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1. Abstract 
Dunes play a crucial role in protecting coastal areas from flooding, erosion and supporting their 
fragile ecosystems. Coastal dune management is important to protect these coastal areas. Dunes are 
formed by various factors, among which the wind magnitude and direction are critical. Traditionally, 
Computational Fluid Dynamics (CFD) methods are used to model the wind flow over coastal dune 
terrains. However, these methods are computationally expensive, which limits their application for 
large and complex aeolian transfer models. This research proposes the implementation of 
Convolutional Neural Networks (CNNs) for CFD surrogate modelling to predict the wind velocity 
vectors over coastal dune terrain. This approach aims to reduce the computational cost while trading 
off some accuracy. Various CNN architectures and backbones are evaluated. The research found that 
the combination of the Feature Pyramid Network (FPN) architecture and densenet121 backbone 
provided the best performance, significantly reducing the prediction time compared to traditional 
CFD simulations. While the model shows some consistent errors in certain upwind and downwind 
regions, the results show the potential of CNN surrogate modelling to enhance coastal management 
by offering a faster alternative to CFD simulations. Further research should focus on expanding the 
dataset to assess the model’s generalizability and on exploring backbones and ensemble methods to 
further improve the model’s robustness and accuracy.   
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2. Introduction 
Dunes play a crucial role in coastal areas, acting as natural flood and coastal erosion defences and 

providing essential ecosystem services (Husemann, Romão, Lima, Costas, & Coelho, 2024). Coastal 

areas are important for both people and ecosystems. Although they occupy less than 15% of Earth’s 

land area (European Environment Agency, 2008), 40% of the population lives within 100 kilometres 

of the coast (Maul & Duedall, 2019) and 5% of the population of coastal cities are currently at risk of 

flooding, which is expected to double by the end of the century (United Nations Development 

Programme, 2023). It is important to manage dunes to protect coastal areas, as effective dune 

management can prevent floods, mitigate coastal erosion, and safeguard fragile ecosystems that 

require significant time to recover if destroyed. Coastal dunes are accumulated by aeolian sediment 

transportation and are located along the beach. They are shaped by various factors, namely sand 

supply, amount and granularity of the sand, dune topography, vegetation, and especially the 

properties of wind flow, such as its magnitude and direction (NSW department of Land and Water 

Conservation, 2001). These wind flow properties are critical as they determine the transportation 

and deposition of sand, impacting the shape and size of the dunes.  

Traditionally, wind flow has been simulated using Computational Fluid Dynamics (CFD) models, which 
utilize numerical methods to compute fluid flow. These methods formulate governing equations that 
describe the fluid flow, including the continuity equation (conservation of mass) and the Navier-
Stokes equation (conservation of momentum) (simscale, 2023). To solve these equations within a 
defined grid, they need to be discretized using techniques such as the Finite Difference Method 
(Ashgriz & Mostaghimi, 2002) and the Finite Volume Method (Moukalled, Mangani, & Darwish, 
2016). While CFD methods have been successfully implemented to simulate fluid mechanics 
problems, including wind simulation around dunes (Hesp & Smyth, 2021; Smyth 2016), they have one 
main drawback. This main issue is their high computational cost, resulting in long simulation times, 
especially for large and complex systems (quadco engineering, sd). 
 
To overcome the drawback mentioned above, research has been performed regarding surrogate 
Convolutional Neural Network (CNN) models. Some studies have trained CNN surrogate models for 
pixelwise regression to increase computational efficiency (Baumann, Roßberg, & Schmitt, 2023). 
Convolutional Neural Networks (CNNs) are a class of deep learning models which have demonstrated 
exceptional performance in learning patterns from spatial dependent data. Suitable for different 
fields of computer vision and natural language processing (Ghosh, Sufian, Sultana, Chakrabarti, & De, 
2020), CNNs have shown the ability to learn high-level features from spatial dependencies that are 
informative for supervised tasks (Lecun, Bottou, Bengio, & Haffner, 1998). This is because of the 
multilayer architecture of CNNs, which allows for the encoding of image-specific features making 
them more suited for image-focused tasks than typical Artificial Neural Networks (O’Shea & Nash, 
2015). There are multiple different CNN architectures and backbones which impact learning rate, 
computational power, model performance and generalizability (Alzubaidi, et al., 2021).  
 
