UTRECHT UNIVERSITY

Department of Information and Computing Science

Master thesis

Variational Inference in Stan

First examiner: Student:
Matthijs Vakar Gertjan Brouwer
Second examiner: Daily Supervisor:
Gabriele Keller Tom Smeding

July 27, 2024

Abstract

This thesis presents a novel, robust, and user-friendly variational inference (VI) algo-
rithm implemented in Stan. As is customary, the algorithm uses the classical mean-field
Gaussian variational family and the reparameterization trick to derive a gradient esti-
mator. The novelty lies in the precise optimization routine and convergence criterion.
The optimization operates in two phases: the warm-up, where quick progress is made
and an appropriate step size is found. This is followed by the main optimization phase,
which gradually decreases said step size when reaching stationarity. The process con-
verges when the 2-Wasserstein distance between two Gaussian approximations from two
epochs in the optimization phase is below a threshold. This threshold, set by the end-
user, offers an intuitive accuracy parameter for convergence, in contrast with other VI
implementations.

Experimental results demonstrate the algorithm’s robustness and effectiveness across
various models from PosteriorDB, with accuracy and runtime largely insensitive to
hyperparameter variations. The inclusion of model priors in the initialization phase
significantly speeds up optimization, although implementation of this in Stan is still
infeasible. The algorithm’s reliability is further enhanced by k-hat, although it proved
ineffective for detecting untrustworthy posterior approximations.

Contents

\]

aQ w >

Introduction

Background

2.1 Bayesian inference e e e e e e

2.2 Markov Chain Monte Carlo

2.3 Variational Inference e
2.3.1 Recent advances in Variational Inference
2.3.2 Diagnostics

Stan

3.1 Stan language L e e e e e e

3.2 Stan interface

ADVI in Stan

4.1 Convergence metric L e e e
4.2 Convergence subject L e
4.3 Step size e
Variational inference

5.1 Variational parameter initialization
5.2 Warm-up phase
5.3 Optimization phase o e e
5.4 Diagnostics L e e e e e
5.5 Complete algorithm L
Experiments

6.1 Runtime analysis e
6.2 k-hat diagnostic efficacy o
6.3 Robustness e
Conclusion

Multimodality image generation
Ethics and Privacy Quick Scan

Pathfinder experiment

16
17
19

20
20
21
22

23
23
25
27
31
31

36
41
43
44

45

47

48

51

1 Introduction

Bayesian statistics have seen an influx of usage in recent years. This can primarily attributed to
the availability of more computation power. Specifically, Bayesian inference has seen rapid growth
as it has become a crucial part of machine learning. The central objective of Bayesian inference
is to determine the posterior probability distribution. Bayes’ rule lies at the heart of Bayesian
statistics and thus inference. Bayes’ rule provides a means to calculate the posterior. However,
calculating the posterior is rarely analytically possible and often intractable. Therefore, other
methods are required to approximate the posterior probability distribution. Various algorithms
have been devised to calculate this approximation. Most notably, Markov Chain Monte Carlo
(MCMC) methods have seen great success. More recently, Variational Inference (VI) has been used
more.

Markov Chain Monte Carlo (MCMC) methods have been successfully used to solve approximations
of the posterior. MCMC algorithms rely on a sampling approach to approximate the posterior
distribution by generating samples from a Markov chain that converges to the target distribution
over time (asymptotic guarantee). In contrast, Variational Inference (VI) algorithms approximate
the posterior by optimizing a simpler, more tractable distribution that is easier to sample from.
MCMC and VI can be seen as complementary; whereas MCMC lacks speed on large datasets, VI is
much faster. And where MCMC is asymptotically correct, VI'’s approximations may lack the same
level of accuracy.

VI is an idea that tackles the problem of inference through optimization. It uses a simpler distri-
bution to approximate the posterior in question. It minimizes a divergence measure between the
variational distribution and the joint probability distribution, usually the Kullback-Leibler diver-
gence. Minimization between distributions is achieved by iteratively adjusting the parameters of
the variational distribution such that the divergence measure is minimized. This is typically done
with gradient descent, where gradients of the divergence are estimated.

Stan' is an open-source state-of-the-art probabilistic programming language for Bayesian statistical
modeling and inference. Stan’s back-end is written in C++ and is high-performant; it tries to be
a general statistical inference engine. This generality can sometimes cause slow convergence or no
convergence at all [23]. Stan allows a user to define a Bayesian statistical model in a convenient
language. Stan automatically approximates the posterior density with the data using either MCMC,
the NUTS sampler by default, or Automatic Differentiation Variational Inference (ADVI) Stan’s
VI variant.

Automatic Differentiation Variational Inference is still denoted as being experimental in Stan.
Stan’s implementation of VI is unreliable in convergence and, when converging, might result in
an untrustworthy posterior density [3]. Little work has been done to analyze these problems. Im-
plementing diagnostics for posterior densities approximated with ADVT in Stan has yet to be done.
Neither has benchmarking Stan’s ADVI implementation against a wide variety of models, for ex-
ample, with PosteriorDB, a benchmarking tool for inference algorithms. All these problems have
hindered the adoption of ADVI by Stan users.

Many of ADVT’s problems can be attributed to a gap between what is possible in theory and what
can be implemented in practice. Recent research on VI seeks to alleviate and solve some of these

INamed after Stanislaw Ulam, a co-inventor of the Monte Carlo method

issues [3]. Also, posterior diagnostics such as Pareto-smoothed Importance Sampling (PSIS) and
Simulation-Based Calibration (SBC) are now actively researched.

This thesis bridges the gap between said theory and practice by introducing a new VI imple-
mentation for VI, which is thoroughly tested with PosteriorDB and benchmarked against Stan’s
MCMC. Our implementation uses a variety of new concepts from recent literature, such as R for VI
and PSIS as a diagnostic. Furthermore, we introduce an initialization process by utilizing priors,
present a novel warm-up routine that works in general, and introduce a new convergence criterion
that requires just one user-defined parameter.

We demonstrate that our implementation is competitive with NUTS in parameter approximation
and is exclusively inaccurate in predictable instances, e.g., where the true posterior is multimodal.
Additionally, we show that the step size our warm-up phase finds performs better than setting a
fixed step size in the optimization phase. Furthermore, preliminary experiments indicate that ini-
tialization through prior sampling speeds up the optimization process. Finally, our implementation
is more reliable than ADVT as it successfully converges for all PosteriorDB models except three, of
which two? are neural nets.

This thesis starts with a background chapter on Bayesian inference, MCMC, and VI. It also pro-
vides the reader with the recent advancements in VI literature. We continue by explaining Stan and
dive into ADVI and why it is still considered experimental. Then, we describe our VI implementa-
tion, specifically the initialization, warm-up, and optimization phase. That chapter also mentions
diagnostics and provides the algorithm in pseudo-code. The next chapter shows our benchmark
against MCMC, a runtime analysis, the efficacy of k-hat, and a robustness test. Finally, we provide
concluding remarks on these experiments and describe avenues for future research.

This thesis addresses the core research question driving the project:
e Can we achieve a robust and user-friendly variational inference algorithm in Stan?
From this question, the subquestions follow naturally:
e What causes the current VI implementation in Stan to not converge on certain models?
e What is the impact of the techniques from 2.3.1 on performance compared to MCMC?
e On which models does VI fail even when incorporating said techniques?
e Is the k-hat diagnostic able to recognize failure on these models?
e What is a robust convergence criterion for VI?
e What is the impact of initialization on VIs speed and accuracy?

The Ethics and Privacy Quick Scan of the Utrecht University Research Institute of Information and
Computing Sciences was conducted (see appendiz B). It classified this research as low-risk with no
fuller ethics review or privacy assessment required.

2The third due to our initialization being outside the model’s optimization space.

2 Background

2.1 Bayesian inference

In statistics, we are often interested in learning a model based on data. In the classical, or fre-
quentist, setting we have some data D and a model with parameters 6. The likelihood, p (D | 6),
of the data given the parameters is then maximized, commonly known as Maximum Likelihood
Estimation (MLE) [4].

In Bayesian statistics, the probability of the parameters given the data is computed instead. This
probability, or density, is named the posterior. Calculating the posterior requires specification of
the joint probability distribution, p (6, D), and the data. From a joint density we can compute the
posterior of interest with Bayes’ rule:

Likelihood
Posterior m Prior
’ N 4 ’ ‘
p(| D) =——5— p(0)
p(D)
Evidence

Where the evidence or marginal likelihood, p(D), is an integral of the joint density, or a sum in the
discrete case.

p(D10)p®) _ p(0, D)
[p(,D)ydd [p(0, D)do

Unless the posterior density has a closed-form solution, such as in the case of conjugate priors, it
is intractable. Thus, we require other methods to compute the posterior density.

p(0|D)=

2.2 Markov Chain Monte Carlo

One common method for approximating a posterior probability distribution in Bayesian inference is
Markov Chain Monte Carlo (MCMC). Stan uses two, namely Hamiltonian Monte Carlo (HMC) and
the No-U-Turn Sampler (NUTS). Both algorithms enjoy asymptotic guarantees, meaning that with
enough time the algorithm will converge to the true posterior distribution. In practice, however,
it is not known for how long one should run the algorithm for it to converge, or it might fail to
converge in the case of multimodality, for example. Even if the algorithm converges, the result
might still be poor due to, e.g., model misspecification. Regardless of the apparent issues with
MCMC it is still very useful and used a lot. We will use MCMC as the gold standard for evaluating
VL

2.3 Variational Inference

Variational Inference (VI) is an alternative strategy to MCMC methods that can result in ”good”
posterior approximations faster. VI posits an optimization problem by approximating the posterior
p(0 | D) with an easy-to-sample density ¢x(6). The goal is to find the value A such that g,(6) is
closest to the posterior, where closeness is calculated with a divergence measure.

The Kullback-Leibler divergence is usually picked as a measure of closeness [24, 49].

KL (qx(8) [[(0| D)) = Egrgy(0)[log(ar(6)) —log(p (6 | D))]

While other divergence measures such as a-divergence exist they are rarely used in practice [19].
We are trying to minimize the KL divergence to find the variational approximation gy~ (6) in
the variational family Q = {¢»(6) | A € A C R"} such that:

A\ = arg minq;(@)EQ KL (%\(9) || p(lg I D))

The KL divergence can be thought of as having two distinct parts. The role of the expectation
Eg~q,(0)[log(p (0 | D))] is promoting the placement of mass where the posterior density is large. The
second part Egq, (9)[log(gx(#))] is the entropy of the variational family which stimulates spreading
of the density. Without entropy, minimizing the KL divergence is equivalent to putting all density
at the maximum of the posterior density. Note that the KL divergence is not symmetric. While
VI employs KL (q || p), the opposite KL (p || q) is called expectation propagation [49]. This is a
different area of research and not further explored in this thesis.

Even after changing to this optimization problem we still have to deal with the intractability of the
marginal likelihood p(D). We can expand the KL divergence to reveal its dependence thereof:

Eq, (0)[10g(qr(8)) —log(p (6 | D))]
=Eq, 0)[l0og(qr(0))] — Eq, (o) [log(p (6, D))] + log(p(D))

= Eq.0)[108(92(0))] = Eq, (9)[log(p (D | 0) p(6))] + log(p(D))

= —(Eq0[log(p (D [0) p(0))] — Eq, () [10g(ar(0))]) + log(p(D))
ELBO

Omitting the evidence leaves us with a negative ELBO (Evidence Lower BOund), a term coined
first in physics literature [419]. Maximizing the ELBO minimizes the KL divergence since the
evidence does not depend on A. The name, evidence lower bound, comes from the fact that it
lower-bounds the log marginal likelihood. From the previous equation, we have that:

log(p(D)) = KL (qx(0) || (0 | D)) + ELBO(gx(0))

Finding the closest variational approximation to the posterior now only requires the posterior up
to a normalizing constant, i.e., the joint density. The joint density is known in our setting® thus
we are left with finding the variational approximation that maximizes the ELBO. In the early
days, Coordinate Ascent VI (CAVI) was used to find the variational approximation [19, 4]. CAVI
introduced the Mean-Field assumption to statistics from statistical mechanics [31]. The idea
of this assumption is to presume mutual independence between model parameters allowing the
variational distribution to factorize:

D
a(0) = H% (0:)

The factorized form of the variational distribution allows for iterative updates of the ELBO and
forms the basis of CAVI and variational message passing [46]. The choice of a variational family for
the factorized parameters is important. The most popular is the use of univariate Gaussians [5, 49,

]. Picking both the model and the variational family from the same category, e.g. the exponential

3We are looking at VI in Stan, see chapter 3, where a joint density is always available.

family, allows for a closed-form solution such as with conjugate priors [19]. However, in most cases,
models do not work with conjugate priors and require other methods to solve them.

More recently, so-called black-box methods have been introduced [35, 23]. These black-box methods
make no assumptions about the model and seek to maximize the ELBO through (stochastic)
gradient methods.

VA Egg, (o) [10g(p (D, 0)) — log(gx(0))] (1)

Due to the expectation in the gradient, the objective function cannot be computed in general.
These black-box methods solve this challenge by rewriting equation 1 as an expectation of the
gradient.

The approach we use is called the reparameterization trick, the trick is to input the randomness
as a parameter instead of the randomness being part of the model [29]. Let us consider equation
1 where 6 ~ g (0) is a univariate Gaussian: N'(\,, A\,2). A valid reparameterization in this case is
Ia(€) == pu + o - e where e ~ N(0,1).

VA Eggy o) [log(p (D, 0)) —log(gx(0))]
=V Ecno,)[log(p (D, f(e))) —log(gr(f(€)))]

This reparameterization is useful because we have removed the dependency on ¢y (6) from the
expectation, allowing us to swap the gradient and the expectation:

Een(0.)[Va (log(p (D, f(e))) —log(ar(f(€))))] (2)

The resulting equation 2 is the reparameterization gradient estimator, which we use to
estimate the gradient of the ELBO. Different gradient estimators for variational inference exist

[49, 5.

Since this thesis works with Stan we use its automatic differentiation capabilities to compute the
gradients inside the expectation of equation 2. The only thing left is calculating the expectation
itself, which can be done through Monte Carlo integration [27, 35, 23]. Monte Carlo integration
with equation 2 is done by drawing from the standard Gaussian and evaluating the mean of the
gradients inside the expectation. This yields a noisy but unbiased estimator of the actual gradient,
meaning the expectation of the gradient equals the ELBO [35].

1 M
i=57 > ELBO,, (3)
m=1

Where ELBO,,, is the ELBO w.r.t. the m’th standard Gaussian draw, this is where the stochasticity
in stochastic VI comes from [19].

