long Short-Term Memory. 14

MA Movement Authority. 18, 41, 46
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Acronyms Acronyms

Mas Maarssen. 20, 43
Mdsa Muiderstraatweg Aansluiting. 43

N/A not applicable. 31, 32
NLP natural language processing. 13, 25, 56
NS Nederlandse Spoorwegen. 4, 5
NTC National Train Control. 5, 6, 40–42, 45

OCR optical character recognition. 14
OS On Sight. 21, 22, 45, 46

PCA Principal Component Analysis. 14
pdf portable document format. 9
PoC proof of concept. ii, 2–4, 15–18, 21, 23, 34–37

Rai Amsterdam RAI. 43
RBC Radio Block Centre. 42, 45, 46
RBS rule-based system. ii, 13, 20, 21, 29, 34, 35, 37, 51, 52, 56
ROZ rijden op zicht. 41
RQ research question. 3
RQ1 What data sources provide predictive information about the user processes?. 3, 34
RQ2 How can the description of a user process and its activities be encoded into a formal defin-

ition?. 3, 34
RQ3 How can the formal definition be used to extract a sequence of activities from data?. 3, 34
RQ4 Which algorithm is best in identifying user processes in the retrieved sequences of activities

using the formal definitions?. 3, 31, 34
RQ5 What evaluation metric is best to determine the performance of the system?. 3, 35

SB Stand By. 46
SD Standard Deviation. 27, 31
SN National System. 45
SNG Sprinter Nieuwe Generatie. 5
SoM Start of Mission. 29, 37
SOTA state-of-the-art. 56
SR Staff Responsible. 45
STM Specific Transmission Module. 45
STS stoptonend sein. 29, 42, 45, 46

TB Terabyte. 7
TBR token-based replay. ii, 12, 23–26, 31–36, 54, 55
Trdl treindienstleider. 1, 6, 18, 28, 29, 34, 36

Ut Utrecht. 1, 2, 4–7, 18, 20, 27, 36, 40, 43
Utma Utrecht-Maarsen Aansluiting. 43
Utzl Utrecht Zuilen. 20, 43
UU Utrecht University. v, 16

Vspa Venserpolder Aansluiting. 7, 43

Zl Zwolle. 2, 40
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