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Abstract

Monitoring the drinking behaviour of dairy cows provides valuable in-

sights into their health and welfare. However, establishing the relationship

between water intake and factors like milk production has been challenging

due to limitations in data collection and the amount of research on this sub-

ject. Computer vision offers a promising solution for automated monitoring

of cow drinking behaviour.

A system for cow detection and drinking behaviour classification us-

ing deep learning techniques was presented. A YOLOv10 model achieved

99.1% AP-50 and 87.1% AP50-95 for cow detection, while an EfficientNetV2-

S model attained 88.6% accuracy for binary classification of drinking be-

haviour. When tested on a 1-hour video, the system measured drinking

time with 92.5% precision and 92.0% recall, demonstrating its effectiveness

for automated analysis.

Integration of this system with cow identification components will en-

able monitoring of individual free water intake, providing valuable data for

studying the relationship between free water intake and milk production.

The rigorous testing and evaluation conducted in this work pave the way

for practical application in precision livestock farming.

Future research should explore the addition of spatial-temporal compo-

nents to further improve performance and investigate the impact of differ-

ent camera viewpoints. Ultimately, this system contributes to the advance-

ment of animal welfare and farm management by enabling detailed analysis

of drinking behaviour.
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1. Introduction

1.1 Problem Statement

In recent years, the dairy industry has witnessed a significant surge in milk

production [1–6] and consumption worldwide [7, 8]. This increase, while

beneficial in meeting global demand for dairy products, has raised concerns

regarding its impact on reproductive capacity [5, 9], which might be caused

by a level of dairy production inconsistent with nutrient intake [10], health

issues [3, 5], and reduced life expectancy [5].

A proven way to enhance cow welfare is by using Artificial Intelligence

(AI) to monitor metabolic indicators [11], animal behaviour [12], and de-

tection of udder infection (mastitis) [13]. As these techniques are relatively

new, not all their potential has been fully explored.

One of their underexposed use cases is measuring dairy cow water con-

sumption, commonly referred to as Free Water Intake (FWI). As water is

a crucial nutrient for cow health [14, 15], monitoring this helps optimiz-

ing milk production [16] understanding drinking behaviour [17] and their

health [18].

However, the relation between their milk production and FWI is more

complex. There are signs of a positive correlation between milk production

and FWI [19–21], contrarily, others found no significant link [22].

Moreover, further assessment of milk production-related traits of dairy

cows might significantly reduce environmental impact, as it has the poten-

tial to improve milk production per cow [13] and higher milk yield per cow

reduces the overall greenhouse gas emissions [23, 24] and global warming

potential [25].

Finally, AI can optimize herd monitoring [26–28], measure social interac-

tions [29], analyze various behaviours [30] or more specific ones like feeding

[31–33], and drinking [34–37] for instance.
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1.2 System Pipeline

Although there has been some research into the drinking behaviour of

cattle [19–22], further research is crucial for finding the link between milk

production and FWI, therefore, this data-driven approach aims to further

answer this question.

1.2 System Pipeline

The system can be summarized in a few simple steps. These steps are given

in Figure 1.1. First, the user starts by capturing videos of their cows by

strategically placing the cameras. Then, the videos are to be sent to the de-

tection model for initial processing. The detection model then extracts sec-

tions from the original images containing drinking cows and sends them to

the identification model for the next step in the pipeline. The identification

model processes each image it receives by identifying the cow depicted in

the image. Subsequently, these number of consecutive images are counted

for each of the cows to obtain the total time each cow has spent drinking.

This data can then be converted into a CSV file and returned to the user.

Figure 1.1: Pipeline of the dairy cow water intake system.

This system can be viewed as an integration of a two-phased system. The

first phase handles the detection of the objects of interest, drinking cows in

our case, whereas the second phase deals with the identification.

Data for the first phase, the detection of drinking dairy cows, is obtained
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Introduction

from video footage captured at a dairy farm by utilizing two separately

trained AI models. The first model detects each individual cow. This model

is based on the open-source YOLO (You Only Look Once) computer vision

framework by Ultralytics [38]. Subsequently, these detections are passed

to the second model which asserts whether the cow is displaying drinking

behaviour. This behaviour classification model uses the architecture of the

model that was the most accurate after evaluation; EfficientNetV2 [39].

The second phase encompasses the identification of the cows in the video.

This identification phase contains two consecutive components as well. First,

we segment the cow by removing the background to enhance the identifi-

cation process. The segmentation is done with a model from the YOLO

framework as well. Second, the identity is determined by a Siamese Neural

Network (SNN) (Koch et al. [40]), which is based on an InceptionResnetV2

[41] backbone.

1.3 Research Contribution

As we have shown in the previous section, the relation between the drinking

behaviour of individual cows and milk production is still unclear. There has

been research on water intake [17, 42–45], and some research conducted on

drinking duration [34]. Research into the drinking behaviour and drinking

duration of dairy cows and its relation to milk production remains insuf-

ficiently examined. That is, except for various older research that do not

agree with each other on the results.

For instance, Winchester and Morris [19] expected a water intake of .87

kg per kg of milk, based on its water content. In line with these findings,

Murphy et al. [21] reported a coefficient of .64 kg of water/kg of milk, which

adjusted to .90 when more variables were included, aligning closely with

the anticipated .87 kg of water/kg of milk. Little and Shaw [20] identified a

regression coefficient of .73 kg of water/kg of milk over a production range

of 14 to 30 kg/day, however, they considered dry matter intake (DMI) effects

as well.

Contrarily, Paquay et al. [22] examined the correlation between total

10



1.3 Research Contribution

water intake and found no significant link between milk production and

water consumption.

According to these various outcomes, it becomes apparent that the re-

lationship between free water intake and milk yield remains inconclusive.

Therefore, this research aims to thoroughly explore the potential of a sys-

tem that can measure the free water intake of individual cows, to be able to

further assess its influence on their milk production.

It is important to note that this study builds upon the work conducted by

Daniel van Herwijnen and Matteo di Vicenzo. They both made tremendous

contributions towards the identification model as described in the Acknowl-

edgements section. Unfortunately, their model could not yet be integrated

into the whole system, nor could it be thoroughly evaluated in this thesis.

Even though the final goal of this research is to create a complete pipeline,

this thesis focuses on the first part of that system, the detection and drinking

behaviour analysis of cows. For this reason, we have decided to remove the

parts of the thesis that deal with identification. The final integration of the

system will be left for future research.

By conducting this research, we contribute to the field by:

1. Curating a comprehensive dataset for cow detection and drinking be-

haviour classification, which can serve as a valuable resource for re-

searchers and practitioners to develop, compare, and improve upon

existing and future models and techniques in this field.

2. Evaluating the accuracy and generalizability of a dairy cow drinking

behaviour monitoring system which can be used as the initial compo-

nents for a system that continuously measures the free water intake

(FWI) of each individual cow.

3. Estimating the current Technology Readiness Level (TRL) of the cow

drinking behaviour analysis system and provide recommendations

for advancing it to the next level.

4. Contributing new knowledge to the field of cow drinking behaviour

analysis using computer vision techniques, thereby paving the way for

future research and practical applications in precision livestock farm-

ing.
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1.4 Research Questions

This research focuses on three objectives. Firstly, we aim to assess the capa-

bilities of the detection phase of the system. Secondly, we will proceed by

assessing whether it displays drinking behaviour. The third and final ob-

jective is to ascertain if the system is at a stage in which it can be used for

real-world scenarios, or what needs to be done to achieve this stage. These

three objectives together can be summarized as an overall research question:

"How can we accurately recognize the drinking behaviour of

each individual cow in a herd of cows using computer vision?"

To answer this question we will answer several subquestions which are

extracted from the objectives in the preceding paragraph. To be able to

assess the capabilities of the detection phase of the system, and thereby

achieve the first objective, we shall address the following question:

SQ1: "How can we accurately and robustly detect cows in videos?"

As our second objective is to determine whether each of the individual

cows is displaying drinking behaviour, we will assess this by addressing the

following question:

SQ2: "How can we reliably classify drinking and non-drinking

behaviour of cows in videos?"

To be able to assess the final objective, the degree of adoptability of the

system in real-world scenarios, we set out to identify both the current level

of the system, as well as the steps needed to advance to the subsequent

stage. Therefore, we will be addressing the following question:

SQ3: "How usable is the system in real-world scenarios, and

what steps are required to enhance it further?"
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1.5 Thesis Outline

1.5 Thesis Outline

The thesis is organised as follows. In Chapter 2 we outline the related work

in the field of computer vision and herd monitoring. In Chapter 3 we de-

scribe the methods which we will use to answer the research questions. Sub-

sequently, we provide the experiments that will be conducted that are in line

with the method in Chapter 4. Thereafter, we discuss the results in Chapter

5, followed by the discussion in Chapter 6. We finalize this thesis with the

conclusions in Chapter 7.
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2. Related Work

2.1 Computer Vision Applications

Computer vision is an interdisciplinary field that focuses on enabling com-

puters to interpret and understand the visual world. Computer vision seeks

to automate tasks that require visual cognition, such as image and video

analysis.

Core processes in computer vision include image classification, where al-

gorithms learn to assign labels to images based on their content by learning

spatial hierarchies of features [46]; object detection, which involves identi-

fying and localizing objects within images [47]; and semantic segmentation,

where the goal is to categorize each pixel of an image into a predefined class.

Advances in deep learning, particularly the use of Convolutional Neu-

ral Networks (CNNs), have had a significant impact on the field [48]. Since

their breakthrough performance on the ImageNet challenge in 2012 [49],

CNNs have become the backbone of most computer vision tasks. This tech-

nology is used in many applications [50], from facial recognition systems

[51] and autonomous vehicles [52] to augmented reality [53], medical image

analysis [54], and herd monitoring [31, 32, 34–37, 55–61]. This type of deep

neural network is the primary technology used in this research.

2.2 Object Detection

Object detection is a fundamental aspect of computer vision that involves

identifying and locating objects. The process builds upon CNNs, which are

able to identify crucial attributes or patterns within images to differentiate

objects (e.g., edges, textures) [62].

Objects in an image are located by identified features and bounded by

bounding boxes. Subsequently, the objects within the boxes are classified

according to the features in that region. This two-phase object detection is
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2.2 Object Detection

called two-stage detection [47]. This type is significantly more accurate, but

slower compared to one-stage object detection [63].

2.2.1 One-Stage and Two-Stage Model Comparison

As our system is to be used in real-world scenarios, we have to make a trade-

off between accuracy, given by average precision (AP) and speed. Research

conducted by Garcia et al, [64] provides us with a clear picture of this trade-

off between one-stage and two-stage object detection models, which is given

in Figure 2.1.

Figure 2.1: Detection speed of one-stage versus two-stage object detection
models (adopted from Garcia et al (2021) [64]).

In Figure 2.1, each model is depicted twice, once for low-resolution im-

ages (640×960) and once for high-resolution (1280×1920). The inference time

(ms) corresponds to the frames per second that the model can process. In
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this figure, we can see one-stage detection models; RetinaNet, FCOS and

YOLO, and two-stage detection models; Faster RCNN.

From the figure we can observe that RetinaNet [65] with the smallest fea-

ture extractor, MobileNet and MobileNetV2 is the fastest in inference time

(x-axis) for small images. However, it is also the least accurate as can be seen

from the AP (y-axis). We can also observe that the RetinaNet versions that

use substantially larger feature extractors have good accuracy and inference

speed for small images, yet their speed more than doubles for large images.

The other one-stage detection model FCOS (Fully Convolutional One-

Stage Detector [66]) has similar results as RetinaNet. The inference speed

declines sharply for larger feature extractors and higher-resolution images.

The last one-stage model, YOLO (You Only Look Once [38]), has supe-

rior accuracy compared to the other one-stage models for low-resolution

images. However, its accuracy remains approximately the same for high-

resolution images while its inference time almost doubles.

The two-stage models have slightly better accuracy than the YOLO model

on low-resolution images, but their speed is significantly slower. In terms

of performance, they excel at high-resolution images, however, their speed

is the worst in comparison to the one-stage models.

As our task is to process videos in real-time, there should be a reasonable

balance between accuracy and speed. From this paper, we can conclude that

two-stage models, which have all been shown to be slower and even less

accurate than the YOLOv3 model, are not suitable for our goal.

2.2.2 YOLO Detection Model

Now that we have ruled out two-stage detection models, we further look

into the promising YOLO detection model. The previous section compared

one-stage to two-stage models and used a YOLOv3 one-stage detection model.

This model seemed to be superior in terms of the balance between accu-

racy and speed for our task. However, since the field of computer vision

is rapidly changing, the improvements to the model have been significant.

They have released a new model almost every year since their first release

of YOLOv1 in 2015 [38], which can be seen when reviewing Figure 2.2.
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2.2 Object Detection

Figure 2.2: The timeline of the different YOLO models (adopted from [67]).

At the start of writing this thesis, they had not yet released YOLOv9,

whereas they are currently at YOLOv10 [68], which shows their continuous

dedication to the improvements of their models. It is therefore not surpris-

ing that the performance of their latest model exceeds the performance of

all other detection models of comparable size and inference speed [38]. This

comparison is depicted in Figure 2.3.

Figure 2.3: Comparison of object detection models to latest YOLO model
(adopted from [69])

In previous iterations of their models, and in most commonly used ob-

ject detection models [47], the obtained bounding boxes are refined through

an algorithm called Non-Maximum Suppression (NMS), which eliminates

bounding boxes that are unimportant [70].

Their latest model, YOLOv10, eliminates the need for NMS, which greatly

enhances inference speed. This is achieved by using dual-label assignment

during training. They have two branches of which one branch utilizes one-

to-many assignments, and at the same time, the other branch uses one-to-

one label assignments. Both branches are optimised simultaneously by us-

ing a label-matching metric. This metric ensures that the one-to-one branch
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learns from the many-to-one head. This way the one-to-one head effectively

learns to predict only the optimal bounding box as opposed to many bound-

ing boxes for the many-to-many head. During inference only the one-to-one

head is used, thereby eliminating the need for removing redundant bound-

ing boxes. This greatly enhances inference speed without compromising

performance [68].

After a thorough investigation, we conclude that using the YOLOv10

model is a reasonable choice for our system in terms of accuracy, speed,

and accessibility. As we have determined what the first component of the

first phase of our system will be, we can move on to the second component;

behaviour classification.

2.3 Behaviour Classification

2.3.1 Animal Feeding Behaviour Analysis

Analysis of feeding behaviour is more extensively reported in comparison

to drinking behaviour. In a study conducted by Yang, Xiao, and Lin [31],

they incorporated both the detection of pigs as well as directly inferring

their behaviour by using a Faster R-CNN (Ren et al. [55]).

However, as we will be using separate models for both detection and be-

haviour classification, we will focus solely on behaviour classification mod-

els.

Moreover, separating these two tasks ensures each model is specialized

in its specific task. This way we can use the flexibility and integrability of

the YOLO detection model while exploring which behaviour classification

method is optimal.

In addition, the detection model can be used in other behaviour analysis

studies, which could further improve its scalability and generalizability in

the future.

Finally, as we use the detection model as the first step, it might act as

a preprocessing step thereby decreasing the number of possible detections

that need to be analysed on behaviour. Having an initial filtering of de-
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2.3 Behaviour Classification

tections might thus decrease the load on the behaviour classification model

thereby enhancing inference speed.

However, as we will not explore an integrated system, discovering if

there is an actual decrease in the workload remains an interesting question

that will be left to future research.

Besides this study, there have been various other ways to analyse feed-

ing behaviour. Two of these exploit the idea of using computer vision to

estimate the difference in food quantities before and after feeding.

For instance, Shelley et al. [32] created a 3D image analysis algorithm

to measure the amount cows eat during feeding by using the difference in

food quantities before and after feeding.

In the same context, food mass change has been estimated by estimating

volume change by Bloch et al. [33]. Their model could be used to monitor

Dry Matter Intake (DMI).

However, as we will be analysing drinking behaviour, we will look more

deeply into the research on drinking behaviour of animals using computer

vision. There are various ways to accomplish the analysis of drinking be-

haviour of animals, each with its pros and cons. The most common ap-

proaches include (1) the use of classical CNNs, (2) Recurrent Neural Net-

works (RNNs), (3) processing videos directly with 3D convolutions, or (4)

estimating poses of animals. We start this examination with the first option;

Classical CNNs.

2.3.2 Convolutional Neural Networks

The simplest method to classify behaviour in videos is by extracting still im-

ages from the videos and classifying the behaviour seen within these snap-

shots. This image-based analysis is straightforward and computationally

less demanding than video processing. These simpler models use normal

CNNs [37, 71, 72]. However, this method ignores the temporal dynamics

inherent in video data, potentially overlooking behavioural patterns that

unfold over time.

An example of this is a study conducted by, Zhuang et al. [37] in which

they designed systems to monitor pigs’ feeding and drinking behaviours,
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using CNN algorithms like VGG19, Xception, and MobileNetV2 for be-

haviour recognition. In their study, they used still images to assess the feed-

ing and drinking duration. As they used still images, they could not exploit

the temporal features of the videos. However, it must be noted that they

used a camera that was directly in front of the face of the pig when feeding,

thereby greatly reducing the complexity of the dataset.

The model developed using MobileNetV2 demonstrated superior per-

formance, achieving a recall rate of over 97% in pig drinking behaviour

recognition. Additionally, their model exhibited low errors in estimating

the duration of feeding and drinking behaviours, with a Root Mean Square

Error (RMSE) of 0.58 seconds, a Mean Absolute Error (MAE) of 0.21 sec-

onds for feeding durations, and an RMSE of 0.60 seconds with an MAE of

0.12 seconds for drinking durations.

In a study by Bello et al. [60], they present a study on using deep learning

techniques to recognize the behaviors of group-ranched cattle from video

data. The authors acquired video sequences of six cows (Keteku and Mu-

turu breeds) in a ranch in September 2020. From this data, they selected

1000 keyframes and labelled them using the LabelMe tool. 800 frames were

used for training and 200 for testing. To expand the dataset, data augmen-

tation was applied to generate 4000 training frames and 1000 testing frames

in total.

Four pre-trained object detection models were evaluated as potential cat-

tle detection models: Mask R-CNN, Faster R-CNN, YOLOv3 and YOLOv4.

Mask R-CNN, an extension of Faster R-CNN with an added mask gener-

ator, was found to achieve the highest detection accuracy and speed of 20

fps. It was therefore selected as the preferred model for this task. The out-

puts generated by Mask R-CNN included the bounding box, object class,

confidence score and mask. The other models produced similar outputs but

without the mask information.

Using the selected Mask R-CNN model, Bello et al. achieved average

recognition accuracies of 93.34%, 88.03%, 93.51% and 93.38% for eating,

drinking, active and inactive cattle behaviours respectively. These results

demonstrate that their deep learning based approach is competitive with
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other state-of-the-art methods for automated cattle behaviour recognition.

However, the authors noted some difficulties that led to the misidentifica-

tion of behaviours in certain scenarios, such as invalid frames, cattle over-

lapping and instability in the cattle feeding setup.

2.3.3 Neural Networks with Temporal Components

A more sophisticated approach would be using short video sequences in-

stead of still images. In a study conducted by Chen et al. [73], they used a

combination of a CNN with a Long Short-Term Memory (LSTM) [74] model.

LSTMs are a type of recurrent neural network (RNN) capable of learning

temporal dependencies, making them suitable for understanding sequential

data like videos. By utilizing an LSTM, this method incorporates temporal

information, allowing accurate analysis of the behaviour of the animal as it

incorporates information from previous frames.

To analyse the drinking behaviour of pigs, they used a CNN based on

ResNet50 (He et al. [75]) as well as an LSTM to account for the temporal

aspect of videos. Short videos of 2 seconds were employed in which the

animals were seen from above and they marked the pigs with numbers. By

doing this their model was able to discern between drinking and drinker-

playing behaviour. They randomly split their 8000+ 2-second episodes into

train and test. They evaluated two regions of interest (ROI), the head and

the body.

