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Abstract

There is a need for annotated medical data that can be used to develop and evaluate
smart algorithms. Synthetic data can help provide this, but is often too sterile to use. We
aim to detect artifacts in real PICU data and describe these artifacts, such that the synthetic
data can be realistically corrupted by artificial artifacts.
Unsupervised methods for artifact detection often rely on a filtering technique or simple
cut-off rules. For our artifact detection method we will build on this idea and expand it. We
will detect different types of artifacts in mean blood pressure, oxygen saturation and heart
rate. We will focus on a artifact caused by blood sampling and dips in oxygen saturation
and heart rate and describe characteristics of the detected artifacts. We have found a total
of 678 blood sample events in a total of 2666 hours of observations, a total of 1110 artifact
dips in oxygen saturation and 1946 artifact dips in heart rate in a total of 2782 hours of
observations .With a amplitude and duration mean (standard deviation) of 95 (72) mmHg,
9.8 (8.0) % and 18.0 (14.5) bpm for blood sample events, oxygen saturation dips and heart
rate dips respectively. And a duration of 77 (83), 26.6 (20.6), 12.3 (9.8) seconds. The blood
sample events are likely uniformly distributed in time, for the artifacts in oxygen saturation
and heart rate there is likely a time dependence.
With these results we have a better understanding of what the characteristics of artifacts in
vital parameters look like for PICU data.
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1 Introduction

At the Paediatric Intensive Care Unit (PICU), where the are children in critical conditions,
alarms are omnipresent. These alarms have the goal to inform the critical care nurses that the
patients condition is deteriorating and actions need to be taken. These monitoring systems are
designed to be very sensitive and not very specific. Research shows that the false alarm rate
in intensive care units range from 0.7 to 0.99 (Hever et al., 2020). These frequent alarms are
not only annoying, but also leads to alarm fatigue among health care personnel (Drew et al.,
2014). Which may have serious negative consequences for both patients and nursing personnel.
So, there is a demand for smart alarming systems to decrease the false alarms at the PICU.

To develop these smart alarming systems, large amounts of data are needed. Preferable with
annotations whether a change is a true clinical deterioration or an artifact. At the PICU the
monitoring data is saved, but there are no annotations available. Without these annotations it is
difficult to use these datasets for the training, testing and validating of smart alarm algorithms
since annotating retrospectively is very difficult.

Realistic synthetic vital sign data could be a solution for this problem. Biophysical models
can be used to model vital signs that fit a certain illness. The down-side of synthetic data that
is generated with biophysical models is that it lacks realism. It is very sterile and misses the
artifacts present in real monitoring data. These artifacts can originate from different factors,
such as disconnected arterial lines, movement, coughing, blood sampling. While especially these
artifacts result in extreme vital sign values that cause false alarms. So, it is important to enrich
the synthetic data with these artifacts. To be able to realistically add artifacts to synthetic data,
we need to detect artifacts in real PICU monitoring data and describe their frequency, shape
and timing.

Large-scale studies about artifact detection in critical care data are still rare. So, there
is no consensus about what kind of artifact detection methods lead to good results for this
population. Currently, most used artifact detection/correction methods use cut-off filters or
moving mean/median filters (Du, Glick, & Tung, 2019) (Charbonnier & Portet, 2012) (Hoorweg,
Pasma, van Wolfswinkel, & de Graaff, 2018). But it is unclear whether these methods are really
suitable for the PICU population we are studying.

In this project we will develop two artifact detection methods, the first is especially for blood
sample events and the second uses a baseline correction and patient and vital sign specific cut-
off filters. The artifacts that are detected using these methods will be described in amplitude,
duration, frequency and timing.

So, the main objective of this project was to detect artifacts in PICU monitoring data and
characterise them. These characteristics could in turn be used to enrich the synthetic data and
get a better insight in artifacts present in the data. We will focus on an artifact in the mean
blood pressure cause by blood sampling and artifacts in the oxygen saturation and heart rate.

The set up of this report is as follows. In Section 2 the data set and the method used to
detect artifacts will be described. First, the method for detecting blood sample events will be
discussed in Section 2.2. In Section 2.3 a method is proposed to detect dip shaped artifacts in
oxygen saturation and heart rate. Section 3 gives the results for the detection methods and what
characteristics the detected artifacts have. In Section 4 we will give a summary of our findings
and what implementations they can have. In Section 5 the limitations of our research will be
discussed and recommendations for future research are given. Additional information can be
found in the Appendices.
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2 Methods

2.1 Data description

The dataset that was used for this project is provided by the Wilhelmina Children’s Hospital
(WKZ). A fully anonymized version of the data was used. The patient population consisted
of 68 infants with cCHD admitted to the Paediartic Intensive Care (PICU) of the University
Medical Centre Utrecht between 2002 and 2018. Data is collected of 5 vital parameters in a
frequency of 1 observation per second. The included parameters are saturation (SpO2), regional
cerebral saturation (rSO2) in both hemispheres, invasive mean, systolic and diastolic arterial
blood pressure (MBP, SBP and DBP), respiratory rate (RR), heart rate (HR) and the ventilation
status. Patients were excluded if the only observations available were of the regional cerebral
saturation.

Furthermore, we have some more details about the patients. Most importantly, age and
weight when they got admitted to the PICU.

The model used to produce the synthetic data outputs the following parameters: mean blood
pressure, SpO2, heart rate and respiratory rate. Therefore, we will only focus on these parame-
ters.

Patients were excluded if they had less than 2 hours (n = 2) of total observations available
and if the only observations available were of the regional cerebral saturation (n = 17). So, in
total we had data of 49 patients. In Table 1 the median and Inter Quartile Range (IQR) of the
patient specific characteristics and their vital signs are given. There is no further pre-processing
since we want to detect noise and abnormalities. If patients do not have observations available
for one of the parameters of interest, that patient is excluded for that specific analysis. More
details for this are given in the Section 3.

