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Abstract 
Objective 
This study employs a machine learning approach, namely time-series clustering with Dynamic 

Time Warping (DTW), to empirically identify subgroups of intensive care unit (ICU) patients 

and examine the relationships between different alarm types. Utilizing unsupervised learning 

algorithm, the study aims to uncover insights into temporal alarm patterns in large datasets 

without the need for labeled data. The primary objectives are to identify distinct patterns of 

patient complications within the initial hours of ICU stay, regardless of admission diagnosis, 

and to understand how different types of alarms interact over time. 

 

Design 
The time-series clustering was performed using data from Wilhelmina Kinderziekenhuis 

(WKZ) hospital. The patient population included individuals from the pediatric and 

neonatology departments.  

 

Conclusions 
The study found occurrences of simultaneous cardiovascular and pulmonary physiological 

alarms, suggesting a correlation between them. Additionally, patterns of stable alarms, 

followed by surges, provide early warnings for patient functional decline, helping to optimize 

resource allocation. 
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Chapter 1 

Introduction 

The intensive care unit (ICU) is a place where patients receive continuous and intensive 

physiological monitoring. The critical care team uses these data to apply interventions based 

on the patients’ physiological status and then monitors the responses to these interventions, 

which inform subsequent treatment decisions (Costa & Kahn, 2016). The creation of an ICU 

represents organizational innovation by providing care for the sickest inpatients (Costa & 

Kahn, 2016). Physically grouping patients into a single location allows them to benefit from 

providers with expertise in caring for critically ill (Vranas et al., 2017). 

In addition, electronic devices play a critical role in modern ICUs. Continuous monitoring of 

patients' vital parameters, as one of the most essential technical components of the intensive 

care unit (ICU), significantly improves patient safety by alerting staff through an alarm when 

a parameter deviates from the normal range (Poncette et al., 2021). However, the high 

frequency of alarms in ICUs has led to a phenomenon known as alarm fatigue among healthcare 

professionals, particularly nurses (Cho et al., 2016; Sowan et al., 2016). Alarm fatigue occurs 

when healthcare providers become desensitized to alarms due to their volume, leading to 

potential risks of missing critical alarms and compromising patient safety (Rayan et al., 2024). 

Studies have shown that alarm management programs can impact healthcare providers' alarm 

fatigue (Dee et al., 2022). Hospitals can reduce the overall alarm burden and improve the 

response to critical alarms by implementing interventions such as changes in default alarm 

settings, providing alarm management training, and improving alarm notification systems 

(Sowan et al., 2016; Dee et al., 2022). 

Furthermore, the type of patient monitored in the ICU can influence the alarm rate, with certain 

patient characteristics and specific medical conditions contributing to a higher alarm load 

(Sinno et al., 2022). Understanding patient characteristics, such as age and sex, as well as 

admission characteristics is critical for developing tailored alarm management strategies that 

address the unique needs of different patient populations in the ICU. By integrating machine 

learning algorithms with evidence-based alarm management strategies, healthcare providers 
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can enhance patient safety, optimize alarm responses, and improve outcomes in critical care 

settings. 

This study used a machine learning approach to better understand ICU alarm data. 

Unsupervised learning algorithms are particularly effective for dealing with ICU alarm data. 

These algorithms can identify patterns and anomalies in large datasets without the need for 

labeled data. For instance, Ghazanfari et al. (2019) employed an unsupervised feature-learning 

approach to reduce the false alarm rate in ICUs.  

This study aims to provide insights into temporal alarm patterns using a time-series clustering 

algorithm. Therefore, the central research questions of this study are as follows: 

• How can temporal analysis of ICU alarm data help identify distinct patterns of patient 

complications within the initial hours of ICU stay, regardless of admission diagnosis? 

• How can the temporal analysis of ICU alarm data help understand the relationship 

between different types of alarms? 

