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Abstract

This study investigates the memorization of Dutch language content in mT5 models, a multilingual
variant of the T5 Transformer-based models. A fill-mask evaluation technique is used to assess mem-
orization and how it varies across different model sizes. Results show that memorization increases
with model size up to a certain point. Significant memorization is observed in the 580M and 1.2B
sized models, while the smallest 300M and largest 3.7B models are close to baseline generalization
performance, minimizing relative memorization effects. Additionally, the findings reveal that data
duplication and varying the masking level impact the memorization effect. Moderately duplicated
sequences exhibit the highest memorization. Furthermore, a masking level similar to pre-training
conditions also results in the highest observed memorization which sharply declines when the masking
level is increased. These findings have implications for model reliability as well as ethical and legal
implications, particularly regarding the use of copyrighted training data. This research underscores
the need to balance training data and adjust model design to promote generalization and minimize
memorization in multilingual models.



Table of contents

1 Introduction 1
1.1 The mT5 Model Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Definitions of Memorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research Questions and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Data and Methods 6
2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Baseline Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Results and Analysis 10
3.1 Memorization in Various Model Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Memorization in Unique and Duplicate Sequences . . . . . . . . . . . . . . . . . . . . . 11
3.3 Memorization in Various Masking Levels . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Discussion 16
4.1 Memorization in Various Model Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Duplication and Masking Level Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Implications of Memorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Conclusion 21

References 22

Appendix 24



1 Introduction

In the field of Natural Language Processing (NLP), memorization within Large Language Models
(LLMs) has generated significant attention. Memorization refers to the ability of models to recall
specific information from their training data. This phenomenon plays a crucial role in both model
reliability and generalization, referring to the model’s ability to apply learned patterns from its training
data to new unseen data. Moreover, memorization also raises ethical and legal questions, specifically
in relation to the use of copyrighted material for model training. A recent example underlining these
concerns is the EU AI Act (European Parliament, 2023). The act states that artificial intelligence
models should be transparent in the use of copyrighted material and therefore disclose the use of this
material for the training stage and in generated model output.

This research aims to further investigate memorization within LLMs, motivated by the implications of
this phenomenon. In terms of model performance and reliability, the assessment of the memorization
level in LLMs is essential to evaluate their generalization ability. As research on the underlying model
training and memorization dynamics indicates, memorization throughout the training process can
either result in overfitting or improve generalization performance, depending on the memorization
context and extent (Tirumala et al., 2022). Therefore, the assessment of the memorization level
helps in evaluating model robustness and generalization ability when applied to new unseen data, for
example generating text after a user prompt.

Furthermore, ethical and legal considerations regarding memorization in LLMs need to be discussed.
LLMs are often trained on huge amounts of data obtained through web scraping. This includes
copyrighted content from, for example, news outlets. This process of data collection without the
explicit permission of the authors and content owners can result in copyright infringement and concerns
regarding data privacy. What is more, as models grow in size in terms of both the parameter count as
well as the amount of the training data (Naveed et al., 2024), recent research shows that larger models
have the tendency to memorize more data and retain it for longer periods during training compared
to smaller models (Tirumala et al., 2022). This memorization could cause unwanted consequences
like leakage of personal data or even verbatim reproduction of the training content (Hartmann et al.,
2023). Even though it is known that larger models display these characteristics, it remains necessary
to assess the exact level of memorization in different contexts to better understand and limit these
risks.

One of these contexts regards multilingual models trained on multilingual data. Addressing the mul-
tilingual aspect of memorization forms the final motivation for this research. Current research on
memorization in LLMs is mainly focused on monolingual English models and datasets. This leaves
a gap in understanding memorization dynamics for multilingual models and non-English languages.
This study addresses this gap by assessing memorization of the Dutch language within the mT5 model
family (Xue et al., 2021), a multilingual variant of the T5 transformer-based models created by Google
(Raffel et al., 2019). These models are used for tasks like text summarization and translation.

By presenting insights into the memorization dynamics within the multilingual mT5 models, this
study aims to shed light on the robustness and generalization potential of these models. Additionally,
this study seeks to address the ethical considerations and implications of content memorization when
balancing model performance and the risks associated with training on copyrighted content.
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1.1 The mT5 Model Family

This research investigates the mT5 model family, a multilingual variant of T5 transformer-based
models developed by Google (Xue et al., 2021). The selection of the mT5 models is motivated by
factors. First, the models are open source and extensive documentation of their architecture and
training process is publicly available. This has a clear advantage over closed-sourced models like GPT-
4, for which such information is not readily available. Furthermore, the mT5 models are available in
multiple sizes1 enabling the assessment of memorization level in relation to model scale. Finally, the
training dataset of mT5 models, known as mC4, is also publicly available (Xue et al., 2021). This
makes the extraction of Dutch sequences known to be in the training data possible, facilitating the
evaluation of memorization.

1.1.1 mT5 Architecture and Training Objective

The mT5 model (multilingual T5) architecture is based on the T5 model (Text-to-Text Transfer
Transformer) (Xue et al., 2021). mT5 is an encoder-decoder transformer model that follows a unified
text-to-text format for generative tasks like summarization and translation for which the model gen-
erates text based on text input. One of the important characteristics of the mT5 model is its use of
the encoder-decoder architecture, originally proposed by Vaswani et al. (2017). By using this archi-
tecture, the mT5 models can effectively deal with several NLP tasks using the same training objective
(teacher-forced maximum likelihood) for every task. This means that a single set of hyperparameters
can be used for fine-tuning different downstream tasks.

Regarding the pre-training objective of the mT5 models, they are pre-trained on a masked language
modeling “span-corruption” objective (Xue et al., 2021). Here, consecutive spans of input tokens are
replaced with a mask token, after which the model is trained to reconstruct the masked-out tokens.
The prediction of the masked-out tokens will also be the model objective when assessing memorization
in this research.

1.2 Definitions of Memorization

Within the context of NLP and LLMs, memorization refers to models recalling specific information
from their training data. It entails the ability to reproduce verbatim text or generate content strongly
resembling the training data. The exact definition of memorization, however, differs with regards to
previous research. Nasr et al. (2023) gather multiple notions on memorization and categorize them
into two definitions. The first is extractable memorization.

