

 Applied Data Science (MSc)

 Utrecht University, the Netherlands

MSc Thesis Dominic Comerford (5972744)

TITLE: Simulating (Multiple) Imputation in Relational Event History (REH) Data: Missingness

in Time, Sender, and/or Receiver

7th of July 2024

Supervisor:

Dr. Mahdi Shafiee Kamalabad

Second grader:

Dr. Gerko Vink

Word count: 6,922

2

Abstract

 Relational event history (REH) data is a specific type of dynamic network data containing

the time-stamped interactions between nodes in a network. REH data is characterized by its high

resolution compared to regular network data and is increasingly available due to technological

advancements. Therefore, it can potentially be crucial in investigating complex social and

behavioral phenomena. The state-of-the-art method to analyze REH data is through a relational

event model (REM) and managing missing data within this context is crucial as it can significantly

impact the validity of results. While (multiple) imputation methods are well-regarded for their

reliability, they remain underexplored within the realm of dynamic social networks, particularly

in REH data. This study aims to bridge this gap by focusing on REH data to improve the robustness

of REM analyses involving missing data in social network research.

 By simulation and imputation of missing data in part of the Apollo 13 mission data, this

study compares REM analyses of imputed data to their true and complete case analysis

counterparts. Multiple imputation was employed for missingness in sender and receiver nodes,

while time values were interpolated in several ways. Bias, coverage, and confidence interval width

are evaluated in reciprocity, in-degree sender, out-degree receiver, and the same location statistics.

 Results revealed biases in the estimated statistics. Imputed analyses showed reduced

absolute and relative bias, but incorrect statistical significance compared to complete case analysis.

Multiple imputation improved effect size estimation compared to complete case analysis,

suggesting its potential in REH data. This finding also highlights the need for refined methods

specifically tailored to imputing time data, ensuring more accurate and reliable analyses in the

study of dynamic social networks.

 Key words: relational event history, relational event model, social network analysis,

missing data, multiple imputation, interpolation

3

Contents

1. Introduction ... 4

2. Theoretical Background .. 5

2.1 Social network analysis... 5

2.2 Relational event history data and relational event models.. 7

2.3 Missing data .. 9

2.4 This study .. 10

3. Data and Methods ... 11

3.1 Data ... 11

3.2 Measures ... 11

3.3 Analysis strategy ... 13

4. Results ... 16

4.1 Descriptive statistics ... 16

4.2 Fully observed data ... 17

4.3 Complete case analysis ... 18

4.4 Imputed simulations .. 19

4.5 Time imputed with spline and Stineman interpolation ... 21

5. Discussion and Conclusions ... 23

References ... 25

Appendix A: Apollo 13 Actors and IDs ... 28

Appendix B: Sensitivity Analysis ... 29

Appendix C: GitHub Repository and R Syntax .. 30

4

1. Introduction

 Because of the widespread occurrence of missingness in social network data the necessity

of addressing missing data problems in social network analysis (SNA) is generally accepted

(Kossinets, 2006; Huisman, 2009). However, current SNA often utilizes incomplete data, resulting

from the exclusion of nodes (actors) or edges (associations) between nodes (e.g., applying listwise

deletion). Employing such approaches may lead to biased results in SNA, even when missingness

is randomized (Kossinets, 2006; Huisman, 2009). Even randomized missingness can lead to bias

because the architecture of the network might change drastically even at small proportions of

missingness.

 Typically, SNA originates from static social network data that merely allows for analyzing

a snapshot of that network or from panel data that allows for analyzing the same network over time

in similar static snapshots (e.g., Böhnke & Link, 2017). In recent decades, however, statistical and

computational advances have made it possible to model more complex network dynamics, through

analyzing the network’s time-ordered interactions. This type of dynamic data is referred to as

relational event history (REH) data and the state-of-the-art method to analyze such data is through

the relational event model (REM; Butts, 2008).

 Three reasons together legitimize addressing the missing data problem in REH data (and

REMs) in favor of more traditional social network data (and models). Firstly, REH data is one of

the highest resolution and precise network data, which allows a deeper understanding of how social

interactions evolve over time and for the modelling of more complex social phenomena. By

maintaining the order of interactions, it is possible to include the past in the prediction of future

interactions rendering it more informative than traditional SNA. Secondly, REH data is becoming

increasingly available due to data being more and more recorded in a time series fashion (e.g.,

digital communication is often stored automatically, and updated when a new communication is

sent). And thirdly, there is even less research on the missingness problem in REH compared to

traditional social network data.