CNNs have been well researched in segmentation tasks (Bizopoulos, Vretos, & Daras, 2020), however 
they have been implemented in a variety of applications like pixelwise regression for medical image 
estimation (Wang, Mattie, Berger, & Levman, 2021) or uncertainty estimation in Machine Learning 
(Baumann, Roßberg, & Schmitt, 2023), showing their applicability across domains. CNNs have 
recently been applied to physical simulations and surrogate modelling, one study successfully 
predicts the velocity field around randomly shaped obstacles in a 2D space, achieving significant 
speedups with minimal error rates compared to traditional CFD simulations (Ribeiro, Ahmed, Dengel , 
& Rehman, 2020). Another study successfully implemented a CNN surrogate model for modelling the 
flow and geomorphic heterogeneity induced by vegetation (Chen, Luo, Li, & Zhang, 2024). CNN 
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surrogate models also showed efficient estimation of modelling the steady laminar wind flow around 
alternative geometric representations (Guo, Li, & Iorio, 2016). 
 
The studies mentioned above (Baumann, Roßberg, & Schmitt, 2023; Chen, Luo, Li, & Zhang, 2024; 
Guo, Li, & Iorio, 2016; Ribeiro, Ahmed, Dengel, & Rehman, 2020; Wang, Mattie, Berger, & Levman, 
2021) all utilized the same type of CNN architecture for their surrogate model, namely the U-net 
architecture with pixelwise regression, with some implementing an output of 3 channels. However, 
all were modelled within a 2D space, e.g. a side representation of a car (Guo, Li, & Iorio, 2016). The 
U-net architecture seems to be a popular architecture type for CFD surrogate models, but is not the 
only architecture to have been implemented in surrogate CNN modelling. In one study, a shared 
encoder and separated decoder architecture was implemented which effectively captured the 
geometric features and fluid dynamics and presented acceptable results (Bhatnagar, Afshar, Pan, 
Duraisamy, & Kaushik, 2019), showing CFD surrogate modelling can be achieved with different types 
of CNN architectures. However, to the best knowledge of the author, no studies have been found 
that compare different possible architecture types or backbones for solving a regression task for CFD. 
This is only the case for different segmentation tasks (Comprehensive Comparison of Deep Learning 
Models, 2020). Additionally, no studies have been found that implement CNN surrogate models for 
modelling wind flow in coastal dunes.  
 
A long-term goal of the geoscience department of the University of Utrecht is to model the aeolian 
transport over time, to be able to achieve this goal, the wind flow should be computed. Computing 
the wind flow using traditional CFD methods requires too much computing power, which is why the 
main objective of this research is to serve as a proof of concept for using a CNN approach as a 
surrogate model for CFD simulations of wind velocities on coastal dune terrains. The main research 
question of this research is: Which CNN model architecture and backbone most accurately models 
the wind velocities over coastal dune terrain with varying wind directions compared to a traditional 
CFD approach? The following sub-questions assist in answering the main research question. 

- Model architecture 
o To what extent do the different CNN architectures and backbones impact model 

performance? 
- Model performance  

o How accurately does the model predict the wind velocity at various properties of the 
combined topography and wind direction within the coastal terrain? 

o How does the computational cost of the model compare to traditional CFD 
simulations? 

3. Data 
In this chapter, the generated wind velocity data and the model input data will be discussed. The 
velocity data is generated using CFD simulation on OpenFoam open-source software (OpenCFD Ltd., 
2019). While the specific parameters used for these CFD  simulations are out of scope for this 
research, it is important to note that they remain constant for each simulation, except for the inlet 
wind direction, which represents the angle of the incoming wind relative to the west.  
 