Definition 1: Extractable Memorization. Given a model with a generation routine 𝐺𝑒𝑛, an example
𝑥 from the training set 𝑋 is extractably memorized if an adversary (without access to 𝑋) can
construct a prompt 𝑝 that makes the model produce 𝑥 (i.e., 𝐺𝑒𝑛(𝑝) = 𝑥).

The definition of extractable memorization is most applicable to studies like the work of Nasr et al.
(2023), which aims to extract the training data without prior knowledge of such data. In this research,
however, the goal is to assess the memorization of the Dutch language within the models using a set
of sequences known to be in the training data. Therefore, the second definition provided by Nasr et al.
(2023), which follows the notion of memorization introduced by Carlini et al. (2023), is more suitable
for this research. Here, memorization is defined as discoverable memorization.

1Huggingface - mT5 Documentation (Consulted on 14 May 2024)
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Definition 2: Discoverable Memorization. For a model with a generation routine 𝐺𝑒𝑛, and an ex-
ample [𝑝||𝑥] from the training set 𝑋 that consists of a true prefix 𝑝 and suffix 𝑥, suffix 𝑥 is
discoverably memorized if 𝐺𝑒𝑛(𝑝) = 𝑥.

Discoverable memorization allows the evaluation of the ability of models to recall specific sequences
from the training data when given a true prefix as a prompt. An important difference, in contrast
to extractable memorization, is that for discoverable memorization, an adversary needs access to the
training data beforehand. Since this research focuses on masked token prediction rather than text com-
pletion, a third definition is introduced which constraints the definition of discoverable memorization
to better fit the methodology used in this study.

Definition 3: Masked Token Memorization. For a model with a generation routine 𝐺𝑒𝑛, and an
example 𝑥 from the training set 𝑋, where prompt 𝑝 is derived from sequence 𝑥 by replacing
consecutive token spans with a mask token, sequence 𝑥 is masked token memorized if the model
can correctly predict the masked tokens based on the unmasked context.

Mathematically, this can be represented as:
Let 𝑥 = (𝑡1, 𝑡2, ..., 𝑡𝑛)
Let 𝑝 = (𝑡1, 𝑡2, ..., 𝑡𝑖−1, [𝑀𝐴𝑆𝐾], 𝑡𝑖+1, ..., 𝑡𝑛)
The sequence 𝑥 is masked token memorized if 𝐺𝑒𝑛(𝑝) = 𝑡𝑖

Masked token memorization enables the assessment of memorization within the mT5 model family by
leveraging the unmasked context of training sequences. By incorporating masked tokens into sequences,
this study aligns its evaluation method with the pre-training objective of the mT5 models.

1.3 Related Work

Related studies have investigated different aspects of memorization in LLMs. An example is the work
of Carlini et al. (2023), which quantifies memorization in multiple language model families, including
GPT-Neo and T5. This study shows that larger models have the tendency to memorize more data,
resulting in a log-linear relationship between model size and memorization. Specifically, Carlini et al.
(2023) identify three important properties that impact memorization:

1. Model Size: Larger models within a model family memorize significantly more than smaller
models.

2. Data Duplication: Sequences repeated more often in the training data are more likely to be
memorized.

3. Context Length: Longer context lengths make it easier to extract memorized sequences.

Carlini et al. (2023) tested the T5 models to verify the memorization patterns found in other model
families like GPT-Neo. The authors discovered that while T5 models display memorization, the extent
was an order of magnitude lower than comparably sized causal language models in the GPT-Neo family.
This variation suggests that different model architectures and training strategies can influence the level
of memorization.

To assess the memorization in the tested models, Carlini et al. (2023) used the respective training
datasets. For the T5 model family, the C4 dataset was used, a large English corpus derived from
the public Common Crawl web scrape2 (Raffel et al., 2019). For the GPT-Neo models, they were
evaluated using The Pile, an English 825 GiB text corpus designed for training large-scale models

2Common Crawl (Consulted on 14 May 2024)
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(Gao et al., 2020). Both these training datasets are primarily focused on English, limiting the insights
into multilingual memorization dynamics.

The research by Nasr et al. (2023) further shows that memorization is present across different models
and data settings. Their study indicates that models, including both open- and closed-source models,
significantly memorize their training data. The authors show this by presenting multiple methods to
extract parts of the training data using the models. The findings of Nasr et al. (2023) reinforce the
conclusions of Carlini et al. (2023) and emphasize the broader implications of memorization in LLMs.
This underlines the need to understand how different models, including mT5, handle memorization.

Hartmann et al. (2023) also provide an extensive survey of memorization in general-purpose LLMs. In
contrast to the other research, they highlight the various types of memorization, including verbatim
text, facts, ideas and algorithms, writing styles, distributional properties, and alignment goals. Their
taxonomy of different kinds of memorization and discussion on the implications of each type for model
performance, privacy, security, and copyright are particularly relevant. Despite earlier research on
these domains, Hartmann et al. (2023) are the first to consider them in relation to memorization.
They emphasize that memorization in LLMs is not just about verbatim text, but also includes more
abstract forms of information, which could have both positive and negative implications for each of
the mentioned domains. The authors give an example of the memorization of writing styles. This
positively influences model performance as the model is able to transfer a certain style to its output
when it is for example tasked to write a formal email. However, models can also memorize unwanted
writing styles and can be prone to replicating them. For example, if a model is trained on text with
grammar mistakes, it could respond with an output containing faulty grammar, negatively impacting
performance.

Research on memorization in a multilingual context is limited. However, a notable exception is the
work of Jiang et al. (2020), who create a benchmark to assess factual knowledge retrieval across 23
languages, including Dutch. Their findings indicate that multilingual language models are challenged
in factual knowledge retrieval, particularly in low-resource languages. To obtain factual knowledge,
the models have to predict correct information using cloze-style prompts. To create these prompts, the
authors follow the work of Petroni et al. (2020) where each prompt is manually created and consists
of a sequence of tokens. In these sequences, [X] and [Y] are placeholders for subjects and objects,
with a focus on entities that can be represented by a single token. Jiang et al. (2020) extend this by
also including multi-token entities. The factual knowledge of models is probed by replacing the [X]
placeholder with a specific subject (e.g. “Obama”) and asking the model to predict the blank object [Y]
(e.g. “Obama is a [Y] by profession”). In the evaluation, the predictions are compared to the ground
truth. While doing this, multiple correct answers are allowed if a subject-relation pair has various
correct objects. Compared to the methods in this study, the method of Jiang et al. (2020) differs from
the earlier defined masked token memorization in several ways. Assessing masked token memorization
involves recalling and reproducing exact text sequences from the training data. Cloze-style prompts,
however, regard a type of fill-in-the-blank question to evaluate the model’s understanding of context
and its ability to recall specific knowledge. The two methods do share the use of a masking strategy,
but they differ fundamentally in their objectives and evaluation metrics. Despite these differences,
the work by Jiang et al. (2020) underscores the need for further investigation into the memorization
dynamics in multilingual models, especially in languages that have been less studied like Dutch.