 There are numerous options for handling missing (network) data. In many statistical

software packages, the default method ignores missing values and merely uses the measured

observations – referred to as complete case analysis or listwise deletion. When missingness occurs

randomly, this method may produce reliable means, regression coefficients and correlations.

5

However, it results in overestimated standard errors depending on the proportion of missing values

(van Buuren, 2018). Unfortunately, applying complete case analysis often leads to a loss of

information, reduction of statistical power, and more worryingly, bias in the coefficients (van

Buuren, 2018; Schafer & Graham, 2002). Other treatments of missing values involve weighting,

likelihood-based procedures, and single-value - or multiple imputation and much is known about

how these treatments affect the harm inflicted by missingness in various types of data (e.g., Schafer

& Graham, 2002; Newman, 2014). Consequently, it is also known that multiple imputation is often

a reliable method to manage missingness in statistical analyses compared to other methods (van

Buuren, 2018).

 However, there still is a gap in the literature on the effects of missingness and treatment

thereof in social network models in general, and in dynamic social network models such as the

relational event model (REM) specifically. The current study simulates and imputes such

missingness in a section of Apollo 13 REH data containing the timestamped, chronologically

ordered communications sent among ground and space crew and compares resulting analyses to

their true coefficients and the complete case analysis. Researching to what extent missingness in

REH data (time, sender, and/or receiver of communications) introduces bias and to what extent

imputation of missing values corrects for biases are the focal questions in this study.

 In the subsequent sections, the theoretical background of social network analysis, REH

data and REM, as well as the implications of missing data will be discussed first. Afterwards, the

data and methods, as well as the analysis strategy will be elaborated upon and then the results of

the various REMs will be discussed. In the fifth and final section, the study's results will be

discussed along with the study's conclusions and directions for future research.

2. Theoretical Background

2.1 Social network analysis

 A (social) network can be defined as a collection of nodes connected through edges

(Newman, 2018). The units of interest in social network analysis revolve around the relationships

among nodes, such as the edges between individuals, between communities, or between other

entities. An example of a social network is displayed in Figure 1, which shows the aggregated

communication network among nodes in a section of the Apollo-13 mission communication data.

6

An arrow from one node to another indicates that the former has sent a message to the latter at

least once.

 Some informative network characteristics can be derived from such network graphs as it

clearly shows node seven is a central unit that connects peripheral nodes and that the blue nodes

form a triangle within the network. Considering node seven represents the flight director and the

triplet constitutes the three astronauts, such an architecture seems plausible in this network (see

Appendix A for the actor IDs and their roles).

 Consequently, because of its emphasis on interaction among nodes, social network analysis

(SNA) requires data on the edges between nodes, and these edges can take various forms. For

example, SNA may focus on friendships between colleagues or on communication instances

between astronauts and ground control. Based on the characteristics of these edges and the research

objectives, edges can either be directed or undirected (Newman, 2018). Undirected edges

encompass mutual ties such as shared affiliations while directed edges involve a certain flow or

Figure 1.

Network graph (directed) of communication between nodes in Apollo-13 data.

Note. Astronaut nodes are in blue, and ground control nodes are in red. An arrow represents whether a node

communicated with a target node.

7

direction in the relationship such as a communication sent from ground control to an astronaut at

a certain time point.

 This focus on edges and nodes contrasts with traditional studies that focus on individual

attributes to understand behavior (McGloin & Kirk, 2014). An individual attribute could be a

measure of a person's communication skills and researchers are then interested in associations

between variables. In contrast, the occurrence or intensity of communication between individuals

represents a relational event which can be modelled to analyze the evolution of interaction within

a network.

 SNA based on such relational events implicitly suggests that the quantity and type of

connections among nodes can be informative explanatory factors in predicting future events

(McGloin & Kirk, 2014). In other words, the relational history in the data may be predictive of

further network dynamics. In the context of the Apollo-13 mission, past communication may be

an informative characteristic in predicting further communication dynamics within the Apollo 13

network. For the dynamics in these relational event data to be analyzed a specific type of network

model needs to be employed – the relational event model.