To evaluate their model they trained it by using cross-entropy loss and

evaluated the results with accuracy, sensitivity, specificity and precision.

The cross-entropy loss is given by:

Cross-Entropy Loss = −
N

∑
i=1

yi log(pi) (2.1)

Where yi is the actual label, pi is the predicted probability, and N is the

total number of instances. Section 3.2 will thoroughly explain accuracy, pre-

cision, sensitivity, and specificity.

They achieved an accuracy, sensitivity, specificity, and precision for the
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head region of (92.5%, 91.2%, 93.8%, and 93.6%) respectively. For the body

region, they obtained (87.2%, 84.9%, 89.5% and 89.0%). They concluded that

the reason for the head region obtaining better results could be attributed

to the fact that head touching and overlapping occur less frequently in the

head region compared to touching and overlapping in the body region.

The primary challenge in their research lies in the increased complexity

of the model which requires more computational power and data to train

effectively. Moreover, training LSTMs can be time-consuming and may re-

quire larger amounts of annotated data, which in turn requires more human

effort to obtain.

An even more advanced technique is used by Zhang et al. [76], and

Fuentes et al. [59]. This involves using videos of varying lengths with 3D

convolutions paired with temporal segment networks. 3D convolutions ex-

tend the capability of traditional 2D convolutions by adding the time dimen-

sion, enabling the model to learn spatial-temporal features directly from

video data [77]. This approach excels at capturing complex behaviours that

occur over time.

Temporal Segment Networks [78] further refine this by segmenting videos

and allowing the network to focus on informative snippets of behaviour.

While this method provides the optimal understanding of animal behaviours

in videos, it is also the most complex. The complexity requires not just a

high computational power, but the model design and training process is

very demanding and labour-intensive.

The study by Fuentes et al. [59] introduces a deep learning approach

for hierarchical cattle behaviour recognition using spatio-temporal informa-

tion from RGB video data. Their framework involves appearance features

at the frame level and spatio-temporal information that incorporates more

context-temporal features.

They manually collected a new cattle behaviour dataset consisting of 350

videos (average duration 12 min each) recorded at different indoor farms in

South Korea using an on-site camera system. Videos were captured during

both day and night conditions to study behavioural changes. The dataset

includes 15 different hierarchical cattle behaviours divided into individual
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activities (e.g. walking, eating, resting, but not drinking), group activities

(e.g. fighting, social licking), and part actions (e.g. moving tail/head).

Keyframes were extracted at 1 FPS and manually annotated with bound-

ing boxes and action labels. The dataset contains 2714 annotated keyframes

in total.

Their system operates in three parts. First, they employ an ROI frame-

level detector based on YOLOv3. Then they use feature extraction with tem-

poral context using 3D CNNs, and then they use spatio-temporal recogni-

tion fusing RGB images and optical flow. The frame-level YOLOv3 detector

generates ROIs containing specific actions. Temporal context features are

extracted using 3D convolutions over 5 consecutive frames. Optical flow is

computed between frames to capture motion information. The RGB and op-

tical flow features are fused for final spatio-temporal behavior recognition.

The frame-level YOLOv3 detector achieved 0.788 mAP, outperforming

Faster R-CNN (0.711 mAP) while running much faster (30 vs 7 FPS). Adding

spatio-temporal features improved performance for all behaviour categories,

especially those with more motion. The full spatio-temporal model ob-

tained 0.856 mAP overall. Looking specifically at the Feeding class, which is

most similar to drinking, the mAP improved from 0.829 with just the frame-

level detector to 0.885 when incorporating spatio-temporal features.

They noted challenges such as inter/intra-class variations in cow ap-

pearance and motion, occlusion between individuals and with environmen-

tal objects, and variable lighting between day and night videos.

As our model should be able to do binary classification; drinking and

non-drinking, using these rather complex architectures might not be nec-

essary to obtain satisfactory results. Therefore, we have chosen to exclude

these types of CNNs, thus the less advanced types of CNNs remain the best

option thus far.

2.3.4 Pose Estimation

Another approach is to use pose estimation to detect key points of objects of

interest. In a study by Islam et al. [34], they developed an algorithm using

the deep learning architecture DeepLabCut [30] for tracking key body parts
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of beef cattle, such as head, ear, and neck positions, to distinguish drinking

from non-drinking periods through long short-term memory (LSTM) anal-

ysis. For this, they used 70 videos for training and 8 videos for validating

their model. Their approach achieved an accuracy of 97.35%.

Many others also showed promising results by using this open-source

software for behaviour tracking in wild chimpanzees and bonobos [79],

mice in a lab setting [80, 81], fish [82] and many quadrupeds like horses,

dogs, tigers and more [83].

As this seemed to be a sound approach to analysing drinking behaviour,

we investigated whether this technique could answer our questions. Af-

ter an initial attempt with this software, in which we annotated around 150

frames by selecting the keypoints of cows, it has been shown that this ap-

proach is indeed able to get decent results in estimating the keypoints. To

give an idea of these preliminary results, they are given in Figure 2.4.

(a) Snapshot cropped. (b) Snapshot uncropped.

Figure 2.4: DeepLabCut inference video results.

However, many more annotated frames were necessary to obtain satis-

factory results. Annotating this data is very demanding as for each frame

30+ keypoints have to be accurately determined for 1000 frames. Accurately

annotating 150 frames took approximately 14 hours. Thus it became appar-

ent that annotation would take a tremendous amount of time.

Besides, as this approach is quite sensitive to camera views [83], the

model would not generalize easily. The consequence is that each new cam-
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era view would need new annotated data.

After having a model that can determine the keypoints; head, eyes, mouth,

legs, back, etc. we concluded that the process of extracting behavioural

knowledge from these keypoints is a complicated study in itself. To be able

to interpret the signal of the keypoints, another model needs to be trained

on another set of annotated data. This approach seems to be more suitable

for more complex behavioural analyses.

For this reason, we have pivoted and returned to our first and final ap-

proach, using the less advanced types of CNNs. The main reasons for this

final decision are that (1) these networks can be more easily trained by mak-

ing use of transfer learning, (2) we do not need vast amounts of annotated

data, which can be time-consuming to obtain, nor (3) do we need to im-

plement sophisticated and complex types of networks that have temporal

components, and (4) finally this less complex approach has shown to give

good results for similar use cases.

Now that we have determined which type of architecture we will em-

ploy, we will discuss an important training technique that will be used in

this study.

2.3.5 Transfer Learning

As many different image classification models have been trained and are

openly available, being able to use the knowledge they have gained from

training greatly enhances model performance in new, but related tasks. This

type of knowledge transfer is called transfer learning. The principle is based

on the observation that CNNs learn generic features that can be applied in

different tasks, just like how our brain works in the early layers [84].

The benefit of employing transfer learning is that it significantly reduces

the amount of labelled data that is required for training [85] and has shown

to give remarkable results even when using small datasets [86].

Moreover, it has shown that CNN features obtained from training on

ImageNet [87] greatly enhances model accuracy [88]. Many models, like

ResNet, Inception and DenseNet use pre-trained ImageNet weights that

serve as the backbone for image classification tasks [89].
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Figure 2.5: The process of transfer learning (adopted from Abbas et al. (2022)
[90].

The process of transfer learning begins by loading the pre-trained model’s

architecture and weights. The model is then adapted to the new task by

modifying or replacing the final output layer. The final output layer con-

tains the classes the model should predict, thus for the new task these classes

will most likely be different. An effective approach is to first freeze the back-

bone of the model, and train the model only on the final layers.

Subsequently, the model might undergo fine-tuning, which entails that

the pre-trained backbone is partially or fully trained as well with a lower

learning rate to preserve most of the feature extraction capabilities while

tuning it to focus on specific features [89]. This process is depicted in Figure

2.5.

As we do not have unlimited amounts of annotated data, we will make

use of this technique to train models that use the transferred knowledge

from pre-trained models. This technique is used in both the detection of

cows with YOLO as well as in behaviour classification and identification.

Now that we have determined which techniques are viable to answer

our research questions, we shall proceed by describing the method in the

subsequent chapter.
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In this chapter, we discuss the approach we take to answer the research

questions. We start by describing and analysing the data in Section 3.1. We

then continue by explaining how we will train and evaluate the detection

and behaviour classification models in Section 3.2. Subsequently, we will

discuss the software that has been used to develop and deploy the models

in Section 3.3. We conclude this chapter by discussing the evaluation of the

usability in section 3.4.

3.1 Data

To use our system we need various data sources and data types. We need

images for the detection of the cows as well as images for training our

Siamese Neural Network (SNN) for identification. We will describe each

of these datasets used in this chapter.

3.1.1 Gathering and Size of the Datasets

We have gathered several different datasets and each serves its own pur-

pose. We will explore the collection of the videos and images in this section.

Videos for Detection and Behaviour

We will start with the videos of the drinking cows. To obtain the videos, six

cameras were installed on a dairy farm in the Netherlands at six different

drinking troughs. 24 hours of video footage was collected on 5 consecu-

tive days from October 17 to October 21, 2022. As the frames per second

(fps) were not consistent for each of the videos due to unknown reasons,

the videos have different durations.

Besides this, there is a different number of videos for each of the days.

The camera numbers were provided as 1, 3, 4, 5, 6, and 7, therefore, we
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have decided to maintain this numbering. The final number of videos for

each day is given in Table 3.1. The total number of videos is 776. Further

characteristics, exploration, and processing are explained in Sections 3.1.2,

3.1.3, and 3.1.4 respectively.

Table 3.1: Number of videos per day for each of the cameras.

camera
1 3 4 5 6 7

day

17 24 25 24 25 24 24
18 25 25 25 25 25 25
19 24 24 24 24 24 24
20 28 28 28 28 28 28
21 28 28 28 28 28 28

Images for Detection

From these selected videos, we extracted cows which were detected by an

untrained YOLOv10-X model, the largest and most precise out-of-the-box

detection model of the YOLO series. From these detections, we manually

selected the correct detections and corrected any errors. The error correction

is further discussed in Section 3.1.6.

Leveraging the detection capabilities of YOLO greatly reduced the man-

ual collection effort. The final datasets for detection are given in Table 3.3

and Figure 3.4. This dataset is denoted by the abbreviation DD-10k. The

dataset contains approximately 3000 frames and 10000 detections.

Video for Behaviour

From the videos, we extracted one full hour of video for final testing pur-

poses. This video was selected randomly from a camera on which the model

will not be trained. The video that was selected was captured from 09:00 to

10:00 AM on the 20th of October. This separation process will be further

explained in Section 3.1.5. From the video we obtained 2 frames per second,

resulting in a total of 7360 frames.
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Images for Behaviour

From the same videos, we extracted data for the behaviour classification

model. This was done by selecting the detections found by YOLOv10-X in

which drinking cows and non-drinking cows were found. Using the pre-

trained YOLOv10-X we were able to greatly reduce the time needed for ex-

tracting the data without sacrificing accuracy or data variability. The final

datasets are given in Table 3.5. We will denote this dataset by BD-5k. This

dataset contains approximately 3000 images of drinking cows and 2000 of

non-drinking cows.

3.1.2 Characteristics of the Data

In this section, we will describe the features of the videos and images. For

the videos, we will discuss the duration, resolution, format, and any vari-

ations in the content or other anomalies. The resolution, and format of the

images and videos will be discussed. Examples of both the videos and im-

ages will be provided in Section 3.1.3.

Videos for Detection and Behaviour

As described in Section 3.1, the videos were collected over multiple days,

with varying numbers of videos per day. The resolution of the videos was

1280 × 720 when recorded in landscape mode and 704 × 578 in portrait

mode. This discrepancy in modes is likely due to the camera’s automatic

calibration during filming. It was observed that within an hour of record-

ing, the camera adjusted its mode automatically. This change in resolution

could potentially impact the system’s precision, so caution was taken when

analyzing the results from these videos.

In addition to the change in filming mode, there was considerable varia-

tion in the duration and frames per second (fps) of each video. We analyzed

the duration and fps of each video and plotted these values for one camera

on one day in Figure 3.1a. Each dot in the plot represents a video, labeled

with the hour it was captured.

A clear diagonal line can be observed. This indicates that the frame count
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and duration increase according to the exact same slope. They exhibited a

similar slope as this is corresponds to the fps of the video. The reason for

a different number of frames for videos with the same fps seems to be at-

tributed to slight jumps in each video, where parts of the video were either

skipped or sped up. This pattern was consistent for each day and each cam-

era, although the exact cause of these speed variations remains unclear.

Since individual plots did not provide additional insights, we synthe-

sized them into a single plot, shown in Figure 3.1b. The pattern here is more

pronounced, revealing six diagonals corresponding to six different fps val-

ues: 2, 3, 4, 5, 6, and 7. The reason for the different frame rates is unknown,

but we accounted for the fps variation when processing the videos.

Although additional patterns are visible in Figure 3.1b, we have gath-

ered sufficient information to fully process the videos, and further discus-

sion is unnecessary. We will continue exploring these videos in Section 3.1.3.

Images for Detection

The frames used to train the YOLO model were extracted directly from the

videos captured at the drinking troughs, thus they correspond to the quality

of the video captured. As described in Section 3.1.2, the resolution of each

of the videos was 1280× 720 with a dpi of 96, thus the frames have exactly

the same characteristics. As 24 hours of video was captured, there is a lot of

variability in lighting, colour, and blur.

Images for Behaviour

The images used to train the behaviour classification model vary in size as

each bounding box has a different size. This difference may vary substan-

tially between very small detections and larger ones. The quality of the im-

ages is also the same as that of the camera, as the detections were cropped

from the frames captured by the same camera.
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(a) Videos of camera 1 captured on 17/10

(b) Videos of all cameras on all days

Figure 3.1: Overview of the duration and frame counts of videos captured by
various cameras on all days.

3.1.3 Data Exploration

In this section, we will give samples of each of the datasets, anomalies, and

other details to get a grasp of the level of detail, lighting, shading, colour,

and environments. For the detection datasets, DD-10k and BD-5k, we pro-

vide examples of various moments during the day, camera viewpoints, and
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cow behaviours. Subsequently, we will provide examples for the identifica-

tion datasets.

Images for Detection

All these examples can be found in Figure 3.3. The first feature that stands

out in this figure is the difference in color due to the differences in daylight.

In Figure 3.2b, 3.2h, 3.2k, and 3.2m we observe almost no colour, whereas

in Figure 3.2e, and 3.2f, we observe a colour distortion. These different

colour conditions severely impact the system’s performance if improperly

handled.

Another important feature is the lighting. In Figure 3.2j, 3.2n, and 3.2o,

we can see the impact of light on the environment. In the evening, the in-

tense white light might cause overexposure, whereas in the morning the sun

and shade difference might inhibit the system’s identification precision.

Another important and common problem in computer vision is occlu-

sion. This can clearly be observed in Figure 3.2b and 3.2k. In these images,

occlusion due to a white line, and condensation drops, cause unclear images

and possibly unidentifiable cows.

As discussed in Section 2.3.3, various viewpoints were used as the ROI

to classify animal behaviour. For cows, these included tailhead images, nose

images, and side-view images. In our environment, it is impractical to clas-

sify cow drinking behaviour by its face or nose when it is drinking as cam-

eras would be needed for each drinking location at each drinking trough

resulting in many cameras. Moreover, it is arguably more pragmatic to use

fewer cameras when extending this software to other environments com-

pared to placing several cameras at each drinking position at each drinking

trough.

Images for Behaviour

The behaviour classification model faces a challenge due to significant vari-

ation in image sizes, resulting in some low-quality images, as illustrated in

Figure 3.3d. These images depict a wide range of detections from the de-

tection model, including cows in the background. It is crucial to include
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(a) Camera 1 day (b) Camera 1 night (c) Camera 3 portrait

(d) Camera 3 day (e) Camera 3 night orange (f) Camera 5 night red

(g) Camera 4 day (h) Camera 4 night (i) Camera 5 day

(j) Camera 5 evening (k) Camera 5 night (l) Camera 6 day

(m) Camera 6 night (n) Camera 7 morning (o) Camera 7 evening

Figure 3.2: Extracted images from videos captured by the 6 different water
trough cameras.

all detections, even those of lower quality, for the model’s ability to gener-

alize effectively and accurately classify drinking behaviour across various

distances and resolutions. Excluding these might overlook the diversity of

real-world environments.

3.1.4 Data Cleaning

In this section, we will describe the process of dealing with incorrect images.

We explain how these are recognized and removed from the dataset. We

also address any other problems we have encountered.
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(a) Drink 1 (b) Drink 2 (c) Non-drink 1 (d) Non-drink 2

(e) Drink 3 (f) Drink 4 (g) Non-drink 3 (h) Non-drink 4

(i) Drink 5 (j) Drink 6 (k) Non-drink 5 (l) Non-drink 6

Figure 3.3: Extracted images from detections included in the BD-5k dataset.

Videos for Detection and Behaviour

After further analysis, we found that the difference in the number of videos

could be attributed to several reasons. First of all, we found a video with a

duration of 0 seconds, which was erased from the dataset. This video was

captured by camera 5 on the 17th of October at 00:00. On this same day, a

video of a duration of 30 seconds was captured by camera 3 at 00:00. This

video remained in our dataset.

The second reason was that we found several duplicates in the last two

days. Each camera contains one video of each of the other days captured by

that camera. This results in 4 duplicates per camera. For the 20th of October,
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Table 3.2: Corrected number of videos per day for each of the cameras.

camera
1 3 4 5 6 7

day

17 24 25 24 25 24 24
18 25 25 25 25 25 25
19 24 24 24 24 24 24
20 24 24 24 24 24 24
21 24 24 24 24 24 24

these were videos captured at 00:00, whereas for the 21st of October, these

were videos captured at 11:00. These videos were removed from the dataset

as well.

The last reason was that on the 18th of October at 01:00 the videos cap-

tured lasted for ≈ 28 minutes. Therefore, this hour contains 2 videos, hence

the extra videos for this day for each camera. These videos remained in the

dataset. The final size of the dataset is given in Table 3.2.

Images for Detection and Behaviour

As we have manually selected the frames that were used to train the YOLO

model, we have automatically cleaned the images. The same applies to the

images that were used by the behaviour classification model.

3.1.5 Data Preprocessing

This section deals with the preprocessing steps to prepare the data for being

processed by the models. We discuss the splitting of the train, validation,

and test sets, the resizing and normalizing of the images, and possible aug-

mentation steps.

Images for Detection

As we needed to tune the parameters of the detection model and do final

evaluations, we needed two separate datasets. As we have 6 different cam-

eras, separating two of them to use for tuning (validation) and evaluation

(test) was a straightforward and practical solution.

For the train set, we picked videos from 4 cameras for 3 different times
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of the day. The exact hours were picked randomly, per camera. This process

ensured that there was a lot of variability in the data as we had different

times of the day. This results in videos with varying lighting conditions,

which improved the model’s robustness and real-world applicability.

The cameras that were picked for the training dataset were 1, 3, 6, and

7. For validation and testing, we picked cameras 5 and 4 respectively. The

choice of cameras was based on the level of variability. The cameras in the

train set had varying viewpoints, therefore the model will be trained on

easy and complex environments with cows in the foreground as well as the

background. As we optimized the model on the validation set, we chose a

camera which had cows in the background as well. Lastly, for the test set,

we chose a camera without any background detections. This gave a clear

picture of how accurate the model was in an ideal situation.

We attained a splitting ratio of approximately 70%, 20%, and 10% for

the train, validation, and test sets respectively. The resulting sizes of the

datasets are given in Figure 3.3.

Table 3.3: Size of each of the detection datasets (DD-10k).