Chapter 2 discusses the methods and underlying concepts. Chapter 3 describes the data used 

and the pre-processing steps taken. Chapters 4 and 5 respectively provide a description and 

discussion of the main results. 
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Chapter 2 

Methods 

 
2.1 The methodological framework 
This study used a modified version of the Cross-Industry Standard Process for Data Mining 

(CRISP-DM) framework, a popular methodological framework used for data mining. It 

consists of six key phases: business understanding, data understanding, data preparation, 

modeling, evaluation, and deployment (Spruit et al., 2021). This framework has been widely 

adopted in both academic and industrial settings because of its effectiveness in guiding 

researchers and data scientists through various stages of a project, ensuring a systematic and 

organized workflow (Ayele, 2020). 

 

The first stage focuses on understanding the context in which project objectives and 

requirements are identified. Following this stage, the data understanding stage involves initial 

exploration to familiarize the team with the datasets. Subsequently, the data preparation stage 

focuses on integrating, cleaning, and 

transforming the data to make them suitable for 

modeling. Moving on to the modeling stage, this 

phase involves selecting and applying various 

modeling techniques to build and assess models 

for the data. In the evaluation stage, the 

developed models were evaluated to ensure that 

they effectively met the objectives. Finally, the 

deployment stage involves deploying the model 

and ensuring its proper functioning (Tunca, 

2024). Figure 2.1 illustrates the modified version 

of the CRISP-DM used in this study. 

 

  

 
 

Figure 2.1: The adapted CRISP-DM framework used 
in this study 
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2.2 Core concepts 

 

2.2.1 Time-series clustering 
Unsupervised learning is a machine learning approach in which the model acquires patterns 

from the input data without any labeled answers. Unsupervised learning methods such as 

clustering are useful for tasks such as identifying anomalies, conducting exploratory data 

analysis, grouping clients, and uncovering correlations (Abdel-Besset et al., 2021). Clustering 

and dimensionality reduction are the primary algorithms used in unsupervised learning 

methods (Farhat et al., 2019). 

 

Clustering involves grouping data points based on similarities in the data and is widely used in 

healthcare (Eckhardt et al., 2022). Similar to general clustering, time-series clustering groups 

similar objects. However, in time-series clustering, objects within the same cluster exhibit 

similar patterns over time, whereas those in different clusters display distinct temporal patterns 

(Zhu et al., 2023). This approach ensures that the clusters reflect both the inherent similarities 

and differences in how these patterns evolve over time, thereby providing deeper insight into 

the dynamics of the data. 

 

In this study, time-series clustering was used for patient alarm data because it allows the 

comparison of patient alarm patterns over time.  By analyzing the temporal patterns of alarms, 

clinicians can gain insights into the different progression patterns of patient conditions and 

explore the relationships between different alarm types.  

 

2.2.2 Evaluation metrics 
In this study, two evaluation metrics were used to determine the optimal number of clusters: 

within-cluster sum squares (WCSS) and the silhouette score. These metrics are essential for 

evaluating clustering quality and selecting the most suitable number of clusters. 

 

The WCSS was calculated as the sum of the squared distances of the data points to their 

respective cluster centroids for each K value (Parkash et al., 2024). After calculating the WCSS 

for different numbers of clusters, an elbow plot is used to determine the optimal number of 

clusters. The elbow plot involves plotting the relationship between the number of clusters and 
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WCSS and selecting the point where there is the greatest rate of change in WCSS (Duggal et 

al., 2022). 

 

The silhouette score is a widely used internal evaluation metric in cluster analysis, which 

assesses the quality of clustering by measuring the separation of clusters (Eliyanto & Surono, 

2021). The silhouette score ranges from -1 to +1, where a score close to +1 indicates that the 

data points within a cluster are well matched and poorly matched to neighboring clusters, 

suggesting a good clustering result (Eliyanto & Surono, 2021). 

 

In conclusion, determining the optimal number of clusters requires evaluating both WCSS and 

silhouette scores. Additionally, it is important to consider the interpretability of cluster numbers 

within the context of the study to ensure their practicality.  