1.4 Research Questions and Contributions

These findings in previous work form the foundation and inspiration for this research. Unlike prior
studies, which primarily used English datasets, this study investigates the memorization of Dutch
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language content within the multilingual mT5 model family and how this scales across the model
sizes.

For this research, the memorization type will be verbatim text. While Hartmann et al. (2023) empha-
size that memorization in LLMs encompasses a broad range of types beyond verbatim text, focusing on
verbatim memorization in this study is motivated by several reasons. Firstly, verbatim memorization
directly relates to issues of privacy, security, and copyright. Understanding the extent to which models
memorize and reproduce exact text can help mitigate risks associated with sensitive or copyrighted
information being unintentionally disclosed. Secondly, verbatim memorization can affect the reliabil-
ity and trustworthiness of LLMs in real-world applications. By quantifying and analyzing verbatim
memorization, this study contributes to developing reliable and more robust language models.

This focus translates to the first research question guiding this study:

Research question 1: How does the extent of memorization of Dutch language content vary with
different model sizes in the mT5 family?

In an effort to further investigate the memorization dynamics within the mT5 models, this research
also analyzes how data duplication and different masking levels affect Dutch memorization. This
contributes to a better understanding of memorization dynamics beyond what has been covered in
monolingual models. This focus raises the second research question:

Research question 2: What are the dynamics of Dutch language memorization across different data
duplication and masking level scenarios?

In short, this research aims to extend the investigation to the multilingual version of T5, the mT5
model family, and examine how memorization scales across different model sizes within the specific
context of Dutch language processing.

The code for the data pre-processing and analyses is published on Github3.

3Github Repository
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2 Data and Methods

2.1 Data

The mT5 models are trained on a multilingual dataset called mC4 (Xue et al., 2021). This dataset
includes text in 101 languages sourced from the Common Crawl. It is important to note that not all
languages are represented equally in this dataset. English is the most dominant language, making up
5.67% (2,733B tokens) of the dataset. Dutch is the ninth most dominant language, accounting for
1.98% (73B tokens) of the dataset. Despite the English dominance, Dutch is still represented relatively
well. Also, the mT5 models use a language sampling exponent to better balance the representation
of high- and low-resource languages during training. This provides a sufficient basis for assessing the
memorization capabilities of the mT5 models in the Dutch language. Finally, the mT5 model designers
conduct some cleaning steps in the sourced Common Crawl data to create the mC4 dataset (Raffel
et al., 2019; Xue et al., 2021). For example, the crawled pages are only retained if they contain at
least three lines of text with 200 or more characters. In an effort to deduplicate the dataset, all but
one of any three-line spans occurring more than once are discarded.

2.1.1 Extracting Dutch Sequences From mC4 Dataset

Dutch sequences are extracted from the mC4 dataset. Specifically, strings from articles in Dutch
newspapers (‘De Volkskrant’, ‘NRC’, ‘Het Algemeen Dagblad’, ‘Het Financieele Dagblad’, and ‘De
Groene Amsterdammer’) are found in the training data. The newspaper content is detected using
their URL, which can be matched in mC4. Next, the amount of duplication of these sequences in
the training data is assessed. Despite the deduplication effort in mC4, duplicates are still found for
these Dutch articles. The found duplicate sequences have an average character length of 164, likely
causing them to not be included in the deduplication filter in the creation of mC4. This results in
a dataset containing sequences that are either present only once or multiple times in mC4. For the
duplicated sequences, the duplication count is saved. In this study, the resulting dataset is referred to
as ‘pre-training data’ and contains 2788 sequences.

2.1.2 Baseline Data

Baseline data is also retrieved in order to validate the results of this research. Importantly, the
baseline data has to be similar to the pre-training data to ensure minimal bias. Therefore, sequences
of articles covering multiple topics from some of the same Dutch newspapers as the pre-training data
(‘De Volkskrant’, ‘NRC’, and ‘Het Algemeen Dagblad’) are retrieved from their respective websites.
Importantly, all baseline data is publicly available as the first few sentences before a paywall are
retrieved. Also, all baseline data has been published in 2024. This ensures that none of the baseline
sequences were seen during mT5 model training in 2021 (Xue et al., 2021).

In another effort to minimize bias, the token length distribution of the baseline data is adjusted
to match the pre-training dataset. This is done by truncating baseline sequences on a sentence
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level using stratified sampling. Specifically, sequences are sampled in proportion to the target token
length distribution of the pre-training data. Then, each sequence is truncated at the nearest sentence
boundary to ensure natural language flow. The resulting baseline (Figure 5.2) and original pre-training
(Figure 5.1) token length distributions can be found in the appendix.

2.2 Methods

To investigate the memorization of Dutch sequences within the mT5 model family, the following
question needs to be answered: How does the performance of mT5 models in predicting masked
tokens, as measured through fill-mask evaluation, vary across different model sizes, using masked
Dutch sequences extracted from the training data?

The selection of the fill-mask evaluation is motivated by the fact that the mT5 model family is trained
with this fill-mask objective. As a result, the models do not need to be trained on a downstream
task, like summarizing content, and can be used as-is with this fill-mask objective in mind. Omitting
downstream training prevents possible bias in the memorization performance of the models.

2.2.1 Masking

A 15% token masking strategy with an average noise span length of 3 tokens, consistent with pre-
training parameters (Xue et al., 2021), is employed in this research. The masking percentage parameter
is only altered for the evaluation of different masking levels. This strategy ensures that the evaluation
is aligned with the model’s pre-training conditions, resulting in a valid assessment of its memorization
capabilities.