The input data consists of the spatial coordinates of the coastal dunes and the cosine of the 
difference between the inlet wind direction and the surface normal vector. The latter parameter is 
visually explained, on top of the 2D mapped y-spatial coordinates, in Figure 1. This figure shows that 
the angle difference, theta, between the wind inlet angle and the bed surface normal vector in the x 
direction is computed, the parameter is the cosine of this angle difference. The interpretation of the 
parameter is the degree to which the specific grid point is downwind, this parameter will from now 
on be called the cosine difference.  
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Figure 1: Visual explanation of the cosine difference between inlet angle and surface normal vector on top of the dune 

topography 

The output data consists of three parameters called U_0, U_1 and U_2, these parameters represent 
the wind velocity in the x, y and z directions one meter above the surface. Due to the ground 
geometry, among other things, different pressure points within the coastal dunes can occur, causing 
various circular wind patterns. These patterns can be seen in in Figure 2, which shows a heatmap of 
the U_0 parameter with the arbitrary wind inlet angle of 20 degrees.  

 
Figure 2: Sample heatmap of U_0 with an inlet angle of 10, derived from the CFD data 
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An overview of all the different parameters can be found in Table 1 below. Here a parameter called 
U_magnitude can be found as well, this is essentially the total velocity of parameters U_0, U_1 and 
U_2 combined. The PointID is used to be able to correctly map all the parameters in the same way.  
 

Column name Description  

PointID Point ID on the grid 

X Spatial coordinate in the x-direction 

Y Spatial coordinate in the y-direction 

Z Spatial coordinate in the z-direction 

U_0 Wind velocity in direction x 

U_1 Wind velocity in direction y 

U_2 Wind velocity in direction z 

U_Magnitude Overall intensity or strength of the wind velocity vector. It gives a scalar 
measure of how fast the wind is moving in any direction, using the 
Pythagorean theorem 

Wind inlet angle Represents the angle of the incoming wind from the west 

Cosine difference The cosine of the difference between the inlet wind direction and the bed 
surface normal vector in x direction 

Table 1: Meta data of all utilized parameters; every parameter is briefly explained 

Some assumptions and a simplification were made regarding the data in this research. The first 
assumption is that the CFD output data accurately represents the real-world scenario. This 
assumption is made because the actual data is not available to such an extent that the wind velocity 
is known for each grid point. It is worth noting that the accuracy of the CFD model is validated by 
comparing its results with field-measured data at several sampling locations (Jim Regtien, Saeb Faraji 
Gargari, Gerben Ruessink, Michiel van den Broeke, 2024). Another assumption is that the vegetation 
present in the dunes do not affect the wind velocities. This is assumed because not vegetation data is 
available. Additionally, rough estimates for vegetation data used in CFD simulations shows minimal 
impact on the wind velocity. The simplification made within this research is that model only receives 
wind from the west direction. This simplification provides a more controlled environment, as this 
research is meant as a proof of concept, while still being able to provide relevant results as winds 
from the west promote sand buildup at the back dunes. 

4. Methods 
In this chapter, the conceptual model for implementing CNN surrogate models for CFD simulations of 

the wind velocities in coastal dune terrains, which consists of three distinct parts, is introduced. 

Afterwards, the process undertaken to eventually train, test and evaluate the models is outlined and 

the various CNN architectures are explained. 

The three distinct parts of the conceptual model are: data generation, model training and model 

evaluation. The first part is data generation using traditional CFD simulations. The CFD approach 

simulates the wind velocity vector over a specific coastal dune topography for various scenarios of 

wind inlet angles. The data generated by the CFD simulation is then converted to a uniform grid, in 

order to be implemented. The second part, model training, consists of using the input data (coastal 

dune terrain topography and the cosine difference) and the generated CFD output data (wind 

velocity vector) to train the model, these data parameters have been explained in further detail in 

Chapter 3. The third and last part is model evaluation, which employs a Cross-Validation (CV) 

approach to correctly capture the model’s performance and robustness over the entire dataset. An 

overview of the entire conceptual model can be found in Figure 3. 
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Figure 3: Conceptual model overview, consisting of three distinct parts: Data generation, Model training and Model 

evaluation. Every part contributes an important step into reliability training, assessing and comparing the different CNN 

surrogate models 

The process undertaken to train, test and evaluate the various models consists of data 
(pre)processing, implementation of the various CNN architectures and backbones and model 
evaluation. The final step ensures that the models can be compared quantitatively. Data 
(pre)processing is an important step in ensuring that the input data is in the correct format and 
quality to optimize model performance. This process consists of multiple steps. The first step is data 
standardization, which ensures the data is within a smaller scale, improves the convergence rate 
during training and can improve model performance. In the second step, the different input and 
output parameters are mapped into the same size 2D grid format, allowing the parameters to be 
processed by the CNN models. The last step is to store all data and separate them using folders based 
on the wind inlet angles. This way, they can be easily accessed for the Cross-Validation (CV) step, 
which will be discussed later in this chapter. 
 