 

2.2.3 Dynamic time warping (DTW) 
Dynamic Time Warping (DTW) is a classical dynamic programming algorithm that provides 

an optimal alignment between two time-series by non-linearly warping their time dimensions 

(Wang et al., 2014). Ratanamahatana and Keogh (2004) demonstrated its superiority over 

Euclidean distance in the classification and clustering of time-series data. DTW allows for the 

comparison of time-series data that may have variations in speed or timing, making it robust 

for matching similar patterns even when they are out of phase on the time axis (Tuzcu & Nas, 

2005). 

Patient alarms data patterns are often subject to various sources of noise such as sensor 

malfunctions, patient movements, or other external interferences. DTW’s robustness allows it 

to focus on the core patterns of the time-series while minimizing the impact of these anomalies. 

Therefore, in the K-Means clustering algorithm, DTW is used as a metric to assess the 

similarity between various alarm patterns. This approach ensures that the clustering results are 

more accurate and reflect of the true underlying patterns in the data. 

2.2.4 Min-Max normalization 
Min-Max normalization is a common data pre-processing technique used in machine learning. 

This method involves scaling the values of a feature to a range between 0 and 1 by subtracting 

the minimum value and dividing it by the range of the data (Ampomah et al., 2021). This 

normalization technique is crucial as it ensures that all features contribute equally to the model 
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training process, preventing any particular feature from dominating due to its large scale (Cao 

et al., 2016). 

 

2.2.5 Kruskal-Wallis test 
The Kruskal-Wallis test is a non-parametric statistical test that is used to compare two or more 

independent samples when the underlying population distribution is non-normal or unknown 

(Ostertagova et al., 2014). This test is particularly valuable in scenarios where parametric 

assumptions are not met, providing a robust alternative to parametric one-way ANOVA (Neve 

& Thas, 2015). By focusing on rank sums, the Kruskal-Wallis test allows researchers to 

determine whether samples originate from the same distribution, making it a versatile tool in 

various fields such as medicine, biometrics, and engineering (Sherwani et al., 2021). 

 

In this study, the Kruskal-Wallis test was employed to determine the features that differed 

significantly between the clusters. This test is ideal for comparing features between clusters 

because the assumptions of normality and homogeneity of variances are not met. This analysis 

helps to understand the distinct characteristics of each cluster. 
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Chapter 3 

Data 

 
3.1 Ethical consideration 
The alarm data used in this study were de-identified to ensure patient privacy and 

confidentiality. The de-identification of healthcare data is a crucial process that involves the 

removal of personally identified information from medical records to protect patient 

confidentiality and comply with privacy regulations (Trienes et al., 2020).  

 

Additionally, access to the datasets was restricted to authorized personnel only, and the data 

analysis was conducted on a virtual machine approved by the Utrecht Medical Center. The 

study maintained patient privacy by adhering to ethical guidelines. 

 

3.2 Data description 
The alarm data for this study were collected from the Wilhelmina Kinderziekenhuis (WKZ) 

hospital, especially from two main departments: pediatric and neonatology. The pediatric 

department focuses on patients aged between 4 weeks and 18 years old, with most patients 

being between 4 weeks and 1 year old. In contrast, the neonatology department focuses on 

patients who are less than 4 weeks old.  

 

The dataset spans approximately seven 

months, covering the period from 

October 1, 2023, to April 25, 2024. 

During this time, data were collected 

from 63 unique beds within the hospital, 

resulting in a dataset comprising 

approximately 3.9 million alarm entries. 

As shown in Figure 3.1, approximately 

3 million entries were recorded from  

the neonatology department,  

while approximately 0.91 million entries recorded from the pediatric department.  

Figure 3.1: Distribution of alarm data by departments 
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The alarms were primarily generated using two types of equipment, patient monitors and 

ventilators, as shown in Figure 3.2. The alarms were categorized into two main groups: 

physiological and technical (Figure 

3.3). Physiological alarms are 

related to the patient’s vital signs and 

physiological state, whereas 

technical alarms are triggered by the 

status of medical equipment and 

patient artifacts such as  

movements or other activities that 

interfere with the sensors.   