With the gradient from equation 3 in hand, we can apply Stochastic Gradient Descent (SGD).
SGD iteratively updates the distributional parameters with the computed gradient:

Orp1 =0, —0,-9 (4)

Where we denote d; to be the step size with which g is multiplied. In general, we can not always
find a global optimum and instead seek to find a stationary point. Meaning that the gradient
of the ELBO is zero or sufficiently close to zero. The convergence to a stationary point can be

guaranteed, aside from some criteria on the distribution and variational family, when the step size
sequence, {d;}, adheres to the Robbins-Monro criterion: [37] It states that the sum of the step size
sequence must be infinite to ensure that at each step it continues to learn from new data. Secondly,
the sum of the squared step sizes must be finite. This ensures the gradual decrease in step size,
allowing the distributional parameters to settle at a stationary point:

(oo} oo
Zétzoo Zéf < 00
t=1 t=1

In practice, more elaborate SGD routines are used, e.g., not only using the first but also the second-
order derivative to guide the optimization [50, 49]. Lots of work has also been done on different
step size schemes, for example, using an adaptive step size to speed up convergence [23].

2.3.1 Recent advances in Variational Inference

While recent years have seen improvements in fully automatic variational inference, widespread
adoption has still not occurred. One probable cause is the robustness of black-box VI. This is
also reflected in the ”experimental” status VI is given in Stan. New research has been trying
to achieve fully automatic VI by integrating different VI techniques [3]. These techniques try
to answer questions surrounding parameter initialization, step size schedules, gradient estimators,
variational families, and importance sampling. Their experiments show promising improvements
when combining techniques.

Adaptive step size Picking a step size to run an optimization process with, is a notoriously hard
problem to solve. The reason is that different problems (usually) require different step sizes, and
the optimal step size can even vary within the same problem space [16, 4]. In variational inference
literature, we find solutions with fixed step sizes, step sizes picked by some decision rule, or a
transient step size based on properties of the optimization process.

The VI implementation in Stan, ADVI, uses a decision rule to pick the starting step size [23]. ADVI
runs a short optimization routine with a set of step sizes. The step size with the highest ELBO
is then used for optimization. (Note: Most VI optimization processes use an SGD optimizer such
as Adam to calculate the descent direction based on the gradient. Such optimizers tend to scale
with their gradient and their history, which can, in part, be seen as an adaptive step size. However,
all these optimizers require an initial step size to be chosen.). Stan’s ADVI implementation then
uses regular SGD with an adaptive scheme to change the step size during optimization. This
scheme considers the initial step size and keeps a decaying memory of past step sizes from previous
optimization steps. It is similar to Adam, but the authors introduced this as an alternative [23,
]

Agrawal et al. use a similar technique where they pick a step size § € %1{1,B~!, B~2, B3 B~}
where d is the dimension of the parameter space and B is a decay constant, e.g. B = 4. For each 9,
optimization with Adam is run for a fixed number of iterations, 30,000 in the experiment. Agrawal
et al. opted to use the step size with the best average ELBO for the 30,000 iterations instead of
comparing against a test set based on the parameters obtained by running the VI for each step size.
Empirically, this gave more robust results. Dhaka et al. use a fixed step size, 0.3, but half it each
time the optimization process satisfies some conditions [11].

Zhang et al. first introduced a combination of both techniques, splitting optimization into transient
and optimization phases. The transient phase selects the starting step size, and the optimization
phase reduces this when certain conditions are met to satisfy the Robins-Monro criteria. They fit a
linear regression on the training loss in the transient phase. If the slope of this regression goes below
a threshold, it switches to the optimization phase with the current step size. When the slope is
above the threshold, the step size is increased by an order of magnitude, and the process continues.
Their optimization process uses a variant of the Armijo rule, which is shown to perform poorly
for variational inference [25]. Furthermore, their experiments are all done on neural networks and
might not carry over to variational inference [51].

Optimizers Using plain Stochastic Gradient Descent as an optimizer has been replaced by adaptive
optimizers such as Adam, Adagrad, and Adagrad’s successor RMSProp. Adagrad is the first widely
adopted optimizer that uses a different learning rate® per dimension. Due to Adagrad’s long-term
issue with a diminishing learning rate, RMSProp was introduced to fix this stagnation. Later,
Adam used the momentum technique from RMSProp and adjusted the step direction based on the
first and second moment of the gradient [15, 20].

No seminal work has been published on stochastic optimizers for variational inference, also confirmed
by Dhaka et al. [3]. Published comparison studies have tested various optimizers with different
algorithms and models [18, 30]. Yazan et al. studied many related experimental works on optimizers
and concluded that diverse findings suggest no single optimizer is best in general. Further, they
mention that using any adaptive strategy, e.g., Adam, works best over plain SGD. Finally, they
conclude by saying the effect of the initial learning rate and initialization of the models have a
greater effect than the optimizer [48].

In the VI space, we also observe the diversity of optimizers used.

e BBVI: Adagrad [35]

e RAABBVI & RABBVI: RMSProp, avgRMSProp, avgAdam, Natural Gradient Descent (NGD),
stochastic quasi-Newton and Windowed Adagrad (default in PyMC3) [11, 45, 19]

e ADVI: RMSProp is the foundation for their optimizer, which they combine with a set of other
techniques [23].

This diversity once more suggests no single optimizer is clearly best.

Entropy When using the reparameterization trick on the KL-divergence, we get equation 2. The
last term in the expectation of this equation is log(q). Since the expectation is with respect to g, it is
the expectation with respect to ¢ of log(q), in other words, the entropy of ¢. Since we use mean-field
Gaussians as a variational family, this entropy term can be solved analytically, i.e., zero and one for
the mean and standard deviation gradient, respectively. However, Agrawal et al. suggest estimating
entropy using the reparameterization trick can be beneficial. Using the reparameterization trick on
the entropy term results in the Stick the Landing (STL) estimator:

VaH(gx) = Econro,1)[Valog(ga(f(€)))o=x] (5)

STL estimator

4Learning rate and step size are sometimes used interchangeably, we refer to the step size that an optimizer adapts
as the learning rate and the step size that is input as a parameter as the step size.

Where H is the entropy part of equation 2 [3]. Agrawal et al. show empirically that the STL
estimator performs better than the closed-form entropy [38, 3]. It is, however, unclear why this
would show better performance. Roeder et al. suggest that it might be due to the entropy depending
directly on the variational family without considering the data.

Distributional parameter initialization Initialization can have a large positive and negative
impact on performance. ADVI initializes with a uniform(—2,2) distribution, while most literature
on VI uses a standard Gaussian initialization. Agrawal et al. tried using Laplace’s method [3].
This method finds a mode of the posterior distribution, which is set as the mean of a Gaussian
distribution. An approximation of the standard deviation of the Gaussian is computed from the
Hessian of the log-posterior at this mode. An immediate issue with this is that it can initialize at
a mode that leads to worse local optima [3]. In their experiment, Laplace initialization helped and
harmed an equal fraction of models. Furthermore, they mention no existing studies on initialization
surrounding VI, a claim made in 2020. Although no studies exist and their experiment does not
show significant results, they argue that a beneficial initialization scheme probably exists and is
worth researching.

Stan initializes all model parameters randomly from a uniform(—2,2) distribution. The paper on
Pathfinder, an algorithm that was recently added to Stan, also tested uniform(—15, 15) distributions
and found it explored a larger region. This test was only done on a single model and showed
ADVTI outperformed Pathfinder when using the default parameter initialization [50]. However, no
initialization scheme was given that works for any model. Furthermore, both initialization forms
will not generally work since models whose parameters lie outside these ranges exist. Therefore,
these initialization schemes are not optimal. Hence, the default initialization in mean-field and
full-rank variational inference literature still is the standard normal [5, 49].

Importance (Re)sampling Importance sampling (IS) is a method to enhance the accuracy of a
sample from a proposal distribution, i.e., ¢y, to give a set of draws that more accurately represent
the target distribution, i.e., p(0 | D). This is done by multiplying a draw with its normalized
importance weight:

S ws - O _ p(b,, D)

255:17175 ’ o ax(6s) ®

With 65 being S draws from the proposal distribution, i.e., the variational approximation. The
rationale behind importance sampling is that we need to adjust for g, oversampling and under-
sampling areas compared to p. Importance sampling in VI has been successfully used by many
authors, usually gaining accuracy on a subset of tested models and never losing accuracy [49, 3, 13].
However, improvement is not guaranteed since a mismatch between the true posterior and the
approximation can occur, causing certain regions to be over-/underrepresented.

Importance resampling (IR) is a subsequent step after importance sampling. Importance resampling
resamples from the set of samples using their normalized weights as a probability distribution. The
advantage of IR over IS is that the samples can be immediately used instead of the original and
treated as samples from the posterior distribution [21].

There are two primary use cases for IS and IR in variational inference: plain sampling, which
benefits the end user by providing better samples, and changing the ELBO for one that uses IS,
resulting in a more robust variational approximation [3, 47, 44].

10

The Importance Weighted ELBO (IW-ELBQO) introduced by Burda et al. is one such IS ELBO that
serves as a replacement for the classic ELBO [6, 14, 3].

M
B (61)ax(6) [108 (1\14 > W)] (7)

Where 64 ---6,, are iid samples from the variational distribution. When M = 1, the IW-ELBO
reduces to the normal ELBO while increasing M will result in approaching log(p(D)) asymptotically.
The IW-ELBO can be used in two ways during the training phase. Firstly, instead of using a single
draw we sample M draws from the variational approximation. Then, with importance resampling,
we draw a single sample and use this as if we are doing regular ELBO optimization [14, 13]. As
described under Divergence measures, the KL-divergence is sensitive to outliers. Using some form of
IS or IR, like the importance resampling done here with the IW-ELBO, will reduce this sensitivity

[3, 13].

Secondly, we can use the IW-ELBO in the training process instead of the ELBO, but this requires
a gradient estimator such as equation 2. Tucker et al. introduced the Doubly Reparameterized
Gradient Estimator (DReG) which handles cases where M is large well, an issue the Rainforth et
al. estimator struggled with, and is now considered the defacto standard gradient estimator for the
IW-ELBO [41].

M
1 P (D, bm)
v)\]quw)"'qk(enz) [1Og (Z) ‘|
! M m—1 (ZA(9m)

M —1
. p (87 (nm), D)
- Eq<o,1>(171)~"<I(o,1)(77m) [Z (wm)2 Va log (qe(S*I(nm))

m=1

(8)

0=\

The central idea here is that the variational

R B w,, o p(’D,Sil(”]m))
Where w,, = S and w, = “ax (S (m))

parameters are held constant to reduce the variance. Although Domke et al. found that DReG
improved nearly 30% of their tested models, using plain ITW-sampling combined with the STL-
estimator gave better performance [3].

Sampling can benefit from using IS and IR. However, problems arise when the importance weights
have infinite variance. Solutions, such as the truncation rule, guarantee finite variance under mild
conditions but can have a large sample bias [44, 12]. Vehtari et al. suggest fitting a three-parameter
generalized Pareto distribution (GPD) to the importance weights [17, 44]. The CDF of this GPD
is then used to replace the largest M importance weights with a set of well-spaced importance
weights consistent with the GPD’s tail. Doing this ensures the new samples, Pareto Smoothed
Importance Samples (PSIS), have finite variance. One of the three parameters of the GPD is the
shape parameter]Af, which can be used as a diagnostic tool, further discussed in section 2.3.2.

Iterate averaging Fach optimization step of black-box VI produces a variational approximation
g, Eventually, under Robins-Monro conditions, these variational approximations will converge to
an exact solution ¢y. However, after a finite number of iterations, the variational approximation
is not close, in general, to the exact solution [11]. A solution to this is to average the variational

11

approximations over time [33].

T
>o=T" Zin, Var(qy) = T2 Z Var(g,)

i=1

This approach reduces the variance of the approximation because the expected value of gy, is
equivalent to ¢i. Dhaka et al. first utilized this technique for VI [11, 12] and dubbed it iterate
averaging. Two implicit choices that arise when doing iterate averaging are when to start the
averaging process and how many approximations to average. The first requirement intuitively
means that we want the optimization process to have somewhat stabilized before the averaging
process. This helps ensure the approximations are closer to the exact solution. Secondly, we want
to iterate over a large enough portion of the variational approximations to ensure a low enough
variance and, thus, robustness to noise.

Picking good values for when to start averaging and the total number to average is experimentally
done by Dhaka et al. and later expanded on by Welandawe et al. [11, 45]. Both start averaging
after the optimization reaches stationarity. We can check stationarity using the R diagnostic, which
we discuss further in the optimization phase section 5.3. Choosing a range of approximations to
average over is done by calculating the effective sample size (ESS) and the Monte Carlo standard
error (MCSE) of the variational parameters over some range. That range is determined by checking
if the ESS is greater and the MCSE is smaller than some threshold. The underlying principle for this
to work is that we can see the series of variational approximations, after stationarity, as a Markov
chain. Allowing us to quantify the accuracy of the iterate average through ESS and MCSE.

Divergence measures Traditionally, VI methods use the KL-divergence measure to gauge the
distance between the posterior distribution and the variational approximation. However, classic
KL-divergence has some shortcomings:

Not robust to outliers: The logarithm in the KL-divergence magnifies the outliers. Assume the
one-dimensional true posterior p (6 | D) ~ N(u1,07) and the approximating mean-field Gaus-
sian distribution gx(0) ~ N(p2,03). Assume that 0? = 03 = 1, g3 = 0 and ps = e. Where
€ illustrates the outlier. Then the KI-divergence between the Gaussian distributions becomes
KL (N (u2,03) || N(p1,0%)) = % This shows a quadratic dependency on ¢; therefore, a small
change can significantly impact the value of KL [28]. Although the quadratic dependency remains,
using importance sampling can reduce the impact of outliers 2.3.1.

Underestimation of uncertainty: Another, more prominent issue with the divergence is its tendency

to underestimate the variance of the variational parameters [28, 49, 5]. This is due to the KL
penalizing the placement of probability mass on regions of the variational approximation where the
9x(0)

posterior has a lower mass, i.e., the ratio becomes large. However, when swapping p and

0] D)
q in the KL-divergence, this does not occur(rl"hls asymmetry is called mode-seeking behavior and
causes the estimated variance to be lower than the true variance [4, 19, 5, 49].

Multimodality: Another matter is the case of multimodality and the KL-divergence’s inability to
capture this correctly. This is partly due to the mode-seeking behavior, which causes the optimiza-
tion to focus on the largest mode. Usually causing a collapse into a single mode [35, 5]. Secondary
is the choice of variational family, Q, in our case, a Gaussian family. Which is unimodal and,
therefore, unable to capture a posterior with a multimodal nature. Solving this is usually done
by changing out the variational family for one that can handle multiple modes [12]. Or using the
exclusive KL-divergence, as opposed to the inclusive KL-divergence we use here, that exhibits mass-

12

covering behavior. And will thus capture multiple modes with a unimodal variational approximation
[25].