Table 1: Summary statistics of the characteristics of the patients and the vital parameters.

Characteristics of Patients
Patient specific (median (IQR))
weight at t = 0 (g) 3450 (3175:3750)
age at t = 0 (days) 10 (7, 17)
available data (hours) 56.2 (6.1: 84.4)

Vital parameters
(median, (IQR))

Total
averaged

over patients
percent missing values

over patients(%)
Heart rate (beats per minute) 146 (135:157) 144 (132:153) 5.0 (0.4: 24.5)
Respiratory rate (breaths per minute) 34 (28: 39) 34 (28: 40) 11.1 (1.6: 42.2)
SpO2 (%) 92.3 (80.4: 97.3) 90.3 (86.8: 92.7) 9.9 (1.5: 32.9)
Mean Blood Pressure (mmHg) 51.8 (46.4:58.3) 52.5 (48.0: 58.0) 23.3 (1.3: 48.6)

2.2 Detection of blood samples using mean blood pressure measure-
ment

Arterial blood pressure waveforms are frequently corrupted by artifacts, caused by events such
as transducer flushing, drawing a blood sample and physical movement. For now we focus on
one type of artifact, namely the typical shape in mean blood pressure caused by taking a blood
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sample. In the dataset we have three parameters that describe the blood pressure. We have the
systolic blood pressure (SBP), the mean blood pressure (MBP) and the diastolic blood pressure
(DBP).The DBP and SBP are both measurements directly from the monitor and the MBP is
calculated using these two measures. A common method to estimate the MBP is by taking the
DBP and adding one third of the difference between the SBP and the DBP.

The artifact type we focus on can be described in the following general way: The is a sudden
and rapid increase in MBP to some maximum, followed by a immediate and fast decrease. In
this period the MBP is higher then the SBP. There could be a second peak in short period after
the first peak, due to flushing of the arterial line. For the period where the MBP is higher then
the systole there is a period of consecutive missing values for the SBP in the dataset available.
Before or after the maximum value of the MBP there is a period with missing values for the
MBP. A real example of this pattern is shown in Figure 1.

Figure 1: Example of blood sample event.

We want descriptive statistics of the shape that is shown above. In order to do this we need
to find time intervals in the dataset where the MBP and the SBP match the pattern described
above.

To find intervals that match the pattern described above we use the following method. Fill
in all the missing values for SBP by propagating the last valid observation until the next valid
observation. This is done, because during the peak of the MBP there are often missing values
for the whole duration of this peak or even a little longer. A lot of peaks would not be found if
the missing SBP values would not be imputed.

Let T := {t ∈ {0, ...T} | MBP (t) > SBP (t)} be the set with time points where the MBP
is higher then the SBP. Then for all t ∈ T we take the interval [t − k, t + k] as segment we
are interested in, where k is a predefined constant. Note that intervals can overlap. If intervals
overlap, they are joined together. This means that all segments can have different lengths, with
a minimum length of 2k seconds.

For each blood sample event we want to characterise the shape. To do this we use duration
and amplitude of the blood sample event and the median, minimum and maximum value in the
interval. We use the number of missing values in the SBP parameter in the interval as a proxy
for the duration of the blood sample event. The amplitude is defined as the difference between
the maximum and median MBP value in the segment.

Per patient we are interested in the absolute number of detected artifacts and the relative
number of artifacts, which is defined as the total number of artifacts that were detected for the
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patient divided by the total duration of the available observations.

Parameter setting

The only predefined constant in this method is the search window size. We choose to use k = 60.
It is empirically found that results for duration are consistent for non-extreme cases. Adding
to that it is plausible that abnormal patterns (i.e. the number of missing values in the SBP
parameter) are still caused by the same blood sample event if they occur in this window.

2.3 Dip Characterization for oxygen saturation and heart rate

For critically ill patients a decrease in vital parameters such as oxygen saturation and heart rate
can be an indication that the patients clinical state is deteriorating. In this section we are looking
for artifacts that have a rapid change from a normal value to a minimum value and transition
back to the normal value of before the decrease. If this happens in a short amount of time and to
extreme values this dip is most likely not because of physiological reasons and is thus an artifact
we are interested in to find and describe.

(Charbonnier & Portet, 2012) proposed a self-tuning adaptive trend extraction method for
process monitoring and diagnosis with as application to reduce the false alarms in Neonate
Intensive Care Units. NICUs care for new born babies who are premature or very ill. This
population is similar to the patient population in our research. Among other things they define
a method to detect artifacts (or step changes). The idea of using deviation from a baseline signal
and the numerical derivative we will use in this project are inspired by their approach.

We choose for a non-parametric approach to detect artifacts since we want to make no as-
sumptions about the distribution of the data. With this kind of medical time series such assump-
tions often do not hold. Therefore a more straight forward and understandable method with no
assumptions about the underlying distribution is proposed.

In order to detect a artifact dip we need to define such a dip precisely. We assume an artifact
dip has the following characteristics:

• From the start of the dip a decrease is observed, until a minimum point followed by an
increase back to the initial level.

• The minimum value of the dip is less then a threshold from the baseline. This threshold is
fixed based on the signal variability.

• This dip is an abrupt change. The slope from the start point till the minimum point, (or
from the minimum point till the end point) should be more extreme than expected.

• The maximum duration of the dip is D seconds. Where D is chosen beforehand.