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Exploratory data analysis and pre-processing 
Exploratory data analysis (EDA) and pre-processing of the ICU alarm data involved several 

steps to ensure that the dataset was ready for subsequent time-series clustering. Figure 3.4 

shows the main steps taken to prepare the datasets. The process began with integration, where 

three distinct datasets were merged: the alarm dataset, which contained details about alarm start 

and end times, the devices generating the alarm, alarm duration in seconds, bed ID, and 

department; the patient dataset, which linked patient IDs to bed IDs; and alarm messages  

 

Figure 3.2: Distribution of alarms recorded from different 
devices 

Figure 3.3: Distribution of alarms by type 
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dataset that associated alarm messages with specific body organs. This integration provided a 

comprehensive dataset containing all necessary data for further analysis. 

 

During the data cleaning stage, the dataset was examined to identify and address 

inconsistencies. Initially, missing values were addressed, and columns with more than 80% 

missing values, totaling 8 columns, were removed to maintain data integrity. Duplicate 

observations and columns were identified and eliminated. The exploratory data analysis 

revealed that there were abnormal alarm durations, with some negative values due to the 

device’s time adjustments and others exceeding thousands of seconds, likely due to faulty 

devices. These anomalies were removed, and only 

observations within the 99th percentile of duration 

were retained. The cleaned dataset contained 

approximately 3.9 million observations and 26 

columns. Figure 3.5 illustrates the distribution of alarm 

durations after the anomalies were removed. 

 

 

 

 

Figure 3.4: Data pre-processing flow 

Figure 3.5: Distribution of alarm durations 
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Following the cleaning process, the dataset was split into two separate datasets based on the 

department: one for the pediatric intensive care unit (PICU) and another for the neonatology 

intensive care unit (NICU).  

 

3.4 Additional pre-processing for modeling 
In this study, additional pre-processing steps were performed to prepare the data for time-series 

clustering. Initially, for each dataset, PICU and NICU, a time window of 0.5 hours was created 

for each individual patient. Within each time window, the total number of alarms was counted 

for four specific features: pulmonary technical, pulmonary physiological, cardiovascular 

technical, and cardiovascular physiological.  

 

Next, the data were filtered to include only the initial 12 hours of each patient’s ICU stay, with 

the time windows organized in ascending order. This filtering focused on analyzing the critical 

initial period of ICU admission, when patient monitoring and intervention are most intensive. 

Maintaining a uniform observation window across all patients ensures comparability, which is 

important for obtaining robust clustering results.  

 

The final pre-processing step involved extracting the alarm counts as arrays and applying the 

min-man normalization. The processed data were then used in the K-Means clustering 

algorithm, with dynamic time warping (DTW) as the metric for evaluating the similarities 

between different alarm patterns.  
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Chapter 4 

Results 

In this chapter, the results are presented in two parts: the first part focuses on the results from 

the pediatric ICU department and the second part shows the results from the neonatology ICU 

department. 

 
4.1 PICU 

 

4.1.1 Output of time-series clustering 
As shown in Figure 4.1, the elbow 

point appears around the two clusters. 

This point represents a balance 

between reducing within-cluster sum 

squares (WCSS) and excessively 

partitioning the data into clusters with 

few observations. Although the elbow 

plot indicates that increasing the 

number of clusters beyond two 

continues to reduce the WCSS, the 

rate of improvement does not show a 

significant change. The silhouette scores 

for two and three clusters are 0.24 and 

0.35, respectively. Although the silhouette score suggests that the three clusters may provide 

slightly better-defined clusters, two clusters were selected as the optimal number. This decision 

was made to avoid complicating clinical interpretations, as clusters containing only a few 

patients could result from increasing the number of clusters beyond two. 