These defects have been an area of research in recent years, which resulted in different and new
divergence metrics being employed for VI [28, 49]. Which culminated in a generalization of diver-
gence measures that still work in a black-box setting [19]. The KL-divergence is a special case of
the so-called a-divergence:

Da(pllq) = log /p(D)aq(D)l’“dD

a—1
Where a > 0, a # 1. The « term is an interaction between the mass-covering effect, o < 1, and the
zero-forcing effect, &« > 1. An o < 1 tends to penalize assigning low probability in the variational
approximation where the posterior has high probability, which is useful when in a multimodal
setting. While o > 1, it penalizes assigning probability mass where the posterior has low or zero
mass. This results in more mass on high-mass areas of the posterior. When a — 1, it becomes the
KL-divergence; hence, it is a generalization thereof.

The a-divergence itself is a class of the f-divergence:
p@))
D = / D < dD
sl a(D)f (D)

Choosing f(w) = w log(w) where w = péfi’(ep)) results in the KL-divergence. f(w) = (w — 1)? is the
x2-convergence and f(w) = (aw((;:'f)) corresponds to the a-divergence.

A review of these generalizations shows marginal improvements [12]. However, experiments are
often done in combination with other recent improvements, causing dilution of the results.

Variational family The choice of the variational family can significantly impact the accuracy of
the final approximation. The default variational family for fully automatic variational inference is
the mean-field Gaussian [19, 35, 3]. Due to the nature of being Gaussian, the mean-field family is not
expressive enough to capture any and all imaginable posteriors. Especially when the true posterior
is thick-tailed, skewed, or multimodal [36]. Several continuations of the mean-field Gaussian have
been tested, such as the full-rank Gaussian family [19]. However, these tend to have a marginal gain
only. More promising results come from the corner of normalizing flows, a type of invertible neural
network. Early analysis by Domke et al. suggests improvements may be made with normalizing
flows, but the results are preliminary [3]. Dhaka et al. show normalizing flows to be effective, but
not straight out-of-the-box since they require problem-specific tuning [12].

2.3.2 Diagnostics

Variational approximation using VI generally has two sources of problems. First, sometimes it
converges slowly or does not converge at all. Second, it may converge to a poor approximation of
the true posterior due to the variational family being too limited or the true posterior having thick

tails, being skewed, or being multimodal [44, 47, 42]. Therefore, it is helpful, or even necessary, to
communicate back to a user of Stan whether the approximation is faulty. One caveat with Bayesian
inference is the uncertainty in the fit of models [10]. Even when the algorithm converges, we can

not be certain the results are correct. We can use diagnostics to convey that something did not

13

Probability
© o o o o o o o o
= = N N w w B B w
o w o w o w o w o

o
o
%

o
=}
S

-4 -2 0 2 4
Model Parameter

Figure 1: Example Gaussian fit (blue) of a multimodal posterior (red), source: Appendix A

go well, but when these diagnostics all pass, there is still a possibility that the model is incorrect
or inference failed. Nonetheless, we still want diagnostics to increase confidence and alert us when
inference go awry.

k-hat One such metric is k-hat, k, which is the shape parameter of a generalized Pareto distribution
fit on the importance ratios of a sample from the VI approximation [47, 44]. Vehtari et al. and Yao
et al. suggested using k-hat as a diagnostic tool to detect failure in the variational approximation
to approximate the true posterior [14, 47]. The PSIS diagnostic works by running VI to obtain
a variational approximation, g)(-), from which S samples are drawn, 6;. From these samples S

importance ratios are calculated: ry = p;fz’ep)). On these importance ratios, a generalized Pareto

Distribution is fit, which itself has three parameters, one of which is the k parameter, the parameter
used to diagnose problems. Vehtari et al. and Yao et al. both give a guideline for what k£ means in
the context of a variational approximation.

o If k< 0.5, we can conclude that the variational approximation is close to the true posterior.

e If0.5 < k < 0.7, it indicates that the variational approximation is not ideal but practically
useful.

o If k > 0.7, the variational approximation is flawed and can not be used as an accurate
replacement for the posterior.

Providing the k-hat diagnostic after fitting a variational approximation can give a user some indica-
tion of the reliability of the variational approximation of their posterior. However, determining the
exact problem when k > 0.7 is still hard and can be due to many causes, such as model misspecifi-
cation, multimodal posterior, wrong reparameterization, optimized for too few iterations, and too
large a learning rate.

Dhaka et al. show that the k diagnostic grows rapidly when working with samples from a high-
dimensional model [12]. In a figure from their paper, figure 2, the rapid growth of the k diagnostic
can be seen for the inclusive KL-divergence, also known as just the KL-divergence. They compared
it to a form of KL-divergence, exclusive KL-divergence, which tends to put probability mass on

14

Exclusive KL Chi*2

== Inclusive KL
3.0
2.0
<X
S
o 1.0
o 07 = = —— = = = ===
o
0.0
-1.0
0 10 20 30 40 50
Dimension

Figure 2: k rapid growth - Source: [1?]

the dominant mode of the posterior. This results in underestimating the uncertainty but having a
more robust k. However, the authors mention that optimizing with the exclusive KL-divergence is
harder in practice [12].

R-hat, R, is traditionally a diagnostic to measure convergence in MCMC algorithms [18, 16]. For
MCMC, R provides a measure to determine if a Markov chain has converged. The regular way
of calculating R is by computing the variance of each chain and dividing it by the between-chain
variance. If R < 1.01, it is considered a converged chain [17].

Dhaka et al. transfer this idea over to variational inference. They store this new approximation at
each step, i.e., variational parameter update. They treat this series of approximations as a Markov
chain to determine when to stop iterating their variational algorithm. They use five different
window sizes to look back in the chain, i.e., variational approximations, and determine the R for
cach window. Specifically, they compute the R for the mean of each approximated parameter in
the variational distributions. When one of these R is below 1.1, they call the variational algorithm
converged [11, 45]. Dhaka et al. primarily use R to determine stationarity; however, they also
mention it can conversely detect optimization problems. Doing this requires multiple chains or, in
our case, multiple runs of the variational algorithm. This allows the different instances to end up
in distinct optima indicated by a large R. The authors mentioned this as future work but have not
published on this as of yet [45].

15

3 Stan

Stan is an easy-to-use high-performance probabilistic programming language and Bayesian statistics
tool. The main goal is to provide an easy way to describe Bayesian models and provide a suite of
inference algorithms for fitting these. Stan exposes several interfaces, many of which are libraries
for various programming languages. Through these interfaces models can be fit with a variety of
algorithms, such as MCMC algorithms, HMC and NUTS, as well as ADVI, a variational inference
algorithm, and a maximum likelihood estimation algorithm. Describing models is done with a
high-level modeling language that allows one to imperatively define a (log) joint probability over a
set of parameters conditioned on data and possibly constants. This high-level language, sometimes
also confusingly called Stan, is transpiled down to C++ code, which is subsequently compiled and
linked into an executable for fitting [7].

CmdStanPy} [CmdStanR] [Stan.jl] [PyStan
CmdStan J [RStan
- <
Stan [MCMC J [Vi]
-)
Stanc3] [Stan math

Figure 3: Stan architecture

The Stan Math Libary is reverse mode automatic differentiation library®. The library includes
functions for matrix operations, linear algebra, solving differential equations, and its extensive
support for probability distributions [8]. Differentiation is the main use case of the math library.
The HMC and NUTS samplers both use gradients to guide their parameter updates, the BFGS
optimizer also uses gradients to search around the space, and VI also makes heavy use of gradients.
The library is very usable due to its direct, clean, functional, and simple interface while also being
efficient through lots of memory optimizations, caching, and expression templates [3].

The Stanc3 compiler transpiles a .stan file into C4++ header file for compiling and linking. It
is written in OCaml, a functional language, and is the main compiler for Stan. The compiler
works through lexing, parsing, type-checking, and optimizing the .stan file. The resulting C++
header file contains functionality to calculate the log probability and its gradient® using Stan’s math
library.

51t also supports forward and mixed mode, but the reverse mode is mostly used.
SMore complex models might expose more functionality.

16

3.1 Stan language

The Stan language provides an easy-to-use way to describe probabilistic models, specifically, how
the joint probability is defined. A strength of Bayesian inference is the ease with which hierarchical
models can be solved [16]. Here we work through an example of defining, fitting, and working with
a hierarchical model in Stan.

Eight schools is a famous study on the effects of specialized coaching programs for the SAT-V
(Stochastic Aptitude Test-Verbal)” in eight high schools in the United States. This study is often
used to convey the power of hierarchical models. The outcome of the test, as shown in table 1, is
the efficacy of the coaching programs per school on the SAT-V score. The SAT-V score can vary
between 200 and 800 points with a mean of 500 and a standard deviation of around 100 points [10],
with coaching having an effect of 28 + 15 points in school A and —1 + 9 in school E.

School | Estimated effect (y;) | Standard error (o)
A 28.39 14.9

B 7.94 10.2

C -2.75 16.3

D 6.82 11.0

E -0.64 9.4

F 0.63 114

G 18.01 10.4

H 12.16 17.6

Table 1: The difference in SAT-V score for the treatment group with respect to the control group
and the corresponding standard error.

Inference with a non-hierarchical model is more common in a non-Bayesian setting [17]. Two ways
to approach non-Bayesian inference with the data are using a separate estimate for each school, or
pooling all data together and having a single estimate. Doing a simple normal analysis per school
yields a 28.5 mean and 14.9 standard error in school A. Doing a pooled estimate gives a mean of 7.7
and a standard deviation of 4.1. In the separate analysis, it implies that the chance of the efficacy
being greater than 28.5 is 50% while in the pooled estimate, the efficacy has a 50% chance of being
below 7.7. Considering the other seven schools, the efficacy being greater than 28.5 is improbable,
while it being less than 7.7 is not likely either [16, 17]. Both estimates leave something to be desired
and are a springboard for hierarchical analysis.

With a hierarchical model, each school gets its own mean, which is drawn from a normal distribution
with a global mean and variance, which are estimated from the data. When the effects between
schools are similar, the global variance will be lower; by contrast, the variance will be higher when
the effects are dissimilar between schools. The model in figure 4 encodes this hierarchical model for
the eight schools. The global mean, y, and global variance, 7, are both sampled from a prior uniform
distribution [16]. Per school, the mean efficacy follows a normal distribution with parameters p and
7. The sampling follows a normal distribution with the per school mean and standard deviations
that are known from, and equal to, table 1.

Writing this hierarchical model in the Stan language is done in a .stan file, see figure 5. Stan models

"The SAT is a standardized acceptance test for higher education in the USA.

17

p ~ U(—10, 30)
a T~ U(5,10)
0, ~ N (p,)
a Yn ~ N (O, 0m)
N

Figure 4: Eight schools hierarchical model

data {
int N; // number of observations
int sigma[N]; // standard deviation of each school
int y[N]; // estimated coaching effect

}

parameters {
real mu;
real<lower=0> tau; // standard deviation must be positive
real theta[N];

}
model {
mu ~ uniform(-10, 30);
tau ~ uniform(5, 10);
theta ~ normal(mu, tau);
// likelihood
y ~ normal(theta, sigma);
}

Figure 5: Eight schools hierarchical model specified in .stan

are, in essence, a specification of the (log) joint probability distribution, also called joint density.
The joint density is usually a combination of priors and likelihoods, e.g., 7 being a prior and 6,
being a likelihood based on 7. Stan uses this joint density to fit a posterior often with MCMC
methods like NUTS; in the case of VI, it is used to minimize the divergence between itself and the
variational family.

A .stan file in its most stripped-down form consists of a data, parameters, and model block.
Describing what data is input, which parameters to learn, and how the model, i.e., joint density,
is specified, respectively. For most use cases, as with the eight schools example, these blocks
will suffice. Stan, however, provides the blocks generated_quantities, transformed_data, and
transformed_parameters as well. These are useful for generating new data from scratch or existing
data before fitting or specifying new variables based on estimated parameters.

18

import os

import numpy as np

import pandas as pd

from cmdstanpy import CmdStanModel

stan_file = os.path.join(os.getcwd(), 'models/8schools.stan')
model = CmdStanModel(stan file=stan_file)

y = [28.39, 7.94, -2.75, 6.82, -0.64, 0.63, 18.01, 12.16]
sigma = [14.9, 10.2, 16.3, 11.0, 9.4, 11.4, 10.4, 17.6]

fit = model.sample(data={"N": len(y), "y": y, "sigma": sigma}, show console=True)
print(fit.summary(percentiles=(5, 25, 50, 75, 95)))

Figure 6: CmdStanPy Python script to fit eight schools model

3.2 Stan interface

Working with Stan is done through a package; these exist for various programming languages that
directly interface with Stan or from the command line via CmdStan (Pronounced: command stan).
The interfaces PyStan and RStan directly communicate via memory with the Stan C++ library,
whereas CmdStanPy, CmdStanR, and Stan.jl interface through CmdStan®.

We fit the eight schools model with the CmdStanPy interface. Figure 6 shows the Python script to
run the eight schools stan model from figure 5. The data block from the .stan file has a one-to-one
correspondence with the data parameters passed through the sample function in Python. The data
are defined from and equal to the data in table 1. After fitting, which is by default done with
NUTS, the summary of the fit is displayed, see figure 7. The summary yields the fitted parameters
i, 7, and the mean for each school, specified in the parameters block in the .stan file and Ip__,
which is the log density up to a constant.

Mean MCSE StdDev 5% 25% 50% 75% 95% N Eff N Eff/s R hat
. -19.94540 ©.083483 2.32935 -24.067300 -21.293000 -19.71860 -18.25270 -16.57510 778.527 4325.15 1.00434
mu 8.12056 0.204876 5.07036 -0.040864 4.690840 8.13386 11.50470 16.51510 612.488 3402.71 1.00966
tau 7.22880 0.055536 1.40284 5.209970 6.005890 7.09902 8.36179 9.63528 638.072 3544.84 1.00940
theta[1] 11.75250 0.245197 7.57195 -1.092010 6.637100 11.94010 16.77270 24.28610 953.642 5298.01 1.00428
theta[2] 7.81880 0.234616 6.89798 -3.840830 3.192160 8.00204 12.32920 19.17150 864.428 4802.38 1.00227
theta[3] 6.42365 0.272177 7.87602 -6.482750 1.122960 6.26245 11.64000 19.42450 837.359 4651.99 1.01032
theta[4] 7.56263 0.230298 6.77786 -3.505420 3.140760 7.56485 11.83790 19.03600 866.173 4812.07 1.00434
theta[5] 4.92018 0.203537 6.59031 -5.601330 0.306374 4.89699 9.56225 15.75510 1048.400 5824.42 1.00078
theta[6] 6.13026 0.234216 7.19697 -5.563760 1.182500 6.10554 11.07040 17.66470 944.203 5245.57 1.00488
theta[7] 11.22750 0.238308 6.91910 0.070579 6.402710 11.11200 15.90210 22.92080 842.990 4683.28 1.00668
theta[8] 8.93106 0.255290 8.03047 -4.422330 3.735790 9.03898 14.14910 21.73010 989.494 5497.19 1.00664

Figure 7: Eight schools summary after fitting with MCMC

8Numerous wrappers around CmdStan exist for various languages, but these are the main three

19

4 ADVI in Stan

Automatic Differentiation Variational Inference (ADVI) is the VI implementation in Stan based
on the 2015 paper by the same name [23]. Since its introduction in 2015, it has remained an
experimental implementation, and no quality guarantees are given on the resulting posteriors. This
chapter sheds some light on three issues with the current implementation.