Various CNN architectures and backbones are implemented and compared in this research. The 
implemented architectures are the U-net, LinkNet and Feature Pyramid Network (FPN), and the 
implemented backbones are the resnet152, densenet121 and efficientnetb7. In the next few 
paragraphs, the CNN architectures and backbones will be briefly explained.  
 
The first CNN architecture is one of the most popular architectures in surrogate modelling, as 
illustrated by the many examples in the Introduction, namely the U-net architecture. This 
architecture consists of a shared encode and decoder. For each encoding, or down sampling step, the 
number of feature channels are doubled and for every decoding step, or up sampling step, the 
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number of feature channels are halved. At the decoder step, a concatenation of the correspondingly 
cropped feature map of the encoder step, called a skip connection, is added. In Figure 4 below, an 
example of the U-net architecture for a 32x32 pixels resolution is shown. Here every blue box 
represents a multi-channel feature map (Ronneberger, Fischer, & Brox, 2015).  
 

 
Figure 4: U-net architecture design, where every blue box corresponds to a multi-channel feature map with the number of 

channels denoted on top of the box. White boxes represent the copied feature maps. The arrows shows the different 

operations (Ronneberger, Fischer, & Brox, 2015). 

The LinkNet architecture also consists of a shared decoder and encoder, with the same steps 
undertaken for the encoder as with the U-net architecture. The decoder also follows the same steps, 
except for the fact that the skip connection adds the correspondingly cropped encoders feature map 
instead of concatenating (Chaurasia & Culurciello, 2017). A global overview of the LinkNet 
architecture is shown in Figure 5, below.  

 
Figure 5: LinkNet architecture design, where the left side represents the encoder part while the right side represents decoder 

part. The circular icon with a plus represent the summation of the encoder feature map with the decoder feature map 

(Chaurasia & Culurciello, 2017). 
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The FPN architecture incorporates the assembling of the different decoder feature maps to form the 
image prediction. This combines adding the skip connections of the encoders feature map to the 
decoders one, down sampling this output to a fixed number of feature maps. These feature maps are 
then combined together using up sampling to form the final model prediction (Lin, et al., 2017). 
Figure 6 below, shows an example of the FPN architecture with three channel inputs (Seferbekov, 
Iglovikov, Buslaev, & Shvets, 2018).  

 

 
Figure 6: FPN architecture design, for the encoder at the left side the number of channels increases stage by stage while the 

size of feature maps decreases. The arrows on top of feature maps represent transformations implemented between the 

layers. For the final step, the feature maps are up sampled to the same size and concatenated  and then down sampled to the 

number of output maps/classes and the resulting image is up sampled to the original image size (Seferbekov, Iglovikov, 

Buslaev, & Shvets, 2018).  

A backbone is a specific network for encoding the feature maps within a CNN architecture. Choosing 
a different backbone for a CNN architecture can result in extracting different kind or levels of 
features. The resnet152 backbone utilizes a structure called residual learning unit, for alleviating the 
degradation of Deep Neural Networks. The residual learning unit’s structure is a feedforward 
network that has a shortcut connection which adds input into the network to generate outputs 
(Nguyen, Lin, Lin, & Cao, 2018). The densenet121 structure simplifies these connections between 
layers and attempts to solve the vanishing gradient problem by reusing features through a 
connection of each block with one another (Jee, et al., 2023). The efficientnetb7 structure consists of 
7 blocks, with the MBConv as fundamental building block of the structure, for feature extracting and 
is proven to be useful for transfer learning (Umut & İlhan, 2022). The structures, together with a brief 
explanation of these different backbone structures are shown in appendix 8.1. 
 
Because of the model tasks and the kind of data on which these different backbones have been 
trained differs from our data and task, this research also implements the mentioned CNN 
architectures without the pre-trained backbone weights. This means the models are trained from 
scratch with randomly initialized weights. This approach is added because the feature encoding 
weights of the different backbones, trained for classification and segmentation tasks, might not be 
able to extract the relevant features for this research, which performs a regression task.  
 