 

Figure 4.2 displays the output of the time-series clustering process. The y-axis represents the 

alarm counts, and the x-axis shows time steps, where each time step corresponds to 0.5 hours, 

covering a total of 12 hours of ICU stay. Each line in the plots shows how the sum of the alarms 

in the predefined time steps varies for each patient across the selected features. Different colors 

Figure 4.1: Elbow plot for determining the optimal number of clusters 
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represent the four features used in this analysis: pulmonary physiological, cardiovascular 

physiological, pulmonary technical, and cardiovascular technical alarms. 

	

	

 
             Figure 4.2: Alarm counts over time steps (0.5h) for each cluster - PICU	

	

To gain deeper insights into the distinct patterns and behavior of each cluster, it is essential to 

examine the cluster centers (see Figure 4.3). These cluster centers show the normalized average 

of the alarm counts at each time step for each feature. Min-max normalization was used to scale 

the average alarm count between 0 and 1, allowing for a clearer comparison of patterns across 

different features.  
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In Cluster 1, which consists of 13 patients, the pulmonary physiological cluster center shows a 

noticeable peak at the 3rd time step (2 hours of ICU stay), reaching a normalized alarm count 

of approximately 0.75. Following this peak, there is a sharp decline, with values remaining 

below 0.2, until another significant peak that occurs at the 13th time step at 0.45. The 

cardiovascular physiological cluster center shows two distinct peaks at the 1st  and 3rd time 

steps, reaching up to 0.55, followed by a sharp drop and almost remaining below 0.2 for the 

rest of the observation period. The pulmonary technical cluster center shows peaks at the 2nd, 

9th, and 13th time steps in decreasing order of magnitude, ending with an upward trend. The 

cardiovascular technical cluster center reaches a notable peak at the 13th time step, 

approximately 0.75, followed by a sharp decline and several moderate peaks thereafter. By the 

end of the observation period, the cardiovascular physiological cluster center had the lowest 

value at 0.1, followed by the pulmonary physiological cluster center at approximately 0.15, the 

cardiovascular technical cluster center at 0.2, and the pulmonary technical cluster center at 0.3. 

Figure 4.3: Normalized average alarm count over time steps (0.5 hour) for each cluster - PICU 
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Additionally, there are specific time steps, such as the 3rd, 5th, and 13th, where all features reach 

local peaks simultaneously.  

In Cluster 2, which consists of 26 patients, the pulmonary physiological cluster center shows 

two noticeable peaks at the 1st and 21st time steps, reaching a normalized alarm count of 

approximately 0.55. There are some moderate fluctuations between these peaks, but overall, 

they remain stable. The cardiovascular physiological cluster center reaches its highest value at 

the 1st time step, approximately 0.42, followed by a sharp drop to 0.1, and remains almost stable 

until it reaches its second highest peak at the 14th time step, approximately 0.8. After this peak, 

it decreases significantly and exhibits some moderate fluctuations until the end of the 

observation period. At the first time step, the pulmonary technical cluster center shows a peak, 

reaching 0.45, followed by a significant drop, remaining stable until the 10th time step. 

Afterward, it shows some moderate peaks, but it remains below 0.2 until the end of the 

observation period. The cardiovascular technical cluster center reaches notable peaks at the 1st 

and 11th time steps, approximately 0.42. Between these two peaks, it remains stable and stays 

below 0.1. Observations reveal some moderate peaks after the second peak, but the values still 

remain lower than the value of the second peak. By the end of the observation period, the 

pulmonary physiological and pulmonary technical cluster centers show an upward trend, 

whereas the cardiovascular physiological and cardiovascular technical centers show a 

downward trend. Similar to the first cluster, there are specific time steps in which all the 

features reach local peaks simultaneously. 

In general, the cluster centers for all features show more fluctuations in Cluster 1 compared to 

Cluster 2, and in the second cluster, there are more stable periods. Additionally, for almost all 

features, the peak values are higher in the first cluster compared to the second cluster. 