2.2 Relational event history data and relational event models

 Relational events can be understood as actions that occur as discrete events at a certain

point in time where one node exhibits a behavior targeted at one or multiple other nodes in the

network (Bates & Harvey, 1975; Butts, 2008). A sequence of those discrete events, in continuous

time, is then described as relational event history (REH) data and encompasses at least the times

or order of events, and dyads of sender and receiver nodes (Butts, 2008). Table 1 entails the first

two and last two cases of the Apollo 13 REH data, as each row represents a discrete time-stamped

event where a message is sent from a sender to a receiver node. Here, the sender column shows

what node sent the message, while the receiver column contains the target of that message.

8

Table 1.

Relational events of Apollo-13 communication.

Time Sender ID Receiver ID

11849.2 18 2

11854.2 2 18

… … …

50012.8 7 4

50014.8 4 7

Note. Total number of recorded events is 3882 among 16 nodes.

Time is in seconds from the onset of the mission.

 The relational event model (REM) is a gold standard for analyzing REH data and provides

a framework for modelling the predictors (statistics) that explain how interactions or relationships

evolve. In this model, events occur at discrete moments in time and thus have a well-defined

duration, and ties between nodes exist in these short moments in continuous time and dissolve

after. These points imply that there is a clear understanding of the order and duration of interaction

over time and allow for examining the expected dyad of nodes that will communicate, and the

expected time till a relational event occurs (Butts, 2008). Note that a static (panel) network model

differs herein as in the REM ties are short-lasting and exist at exact time points.

 In a REM the time between events with exponential distribution is modelled with rate

parameter 𝜆. The events rate, 𝜆, shows the propensity of an event to occur which determines which

nodes will interact and when this interaction will occur (Butts, 2008; Meijerink-Bosman et al.,

2023). It is assumed that 𝜆 is a log-linear function of exogenous and endogenous statistics.

Exogenous statistics entail characteristics such as ‘age’ or ‘location’ of individual nodes or edges

and allow for researching to what extent certain attributes determine the event rate. In contrast,

endogenous statistics encompass the likelihood of potential subsequent events conditional on past

events, such as a dyad's prior communication. The event rate can then be modelled as the outcome,

regressed on by predetermined statistics in a log-linear function (Meijerink-Bosman et al., 2023):

9

log 𝜆 (𝑠, 𝑟, 𝑡) = ∑𝛽𝑝𝑋𝑝(𝑠, 𝑟, 𝑡),

 where βp refers to the impact of the p-th statistic Xp(s,r,t) on the event rate. Consequently,

by estimating the model parameters, βp, linked to exogenous and endogenous statistics inferences

can be made on the occurrences and dynamics of communication within a network over time

(Meijerink-Bosman et al., 2022).

 To estimate the event rates, it is first necessary to construe a risk set entailing all possible

events that might occur, resulting in a matrix of all conceivable dyads. In the context of directed

edges of a sending node, defined as s and a receiving node, defined as r at time-point t, the matrix

s times r represents all possible relational events at time-point t. Thus, the Apollo-13

communication risk set comprises N (N - 1), or (16 x 15 =) 240 potential events at each time-point,

where N represents the number of nodes in the network.1

 Second, the likelihood of an event (s, r, t) to occur is equal to the occurrence rate of that

event relative to the sum of rates for all events in the risk set at that time point (Butts, 2008). This

rule ensures more common events are assigned higher event rates compared to the less common

events, and can be defined as:

𝑃((𝑠, 𝑟)|𝑡) =
𝜆(𝑠,𝑟,𝑡)

∑𝜆(𝑠,𝑟,𝑡)
.

2.3 Missing data

 There could be numerous reasons that social network data, including REH data, are

incomplete and these include but are not limited to respondent inaccuracy, non-response, and

technological failures (Kossinets, 2006; Kiang et al., 2021). For example, nodes might falsely

portray the absence of edges to other nodes, nodes might not respond at all, or data might go

missing due to electronic malfunctioning. The mechanisms by which missingness occurs can vary

too and in the literature are described as Not Data Dependent (NDD), Seen Data Dependent (SDD),

and Unseen Data Dependent (UDD) (Rubin, 1976; van Buuren, 2018).2

1 For practical reasons it is assumed in the current study that a node cannot send messages to multiple other nodes

simultaneously however it is possible to model such interaction in a REM.

2 NDD, SDD and UDD are typically referred to as Missing Completely at Random (MCAR), Missing at Random

(MAR) and Missing Not at Random (MNAR), respectively. However, in the current study, the 'data dependent'

terminology from Hand (2020) is used as it directly conveys the missingness mechanism at play.