For more robust detection of dips in the monitoring data, brief insignificant fluctuations are
removed by using a rolling median filter. Median filters are a easy and understandable way
to remove these insignificant fluctuations while maintaining the the overall baseline (Mäkivirta,
Koski, Kari, & Sukuvaara, 1991). Let yN (t) be the results of a median filter applied to x, defined
as:

yN (t) = Median (x(t−N), x(t−N + 1), ..., x(t+N − 1), x(t+N))

where N is the window size. A centered median filter is used to ensure that the variations in
the median filtered signal are aligned with the variation in the data.
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We want to detect dips that pass a certain threshold. For example, we might be interested
in dips where the minimum is below 95% for oxygen saturation (Ray, Rogers, Raman, & Peters,
2017). In the data set we have measurements for critically ill patients and therefore there are a
lot of fluctuations, both caused by clinical deterioration and artifacts. We are only interested in
the latter. If we would use the same threshold for everyone we have poor results for patients that
have a low oxygen saturation in general. We therefore use the deviation from a baseline to detect
artifacts. Artifacts are usually more abrupt than changes that are due to a physiological cause.
By using the deviation from the baseline we focus on the more abrupt changes. To determine
the baseline a rolling centered median is used with a (large) window size Nbaseline.

Let the residual signal to be the difference between the median filtered signal yN and the
baseline yNbaseline, given by

res(t) = yNbaseline(t)− yN (t)

The value of the residual signal will be compared to a threshold. This threshold is defined
as mean(res) − λσ. Where σ is the sample standard deviation of the residual signal and λ is a
predefined constant. If the residual signal passes the threshold, then this point is part of a dip
we are interested in. From this minimum point that passes the threshold we search back to find
the begin point of the dip. The begin point tbegin is a time point before the minimum where
res(t) ≥ −α and t − tbegin is minimal, where α > 0 is a predefined constant. Similarly, for the
end point tend of the dip, we look for time points after the minimum where res(t) ≥ −α and
tend − t is minimal. For dips that occur at the very beginning of the signal, it might be the case
that there exists no t satisfying the above conditions. In that case, we find no beginning of the
dip and discard it. Similarly, we discard dips where no end point is found because the dip is
close to the end of the available observations.

Artifact dips are abrupt changes with a large amplitude. With the above conditions we have
found the dips that have a large amplitude. To ensure that the dips we found are abrupt we add
a second constraint.

Let resd(t) = res(t)−res(t−1) denote the numerical derivative of the residue, then let σd be
the sample standard deviation for the numerical derivative of the residue. Define the maximum
slope of a dip to be

p = max

(∣∣∣∣res(tbegin)− res(tmin)

tbegin − tmin

∣∣∣∣ , ∣∣∣∣res(tmin − res(tend))

tmin − tend

∣∣∣∣) , (1)

where tmin = argmint∈[tbegin,tend]
res(t).

Then if
p ≥ λdσd, (2)

,with λd a predefined constant, holds the dip is abrupt.
Lastly, we impose a constraint on the duration of the dip. That is tend − tbegin < D to be

detected as artifact.
The above described method is summarized in pseudo-code in 1.
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Algorithm 1 Dip detection

1: Initialize λ, α, λd, D
2: Let V := {t ∈ {0, 1, ..., T} such that res(t) < λσ}
3: for t ∈ V do
4: for 0 < k < t do
5: if res(k) ≥ −α and t− k is minimal then
6: tbegin ← k
7: end if
8: end for
9: for t < j < T do

10: if res(j) ≥ −α and j − t is minimal then
11: tend ← j
12: end if
13: end for
14: Set tmin = argmint∈[tbegin,tend]

res(t)

15: Set p1 =
res(tbegin)−res(tmin)

tbegin−tmin
.

16: Set p2 =
res(tbegin)−res(tmin)

tbegin−tmin
.

17: if max(|p1|, |p2|) ≥ λdσd and tend − tbegin < D then
18: Dip is an abrupt change and a possible artifact.
19: end if
20: end for

A vectorized approach is used for the implementation of Algorithm 1, using the numpy package
in Python to make the algorithm more efficient.

Now that we have located the dips, we want to know the characteristics of the dip. We are
interested in the duration, the amplitude, the timing, the start and end value of the dip and the
slope.

The duration of dip is equal to tend− tstart; The amplitude of a dip is difference between the
minimal value mint∈[tbegin,tend] res(t) and the mean value of res(tbegin) and res(tend).

Parameter setting

The constants that should be defined beforehand are window sizes N and Nbaseline, the recover
parameter α, the sensitivity parameters λ for the amplitude of the dip and λd for the abruptness
and finally the maximum duration D.

The parameter settings are given in Table 2.

Parameter settings
SpO2 HR

N 2 2
Nbaseline 150 150
α 2 2
λ 4 4
λd 4 5
D 100 100

Table 2: Parameter values used for dip characterization
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The parameters for both oxygen saturation and heart rate are set to the same values. Except
for λd. There are more fluctuations and dips in the heart rate parameter that are not because of
artifacts, but have a physiological cause. Which is expected considering that the patient all are
diagnosed with Critical congenital heart disease. To make the artifact detection more robust for
these rapid changes, the threshold for the slope is set higher. So, a dip has to be more extreme
then expected to be seen as a artifact compared to the oxygen saturation dips.

We have set λ to 4. Meaning that the dip should be at least 4 standard deviations from the
mean. This is quite a conservative choice. We chose to set it to 4 to be more sure that the dips
that we detect are in fact artifact dips.

The maximum duration of the dips is set to 100 seconds. This is a bit longer then what
the maximum expected duration of an artifact dip is, which is about 60 seconds. This is done,
because dips with a very large amplitude or that are very sudden, but last longer then initial
thought are still detected.

α = 2 is chosen because we want to allow of the dip to not start exactly at the baseline and
after the decrease increase back to the exact level as before the dip. It is empirically tested that
with a lower α there are dips that remain undetected because the value does not recover back
closer to the baseline within the maximum duration.