4.1.2 Clinical interpretation of cluster centers 

In Cluster 1, the early peaks in pulmonary and cardiovascular physiological alarms, particularly 

at the 3rd time step, may indicate an initial critical period shortly after ICU admission. This 

aligns with common clinical scenarios in which patients might be most unstable immediately 

after surgical interventions or acute events. The subsequent peaks, particularly those at the 13th 

time step, where all four alarm types increase simultaneously, suggest recurring periods of 

instability that require close monitoring. 
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As time progresses, there is a noticeable increase in pulmonary physiological alarms, 

particularly after remaining low following the second peak. In general, the pulmonary 

physiological alarms are higher than the cardiovascular physiological alarms. Pulmonary 

technical alarms also have higher values compared to the cardiovascular physiological alarms. 

This suggests that patients in this cluster might experience increasing pulmonary complications 

as their stay in the ICU continues. 

In Cluster 2, all types of alarms reach their first peak simultaneously shortly after ICU 

admission. After this initial phase, the alarm counts remain stable for an extended period, 

indicating these patients might stabilize more effectively compared to those in the first cluster. 

However, later in their ICU stay, there is a significant increase in cardiovascular physiological 

alarms. The cardiovascular physiological alarm counts are higher than the pulmonary 

physiological and technical alarms. Additionally, the cardiovascular physiological alarms 

fluctuate more than the pulmonary physiological alarms. This suggests that patients in this 

cluster might experience increasing cardiovascular complications as their stay in the ICU 

extends. 

4.1.3 Statistical analysis  
To further understand the differences between the identified clusters, a non-parametric 

statistical test was conducted. For the following analysis, the alarm counts for each patient 

within each cluster were individually summed for each feature. This summation provided an 

overview of the total alarms for each patient over the 12-hour ICU stay. The following 

statistical analysis was conducted to determine whether there were significant differences 

between alarm types across the clusters.  

 

The Kruskal-Wallis test was used to examine the differences in alarm types for each feature 

across different clusters. An overview of the results can be found in Table 4.1. 

 
Table 4.1: Kruskal-Wallis test results - PICU 

Feature Statistic p-value 

Pulmonary Physiological 3.58 0.058 

Cardiovascular Physiological 7.76 0.0053 

Pulmonary Technical 11.33 0.00076 

Cardiovascular Technical 4.11 0.043 
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For pulmonary physiological alarms, the test statistic was 3.58 with a p-value of 0.058, 

indicating no significant difference between the clusters at the 5% significance level. In 

contrast, the remaining features: cardiovascular physiological, pulmonary technical and 

pulmonary technical showed significant differences across clusters, with test statistics of 7.76, 

11.33, and 4.11, respectively, and p-values of 0.0053, 0.00076, and 0.043, repectively. 

 

 

4.2 NICU 

 

4.2.1 Output of time-series clustering 
As shown in Figure 4.4, the elbow plot indicates that the rate of change was greatest at two. 

And the silhouette scores for two and three clusters are 0.35 and 0.28, respectively. Therefore, 

two clusters were selected as the optimal numbers.  

 

Figure 4.5 displays the output of the time-series clustering process. The y-axis represents the 

alarm counts, and the x-axis shows time steps, where each time step corresponds to 0.5 hours, 

covering a total of 12 hours of ICU 

stay. Each individual line in the plots 

shows how the sum of the alarms in the 

predefined time steps varies for each 

patient across the selected features.  

	

	

Figure 4.4: Elbow plot for determining the optimal number of 
clusters 
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            Figure 4.5: Alarm counts over time steps (0.5h) for each cluster - NICU	

	

Similar to the pediatric clustering results, to gain deeper insights into the distinct patterns and 

behaviors of each cluster, it is essential to examine the cluster centers (see Figure 4.6). These 

cluster centers show the normalized average of alarm counts at each time step for each 

individual feature. Min-max normalization was used to scale the average of alarm counts 

between 0 and 1, allowing for a clearer comparison of patterns across different features.  
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In Cluster 1, which consists of 66 patients, the pulmonary physiological cluster center 

fluctuates at the early stages of admission, reaching a significant peak at approximately 0.65 at 

the 8th time step (4.5 hours of ICU stay), followed by a sharp drop below 0.2. It then remains 

stable for several hours until it begins to rise and fluctuate again, showing an upward trend at 

the end of the observation period. The other cluster centers—cardiovascular physiological, 

pulmonary technical, and cardiovascular technical—follow the same pattern as the pulmonary 

physiological. However, in general, their values are below pulmonary physiological alarm 

counts. Another noticeable observation is that all cluster centers reach their local maximum 

simultaneously. 