Model evaluation is done using the k-fold Cross-Validation (CV) approach to accurately capture the 
model’s overall performance and robustness across the different wind inlet angles. K-fold CV is a 
robust method for assessing a model’s generalization across the entire dataset. For this approach, 
the dataset is split into k folds of equal size. The model performance is tested iteratively for each 
fold, using the remaining folds as training data. After testing the model for each fold, the average 
evaluation metric for all folds is computed, resulting in the model’s overall performance. For this 
research, the dataset will be split on the wind inlet angles. With three inlet angles of -30, 0 and 30 
consistently left out as validation sets and a chosen k of 5, each fold consists of 2 inlet angles since 
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the dataset has a total of 13 inlet angles. The evaluation metric employed is the Root Mean Squared 
Error (RMSE) because it is easy to interpret the model performance, as the RMSE reflects the same 
units as the dependent parameter (Hodson, 2022). 

5. Results 
In total, nine surrogate models are trained, which are the three Convolutional Neural Network (CNN) 
architectures combined with three different backbones, discussed in Chapter 4. The averaged RMSEs 
from the k-fold Cross-Validation (CV) approach, folded across the wind inlet angles, are shown in 
Table 2 below. The RMSE standardized on the wind velocity is indicated in brackets for easier 
comparison between the different wind directions. The densenet121 backbone consistently returns 
the best performance for all CNN architectures while requiring the least amount of training time. 
Efficientnetb7 performs slightly worse and requires more computing time, while resnet152 has the 
worst performance and longest computing time. Among the different CNN architectures, the FPN 
architecture has the best performance, though it does not differ a lot from the U-net architecture, 
which required slightly less computing time. After performing a two-way ANOVA, the effect of the 
backbone is statistically significant with a p-value of 0,0205; while the effect of the CNN architecture 
is not statistically significant with a p-value of 0,148. For modelling the wind velocities in coastal dune 
terrain, the combination of the FPN model architecture and densenet121 backbone returns the best 
performance.  
 

CNN 
architecture 

Backbone Average 
RMSE of 
(std) 
U_0 

Average 
RMSE of 
(std) 
U_1 

Average 
RMSE of 
(std) 
U_2 

Average 
overall 
(std) 
RMSE 

Average 
training 
time 
(minutes) 

Average 
prediction 
time 
(seconds) 

FPN Densenet121 2,91 
(0,78) 

0,71 
(0,56) 

3,26 
(0,81) 

2,29 
(0,71) 16,68 

1,9 

Efficientnetb7 3,5 
(0,92) 

0,96 
(0,76) 

3,89 
(0,96) 

2,79 
(0,88) 26,06 

2,1 

Resnet152 3,8 
(1,02) 

1,53 
(1,26)  

5,36 
(1,20) 

3,56 
(1,16) 28,94 

2,2 

LinkNet Densenet121 3,68 
(0,97)  

1,2 
(0,96) 

3,95 
(0,97) 

2,94 
(0,97) 16,1 

1,9 

Efficientnetb7 3,78 
(0,99) 

1,25 
(0,99) 

3,87 
(0,96) 

2,97 
(0,98) 25,83 

2,1 

Resnet152 5,39 
(1,56) 

2,05 
(1,64) 

7,34 
(1,63) 

4,93 
(1,61) 25,8 

2,1 

U-net Densenet121 3,23 
(0,87) 

1,01 
(0,81) 

3,28 
(0,83) 

2,51 
(0,86) 15,8 

1,8 

Efficientnetb7 3,89 
(1,01) 

1,23 
(0,96) 

3,79 
(0,95) 

2,97 
(0,97) 20,81 

2,0 

Resnet152 4,64 
(1,26) 

1,68 
(1,37) 

4,39 
(1,03) 

3,57 
(1,22) 25,86 

2,1 

Table 2: Comparison of model performance across the entire dataset, using k-fold CV with 5 total folds 

All the models are trained for 75 epochs, using RMSE as metric and MSE as loss function, for equal 
comparison. Figure 7 below shows a training graph of the best model with an FPN architecture and 
densenet121 backbone. The orange line indicates the validation set, used for tuning the parameters 
and prevent overfitting, and the blue line indicates the training set. From this graph, it can be seen 
that the validation set has not yet converged, meaning the model could have been trained for more 
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epochs to improve performance. The fact that the model training was cut short decreases the 
potential model performance on the dataset.  