Train Validation Test
Camera(s) 1; 3; 6; 7 5 4
Frames 2283 562 290
Detections 7007 1744 365

Besides the actual sizes, it is also interesting to examine the number of

detections in each of the datasets. These ratios are given in Figure 3.4. In

this figure, we can observe that the train set contains up to 9 detections per

frame, whereas the validation set and test set contain up to 7 detections and

2 detections per frame respectively. The difference in number of detections

was caused by the positioning of the camera. The train set contains cameras

that have a lot of different viewpoints and contain cows in the background

as well as the foreground. Consequently, the number of detected cows in

the train set is larger compared to the test set which contains no background

detections.

Besides splitting the data, we needed further preprocessing. The first

step was to blur the time and date on the frames. Then we padded the
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Figure 3.4: Histogram of detection dataset (DD-10k).

images to make them square and resized them afterwards to the expected

size on which YOLO was pre-trained. Thus, we resized all images to 640 ×
640.

After resizing we applied normalization by the mean and standard de-

viation. For these we used very commonly used values; the mean we took

to be: [0.485, 0.456, 0.406] and a standard deviation of: [0.229, 0.224, 0.225]

[38].

We used data augmentation to ensure robustness and generalization ca-

pabilities. In our detection model, we employed several augmentation tech-

niques to enhance the diversity of our training data.

HSV Color Space Augmentation: This technique involves adjusting the

hue, saturation, and colour value of images. It helped the model become

invariant to colour changes and lighting conditions, which is particularly

useful for varying lighting scenes, which was the case for our dataset as we

were dealing with day and nighttime scenes [91].

Geometric Transformations: We applied several geometrical transfor-

mations to our images. These included rotations, translations, and scaling.

This helped the model to learn to detect objects at various angles, positions,

37



Method

and sizes within the frame [92].

Horizontal Flipping: This simple technique creates a mirror image of

the original. This ensured the model was invariant to the orientation of the

detections [91].

Mosaic Augmentation: This is an advanced technique that combines

four training images into one. This allowed the model to learn to detect

smaller objects and understand objects in relation to various contexts and

backgrounds. It creates one larger image with 4 tiles so to speak, hence the

name mosaic augmentation [93].

Random Erasing: Also known as cutout, this method randomly removes

rectangular regions from the image, which simulates occlusions [94].

Cropping: Cropping involves extracting a random portion of the origi-

nal image for training. If it is applied, it crops that amount of the original

image and resizes the crop to the original size of the image. This type of

augmentation improved the model’s ability to detect partially visible ob-

jects [91].

Grayscale Conversion: Converting colour images to black and white

helped the model focus on shape and texture rather than colour [91].

These augmentation techniques, when applied in various combinations,

significantly expanded our dataset variance and helped to create a more

robust and generalizable object detection model.

Video for Behaviour

For the behaviour analysis video, we did not need any splitting. The final

size and class distribution of the video after annotation is given in Table 3.4.

Table 3.4: Size and distribution of the full one-hour behaviour classification
video obtained from camera 4.

Total
Frames

Non Empty
Frames Drinking Non-Drinking

After Annotation 7360 3735 1320 3720
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Images for Behaviour

For the behaviour dataset, we attained the same logic. We split the data into

train, validation, and test sets, where 1, 3, 6, and 7 were for training, 5 for

validation, and 4 for testing purposes. The resulting sizes of the datasets are

given in Table 3.5.

Table 3.5: Size of each of the behaviour classification datasets (BD-5k).

Train Validation Test
Camera(s) 1; 3; 6; 7 5 4
Drink 2972 189 181
Non-Drink 1952 191 179

For the preprocessing of the images, we padded and resized them to 384

× 384 for EfficientNetV2Large and to 256 × 256 for all other models. The

actual models we used will be discussed in the subsequent chapter.

Thereafter, we applied normalization by a mean of [0.485, 0.456, 0.406]

and a standard deviation of [0.229, 0.224, 0.225]; the same normalization as

for the detection model.

The types of augmentation employed here were approximately the same.

The actual augmentations that were applied will be discussed in the Exper-

iments chapter; Chapter 4.

3.1.6 Data Annotation

Having data that is annotated correctly is crucial for having models that can

accurately perform their tasks. As each of the problems requires different

solutions, the annotation of each of the datasets is different as well. In this

section, we will discuss how each of the datasets is annotated.

Images for Detection

To create a high-quality dataset for training our YOLO detection model, we

annotated our dataset annotation using the Roboflow annotation web inter-

face, which has a partnership with Ultralytics, the developers of YOLO.

We began by using the untrained YOLOv10-X model to extract initial

detections from our dataset. This provided a first set of bounding boxes
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around the cows, which served as a starting point for further refinement.

The extracted detections were then converted to the COCO (Common

Objects in Context) format [95]. The COCO format is a widely-used stan-

dard for object detection datasets, which includes annotations for object in-

stances, segmentation masks, and keypoints [95]. This format enables inte-

grations with various annotation tools and machine learning frameworks,

which substantially improves the usability of the dataset.

The COCO-formatted detections were uploaded to our workspace in

Roboflow. Roboflow provides a user-friendly interface for visualizing and

editing annotations, making it easier to manage large datasets. Using the

Roboflow interface, we manually reviewed and corrected the initial detec-

tions. This step was crucial for ensuring the accuracy of our annotations.

Incorrect detections were adjusted, and any missed objects were added.

After correcting the detections, the annotated dataset was finalized and

exported from Roboflow. This dataset could then be used for training and

evaluating our YOLO detection model.

Video for Behaviour

The video for final testing purposes was annotated by leveraging the de-

tection and recognition capabilities of the best models obtained during this

research. We employed the models that attained the best results during

testing for both the detection and behaviour recognition phases. The results

were then carefully corrected using Roboflow. Subsequently, the annota-

tions were exported in COCO format to be compared with the predictions.

Images for Behaviour

For the behaviour classification task, we employed a straightforward and ef-

ficient manual annotation process. We started with the detections obtained

by the untrained YOLOv10-X model, which provided individual images of

each of the cows. At this stage, we did not have a trained model as opposed

to the stage we were in during annotation of the full one-hour video.

Then, using the Windows File Explorer, we visually inspected each de-

tection image. From visual assessment, we classified the detections either
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as drinking or non-drinking. We then copied and pasted the corrected and

classified images to their dedicated class folder.

This way we obtained an initial dataset that could be used to train an

initial binary classifier. For this, we used EfficientNetV2 Large. Then we

iteratively engaged in the described process to obtain more images of drink-

ing and non-drinking cows. We measured the confidence of the classes

and we selected both the high-confidence false positives as well as the low-

confidence positives of the drinking class after each iteration. These were

subsequently added to the dataset and the model was retrained with these

added images that added crucial information. This ensured the model was

trained iteratively on images it was certain of, but classified incorrectly, as

well as images of which it was uncertain. This process greatly enhanced the

capabilities of the model after each iteration.

Using the file explorer and doing this iterative process enabled us to ob-

tain a model that was trained on a large variety of images containing drink-

ing and non-drinking cows.

3.2 Metrics

3.2.1 Detection

To evaluate the detection model we will use various commonly used met-

rics. In object detection, the most commonly used metric for evaluating

detection accuracy is average precision [47]. It computes the area under the

precision-recall curve. Precision measures relevancy, while recall measures

the number of truly relevant results returned [96].

A system with high recall but low precision returns many results, most of

which are incorrect. Conversely, a system with high precision but low recall

returns few results, but most are correct. An ideal system achieves both high

precision and high recall, returning many correctly labelled results.

Precision (P) is defined as the number of true positives (TP) divided by

the sum of true positives and false positives (FP):
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P =
TP

TP + FP
(3.1)

Recall (R) is defined as the number of true positives divided by the sum

of true positives and false negatives (FN):

R =
TP

TP + FN
(3.2)

The F1 score, which is the harmonic mean of precision and recall, is cal-

culated by:

F1 = 2 · P · R
P + R

(3.3)

Average precision (AP) summarizes the precision-recall curve as the weigh-

ted mean of precisions at each threshold, with the increase in recall from the

previous threshold as the weight:

AP = ∑
n
(Rn − Rn−1)Pn (3.4)

AP and the area under the precision-recall curve (AUC) summarize a

precision-recall curve.

Two other commonly used metrics to evaluate the results are given by

sensitivity and specificity. Sensitivity (Se) is the same as recall, and speci-

ficity (Sp) is defined as the number of true negatives (TN) divided by the

sum of false positives (FP) and true negatives:

Sp =
TN

FP + TN
× 100% (3.5)

Both these metrics are summarized in one graph called the ROC AUC

(Receiver Operating Characteristic Area Under the Curve). It is a metric

used to evaluate the performance of binary classification models. It mea-

sures the ability of a model to distinguish between positive and negative
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classes by plotting the true positive rate (sensitivity) against the false pos-

itive rate (1-specificity) at various threshold settings. A higher ROC AUC

indicates better model performance [97].

To assess the accuracy of the detection model we used precision, recall,

and average precision. More specifically, we used two types for average

precision: AP50B and AP50-95B. The AP50B represents the Average Preci-

sion at a 50% Intersection over Union (IoU) threshold for bounding boxes,

which will be discussed in the subsequent paragraphs.

This provides a measure of the model’s accuracy in object detection and

localization at a moderate strictness level. The more elaborate AP50-95B

offers a more comprehensive evaluation by averaging the AP values across

multiple IoU thresholds ranging from 50% to 95% with increments of 5%.

This metric provides insight into the model’s performance across vari-

ous levels of precision, from relatively lenient to highly strict criteria. Both

metrics were calculated using the area under the precision-recall curve [98].

To measure the model’s ability to draw accurate bounding boxes during

training we measured the loss, which is a weighted sum of the Box Loss

(BL) and the Distribution Focal Loss (DFL).

Ltotal = λboxLbox + λd f l Ld f l (3.6)

The Box Loss is calculated as:

Lbox =
∑i∈Bgt wi(1−CIoUi)

∑i si
(3.7)

Where:

• Bgt: Set of ground truth bounding boxes

• wi = ∑j sij: Weight for each sample i, calculated as the sum of target

scores for that sample across all classes

• CIoUi = CIoU(bi, bgt,i): Complete IoU between the predicted bound-

ing box bi and the target (ground truth) bounding box bgt,i for sample

i

• sij: Target score for sample i and class j (1 for the object class and 0 for
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all other classes)

In this equation we calculated the Complete IoU (CIoU) [99]. This is an

extension of the standard IoU (Intersection over Union), which is a very

common measure of bounding box accuracy [100]. The standard IoU is cal-

culated as:

IoU =
Area of Intersection

Area of Union
(3.8)

A depiction of this calculation is given in 3.5.

Figure 3.5: Depiction of the IoU calculation (adopted from [101]).

CIoU extends IoU by considering two additional factors besides the over-

lap area: central point distance between boxes, and aspect ratio consistency.

The CIoU loss is defined as:

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αv (3.9)

Where:

• ρ2(b, bgt): Squared Euclidean distance between the central points of

the predicted and target boxes

• c2: Diagonal length of the smallest enclosing box covering the two

boxes

• α: Positive trade-off parameter

• v: Measure of aspect ratio consistency
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For completeness we have given a visual interpretation of this calculation

in Figure 3.6a. In this figure B is the predicted bounding box and Bgt is

the ground truth bounding box. The benefit of using this extended IoU is

that it takes into account what the position of the predicted bounding box

is relative to the ground truth. The version is a combination of Generalized

IoU (GIoU) and Distance IoU (DIoU) [102], hence the name Complete IoU

(CIoU).

(a) Depiction of the CIoU
calculation (adopted from
[103]).

(b) Comparison of IoU with DIoU and GIoU (adopted
from [102])

Figure 3.6: Complete Intersection over Union (CIoU).

The Distribution Focal Loss (DFL) is calculated as:

Ld f l = − ∑
i∈Bgt

wi

n−1

∑
j=0

yij log(pij) (3.10)

Where:

• Bgt: Set of ground truth bounding boxes.

• wi: Weight for each sample (corrects class imbalance), calculated as

wi = ∑j sij

• n: Number of bins used to discretize the bounding box coordinates.

• yij: Target distribution for the j-th bin of the i-th sample.

• pij: Predicted probability for the j-th bin of the i-th sample.

The Distribution Focal Loss (DFL) uses a binning approach to predict bound-

ing box coordinates. Instead of predicting single point estimates, each co-

ordinate (x, y, width, height) is divided into n discrete intervals or "bins"

(typically n = 16). The target distribution yij is typically a one-hot or soft

distribution centred around the ground truth coordinate value, where i rep-
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resents the sample and j the bin index.

For instance, if the ground truth falls into the 8th bin, yi8 would be 1 (or

close to 1) and other yij values would be 0 (or close to 0). The predicted

distribution pij is obtained by applying a softmax function to the model’s

output for each coordinate, resulting in a probability distribution over the

bins. The final coordinate prediction is not simply the bin with the highest

probability, but rather a weighted sum across all bins:

coordi =
n−1

∑
j=0

cj · pij (3.11)

Where cj is the centre value of bin j.

3.2.2 Behaviour

To optimize our behaviour classification model, we will use cross-entropy.

This loss is widely used in classification tasks to measure the dissimilarity

between predicted and true probability distributions. For multi-class prob-

lems with C classes, the categorical cross-entropy is defined as:

L = −
C

∑
c=1

yc log(pc) (3.12)

where yc is the true probability of class c and pc is the predicted prob-

ability [104]. However, in our binary classification problem of drinking vs.

not drinking, we use binary cross-entropy. This simplifies the equation to:

L = −[y log(p) + (1− y) log(1− p)] (3.13)

where y is the true label (0 or 1) and p is the predicted probability of the

positive class. In addition to cross-entropy loss, we evaluate our model’s

performance using accuracy, precision, recall, F1-score, ROC AUC, and con-

fusion matrices. The precision, recall, F1-score and ROC AUC calculations

are b, based on the drinking class only. The confusion matrix and accuracy

give an estimate of the predictions of the non-drinking class.
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A confusion matrix is a table that summarizes the performance of the

classification model by comparing the predicted labels with the actual la-

bels. It provides a comprehensive view of how well the model is performing

in terms of true positives true positives, true negatives (TN), false positives

(FP), and false negatives (FN). The matrix allows for the calculation of vari-

ous evaluation metrics such as accuracy, precision, recall, and F1 score [105].

To assess the full one hour of video obtained from the test camera, we

compared the predictions with the corrected behaviour classifications. For

this comparison we employed the same metrics as for the behaviour classi-

fication model; accuracy, precision, recall, f1 score, and a confusion matrix.

In this case, we provided the metrics for both classes separately as well to

give the full picture.

To calculate the error in drinking time we will employ two common error

metrics: percentage error and absolute error. These metrics will allow us to

assess the accuracy of our model’s time estimations compared to the actual

drinking times observed.

Percentage error is a measure that expresses the difference between the

estimated value and the actual value as a percentage of the actual value.

The formula for percentage error is as follows:

PE =
(Estimated− Actual)

Actual
× 100 (3.14)

Where PE is the percentage error, Estimated is the predicted drinking

time, and Actual is the true drinking time [106].

Absolute error is expressed in the same units as the measurement, sec-

onds in our case. The formula for absolute error is:

AE = |Estimated− Actual| (3.15)

Where AE is the absolute error [106].

In our analysis, we will calculate these errors using the following ap-

proach: The estimated drinking time will be derived from our model’s pre-

dictions, calculated as (TP + FP) / frames per second (fps). The actual drink-
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ing time will be calculated as TP / fps.

By employing both percentage error and absolute error metrics, we can

gain a comprehensive understanding of our model’s performance in esti-

mating drinking time.

3.3 Software

The implementation of machine learning and deep learning projects involves

a combination of various tools and platforms. Each of them is used for

specific aspects of the development and deployment pipeline. From data

storage and preprocessing to model training and deployment, the choice of

technology significantly impacts the efficiency and scalability of the solu-

tions developed.

The most important of these are (1) the distributed computing cloud

platform (Databricks), (2) data storage (Azure Blob Storage), and (3) the

deep learning framework (Tensorflow). Each of these will be discussed in

this section.

3.3.1 Databricks

Databricks is a large data analytics platform, which is especially useful for

its collaborative workspace that integrates data engineering, data science,

model experimenting, and model deployment. It facilitates scalable and

efficient processing of big data using Apache Spark allowing for distributed

computing.

Databricks supports various programming languages, including Python,

Scala, and R. As we will be using Python, this platform is an excellent

choice for our needs. The platform contains collaborative notebooks, in-

tegrated with MLflow for experiment tracking and model management,

thereby streamlining the evaluation process [107]. It is also easily integrated

with big data storage like Azure Blob Storage, which we will be using to ac-

cess and utilize our data.

Databricks provides native runtime confivations, which come with pre-

installed packages optimized for machine learning purposes. We used the
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Databricks Runtime 14.2 ML. This runtime offers specialized configurations

for both GPU-accelerated training and CPU-based development. For GPU-

intensive machine learning tasks, we chose a cluster configuration with the

following specifications:

• 1 Driver node

• 112 GB Memory

• 6 cores

• Runtime: 14.2.x-gpu-ml-scala2.12

• Instance type: Standard_NC6s_v3

This GPU-enabled setup uses NVIDIA GPU libraries, including CUDA 11.8,

cuDNN 8.9.0.131-1, NCCL 2.15.5, and TensorRT 8.5.3-1, to accelerate deep

learning and other GPU-optimized functionalities.

For development and less computationally intensive tasks, we used a

CPU-based cluster:

• 1 Driver node

• 32 GB Memory

• 8 cores

• Runtime: 14.2.x-gpu-ml-scala2.12

• Instance type: Standard_D8ads_v5

Both configurations utilize Databricks Runtime 14.2 ML, which provides an

environment for machine learning. This runtime includes popular libraries

such as TensorFlow, and PyTorch, as well as Databricks’ AutoML tool for

automated machine learning pipeline training and MLFlow for logging the

results. For a complete overview of all packages, we refer to their documen-

tation [108].

3.3.2 Azure Blob Storage

Azure Blob Storage, a service provided by Microsoft Azure, offers scalable

and secure cloud storage for large amounts of unstructured data, such as

text or binary data (images and videos). Azure Blob Storage supports the

efficient management and retrieval of data at scale, making it an essential
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component for data-intensive applications.

Its integration with Azure Databricks allows for easy integrated process-

ing and analysis of stored data. The service contains role-based access con-

trol, thereby ensuring that data is protected throughout its lifecycle, from

uploading to extraction and manipulation [109].

3.3.3 TensorFlow

TensorFlow is an open-source framework developed by the Google Brain

team [110], is widely recognized for its comprehensive, flexible ecosystem of

tools, libraries, and community resources that enable researchers to advance

the state-of-the-art in machine learning and developers to build and deploy

ML-powered applications.

The architecture of TensorFlow allows for easy deployment of computa-

tion across a variety of platforms (CPUs, GPUs, TPUs), making it adaptable

for both research and production. TensorFlow offers multiple levels of im-

plementation, thus users can choose the right one for their needs.

Besides a high-level Keras API for quick model development, it also al-

lows for more detailed control by the TensorFlow API for expert users. Its

support for deep learning and neural network models makes TensorFlow a

widely used framework in the development of applications involving image

recognition, natural language processing, and predictive analytics, making

it a perfect fit for this research, as we will need more detailed and lesser

detailed implementation of our custom built model.

3.4 Reusability

To ensure that this system can be used in the future, it is crucial to keep the

FAIR (Findable, Accessible, Interoperable, and Reusable) principles [111]

in mind when making design choices. By adhering to these principles we

ensure that the system can be reused, maintained, updated, and expanded.