In Cluster 2, which consists of 18 patients, the pulmonary physiological cluster center remains 

relatively stable and below 0.3 during the first half of the observation period. However, in the 

second half, it begins to rise and fluctuate. This pattern is similar for other alarm types, which 

Figure 4.6: Normalized average alarm count over time steps (0.5 hour) for each cluster - NICU 
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also remain below 0.3 initially before increasing and fluctuating later. By the end of the 

observation period, both the cardiovascular and pulmonary physiological alarms show a 

downward trend. 

4.2.2 Clinical interpretation of cluster centers 
The analysis of Cluster 1 reveals significant fluctuations in the pulmonary physiological alarms 

during the first half of the observation period. This early instability is followed by a period of 

stability. Later, the alarm counts start to rise and fluctuate again, showing an upward trend 

toward the end, which could potentially indicate a worsening of the patient’s condition. The 

simultaneous peaks in all cluster centers indicate periods during which patients' overall 

physiological condition became unstable. Additionally, the higher frequency of the pulmonary 

physiological alarms compared to other alarm types indicates the need for focused respiratory 

care in these patients. 

Cluster 2 presents a different pattern; almost all of the alarm types initially are low and stable. 

This changes in the second half of the observation period, when all alarm types begin to rise 

and fluctuate. The downward trend of pulmonary and cardiovascular physiological alarms 

toward the end of the observation period may reflect recovery phases or effective interventions. 
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4.2.3 Statistical analysis 
Similar to the PICU results, a non-parametric statistical test was conducted. For the following 

analysis, the alarm counts for each patient within each cluster were individually summed for 

each feature. This summation provided an overview of the total alarms for each patient over 

the 12-hour ICU stay. The following statistical analysis was conducted to determine whether 

there are significant differences between alarm types across the clusters.  

 

The Kruskal-Wallis test was used to examine the differences in the alarm patterns for each 

feature across different clusters. An overview of the results can be found in Table 4.2. 

 
Table 4.2: Kruskal-Wallis test results - NICU 

Feature Statistic p-value 

Pulmonary Physiological 0.56 0.45 

Cardiovascular Physiological 24.5 7.39	 ×	10!" 

Pulmonary Technical 0.048 0.83 

Cardiovascular Technical 3.58 0.059 

  

For cardiovascular physiological alarms, the test statistic was 24.5 with a p-value of 	

7.39	 ×	10!", indicating a significant difference between clusters at the 5% significance level. 

In contrast, the remaining features: cardiovascular technical, pulmonary technical and 

physiological showed no significant differences across clusters, with test statistics of 3.58, 

0.048, and 0.56, respectively, and p-values of 0.059, 0.83, and 0.45, respectively. 
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Chapter 5 

Discussion, Conclusion, and Future Study 

 

5.1 Discussion and conclusion 
Given the evolving landscape of intensive care units (ICUs) and advanced monitoring systems 

in use, a deeper understanding of alarm systems is essential. This study aimed to uncover 

insights through a temporal analysis of ICU alarm data, particularly during the critical initial 

hours of a patient's stay. To achieve this, a time-series clustering algorithm combined with 

dynamic time warping was used as a metric to evaluate the similarities between alarm patterns 

across different patients. 