4.1 Convergence metric

A difficult-to-solve problem with optimization problems is choosing when to stop the process [4, 16].
ADVI maximizes the ELBO from equation 1. The ELBO is calculated after every N (default is 100)
gradient updates. Furthermore, the relative difference between the current and previous ELBO is
stored in a circular buffer’. Two metrics are calculated based on this circular buffer, namely the
average and median. If either of these metrics goes below a tolerance (default 0.01), the optimization
process is halted, and the current variational approximation is returned [2, 23].

Kucukelbir et al. did not provide any motivation for using relative difference in their 2015 and 2017
paper on ADVT [23, 22]. But, using the relative difference can cause problems when the absolute
changes are large.
ELBO; — ELBO;_
dif frer = : —

ELBO;_4

When plugging in ELBO; = 1.000.000 and ELBO;_1 = 990.500 the relative difference is approxi-
mately 0.009 causing the optimization process to halt. However, such large absolute changes after
100 gradient updates indicate the process may not have converged. But switching the relative dif-

ference out for the absolute difference causes issues with scale, e.g., an absolute value of 10 is not
large when the ELBO is 1.000.000, but it is when the ELBO is 100.

Consider the following Stan model that finds the mean of a data set: y ~ N (u,0.01). Providing
the data [10,10,1,1,0,0,0,0,0,0] should return a value of 2.2 for u. However, running this with
Stan’s ADVI returns means ranging from —122 to 320. See figure 8 for a plot of 10 runs. Clearly
indicating that the optimization process is halted before convergence has been reached.

Means symlog scale
°
®
]
L]

-10? -10! —-10° 0 100 101 102 10%

Figure 8: Means of 10 runs of ADVI on the mean model

9The circular buffer has a fixed size of 10 (default) that wraps around when the end is reached, thus overwriting
the oldest with the newest value.

20

A secondary problem with using relative difference occurs when the ELBO values are near zero,
causing a high relative difference. This can cause the optimization to never halt when the ELBO
converges near zero.

Relative Difference when Values are Around Zero

2004 —— Relative Difference with ELBO; = -0.005

751

Relative Difference
-
153
153

o
<}

251

—0.0100 -0.0075 —0.0050 -0.0025 0.0000 0.0025 0.0050 0.0075 0.0100
FLBO; -1 values

Figure 9: Relative difference with ELBO values near zero

4.2 Convergence subject

The optimization subject is usually the ELBO in variational inference literature, specifically black-
box variational inference literature. Naturally, the ELBO is also used to measure convergence, with
the relative difference metric in the case of ADVI. However, no convergence criteria on the ELBO
will generally halt correctly. This is due to most metrics indicating convergence of the ELBO,
while the variational parameters have not stabilized yet [I1]. We show this in figure 10, where
the first dotted (vertical) line indicates the convergence of the ELBO by the relative difference
metric. Therefore, given that convergence checks based on the ELBO are ineffective when using
contemporary metrics and considering that the ELBO is merely a means to an end, it is likely
fruitful to explore alternative approaches.

Distance D between moments

0 2000 4000 6000
Iterations

Figure 10: First vertical dotted line indicates convergence of the ELBO - Source: [11].

21

Gaussian Mixture Model

0.04 1 F—2100
003 t—2150
+—2200
L 002
c
s 2250
0.01 -
v o
= fl F—2300 @
2 000} I l =
£ /\\wf\—ﬂ— F-2350
3 —0.01 -
+—2400
—0.02 -
\\AJ\NM— [
—0.03 -
+—2500

T T T T T
0 25 50 75 100 125 150 175 200
Iteration (per 500)

Figure 11: Red line showing the ELBO, others show cumulative parameter change.

Figure 11 shows the ELBO stabilized while the parameters are still changing.

4.3 Step size

Stan’s ADVI uses its own optimization scheme, which is a combination of RMSProp and Adam
[23]. This scheme uses an adaptive learning rate that takes into account previous gradients, much
like Adam, Adagrad, RMSProp, etc [51, 20]. However, much like its constituent components it still
requires the specification of an initial step size. Zhang et al. show that using a default step size for
a variety of models can result in slow convergence, sometimes orders of magnitude, compared to a
well-chosen step size [51].

The existing implementation uses a subroutine to select the initial step size to better fit the scale
of the model. The subroutine runs the optimization for N (default 50) iterations for each step
size from [100, 10,1,0.1,0.01] and returns the one that yields the largest ELBO. However, once the
optimization process starts with the "best” initial step size, it is not adapted afterward. This is
because of the adaptiveness of the optimizer, which is the same way RMSProp and the like change
the learning rate based on previous gradients. Although the assumption is that the optimizer
changes the learning rate sufficiently, the initial step size has a larger impact than presumed [11, 51].
Zhang et al. are the first to tackle this issue but still use the convergence criteria based on the ELBO
[51]. While Dhaka et al. and Welandawe et al. also change the convergence criteria to measure the
variational parameters [11, 45].

In our analysis, we have identified three primary problem areas so far:
1. Relative difference convergence metric
2. Not using the variational parameters as a convergence subject, but instead the ELBO

3. Fixed step size throughout the optimization process

22

5 Variational inference

5.1 Variational parameter initialization

Stan’s ADVT uses a uniform(—2,2) distribution to initialize the parameter in the unconstrained
space. But most papers on variational inference with the mean-field Gaussians as the variational
family use a standard Gaussian as an initialization for the variational parameters [49, 3, 5, 23]. We
have also chosen to stick to this, although it is likely not the best initialization strategy.

A problem with initializing with a standard Gaussian is the case of infinite gradients. This issue
also persists for Stan’s initialization scheme or the uniform(—15,15) scheme proposed by Zhang
et al. [50]. From the PosteriorDB models, at least the models, sir, lotka_volterra, and dogs_log,
struggle with this issue. For VI, it is impossible to get the optimization process going because the
gradient is negative infinity in Stan. Therefore, we cannot make progress. Changing to a N(1,1)
distribution for the variational parameters of the dogs_log model fixes this. However, for the other
two models, it requires the variational parameters of some dimensions to be large, e.g., 10.000 to
100.000, before the gradients are not infinite anymore, nan in Stan. Solving this issue requires
hand-tuning; we have not found a reliable automatic solution. Agrawal et al. and Domke et al.
tried Laplace’s method for initialization but an equal fraction of models was helped and hurt. They
also mention that thus far no initialization method for VI has been found, a statement made in
2020 [13, 3].

In our opinion, an overlooked idea is to use the priors of the model parameters to initialize the
variational parameters. Using priors is a cornerstone of Bayesian statistics, a fact reflected in the
models of PosteriorDB as well, where nearly all models are specified with priors [40].

BLR + e I

BLR_priors 4

T T T T T T T T
500 750 1000 1250 1500 1750 2000 2250
Milliseconds

Figure 12: Bayesian linear regression model optimization time with and

without initialization with priors. — blr.stan
GLM_B
GLM_B_priors - — 1 o
T T T T T T T
400 600 800 1000 1200 1400 1600
Milliseconds

Figure 13: Binomial Generalized Linear Model optimization time with
and without initialization with priors. — GLM_Binomial.stan

23

Diamonds 4

Diamonds_priors 4

T T T T T
70000 80000 90000 100000 110000
Milliseconds

Figure 14: Multiple highly correlated predictors log-log model
optimization time with and without initialization with priors. —
Diamonds.stan

Figures 12 and 13 show a significant speed-up for both the BLR and GLM_Binomial models when
initializing with priors, 38% and 32% respectively, while the Diamonds model was hurt slightly by
using priors, being 13% slower. Investigation of the true model parameters, as calculated by NUTS,
shows that the parameter values with priors are near zero for the diamonds model. This means that
an initialization with a standard Gaussian is very close to the true parameters, based on sheer luck.
While an initialization with the specified priors, 7(3,0,10) and 7(3,8,10), will deviate at least
some from zero in most cases. A model that previously failed to converge due to infinite gradients,
dogs-log, can now convert due to initialization with priors. This use-case and the speed-up make a
good case for using priors as initialization distributions. However, automating this in Stan is not
feasible since we have no access to priors, thus requiring huge rewrites of the existing code base.
Therefore, all tests have been done by hand for each model, and implementation in Stan remains
open; see section 7.

In the preliminaries, we discussed the inclusive KL-divergence (default), which tends to have mode-
seeking behavior, and the exclusive KL-divergence, which puts mass on the dominant mode. Since
we use the KL-divergence, which is mode-seeking, we have to deal with its sensitivity to initialization
since it will not converge to the dominant mode in general [12]. This is both a blessing and a curse
since it allows us to detect and work with multimodal posteriors.

Fitting a multimodal posterior with the mean-field Gaussian family is impossible. Therefore, we
want to warn the user when we detect a multimodal model posterior since our fit will not reflect
this posterior. Generally, it is hard to detect this in a VI setting [49, 5]. But since we know the
KL-divergence is sensitive to initialization, we can use this to our advantage. We can choose to
run multiple optimization processes (chains) in parallel, each with a different initialization of the
variational parameters. Due to KL’s sensitivity, these chains might end up in different modes.
Calculating the R statistic between these chains will indicate this, allowing us to warn the user
about multimodality. This has not been implemented and will be addressed in future work (section
7).

Zhang et al., in their paper on Pathfinder, came up with an idea to fit a multimodal posterior with
only Gaussian distributions. They do this by running their Pathfinder algorithm in parallel (default
20 parallel instances) until convergence and combining the Gaussian approximation per dimension
to form a mixture of Gaussians. This mixture of Gaussians can better approximate posteriors far
from Gaussian [50]. We have done no testing but expect this procedure to carry over to variational
inference with Gaussian families and postpone this to future work (section 7).

24

5.2 Warm-up phase

Selecting a proper step size in variational inference, and more generally in optimization problems
arising in machine learning, has been a research topic for years [4, 49, 3, 51]. The first paper on
black-box VI addressed the issue of step size selection by using an optimizer, such as Adagrad, to
have an adaptive learning rate. A tendency perpetuated by the authors of ADVI and RAABBVI
as well [35, 23, 11]. However, using only Adam, RMSProp, Adagrad, or other alternatives does not
generally work well. Dhaka et al., the authors of RABBVI and RAABBVI, also agree with this
assessment. However, they still choose to start with a default step size and lower it based on some
scheme, further discussed in section 5.3.

Zhang et al. and Dhaka et al. suggest using a step size scheduler in combination with an adaptive
optimizer like Adam. However, only Zhang et al. suggest using a warm-up phase to search for a
good starting step size, while Dhaka et al. use 0.3 by default. However, in the same paper, they
mention that decreasing the step size too quickly can slow optimization by an order of magnitude,
failing to recognize that always starting at 0.3 might cause similar issues, e.g., when the best initial
step size is 0.5 or larger. Zhang et al. suggest running the optimization for several iterations before
calculating the training loss on which a linear regression is fitted. After each fit, the slope is checked,
and if this slope is below a certain threshold, the step size is increased by a factor of 10. If the
slope exceeds this threshold, the warm-up is halted, and the current step size is used to start the
optimization phase [51]. Although this method was initially intended to optimize deep learning
models, the idea is still valid for VI. We have tested the exact same approach on the ELBO but
found the step size would increase too fast, causing infinite gradients.

To prevent large step sizes that cause infinite gradients, we use a more dynamic approach. We
know from section 4.3 that the ELBO converges well before the variational parameters do. We take

advantage of this fact by optimizing until the ELBO converges'®.

We start the warm-up phase with the step sizes: [10%,10%,10%,10°,1071,1072,1072,1074,107°].
For each of these step sizes, we run a fixed number of iterations'' and calculate the ELBO of the
resulting approximation. Then, for the step size with the largest ELBO, we continue this same
procedure with that step size, the same step size but doubled, and the same step size but halved.
This allows us to grow and shrink the step size according to its performance. When the ELBO
stagnates, i.e., the ELBO at the current timestep is within two standard deviations of the previous
ELBO, we stop this process.

Now, we start a transient phase where we grow the step size by a factor of two. We begin with the
step size from the warm-up phase, run an optimization for 100 iterations, and calculate the ELBO
afterward. If the ELBO is within two standard deviations of the stagnated ELBO, we increase the
step size by two. Otherwise, we stop the transient phase and start the optimization phase with the
current step size divided by two; see algorithm 1.

What this process achieves is quickly reaching a point in the optimization space where the ELBO
is more or less stable. This is possible since the ELBO converges before the variational parameters,
at least by the most commonly used metrics (see section 4.2). Since the optimization starts with a
wide range of possible step sizes, one that fits the model is automatically selected. If the step size
had caused an issue, e.g., an infinite gradient, it would have been discarded. Any subsequent step

10With more loose bounds than the ADVI convergence criteria.
HRefer to the ablation study in section 6 for the exact number of iterations.

25

size, exactly an order of magnitude smaller or larger, is only chosen if it increases the ELBO more
than the current step size. This yields an appropriate step size for the model we are fitting. We
can use this step size as the starting step size for the optimization phase. However, we presume
we can finish the optimization phase quicker by first increasing the step size. We think this works
since if the ELBO converges with step size 0.1 and it converges before the variational parameters,
then we are updating the variational parameters with step size 0.1. Thus, if we keep increasing
the step size further, by doubling the step size, and the ELBO remains stable, we are doubling the
speed with which we update the variational parameters. If this is the case, the best thing to do is
to increase the step size until the ELBO becomes volatile again. We presume this works since a
stable ELBO means we have a step size that either keeps the variational parameters near a local
optimum or increases them steadily. A volatile ELBO means the step size makes changes in the
variational parameters that are too radical. In summary, select the step size that yields the best
ELBO from a wide range of possible step sizes. Run parallel optimizations of step sizes one order
of magnitude away, keeping the best one, and repeat this process for the step size that produces
the greatest ELBO. When the ELBO converges, increase the resulting step size by a factor of two
until the ELBO becomes volatile again. Use the step size that yielded the last stable ELBO for
optimization.

We experimentally show this phase works using a ubiquitous Bayesian linear regression model.
Figure 15 and 16 show that using a fixed step size is slower than using our warm-up approach.
The efficiency of the optimization routine with a specific step size depends on the model and data.
Therefore, hand-picking step sizes perform worse than using a warm-up routine. Running only the
warm-up routine and not the additional transient phase will be slower, as shown in figures 17 and
18. An attentive reader will notice that a fixed step size of 0.3 performs best out of the fixed step
size set, exactly the step size Dhaka et al. and Welandawe et al. recommend.