2.4 Relative timing of artifacts

Patients in this data set are critically ill when they enter the PICU. Over time the patient will
become more stable. It is therefore expected that there will be more artifacts in the beginning
of their recording. For example blood samples might be needed more frequent in the beginning
to test the patients condition or there is more movement due to pain in the beginning of their
PICU stay.

It is therefore interesting to investigate whether more artifacts are detected in a certain period
of a patients stay. If so this can be taking into account when corrupting the synthetic data with
artifacts. Since, all patient have a different amount of observations timing for a event is scaled
compared to the total duration of observations. This is done by dividing the index of the start
of the event by the total number of observation for that patient. The relative timing is then an
real number in the interval [0, 1]. By doing this there is a better comparison between the timing
of events per patient and the distribution of the relative timing can be analysed.

3 Results

In this Section the results of the characteristics of the detected artifacts will be given. Moreover,
one patient was randomly chosen to use for a validation of our artifact detection. This patient
had a total of 31 hours and multiple detected artifacts for all three vital signs, MBP, oxygen
saturation and heart rate. An expert stated per detected artifact whether this was correctly
identified as artifact. They furthermore indicated whether there were episodes that should have
been detected as artifact, but were missed. We say there is a true detection if the expert and
the artifact detection agreed. The true detection rate is the number of true detection’s divided
by the number of total to be detected artifacts.

There were 12 blood sample events detected. One was a true blood sample event. The rest
were falsely identified as blood sample events, because of a loss of signal. The were no blood
sample events identified by the expert that were missed. The true detection rate was 1/1 = 1.
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For oxygen saturation there were 21 dips detected as artifact. 19 out of the 21 dips were
correctly identified as artifact, so 2 dips were falsely identified as artifacts. In total 27 artifacts
were identified by the expert, so 8 artifact dips were missed. So, the true detection rate is 19/27
= 0.70. Three of the missed artifacts were not identified because the slope was not steep enough.
One because it was at the end of the observations and the rest because there were missing values
around the dips, so no start or end could be detected.

For heart rate there were 5 dips detected as artifact. All 5 were correctly identified as arti-
fact. In total 11 artifacts were identified by the expert. So, the true detection rate is the 5/11
= 0.45. However, there was a lot of variance in the heart rate of this patient. It was difficult to
say whether a dip was an artifact or not. A more zoomed in window should be used to identify
whether the dip is an artifact or not and then still it is difficult to say whether the dip is an
artifact or not.

The full validation document can be found in Appendix B.

3.1 Detected blood sample events using MBP

For this analysis 43 different patients were included. 6 patients were excluded since there were
no SBP measurement available. In total 714 artifacts that were found in a total of 2675 hours
of observations. Missing values were not taken into account for this. The number of available
observation differed per patient. On average the total observation time is 62 hours per patient
(standard deviation of 57.5 hours) and a minimum of 2.1 hours and a maximum of 209.4 hours.

The mean search window was 334 seconds (standard deviation of 447.0 seconds). The median
search window was 254 seconds and the interquartile range was 244:316. The maximum search
window was 10565 seconds. This is a lot longer then expected. When inspecting the MBP and
SBP of the patient where extremely long search windows were used, this was because of a loss
of signal. Because these influence the summary statistics a lot. We decided to only look at
the artifact that were found in a window with a size less then the 95% percentile, which is 638
seconds. With this constraint on the search window, we have n = 678 artifacts left. Per patient
on average there are 0.43 blood sample events per hour with an standard deviation of 0.39. The
median number of blood sample events per patient per hour is 0.3 with an interquartile range of
0.19:0.51. A summary of the artifact characteristics are shown in Table 3.

Table 3: mean, standard deviation (std), median and interquartile range (IQR) for the blood
sample event.

Amplitude
(mmHg)

Duration
(s)

Minimum
(mmHg)

Median
(mmHg)

Maximum
(mmHg)

mean (std) 95 (72) 77 (83) 30 (30) 54 (26) 149 (75)
median (IQR) 79 (34:149) 46 (29: 98) 39 (2:48) 50 (45:57) 137 (86:201)

The correlation between the amplitude and the duration of the artifact is tested with a
two-sided Pearson test. The Pearson product-moment correlation coefficient is -0.017 with a
corresponding p-value of 0.65. So, the an α-level of 0.05 we do not reject the null-hypothesis.
Hence, with this test there is not enough evidence to conclude that the correlation between the
amplitude and the duration is non-zero. The joint distribution of amplitude and duration is also
shown in Appendix 12.

10



(a) Distribution of blood sample artifact am-
plitude.

(b) Distribution of blood sample artifact dura-
tion.

Figure 2: Distribution of the amplitude and the duration of the detected artifacts.

The standard deviation of the patient average amplitude to the total average amplitude is
37.7 mmHg. The average standard deviation within a patient is 68.8 mmHg. For the duration
the standard deviation of the patient average duration to the total average total is 71.5 seconds.
The average standard deviation within a patient is 121.6 seconds. So, there is more variation for
duration and amplitude within a patient then between the patients.

Relative timing of blood sampling

In Figure 3 a histogram is shown with the frequency of the relative timing of a detected artifact.
The relative timing for all 678 events are used.

Figure 3: Histogram of the relative timing of the start of artifact. With three vertical lines
indicating the 25%, 50% and 75% quantiles.

By visually inspecting this histogram we see no apparent pattern. By eye-balling this his-
togram it might be the case that the relative timing is uniformly distributed.

To quantify whether the distribution of the relative timing is close to a uniform distribution
with as interval [0, 1] we use a one-sample Kolmogorov-Smirnov test. We test whether the 678
data points look like they could have been drawn from a uniform distribution between [0, 1]. The
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results are: Kolmogorov–Smirnov statistic is -0.439 with a corresponding p-value of 0.127. With
an alpha-level of 0.05 we do not reject the null-hypothesis. Hence, with this test there is not
enough evidence to conclude that the distribution is not uniform.