Specifically, prompts 𝑝 derived from Dutch news sequences are extracted from the training data. 15%
of the tokens in each prompt are then masked before presenting it to the model. When evaluating
multiple masking levels, sequences are also masked on a 20%, 25%, and 30% level. Depending on the
number of tokens to be masked, masking could occur at multiple positions in the sequence, with an
average of 3 consecutive masked tokens per position and at least one unmasked token between the
positions. Figure 2.1 shows an example of this masking method.

Figure 2.1: Example of a Dutch sequence extracted from the training data, masked at a 15% level. The
sequence consists of 39 tokens. After rounding, 6 tokens need to be masked (= 39 · 0.15).
As the average noise span length is set to 3 consistent with pre-training conditions, the
sequence is masked at 2 positions each masking 3 tokens. The masking positions are chosen
randomly with the only condition that at least one token remains unmasked between the
masks. This resulting masked sequence is prompted to the models.
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2.2.2 Fill-Mask Evaluation

To assess the memorization capabilities of the mT5 models, the fill-mask evaluation technique is
used. This technique involves providing the model with input prompts containing masked tokens
and tasking it with predicting the masked tokens based on its pre-training. The model’s ability to
accurately predict the masked tokens will serve as a proxy for its memorization performance.

To evaluate the performance of the model in predicting the masked tokens, the (normalized) Leven-
shtein distance metric is used. This metric measures the similarity between the model’s predictions
and the sequence’s ground truth. This provides a quantitative assessment of the accuracy of the
model’s memorization capabilities. The distance is measured on a character level, comparing individ-
ual characters of the combined tokens within each masking position. Additionally, the Levenshtein
distance is normalized based on the length of the longest combined input tokens, ensuring that the
metric is scaled appropriately and accounts for variations in token lengths between the model’s predic-
tions and the ground truth. Importantly, the distances are measured independently for each masking
position within a sequence. Consequently, if a sequence contains multiple masked positions, the nor-
malized Levenshtein distances for the tokens within each masking position are averaged to obtain an
overall distance for the sequence. See Figure 2.2 for an example of the fill-mask evaluation of a single
sequence.

Figure 2.2: An example input sequence that is masked at a single position, demonstrating the fill-
mask evaluation method. If multiple positions are masked, the (normalized) Levenshtein
distances are calculated for each position, after which the distances are averaged.

Different model sizes within the mT5 family are selected for evaluation to examine how memorization
scales with model size. These include the small (≈ 300M parameters), base (580M), large (1.2B), and
XL (3.7B) variants. Notably, the parameter counts of the mT5 models are higher compared to their
corresponding monolingual T5 model variants due to the larger multilingual vocabulary used in mT5
(Xue et al., 2021).

2.2.3 Assessing Memorization

After the fill-mask evaluation, the memorization level for the various model sizes is assessed. This
is done by calculating the fraction of zero (average) Levenshtein distances after the fill-mask evalu-
ation of the pre-training sequences. This is conducted for each model size to obtain results relating
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memorization level to model scale. This fraction will be referred to as ‘memorized fraction’ in this
study.

2.2.4 Data Duplication

The impact of data duplication on memorization is assessed by categorizing sequences based on their
frequency of occurrence in the training data. The duplication count for every sequence is extracted.
For all duplication counts, the memorization performance is evaluated for the multiple model sizes
using the fill-mask method described earlier. The results are then analyzed to determine the dynamics
between sequence duplication and memorization across varying model sizes.

By categorizing sequences based on duplication frequency, this research seeks to understand whether
models are more likely to memorize sequences that appear more frequently in the Dutch training
data. This analysis is crucial for identifying patterns in how models handle repeated information and
whether increased duplication leads to higher memorization rates. Evaluating multiple model sizes
allows for insights into how model capacity influences the memorization of duplicated sequences.

2.2.5 Masking Level

To analyze how masking at various levels affects memorization, sequences are masked at varying
percentages: 15%, 20%, 25%, and 30%. As 15% is the original pre-training setting, higher percentages
are increasingly less like the training conditions. The context that remains is the proportion of the
sequence that remains unmasked. For each masking level, the performance using the multiple model
sizes is assessed. This investigation aims to determine the optimal conditions under which the models
memorize best and how this memorization scales with model size.

Importantly, this research uses a masking strategy in contrast to text completion in related work on
memorization assessment for other models like GPT. This results in a difference in the context left
available to the models. Memorization assessment using text completion only gives models left-sided
context. The use of masking in this study results in the mT5 models being presented with both
left- and right-sided context surrounding each mask. Importantly, the surrounding context can be
fragmented as the number of masking positions increases for higher masking levels. This context
difference with causal models should be taken into account when comparing the findings of this study
to others using text completion.

2.3 Baseline Comparison

When assessing memorization in various model sizes, the results are compared to the baseline perfor-
mance which is obtained by using the same methods on the baseline data. As the models have not
seen the baseline data during training, the baseline performance will be a proxy for their generaliza-
tion performance. Consequently, the difference between the fraction of zero Levenshtein distances
in the pre-training data and the baseline data will be the ‘true’ memorized fractions of the models,
accounting for the balance between memorization and generalization in the model output.
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3 Results and Analysis

Various facets of Dutch language memorization in mT5 models are analyzed. For this section, the focus
will be on analyzing the memorized fraction, the fraction of zero Levenshtein distances, obtained by
applying the fill-mask evaluation method using various model sizes. A distribution of all the resulting
Levenshtein distances can be found in the appendix (Figure 5.3).

3.1 Memorization in Various Model Sizes

The first analysis compares the memorization of pre-training data with baseline data across different
model sizes, as shown in Figure 3.1. Most apparent is that the memorized fraction increases with
model size when the models are presented with the pre-training sequences. The same is true for the
baseline data but to a lesser extent. Notably, the baseline performance does significantly improve for
the 3.7B model. As the baseline performance is a proxy for generalization performance, this indicates
that the 3.7B model generalizes far better when compared to the smaller model sizes.

Figure 3.1: Memorization in the mT5 model family (various sizes). These results use a 15% token
masking strategy, resulting in 85% context presented to the model. This masking level is
consistent with the pre-training objective parameters of the models.