0.01 }—{ I |
0.1 }—‘ | o
Warm-up - }—l:l—{

T T T T
0 2000 4000 6000 8000
Milliseconds

Figure 15: Runtime for warm-up versus fixed step sizes — blr.stan

26

0.1 | I I |
1.0 - |—{ |_¢
Warm-up - }—:I—{

T T T T T T T T
250 500 750 1000 1250 1500 1750 2000
Milliseconds

Figure 16: Runtime for warm-up versus fixed step sizes —
GLM_Binomial.stan

BLR_transient 4

BLR +

T T T T T T T T
500 750 1000 1250 1500 1750 2000 2250
Milliseconds

Figure 17: Runtime for warm-up with and without largest step size
selection — blr.stan

5.3 Optimization phase

When our warm-up phase (section 5.2) is finished, we have a variational approximation and a step
size to start the optimization process with. As with many numerical optimization problems, it
is challenging to formulate robust termination criteria for VIs optimization [16, 25, 35, 19]. In
section 4, we have shown that one of the issues with ADVI in Stan is its termination criterion.
Therefore, our primary focus has been to develop a reliable and robust termination criterion that
works regardless of model and data specifications.

We build upon the ideas of Pflug et al., whose work focussed on the convergence of fixed step size
stochastic optimization, and the more recent work by Welandawe et al., who adapted Pflug’s work
to a VI setting [32, 45]. Welandawe et al. adapt Pflug’s fixed step size optimization technique with
their own convergence check and expand the method with a termination rule [45]. We have a similar
approach for the fixed step size optimization process but a novel termination rule for the overall

27

Diamonds_transient -_—

Diamonds

70 80 920 100 110
Seconds

Figure 18: Runtime for warm-up with and without largest step size
selection — Diamonds.stan

optimization process.

Like the mentioned authors, we treat the series of variational approximations produced by the
optimization with a fixed step size as a Markov chain:

A= AW A@ NG (9)

Here, ¢ is the current step size, and the A\ are produced by equation 4, i.e., the optimization process.
Dhaka et al. and Welandawe et al. use the R statistic from MCMC literature to detect convergence
in this Markov chain [11, 45]. Normally, R is calculated using multiple chains, i.e., parallel MCMC
runs. However, we only run a single chain; see section 7 for our idea on multi-chain runs of VI. The
multi-chain approach of MCMC calculates R as follows:

= (V/W)z (10)

Where V and W are the between-chain and within-chain variances respectively [18]. Since we only
run a single chain, we use the so-called split—R version, where we split the Markov chain in half
and treat each half as a separate chain [43]. A split—R less than 1.1 is a necessary but insufficient
condition for stationarity. The idea of using it to detect convergence of VI was proposed by Dhaka
et al. and works well in practice [11, 43].

If the R statistic - we use R and split-R interchangeably - is close to 1, it suggests that the iterates
in the window W are close to stationarity [45]. split- R is formulated in terms of R from equation
10. This R is calculated for each dimension, where the between-chain variance is the variance
between the first and second half of the iterates of that dimension. The maximum R over all these
dimensions is the resulting split-R:
P o (k— W+1) (k)

split-R(W) == Jnax, R(\ N (11)
Here, k is the current iteration, W is the size of the window for look-back, and i represents the
tth dimension. Dhaka et al. and Welandawe et al. suggest using split—]:? < 1.1 as the threshold
for detecting stationarity. While Dhaka et al. use a fixed W (default 100) we follow Welandawe’s
approach of searching for a window size between W,,;, and 0.95k to find a W that minimizes
R. A minimum window size is needed to ensure the robustness of the approximations, while the
maximum takes into account a bit of warm-up. Welandawe et al. search over this range with 5
evenly spaced values. We adopt this exact same approach and do a robustness experiment on the
minimum window size; see section 6.3.

When the optimization process is stationary according to R, we must decide whether to terminate
the process or continue with a smaller step size. Welandawe et al. strike a balance between possible

28

accuracy gained and expected runtime would they continue the process. They do this by suggesting
a symmetrized Kullback-Leibler divergence (SKL) and a Relative accuracy Improvement statistic
(RI), combining these results in an inefficiency index which they use to determine termination

[45]-

Estimating RI involves predicting the number of iterations the optimization requires before reaching
stationarity with a smaller step size. Their prediction assumes that the number of iterations to
convergence grows exponentially with a decrease in step size [15]. However, this claim is only tested
on a Gaussian model with a diagonal non-identity covariance matrix: X,; = j1[i = j]. Typical
Bayesian models, such as hierarchical models, will not have a diagonal covariance matrix; therefore,
this argument will not generally hold. We have thus chosen not to use any prediction of future
runtimes.

Welandawe et al. came up with SKL because they were looking for a measure that guarantees
the accuracy of the mean, covariance, and interval probabilities. While the 2-Wasserstein distance
provides this, the authors think it does not provide strong enough guarantees on the interval prob-
abilities [15]. Therefore, the authors introduce the SKL, which measures the discrepancy between
the optimal and optimized variables. Since the optimal variational approximation is unknown,
Welandawe et al. compare the variational approximation of the current fixed step size phase with
the variational approximation of the previous fixed step size phase. However, since we are work-
ing with a mean-field Gaussian family, the SKL will compare two Gaussians per dimension. But
Gaussians are fully characterized by their mean and covariance, having well-behaved tails, meaning
that changes in mean and covariance translate into predictable changes in the tail. That defeats
the argument of interval probabilities, which are only relevant when comparing vastly different
probability distributions [9, 4].

Convergence criterion We have decided to take an approach where only a few hyperparameters
have to be set and only require the user to provide a single intuitive parameter; this parameter,
like all others, has an experimental default, see section 6.3. When the optimization for a step size
is stationary, according to R, we half the step size and continue with a subsequent fixed step size
optimization run. When we have done two or more fixed step size optimization runs, we will compare
the variational approximation of the current and previous run with the 2-Wasserstein distance [26].
When the 2-Wassserstein distance is below o (default 0.001) we terminate the optimization process
and return the obtained variational approximation, see section 5.3 for more details on the exact
variational approximation used in these comparisons. When the 2-Wasserstein distance exceeds «,
we will half the step size and start another optimization epoch.

The 2-Wasserstein distance was originally used in optimal transport theory, but it can also be used
to quantify the work needed to move from one probability distribution to another [39, 26]. The
2-Wasserstein distance has a neat closed-form solution for Gaussians. For example, the distance
between N (u1,¥1) and N (uz, 3a) is:

1 1
Wa =\l —] + Trace(S1 + £ — 2(23 5,80} (12)

Since we are optimizing with the mean-field Gaussian assumption, recall that we assume each
model parameter is independent. Therefore, we can compare each dimension independently, and

29

the 2-Wasserstein distance for two Gaussians simplifies to:

Wy = /(11 — p2)? + (01 — 02)? (13)

Our complete comparison thus becomes:

d

A (% (1" = 2 4 (o) — e < a) (14)

i=1

Where d is the dimension of the Bayesian model we are fitting and ks is the variational approx-
imation at the iteration where the optimization epoch for step size § reached stationarity. When
the equation holds true, we terminate the process and return the variational approximation to the
user. The requirement for the user is to set o to a value they deem appropriate. The benefit of
the 2-Wasserstein distance is that a has an intuitive meaning for the user. Since the difference
in the means and standard deviations is always below « if the comparison of equation 14 is 1.
Therefore, if we make the assumption that subsequent optimization epochs with a smaller step size
make increasingly fewer changes to the variational approximation, then o becomes the measure of
accuracy that the user wants. Consider the change in the variational approximation between epoch
t and t + 1 as A®¥ — AX(**1) then our assumption is that for any subsequent epoch ¢ + s it will hold
that A(®) — A(+s) < \(O) — \(+D),

Iterate averaging Iterate averaging, invented by Polyak et al. and later adapted for use in VI
by Dhaka et al., is a technique we adopt; see section 2.3.1. Iterate averaging works by considering
the series of variational parameters produced by a fixed step size optimization process as a Markov
chain. When this Markov chain reaches stationarity, the average of these iterates will return a more
exact solution of the true posterior than the last approximation [32, 11, 34].

A0 = AW A@ AG)

Where § is the step size of the fixed step size optimization epoch, and A(*) is the variational ap-
proximation after the i’th update. It is important to average over those variational approximations
considered part of the stationary Markov chain, i.e., allowing for some warm-up time. Welandawe
et al. take this further and use an MCSE and ESS check before averaging; when this check does not
succeed, they continue the optimization process. We have chosen to drop this requirement and use
the already built-in feature of window selection that is part of the stationarity check. When the
fixed step size optimization halts, it means we detected stationarity through R. R checks the last
W variational approximations, determining W is described in section 5.3. We use this same W as
the range to average over.

JUNIE f: A (15)
TW+1
i=ks—W

Here, ks is the iteration at which the optimization with fixed step size J converged, and W' is the
window size determined by the stationarity check. The iterate average \° is what we use in the
termination rule to determine if the process has converged, see section 5.3.

30

5.4 Diagnostics

Computing a variational approximation of the true posterior is always possible. However, deter-
mining if the approximation is (near) optimal is difficult [47, 44]. A similar difficulty exists with
evaluating the posterior computed by MCMC algorithms, where the R statistic is widely used to
alert of problems [13]. For variational inference, the k-hat statistic has a comparable role to R for
MCMC; see section 2.3.1 for an explanation of k-hat. In short, after computing a variational ap-
proximation, we take draws from this approximation and the joint density to calculate importance
weights (IW). From the largest 20% of IW a generalized Pareto distribution is fit. This fit produces
the shape parameter, k, similar to a u for a Gaussian distribution. Vehtari et al. showed empirically
that a shape parameter below 0.7 indicates a usable variational approximation.

We have chosen to incorporate the k-hat diagnostic and provide the user with this diagnostic.
Thus providing some indication of the reliability of the variational approximation. Merging our
variational inference algorithm with Stan would allow the k-hat diagnostic to be supplied like the
R is provided for MCMC-produced densities now. However, experiments with k-hat (section 6.2)
demonstrate their ineffectiveness.

5.5 Complete algorithm

Combining the warm-up and optimization phases from sections 5.2 and 5.3 yields our complete
algorithm. Note that initialization through prior distributions is left out due to implementation
difficulties in Stan. This section provides the algorithm in pseudo-code to provide a clear picture
while hiding implementation details. In algorithm 1, we summarize the warm-up phase, and in
algorithm 2, the optimization part. The complete algorithm has five parameters, four of which are
hyperparameters, and have verified defaults found through a robustness test, see section 6.3. Only
a single parameter (the accuracy, &) must be set by the user, which can also be omitted because a
generally good default is provided. This single parameter, as described in section 2, exists on an
easy-to-interpret scale for an end user:

e accuracy a: The VI algorithm compares, whenever it reaches stationarity, the Gaussian
approximation with the previous one and halts optimization when the change per dimension
is below a. Assuming that subsequent changes, if we continue optimizing, will be less than
« this parameter can be considered an accuracy measure. This makes it easy to interpret,
considering that the end user knows the level of accuracy necessary for their model.

e window W (default: 200): This default value has been found empirically and is also suggested
by Welandawe et al. Increasing it will provide a bit more accuracy on a good portion of the
models but will increase the runtimes significantly. A user might benefit by increasing this
value when their posterior is not accurate enough, and they have enough time.

e Monte Carlo samples M (default: 15): Experiments show that around 15 gradient samples
result in robust gradient calculations while not being too much of a computational cost. The
user can always increase this number for more accuracy, but we suspect no large gains will be
made. Providing a value lower than 10 will cause large oscillations in gradient calculations.

e minimum step size d,,;, (default: 10*5): We find that having smaller step sizes leads to
excessive computation times while not improving the approximation.

31

e maximum iterations k;,,, (default: 100000): The maximum iterations must always be set,
and a warning is returned when it is reached before convergence. This allows the user to act
upon that info by changing the model or increasing the maximum iterations.

When running our algorithm, we always start with the warm-up phase; we can see from algorithm
2 that algorithm 1 is called. Algorithm 1 is the warm-up algorithm and starts by defining a list of
step sizes ranging from 103 to 107> on line 2. With this list, a function BestStepSize() is called,
which, for each step size in the provided list, runs an optimization round for the provided window
length (lines 34-42). Subsequently, it returns the step size and the variational approximation for
the step size that had the largest ELBO. This step size and variational approximation are returned
and stored (line 3). Then, with that step size, we make a new list of step sizes, one an order of
magnitude smaller and one larger (line 9). With this list, the function BestStepSize() is run
again, and the result is stored (line 10). We keep doing this process until we run the optimization
three times, but not increasing the ELBO faster than two standard deviations of the previously
found ELBO (lines 12-17). In the next loop (lines 20-30) we find the largest step size that does
not have an ELBO more than two standard deviations from the thus far largest ELBO. We do
this by running the optimization for 100 runs with the step size that we previously doubled. If its
ELBO is within two standard deviations, we double again until this does not hold. Returning in the
end, the largest step size that still had an ELBO within two standard deviations, the variational
approximation up to this point, and the total iterations ran (line 32).

After the warm-up phase, the optimization phase starts, which is described in algorithm 2. On line
1, we can see the call to algorithm 1. The total iterations up to this point is stored as the iterations
since the optimization was last stationary (line 2). Now we enter a loop until the optimization
process converges or reaches the maximum number of iterations, the latter is left out for brevity
(lines 4-27). For each loop, the optimization is run for W iterations with M Monte Carlo samples
(line 5). Subsequently, the split—R diagnostic was calculated on five window lengths across the last
k iterations since stationarity (lines 7-10). If the split—]% is larger than 1.1, the loop continues to the
next iteration, where we again run the optimization (line 12). When split—f{ is less than or equal
to 1.1, we calculate the variational approximation by averaging over the last w approximations,
where w is the window over which split-R is calculated (line 13). Next, the 2-Wasserstein distance
is computed using the average variational approximation compared to the one from the last time
we were stationary (line 14). If this 2-Wasserstein is smaller than the provided «, the optimization
is terminated, and we proceed to line 29 (lines 15-18). If the current step size is greater than the
minimum step size provided, we half the current one (lines 20-22). Next, we update the iterations
since stationarity to the current total iterations and update the variational approximation of the
current step size to that of the iterate average (lines 24-25). When the loop terminates due to
convergence or reaching the maximum number of iterations, we compute the k-hat diagnostic on the
current iterate average variational approximation and return that approximation with its diagnostic
(lines 29-30).

In summary, the warm-up phase picks an appropriate step size for the model and tries to make
progress quickly. After, we find the largest step size, which does not destabilize the optimization
process. We start the optimization phase with this step size, checking for stationarity every W
iterations. In the case of stationarity, we compare the current parameters with the parameters of
the previous time we were stationary. We declare the optimization converged if these differences are
below a threshold «. If the differences are larger than «, we decrease the step size and continue the
optimization. After convergence, we diagnose our posterior with the k-hat diagnostic and provide

32

it, together with the variational approximation, back to the user.