Besides the FAIR principles, we are also interested in the evaluation of

the Technology Readiness Level (TRL) as it helps us assess the maturity of

the system and provide recommendations towards progressing to the next
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readiness level. Further insight into the assessment of the current level of

the system will be given in Section 3.4.2.

3.4.1 FAIR principles

To adhere to the FAIR principles, we ensure that during the development of

our system, clear and comprehensive comments will be placed throughout

the codebase. This provides the users with clarity of the functionalities of

the system so that it can easily be operated, reused, and updated. Besides

comments throughout the code, we will provide an informative HTML file,

produced by Sphinx [112] that can be used as a guide to important algorith-

mic components.

We will also be using dynamic resource allocation, thereby ensuring

that the system can easily be adapted to other computational resources like

GPUs, or CPUs. Besides resource allocation, we will also create a dynamic

directory structure by providing relative paths as opposed to absolute paths.

This ensures the system can easily be adapted to the resource locations of

different users.

Adhering to the findable and accessible principles of FAIR, we will make

sure to make the complete codebase accessible via an on-demand publicly

available GitHub repository. This repository will not only host the source

code but will also include Jupyter notebooks to give examples of the code’s

application in various scenarios. To streamline the setup process, we will

provide a requirements file for easy installation of necessary Python pack-

ages. The data will be securely stored and made available upon request as

well.

3.4.2 Technology Readiness Level

The Technology Readiness Level (TRL) serves as a way to assess the ma-

turity level of Critical Technology Elements (CTE) within various stages

of a project, encompassing research, development, and deployment phases

[113]. These levels are established through a Technology Readiness Assess-

ment (TRA), which evaluates the project’s conceptual designs, technological
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requirements, and the capabilities of the technology. Originally created by

NASA during the 1970s, TRLs were intended for evaluating technologies

involved in space exploration endeavours [114].

The primary objective of using Technology Readiness Levels is to pro-

vide a quantifiable measure of a technology component’s maturity within a

system. This measurement is crucial for project teams, as it offers insights

into the development stage of a particular technology and its readiness for

deployment. By assigning a TRL rating, project progress can be effectively

monitored and measured [113].

TRLs are categorized on a nine-point scale, where a level of 1 indicates

the earliest stage of technology development, and level 9 represents a tech-

nology that has reached full maturity [114]. The adoption of TRLs serves

uniform discussions regarding the technological maturity of diverse tech-

nologies. Thereby, it ensures a standard approach to assessing and commu-

nicating technological progress [113].

Table 3.6: The nine levels of the Technology Readiness Levels (TRLs) (adopted
from [113]).

Level Definition TRL Description

1 Basic principles observed
and reported

Lowest level of technology readiness. Scientific research begins to be
translated into applied research and development. Examples might
include paper studies of a technology’s basic properties.

2 Technology concept and/or
application formulated.

Invention begins. Once basic principles are observed, practical
applications can be invented. Applications are speculative and
there may be no proof or detailed analysis to support the assumptions.
Examples are limited to analytic studies.

3
Analytical and experimental
critical function and/or
characteristic proof of concept.

Active research and development is initiated. This includes analytical
studies and laboratory studies to physically validate analytical
predictions of separate elements of the technology. Examples include
components that are not yet integrated or representative.

4
Component and/or breadboard
validation in laboratory
environment.

Basic technological components are integrated to establish that they
will work together. This is relatively “low fidelity” compared to the
eventual system. Examples include the integration of “ad hoc”
hardware in the laboratory.

5 Component and/or breadboard
validation in relevant environment.

The Fidelity of breadboard technology increases significantly. The
basic technological components are integrated with reasonably realistic
supporting elements so it can be tested in a simulated environment.

6
System/subsystem model
or prototype demonstration
in a relevant environment.

A representative model or prototype system, which is well beyond that
of TRL 5, is tested in a relevant environment. Represents a major step
up in a technology’s demonstrated readiness.

7 System prototype demonstration
in an operational environment.

Prototype near, or at, planned operational system. Represents a major
step up from TRL 6, requiring the demonstration of an actual system
prototype in an operational environment such as an aircraft, vehicle,
or space.

8
Actual system completed and
qualified through test and
demonstration.

Technology has been proven to work in its final form and under expected
conditions. In almost all cases, this TRL represents the end of true system
development. Examples include developmental test and evaluations of the
system in its intended weapon system to determine if it meets design
specifications.

9
Actual system has proven
through successful mission
operations.

The actual application of the technology in its final form and under mission
conditions, such as those encountered in operational test and evaluation.
Examples include using the system under operational mission conditions.

To assess the usability of the system, we will assess the TRL by using
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a publicly available TRL calculation tool. This is made publicly available

by Emphasis [115], and can be found on their website [116]. Their calcu-

lation tool is based on asking questions regarding each of the levels of the

TRL framework. These questions are to be answered with ’Yes’, ’No’, or

’NA’. After having answered each of these questions, a full report and final

conclusion will be provided to the user.

This way of assessing the TRL is more user-friendly and less labour-

intensive than the extensive reporting structure as suggested by the US

Government Accountability Office [117], therefore this easy-to-use tool has

a superior alignment with the goals and time allocation for this research,

therefore we will be using the tool provided by Emphasis.

To evaluate the TRL, we completed the questionnaire three times: once

for the phase of the system prior to incorporating the results from the de-

tection and behaviour analysis phase, and again after these results had been

integrated. The third assessment was done according to the predicted out-

comes of the finalization of the entire drinking behaviour and identification

pipeline. These assessments provided insights into the advancements and

improvements made in the latest version of the system and the version after

the whole pipeline had been integrated.
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For each of the models, we devised various experiments that need to be con-

ducted to be able to assess and optimize the accuracy. To find the best be-

haviour model, we first selected the best model according to a set of model

experiments. Subsequently, we performed a sensitivity analysis for all three

models by tuning the parameters according to various parameter selection

experiments. After the optimal set of parameters was discovered, we con-

ducted ablation studies by several data augmentation experiments.

The goal of these experiments was to analyse the response to a change in

the set of parameters for each of the models. This gave us a clear picture of

the sensitivity of each of the models to the parameters, which led us to find

the optimal set of parameters for each task.

Besides the parameters, we conducted ablation studies to extract rele-

vant augmentation strategies for our problem. As there was a lot of varia-

tion in lighting, as we were dealing with a shift in daylight, exploring the

impact of augmentations is crucial for the deployment in real-world scenar-

ios.

4.1 Detection

For our detection model, we carefully selected one model which was to

be trained. We selected the YOLOv10 as this is the latest version of the

YOLO models [91]. For our initial detection dataset, we chose YOLOv10-X,

which is the largest and most accurate model. Even though this model is the

most precise, it is also computationally demanding to train. Therefore, we

selected YOLOv10m, which is the medium-sized model, for training pur-

poses.

As can be observed in Table 4.1, the largest model is indeed significantly

better than the medium model, however, it also requires the most computa-

tional resources to train and the inference speed is the slowest. More specifi-
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cally, it is approximately 2.5 times as big as YOLOv10-M and 2 times slower,

while having a 6.5% higher accuracy. As accuracy was not the most impor-

tant aspect of the model, we chose to use the YOLOv10-M model.

Table 4.1: Comparison of the various YOLO models.

Model Input Size APval FLOPs (G) Latency (ms)
YOLOv10-N 640 38.5 6.7 1.84
YOLOv10-S 640 46.3 21.6 2.49
YOLOv10-M 640 51.1 59.1 4.74
YOLOv10-B 640 52.5 92.0 5.74
YOLOv10-L 640 53.2 120.3 7.28
YOLOv10-X 640 54.4 160.4 10.70

4.1.1 Sensitivity Analysis

To optimize the YOLO model’s performance, we conducted a systematic

sensitivity analysis on key hyperparameters. We began by exploring learn-

ing rates, which we set to 0.0001, 0.0005, 0.001, 0.005, 0.01, followed by

warmup epochs 1, 2, 3, 4, corresponding to 5%, 10%, and 20% of total

epochs.

Next, we varied the final learning rate factor (lrf) 0.01, 0.05, 0.1, 0.001,

momentum 0.9, 0.937, 0.98, 0.995, and batch sizes 8, 16, 32. Then we varied

the box loss 0.5, 2.5, 5, 7.5, 10, class loss 0.1, 0.25, 0.5, 1, 2, and dfl loss 0.5, 1,

1.5, 2, 2.5.

Throughout the analysis, we maintained a constant 20 epochs for each

run. We trained the model on the full dataset. We used a baseline and

varied each hyperparameter in turn. For the baseline we chose: lr: 0.01, lrf:

0.01, optimizer: AdamW, batch size: 8, weight decay: 0.0005, momentum:

0.937, dropout: 0.0, box: 7.5, class: 0.5, dfl: 1.5 . We used the Standard

Augmentation setup, which will be described in the subsequent paragraph.

All other parameters were kept at their default values as specified in the

Ultralytics documentation [118]. This approach allowed us to identify the

impact of each hyperparameter on the metrics of the YOLO model training.
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4.1.2 Ablation Studies

Following the sensitivity analysis, we conducted one type of ablation study

to evaluate the impact of various data augmentation strategies on our YOLO

model’s performance.

We tested eight distinct augmentation setups: No Augmentation, Stan-

dard Augmentation, Aggressive Color Augmentation, Rotation and Trans-

lation Focus, Scaling and Cropping Focus, Horizontal Flip Only, and Black

and White conversion. Each setup varied in parameters such as HSV ad-

justments, geometric transformations (rotation, translation, scaling), flip-

ping, mosaic, and cropping. We maintained the optimal hyperparameters

identified during the sensitivity analysis, including learning rate, warmup

epochs, final learning rate factor (lrf), momentum, and batch size.

All other parameters remained at their default values as specified in the

Ultralytics documentation [98]. An overview of the values of each of the

parameters can be found in Table A.1 in Appendix A.1.1.

As we wanted optimal comparative results, we trained the model with

each augmentation setup for 100 epochs instead of 20 epochs that were used

during sensitivity analysis. The number of runs required for the full ablation

study is significantly lower compared to the full sensitivity analysis. As we

do not have unlimited computational resources, this was a sensible choice.

4.2 Behaviour

4.2.1 Model Selection

To determine the optimal model for our task, we conducted a comparative

analysis of several convolutional neural networks: EfficientNetV2-Small,

ResNet50, ResNet101, DenseNet, and MobileNet_V3_Large. Each model

was initialized with pre-trained weights from IMAGENET1K_V1, leverag-

ing transfer learning to enhance performance.

We standardized the input preprocessing across most models, using a

resize of 256x256 pixels, mean values of [0.485, 0.456, 0.406], and standard

deviation values of [0.229, 0.224, 0.225]. The exception was EfficientNetV2-
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Small, which employed a larger input size of 384x384 pixels as it was trained

on images of this size. A consistent baseline hyperparameter setup was ap-

plied across all models, featuring a learning rate of 0.001 (0.01 for frozen

layers), momentum of 0.9, step size of 10, and a learning rate decay factor

(gamma) of 0.1. We utilized Stochastic Gradient Descent (SGD) as the op-

timizer and set the batch size to 16. We used the Standard Augmentation

setup which will be explained in Section 4.2.3.

This systematic approach allowed us to evaluate the performance of each

model under similar conditions. This gave us a clear idea of their accuracy

to determine which model would be our final choice.

4.2.2 Sensitivity Analysis

To analyze the behaviour model’s performance, we conducted a systematic

sensitivity analysis on the most important hyperparameters. To achieve op-

timal results, we conducted our hyperparameter analysis process in two dis-

tinct phases. In the first phase, we performed a sensitivity analysis with the

pre-trained layers frozen. This approach leverages transfer learning while

minimizing computational costs. In the second phase, we unfroze all layers

and repeated the sensitivity analysis on the entire model. In this phase, we

used the model weights obtained from training the frozen model with the

parameters that achieved the optimal scores.

We slightly altered the baseline values for the sensitivity analysis. We

chose a learning rate of 0.001, a momentum of 0.9, a step size of 3, a gamma

of 0.1, a batch size of 32, and the SGD optimizer. We maintained a con-

stant 6 epochs for each run during the first phase, except for the optimizer

comparison, for which we used 10 epochs. In the second phase, during

fine-tuning, we constantly used 10 epochs per run. We trained the model on

the full dataset. We used the Standard Augmentation setup which will be

explained in Section 4.2.3.

In the first phase, with frozen pre-trained layers, we first explored learn-

ing rates, which we set to 0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01.

Next, we varied the learning rate decay factor (gamma) 0.2, 0.1, 0.05, 0.01,

0.001, followed by momentum values 0.85, 0.9, 0.937, 0.98, 0.995, and batch
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sizes 8, 16, 32. Finally, we compared the performance of two optimizers:

SGD and Adam. These values were consistent for both phases. This two-

stage process enabled us to determine each hyperparameter’s effect in both

training phases.

4.2.3 Ablation Studies

To evaluate the impact of various data augmentation strategies on our be-

haviour model’s performance, we conducted one type of ablation study on

the behaviour model. We tested seven distinct augmentation setups: No

Augmentation, Standard Augmentation, Aggressive Color Augmentation,

Rotation Focus, Scaling and Cropping Focus, Horizontal Flip Only, and

Grayscale Emphasis.

Each setup varied in parameters such as random rotation (0° to 30°),

colour jitter (brightness, contrast, saturation, hue, and probability), random

resized crop (from original size to 80% of original dimensions), random hor-

izontal flip (0 to 100% probability), and grayscale conversion (0 to 100%

probability). The Standard Augmentation setup included a balanced mix of

all transformations, while other setups focused on specific aspects of aug-

mentation. An overview of the values of each of the parameters can be

found in Table A.2 in Appendix A.1.1.

To conduct these experiments, we employed the same two-phased sys-

tematic approach as during the sensitivity analysis. We first trained the Effi-

cientNetV2 model with the baseline train parameters for 10 epochs on each

augmentation setup. Consecutively, we adopted the weights of the optimal

model obtained from phase one to perform the same analysis for the second

phase.

This systematic approach allowed us to isolate the effects of different

augmentation techniques on our behaviour model’s performance in an un-

biased manner by doing it once for each training phase. By doing these ex-

periments, we obtained insights into the most effective data augmentation

strategies for cow behaviour classification.
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4.2.4 Drinking Time Measurement

This experiment is aimed at measuring the total drinking time of one ran-

domly selected full hour of video obtained from the camera used for testing.

As our test set contains carefully selected images according to an iterative

process which gradually increases the level of complexity of the images, this

does not reflect the level of complexity of one full hour of video. Therefore,

we have annotated one hour of video to be compared with the recognition

capabilities of the best model obtained during this research.

We employed the models that attained the best results during testing

for both the detection and behaviour recognition phases. The results were

then carefully corrected using the same annotation software as discussed in

Section 3.1. Subsequently, we compared the predictions with the corrected

behaviour classifications. This experiment gives us insight into the perfor-

mance of the behaviour classification model for one hour of video without

a biased image selection process.
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5.1 Detection

5.1.1 Sensitivity Analysis

Table 5.1 depicts the results of the sensitivity analysis for the YOLO model

training. The analysis explored different values for learning rate, warmup

epochs, final learning rate, momentum, batch size, loss weights (box, class,

and DFL), and optimizer choice.

For the learning rate, values ranged from 0.0001 to 0.01. The highest

mAP50 (0.8591) and precision (0.8187) were achieved with a learning rate of

0.0005. However, the highest mAP50-95 (0.6213) was obtained with 0.0001.

Warmup epochs were tested from 1 to 4, with 4 epochs yielding the best

mAP50 (0.7025) and recall (0.6416). Interestingly, 3 warmup epochs pro-

vided the highest mAP50-95 (0.4531).

The final learning rate varied from 0.001 to 0.1, with 0.01 achieving the

best overall performance (mAP50: 0.6939, mAP50-95: 0.4531).

Momentum values ranged from 0.9 to 0.995. The optimal value was

found to be 0.937, which yielded the highest mAP50 (0.6939) and mAP50-95

(0.4531).

Batch sizes of 8 and 16 were evaluated, with the larger batch size of 16

achieving better results across most metrics (mAP50: 0.7191 vs 0.6939). As

training with a batch size of 32 gave out-of-memory issues, it could not be

tested.

For box loss, a weight of 10 provided the best mAP50 (0.7164) and recall

(0.6703). Class loss weight of 2 yielded the highest mAP50 (0.7590) and

recall (0.6805). For DFL loss, a weight of 2 gave the best mAP50 (0.7059) and

recall (0.6789).

Lastly, two optimizers were compared: Adam and SGD. SGD signifi-

cantly outperformed Adam on all metrics, with superior results in mAP50
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Table 5.1: Metrics from the sensitivity analysis on the validation set.

Metric
Parameter Value mAP50 mAP50-95 precision recall box loss class loss dfl loss

0.0001 0.8139 0.6213 0.7563 0.7162 2.1763 1.8967 2.9012
0.0005 0.8591 0.5864 0.8187 0.7637 2.0959 1.6413 2.7999
0.001 0.8241 0.5540 0.7778 0.7328 2.2227 1.9523 2.9193
0.005 0.7877 0.4691 0.7916 0.7099 2.3433 2.1279 3.0322

Learning Rate

0.01 0.6939 0.4531 0.6807 0.6204 2.7079 2.5657 3.4075
1 0.5504 0.2666 0.6476 0.4500 4.0415 3.6628 4.5804
2 0.6760 0.4337 0.6839 0.6041 3.0892 2.9851 3.7621
3 0.6939 0.4531 0.6807 0.6204 2.7079 2.5657 3.4075Warmup Epochs

4 0.7025 0.4351 0.6709 0.6416 3.1833 2.7257 3.8934
0.01 0.6939 0.4531 0.6807 0.6204 2.7079 2.5657 3.4075
0.05 0.6900 0.4369 0.6278 0.6692 2.9370 2.4882 3.6343
0.1 0.6894 0.4282 0.6916 0.6107 3.0051 2.5769 3.7829Learning Rate Final

0.001 0.6815 0.4442 0.6516 0.6479 2.8972 2.5429 3.5784
0.9 0.6883 0.4348 0.6493 0.6531 2.9569 2.6198 3.6683

0.937 0.6939 0.4531 0.6807 0.6204 2.7079 2.5657 3.4075
0.98 0.6808 0.4226 0.6605 0.6570 3.0624 2.6670 3.6305Momentum

0.995 0.6071 0.3247 0.5495 0.6393 3.6677 3.2401 4.1413
8 0.6939 0.4531 0.6807 0.6204 2.7079 2.5657 3.4075

16 0.7191 0.4661 0.7156 0.6462 2.9221 2.3333 3.6336Batch Size
32 - - - - - - -

0.5 0.6990 0.4219 0.6435 0.6635 0.2116 2.8938 3.7591
2.5 0.6594 0.4316 0.6563 0.6209 0.9768 2.8207 3.6287

5 0.6821 0.4387 0.6960 0.6164 2.0128 2.6959 3.7580
7.5 0.6939 0.4531 0.6807 0.6204 2.7079 2.5657 3.4075

Box Loss

10 0.7164 0.4506 0.6775 0.6703 3.9170 2.3664 3.6437
0.1 0.6276 0.3839 0.6667 0.5757 3.1998 0.5919 3.9823

0.25 0.6776 0.4203 0.6155 0.6697 2.9060 1.2290 3.6219
0.5 0.6939 0.4531 0.6807 0.6204 2.7079 2.5657 3.4075

1 0.6882 0.4313 0.6531 0.6554 2.9587 4.9197 3.6307
Class Loss

2 0.7590 0.4274 0.7437 0.6805 3.4959 10.0360 3.8157
0.5 0.6863 0.4396 0.6850 0.6047 2.9403 2.5484 1.2024

1 0.6753 0.4386 0.6849 0.5975 3.0081 2.6545 2.4931
1.5 0.6939 0.4531 0.6807 0.6204 2.7079 2.5657 3.4075

2 0.7059 0.4545 0.6448 0.6789 2.9060 2.4497 4.8716
DFL Loss

2.5 0.7055 0.4464 0.6956 0.6237 2.8443 2.3276 6.0052
Adam 0.6939 0.4531 0.6807 0.6204 2.7079 2.5657 3.4075Optimizer SGD 0.7753 0.5551 0.8075 0.6525 2.2862 2.1817 2.9526
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(0.7753 vs 0.6939) and precision (0.8075 vs 0.6807).