As described, the difference between the pre-training and baseline data will indicate the ‘true’ mem-
orization effect of the models, accounting for baseline generalization performance. Based on previous
research, like the work of Carlini et al. (2023), it is hypothesized that memorization increases with
model size and that model performance on pre-training data will show higher memorization compared
to the baseline data. To test this hypothesis and obtain the statistical significance of the observed dif-
ferences, a one-sided bootstrap test is conducted. The bootstrapping method is selected as the baseline
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Model Size Fraction
Difference

One-Sided
P-Value

Interpretation

300M 0.001 0.324 Not significant
580M 0.010 0.017 Significant
1.2B 0.020 0.003 Significant
3.7B 0.003 0.311 Not significant

Table 3.1: One-sided bootstrap hypothesis test of pre-training data versus baseline data. The p-values
represent the probability of observing a memorized fraction difference between the pre-
training and baseline data less than or equal to zero. If this probability is small (5% level),
this hypothesis is rejected indicating that the pre-trained memorized fraction is significantly
greater when compared to the baseline.

data sample has fewer observations (n=300) compared to the pre-training sample (n=2788). Boot-
strapping involves repeatedly sampling from the data with replacement to create multiple simulated
samples. By bootstrapping the smaller baseline sample, and calculating the memorized fraction for
each bootstrapped sample, a robust distribution of the memorized fractions is obtained and compared
to the pre-training data.

Table 3.1 presents the results for this statistical test and indicates the following:

• 300M model: There is no significant difference in the memorized fraction between the pre-
training and baseline data. Also, the overall performance of this model is quite low for both
data samples.

• 580M and 1.2B models: These models show significant memorization effects, indicating that
as model size increases, the tendency to memorize training data also increases up to a certain
point. The models show a ‘true’ memorized fraction of 1% and 2% respectively.

• 3.7B model: Interestingly, the fraction difference for the largest tested model is not significant.
This could indicate that very large models have improved generalization capabilities, balancing
memorization and generalization.

3.2 Memorization in Unique and Duplicate Sequences

To uncover the underlying dynamics of the observed memorization, the analysis continues by examining
how the memorization of unique versus duplicate sequences changes with model size. As illustrated
in Figure 3.2a, there is a notable trend of duplicate sequences being increasingly memorized as model
size grows. Interestingly, this trend does not fully hold for unique sequences, for which the memorized
fraction saturates in the largest 3.7B model.

Again, the differences with the baseline are tested for statistical significance. The same hypothesis
test is conducted and the results are presented in Table 3.2. The test results for the unique sequences
show no statistical significance for all model sizes. This indicates that there is no statistical evidence
that the unique pre-training sequences show more memorization compared to the baseline.

The test results for the duplicate sequences do show significance for the 580M and 1.2B models and are
not significant for the smallest 300M and largest 3.7B models, similar to the overall results without the
sequence duplication split (Table 3.1). Interestingly, the significant memorization in the 580M and
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(a) (b)

Figure 3.2: (a) Memorization of unique and duplicate sequences as a function of model size using
a 15% masking level. The duplication counts range from 6 to 28. (b) Memorization of
sequences based on their duplication count using a 15% masking level. The duplication
count in this graph goes up to 9, beyond which the number of observations is too low per
count, causing high variation in the results due to unfair representation of these counts.
See Figure 5.4 in the appendix for the specific duplication count distribution in the training
data. For these results, bootstrapping (a statistical resampling method) is used to better
present small sample sizes and assess the variation in the specific duplication count results.
This variation is reflected in the confidence intervals found in the appendix (Figure 5.5).

Duplication Model Size Fraction
Difference

One-Sided
P-Value

Interpretation

Unique 300M -0.004 0.863 Not significant
Unique 580M 0.003 0.332 Not significant
Unique 1.2B 0.007 0.111 Not significant
Unique 3.7B -0.018 0.554 Not significant

Duplicate 300M 0.004 0.141 Not significant
Duplicate 580M 0.014 0.004 Significant
Duplicate 1.2B 0.028 0.0003 Significant
Duplicate 3.7B 0.016 0.095 Not significant

Table 3.2: One-sided bootstrap hypothesis test of unique and duplicate pre-training data versus base-
line data. The p-values represent the probability of observing a memorized fraction differ-
ence between the pre-training and baseline data less than or equal to zero. If this probability
is small (5% level), this hypothesis is rejected indicating that the pre-trained memorized
fraction is significantly greater when compared to the baseline.
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1.2B models increases for duplicated sequences in the pre-training data, showing ‘true’ memorized
fractions of 1.4% and 2.8% respectively.

Further inspecting the specific duplication counts in Figure 3.2b reveals that the memorized fraction
increases for all models when sequences are increasingly duplicated, until a duplication count of 7.
Past this point, memorization falls for the larger models (1.2B and 3.7B) while the smaller models
(300M and 580M) show varied results. The 300M model shows a light dip at a count of 8, followed by
increased memorization at 9. The 580M model shows its peak at 8, after which the memorized fraction
decreases sharply like the two largest models. These observations suggest that, despite duplication
generally increasing memorization, there is a threshold beyond which additional duplication does not
contribute to further memorization and may even hinder it, particularly for the larger models.

It is important to note that the sample sizes of the duplicate sequences decrease as the duplication
count increases. This is likely a result of the deduplication effort in the creation of the mC4 dataset.
Smaller samples could affect the results, causing an unfair representation of the higher counts. To
assess variations in the results and estimate robust confidence intervals when dealing with these smaller
sample sizes, bootstrapping is used in Figure 3.2b. The resulting confidence intervals in the appendix
(Figure 5.5) indicate that the higher duplication counts indeed show more variation in their memorized
fraction.

To account for this, a weighted bootstrap method is employed to assess the memorized fraction in
the duplicate sequences more robustly. In this method, each duplication count sample is assigned
a weight proportional to its frequency in the dataset. This weighing combined with bootstrapping
ensures that smaller duplication counts are fairly represented without artificially inflating their size and
effects. This method provides robust memorization fractions and confidence intervals. These weighted
confidence intervals can be found in the appendix (Figure 5.6), which now shows less variation in the
memorized fractions for all duplication counts.

Figure 3.3: Weighted bootstrap memorization of unique and duplicate sequences for various model
sizes using a 15% masking level. The memorized fraction for each duplication count is
calculated using a weighted bootstrap method to ensure a fair comparison of memorized
fractions across varying sample sizes.