 

One observation from the temporal pattern of the ICU alarm data was that, regardless of the 

department type, PICU or NICU, the temporal analysis identified distinct clusters of patient 

complications within the initial hours of ICU stay. One cluster included patients who 

experienced longer periods of complications early in their ICU stay, while another cluster 

included patients with shorter periods of complications. This distinction can help clinicians to 

group patients based on their immediate risk profiles. Recognizing which patients are likely to 

face prolonged complications regardless of their admission diagnosis, can prompt early and 

aggressive interventions. In contrast, patients with a shorter period of complications can be 

monitored with standard protocols, optimizing the use of ICU resources and ensuring focused 

attention where it is most needed. 

 

Additionally, this study identified the simultaneous occurrence of cardiovascular and 

pulmonary physiological alarms, suggesting a correlation between these two types of alarms. 

Current monitoring systems may treat cardiovascular and pulmonary alarms independently, 

potentially leading to alarm fatigue due to numerous false positives. However, a spike in the 

heart rate accompanied by an abnormal respiratory rate is more likely to indicate a critical 

condition than changes in these metrics occurring independently. Therefore, by integrating data 

from both physiological alarms and recognizing their concurrent patterns, alarm systems can 

be refined to reduce the frequency of false alarms, ensuring that clinicians are alerted only 

when there is a genuine need for intervention. 
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In conclusion, this study underscores the importance of temporal analysis for understanding 

ICU alarm data. Recognizing patterns of simultaneous cardiovascular and pulmonary alarms, 

as well as periods of alarm surge, provides valuable early warnings for patient functional 

decline. These insights help clinicians optimize resource allocation, prioritize interventions, 

and tailor monitoring protocols to individual patient needs, and improve overall efficiency of 

ICU operations. 

 

In addition, time-series clustering results can be used to forecast the deterioration of a patient’s 

conditions. By tracking whether patients are downgraded or remain in the ICU after the initial 

hours of their stay could provide valuable data. These data can be used to determine whether 

the clustering results can be used to predict the deterioration of a patient’s condition. Therefore, 

future studies should explore the predictive power of time-series clustering in forecasting 

patient outcomes and condition changes, thereby enhancing early intervention strategies and 

optimizing resource allocation in critical care settings.   

 

5.2 Limitations 
One limitation of this study was the absence of inclusion of patient attributes, such as age and 

gender. These factors have the potential to offer an additional understanding of the distinctions 

between clusters and can impact the interpretability of the clustering outcomes.  

 

Another limitation arises from the existence of sample bias caused by the study's inclusion 

criteria. The investigation exclusively focused on patients who had a minimum duration of 12 

hours in the intensive care unit. The use of this specific criterion may introduce bias by 

excluding patients with shorter stays in the ICU, who may have distinct alarm patterns and 

clinical progressions. As a result, the findings may not accurately represent the overall 

population of ICU patients, limiting the application of the results to a broader context. 

 

Finally, the study was conducted in a specific intensive care unit context, and the observed 

patterns may not be generalizable to other ICUs with varied patient demographics and 

circumstances. Variances in patient demographics, hospital procedures, and medical apparatus 

may result in different alarm patterns.  
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5.3 Future studies 
To gain a comprehensive understanding of the temporal analysis of ICU alarm data, future 

studies should consider the following factors. Employing random sampling methods is the 

initial stage to ensure that the sample accurately reflects the population and includes a variety 

of patient attributes. This strategy aims to mitigate sampling bias and enhance comprehension 

of ICU alarm dynamics by recording a diverse array of alarm patterns and clinical trajectories.  

In addition, future studies should consider studying temporal alarm patterns for multiple ICUs 

with varied patient demographics and conditions. By combining data from many hospitals and 

locations, researchers may study the shared patterns and unique differences in temporal alarm 

patterns across diverse clinical contexts. 
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Appendix: Script Used 

The following script was used in this project, and has been made available in the following 
link: 
https://github.com/PejmanSa/ADS_thesis/blob/main/icu_alarm_analysis.ipynb 
 
Name Description 
icu_alarm_analysis.ipynb Pre-processing, EDA, and time-series 

clustering pipeline 
 
 
 

https://github.com/PejmanSa/ADS_thesis/blob/main/icu_alarm_analysis.ipynb