3.2 Dips in heart rate and oxygen saturation

In this subsection the results for the detected dips are presented. First, we will discuss the results
for the dips detected in the oxygen saturation and next in the heart rate.

Oxygen saturation

For this analysis 49 different patients were included. The total hours of available observations
are 2782.2. On average the total observation time per patient is 56.8 hours (standard deviation
of 56.15). With a minimum of 2.1 hours and a maximum of 209.4 hours.

The threshold that the residual signal needs to pass in order to detect a dip is dependent on
the mean residual signal and the standard deviation of the residual signal. In Table 4 descriptive
statistics are given about the residual signal.

Table 4: mean, standard deviation (std), median and interquartile range (IQR) for the oxygen
residual signal.

mean(res) σ mean(resd) σd

mean, std -0.07, 0.19 1.67, 0.82 0.00, 0.00 0.21, 0.10
median (IQR) -0.05 (-0.13:0.00) 1.66 (1.11:2.05) 0.00 (0.00: 0.00) 0.18 (0.15: 0.29)

There are 2646 dips that pass the threshold in total, with λ = 4 and no constraint on the
slope or duration. There is one patients where the residual signal never passes the threshold. On
average there are 1.23 (std: 0.82) dips per hour where the minimum value of the dip is below
the threshold.

When also looking at the second constraint 2 there are 1180 dips that still satisfy. Then
dips that satisfy 2 and where the duration is less then D = 100 we have 1110 dips. There were
5 patients were there were no artifact dips detected. For the patients that did have detected
artifact dips, on average there were 0.48 artifacts per hour with a standard deviation of 0.35.
The median number of artifacts per hour is 0.41 and the interquartile range is 0.22: 0.52. Details
about the duration and the amplitude of the dip are shown in Table 5. In Figure 4a an example
of detected dips are shown. In Figure 4b a close up for a dip is shown.
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(a) Example of the dips in the measured signal
that are detected in oxygen saturation. The
red and green vertical line indicate the begin
and end of the dip, respectively. The red point
indicates the point where the deviation from
the baseline is maximum.

(b) Zoomed into the largest dip of the segment
in Figure 4a.

Figure 4: Examples of the detected dips in oxygen saturation.

Summary statistics for the detected dips are shown in Table 5.

Table 5: Summary statistics of the duration and the amplitude of the dips detected in oxygen
saturation. Where start value is the measured oxygen saturation at the beginning of a dip and
minimum value is the minimum measured oxygen saturation during the dip.

Duration (s) Amplitude (%) Start value (%) minimum value (%)
mean (standard deviation) 26.6 (20.6) 9.8 (8.0) 88.1 (10.4) 78.2 (12.96)
median (IQR) 19 (12:32) 7.8 (5.0:12.2) 90.7 (84.1: 96.6) 79.8 (70.2:89.0)
minimum 2 0.2 52.2 1.5
maximum 99 95.5 100 97.6

The mean maximum slope in the dip is 2.1 % per seconds (std 3.0% per seconds). For 645
dips slope is from the start point of the dip until the minimum is larger the from the minimum
point until the end point of the dip. For the other 465 dips it is the other way around.

The distributions for the amplitude and the duration are also shown in Figures 5a and 5b.

(a) Distribution of the amplitude (%) of the
dips detected in SpO2

(b) Distribution of the duration(s) of the dips
detected in SpO2

Figure 5: Distribution of amplitude and duration for dips detected in oxygen saturation.
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on average the standard deviation of the duration within a patient is 20.4 seconds and the
average standard deviation between patients mean duration is 11.8 seconds. On average the stan-
dard deviation for the amplitude within a patient is 11.2 % and the average standard deviation
between patients mean amplitude is 7.3 %.

The correlation between the amplitude and the duration of the dips is tested with a two-sided
Pearson test. The Pearson product-moment correlation coefficient is 0.34 with a corresponding
p-value of 0.000. With an α-level of 0.05 we reject the null-hypothesis that states that the
correlation coefficient is 0. The joint distribution of amplitude and duration is also shown in
Appendix A.

Figure 6: The distribution of the relative timing of the start of a dip in oxygen saturation.

As was also the case for the relative timing of the artifacts due to blood sampling, this
histogram does not reveal an apparent pattern. A one-sample Kolmogorov-Smirnov test gives
the following result: Kolmogorov-Smirnov statistic is 0.076 with a corresponding p-value of 0.000.
With an α-level of 0.05 reject the null-hypothesis that states that the relative timing samples
are drawn from a uniform distribution between [0, 1].

Heart rate

For this analysis all 49 different patients were included. The total hours of available observations
are 2782.2. On average the total observation time per patient is 56.8 hours (standard deviation
of 56.2). With a minimum of 2.1 hours and a maximum of 209.4 hours. For the heart rate
parameter there is in general more deviation from the baseline and more sudden dips, that are
not artifacts but have a physiological cause. This makes it more difficult to detect artifact dips.
Therefor the results for the artifact dips found with the proposed method are bound to be poor
and we can say with less confidence that the detected dips are in fact artifacts.

Table 6: mean, standard deviation (std), median and Inter Quartile Range (IQR) for the heart
rate residual signal.

mean(res) σ mean(resd) σd

mean (std) 0.07 (0.44) 3.6 (2.2) 0.00 (0.00) 0.67 (0.33)
median (IQR) 0.01 (-1.2: 0.20) 3.4 (1.80: 4.70) 0.00 (0.00:0.00) 0.62 (0.38: 0.89)
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In total 4561 dips are detected that pass the threshold, with λ = 4.
When also looking at the slope constraint there are 1954 dips that still satisfy. The number

of dips that satisfy the derivative constraint and have a duration less then 100 seconds is 1946.
5 patient had no detected dips and the average number of dips per hour is 0.76 (std 0.74) with
a median of 0.49 dips per hour and an interquartile range of 0.23: 1.05.
Example of the detected dips are shown in Figures 7, 8 and 9. In general there are three types
of dips detected. The first one can be described as a period in the measured signal where the
heart rate is quite stable before and after the dip and the dip it self has a large amplitude and a
short duration, this is likely an artifact. The second type is not really a dip, but rather a short
sensor dysfunction where the measured heart rate is equal to 0. The last type of dips that were
detected are dips that are similar for a longer period of time and occur fast after each other.
This type is likely not an artifact, but have a physiological cause.