Across all parameters, mAP50 consistently showed higher values com-

pared to mAP50-95, indicating better performance at lower IoU thresholds.

The various loss components (box, class, and DFL) showed different trends

depending on the parameter being tuned. Overall the baseline parameters

performance was competitive with the best parameter values.

5.1.2 Ablation Studies

Table 5.2 depicts the results of ablation studies on various data augmenta-

tion techniques for the YOLO model, conducted over 100 epochs. Standard

augmentation showed the highest overall performance, improving mAP50

by 9.0% (from 0.8984 to 0.9796) and mAP50-95 by 22.8% (from 0.6073 to

0.7459) compared to no augmentation. Precision and recall also increased

by 12.9% and 14.8%, respectively.

Table 5.2: Metrics from the ablation study on the validation set.

Metric
Setup mAP50 mAP50-95 precision recall class loss box loss dfl loss
No Augmentation 0.8984 0.6073 0.8354 0.8137 1.7169 2.2105 4.4609
Standard Augmentation 0.9796 0.7459 0.9435 0.9342 0.9243 1.5914 3.3660
Aggressive Color Augmentation 0.9772 0.7274 0.9421 0.9452 0.9016 1.6599 3.4525
Rotation and Translation Focus 0.9634 0.6629 0.9345 0.8712 1.2145 1.9430 3.8071
Scaling and Cropping Focus 0.9303 0.6530 0.9373 0.7973 1.3430 1.8825 3.6341
Horizontal Flip Only 0.9758 0.7026 0.9304 0.9527 0.8881 1.8698 3.8535
Black and White 0.8984 0.6073 0.8354 0.8137 1.7169 2.2105 3.5437

Aggressive colour augmentation and horizontal flip-only setups performed

similarly to standard augmentation, with mAP50 values of 0.9772 and 0.9758,

respectively. The horizontal flip setup achieved the highest recall (0.9527)

among all configurations.

Rotation and translation-focused augmentation outperformed no aug-

mentation but underperformed compared to standard augmentation, with

a mAP50 of 0.9634. Scaling and cropping-focused augmentation showed the

least improvement among the augmented setups, with a mAP50 of 0.9303

and the lowest recall (0.7973).

The black-and-white conversion setup matched the performance metrics

without any augmentation, except for a lower DFL loss (3.5437 vs 4.4609).

All augmentation strategies reduced losses compared to no augmenta-
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tion, with standard augmentation achieving the lowest overall losses (class:

0.9243, box: 1.5914, DFL: 3.3660).

5.1.3 Final Models

Table 5.3 presents the results of three model configurations trained on the

test set for 100 epochs, each incorporating different combinations of opti-

mized parameters and augmentation techniques.

Table 5.3: Performance metrics for the best detection models.

Metric

Setup mAP50 mAP50-95 precision recall

Best Params Best Augment 0.9910 0.8710 0.9610 0.9670

Best Learning Rate Best Augment 0.9850 0.7980 0.9560 0.9560

Best Optimizer Best Augment 0.9830 0.8280 0.9550 0.9420

The Best Params Best Augment setup, which combined optimal hyper-

parameters with standard augmentation, achieved the highest overall per-

formance. This configuration improved mAP50 by 0.6% and mAP50-95

by 9.1% compared to the Best Learning Rate Best Augment setup. It also

outperformed the Best Optimizer Best Augment configuration by 0.8% in

mAP50 and 5.2% in mAP50-95.

The Best Learning Rate Best Augment setup, which only optimized the

learning rate (0.0005) while keeping other parameters at baseline, showed

strong performance with a mAP50 of 0.9850 and mAP50-95 of 0.7980. This

configuration achieved identical precision and recall values of 0.9560.

The Best Optimizer Best Augment setup, which used SGD instead of

AdamW while maintaining other baseline parameters, demonstrated im-

proved performance over the Best Learning Rate configuration in terms of

mAP50-95 (0.8280 vs 0.7980). However, it showed slightly lower mAP50

(0.9830 vs 0.9850) and recall (0.9420 vs 0.9560).

All three configurations exhibited high precision and recall values, rang-

ing from 0.9550 to 0.9670, indicating robust detection capabilities across

different parameter combinations. The Best Params Best Augment setup

achieved the highest recall (0.9670) among the three configurations.
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5.1.4 Qualitative Results

Figure 5.1: Test batch ground truth bounding boxes for several frames.
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Figure 5.2: Test batch predicted bounding boxes for several frames. The con-
fidence level is given for each bounding box. This indicates the level of confi-
dence of the cow class.

(a) Incorrect number of bounding boxes (b) Undetected cow

Figure 5.3: Manual review of incorrect detections.
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5.2 Behaviour

5.2.1 Models

The results of the model evaluations are presented in Table 5.4. The table

compares the six different neural network architectures: EfficientNetV2S,

ResNet50, ResNet101, MobileNetV3, DenseNet121, and DenseNet169. For

each model, the two phases are evaluated.

Table 5.4: Metrics from the chosen models on the validation set.

Metric
Model Phase time accuracy precision recall f1 ROC AUC

Freeze 7.4519 0.6474 0.5972 0.8942 0.7161 0.6487EfficientNetV2S Tune 8.7053 0.8342 0.7647 0.9630 0.8525 0.8349
Freeze 7.7713 0.6395 0.6008 0.8201 0.6935 0.6404ResNet50 Tune 7.4551 0.7474 0.6946 0.8783 0.7757 0.7481
Freeze 7.6801 0.5842 0.5529 0.8571 0.6722 0.5856ResNet101 Tune 7.7331 0.8000 0.7467 0.9048 0.8182 0.8005
Freeze 7.5040 0.5947 0.5785 0.6825 0.6262 0.5952MobileNetV3 Tune 7.9042 0.6605 0.6027 0.9312 0.7318 0.6619
Freeze 8.0009 0.5763 0.5424 0.9471 0.6898 0.5783DenseNet121 Tune 7.6012 0.8053 0.7751 0.8571 0.8141 0.8055
Freeze 7.7220 0.6395 0.5884 0.9153 0.7164 0.6409DenseNet169 Tune 7.9745 0.8158 0.7644 0.9101 0.8309 0.8163

The performance metrics reported include inference time (in seconds),

accuracy, precision, recall, F1 score, and ROC AUC. Across all models, the

tuning phase generally showed improved performance compared to the

freezing phase.

EfficinetNet obtained the highest accuracy (0.6474) and ROC AUC (0.6487)

during the freeze phase. ResNet50 exhibited slightly higher precision (0.6008

vs 0.5972), whereas DenseNet121 showed a substantially higher recall com-

pared to EfficientNetV2S (0.9471 vs 0.8942).

EfficientNetV2S obtained the highest accuracy (0.8342), recall (0.9630),

F1 score (0.8525), and ROC AUC (0.8349) in the tuning phase. ResNet101

and DenseNet121 also showed notable improvements after tuning, with

accuracies of 0.8000 and 0.8053, respectively. MobileNetV3 exhibited the

smallest improvement from freezing to tuning, while still showing gains

across all metrics. Inference times varied slightly across models and phases,
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ranging from 7.4519 seconds (EfficientNetV2S, Freeze) to 8.7053 seconds (Ef-

ficientNetV2S, Tune). The results indicate that the EfficientNetV2S exhibited

the best performance overall for both phases. Therefore, we will conduct the

sensitivity analysis on this model.

5.2.2 Sensitivity Analysis

Frozen Model

Table 5.5 presents the results of the sensitivity analysis for the freeze phase

by training the best model; EfficientNetV2S. The analysis explored differ-

ent values for learning rate, gamma, momentum, batch size, and optimizer

choice.

Table 5.5: Metrics from the sensitivity analysis freeze phase on the validation
set.

Metric
Parameter Value accuracy precision recall f1 ROC AUC

0.00001 0.6421 0.5950 0.8783 0.7094 0.6433
0.00005 0.6368 0.5882 0.8995 0.7113 0.6382
0.0001 0.6316 0.5814 0.9259 0.7143 0.6331
0.0005 0.6289 0.5833 0.8889 0.7044 0.6303

0.001 0.6342 0.5906 0.8624 0.7011 0.6354
0.005 0.6737 0.6236 0.8677 0.7257 0.6747

Learning Rate

0.01 0.6395 0.5884 0.9153 0.7164 0.6409
0.2 0.6632 0.6041 0.9365 0.7344 0.6646
0.1 0.6342 0.5906 0.8624 0.7011 0.6354

0.05 0.6526 0.6084 0.8466 0.7080 0.6536
0.01 0.6526 0.6059 0.8624 0.7118 0.6537

Gamma

0.001 0.6447 0.5964 0.8836 0.7122 0.6460
0.85 0.6289 0.5828 0.8942 0.7056 0.6303

0.9 0.6342 0.5906 0.8624 0.7011 0.6354
0.937 0.6237 0.5782 0.8995 0.7039 0.6251
0.98 0.6184 0.5738 0.9048 0.7023 0.6199

Momentum

0.995 0.6132 0.5745 0.8571 0.6879 0.6144
8 0.6842 0.6245 0.9153 0.7425 0.6854

16 0.6605 0.6027 0.9312 0.7318 0.6619Batch Size
32 0.6342 0.5906 0.8624 0.7011 0.6354

Adam 0.6421 0.5957 0.8730 0.7082 0.6433Optimizer SGD 0.6474 0.5972 0.8942 0.7161 0.6487

For the learning rate, values ranged from 0.00001 to 0.01. The highest

accuracy (0.6737) precision (0.6236), and F1 score (0.7257) were achieved
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with a learning rate of 0.005. The baseline value of 0.001 exhibited lesser

results.

Gamma values were tested from 0.001 to 0.2, with 0.2 yielding the best

performance (accuracy: 0.6632, recall: 0.9365, F1 score: 0.7344 ROC AUC:

0.6646). This indicates the baseline gamma achieved poorer performance.

Momentum varied from 0.85 to 0.995. The optimal value was found to

be 0.9 (accuracy: 0.6342, precision: 0.5906, ROC AUC: 0.6354), with recall

and f1 slightly under the best scores; 0.8624 vs 0.9048, and 0.7011 vs 0.7056

respectively.

Batch sizes of 8, 16, and 32 were evaluated, with the smallest batch size of

8 achieving the best results, showing a significant improvement compared

to the baseline of 32 (0.6842 vs 0.6342).

Lastly, two optimizers were compared: Adam and SGD. SGD slightly

outperformed Adam on all metrics.

Across all parameters, recall consistently showed high values, often ex-

ceeding 0.85, while precision remained relatively lower, typically between

0.57 and 0.62. ROC AUC scores closely resembled the accuracy values for

each parameter setting.

Fine-Tuning

Table 5.6 presents the results of the sensitivity analysis for the fine-tuning

phase of the EfficientNetV2S model. The same values for each of the hyper-

parameters were used for the fine-tuning as for the freezing. For tuning we

used the model weights obtained from training the frozen model with the

parameters that achieved the optimal scores. This was found to be the base-

line model with a batch size of 8 which used the Standard Augmentation

setup.

The optimal performance was achieved with a learning rate of 0.0005,

yielding the highest accuracy (0.8895), precision (0.8731), and F1 score (0.8912).

Performance declined sharply for learning rates above 0.001.

The best performance for gamma was observed at 0.1, with the highest

accuracy (0.8842), precision (0.8502), and F1 score (0.8889). Performance

decreased as gamma deviated from this value.
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Table 5.6: Metrics from the sensitivity analysis tune phase on the validation
set.

Metric
Parameter Value accuracy precision recall f1 ROC AUC

0.00001 0.7632 0.6941 0.9365 0.7973 0.7641
0.00005 0.8421 0.7792 0.9524 0.8571 0.8427
0.0001 0.8789 0.8235 0.9630 0.8878 0.8794
0.0005 0.8895 0.8731 0.9101 0.8912 0.8896

0.001 0.8842 0.8502 0.9312 0.8889 0.8845
0.005 0.6947 0.6409 0.8783 0.7411 0.6957

Learning Rate

0.01 0.7026 0.6387 0.9259 0.7559 0.7038
0.2 0.8105 0.7388 0.9577 0.8341 0.8113
0.1 0.8842 0.8502 0.9312 0.8889 0.8845

0.05 0.8000 0.7344 0.9365 0.8233 0.8007
0.01 0.7289 0.6593 0.9418 0.7756 0.7301

Gamma

0.001 0.7237 0.6511 0.9577 0.7752 0.7249
0.85 0.6974 0.6350 0.9206 0.7516 0.6985

0.9 0.8842 0.8502 0.9312 0.8889 0.8845
0.937 0.6974 0.6331 0.9312 0.7537 0.6986
0.98 0.7579 0.6902 0.9312 0.7928 0.7588

Momentum

0.995 0.7421 0.6667 0.9630 0.7879 0.7433
8 0.6868 0.6699 0.7302 0.6987 0.6871

16 0.6789 0.6136 0.9577 0.7479 0.6804Batch Size
32 0.8842 0.8502 0.9312 0.8889 0.8845

Adam 0.7816 0.7137 0.9365 0.8101 0.7824Optimizer SGD 0.8842 0.8502 0.9312 0.8889 0.8845

The optimal value for momentum was found to be 0.9, achieving the

highest accuracy (0.8842), precision (0.8502), F1 score (0.8889) and ROC AUC

(0.8845). Performance dropped notably for values above and below 0.9.

Interestingly, the largest batch size of 32 produced the best results across

all metrics (accuracy: 0.8842, F1 score: 0.8889), contrasting with the freeze

phase results.

For optimizers, SGD outperformed Adam across all metrics, with signif-

icant improvements in accuracy (0.8842 vs 0.7816) and F1 score (0.8889 vs

0.8101).

Across all parameters, recall consistently showed high values, often ex-

ceeding 0.90. Precision values were generally higher compared to the freeze

phase, typically ranging from 0.63 to 0.87. ROC AUC scores followed the

accuracy values for each parameter setting.
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5.2.3 Abblation Studies

Frozen Model

Table 5.7 depicts the results of the ablation study for the freeze phase. Seven

different augmentation setups were evaluated.

Table 5.7: Metrics from the ablation study freeze phase on the validation set.

Metric
Augmentation accuracy precision recall f1 ROC AUC
No Augmentation 0.7000 0.6728 0.7725 0.7192 0.7004
Standard Augmentation 0.6921 0.6429 0.8571 0.7347 0.6930
Aggressive Color Augmentation 0.6553 0.6250 0.9206 0.7265 0.6558
Rotation Focus 0.6868 0.6357 0.9312 0.7012 0.6878
Scaling and Cropping Focus 0.5974 0.5621 0.8624 0.6192 0.5988
Horizontal Flip Only 0.6711 0.6301 0.8360 0.7126 0.6718
Grayscale Emphasis 0.5974 0.8333 0.3651 0.4742 0.5962

The No Augmentation setup achieved the highest accuracy (0.7000) and

ROC AUC (0.7004). However, Standard Augmentation yielded the best F1

score (0.7347). Rotation Focus produced the highest recall (0.9312), while

Grayscale Emphasis resulted in the highest precision (0.8333) but at the cost

of significantly lower recall. Scaling and Cropping Focus and Grayscale

Emphasis both showed the lowest accuracy (0.5974). Across most augmen-

tation strategies, recall values were consistently high, often exceeding 0.80,

while precision varied more widely from 0.5621 to 0.8333.

Fine-Tune

Table 5.8 gives the results of the ablation study for the fine-tuning phase,

using the same augmentation strategies as in the freeze phase. The perfor-

mance metrics generally improved compared to the freeze phase across all

augmentation setups.

Test Results

Grayscale Emphasis achieved the highest accuracy (0.8526) and ROC AUC

(0.8528), a significant improvement from its performance in the freeze phase.

Standard Augmentation produced the best F1 score (0.8585). Scaling and

Cropping Focus yielded the highest recall (0.9471) but at the cost of lower
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Table 5.8: Metrics from the ablation study tune phase on the validation set.

Metric
Augmentation accuracy precision recall f1 ROC AUC
No Augmentation 0.7974 0.7642 0.8571 0.8080 0.7977
Standard Augmentation 0.8474 0.7964 0.9312 0.8585 0.8478
Aggressive Color Augmentation 0.8289 0.8131 0.8519 0.8320 0.8291
Rotation Focus 0.8079 0.7929 0.8307 0.8114 0.8080
Scaling and Cropping Focus 0.6974 0.6303 0.9471 0.7569 0.6987
Horizontal Flip Only 0.8105 0.7577 0.9101 0.8269 0.8110
Grayscale Emphasis 0.8526 0.8276 0.8889 0.8571 0.8528

(a) Train results (b) Validation results

Figure 5.4: The train and validation metrics of the final behaviour classifica-
tion model.

precision and overall accuracy. Horizontal Flip Only showed balanced per-

formance with the highest precision (0.7577) and decent scores in other met-

rics. The No Augmentation setup, while improved from the freeze phase,

generally underperformed compared to most augmentation strategies in the

fine-tuning phase.

Across all augmentation strategies in the fine-tuning phase, recall values

remained high, typically above 0.85, while precision showed improvement

compared to the freeze phase, ranging from 0.6303 to 0.8276.

5.2.4 Final Models

The final evaluation of the best models was conducted using three distinct

approaches, each leveraging the insights gained from the sensitivity anal-

ysis and ablation study. These approaches aimed to determine the most

effective combination of hyperparameters and augmentation strategies.
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Freeze and Fine-Tune

This version incorporated both frozen training and fine-tuning phases. The

freeze phase utilized the optimal hyperparameters found during sensitivity

analysis, including a learning rate of 0.005, momentum of 0.9, gamma of 0.2,

SGD optimizer, and a batch size of 8. We found the optimal augmentation

setup was no augmentation. During the freeze phase, we trained the model

for 10 epochs.

The subsequent fine-tuning phase employed the set of hyperparame-

ters found to attain the best score. This included a reduced learning rate

of 0.0005, a gamma of 0.1, and an increased batch size of 32. The fine-tuning

phase also introduced Grayscale Emphasis augmentation as it gave the best

results and was trained for 20 epochs. The final results are given in Table 5.9

and in Figure 5.5.

Table 5.9: Performance metrics for Freeze and Tune phases.

Accuracy F1 Score Precision Recall ROC AUC
Freeze 0.6158 0.6741 0.5830 0.7989 0.6167
Tune 0.8132 0.8141 0.7921 0.8466 0.8133

(a) Freeze phase (b) Fine-tune phase

Figure 5.5: Confusion matrices for freeze and fine-tune phase of the model
with the best parameters on the validation set.

Fine-Tune

This approach focused solely on fine-tuning, bypassing the freeze phase en-

tirely. It utilized the best-performing model from the freeze baseline (accu-
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racy: 0.6842, F1 score: 0.7425) as a starting point. The fine-tuning process

adopted the optimal hyperparameters identified for fine-tuning, including

a learning rate of 0.0005, momentum of 0.9, gamma of 0.1, SGD optimizer,

and a batch size of 32. Grayscale Emphasis augmentation was applied dur-

ing the 20-epoch fine-tuning process.

The metrics of the model are the following: accuracy: 0.8684, precision:

0.8716, recall: 0.8624, f1: 0.8670, and ROC AUC: 0.8683. The confusion ma-

trix is given in Figure 5.6.