33

Algorithm 1: Warm-up & transient phase

Input: window size W (default: 200), gradient iterations M (default: 15)

Output: k, A, 0
1t=0
2 step_sizes « [1000.0, 100.0, 10.0, 1.0,0.1,0.01, 0.001, 0.0001, 0.00001]
3 0y, A¢, elboy, 0y < BestStepSize (NULL, step_sizes, W)
4 kW // After BestStepSize() we ran W iterations
5
6 count < 0
7 while True do
8 t+—t+1
9 step_sizes < [0;_1 * 2,01—1, 01—1/2]
10 0¢, A¢, elboy, oy < BestStepSize(\;_1, step_sizes, W)
11 k<~ k+W
12 if elbo; < elboy_1 4+ 2 *x 04_1 then
13 count = count + 1
14 if count == 3 then
15 | break
16 end
17 end
18 end
19
20 whilet < t+ 1 do
21 A¢ < optimization(A;_1, d¢—1, 100, M)
22 k< k+ 100
23 elbo;, oy + calculate_elbo(\;)
24 if elbo; > elboy_1 + 2 x 041 or elbo; < elboi_1 — 2 * 04_1 then
25 (515 — (5,5/2
26 break
27 else
28 ‘ O < Op %2
29 end
30 end
31
32 return k, \;, &;
33
34 Function BestStepSize (\;_1, step_sizes, W):
35 A< NULL // best variational approximation
36 0+ 0.0 // best step size
37 ELBO < —oco // best ELBO
38 foreach ss in step_sizes do
39 Ass < optimization(As_1, ss, W, M)
// sigma is the square root of the variance
40 elbo, o <« calculate_elbo(As;s)
41 if elbo > ELBO then
42 A Ass
43 6+ ss
44 ELBO <« elbo 34
45 end
46 end
ar return §, A, elbo, o

48 end

Algorithm 2: Optimization phase

Input: accuracy « (default: 0.001), window size W (default: 200), Monte Carlo samples

M (default: 15), minimum step size 6, (default: 1075)

Output:), k

1 k, Ak, d < WarmUp (W, M) // Call to algorithm 1
2 k_since_stationarity < k

3 converged < False

4 while not converged do

5 Ak+w < optimization(Ag, §, W, M)
// A check is done to ensure at least W iterations were ran in warm-up
i R « (k_since_stationarity = 0.95 — W) /4
7 Rwindows — [VV,W+R57W+2R5,W+?)R§,W+4R5]
8 Rhpats < [r-hat(w) for w in Ryindows) // Call Stan’s r_hat function
9 R,w +— min(Rhats) // R and window for that smallest R
10
11 if R < 1.1 then
12 Ap IterateAveraging(w) // Per dimension
13 § < 2WassersteinDistance (A g, Ak_since_stationarity)
14 if £ < a then
15 converged < True
16 break
17 end
18
19 if 6 > 6,u:n then
20 | 6« 6/2
21 end
22
23 k_since_stationarity < k
24)\k,since,stationarity <~)\1:2
25 end
26 end
27

28 k + KHat (Ap)
29 return Ag, k

35

6 Experiments

This section describes the experiments and the results thereof. Here, we compare our algorithm as
defined in section 5.5 with Stan’s MCMC, specifically NUTS. We run our experiments on a laptop
with the following specifications 2

e Processor: Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz (8 CPUs)
e RAM: 16 GB DDR3 2133 MHz

e OS: Ubuntu 22.04.3 LTS

e Intel Turbo Boost: Disabled

To compare our algorithm with MCMC, we use PosteriorDB [410]. PosteriorDB is a set of models
with datasets, implementations in Stan, and reference posteriors in the form of samples of that
posterior. Of the total 123 posteriors, we picked 16 that are representative and cover many model
types. The models for which a reference posterior exists have a set of 100000 roughly independent
samples. For the remaining models, for which no reference posterior exists, we ran MCMC with
identical settings that PosteriorDB uses for their reference posteriors:

e Stan version: v2.33.0 (5 September 2023)
e chains: 10

e iter: 20000

e warmup: 10000

e thin: 10

e ndraws: 10000

PosteriorDB requires their reference posteriors to have zero divergent transitions. However, while
running MCMC for the models without reference posteriors, we found that divergent transitions
occurred frequently, which might explain their absence in PosteriorDB. Therefore, we have chosen
only to accept draws for runs with a maximum of 1 divergent transition per 1000 iterations. This
number of divergent transitions can still be problematic, but we consider this a reasonable tolerance
for our use case.

The set of models from PosteriorDB we use to do our experiments includes:
e Hierarchical models: dogs, dogs_hierarchical, eight_schools_centered, surgical
e Hidden Markov models: hmm_example
e Time series models: arK, garchili
e Linear models: GLM_Binomial, sblrc, sblri, wells_dist
e Non-Linear models: dugongs

e Log-Log models: diamonds

12Due to the weaker specs compared to newer systems, the experiments, such as runtime analysis, might be
representative of what an end-user might expect.

36

e Mixture models: low_dim gauss mix
e Gaussian process models: gp_pois_regr
e Mark-Recapture models: MO_model
For each of these models, we run our VI algorithm 100 times with its default settings:
e accuracy «: 0.001
e window W: 200
e Monte Carlo samples M: 15
e minimum step size §,,;,: 107°
e maximum iterations k,,,,: 1000000

We have 100.000 samples from the posterior, fitted by MCMC, for each model. We calculate
the mean and standard deviation from these samples per dimension. Since our VI uses mean-
field Gaussians to approximate the posterior, we use the Gaussians’ mean and standard deviation
to compare to MCMCs rather than sampling from the posterior. The tables below compare these
descriptive statistics per model and dimension; if the VI mean is not within two standard deviations
of the MCMC mean, we set the row in bold.

Furthermore, we provide a table with summary statistics for each model. We calculate the stan-
dardized mean difference per dimension, i.e., how many standard deviations our VI mean deviates
from the MCMC mean. For this list of standardized mean differences, we compute the Root Mean
Square Error, the minimum, and the maximum and show these per model in a single plot.

From tables 2 through 17, we see that the models dogs_hierarchical, dugongs, garchll,
hmm_example, low_dim gauss mix, MO_model have means of one or more dimensions that deviate
at least two standard deviations from their MCMC counterpart. We do not have a clear-cut answer
as to why VI performs poorly on these models. However, we presume it is due to the hierarchical
nature (dogs hierarchical, hmm_example, multimodality (MO_model, low_dim gauss mix), and
autocorrelation (garchi1). Although VI has a hard time on these models, it performs well across
the board on various model types. In figure 19 of the standardized mean differences per dimension,
the RMSE, minimum and maximum values are plotted. From this, we can deduce that six mod-
els perform worse than the two standard deviation tolerances. In contrast, the remaining models
perform very well, with most having no dimension with more than 10~! deviation and none with
more than 10° deviation. This shows our VI algorithm provides parameters that are accurate and
reliable enough for inference in most cases.

dogs-dogs
Mean Std Dev
VI MCMC VI MCMC
1.800 1.809 0.104 | 0.230
—0.359 | —0.359 0.026 | 0.037
—0.210 |—0.211 0.018 | 0.043

dogs-dogs_hierarchical
Mean Std Dev
VI MCMC VI MCMC
2.495 | 0.923 0.129 | 0.011
1.298 | 0.786 0.094 | 0.019

Table 2 Table 3

37

dogs| e RMSE - hd

dogs_hierarchical -

garchll + -— °
ark A - ®
diamonds - - L
blr (sblrc) -— ®
blr (sblri) 4 == L
low_dim_gauss_mix -— ®
eight_schools_centered - - ®
GLM_Binomial_model -
MO_model - -—C
wells_dist =
gp_regr — ®

dugongs_model A — L

hmm_example - -— L}

surgical_model A -— ®

1073 1072 107t 10° 10t

Figure 19: RMSE, Min and Max value of the standardized mean
difference per dimension. The mean and standard deviation of MCMC
are used as the golden standard.

38

102

garch-garch11

Mean Std Dev

VI

MCMC VI MCMC

5.058 5.050 0.117 | 0.123
0.342 1.475 0.202 0.569
0.330 0.569 0.461 0.126
0.834 | 0.291 0.563 | 0.123

Table 4

diamonds-diamonds

Mean Std Dev

VI

MCMC VI MCMC

6.645 | 6.660 0.004 | 0.251
6.244 | 6.363 0.012 | 0.328
—4.560 | —4.684 0.012 | 0.321
1.450 1.447 0.009 | 0.141
0.134 | 0.134 0.005 | 0.007
—0.040 | —0.040 0.004 | 0.007
0.023 | 0.023 0.004 | 0.006
0.002 | 0.002 0.004 | 0.004
—0.445 | —0.445 0.005 | 0.006
—0.093 | —-0.093 0.005 | 0.006
—0.013 |—-0.013 0.005 | 0.005
0.011 0.011 0.004 | 0.005
—0.001 | —-0.001 0.004 | 0.005
0.001 0.001 0.004 | 0.004

Table 6

sblri-blr

Mean Std Dev

VI

MCMC VI MCMC

0.999 | 0.999 0.001 0.001
1.000 | 1.000 0.001 0.001
1.000 1.000 0.001 0.001
1.001 1.001 0.001 0.001
1.002 1.002 0.001 0.001
0.961 | 0.963 0.004 | 0.071

Table 8

39

arK-arK
Mean Std Dev
VI MCMC VI MCMC
—0.001 | —0.001 0.011 0.011
0.691 0.692 0.021 0.071
0.440 0.440 0.021 0.087
0.105 0.105 0.021 0.092
—0.036 | —0.036 0.021 0.086
—0.301 | —0.301 0.021 0.069
0.151 0.150 0.008 0.008
Table 5
sblrc-blr
Mean Std Dev
VI MCMC VI MCMC
1.000 1.000 0.001 0.001
0.999 0.999 0.001 0.001
0.998 0.998 0.001 0.001
0.999 0.999 0.001 0.001
0.999 0.999 0.000 0.001
1.041 1.042 0.004 0.077
Table 7

low_dim_gauss_mix-low_dim_gauss_mix

Mean Std Dev
VI MCMC VI MCMC
—2.733 | —2.734 0.033 0.042
1.723 2.870 0.009 0.055
1.028 1.028 0.029 0.031
1.024 1.024 0.039 0.040
0.496 0.622 0.066 0.015

Table 9

eight_schools-eight_schools_centered

Mean Std Dev
VI MCMC VI MCMC
7.127 6.507 5.242 5.649
5.171 5.080 4.798 4.704
3.451 3.959 5.278 5.350
4.758 4.876 4.928 4.839
2.797 3.619 4.668 4.722
3.670 4.156 4.907 4.908
7.619 6.573 4.876 5.112
4.877 4.965 5.322 5.391
4.279 4.493 1.825 3.227
1.772 3.931 0.241 3.164
Table 10
MO_model
Mean Std Dev
VI MCMC VI MCMC
—0.311 0.423 0.148 0.039
—0.009 0.497 0.137 0.038
Table 12

gp_pois_regr-gp_regr

Mean Std Dev
VI MCMC VI MCMC
6.884 6.902 1.306 1.300
2.440 2.434 0.789 0.789
1.832 1.833 0.512 0.500
Table 14

40

GLM_Binomial

Mean Std Dev
VI MCMC VI MCMC
1.015 1.014 0.041 0.065
—0.173 | —-0.173 0.073 0.073
—0.921 | —0.922 0.096 0.146
Table 11
wells_dist
Mean Std Dev
VI MCMC VI MCMC
0.610 0.607 0.037 0.061
—0.006 | —0.006 0.002 0.001
Table 13
dugongs
Mean Std Dev
VI MCMC VI MCMC
2.636 2.654 0.018 0.073
0.959 0.973 0.045 0.077
0.951 0.863 0.092 0.033
109.168 |109.461 30.272 | 31.962
Table 15

surgical
Mean Std Dev
VI MCMC VI MCMC
—2.551 | —2.553 0.115 | 0.152
0.189 | 0.186 0.081 0.160

hmm_example —2.945 | —2.952 0.341 0.435

Mean Std Dev —2.158 | —2.184 0.221 0.235

VI MCMC VI MCMC —2.610 | —2.605 0.265 | 0.273
0.727 | 0.666 0.472 | 0.100 —2.785 | —2.774 0.139 | 0.144
—2.612 0.334 0.430 0.100 —2.968 | —2.942 0.247 0.280
1.106 | 0.073 0.032 | 0.029 —2.627 | —2.622 0.230 | 0.232
1.758 | 0.927 0.019 | 0.029 —2.675 | —2.667 0.259 | 0.263
—1.948 | —1.981 0.182 0.208

Table 16 —2.618 | —2.607 0.227 | 0.228

—2.500 | —2.496 0.276 | 0.276
—2.167 | —2.187 0.184 | 0.192
—2.630 | —2.624 0.185 | 0.185

Table 17

6.1 Runtime analysis

One major selling point of VI with respect to MCMC is its supposed speed [49, 5]. In figure 20, we
compare our VI algorithm runtimes with MCMC runtimes for 100 runs each. We run MCMC with
its default settings of 4 chains and 2000 iterations, including 1000 warmup iterations. The times for
the 100 runs of VI and MCMC are plotted in a distinct boxplot on the row for the corresponding
model. Where the box spreads from the first to third quartile with a line at the median. The
whiskers extend from two sides to the farthest point, lying within 1.5 times the interquartile range;
data points outside this range are shown as circles [1].

The assumed speed difference would be most notable when there is a large dataset since VI can
use batching to speed up the optimization. However, our algorithm is built in Stan and has no
way to run on subsets of the data. Also, there are not many large datasets in PosteriorDB, except
for neural net models, and we have thus not compared with any large model with a corresponding
large dataset. In the runtime plot, figure 20, we can see that MCMC beats our VI algorithm on
almost all models. Closer inspection reveals that VI is faster on the diamonds and arK model.
Both have a large number of dimensions compared to all other models we included in our analysis.
More analysis on runtimes corrected for dimensions must be done to provide a verdict. Still, longer
runtimes in higher dimensions make intuitive sense for MCMC due to the lower acceptance rate at
higher dimensions.

Furthermore, we are using a VI algorithm that must still be considered a prototype and has not
been optimized due to time constraints. Since the runtimes of VI are always within an order of
magnitude (except in the two cases where no convergence was reached, but the optimization halted
due to reaching the maximum iterations) of the MCMC runtimes, we presume that we can optimize
this discrepancy out.

41

garchll —— -V

sblrc 20

arK IR
sblri 4 —EH
low_dim_gauss_mix A —" < —
eight_schools_centered -)
Mzero A —
dugongs - - 00
dogs A HEEH
surgical - e
well_dist - HH
GMBi{ T o
gp_pois_regr - I —
diamonds - o)
dogs_hierarchical - e

hmm_example - e

|

1 10 100
Time in seconds

Figure 20: Runtime of VI vs. MCMC on the same model with default
settings for 100 runs.