 
Figure 7: Sample training graph of the FPN densenet121 model with test fold of angle -50 and 20; with RMSE as metric 

(left) and MSE as loss function (right) 

To assess the overall performance of the FPN densenet121 model, the RMSEs of the standardized 
wind velocities for every wind inlet angle fold are shown in Figure 8, below. Each bar colour 
represents a distinct wind direction and every inlet angle shown is unseen data for the model. The 
RMSE for the U_2 (z) direction is consistently higher than the other directions, for inlet angles of -40 
or higher. Showing the model struggles with predicting the velocity for this wind direction, which can 
be a potential model improvement. This can be because the model training did not yet converge, 
meaning the model should be trained for more epochs. The model has a consistent performance 
pattern across the different inlet angles, except for inlet angle -40 where it begins to struggle with 
the U_2 direction. This shows that the models performance is stable and not heavily influenced by 
specific subsets of data.  

  
Figure 8: Model performance for each wind direction of every fold; all bars represent unseen test data - FPN architecture in 

combination with the densenet121 backbone 
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To gain more insight into the model’s performance, Figure 9 below shows the model performance of 
one of the folds of the entire dataset. The orange bars with diagonal hatches represent the test set, 
the blue bars with squared hatches represent the validation set and the blue bars without hatches 
represent the training set. This graph validates that the model has a consistent performance pattern, 
also when comparing the performance on train, test or validation sets. This also shows the model 
does not overfit on the training data and the models ability to interpolate between the different wind 
inlet angles. 

 
Figure 9: Model performance for each wind direction for one fold; with the orange bars indicating the test sets, the squared 

bars indicating the validation sets and the blue bar without hatches the training sets - FPN architecture in combination with 

the densenet121 backbone 

An arbitrary prediction example of the FPN densenet121 model is shown in Figure 10, below. The 
first row on plots is the ground truth, or CFD simulation data, of the different wind directions, the 
second row is the prediction of the CNN model and the last row is the error between these two. 
According to the obtained results, the model can predict the general wind velocity vector patterns. 
However, the model predictions are less detailed than the CFD generated ground truths, as it 
predicts a more smoothed out wind velocity pattern rather than the actual wind flows. The model 
seems to not predict the various circular wind patterns, discussed in Chapter 3, at all but rather 
ignores them.  
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Figure 10: Sample plot of wind inlet angle -60 derived from the CFD generated data as reference (first row), the CNN 

prediction (middle row) and the error between these two (last row) – FPN architecture combined with the densenet121 

backbone 

To investigate to location of different errors, Figure 11 below is shown. In this figure, the error of the 
wind magnitude is presented on the left and the error of the angle on the right, both are overlaid on 
the topography of the coastal dune relative to the minimum value, of an arbitrarily chosen wind inlet 
angle. The left graph indicates that most errors lie within the circular wind patterns mentioned above 
with negative errors, at the sides on top of the different hills with positive errors and in a region on 
the more right side of the dunes, which is on a lower terrain, with negative errors. This last region of 
error can be explained by examining the right graph, which shows two large errors that emerged in 
this lower terrain. The region with large errors in angle differences on the right graph is the same 
region as the large negative errors on the left graph, excluding the circular patterns. This is also the 
case for some other wind inlet angles, a few examples are shown in appendix 8.2. 