Figure 5.6: Confusion matrix for the freeze phase of the model with the best
parameters on the validation set.

Best Model Overall

The third version is built upon the best-performing fine-tuned model over-

all. This is the model that was obtained during the sensitivity analysis. It is

important to note that this version did not require any additional training as

opposed to versions 1 and 2, as this model was found during the analysis.

It has therefore been trained on fewer epochs, but it still attained a better

result on the validation set. This is the model with a learning rate of 0.0005

and all other hyperparameters were set to the baseline values.

The metrics of the model are the following: accuracy: 0.8895, precision:

0.8731, recall: 0.9101, f1: 0.8912, and ROC AUC: 0.8896. The confusion ma-

trix is given in Figure 5.7.
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Figure 5.7: Confusion matrix of the model with the best parameters on the
validation set.

Results Test Set

This section presents the performance results of the three model versions on

the test set. Each version represents a different training approach: version

1 combines freeze and fine-tune phases, version 2 focuses solely on fine-

tuning, and version 3 utilizes a baseline freeze model with optimal fine-

tuning. The models’ performance is evaluated using standard metrics in-

cluding accuracy, precision, recall, F1 score, and ROC AUC, which are pro-

vided in Figure 5.10. Additionally, confusion matrices are provided to offer

a detailed view of each model’s classification performance in Table 5.7.

Table 5.10: Performance metrics for the three model versions on the test set.

accuracy precision recall f1 ROC AUC
Freeze and Tune 0.7917 0.7917 0.8128 0.8021 0.7908
Tune Only 0.8778 0.8743 0.8930 0.8836 0.8772
Best Overall 0.8861 0.8411 0.9626 0.8978 0.8830
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(a) Freeze and fine-tune (b) Fine-tune only

(c) Best overall

Figure 5.8: Confusion matrices for all phases of the model evaluated on the
test set.
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5.2.5 Drinking Time Measurement

Here we discuss the results obtained from the full one-hour video. We give

the calculated metrics for both classes separately and the confusion matrix.

The results are given in Table 5.11, and Figure 5.9.

Table 5.11: Performance metrics for final model on the full hour test video.

Metric
accuracy precision recall f1

Drink 0.9602 0.9246 0.9197 0.9221
Non-Drink 0.9602 0.9724 0.9741 0.9733

Figure 5.9: Confusion matrix for the full hour test video.

The time estimation error is calculated by the percentage error and the

absolute error. As we extracted two frames per second from the video, the

estimated drinking time was 656.5 seconds, while the true time was 607.0

seconds. This equates to an absolute error of 49.5 seconds or a percentage

error of 8.15%.
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5.2.6 Qualitative Results

(a) Non drinking classified as drinking (b) Non drinking classified as drinking

Figure 5.10: Most confident incorrect drink predictions of the best model on
the test set.

77



Results

(a) Drinking classified as non drinking (b) Drinking classified as non drinking

Figure 5.11: Most confident incorrect non-drink predictions of the best model
on the test set.

(a) Drinking incorrectly classified (b) Drinking incorrectly classified

(c) Drinking incorrectly classified (d) Drinking correctly classified

Figure 5.12: Manually selected correct and incorrect drinking behaviour clas-
sifications from the test set. A purple bounding box indicates drinking and a
yellow bounding box indicates non-drinking.
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5.3 Reusability

The Technology Readiness Level (TRL) assessment of the system yielded

the following results. In the initial phase (Pre) where only the identifica-

tion component was tested rigorously, 8 out of 53 questions were answered

positively. After the behaviour analysis phase (Post), this increased to 13

positive answers. For the projected full system integration (Pipeline), 18

positive answers were recorded. The majority of affirmative responses were

concentrated in the first section of questions, which primarily addressed the

conceptual and early developmental stages of the technology. No positive

responses were recorded for questions related to market assessment, intel-

lectual property, or safety and deployment planning across all three phases.
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This thesis investigated the capabilities of computer vision models to detect

cows and analyse their drinking behaviour to be able to assess the duration

of their drinking. This research adds two important components to the final

system that tracks the drinking duration of each cow in a farm environment.

This system could measure the total time they are drinking in a day which

facilitates research into the relation between milk production and drinking

behaviour.

To accomplish this we devised two components of the system. The de-

tection component is based on YOLO (You Only Look Once) and the be-

haviour analysis component uses EfficientNetV2-Small. After fully assess-

ing the capabilities of each of these components they can be integrated into

one system that can constantly track the drinking behaviour. A key chal-

lenge addressed in this study is the development of a generalizable model

capable of deployment across diverse farm environments without necessi-

tating extensive retraining.

The main research question is: "How can we accurately recognize drink-

ing behaviour of each individual cow in a herd of cows using computer vi-

sion?". To address this question, we first needed to identify the components

needed. After these were identified they were trained separately and eval-

uated on an unseen test set to analyse their performance in a new unseen

environment. To do this we devised two sub-questions.

The first question; "How can we accurately and robustly detect cows in

videos?" was explored through a detection experiment that validated op-

timal hyperparameters and augmentation strategies for the YOLO-based

model.

The second question; "How can we reliably classify drinking and non-

drinking behaviour of cows in videos?" was addressed by a classification

experiment that identified the most effective model architecture, hyperpa-

rameters, and data augmentation techniques for behaviour analysis.
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To assess the system’s practical applicability and identify areas for fur-

ther enhancement we answered the question: "How usable is the system

in real-world scenarios, and what steps are required to enhance it further?"

by employing the Technology Readiness Level (TRL) framework [119]. This

evaluation provides insights into the system’s current state of development

and its potential for real-world implementation.

6.1 Findings and Interpretation

This section presents a comprehensive analysis of the experimental results,

offering interpretations of model performance and discussing the implica-

tions of these findings for monitoring dairy cow drinking behaviour.

6.1.1 Detection

6.1.1.1 Sensitivity Analysis

To determine the optimal hyperparameters for the model, we conducted

an extensive evaluation of various carefully selected hyperparameters and

their respective values. This analysis revealed several noteworthy patterns,

as illustrated in Figure 5.1. The learning rate emerged as a critical factor in-

fluencing model performance, with higher values leading to deterioration

in performance. This observation emphasizes the importance of warmup

epochs, during which the model begins training with a smaller learning

rate. Extending the duration of the warmup phase has been shown to en-

hance the model’s performance.

The impact of the final learning rate is less significant, as the majority of

learning occurs during the initial epochs, as can be observed when evaluat-

ing the training results depicted in Figure A.2.

Momentum, which is intrinsically related to the learning rate, plays an

important role in guiding the model towards the optimal solution. While it

aids in accelerating convergence when moving in the correct direction, high

momentum values can cause the model to converge to a local optimum or

follow a sub-optimal path. This phenomenon likely explains why setting
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the momentum to an extremely high value (0.995) resulted in significantly

poorer performance compared to other momentum values, which exhibited

relatively minor differences in their effects.

Looking at the losses we can see that the mAP metrics improve with

increasing box loss values, peaking at a value of 10. This suggests that a

higher emphasis on box loss helps the model better localize objects, leading

to more accurate detections. This also leads to higher precision and lower

loss, which is as expected. No other clear patterns were observed.

For the class loss, we see that the mAP50 shows a significant increase at

a class loss value of 2, indicating that a higher focus on class loss improves

the model’s ability to correctly classify objects. However, mAP50-95 does

not follow a clear trend, suggesting that extreme values might lead to over-

fitting. Precision increases notably at higher class loss values, while recall

improves but not as significantly. This indicates that the model becomes

more confident in its correct classifications. Box loss increases with higher

class loss values, indicating a trade-off where improving classification accu-

racy might slightly degrade localization performance.

For the DFL loss, we see that both mAP50 and mAP50-95 show improve-

ment with increasing DFL loss values, peaking around 2 and 2.5. This sug-

gests that a higher emphasis on DFL loss helps the model better focus on

the most relevant features for detection.

As expected all losses decrease drastically when increasing the loss pa-

rameter value. We can see that having a clear balance between the losses is

important as this enhances model performance.

Ablation Studies

From Figure 5.2, it is evident that the model’s performance is significantly

impaired when no augmentation is applied or when only black and white

images are used. Augmentation addresses issues such as occlusion, which

remain unresolved in the absence of augmentation.

Additionally, the orientation of the cows plays a critical role in model

performance. The Horizontal Flip Only setup achieves results compara-

ble to the best-performing setup, Standard Augmentation. This shows the
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necessity of horizontal flipping to achieve optimal results, indicating that

despite the training set containing approximately 9000 detections, there are

insufficient orientations for the model to generalize effectively.

While cropping may simulate occlusion, it can also introduce challeng-

ing examples, as illustrated in Figure A.1. In these instances, the model en-

counters nearly undetectable objects, such as in image [1,1]. Nevertheless,

the model attained competitive results, suggesting that it has been trained

on a sufficient number of detectable examples.

Colour is shown to be crucial when observing that the Black and White

augmentation setup gives relatively poor results compared to Aggressive

Color Augmentation.

Test Results

When comparing the test results to the validation results a striking pattern

emerges. The results are depicted in Table 6.1.

Table 6.1: Comparison of model performance on validation and test sets

Setup mAP50 mAP50-95 precision recall class loss box loss DFL loss

Validation
Best Params
Best Augment 0.8727 0.6578 0.8179 0.7884 2.6555 6.5433 3.4265

Best Learning
Rate Best Augment 0.9874 0.8011 0.9601 0.9562 1.2948 0.7431 2.9894

Test
Best Params
Best Augment 0.9910 0.8710 0.9610 0.9670 - - -

Best Learning
Rate Best Augment 0.9850 0.7980 0.9560 0.9560 - - -

From Table 6.1, several patterns and anomalies emerge. The Best Params

Best Augment setup on the validation set achieves a mAP50 of 0.8727 and

a mAP50-95 of 0.6578, with precision and recall values of 0.8179 and 0.7884,

respectively. On the test set, the performance improves significantly, with a

mAP50 of 0.9910 and a mAP50-95 of 0.8710, and precision and recall values

of 0.9610 and 0.9670, respectively. This indicates that the model generalizes

well to unseen data.

The Best Learning Rate Best Augment setup shows excellent performance

on the validation set, with a mAP50 of 0.9874 and a mAP50-95 of 0.8011, and

precision and recall values of 0.9601 and 0.9562, respectively. However, on

the test set, the performance slightly drops, with a mAP50 of 0.9850 and a
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mAP50-95 of 0.7980, and precision and recall values of 0.9560 and 0.9560,

respectively.

The Best Params Best Augment setup has a higher class loss (2.6555)

and box loss (6.5433) on the validation set compared to the Best Learning

Rate Best Augment setup, 1.2948, and 0.7431 respectively. Despite this,

it achieves better performance on the test set, suggesting that the model

might be overfitting less to the training data. The Best Learning Rate Best

Augment setup, while performing exceptionally well on the validation set,

shows a slight decrease in performance on the test set, suggesting potential

overfitting.

A notable pattern is a significant improvement in performance from the

validation set to the test set for the Best Params Best Augment setup, which

is unusual. Typically, one would expect the performance to be consistent

or slightly lower on the test set due to the model encountering completely

unseen data. This could be due to the positioning of the camera from which

the images of the test set were composed. This set of images does not con-

tain any background images, potentially decreasing the level of complexity

of the dataset.

These observations highlight the importance of evaluating models on

both validation and test sets to ensure robust performance and compare

final results.

Tuning

To enhance the selection of optimal parameter values, we explored further

tuning using evolutionary algorithms. Despite the potential of evolution-

ary algorithms to efficiently search large hyperparameter spaces [120], our

attempts did not yield satisfactory solutions. We conducted three separate

experiments, each spanning 20 epochs and 50 iterations, using a range of

values consistent with those employed during the sensitivity analysis. Un-

fortunately, each attempt resulted in convergence to a local optimum, failing

to achieve significant performance improvements.

Evolutionary algorithms operate by iteratively evolving a population of

candidate solutions through mechanisms inspired by natural selection, such

84



6.1 Findings and Interpretation

as mutation, crossover, and selection [121]. These algorithms are particu-

larly effective for complex optimization problems with large search spaces.

However, in our case, the size of the search space likely contributed to early

convergence, preventing the discovery of globally optimal solutions.

Given the computational constraints, we decided to prioritize sensitiv-

ity analysis over exhaustive tuning. While evolutionary algorithms could

theoretically be applied to tune augmentation strategies as well, the exten-

sive computational resources required were not available. Consequently,

we abandoned the idea of devising an experiment for augmentation tuning

as we achieved satisfactory results from sensitivity analysis.

Detection Capabilities

As we closely examine Figures 5.1 and 5.2, several critical observations can

be made. In the image [1,3] (indicating row 1, column 3) of Figure 5.1, rep-

resenting the ground truth, it is evident that the cow at the bottom is not

annotated. However, when comparing this with image [1,3] in Figure 5.2,

we observe that the model successfully detects this cow. This discrepancy

highlights the model’s robustness, as it can identify objects even when the

ground truth annotations are incomplete.

Additionally, in image [1,1] of Figure 5.2, the model demonstrates its

capability to confidently detect cows under various nightly conditions. This

indicates that the model’s performance is not significantly affected by the

lighting conditions in which the image was captured.

However, it is also notable that in the same image, the model erroneously

identifies the backscratcher as a cow. This misclassification might be at-

tributed to the white colour of the scratcher during nighttime. The model

predicted this with low confidence, and thus, applying a confidence thresh-

old of 0.5 would disregard this detection.

Setting the confidence threshold at this level can lead to problematic out-

comes. While most cows in Figure 5.2 are detected with high confidence,

this is not the case for the cow near the drinking trough in image [2,4],

which is classified with a confidence of 0.4. Adhering to a 0.5 threshold

would result in neglecting this detection. Given the importance of detecting
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cows exhibiting drinking behaviour, lowering the confidence threshold is

not problematic, as our behaviour classification model can filter out non-

relevant detections. Consequently, the backscratcher, despite having the

same confidence level as the cow in image [2,4], would be filtered out. Fig-

ure 5.2 shows that no cow was left undetected, indicating the model’s high

precision.

By manually selecting more challenging detections, we can identify ex-

amples that the model struggles with, as illustrated in Figure 5.3. Despite

YOLOv10’s use of a single head during inference, which should eliminate

the need for Non-Max Suppression (NMS) [70], the model still predicts

some erroneous boxes. Addressing these issues can be achieved through

two approaches: applying NMS as a post-processing step to eliminate erro-

neous boxes or utilizing the identification model’s capabilities to infer un-

necessary bounding boxes when the same cow is identified twice with high

confidence. Future research should determine the preferred approach.

In addition to the erroneous bounding box in Figure 5.3b, we observe

that one cow remains undetected, as it is occluded by the cow in front.

Although this undetected cow is not engaged in drinking behaviour, it is

crucial to address such scenarios. One potential solution is to add various

examples containing occlusion, or augmenting the dataset with specific aug-

mentation techniques. Employing harder augmentation techniques, such as

random erase, cutout, and mosaic, may be beneficial [122]. Placing the cam-

era directly above the drinking trough could prevent occlusion as well, but

this slightly shifts the problem domain. Additionally, integrating tracking

capabilities into the detection model, which is planned for future implemen-

tation, may resolve this issue [123].

Comparison to Other Models

To compare the capabilities of our best model, we have compared its results

with 3 other studies that devised detection models for dairy cows. As direct

comparison is hard due to the varying nature of the papers, caution must

be taken. An overview of the results is given in Table 6.2.

In the study conducted by Moradeyo et al. [56], the researchers applied
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Table 6.2: Detection model comparison.

Model Paper mAP50 mAP50-95 Precision Recall
YOLOv10 Our Model 0.9910 0.8710 0.9610 0.9670
YOLOv7 Moradeyo et al. [56] 0.9500 - - -

YOLOv5-EMA Zhang et al. [58] 0.9510 - 0.9480 0.9030
Faster R-CNN Andrew et al. [57] 0.9960 - - -

YOLOv7 to livestock image detection and segmentation tasks, focusing on

cattle grazing behaviour, monitoring, and intrusions. Data was collected

using a high-resolution video camera positioned on a high pole in a cattle

ranch, capturing images of Nigerian beef cattle. The dataset consisted of

1050 images, with 80% used for training and 20% for testing. The model

was trained for 55 epochs with a batch size of 16 and a confidence threshold

of 0.5. The study reported a mAP of 0.95 for the YOLOv7 model.

However, their research had several shortcomings. The dataset size was

relatively small (1050 images), which may limit the generalizability of the

model. Additionally, environmental conditions were controlled to reduce

noise, which might not reflect real-world variability. Precision and recall

metrics were not reported, making direct comparison difficult. Therefore,

the results should be interpreted with caution due to the controlled envi-

ronment and small dataset size. The model’s performance in more diverse

conditions might differ.

Andrew et al. [57] focused on visual localization and individual identi-

fication of Holstein Friesian cattle. They implemented cattle detection and

localization using the VGG CNN-M 1024 network adapted for the Faster

R-CNN framework. Their model was evaluated using a combination of

datasets of inside and outside cattle seen from above, resulting in 1,077 im-

ages for 2-fold cross-validation. Their model achieved mAP50 values of 0.99

and 0.996 for the two folds, respectively.

We further compare the results with the precision-recall curves. The

precision-recall curves for both models illustrate near-perfect performance

in detecting cattle. The Faster R-CNN model’s precision-recall curves, as

shown in Figure 6.1b, exhibit mAP50 values of 0.99 and 0.996 for the two

folds. Similarly, our YOLOv10 model’s precision-recall curve demonstrates

a mAP50 of 0.985, indicating comparable high-level performance.

87



Discussion

(a) Our model (b) Model by Andrew et al. [57]

Figure 6.1: Comparison of precision-recall curves of our model and the model
by Andrew et al. [57].

Zhang et al. [58] proposed a novel YOLOv5-EMA model for accurate cat-

tle body detection, incorporating the Efficient Multi-Scale Attention (EMA)

module. The dataset included 8024 images of 113 cattle, captured from

various angles and conditions. The model achieved an overall mAP@50

of 95.1% and a mAP@50 of 94.8% for cattle body detection. They also de-

tected legs and heads and reported an overall precision, recall and f1 score

for these classes of 94.8%, 90.3%, and 92.5%, respectively.

The dataset was relatively large and diverse, and they showed promising

results for cattle detection as well as the detection of specific body parts

by using an attention mechanism. They also reported the results without

an attention mechanism, which were reported as 93.7%, 89.0%, and 91.3%

for precision, recall and f1 score. The attention mechanism shows slight

improvements compared to the model without the attention mechanism.

When comparing our YOLOv10 model to these studies, considering the

differences in datasets, detection tasks, and reported metrics is crucial. Our

model shows excellent performance in terms of mAP@50 and mAP@50-95,

precision, and recall. However, the variability in datasets and specific de-

tection tasks in the other studies means that direct comparisons should be

made with caution.

It would be optimal to test our model on the datasets used in these stud-

ies to get conclusive answers. However, the results clearly indicate that our

model performance is on par, or better than other cattle detection models.
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6.1.2 Behaviour

Model Selection

To evaluate the results obtained by the model selection we will take an-

other look at the results table given in Table 5.4. Several patterns emerge

regarding the performance of the evaluated architectures. EfficientNetV2S

achieves the highest overall performance across all metrics when fine-tuned,

indicating its ability to effectively learn discriminative features for distin-

guishing between drinking and non-drinking behaviours. The architec-

ture’s efficient design, which is optimized through compound scaling, al-

lows it to achieve high accuracy while maintaining computational efficiency

[39].