42

diamonds A
arkK 4 |
eight_schools_centered e B
sblri 1 —L
sblrc - e I
dugongs A ——{TH
dogs 1 | HIH
garchll — TH
hmm_example - I-E]—!
surgical - T —
GM Bi{ o© T
low_dim_gauss_mix A l—[:|—:-| (0]
dogs_hierarchical —{TH
Mzeroq1 O H1H
gp_pois_regr4 +——1H o
well_dist - H +— !o

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
k-hat

Figure 21: k-hat of VI posterior for 100 runs per model. A vertical
striped line at the cut-off 0.7 as provided by Vethari et al.

6.2 k-hat diagnostic efficacy

If the fit is not close to that of the true posterior, in this case MCMC, we want to signal this back
to the end user. One diagnostic, as suggested in section 2.3.1, was k-hat, which we implemented
for our VI algorithm. We ran our VI algorithm for 100 runs per model and calculated k-hat based
on the largest 400 out of 2000 samples, as suggested in the paper on k-hat [44]. We plot the 100
k-hat values as a boxplot with the same settings as the runtime plot.

From the plot, figure 21, we can see only three models have had zero runs with no k-hat above
0.7. According to our earlier analysis, two of these three have the worst performance compared
to MCMC. Considering the six models with most of their runs below a 0.7 k-hat, we can see that
two are multimodal and four are the worst-performing models compared to MCMC. Also, both the
models sblri and sblrc have all runs above 0.7, but the calculated parameters are identical to those
of MCMC, while both are simple linear regression models. These observations make us skeptical
about the accuracy and, thus, the efficacy of k-hat as a diagnostic.

43

6.3 Robustness

Our VI algorithm has four hyperparameters and a single parameter the user must set. We ran
experiments with a subset of our chosen models to provide useful defaults (bold) and gauge the ro-
bustness of different choices of these parameters. Specifically, with the models arK, dogs, sblrc,
surgical, wells_dist.

e accuracy a: 0.1,0.01,0.001,0.0001

e window W: 100,200, 300, 500, 1000

e Monte Carlo samples M: 10,15,20

e minimum step size 6,,,: 107°%,1076,1077
e maximum iterations ky,qe: 10°,109,107

The default for the accuracy parameter is hand-picked since any parameter will work fine for the
accuracy level one wants. Providing 0.1 for a ensures all parameters differed less than 0.1 between
stationary points. We found that setting a to 0.001 gave our chosen models the best accuracy
compared to MCMC. However, mileage may vary with different models. For finding the minimum
step size and maximum iteration parameter, we used the defaults for window and Monte Carlo
samples provided by Welandawe et al. [45], 200 and 10, respectively. This gave us only nine
combinations of parameters to search over. Once finished, we used the defaults found for minimum
step size and mazximum iterations to run the same experiment for window and Monte Carlo samples,
only resulting in a search space of 15 combinations.

After finding default values for all parameters, we ran the robustness experiment. We use the same
setup as Welandawe et al.: We vary one parameter at a time and keep the defaults for the others.
From these runs, we can conclude that the sensitivity to parameter changes is minimal for the
accuracy and runtime of our algorithm — a verdict similar to Welandawe et al.

44

7 Conclusion

We have developed a fully automatic, robust, and accurate algorithm that runs only with a sin-
gle intuitive parameter from the user. Experiments show that it performs well on various models
from PosteriorDB, and its accuracy and runtime are insensitive to changes in its hyperparameters.
Our approach uses the classical mean-field Gaussian as an approximating family and the repa-
rameterization trick to derive a gradient estimator. Our algorithm contains two phases, warm-up
and optimization, which are more effective than only having an optimization phase. In the warm-
up phase, we optimize until the optimization process is roughly where it needs to be. Then, the
optimization picks up and continues this process by iteratively decreasing the update size until
convergence is reached.

Furthermore, we have shown that including the priors provided in the model in the initialization
process can result in significant optimization speed-ups. Sometimes, this causes a slight slow-
down when the true posterior is near our original initialization point instead of near the priors.
Implementation of this has not been possible since we can not access priors in Stan.

Converging is assessed using the closed-form 2-Wasserstein distance between two variational ap-
proximations in the same optimization trace. Using the 2-Wasserstein distance with mean-field
Gaussians means we only require a threshold for this distance to claim convergence. Some assump-
tions about the 2-Wasserstein distance make this threshold intuitive for an end user. Comparing
this to, for example, RAABBVI, a user must provide three parameter values. Most of these are
not intuitive for a typical end-user of Stan but require extensive knowledge of the underlying
algorithm.[45].

Stationarity of the optimization process is determined with the split—é diagnostic, a novel use in-
troduced by Dhaka et al. [11]. When stationarity is reached, the variational approximation history
has Markov Chain properties, allowing us to average over the chain to obtain a better approx-
imation. We provide an end-user with these averaged approximations, which are more accurate
posteriors.

Since we can not always trust our approximation, we want to inform the user if we detect it.
Bad posteriors happen when, for example, the true posterior is hard to capture with a mean-field
Gaussian. This is the case when dealing with multimodal posteriors. One possible solution we
found was the Pareto Smoothed Importance Sampling shape parameter k-hat, which could be used
to detect untrustworthy posteriors [44, 47]. However, as shown in section 6.2, k-hat is unreliable
when diagnosing posteriors approximated by our algorithm. It sometimes lets multimodal models
get through, and simple linear models will sometimes not pass. However, its biggest issue is the
sheer number of models it flagged as faulty. While the approximated parameters are identical to
those of MCMC. This, in conjunction with the fact it happens on linear regression models, suggests
the problem is with k-hat and not VI or MCMC.

Using MCMUC as a golden standard is not perfect. Since MCMC itself can provide faulty posteriors
due to, for example, multimodal posteriors, we can not trust MCMC’s parameters on all models.
Since we are also not convinced by k-hat as a diagnostics, we are sometimes flying in the dark when
it comes to knowing wether MCMC’s parameters are valid.

For evaluating our algorithm we used a well-known set of Bayesian statistical models, namely
PosteriorDB. PosteriorDB is used by many recent papers on new Bayesian inference algorithms

45

[23, 45, 11]. Tt is probably the best database of models and datasets for comparing two inference
algorithms. However, it is not perfect due to two drawbacks. First, there are very few models with
high dimensions, except for neural network models which are multimodal and thus not suitable
for fitting with VI. This makes it impossible to perform analysis where we correct for a model’s
dimensionality. Secondly, there are very few models with lots of data, except for neural network
models. This is a significant drawback for the central point of VI, namely that it utilizes data
subsampling to speed up. However, since no large datasets exist, the speed-ups will be negligible
compared to the overhead. Due to Stan’s implementation, we were unable to do data subsampling
in our algorithm.

In conclusion, our algorithm provides a robust and user-friendly VI algorithm in Stan that runs
by providing a single accuracy parameter. In contrast to the current VI implementation in Stan,
ADVI, which requires many parameters and is unstable or does not converge in most cases. We
have shown that a reliable VI algorithm is possible. Furthermore, diagnostics are needed, but k-hat
is likely not effective enough as a diagnostic to detect faulty approximations.

Future work Although we have provided some new insights into the field of VI, there are many
new areas to research. We will list these in no particular order:

e As mentioned, we have tested using priors in our initialization phase by hand since this is not
possible in Stan without major rewrites. However, future research could tackle the initializa-
tion with priors by either rewriting Stan or doing it in a different probabilistic programming
language like Pyro.

e Instead of using Adam we should test if regular SGD, thus without momentum, can give us
bounds on runtime versus accuracy. This is what Dhaka et al. and Welandawe et al. tried to
accomplish with RABBVI and RAABBVI respectively [11, 45]. However, they did not use
regular SGD. Intuitively, plain SGD might allow for better predictions of runtime since it uses
a fixed step size.

e Pathfinder by Zhang et al. describes a multi-path pathfinder algorithm that runs a single-
path pathfinder multiple times in parallel. This can cause different runs to end up in distinct
locations of the parameter space. Zhang et al. then combine all single-path pathfinder runs
per dimension as a mixture of Gaussians, each with equal weight. Whether this works at all is
an open question, but it is an experiment that can also be easily done with our VI algorithm.

e Data subsampling is the big promise of VI, but it is not possible in Stan. Providing this would
require changes to the compiler written in OCaml. While these are more practical concerns,
it will grant more research opportunities.

e Multi-chain diagnostics in VI is a novel idea that can be used to diagnose bad posterior
approximations by our algorithm. We would, like MCMC does, run four separate instances of
our algorithm and, after, conduct the R check on these runs. Then, if they end up in separate
places, R will signal this. This would result in a comparable R statistic as used by MCMC
and immediately useful. We would still need to experiment with an allowable R threshold for
VI

o Welandawe et al. mention that the autocorrelation parameter in the MCSE calculation can
be used as a diagnostics. This would be an alternative to k-hat and is thus worth researching.

46

A Multimodality image generation

Code for generating the image about a Gaussian approximation of a multimodal posterior as used
in chapter 2.3.2:

x = np.linspace(—5, 5, 400)
gaussian = 0.35 x np.exp(—0.5

= * (x — 1)%%x2)
multimodal = 0.25 % np.exp(—0.5 x

(x + 3)*%2) + 0.3 * np.exp(—0.5 * (x — 1)*x2)

plt.plot (x, gaussian, color=’blue’)
plt.plot (x, multimodal, color='red’)
plt.xlabel (’Model Parameter’)
plt.ylabel (’Probability)

plt.ylim (0.0, 0.5)

plt.yticks (np.arange(0, 0.51, 0.05))
plt.grid (True)

plt .show ()

47

B Ethics and Privacy Quick Scan

Section 1. Research projects involving hu-
man participants

P1. Does your project involve human participants? This includes for example use
of observation, (online) surveys, interviews, tests, focus groups, and workshops where
human participants provide information or data to inform the research. If you are
only using existing data sets or publicly available data (e.g. from Twitter, Reddit)
without directly recruiting participants, please answer no.

e No

Section 2. Data protection, handling, and
storage

The General Data Protection Regulation imposes several obligations for the use of personal data
(defined as any information relating to an identified or identifiable living person) or including the
use of personal data in research.

D1. Are you gathering or using personal data (defined as any information relating to
an identified or identifiable living person)?

e No
Section 3. Research that may cause harm

Research may cause harm to participants, researchers, the university, or society. This includes when
technology has dual-use, and you investigate an innocent use, but your results could be used by
others in a harmful way. If you are unsure regarding possible harm to the university or society,
please discuss your concerns with the Research Support Office.

H1. Does your project give rise to a realistic risk to the national security of any
country?

e No

H2. Does your project give rise to a realistic risk of aiding human rights abuses in any
country?

e No

H3. Does your project (and its data) give rise to a realistic risk of damaging the
University’s reputation? (E.g., bad press coverage, public protest.)

e No

H4. Does your project (and in particular its data) give rise to an increased risk of attack
(cyber- or otherwise) against the University? (E.g., from pressure groups.)

e No

48

H5. Is the data likely to contain material that is indecent, offensive, defamatory,
threatening, discriminatory, or extremist?

e No
H6. Does your project give rise to a realistic risk of harm to the researchers?
e No

H7. Is there a realistic risk of any participant experiencing physical or psychological
harm or discomfort?

e No

H8. Is there a realistic risk of any participant experiencing a detriment to their
interests as a result of participation?

e No
H9. Is there a realistic risk of other types of negative externalities?

e No
Section 4. Conflicts of interest

C1. Is there any potential conflict of interest (e.g. between research funder and
researchers or participants and researchers) that may potentially affect the research
outcome or the dissemination of research findings?

e No
C2. Is there a direct hierarchical relationship between researchers and participants?

e No
SeCtiOH 5 . YOU.I‘ infOI'matiOIl. This last section collects data

about you and your project so that we can register that you completed the Ethics and Privacy Quick
Scan, sent you (and your supervisor/course coordinator) a summary of what you filled out, and
follow up where a fuller ethics review and/or privacy assessment is needed. For details of our legal
basis for using personal data and the rights you have over your data please see the University’s
privacy information. Please see the guidance on the ICS Ethics and Privacy website on what
happens on submission.

Z0. Which is your main department?
e Information and Computing Science

Z1. Your full name:
Gertjan Brouwer

Z2. Your email address:
g.brouwer1@students.uu.nl

Z3. In what context will you conduct this research?

e As a student for my master thesis, supervised by:: Matthijs Vakar

49

Z5. Master programme for which you are doing the thesis
e Computing Science

Z6. Email of the course coordinator or supervisor (so that we can inform them that
you filled this out and provide them with a summary):
m.i.L.vakar@Quu.nl

Z7. Email of the moderator (as provided by the coordinator of your thesis project):
i.lykourentzou@uu.nl

Z8. Title of the research project/study for which you filled out this Quick Scan:
Variational inference in Stan

Z9. Summary of what you intend to investigate and how you will investigate this (200
words max):

Stan is a probabilistic programming language in which a probabilistic model can be specified.
Inference in such models is usually done using a method called Markov chain Monte Carlo (MCMC)
or a variant thereof. More recently a new branch of inference algorithms has been devised, namely
Variational Inference(VI) methods. These algorithms deliver a result faster than their MCMC
counterpart, at the cost of accuracy. However, the quality of the VI method is sometimes severely
lacking. This is due to numerous factors such as: model misspecification, bad step size, bad
variational family, etc. Recent research has tackled some of these problems. However, it is common
that a solution presented in a paper will not work in the general case, but only on models provided
by the paper. In this thesis some recent solutions to the problems of VI will be implemented
in Stan. This implementation will be tested using multiple methods present in literature these
days. This should provide us with a working version of VI in Stan which is properly tested against
a benchmark of diverse models and data. As well as tested with multiple, newly, implemented
diagnostics to provide feedback on model fit by the VI algorithm. These diagnostics will also guide
future use of VI in Stan by providing meaningful measures of fit to a user.