 
Figure 11: Sample plot of wind inlet angle -40; A contour plot relative to the minimal value of the topography with the error 

of the wind magnitude (left) and the angle difference in degrees (right) on top of it 

The fact that most positive errors lie at the tops of the various dunes while the negative errors lie in 
the circular patterns and regions where the angle difference is larger is interesting. Because of this, 
the average error relative to the cosine difference for all data folds is shown in Figure 12 below. This 
graph shows that the larger positive errors emerge when the cosine difference is lower than -0,2; 
while the larger negative errors will be at regions with a cosine difference between 0,0 and 0,7. This 
means the model is underpredicting at regions that are upwind and overpredicting the regions that 
are closer to downwind.   
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Figure 12: Histogram of the average error relative to the cosine difference for all wind inlet angles 

To investigate whether it is plausible to assume for the model to predict the various circular wind 
patterns, the wind magnitude data on an arbitrary wind inlet angle is compared at different 
timesteps of the CFD simulation. To be able to compare to distributions of the data of the circular 
wind patterns, this research zoomed in on a region with a few of them combined, this specific region 
is visually shown in appendix 8.3. Recall that this research assumed that the wind flow in the coastal 
dune is in a steady state. To statistically compare the distributions of these different timesteps, the 
Kolmogorov–Smirnov test is employed and the cumulative distributions are plotted on top of each 
other for visually inspection. The cumulative distributions can be found in Figure 13 below, which 
shows all the different distributions are plotted on top of each other, indicating that they have the 
same distribution. The computed p-value of the Kolmogorov–Smirnov test resulted in a 0,99; which 
means that the different datasets have the same distribution.  

 
Figure 13: Cumulative distributions of an arbitrary wind inlet angle around a region with various circular wind patterns; 

timestep: 1500, 1600, 1700, 1800 and 1900 
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This research project was performed in parallel with another Applied Data Science research project 
that explored a different modelling approach to predict the velocity vector over a coastal dune 
terrain. The other project found the best performing model to be a Fully Connected Neural Network 
(FCNN) (Quigley, 2024). To compare the best model from both research projects, each research 
trained their best performing model on some predetermined wind inlet angles and shared the 
results. This research employed the FPN architecture combined with the densenet121 backbone and 
trained for a total of 150 epochs. The comparison of this model with the FCNN model is shown in 
Figure 14 below. In the figure, the blue bars represent the performance of the FPN densenet121 
model and the red bars represent the performance of the FCNN model. All the hatched bars 
represent the testing sets. Due to the specifically chosen test sets, the models’ interpolation and 
(deep)extrapolation performance can be observed. The graph shows that the CNN model 
consistently outperforms the FCNN model. However, the variation between the train and test 
performance is greater for the CNN model than for the FCNN model. Additionally, the flow between 
the wind inlet angles is smoother for the FCNN model than for the CNN model, this can be because of 
the CNN model not being trained until convergence. 

 
Figure 14: Model comparison of the two Applied Data Science theses, with the hatched bars representing the test inlet 

angles, the other inlet angles are used for model training; The FPN densenet121 of this research and the Fully Connected 

Neural Network of  
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6. Discussion & Conclusion 
The main objective of this research was to serve as a proof of concept for using a Convolutional 
Neural Network (CNN) approach for Computational Fluid Dynamics (CFD) surrogate modelling of 
wind flow on coastal dune terrain. This study aimed to answer the following main research question: 
Which CNN model architecture and backbone most accurately models the wind velocities over 
coastal dune terrain with varying wind directions compared to a traditional CFD approach? The 
following sub-questions assisted in answering the main research question. 

- Model architecture 
o To what extent do the different CNN architectures and backbones impact model 

performance? 
- Model performance  

o How accurately does the model predict the wind velocity at various properties of the 
combined topography and wind direction within the coastal terrain? 

o How does the computational cost of the model compare to traditional CFD 
simulations? 

 
Nine different models were implemented and evaluated using k-fold Cross-Validation (CV) on the 
entire dataset, split on the wind inlet angles. These nine models consist of three different CNN 
architectures and three different backbone combinations. Among the three CNN architectures, FPN 
showed the best results, however, after performing a two-way ANOVA, the effect of a CNN 
architecture was not found to be statistically significant. This is probably because of the small sample 
size, since large differences are observed between the FPN and U-net architectures compared to the 
LinkNet architecture. Among the three backbones, the densenet121 showed the best results and, 
after performing a two-way ANOVA, was found to have a significant effect on the model 
performance. These findings proof that the implementation of different backbones can significantly 
improve model performance, while varying CNN architectures also show potential for model 
performance improvement. The FPN architecture in combination with the densenet121 backbone 
resulted in the best overall model performance in predicting the wind velocity vector over the coastal 
dune terrain.  
 