Comparing the non-weighted (Figure 3.2b) and weighted (Figure 3.3) bootstrapped memorization
fractions provides more robust insights into the effect of duplication on memorization. The weighted
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method shows that while duplication generally increases memorization, all model sizes peak at a
duplication count of 6, followed by a decline for the higher counts. The weighted memorized fractions
for these higher counts are even below the memorization level of unique sequences.

3.3 Memorization in Various Masking Levels

The third analysis investigates how varying the masking level influences memorization across different
model sizes. Figure 3.4 provides insights into how different masking percentages affect the memorized
fraction of sequences.

Figure 3.4: Impact of masking levels on memorization over various model sizes. The pre-training data
contains both the unique and duplicate sequences.

Like previous analyses, the significance of the difference between the pre-training data and baseline
data is tested, in this case for all combinations of masking level and model size. These test results
are available in the appendix (Table 5.1). A note on the interpretation of these test results, some
combinations show significance but should be interpreted with caution due to small fraction differences
and zero values.

Regarding Figure 3.4, it is clear when the masking level increases, and therefore increasingly deviates
from the model’s pre-training condition of masking 15% of the input tokens, memorization fractions
drop sharply. Especially for the highest masking levels (25% and 30%), there is not a significant
difference in the pre-training and baseline performance, indicating no increased memorization effect
when applying the models to before-seen sequences using these masking levels. For 20% masking, the
memorized fraction of the pre-training data is significantly higher when compared to the baseline for
all model sizes except the largest 3.7B model. However, this significance should be interpreted with
caution as it is a result of the zero fractions of the baseline performance.
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These results indicate that memorization is strongest when the masking level is the same as the
model’s pre-training conditions. Increasing the masking level greatly minimizes the relative effect of
memorization for these models, mostly resulting in similar performance as the baseline.
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4 Discussion

To assess the Dutch memorization capabilities of the mT5 models, this section synthesizes the findings
of the conducted analyses and discusses the broader implications and ethical considerations.

4.1 Memorization in Various Model Sizes

This research set out to assess the extent of memorization of Dutch language content in various mT5
model sizes. The results in Figure 3.1, combined with the statistical test results in Table 3.1, indicate
that at first memorization increases when model size increases. The 580M and 1.2B models show a
memorized fraction of 1% and 2% respectively when accounting for the generalization performance
using the baseline. However, baseline generalization performance greatly improves for the largest 3.7B
model, minimizing the relative memorization effect.

Comparing these results to the findings of Carlini et al. (2023) regarding the monolingual T5 model,
both similarities and discrepancies are found. In terms of similarity, the observed memorization
fractions for the pre-training data are within the same ballpark. The 3.7B mT5 model assessed in this
study has a memorized fraction of 4%, not accounting for baseline performance. Comparatively, the
2.8B T5 model memorizes roughly 4.8%. However, for the T5 models Carlini et al. (2023) conclude that
larger models exhibit higher memorized fractions. The findings in this study only partly agree with
this. Due to the observed generalization improvement for the largest 3.7B model and low performances
for both the pre-training and baseline data in the smallest 300M model, increasing memorization is
only found for the 580M and 1.2B mT5 models. Notably, Carlini et al. (2023) do not compare their
T5 model results to a baseline to account for increasing generalization performance when model size
increases like they do in testing the GPT-Neo model family. Therefore, the ‘true’ memorized fractions
in mT5 models found in this study, which account for generalization, are not directly comparable to
the previous work on monolingual T5 memorization as those fractions could be overestimated.

Next to omitting a baseline, the discrepancy in the memorization trend of mT5 and T5 models in
regards to model scale could also be explained by the most prominent difference between the two:
their training data. Most pre-training strategies and objectives between these two model families are
very similar, with the exception of the implementation of language sampling and a larger vocabulary
size in the mT5 models (Xue et al., 2021). Other than that, the monolingual and multilingual training
data is the biggest differentiator between the two. In a multilingual context, the model’s capacity
is ‘shared’ across different languages. This could cause the small to medium-sized models to not
generalize as well and rely more on memorization, simply falling back to exact examples from their
training data. However, as models grow sufficiently large (like the 3.7B mT5 model), this balance
between memorization and generalization improves. Here, the 3.7B mT5 model has enough capacity
to handle the complexities of multilingual training data without overfitting, improving generalization.
This improved generalization in larger models reduces the relative memorization effect, explaining why
the ‘true’ memorized fraction of the largest mT5 model is not significant despite its increased capacity.
It should be noted, however, that this trend might not hold when models are even larger. It could be
the case that at model capacities beyond what is tested here, the relative memorization effect increases
again as models start to overfit which negatively impacts generalization performance.

16



4.2 Duplication and Masking Level Dynamics

In an effort to further explain the observed memorization and its trend, this study analyses how the
underlying dynamics of data duplication and masking level affect memorization. Understanding these
aspects will help in uncovering the mechanisms behind memorization and generalization in the mT5
model family.

4.2.1 Duplication

Regarding data duplication, the analysis reveals that duplicate sequences result in more memorization
when compared to unique sequences, especially for larger model sizes (Figure 3.2a). Furthermore,
there is no statistical evidence that unique pre-training sequences show more memorization compared
to the baseline in any of the model sizes whereas this is the case for duplicate sequences in the
580M and 1.2B models. These findings indicate that essentially the unique sequences are lowering
the overall memorization effect and that the significant memorization in the 580M and 1.2B models is
mostly driven by duplication in the pre-training data. Consequently, by only regarding the duplicated
sequences, the ‘true’ memorization fractions for the significant 580M and 1.2M models increase to
1.4% and 2.8% respectively.

The lack of significant memorization for unique sequences could be attributed to the combination of
infrequent exposure and model objective during training. The infrequent training exposure of these
sequences means that the model does not have a lot of opportunities to memorize. Moreover, the mT5
model training objective involves reconstructing masked token spans by using 85% of the context.
For unique sequences, the model relies more on understanding the context rather than memorizing
specific token sequences, promoting generalization. In the case of duplicate sequences, the model
might memorize overlapping token contexts it has seen before. This repeated exposure allows the
model to use that information to reconstruct the masks, using memorization instead of relying on
generalization.