Z10. In case you encountered warnings in the survey, does supervisor already have
ethical approval for a research line that fully covers your project?

e Not applicable
Scoring

e Privacy: 0

e Ethics: 0

50

C Pathfinder experiment

This appendix has been added to compare VI to Pathfinder using MCMC as a golden standard.
Note that no discussion or conclusion has been based on this data, and therefore, it has been added
as an appendix.

dogs-dogs
Mean Std Dev
VI MCMC | Pathfinder VI MCMC | Pathfinder
1.800 1.809 1.787 0.104 0.230 0.234
—0.359 | —0.359 | —0.356 0.026 0.037 0.038
—0.210 | —0.211 | —0.209 0.018 0.043 0.044
Table 18
dogs-dogs_hierarchical
Mean Std Dev
VI MCMC | Pathfinder VI MCMC | Pathfinder
2.495 0.923 0.924 0.129 0.011 0.011
1.298 0.786 0.785 0.094 0.019 0.019
Table 19
garch-garchll
Mean Std Dev
VI MCMC | Pathfinder VI MCMC | Pathfinder
5.058 5.050 5.051 0.117 0.123 0.124
0.342 1.475 1.477 0.202 0.569 0.567
0.330 0.569 0.558 0.461 0.126 0.119
0.834 0.291 0.292 0.563 0.123 0.120

Table 20

arK-arK

Mean Std Dev
VI MCMC | Pathfinder VI MCMC | Pathfinder
—0.001 | —0.001 | —0.000 0.011 0.011 0.011
0.691 0.692 0.685 0.021 0.071 0.053
0.440 0.440 0.435 0.021 0.087 0.070
0.105 0.105 0.120 0.021 0.092 0.074
—0.036 | —0.036 | —0.029 0.021 0.086 0.069
—0.301 |—0.301 |—-0.314 0.021 0.069 0.065
0.151 0.150 0.150 0.008 0.008 0.008
Table 21
diamonds-diamonds
Mean Std Dev
VI MCMC | Pathfinder VI MCMC | Pathfinder
6.645 6.660 6.591 0.004 0.251 0.057
6.244 6.363 6.422 0.012 0.328 0.122
—4.560 | —4.684 | —4.742 0.012 0.321 0.141
1.450 1.447 1.472 0.009 0.141 0.022
0.134 0.134 0.134 0.005 0.007 0.006
—0.040 | —0.040 | —0.040 0.004 0.007 0.005
0.023 0.023 0.023 0.004 0.006 0.004
0.002 0.002 0.002 0.004 0.004 0.003
—0.445 | —0.445 | —0.445 0.005 0.006 0.006
—0.093 | —0.093 | —0.093 0.005 0.006 0.006
—0.013 | —-0.013 | —-0.013 0.005 0.005 0.006
0.011 0.011 0.011 0.004 0.005 0.003
—0.001 | —0.001 |—0.001 0.004 0.005 0.003
0.001 0.001 0.001 0.004 0.004 0.003
Table 22
sblrc-blr
Mean Std Dev
VI MCMC | Pathfinder VI MCMC | Pathfinder
1.000 1.000 1.000 0.001 0.001 0.001
0.999 0.999 0.999 0.001 0.001 0.001
0.998 0.998 0.998 0.001 0.001 0.001
0.999 0.999 0.999 0.001 0.001 0.001
0.999 0.999 0.999 0.000 0.001 0.001
1.041 1.042 1.048 0.004 0.077 0.086
Table 23

52

sblri-blr

Mean Std Dev
VI MCMC | Pathfinder VI MCMC | Pathfinder
0.999 | 0.999 0.999 0.001 0.001 0.001
1.000 1.000 1.000 0.001 0.001 0.001
1.000 1.000 1.000 0.001 0.001 0.001
1.001 1.001 1.001 0.001 0.001 0.001
1.002 1.002 1.001 0.001 0.001 0.001
0.961 0.963 0.965 0.004 | 0.071 0.069
Table 24
low_dim_gauss_mix-low_dim_gauss_mix
Mean Std Dev
VI MCMC | Pathfinder VI MCMC | Pathfinder
—2.733 | —2.734 |—-2.734 0.033 0.042 0.040
1.723 2.870 2.869 0.009 0.055 0.056
1.028 1.028 1.027 0.029 0.031 0.033
1.024 1.024 1.020 0.039 0.040 0.043
0.496 0.622 0.621 0.066 0.015 0.014
Table 25
eight_schools-eight_schools_centered
Mean Std Dev
VI MCMC | Pathfinder VI MCMC | Pathfinder
7.127 | 6.507 0.099 5.242 5.649 0.729
5.171 5.080 0.133 4.798 | 4.704 0.728
3.451 3.959 0.033 5.278 5.350 0.829
4.758 | 4.876 0.066 4.928 | 4.839 0.752
2.797 | 3.619 0.198 4.668 | 4.722 0.734
3.670 | 4.156 0.057 4.907 | 4.908 0.725
7.619 | 6.573 0.153 4.876 5.112 0.762
4.877 | 4.965 0.190 5.322 5.391 0.663
4.279 | 4.493 0.136 1.825 3.227 0.651
1.772 3.931 0.383 0.241 3.164 0.183
Table 26

53

GLM_Binomial

Mean Std Dev
VI MCMC | Pathfinder VI MCMC | Pathfinder
1.015 1.014 0.586 0.041 0.065 0.028
—0.173 | —0.173 0.604 0.073 0.073 0.025
—0.921 | —0.922 0.621 0.096 0.146 0.022
Table 27
MO_model
Mean Std Dev
VI MCMC | Pathfinder VI MCMC | Pathfinder
—0.311 0.423 0.423 0.148 0.039 0.040
—0.009 0.497 0.497 0.137 0.038 0.039
Table 28
wells_dist
Mean Std Dev
VI MCMC | Pathfinder VI MCMC | Pathfinder
0.610 0.607 0.607 0.037 0.061 0.062
—0.006 | —0.006 |—0.006 0.002 0.001 0.001
Table 29
gp_pois_regr-gp_regr
Mean Std Dev
VI MCMC | Pathfinder VI MCMC | Pathfinder
6.884 6.902 6.860 1.306 1.300 1.265
2.440 2.434 2477 0.789 0.789 0.840
1.832 1.833 1.831 0.512 0.500 0.519
Table 30
dugongs
Mean Std Dev
VI MCMC | Pathfinder VI MCMC | Pathfinder
2.636 2.654 2.656 0.018 0.073 0.070
0.959 0.973 0.968 0.045 0.077 0.069
0.951 0.863 0.865 0.092 0.033 0.029
109.168 |109.461 |109.117 30.272 | 31.962 29.573
Table 31

54

hmm_example

Mean Std Dev
VI MCMC | Pathfinder VI MCMC | Pathfinder
0.727 0.666 0.671 0.472 0.100 0.099
—2.612 0.334 0.329 0.430 0.100 0.099
1.106 0.073 0.072 0.032 0.029 0.028
1.758 0.927 0.928 0.019 0.029 0.028
Table 32
surgical
Mean Std Dev
VI MCMC | Pathfinder VI MCMC | Pathfinder
—2.551 | —2.553 | —2.568 0.115 0.152 0.142
0.189 0.186 0.176 0.081 0.160 0.112
—2.945 | —2.952 | —3.037 0.341 0.435 0.375
—2.158 | —2.184 | —2.191 0.221 0.235 0.233
—2.610 | —2.605 —2.581 0.265 0.273 0.261
—2.785 | —2.774 | —2.776 0.139 0.144 0.131
—2.968 | —2.942 | —2.944 0.247 0.280 0.263
—2.627 | —2.622 | —2.625 0.230 0.232 0.223
—2.675 | —2.667 | —2.713 0.259 0.263 0.265
—1.948 | —1.981 —1.954 0.182 0.208 0.192
—2.618 | —2.607 | —2.599 0.227 0.228 0.202
—2.500 | —2.496 |—2.534 0.276 0.276 0.291
—2.167 | —2.187 | —2.183 0.184 0.192 0.180
—2.630 | —2.624 | —2.628 0.185 0.185 0.189
Table 33

55

References

1]

[6]

[7]

8]
[9]

[10]

Matplotlib pyplot.boxplot. https://matplotlib.org/stable/api/_as_gen/matplotlib.
pyplot.boxplot.html. Accessed: 2024-07-10.

Stan development repository. https://github.com/stan-dev/stan. Accessed: 2024-05-24.

Abhinav Agrawal, Daniel R Sheldon, and Justin Domke. Advances in Black-Box VI: Normal-
izing Flows, Importance Weighting, and Optimization. Curran Associates, Inc., 2020.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Information Science and
Statistics. Springer, 2006.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational Inference: A Review for
Statisticians. Journal of the American Statistical Association, (518), April 2017.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance Weighted Autoencoders,
2016.

Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael
Betancourt, Marcus A. Brubaker, Jigiang Guo, Peter Li, and Allen Riddell. Stan: A Proba-
bilistic Programming Language. Journal of statistical software, 2017.

Bob Carpenter, Matthew D. Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and Michael
Betancourt. The stan math library: Reverse-mode automatic differentiation in c++. 2015.

George Casella and Roger L. Berger. Statistical Inference. Duxbury Advanced Series in Statis-
tics and Decision Sciences. Thomson Learning, Australia, 2nd ed edition, 2002.

Chris Chatfield. Model Uncertainty, Data Mining and Statistical Inference. Journal of the
Royal Statistical Society Series A: Statistics in Society, (3), May 1995.

Akash Kumar Dhaka, Alejandro Catalina, Michael R Andersen, Mans Magnusson, Jonathan
Huggins, and Aki Vehtari. Robust, Accurate Stochastic Optimization for Variational Inference.
In Advances in Neural Information Processing Systems. Curran Associates, Inc., 2020.

Akash Kumar Dhaka, Alejandro Catalina, Manushi Welandawe, Michael R Andersen, Jonathan
Huggins, and Aki Vehtari. Challenges and Opportunities in High Dimensional Variational
Inference. In Advances in Neural Information Processing Systems. Curran Associates, Inc.,
2021.

Justin Domke and Daniel R Sheldon. Importance Weighting and Variational Inference. Curran
Associates, Inc., 2018.

Justin Domke and Daniel R Sheldon. Divide and Couple: Using Monte Carlo Variational
Objectives for Posterior Approximation. Curran Associates, Inc., 2019.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learn-
ing and Stochastic Optimization.

Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian data analysis.
Chapman and Hall/CRC, 1995.

56

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html
https://github.com/stan-dev/stan

[17]
(18]
[19]
[20]
[21]

[22]

[23]

Andrew Gelman and Jennifer Hill. Data analysis using regression and multilevel /hierarchical
models. Cambridge University Press, 2006.

Andrew Gelman and Donald B. Rubin. Inference from Iterative Simulation Using Multiple
Sequences. Statistical Science, (4), November 1992.

Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic Variational
Inference. Journal of Machine Learning Research, (40), 2013.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January
2017.

T. Kloek and H. K. van Dijk. Bayesian Estimates of Equation System Parameters: An Appli-
cation of Integration by Monte Carlo. Econometrica, (1), 1978.

Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, and David Blei. Automatic Variational
Inference in Stan. In Advances in Neural Information Processing Systems. Curran Associates,

Inc., 2015.

Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M. Blei. Au-
tomatic Differentiation Variational Inference. Journal of Machine Learning Research, (14),
2017.

S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of Mathematical
Statistics, 1951.

Maren Mahsereci and Philipp Hennig. Probabilistic Line Searches for Stochastic Optimization.

Anton Mallasto, Augusto Gerolin, and Ha Quang Minh. Entropy-regularized 2-Wasserstein
distance between Gaussian measures. Information Geometry, (1), July 2022.

Nicholas Metropolis and S. Ulam. The Monte Carlo Method. Journal of the American Statis-
tical Association, 1949.

Thomas Minka. Divergence measures and message passing. Technical report, Microsoft Re-
search, 2005.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte Carlo gradient
estimation in machine learning. The Journal of Machine Learning Research, 2020.

Emmanuel Okewu, Philip Adewole, and Oladipupo Sennaike. Experimental Comparison of
Stochastic Optimizers in Deep Learning. In Sanjay Misra, Osvaldo Gervasi, Beniamino Mur-
gante, Elena Stankova, Vladimir Korkhov, Carmelo Torre, Ana Maria A.C. Rocha, David
Taniar, Bernady O. Apduhan, and Eufemia Tarantino, editors, Computational Science and Its
Applications — ICCSA 2019, Cham, 2019. Springer International Publishing.

Manfred Opper and David Saad. Advanced Mean Field Methods: Theory and Practice. MIT
Press, 2001.

Georg Ch. Pflug. Non-asymptotic confidence bounds for stochastic approximation algorithms
with constant step size. Monatshefte fir Mathematik, (3), September 1990.

B. T. Polyak and A. B. Juditsky. Acceleration of Stochastic Approximation by Averaging.
SIAM Journal on Control and Optimization, (4), July 1992.

57

[34]
[35]
[36]
[37]
[38]

[39]

[44]
[45]
[46]
[47]

[48]

[49]

[50]

B. T. Polyak and A. B. Juditsky. Acceleration of Stochastic Approximation by Averaging.
SIAM Journal on Control and Optimization, (4), July 1992.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black Box Variational Inference. PMLR,
April 2014.

Danilo Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows. In
Proceedings of the 32nd International Conference on Machine Learning. PMLR, June 2015.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of
Mathematical Statistics, 1951.

Geoffrey Roeder, Yuhuai Wu, and David Duvenaud. Sticking the Landing: Simple, Lower-
Variance Gradient Estimators for Variational Inference, 2017.

Filippo Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations,
PDFEs, and Modeling. Progress in Nonlinear Differential Equations and Their Applications.
Springer International Publishing, Cham, 2015.

Stan-dev. Database with posteriors of interest for bayesian inference. https://github.com/
stan-dev/posteriordb. Accessed: (24-01-24).

George Tucker, Dieterich Lawson, Shixiang Gu, and Chris J. Maddison. Doubly Reparameter-
ized Gradient Estimators for Monte Carlo Objectives, 2018.

AKki Vehtari, Andrew Gelman, and Jonah Gabry. Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing, 2017.

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Biirkner.
Rank-normalization, folding, and localization: An improved R for assessing convergence of
MCMC. Bayesian Analysis, (2), June 2021.

Aki Vehtari, Daniel Simpson, Andrew Gelman, Yuling Yao, and Jonah Gabry. Pareto Smoothed
Importance Sampling, 2015.

Manushi Welandawe, Michael Riis Andersen, Aki Vehtari, and Jonathan H. Huggins. Robust,
Automated, and Accurate Black-box Variational Inference, March 2022.

John Winn, Christopher M Bishop, and Tommi Jaakkola. Variational message passing. Journal
of Machine Learning Research, 6(4), 2005.

Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman. Yes, but Did It Work?:
Evaluating Variational Inference. PMLR, 2018.

Ersan Yazan and M. Fatih Talu. Comparison of the stochastic gradient descent based optimiza-
tion techniques. In 2017 International Artificial Intelligence and Data Processing Symposium
(IDAP), September 2017.

Cheng Zhang, Judith Biitepage, Hedvig Kjellstrom, and Stephan Mandt. Advances in Varia-
tional Inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, (8), August
2019.

Lu Zhang, Bob Carpenter, Andrew Gelman, and Aki Vehtari. Pathfinder: Parallel quasi-
Newton variational inference. The Journal of Machine Learning Research, (1), 2022.

58

https://github.com/stan-dev/posteriordb
https://github.com/stan-dev/posteriordb

[61] Pengchuan Zhang, Hunter Lang, Qiang Liu, and Lin Xiao. Statistical Adaptive Stochastic
Gradient Methods, 2020.

59

	Introduction
	Background
	Bayesian inference
	Markov Chain Monte Carlo
	Variational Inference
	Recent advances in Variational Inference
	Diagnostics

	Stan
	Stan language
	Stan interface

	ADVI in Stan
	Convergence metric
	Convergence subject
	Step size

	Variational inference
	Variational parameter initialization
	Warm-up phase
	Optimization phase
	Diagnostics
	Complete algorithm

	Experiments
	Runtime analysis
	k-hat diagnostic efficacy
	Robustness

	Conclusion
	Multimodality image generation
	Ethics and Privacy Quick Scan
	Pathfinder experiment