The consistent performance of the FPN densenet121 model across the different wind inlet angles 
show that the model does not overfit on the training data and is not heavily influenced by specific 
subsets of data, showing its robustness. The consistent performance also suggest that the model 
captures the spatial dependencies and complex relationships to some extent.   
 
The FPN densenet121 model provides good predictions of the overall wind flow over the coastal 
dune terrain. However, some systematic errors do occur. Different circular wind flow patterns, 
occurring due to pressure point caused by the bumpy topography, consistently results in negative 
errors in the model’s wind magnitude predictions. Lower located regions behind the dunes, where 
the model’s angle prediction error is higher, also show negative errors in wind magnitude 
predictions. While the higher regions on the sides at the top of the various dunes often exhibit 
positive prediction errors in the wind magnitude prediction. This result coincides with the finding 
that the model is underpredicting in upwind regions and overprediction in the regions that are closer 
to downwind.  
 
Additionally to these systematic errors, the model’s prediction of the overall wind flow is not able to 
follow the finer details of the CFD simulation output. The prediction velocity vector follows a more 
smoothed out result. This is most likely for the model to prevent overfitting and reduce the impact of 
possible noise, which Machine Learning methods are known for (Mahoney, 2021). A possible way to 
remedy this can be to shift the CNN task from pixelwise regression to super-resolution, a well-
researched area (Zhao, Gallo, Frosio, & Kautz, 2016). Which is done by a previous study, which 
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modelled a super-resolution assisted rapid high-fidelity CNN model,  that converts a low-fidelity CFD 
output to high-fidelity resolutions (Hu, Yin, Hamrani, Leon, & McDaniel, 2024). This, of course, would 
then again increase the computational time of the model prediction, as the low-fidelity CFD output 
first needs to be simulated, assuming the CNN model is already trained. This means there is always a 
trade-off between performance and computation time. The CNN surrogate model for this research 
required, on average, 1,9 seconds to predict the wind velocity vectors of one wind inlet angle, using 
one GPU. Compared to the traditional CFD simulation, which uses 12 CPUs and takes around 5 
minutes to simulate the wind velocity vectors for one wind inlet angle, this is a significant decrease in 
inference time.  
 
Despite the promising results, several limitations need to be addressed. First, the research was 
conducted on the dataset of only one coastal dune, which does not fully capture the various real-
world coastal dunes, limiting the generalizability of the model. Expanding the dataset to include a 
larger range of coastal dunes could improve model generalizability and robustness. Additionally, 
while the densenet121 backbone showed the best performance, experimenting with other 
backbones might further enhance the model’s performance. This research also did not implement a 
hyperparameters search to tune the model or employ ensemble methods to improve model 
performance. As the combination of multiple models, using ensemble methods, might decrease the 
obvious errors at the up- or downwind regions for this research’s model.  
 
In conclusion, different CNN architectures and backbones impact model performance, with 
backbones having significant effect. The best model combination is the FPN architecture with the 
densenet121 backbone. The model underpredicts the wind velocity vector in upwind regions and 
overpredicts it in the regions that are closer to downwind. Additionally, the computational cost is 
significantly lower than traditional CFD simulations, with a prediction time of 1,9 seconds compared 
to 5 minutes for the CFD simulations. The results of this research demonstrates the feasibility and 
effectiveness of using CNNs for surrogate modelling of airflow over coastal dune terrains. The 
findings show the potential of these models to enhance coastal management practices and provide a 
foundation for future research aimed at improving model robustness and efficiency. The 
implementation of such CNN surrogate models involves a trade-off between prediction accuracy and 
computational speed.  
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8. Appendix 

8.1. The different backbone structures 
The basic structure of the resnet152 structure (Nguyen, Lin, Lin, & Cao, 2018): 

 
The structure of denseNet121 with Dense block (D) Transition blocks (T) and Dense Layers (DL) (Jee, 
et al., 2023): 

 
The structure of efficientnetb7, the depth, width, resolution and model size increases as you are 
walking through the different blocks. The MBConv is the fundamental building block of the structure, 
the feature map consists of a single vector of features (Umut & İlhan, 2022): 
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8.2. Few examples of the contour plots with errors 

 

 
 

8.3. Zoomed in area to check wind flow steady state 
 

  