Figure 7: Sudden decrease in HR followed
by a rapid decrease back to a normal value.
That is due to an artifact.

Figure 8: Example of sensor dysfunction in
HR. Where HR goes from a normal value
to 0.

Figure 9: Example of dips where it is unclear whether they are indeed artifacts.

Details about the duration and the amplitude of the detected dips are shown in Table 7.

Table 7: Descriptive statistics of the amplitude and duration of the dips detected in the HR
parameter.

Duration (s) Amplitude (bpm) Start value (bpm) Minimum value (bpm)
mean (std) 12.3 (9.8) 18.0 (14.5) 152 (15.2) 134.3 (19.8)
median (IQR) 9 (8: 13) 13.1 (10.1: 22.2) 150 (144:159) 135.3 (127.8: 143.0)
minimum 2.0 1.2 24 0
maximum 96.0 176 216 200
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The mean maximum slope in the dip is 5.8 bpm per seconds with a standard deviation of
6.4. For 1461 dips the slope from the start point of the dip until the minimum is larger than the
slope from the minimum point until the end point of the dip. For the other 485 dips it is the
other way around. In Figure 10a and 10b the distribution of the amplitude and the duration of
the dips are shown.

(a) Distribution of the amplitude (bpm) of the dips
detected in HR.

(b) Distribution of the duration (s) of the dips de-
tected in HR.

Figure 10: Distribution of amplitude and duration for dips detected in heart rate.

On average the standard deviation of the duration within a patient is 10.9 seconds and the
average standard deviation between patients mean duration is 12.4 seconds. On average the
standard deviation for the amplitude within a patient is 9.8 bpm and the average standard
deviation between patients mean amplitude is 34.2 bpm. The correlation between the amplitude
and the duration of the dips is tested with a two-sided Pearson test. The Pearson product-
moment correlation coefficient is 0.43 with a corresponding p-value of 0.000. With an α-level of
0.05 we reject the null-hypothesis that states that the correlation coefficient is 0.

Figure 11: The distribution of the relative timing of the start of a dip in heart rate.

For the relative timing we have again preformed a one-sample Kolmogorov-Smirnov test. The
test statistic is 0.12 and with a corresponding p-value of 0.000. Hence, with an α-level of 0.05 we
reject the null-hypothesis that states that the relative timing samples are drawn from a uniform
distribution between [0, 1].
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4 Conclusion

In this project we focused on finding artifacts in real monitoring data from the PICU in Wil-
helmina Children’s Hospital. We proposed two methods to identity two types of artifacts and
described the characteristics of the detected artifacts.

The first method focused on artifacts due to blood sampling. We used a simple method based
on the MBP and SBP to detect the blood sample events. These events show a rapid increase in
the MBP. To realistically add artificial blood sample events in synthetic data MBP peaks should
be added with a average amplitude of 95 mmHg and an average duration of 77 seconds, with on
average 0.43 blood sample events per hour. For the amplitude the distribution has two peaks.
One between 25 and 50 mmHg and one between 125 and 150 mmHg. It is unclear why there are
two peaks. When visually inspecting some of the events where the amplitude was between 25 and
50 mmHg and between 125 and 150 mmHg they appear to have a similar shape. An explanation
could be that the MBP peaks with an amplitude between 125 and 150 mmHg are due to the
blood sampling events itself and the MBP peaks with an amplitude between 25 and 50 mmHg
are due to the flushing of the arterial line. There is no correlation between the duration of the
blood sample event and the amplitude of the MBP peak. There is more variation in duration and
amplitude of the blood sample event within a patient then between patients. So, the duration
and amplitude are not patient specific. Furthermore, it is likely that there is no time dependence
for the when the blood sample event happens. So, artificial blood sample events can be added
to the synthetic data uniformly in time. Which is different then what we would have expected.

The second proposed method to detect artifacts are for sudden and large dips in oxygen
saturation and heart rate. It was found that on average 0.48 artifact dips occur per hour of
monitoring data from patient. The dips median measured oxygen saturation is 90.7% at the
begin of a dip, which is considered to be normal value for this patient population. The median
for the minimum value for measured oxygen saturation during the dip is 79.8 %. The median
duration for such a dip is 19 seconds. The average variation for both amplitude and duration of
the dip within patient is higher then between patients. Meaning that amplitude and duration
dips are not patient specific. There is a positive relation between amplitude and duration. In
general the larger the amplitude of the dip, the longer the duration. However, the spread is big
so we cannot say this with confidence. The relative timing of the detected oxygen saturation dips
are likely not uniformly distributed between [0, 1] indicating that there is a time dependence for
the oxygen saturation dips. In the distribution we see that there dips are more frequently found
in the beginning of the observations. This is inline with what we expected.

The same dip detection method we used for oxygen saturation is also used for heart rate.
The dips that are detected using this method are a mix of artifacts and dips that are cause by
physiological changes. The description of the dips is therefore not a description of the artifact
in the measured heart rate. On average 0.76 dips occur in hour per patient. Which is more
then average number of dips found in oxygen saturation. The median value of the start point
of the dip is 150 bpm, which is close to the overall median heart rate. The minimum value is
135. The average standard deviation for both amplitude and duration of the dip within patients
is lower then between patients. This indicates that we indeed detected a lot of dips that have a
physiological cause and thus have patient specific characteristics. The relative timing of the dips
are not uniformly distributed, indicating a time dependence. This is expected, since the clinical
condition of a patient is usually worse at the beginning of their PICU stay.