ResNet50 and ResNet101 exhibit the expected pattern as the larger ar-

chitecture performs significantly better. The same is true for the smaller and

larger versions of DenseNet. A thing to notice, however, is that the accu-

racy, precision, f1, and ROC AUC of ResNet50 during freezing are higher

compared to the same metrics of the larger version during freezing. The

reason for this might be attributed to an incomplete random seeding initial-

ization. Even though we set a random seed, in hindsight this should have

been done for many processes. As we make use of many packages; Numpy,

Pytorch, CUDA, dataset shuffling, and data augmentation, we should have

set random seeds for all of these to eliminate any randomness [124]. This

might be the reason why the performance results of the larger model and

smaller model are not as expected.

A pattern that can be observed that applies to all models is that the pre-

cision is always lower than the accuracy and the recall. This shows that each

model is superior in predicting when a cow is not drinking as opposed to

when it is drinking. As accuracy is describes both recall and precision in

one metric, it is logical that this is higher than precision due to the addition

of the higher recall. The fact that recall is higher is not surprising either, as

these images are generally harder to classify.

Another important metric is the inference time. The inference time anal-

ysis is impacted by the use of Databricks and Azure Blob Storage, introduc-
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ing latency that reduces the inherent differences in inference speed among

the architectures. To obtain reliable comparisons of computational efficiency,

local evaluations are necessary [125]. Ideally, larger models like ResNet101

and DenseNet169 would have slower inference times compared to lightweight

architectures like MobileNetV3.

Sensitivity Analysis

During the freeze phase of training the behaviour model, we conducted a

sensitivity analysis to understand the impact of various hyperparameters

on the model’s performance. The hyperparameters investigated include

the learning rate, gamma, momentum, batch size, and optimizer. Table 5.5

presents the results of this analysis.

Examining the learning rate, we observe that the model’s performance is

relatively stable across different values, with a slight improvement at higher

learning rates. The highest accuracy, precision, and ROC AUC are achieved

with a learning rate of 0.005. This suggests that the model benefits from a

moderately high learning rate during the freeze phase, which is as expected

as freezing often requires a relatively high learning rate [126].

For the gamma parameter, there is no real pattern to be observed. Mo-

mentum, however, exhibits a more pronounced impact on the model’s per-

formance. Higher momentum values lead to a slight decrease in accuracy

and ROC AUC and accuracy. The best performance is achieved with a mo-

mentum of 0.9, resulting in an accuracy of 0.6342 and a ROC AUC of 0.6354.

This indicates that a balanced momentum value is optimal for the freeze

phase.

Regarding batch size, the model’s performance improves with smaller

batch sizes. The highest accuracy of 0.6842 and a ROC AUC of 0.6854 are

obtained with a batch size of 8. This suggests that the model benefits from

processing fewer samples in each batch during the freeze phase. This is

interesting as it is the exact opposite of the pattern we observed for the de-

tection model. The reason for this pattern might be because the model can

focus more on a first set of examples, update its weights and then evaluate

the next batch instead of having to focus on many examples at once.
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Finally, comparing the Adam and SGD optimizers, we observe that SGD

slightly outperforms Adam. SGD achieves an accuracy of 0.6474 and a ROC

AUC of 0.6487, while Adam yields an accuracy of 0.6421 and a ROC AUC

of 0.6433. This indicates that SGD is more suitable for optimizing the model

during the freeze phase even though the differences are minimal. Overall,

the sensitivity analysis of the freeze phase reveals that the model’s perfor-

mance is relatively robust to changes in hyperparameters.

It must also be noted that the metrics are quite low overall. This is be-

cause at this point the model only uses the features it extracted using the

pre-trained ImageNet weights. During this frozen phase, it can not learn

how to extract new features, therefore it might not be able to effectively use

the features to discern more nuanced differences between images. As the

ImageNet weights are obtained from training the model to discern between

1000 classes [87], these more subtle differences might not be effectively ex-

tracted using the features obtained from using the pre-trained weights.

Following the freeze phase, we proceeded to fine-tune the entire net-

work, allowing all layers to adapt to the target task. During this phase, we

conducted another sensitivity analysis to investigate the impact of various

hyperparameters on the model’s performance. Table 5.6 presents the results

of this analysis.

Examining the learning rate, we observe that the model’s performance

improves significantly as the learning rate decreases, reaching a peak at

0.0005 with an accuracy of 0.8895 and a ROC AUC of 0.8896. However,

further decreasing the learning rate leads to a sharp decline in performance,

suggesting that excessively low learning rates can hinder the fine-tuning

process. This is as expected as was previously discussed during the freeze

phase [126].

The gamma parameter shows a different trend compared to the freeze

phase, where no clear pattern emerged. Here we observe that a low gamma

gives very poor results, whereas a higher value improves the metrics dras-

tically. However the performance peaks at 0.1 and declines sharply again at

0.2. This suggests that a balanced gamma is crucial for the model to have

time to learn, but not have a relatively high learning rate throughout the
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entire training session.

For the varying momentum and batch size, we see a strange pattern

emerging as the performance of the baseline compared to the other values

is superior. We would expect to see a steady increase or decrease in the per-

formance of the model when increasing the values of momentum, but this

is the case either as the performance is poor for 0.9 (0.6974), and then in-

creases drastically for the baseline (0.8842) and is exactly the same for 0.937

as for 0.9 (0.6974). This leap in performance is most likely caused by the

incorrect initialization of random seeds pre-training as discussed in Section

6.1.2. This is the most probable cause for the same pattern when varying the

batch size as well.

We also see a substantial gap between the Adam and SGD optimizers

when fine-tuning. This might be because of the difference in the way they

operate. Several studies have shown that SGD tends to generalize better

than Adam [127, 128], especially for image classification tasks. Although

Adam may converge faster during training, SGD often achieves better per-

formance on the test set. This difference in generalization could be more

pronounced during fine-tuning, where the model is adapting to the specific

task. If this were true, then we would see a lower train loss for the Adam

optimizer compared to the SGD optimizer and a higher validation loss.

From the paper by Zhou et al. [127] we also found that Adam adapts the

learning rate for each parameter based on its historical gradients, while SGD

uses a single learning rate for all parameters. During fine-tuning, when the

model is learning task-specific features, the adaptive learning rates of Adam

may lead to overfitting or convergence to sharp minima. In contrast, SGD’s

single learning rate may provide a more stable and generalizable solution.

This would therefore result in the same result; a lower train loss for Adam

and a higher validation loss.

After further investigation, we found that the opposite is true. The train

loss for Adam is 0.248 as opposed to 0.089 for SGD and for validation, Adam

obtained a loss of 0.576 whereas SGD had a loss of 0.409. How these results

are obtained remains puzzling as the literature indicates that the exact oppo-

site should be observed. Our only logical explanation for this phenomenon
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is that it has to do with the incorrect setting of the random seeds with the

same consequences as described earlier.

The reason why this difference is not observed during the freezing phase

could be attributed to the fact that during freezing, only the last layer(s) of

the model are trained, while the rest of the weights are fixed. This limits the

model’s ability to adapt to the specific task. The difference in generalization

ability between SGD and Adam may not be as apparent in this scenario, as

the model’s capacity to overfit is restricted. However, a definitive correct

answer to this question could not be uncovered.

Ablation Studies

The ablation study results reveal several patterns, of which the most in-

triguing pattern is that the No Augmentation setup achieves the best per-

formance during the freeze phase. During the freeze phase of transfer learn-

ing, the pre-trained weights of the convolutional layers are fixed, and only

the fully connected layers are trained. The pre-trained convolutional lay-

ers have already learned to extract meaningful features, and the model is

able to leverage these features without the need for data augmentation. By

freezing these layers, we preserve the learned representations and prevent

them from being overwritten or distorted by the augmented data. Using

no augmentation during freezing allows the fully connected layers to focus

on learning the most relevant patterns without being influenced by added

augmentations.

In contrast, during the fine-tuning phase data augmentation greatly en-

hances the model’s generalization and performance. At this stage, the model

has the flexibility to adapt its weights to the specific characteristics of fea-

tures needed for correct classification, and data augmentation can help pre-

vent overfitting and improve the model’s robustness. This is the trend we

observe when comparing the freezing and fine-tuning phases. No augmen-

tation performs poorly when fine-tuning, but excels during the freezing

phase.

Another striking observation is the poor performance of the Grayscale

Emphasis setup during the freeze phase, which is in contrast to its excel-
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lent performance during fine-tuning. This can be attributed to the nature

of transfer learning. During the freeze phase, the pre-trained weights are

learned on colour images and may not be well-suited for extracting features

from grayscale images thereby leading to suboptimal performance. How-

ever, during fine-tuning, the entire network adapts to the grayscale images,

thus allowing the model to learn more discriminative features specific to

grayscale images.

This aligns with the findings of Xie et al. [129], who demonstrated that

pre-training on grayscale ImageNet can improve medical image classifi-

cation. They demonstrate that using grayscale images with a model pre-

trained on colour images can lead to suboptimal classification performance

during the freeze phase. This occurs because the model’s weights, opti-

mized for extracting features from colour images, do not effectively gener-

alize to grayscale data. However, during fine-tuning, the model can adapt

its weights and learn features relevant to the grayscale domain, significantly

improving its performance.

The Scaling and Cropping Focus setup yields relatively poor accuracy,

precision, and F1 scores compared to other setups, particularly during fine-

tuning. This can be explained by the challenging examples introduced by

scaling and cropping augmentations, which can generate nearly undetectable

objects, making it difficult for the model to learn robust features. The same

phenomenon occurred during ablation studies of the detection model, thus

these results are not surprising.

Test Results

When evaluating the test results of the final three models we see the op-

posite pattern emerging compared to the detection test results. When the

final model is trained on the best hyperparameters and augmentation setup

found during both phases and evaluated on the test set, the performance is

poor compared to the results obtained during the sensitivity analysis. The

model that was trained for fewer epochs and only varied in one hyperpa-

rameter (shown in Figure 5.4a) showed to have the best results in both the

validation (Figure 5.6) as the test set (Figure 5.10).
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The opposite results were observed for the detection model. The reason

might be that the model is more sensitive to the combination of different

hyperparameters, which were not evaluated. To overcome this problem, we

can make use of tuning. Unfortunately, we ran out of time to be able to

implement a tuning algorithm for the behaviour model. However, as we

tested our models and obtained competitive results, implementing a tuning

algorithm, even though possibly obtaining superior results, is left for future

research.

Recognition Capabilities

The behaviour model is able to better classify non-drinking behaviour com-

pared to drinking behaviour. This can be seen when taking into account the

quantitative metrics given by precision and recall. In line with this observa-

tion, we see the same pattern when examining the qualitative results.

When taking a closer look at Figure 5.10, we see that the model makes

various confident mistakes in classifying non-drinking behaviour as drink-

ing behaviour. In images [1,1], [2,2], [3,1], and [3,2] we can see that the head

of the cow is right above the drinking through. Discerning the behaviour

here is hard even for humans. It is no surprise that the model incorrectly

classified these complex scenes. However, looking at image [2,1], the rea-

son is not as clear why the model classified this cow as drinking with 100%

confidence. The image has a lot of occlusion, which is generally hard for the

model to process.

Occlusion can be observed in Figure 5.12c as well. Here the model in-

correctly classified the drinking cow as not drinking as the head is behind

the torso of the cow in front. Even though we can not see the head, it is

evident to humans that this cow is drinking. This could be solved by plac-

ing the camera in a different position or adding another camera. Adding

another camera allows the model to classify the behaviour according to dif-

ferent viewpoints, which will increase the amount of information the model

has for a scene, thereby potentially improving the classification process.

For hard examples, the model is not always able to correctly tell for each

cow whether it is drinking as can be observed in Figures 5.12a and 5.12b.
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The cows are observed to be in near proximity to the drinking trough, there-

fore, the examples are hard. In spite of this, a human can easily tell that these

cows are not drinking, whereas the model failed to do so. However, the

model is able to correctly classify hard scenes as can be observed in Figure

5.12d.

Comparison to Other models

To position our behaviour recognition model’s performance in the literature,

we compared it with recent studies on cow and pig drinking and feeding

behaviour recognition.

Comparing the study by Bello et al [60] we find some key similarities and

differences. Firstly, while both studies utilized deep learning techniques,

the specific model architectures employed were distinct. Bello et al. [60]

evaluated four pre-trained object detection models; Mask R-CNN, Faster

R-CNN, YOLOv3, and YOLOv4 for individual cow detection, with Mask

R-CNN achieving the highest accuracy and speed of 20 fps. In contrast, our

study used YOLOv10 for cow detection and EfficientNetV2 for subsequent

behaviour classification.

Furthermore, the datasets used in the two studies, while similar in to-

tal size, had notable differences in composition and structure. Bello et al.

[60] acquired video data from six cows on a ranch, from which they selected

1000 keyframes. 800 of these frames were used for training and 200 for

testing, with data augmentation applied to generate 4000 training frames

and 1000 testing frames in total. Our study, on the other hand, utilized a

dataset of 5000 examples specifically for behaviour analysis, with an addi-

tional separate test set of 400 examples. This suggests a more behaviour-

focused dataset composition in our case, potentially enabling more robust

behaviour classification.

In terms of the final metrics obtained, Bello et al. [60] achieved similar

performance compared to our study. Using the Mask R-CNN model, they

reported an average recognition accuracy of 88.03% for drinking. In con-

trast, our approach obtained an accuracy of 88.61%.

In the study by Fuentes et al. [59], they analysed many dairy cow be-
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haviours. However, as they did not analyse drinking behaviour, we will

compare their feeding behaviour to our drinking behaviour results as they

share a lot of resemblances. Their dataset contains 2714 annotated keyframes,

with around 1000 feeding instances. In comparison, our dataset consists of

5000 behaviour examples containing 3000 drinking and 2000 non-drinking

instances. We both distributed our data into 80% training, 10% validation

and 10% testing. This gives their final test set approximately 100 feeding

instances, while we have around 200 drinking instances for testing.

Since they used two model stages, they reported two results on the test

set. The mAP improved from 0.829 with just the frame-level detector to

0.885 when incorporating spatio-temporal features. In comparison, our Effi-

cientNetV2 model for drinking classification achieved an accuracy of 0.8861

on the test set. While the overall metrics are not directly comparable due to

differences in behaviour classes and data sets, we can conclude our model

achieves similar, or even better results when compared to both the frame-

level detector phase and the spatio-temporal features integration.

Two studies have used an LSTM to capture the temporal aspect of cow

drinking behaviour. The study by Wu et al. [61] used 31 cows and had an

outdoor drinking trough which they monitored for a total of 63 hours and

each video had a duration of 10-55 seconds. They split their data in 70%

training (45 hours) and 30% testing (18 hours). They analysed 5 behaviours

and indicated that their dataset was unbalanced as some classes had dozens

of times more examples than others. They tested various feature extractors;

VGG19, ResNet18, ResNet101, MobileNet V2 and DenseNet201 and com-

bined this with a Bi-LSTM (bi-directional).

To evaluate their model they used accuracy, precision, recall and speci-

ficity. They reported the best model was the VGG19 which obtained an

accuracy of 95.0%, a precision of 95.5%, and a recall of 95.0%.

As they captured videos during the morning as well, they found exam-

ples of cows that were hard to discern from the background. Therefore they

indicated that the CNN had trouble recognizing several behaviours due to

the lack of visibility. However, after testing they found that the model was

robust to these low illumination scenes as their accuracy during the night
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showed similar results as during the night.

In another study conducted by Islam et al. [34], they used both an LSTM

as well as pose estimation using DeepLabCut [30]. They showed superior

results as their models obtained an accuracy of 97.35%, a precision of around

100%, and a recall of approximately 96%. However, it must be noted that

their experiment was in a laboratory setting as they constructed a drink-

ing contraption where the cows could drink one by one. Even though this

achieved they achieved results better than any other model, their approach

was limited to this specific environment. Additionally, as explained in Sec-

tion 2.3.4, annotating takes a lot of time and does not generalize well to new

unseen environments. Therefore, their results, even though showing these

superior results, must be interpreted with caution when comparing them to

our study.

As the studies on cow drinking behaviour are limited and differ in the

data they use, it is hard to draw final conclusions. However, we have shown

that our model attains a similar accuracy compared to research that uses

models with [59, 60] and without spatio-temporal features [59] indicating

that our model has impressive drinking behaviour classification capabili-

ties. Nevertheless, the study by Wu et al. [61] showed better results in a

similar setting, thus we can conclude that an LSTM does indeed achieve

better results when compared to a model that does not incorporate the time

aspect like ours. We will further explain future considerations regarding the

addition of an LSTM in Future Research in Section 6.3

6.1.3 Reusability

As discussed, the TRL questionnaire was filled in three times. Before the

testing, the system was at Technology Readiness Level (TRL) 2. This level

is characterized by the formulation of a technology concept or conceptual

application but without experimental proof or detailed analysis. The basic

scientific principles of the technology were confirmed and reported (A.4,

Q1-1), and the concept was described in sufficient detail to define future ap-

plications (A.4, Q1-2). Initial performance predictions were made according

to relevant related publications (A.4, Q1-3), and relevant publications were
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evaluated (A.4, Q1-4). However, the predicted performances of individual

components had not been confirmed through repeated, rigorous, and veri-

fiable experiments or simulations in a laboratory environment (A.4, Q1-6),

and there was no evidence that all technology components would work in-

dividually (A.4, Q1-7). This assessment aligns with the characteristics of

TRL 2, where practical applications are speculative and lack experimental

validation [119].

Following my contributions, which included behaviour analysis, the sys-

tem advanced to Technology Readiness Level (TRL) 3. This level involves

the validation of components and/or breadboard technology in a labora-

tory environment. The predicted performances of individual technology

components were confirmed through repeated, rigorous, and verifiable ex-

periments or simulations (3.6, Q1-6). Additionally, real-world deployment

was described in detail (3.6, Q1-8), and demonstrations in a relevant envi-

ronment produced the anticipated results (3.6, Q1-12). The operational per-

formance of the technology was optimized in a relevant environment (3.6,

Q1-16), which is indicative of TRL 3, where basic technological components

are evaluated separately to establish whether they will work individually

[130].

Upon full integration of all components into the cow drinking time mea-

surement system, the project is expected to reach Technology Readiness

Level (TRL) 4. This level involves the demonstration of a system/subsystem

model or prototype in a relevant environment. At this stage, all technology

components will be shown to work together (3.6, Q1-7), and the technol-

ogy will be investigated in a laboratory environment with the anticipated

results (3.6, Q1-9). A detailed process leading from demonstration to ap-

plication will be established (3.6, Q1-10). Test results in a relevant environ-

ment will be consistent with technical and economic viability (3.6, Q1-13),

and the technology will be shown to function in a real environment through

repeated, rigorous, and verifiable demonstrations (3.6, Q1-17).

To achieve TRL 4, the next steps must be carried out. The integration of

all components ensures that all hardware and software components work

seamlessly together. Extensive testing in environments that closely simu-
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late real-world conditions. Optimizing the operational performance of the

integrated components of the system by fine-tuning the system to achieve

optimal performance metrics. Repeated and rigorous testing must be con-

ducted to confirm that the system meets all specified requirements and per-

forms reliably under expected conditions.

Achieving TRL 4 will demonstrate that the system is not only technically

viable but also ready for operational testing and potential deployment in

real-world scenarios. This progression is crucial for transitioning from a

laboratory prototype to a fully operational system that can be deployed on

farms to monitor cow drinking behaviour effectively.

6.2 Limitations

6.2.1 Detection

During this research, we have come across several limitations. For the de-

tection model, we decided early on one-stage detectors are to be used. Even

though we ruled out two-stage detectors by careful examination, we used

YOLO as the first step, which made our system into a two-stage detection

model after all. Using YOLO as a one-stage detection model by directly

training on the behaviours might be beneficial. Therefore it is essential to

evaluate the difference in accuracy for our application between a one-stage

detection system and our proposed two-stage detection system.