Investigating the underlying memorization dynamics for specific duplication counts reveals that memo-
rization increases with the duplication count up to a certain point (Figure 3.3). Specifically, sequences
duplicated 6 times show the highest memorization, followed by a decline in higher duplication counts
for all model sizes. This could be explained by noise due to redundant memorized context during the
training stage. The overlap between the previously memorized contexts causes redundant informa-
tion to be passed to the models during training. The redundant information could form noise as the
models struggle to differentiate between relevant and redundant information, decreasing the ability
of the models to memorize. Another possibility is that the observed lower memorization for highly
duplicated sequences is affected by the deduplication cleaning step in mC4. This step results in small
samples with high duplication counts in the training data of mT5 models. Because of this, the models
have not often seen highly duplicated sequences in their training stage, possibly lowering the ability
of the models to memorize relevant information from increasingly duplicated contexts.

Relating this to previous work, Carlini et al. (2023) found a clear relationship with regard to duplication
when testing the GPT-Neo model family: increased data duplication results in increased memorization.
However, this trend does not fully hold for the T5 models as the authors found something similar to
a saturation point like in this study. One thing to note, the range of the absolute duplication counts
differs between the two model families and their respective training datasets. The duplication counts
in the monolingual C4 dataset go significantly higher when compared to the counts of the tested
fraction of mC4 in this study. That being said, the authors found for the T5 models that sequences
repeated 159 to 196 times result in less memorization compared to sequences repeated ~140 times.
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The authors explain this saturation point by qualitatively assessing the sequences. They note that
the less frequent sequences (~140 duplications) contain a lot of whitespace which is easier to predict
correctly. This is not the case for this study, as some data-cleaning steps prevent this. Therefore, noise
due to increasing duplication is a better explanation for the observed memorization trend for the mT5
models in this study and might also apply to the T5 family. All in all, it is interesting to see that a
saturation point is found in both the monolingual T5 model as well as its multilingual counterpart.

4.2.2 Masking Level

Finally, the underlying dynamics of various masking levels in relation to memorization are analyzed.
The findings in Figure 3.4 reveal that the memorization effect is strongest when the masking level
is similar to the model’s pre-training conditions, here 15% masking. When masking is increased,
memorization is minimized as the models perform similarly to the baseline.

It makes sense that model performance, and therefore its generalization ability, drops when less context
is available to the model due to more masking. The model has more spans of tokens to predict with
less context to do it, making the chance of exact correct predictions smaller. This explains the
observed baseline performance. What is interesting, however, is that model performance regarding
the pre-training data quickly follows the baseline performance when the masking level is increased.

A possible explanation is the increasingly broken-up context available to the model when masking
is increased. Over all masking levels, masked-out token spans within a sequence remain to have an
average length of three tokens, constant with the model’s training parameters. The number of these
three token masking spans increases when the masking percentage is increased. If the masking level
is high, combined with a relatively short sequence, it is even possible that there is only a single word
between token masks, resulting in presenting the model with broken-up context. This fragmented
context makes it a lot harder for the model to recognize sequences and match them to its pre-training
data, causing sharp drops in its memorization performance when the masking level is increased.

This phenomenon underscores the importance of context continuity in order to invoke memorization.
Due to fragmented context, the models are not effective in memorizing their pre-training data, forcing
models to rely on generalization. That being said, fragmented context will also hinder overall model
performance as seen by the drop in baseline performance.

4.3 Implications of Memorization

Finding memorization of Dutch training data using the mT5 models has several implications. On the
one hand, the findings in this study relate to model performance, resulting in a better understanding
of the balance between memorization and generalization. Next to this, the findings also affect ethical
and legal concerns.

4.3.1 Memorization and Generalization

In terms of the balance between memorization and generalization in model performance, the findings
show that the mT5 models can lean towards one or the other given a certain setting. This under-
standing is crucial for optimizing this balance in multilingual models going forward. If the goal is to
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minimize memorization and promote generalization, improving model performance in terms of robust-
ness and preventing overfitting, several suggestions for training data compilation and model design
can be provided based on the findings in this study:

1. Sufficiently Large Model Size: Regarding model size, larger models such as the 3.7B mT5
model show improved generalization capabilities, effectively minimizing the relative effect of
memorization. Therefore, sufficiently large model sizes could allow for better handling of the
complexities introduced by multilingual training data, promoting generalization.

2. Balance Training Data with Regards to Duplication: The findings regarding duplication
in the training data show a peak in memorization when sequences are moderately duplicated,
whilst unique and highly duplicated sequences show less or even no memorization. This under-
standing can be used when compiling data for model training to minimize memorization.

3. Introduce Variability in Masking Level During Training: The masking level analysis
shows that memorization is significantly higher when the masking level is similar to the model’s
pre-training condition. Introducing variability during model training by using various masking
levels could help the model to adapt better to various levels of available context. This will make
the model more robust and flexible as the model is not trained using a single masking level,
forcing the model to develop more general representations of the data. This strategy could also
promote generalization and minimize memorization.

4.3.2 Ethical and Legal Implications

This study proves that content from Dutch news outlets is memorized in the mT5 models to a certain
degree. It is important to consider what this means in terms of ethical and legal implications. In
terms of ethics, previous research indicates that verbatim memorization in LLMs has risks (Hartmann
et al., 2023). Reproducing training data caused by memorization could leak sensitive or proprietary
information, posing risks in terms of privacy and security.

Regarding legal implications, according to Dutch copyright law1 copyright is violated by using the
content of Dutch news outlets in model training without proper authorization. On top of that, this
study shows that the mT5 models memorize and reproduce part of this content in their output. This
copyright violation might warrant legal action. An example of this is the recent lawsuit regarding
alleged copyright infringement against OpenAI, the company behind ChatGPT and the underlying
GPT-4 model. This legal action was filed by The New York Times after discovering that OpenAI
used their articles for model training (Grynbaum & Mac, 2023). Interestingly, other news outlets take
a different approach to deal with copyright infringement. For example, OpenAI and The Financial
Times recently announced a strategic partnership (The Financial Times, 2024). According to the two
companies, this will enhance ChatGPT with attributed content of The Financial Times.