All in all, we have proposed a method to detect different types of artifacts. We provided
insights in the characteristics of the artifacts in the vital parameters mean blood pressure, oxygen
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saturation and heart rate. These results give a first idea what certain kinds of artifacts, namely
blood sample events and dip like artifacts in oxygen saturation an heart rate, look like and
what their frequency is in PICU data. And in turn could eventually be used to realistically add
artificial artifacts to synthetic data.

5 Discussion

In this Section we will discuss the limitations of this study and make recommendations for future
study.

First we will discuss some general limitation of this project. Then we will focus on limitation
specific for the method we used. Lastly, we will provide a list of other types of artifacts that
could be detected and described to get a better and more complete description of the types of
artifacts present in PICU data.

For this project there were no annotations available stating whether a time point is an artifact
or not. If this would have been available, the proposed artifact detection method could have been
evaluated in more detail. Without this validation of the method, we are not able to say whether
using the describing statistics given in this project lead to realistic artificial artifacts for synthetic
data. We have asked an expert to check the artifact detection for one randomly selected patient.
This patient had a very variable heart rate and loss of signal for the blood pressure. This showed
that our method is not robust and still needs to be improved.

Furthermore, we have used methods where it was needed to fix certain constants beforehand.
We have set these constants in such a way that after a quick empirical test the results seemed
reasonable. it is advised to further look into this and see how much the final result changes.
Due to the scope of this project we have not looked at this. Suppose an annotated dataset was
available, a random selection of patients could be used to fine tune these parameters (Jakob et
al., 2000).

All the artifact detection methods we used performed bad when the signal quality is low. In
this project we searched for specific shapes of artifacts. Because of this the detection methods
perform bad when the signal quality is low. There are several signal quality indices (SQI’s) de-
signed for vital signs (Li, Mark, & Clifford, 2008), (Sun, Reisner, & Mark, 2006) (Zong, Moody,
& Mark, 2004). The information of different SQI’s can be used to know what kind of artifacts
could be present in a segment and a more efficient search for artifacts can be done.

We will now discuss the limitations per artifact detection method.
For the blood sample event detection we looked for time points where the MBP was higher

then the SBP and used a window to get characteristics of this blood sample event. The search
windows overlap if time points where the MBP is higher then the SBP are closer to each other
then 60 seconds. If there was such an overlap the search windows were merged, since we assumed
that this would still be due to the same blood sample event. However, by doing this the search
windows could get extremely large if a patients records for MBP and SBP were very noisy or
there was loss of signal. Especially the estimation of the duration was prone to error because of
this. Since, we used the number of missing values as a proxy for the duration. If a search window
got very large due to irregularities and missing value in MBP and SBP this also resulted in a
very long estimation for the duration. For future research it is advised to use another estimation
for the duration of a blood sample event.For example by locating the beginning of the MBP peak
and the end of the peak and only use that segment to describe the characteristics.
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For the artifact dip detection for oxygen saturation and heart rate we made clear assumption
about what an artifact dip looks like. By doing so, we restricted ourselves in our analysis. For
example step-changes, high-frequency artifacts and square-wave artifact forms we not taken into
account. We also focused on artifacts where there was an decrease in the parameters. Our
method can be easily extended to also detect artifacts where there is increase in the parameter.

Especially for heart rate our proposed artifact detection model performed badly, since there
are dips in the heart rate parameter that satisfy all our artifact criteria but are in fact not
artifacts. We have prevented to detect a lot of dips by increasing the sensitivity constant, λd,
however because of this we also missed artifacts and still labeled dips as artifacts that are likely
not artifacts. It is advised to look into other methods to detect artifacts in the heart rate
parameter. For example by looking into unsupervised pattern recognition methods, for example
clustering, using more complex filtering methods, such as a Kalman filter for example (Li et
al., 2008) or a decision tree (Tsien et al., n.d.). If an annotated dataset would be available in
the future using supervised pattern recognition method could be promising (Chen et al., 2016)
(Maleczek et al., 2024).
The aim of this project was get insight in irregularities in real vital parameter data of PICU
patients. We choose to look for certain irregularities. Below we provide a summary of other
irregularities, including but not limited to, that can be investigated in the real data to enrich
the synthetic data:

• Missing data: Sensors can be removed from the patient if for example the parents want to
hold them. This results in large periods of missing data. These periods could be described
in duration, inter arrival time and whether they are time specific.

• In this project we looked whether the occurrence of an artifact was time dependent by
looking at the relative timing of the event. It is recommended to also look whether artifacts
are dependent on the time of the day or night.

• Different shapes of artifacts, such as high frequency noise, step changes, loss of signal,
peaks.
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Appendix A Joint distribution for amplitude and duration

Figure 12: Joint distribution of amplitude and duration for blood sample event.
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Figure 13: Joint distribution of amplitude and duration for oxygen saturation dips.
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Figure 14: Joint distribution of amplitude and duration for heart rate

Appendix B Validation artifacts

Below we have included the documents used for the validation of our method. Note that these
are in Dutch.

We will give an explanation of the document set-up. Plots of the parameters are shown (MBP
and SBP for the blood sample events, oxygen saturation and heart rate). First the total obser-
vations are shown and then we zoomed into certain segments. We have in total 30.1 hours of
observations and zoomed into segments of 5.5 hours. For each detected artifact the expert had to
indicated whether or not he agreed that this was an artifact, by making yes or no boldface.(This
is the sentence: Dip x is juist als artefact gedetecteerd: ja / nee). After indicating in a segment
whether the detected artifacts were correct, the expert indicated whether artifacts were missed
and if so at which time stamp (this is done in red).