In the same context, we were limited in our selection of models as we

only chose to use the YOLOv10-M model. Even though the same reasoning

applies here, it would have been beneficial to add other one-stage detection

models for comparison as well as various YOLO versions and sizes. This re-

sults in a larger search space, which leads to requiring more computational

resources, however, it would give a clearer picture of the performance and

inference time of different models. This directly touches upon another limi-

tation, as we did not measure the actual inference time of the model, which

is an important aspect of real-world applicability. However, with the fully

curated datasets, exploring more models is easily accomplished.
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Another problem which we discussed before and applies to both the de-

tection and the behaviour model is the incorrect initialization of the random

seeds. This was discovered after all the results were obtained. In future re-

search, this is something to initialize at the very beginning to make sure the

whole process is 100% reproducible. As the training results may vary with

the exact same hyperparameters and dataset, it is impossible to get an iden-

tical model when training from scratch. This inhibits the reproducibility of

the research.

The same can be said for the amount of data that was used to train the

models. In general, more data generally leads to better results in deep learn-

ing [131], although simply adding more data that conveys no extra infor-

mation does not. The added data should therefore be carefully selected to

ensure maximal variability [131].

6.2.2 Behaviour

As could be inferred from the discussion on our behaviour model, we chose

to not incorporate any temporal information as features for our classifica-

tion model. This severely impacted and limited the amount of information

the model has to discern between drinking and non-drinking behaviour.

Even though we and other research [37, 59, 60, 71, 72] have shown to obtain

satisfactory results, we have also concluded that adding an LSTM greatly

benefits the performance of the model. This is something that should be

explored in future work.

Another limitation is that we dealt with a binary classification problem

as we only discerned between drinking and non-drinking behaviour while

much other research dealt with classifying various behaviours [59, 60, 71,

72]. This might have reduced the complexity of the problem domain as

a model that achieves 50% accuracy has similar performance to a model

that deals with 10 classes and achieves 10% accuracy. Binary classification

could have led to a biased interpretation of our results. Introducing more

behaviours could give a better picture whether this limited number of be-

haviours led to bias, just like Zhuang et al. [37] did as they added the class

´drinker playing´ for instance.
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In the context of this bias, Berstad et al. [132] showed that multiple

binary classifiers resulted in a more robust model with less variance and

higher accuracy compared to a single multi-class classifier. However, they

also found that such a multi-network system significantly increases compu-

tational resources and inference time. As we are only interested in drinking

behaviour, engaging the problem as a binary classification problem remains

the logical choice. Moreover, as Berstad et al. [132] point out, it might even

be beneficial to have different models for different behaviours at the cost of

computational load.

When we tested the final model, we carefully annotated one hour of

video. Although this gives a clearer picture of how well the model per-

forms during inference of a whole video, it does not capture the entire vari-

ation in scenery. Testing the model on 24 hours of video would have vali-

dated whether our model can discern between drinking and non-drinking

behaviour at any given moment in time. Moreover, in the results of the

test video, we observed some fluctuations in behaviour classification. These

fluctuations occur when a cow is drinking, but it changes its pose resulting

in a non-drinking classification when it is still drinking. The problem of

these fluctuations could possibly be solved by integrating a temporal aspect

or taking the average of several frames. This will further be discussed in

Section 6.3.

To create our test set we set apart the captured videos of one camera,

camera 4. This ensured we could validate the generalizability of our model.

The shortcoming in this validation is the camera we picked for testing pur-

poses. This camera contained solely cows in the foreground. As the model

would not have to classify drinking behaviour in the background, this might

have decreased the level of complexity of the test set.

6.3 Future Work

The findings and limitations provide interesting insights into future direc-

tions. Firstly, we could integrate a temporal aspect into the model as this has

been shown to provide enhanced performance [61]. Integrating an LSTM
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would be an interesting path to follow, however, a simpler method could

be tested as well. The groundwork for this idea has already been laid. It

involves adding a post-processing step by taking the average of behaviour

classifications of a number of frames or even a rolling time window of frames.

By taking the average, the fluctuations in the behaviour classifications could

possibly be eliminated. Additionally, it reduces the number of frames that

need to be processed by the identification model as the frames in which no

drinking cows are observed will be neglected. A detailed explanation is

given in Appendix B.1.

Another major improvement could involve adding multiple cameras.

Integrating information from multiple cameras has been shown to improve

performance in various computer vision tasks compared to using a sin-

gle camera. Studies have demonstrated that multi-camera systems provide

more accurate object tracking and pose estimation, and are more robust to

occlusions and appearance changes [133, 134]. Multi-camera setups can also

increase the effective resolution [135]. These advantages are particularly rel-

evant for complex large-scale applications such as intelligent transportation

systems, where multiple viewpoints are needed to cover large areas and

provide more complete visual information [136].

However, the benefits come with trade-offs in terms of increased hard-

ware and software complexity, as well as higher computational require-

ments for synchronizing and fusing information from multiple cameras and

the cost of setting up the system. For cow behaviour classification and

identification, a multi-camera system could potentially improve accuracy

and robustness by capturing different viewpoints and handling occlusions

caused by other cows or objects in the environment. However, the specific

performance gains would need to be evaluated against the added costs and

complexities introduced.

In the future, it would also be interesting to test whether a different view-

point would improve the system’s performance. Placing the camera directly

above the drinking trough might reduce occlusion and improve the visibil-

ity of the head of the cow during drinking bouts. Moreover, it might reduce

the number of cows to be observed in the background, which could also
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improve the overall performance.

As discussed at the beginning of this thesis in the related work chapter,

we decided to use a one-stage detection model. In essence, this is what we

used to detect the initial cows, but in practice, we employed a two-stage de-

tection sequence for the detection of drinking cows. As several studies em-

ploy one-stage behaviour detection [59, 60], training YOLOv10 directly on

classifying the behaviour is something to be tested in future studies to ascer-

tain whether employing one-stage behaviour classification improves model

performance. Besides directly classifying the behaviour during the detec-

tion stage, adding various other behaviours is something to be explored as

well.

To assess the generalizability of the model, it would be valuable to test

its performance on multiple farms with varying environments, cow breeds,

and drinking trough designs. Evaluating the model’s accuracy and robust-

ness across different farm settings, rather than being restricted to a single

location, is an important direction for future research. Conducting such

tests would provide insights into how well the model can adapt to new

scenarios and maintain reliable performance when deployed in real-world

applications across diverse agricultural environments.

Integrating the cow identification model into the existing system is a

crucial next step in creating a comprehensive live monitoring solution for

tracking the continuous drinking behaviour of dairy cows. While the iden-

tification model has already been trained and shows promising results in

identifying the cows used in this research, it has not yet been fully tested

and optimized specifically for video data. To achieve a fully functional and

reliable system, the identification component needs to be seamlessly incor-

porated and extensively evaluated on relevant video footage. Furthermore,

the addition of robust tracking capabilities is essential to enable the sys-

tem to accurately follow individual cows over time and analyze their drink-

ing patterns. By successfully combining identification, tracking, and be-

haviour analysis, the envisioned system will provide valuable insights into

the drinking habits of dairy cows, ultimately contributing to new insights

into the correlation between water consumption and dairy production as
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well as improved animal health and welfare in livestock farming. The ad-

dition and full assessment of the integration of the detection component is

aimed to result in a system at a level 4 Technology Readiness Level.
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This thesis presented the cow detection and drinking behaviour classifica-

tion components needed to develop a system that monitors the daily free

water intake of dairy cows. These components are to be integrated with

the identification components to finalize the system. It is motivated by the

lack of conclusive results of the relation between dairy cow water consump-

tion and milk production as well as enhancing animal health and welfare in

livestock farming.

The detection component, based on YOLOv10, attained an AP-50 of 99.1%

and an AP50-95 of 87.1% with a precision of 96.1% and a recall of 96.7% on

the detection of cows after testing on a separated test set. The cow drink-

ing behaviour binary classification component, based on EfficientNetV2-S,

attained an accuracy of 88.6%, a precision of 84.1%, and a recall of 89.8%

after testing on a separate test set. On a full 1 hour video the model was

able to measure the drinking time with a precision of 92.5% and a recall of

92.0% with a percentage error of 8.15%, which equated to an absolute error

of 49.5 seconds. Both components show competing performance with the

state-of-the-art live-stock monitoring systems. We can conclude that these

components are rigorously tested and evaluated and are ready to be inte-

grated into the free water intake monitoring system.

In future research, a spatial-temporal component should be added to fur-

ther improve model performance by integrating an LSTM (Long Short Term

Memory) or a post-processing error correction algorithm as was shown in

related research. Furthermore, integrating the identification component af-

ter it has been fully tested and optimized completes the system and will

provide the insight needed to get the results required for establishing the

relation between free water intake and milk production.
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A. Appendix A

A.1 Experiments

A.1.1 Ablation Studies

Table A.1: Values used for the detection ablation studies.

Setup hue saturation value degrees translate scale fliplr mosaic erasing crop
fraction

black
and

white
No Augmentation 0 0 0 0 0 1 0 0 0 1 false
Standard
Augmentation 0.015 0.7 0.4 10 0.1 0.7 0.5 1 0.4 1 false

Aggressive Color
Augmentation 0.05 0.9 0.6 10 0.1 0.7 0.5 1 0.4 1 false

Rotation and
Translation Focus 0.015 0.7 0.4 30 0.3 0.7 0.5 1 0.4 1 false

Scaling and
Cropping Focus 0.015 0.7 0.4 10 0.1 1 0.5 1 0.4 0.5 false

Horizontal Flip 0.015 0.7 0.4 10 0.1 0.7 1 1 0.4 1 false
Random
Erasing Focus 0.015 0.7 0.4 10 0.1 0.7 0.5 1 0.6 1 false

Black and White 0 0 0 0 0 1 0 0 0 1 true

Table A.2: Values used for the behavior ablation studies.

Setup Random
Rotation

ColorJitter
(Brightness, Contrast,

Saturation, Hue, Probability)

Random
Resized

Crop

Random
Horizontal

Flip

Grayscale
(Probability,

NumOutputChannels)
No Augmentation 0 [0.0, 0.0, 0.0, 0.0, 0.0] resize 0 [0.0, 3]
Standard Augmentation 15 [0.5, 0.2, 0.2, 0.2, 0.02] resize 0.5 [0.3, 3]
Aggressive Color Augmentation 0 [0.7, 0.3, 0.3, 0.3, 0.03] resize 0 [0.0, 3]
Rotation Focus 30 [0.0, 0.0, 0.0, 0.0, 0.0] resize 0.0 [0.0, 3]

Scaling and Cropping Focus 0 [0.0, 0.0, 0.0, 0.0, 0.0] resize[0]*0.8,
resize[1]*0.8 0.0 [0.0, 3]

Horizontal Flip Only 0 [0.0, 0.0, 0.0, 0.0, 0.0] resize 1 [0.0, 3]
Grayscale Emphasis 0 [0.0, 0.0, 0.0, 0.0, 0.0] resize 0.0 [1.0, 3]
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A.2 Results

A.2.1 Detection

Ablation Studies

Figure A.1: Train batch from the augmentation setup Scaling and Cropping
Focus.
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A.2 Results

Best Models

Table A.3: Metrics from the best models on the validation set.

Metric
Setup mAP50 mAP50-95 precision recall class loss box loss box loss
Best Params Best Augment 0.8727 0.6578 0.8179 0.7884 2.6555 6.5433 3.4265
Best Learning Rate Best Augment 0.9874 0.8011 0.9601 0.9562 1.2948 0.7431 2.9894
Best Optimizer Best Augment 0.9841 0.8389 0.9455 0.9479 1.1370 0.6821 2.3165

Figure A.2: Training results of the best model on the validation set.
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A.2.2 Reusability

Table A.4: Questions and answers for the first set of TRL questions (adopted
from [116]).

Nr Question Identification Behaviour Pipeline

1-1
Have the basic scientific principles, which form
the foundation of a new technology,
been confirmed or reported elsewhere?

YES YES YES

1-2 Has your technology/concept been described
in sufficient detail to define future applications? YES YES YES

1-3 Have initial performance predictions of your
technology been made? YES YES YES

1-4 Have publications or other references that
outline a new technology been evaluated? YES YES YES

1-5
Has a prospective application been specified
in sufficient detail to identify all necessary
technological elements?

YES YES YES

1-6

Have predicted performances of all individual
technology components been confirmed by repeated,
rigorous and verifiable experiments
or simulations in a laboratory environment?

NO YES YES

1-7 Has it been shown that all technology
components will work together? NO NO YES

1-8 Have you described real-world deployment in detail? NO YES YES

1-9
Has your technology (including components)
been investigated in a laboratory environment
with the anticipated results?

NO NO YES

1-10 Has a detailed process which leads from
a demonstration to an application been established? NO NO YES

1-11
Has a laboratory environment been modified
to approximate a real environment (= relevant environment),
including the development of a testing protocol?

YES YES YES

1-12

Have demonstrations in a relevant environment –
including individual and integrated
testing of all key elements –
produced anticipated results?

NO YES YES

1-13 Are test results in a relevant environment
consistent with technical and economic viability? NO NO YES

1-14 Is your technology described sufficiently
to finalise a deployment strategy? NO YES YES

1-15 Have all relevant test issues (including scaling up)
been investigated and resolved? NO NO NO

1-16
Has the operational performance
(e.g. sensitivity, selectivity, etc.) of your technology
been fully optimised in a relevant environment?

NO YES YES

1-17
Has it been shown, through repeated,
rigorous and verifiable demonstrations,
that your technology can function in a real environment?

NO NO YES

1-18 Has your technology performance
been tested under critical/extreme conditions? NO NO NO

1-19 Have you developed a deployment plan? NO NO NO

1-20
Has your technology received satisfactory
feedback after being tested by
an end-user in a real environment?

NO NO NO

1-21 Have all verification, validation,
and accreditation tests been completed? NO NO NO

1-22
Has your technology been fully described in
terms of conventional use and
integration into customer systems?

NO NO NO

1-23
Has it been shown that your technology
operates at levels of performance, cost, quality, reliability, etc.
which have been specified in the business case?

NO NO NO
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A.2 Results

Table A.5: Questions and answers for the second set of TRL questions
(adopted from [116]).

Nr Question Identification Behaviour Pipeline

2-1 Have you outlined the new capabilities
which might result from your new technology? YES YES YES

2-2 Have you identified where
the capability could be used? YES YES YES

2-3
Has the potential of the
concept/technology to
end-user groups been illustrated?

NO NO NO

2-4
Has a qualitative assessment of risk
to the development of your
technology been carried out?

NO NO NO

2-5 Have you asked end-users if
the technology is fit for purpose? NO NO NO

2-6 Has an assessment of market
opportunities been carried out? NO NO NO

2-7 Have the preliminary costs of
your technology been estimated? NO NO NO

2-8 Has a strategy to identify and
protect intellectual property been developed? NO NO NO

2-9 Have the needs for international
or domestic patent protection been assessed? NO NO NO

2-10 Has the performance of your
technology been discussed with end-users? NO NO NO

2-11 Has an intellectual property
protection approach been implemented? NO NO NO

2-12

Has end-user feedback been received to
establish a final specification of
your technology
(agreement of performance needs etc.)?

NO NO NO

2-13 Have preliminary price estimates been prepared? NO NO NO

2-14 Has a business case been drafted
for the communication with prospective end-users? NO NO NO

2-15 Have patent claims,
if applicable, been drafted? NO NO NO

2-16 Have you done soft market testing? NO NO NO

2-17 Have final cost estimates of a
new technology been made? NO NO NO

2-18
Is an agreement with at least one
paying end-user
(i.e. innovator or early adopter) in place?

NO NO NO

2-19 Has a patent application /
licence (if applicable) been submitted? NO NO NO

2-20 Has a business case been finalised and verified? NO NO NO
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Table A.6: Questions and answers for the third set of TRL questions (adopted
from [116]).

Nr Question Identification Behaviour Pipeline

3-1 Has a preliminary technology development plan
to reach deployment been outlined? NO NO NO

3-2 Have provisional arrangements been made
for real-life testing? NO NO NO

3-3 Have you identified any hazards associated
with your technology? NO NO NO

3-4 Have you undertaken an assessment
to identify risks to end-users? NO NO NO

3-5 Has the safety of the technology
been assessed and confirmed? NO NO NO

3-6 Has your technology been shown
to be safe to use in the environment? NO NO NO

3-7 Have test partners been identified? NO NO NO

3-8

Has an aftercare strategy
(maintenance, troubleshooting guide
or failure analysis document, support plan)
been developed?

NO NO NO

3-9 Have all safety documents
been completed? NO NO NO

3-10 Have all necessary end-user documents
been developed and made available? NO NO NO
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B. Appendix B

B.1 Future Suggestions

Due to the time-based nature of the data, adding a temporal aspect could in-

volve grouping the video frames into batches. The size of each batch corre-

sponds to the sequence of frames during which the count of drinking cows

remains constant. The total count of these batches is then determined by

the number of occurrences at which the number of drinking cows changes

throughout the video. The creation of batches is depicted in Figure B.1.

Figure B.1: The process of creating batches of frames. Each horizontal line
indicates the time at which that cow is observed to be drinking. The dotted
lines indicate a change in the number of drinking cows.

As can be observed in Figure B.1, in frames where no drinking cow has

been detected, the frames are omitted and no batch will be created. In prac-

tice, this will result in a sizeable reduction in the number of frames that need

to be processed by the identification model later on. This is desirable as most

frames will not contain drinking cows. Pruning the number of frames will

substantially decrease the computational resources needed, thereby over-

coming the first problem; passing each frame to the identification model.

The second problem involves having noisy results, which might arise

when the detection of drinking cows fluctuates. We will also prune batches

that contain very few frames to overcome the second problem. This en-
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sures that in each batch, the observed cow is drinking and not bowing his

head or similar behaviour. This decreases the computational resources re-

quired even further and removes noisy batches from the set of batches. We

will prune all batches that contain fewer than 4 frames, meaning that only

batches containing 1 second of drinking or more will be stored for further

processing. For this reason, we have depicted Figure B.1 in seconds instead

of frames. The final batching process is formalized in Algorithm 1. It must

be noted that we assume 4 frames per second, but due to the varying num-

ber of frames in the videos, the exact number of frames will be a parameter

of the algorithm. This way the algorithm will be robust in handling videos

of different frame rates.
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B.1 Future Suggestions

Algorithm 1 Batch Creation for Frame Processing

Require: Video divided into frames, frame rate: 4 frames per second
Ensure: Batches of frames corresponding to continuous drinking events

▷ Initialize variables
1: Initialize an empty list of batches, batches
2: Initialize currentBatch← an empty list
3: Initialize lastNumDrinkingCows← −1

▷ Process each frame and add batches.
4: for each frame f in the video do
5: numDrinkingCows← query Model( f )
6: if numDrinkingCows ̸= lastNumDrinkingCows then
7: if currentBatch is not empty then
8: Add currentBatch to batches
9: currentBatch← an empty list

10: end if
11: Add frame f to currentBatch
12: else if numDrinkingCows = lastNumDrinkingCows and

numDrinkingCows > 0 then
13: Add frame f to currentBatch
14: end if
15: lastNumDrinkingCows← numDrinkingCows
16: end for

▷ Check if the last batch was not yet added.
17: if currentBatch is not empty then
18: Add currentBatch to batches
19: end if

▷ Ommit tiny batches.
20: Initialize an empty list of final batches, f inalBatches
21: for each batch b in batches do
22: if length of b ≥ 4 then
23: Add b to f inalBatches
24: end if
25: end for

▷ Add metadata for each batch.
26: for each batch b in f inalBatches do
27: duration← length of b × frames per second
28: Record the number of cows and duration for batch b
29: end for

▷ Sort the batches by the frame ID.
30: Sort f inalBatches
31: return f inalBatches
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