To address these ethical and legal concerns, transparency and accountability in these models and their
developers become increasingly important. Legislation is one way to ensure this. The recent EU AI Act
is a good example, mandating transparency in the use of AI by enforcing the inclusion of training data
source disclosure (European Parliament, 2023). An example of enforcing accountability is a recent fine
imposed on Google in France due to infringement of intellectual property rules (Chrisafis, 2024). The
French competition authority said Google’s LLM ‘Bard’, since rebranded as ‘Gemini’, was trained
on content from publishers and news agencies without notifying them. Findings of memorization
like in this study could aid in shaping legislation or taking legal action to help mitigate copyright
infringement.

1Copyright Law in The Netherlands (Consulted on 19 June 2024)
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4.4 Limitations and Future Work

This study is not without its limitations. First and foremost, this research solely focuses on the
memorization of Dutch sequences extracted from news articles. This does provide further insight into
the multilingual aspect of memorization, but future research should investigate multiple languages to
see if the findings generalize.

Next, the focus lies on the mT5 model family and its use of masking during model training. Future
work should test other models and architectures to ensure more robust findings on Dutch memorization
in general.

In terms of the baseline used in this study, future work might consider gathering more baseline se-
quences, approaching the size of the tested pre-training sample, to prevent the need for bootstrapping.
Even though bootstrapping helps in providing more robust results, completely omitting this step will
make the comparison between pre-training and baseline performance more accurate.

Furthermore, it is important to note that the findings regarding unique versus duplicate sequences are
specific to the range of duplication counts present in the assessed Dutch training data for the mT5
model family. The relatively lower presence of very high duplication counts in this dataset may limit
the generalizability of the findings. Further research with datasets containing higher duplication counts,
found by for example using a different language, could provide additional insights into memorization
dynamics across different model sizes and data duplication. Also regarding data duplication, only
sequences duplicated six times or more are extracted from mC4. This leaves a gap for investigating
sequences duplicated two to five times in the training data.

Finally, the parameters for the masking strategy in this study are kept consistent with the pre-training
conditions of the mT5 models. Specifically, the average noise span parameter, set to three tokens, has
a significant impact on the resulting context presented to the models, especially for higher masking
levels. By adhering to pre-training conditions, increasing the masking level results in more masking
spans, which fragments context. Future research could vary the noise span parameter by for example
fixing the number of masks to one. Increasing the masking level would, in that case, increase the
length of a single mask instead of masking sequences at multiple positions like in this study, resulting
in unfragmented left and right context presented to the model. Altering the masking strategy could
provide further insights into the effect of masking level on memorization.
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5 Conclusion

This research set out to investigate the extent of Dutch news content memorization in mT5 models
over different model sizes. The findings show that memorization increases with model size up to a
certain point. Specifically, the 580M and 1.2B models exhibit significant memorization, while the
smallest (300M) and the largest (3.7B) models do not when accounting for baseline generalization
performance.

Investigating the underlying dynamics of data duplication and different masking levels reveals further
insights into Dutch memorization. Memorization peaks when sequences are moderately duplicated
after which memorization is minimized. Also, duplicate sequences drive significant memorization in
the 580M and 1.2B models, while unique sequences do not. Regarding masking levels, Dutch content
is mostly memorized when the masking level matches the pre-training conditions (15%). Increasing
the masking level sharply reduces the memorization effect, resulting in similar performance to the
baseline.

Overall, the findings in this study emphasize the importance of balancing training data and adjusting
model design to promote generalization and minimize memorization in multilingual large language
models. This balance is crucial for developing reliable, ethical, and legally compliant models going
forward.
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Appendix

Figure 5.1: Distribution of the number of tokens in the input sequences extracted from the mC4 pre-
training data. The mean token length of the input sequences is 30 tokens.

Figure 5.2: Distribution of the number of tokens in the input sequences extracted from the baseline
data. The mean token length of the input sequences is 31 tokens.
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Figure 5.3: The distribution of the resulting Levenshtein distances after filling in the masks in the pre-
training input sequences using various mT5 model sizes. All masking levels are included in
this figure. Kernel density estimation (KDE) is applied to smooth the distribution curves,
providing a more interpretable view of the underlying data trends. The smoothing causes
some observations to be displayed beyond the normalized distance range of 0 to 1.

Figure 5.4: Distribution of the duplication counts of the input sequences extracted from the mC4 data.
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Figure 5.5: Confidence intervals of the memorized fractions as a function of duplication counts for
different model sizes (300M, 580M, 1.2B, and 3.7B parameters). The confidence intervals
are at the 95% level, illustrating the variation in memorized fractions across specific dupli-
cation counts and their respective sample sizes.
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Figure 5.6: Confidence intervals of the weighted memorized fractions as a function of duplication
counts for different model sizes (300M, 580M, 1.2B, and 3.7B parameters). The confidence
intervals are at the 95% level, illustrating the variation in memorized fractions across
specific duplication counts and their respective sample sizes.

27



Masking
Level %

Model
Size

Fraction
Difference

One-Sided
P-Value

Interpretation

15.0 300M 0.001 0.324 Not significant
15.0 580M 0.010 0.015 Significant
15.0 1.2B 0.020 0.003 Significant
15.0 3.7B 0.004 0.312 Not significant

20.0 300M 0.001 0.000 Significant (caution)
20.0 580M 0.003 0.000 Significant (caution)
20.0 1.2B 0.009 0.000 Significant (caution)
20.0 3.7B -0.002 0.570 Not significant

25.0 300M 0.001 0.000 Significant (caution)
25.0 580M -0.001 0.636 Not significant
25.0 1.2B 0.000 0.267 Not significant
25.0 3.7B -0.003 0.594 Not significant

30.0 300M 0.000 1.000 Not significant
30.0 580M 0.000 0.000 Significant (caution)
30.0 1.2B -0.002 0.640 Not significant
30.0 3.7B 0.003 0.000 Significant (caution)

Table 5.1: One-sided bootstrap hypothesis test of pre-training data versus baseline data over multiple
masking levels. The p-values represent the probability of observing a memorized fraction
difference between the pre-training and baseline data less than or equal to zero for a specific
masking level and model size. If this probability is small (5% level), this hypothesis is
rejected indicating that the pre-trained memorized fraction is significantly greater when
compared to the baseline. Note, some fraction differences have significant p-values of zero
simply because either the pre-trained or baseline data have a memorized fraction of zero
for a specific masking level and model size. These should be interpreted with caution.
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