For the blood sample events time periods are marked red where there is a loss of signal. All
the blood sample events that were detected here are likely false.

For heart rate the expert indicated with red blocks where there are likely artifacts.
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Total observaties gemiddelde bloeddruk en systole bloeddruk 

(Rood heb ik gemarkeerd omdat hier het signaal erg rommelig is) Window 4 en 5 

 

  

Window 1 

 

 

Juist als bloed afname gedetecteerd:ja / nee 

 

 



Window 2, niks 

 

 

Window 3, niks 

 

 

 

 

 



Windw 4 Fout vanwege andere artefacten 

 

 

 

 

Window 5 Fout vanwege andere artefacten 



Alle observaties van patient met pseudo_id 12 voor zuurstof saturatie met dips 

 

21 artefacten in 30.1 uur aan observaties 

 

 

Window 1, nummer artefacten gedetecteerd: 2 

 

Zoom op artefacten in window 1 



  

 

Dip 1 is juist als artefact gedetecteerd: ja / nee 

Dip 2 is juist als artefact gedetecteerd: ja / nee 

 

Er zijn artefacten gemist in window 1:  ja / nee 

Zo, ja: ongeveer op tijdspunt:15.100 & 17.000 & 19.000 

Window 2, nummer artefacten gedetecteerd: 5 

 

Zoom op artefacten in window 2 

Eerste 2 dips 



 

Dip 3 is juist als artefact gedetecteerd: ja / nee 

Dip 4 is juist als artefact gedetecteerd: ja / nee 

 

Zoom dip 5 en 6 

 

Dip 5 is juist als artefact gedetecteerd: ja / nee 

Dip 6 is juist als artefact gedetecteerd: ja / nee 

 

Zoom op dip 7: 



 

Dip 7 is juist als artefact gedetecteerd: ja / nee 

Er zijn artefacten gemist in window 2:  ja / nee 

Zo, ja: ongeveer op tijdspunt: 

 

 

 

Window 3, nummer artefacten gedetecteerd: 8 

 

 

Zoom op artefacten in window 2 



Zoom op eerste 3 dips van de window 

 

Dip 8 is juist als artefact gedetecteerd: ja / nee 

Dip 9 is juist als artefact gedetecteerd: ja / nee 

Dip 10 is juist als artefact gedetecteerd: ja / nee 

 

 

 

Zoom op dip 4de en 5de dip in  

 

Dip 11 is juist als artefact gedetecteerd: ja / nee 

Dip 12 is juist als artefact gedetecteerd: ja / nee 

Zoom op dip 13 



 
Dip 13 is juist als artefact gedecteerd: ja / nee 

Zoom op dip 14 

 

Dip 14 is juist als artefact gedetecteerd: ja / nee 

Zoom op dip 15 



 

Dip 15 is juist als artefact gedetecteerd: ja / nee 

 

 

Er zijn artefacten gemist in window 3:  ja / nee 

Zo, ja: ongeveer op tijdspunt: 

 

 

Window 4, 0 artefacten gedetecteerd 

 

Er zijn artefacten gemist in window 4:  ja / nee 



Zo, ja: ongeveer op tijdspunt: 

 

Window 5, nummer artefacten gedetecteerd: 3 

 

 

 

Zoom op artefacten 

Dip 16:  

Dip 16 is juist als artefact gedetecteerd: ja / nee 

 



Dip 17:  

 

Dip 17 is juist als artefact gedetecteerd: ja / nee 

 

 

Dip 18: 

 

Dip 18 is juist als artefact gedetecteerd: ja / nee 

Er zijn artefacten gemist in window 5:  ja / nee 

Zo, ja: ongeveer op tijdspunt:  Voorafgaand aan dip 16 een rij (vermoedelijk door Loss of 

Signal). Ook enkelen rond 87.500. 



 

Window 6, nummer artefacten gedetecteerd: 3 

 

Dip 19:  

 

Dip 19 is juist als artefact gedetecteerd: ja / nee 

 

 

 

 

 



 

Dip 20: 

 

Dip 20 is juist als artefact gedetecteerd: ja / nee 

 

Dip 21:  

 

Dip 21 is juist als artefact gedetecteerd: ja / nee 

Er zijn artefacten gemist in window 6:  ja / nee 

Zo, ja: ongeveer op tijdspunt: Voorafgaand aan punt 19, op 106.000 en aan het einde van 

de window. 



 

 



 
 
 

Totale observatie HR : 5 dips gedetecteerd

 

 

Total aantal dips  

Window 1, 1 dip gedetecteerd 

 

Dip 1 is juist als artifact: ja / nee 

Er zijn artifacten gemist in deze window 1: ja / nee 

Zo ja, welk tijdspunt ongeveer: 

 



 
 
 

Window 2 

 

 

Dip 2 is juist als artefact: ja / nee 

Er zijn artefacten gemist in window 2: ja/ nee 

 

Wndow 3 

 

Dip 3 is juist als artefact: ja/ nee 



 
 
 

Dip 4 is juist als artefact: ja/ nee 

Er zijn artefacten gemist in window 3 

 

Window 4

 

 

Dip 5 is correct als artefact: ja / nee 

Er zijn artefacten gemist in window 4: ja / nee 

Zo ja, waar ongeveer 

 

Window 5 



 
 
 

Er zijn artefacten gemist in window 5: ja / nee 

Zo ja, waar ongeveer: 

 

Window 6 

 

 

Er zijn artefacten gemist in window 6: ja / nee 

zo ja, waar ongeveer: 

 

 

 

 

 

 

 

 

 

 



Appendix C Code

The code used for this project will be available on my GitHub. https://github.com/AnnieTheWannie/
Artifact-Detection/tree/main
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