10

 NDD describes situations where the probability of missingness is equal across all cases,

meaning that the research questions we pose to answer are unrelated to the distribution of the

missing values. Consequently, beyond the loss of information, various complexities stemming

from such missing data may be overlooked. In contrast, in situations where missingness is affected

by either observed (SDD), or unobserved (UDD) characteristics of the data, the research questions

of interest are related to the missingness. Hence, making inferences from subsequent analyses

requires more critical evaluation than in an NDD context (van Buuren, 2018).

 Because the current article is exploratory in terms of imputing missing values in relational

event history (REH) data, only NDD is further described as it serves as the benchmark against

which imputation should be evaluated. In other words, if imputation is not satisfactory in the more

convenient NDD context, it will likely also not be in one defined by the more problematic contexts

of SDD or UDD (van Buuren, 2018). Mathematically, the NDD situation can be formulated as:

Pr(R = 0|Yobs, Ymis,ψ) = Pr(R = 0|ψ).

 Here, Y is a matrix composed of Yobs and Ymis, or the observed and missing values, R

represents a missingness matrix in which each cell indicates whether the aligning cell in Y is

missing (0) or observed (1), while ψ encompasses the missing data model parameters such as the

probability for a missing value to occur. So, the probability of data being missing in an NDD

context depends on ψ, the general missingness probability, as each value has an equal chance to

be missing, rather than on Yobs or Ymis. In sum, NDD is a mechanism resulting in missingness to

occur randomly across the data.

 Most social network analyses ignore the problem of missingness by analyzing complete

cases while others transform missing edges between nodes to be non-existing edges, which can

lead to biased inferences (Gile & Handcock, 2017). A more truthful method to handle missing data

is through multiple imputation as it acknowledges the uncertainty and variance surrounding

missing values. By creating multiple versions of the data through the replacement of a missing

value by a plausible one, multiple imputation allows for analyzing each imputed dataset

individually before merging the estimates (van Buuren, 2018).

2.4 This study

 This study aims to analyze how (multiple) imputation of missing values affects analyses of

REH data. Missingness is simulated through the NDD mechanism in part of the Apollo-13

11

communication data and is allowed to occur in the time, sender, or receiver information or in any

combination of this information. Subsequently, missing values are imputed through (multiple)

imputation. Next, REMs of imputed datasets are compared to the analysis utilizing the fully

observed communication data (the true estimates) and the complete case analysis (the default

method to handle missing values in many applications) In doing so, the current research improves

our understanding of 1) to what extent missing data occurring randomly, specifically missingness

in time, biases results in REMs, and 2) to what extent current techniques for imputing missing data

may help correct for bias.

3. Data and Methods

3.1 Data

 Following Shafiee Kamalabad et al. (2023), communication data from the Apollo 13

mission, as REH data, was used for the empirical analyses, specifically from the time surrounding

the iconic phrase “Houston, we’ve had a problem.”3 This ‘problem’ occurred fifty-six hours into

the mission and referred to an exploded oxygen tank. At that moment, the mission turned from a

routine journey destined to the moon into a mission to solve life threatening issues and safely

return the astronauts to Earth. Luckily, they did in the end - aided by clear communication within

the network.

 In this study part of the Apollo 13 communication data is analyzed, focusing on the

sequence of communications that occurred within the network. As such, the relational events are

time-stamped directed communications from a sender to a receiver node (see Table 1). Note that

time is in seconds from the onset of the mission, and the sender and receiver columns contain the

ID rather than the role of the nodes (see Appendix A for more information). After selecting the

Apollo 13 communications from around an hour before to approximately six hours after the

moment the tank exploded, a dataset of 3882 relational events among 16 nodes remained.

3.2 Measures

 In this study, we focus on the impact of missing data and how to make valid inferences

through (multiple) imputation in REMs rather than analyzing the exact content of communications.

3 The complete communication transcript can be retrieved from http://apollo13realtime.org/. The used

subset of Apollo 13 is web-scraped and does not have any privacy or ethical limitations.

http://apollo13realtime.org/

12

Therefore, the content of the communications is excluded but like Shafiee Kamalabad et al. (2023

the endogenous statistics; reciprocity, indegree sender, and outdegree receiver are included. Also,

as an exogenous statistic, it is considered whether a sender and receiver of a communication are in

the same or different locations. Including these statistics allows for modelling network dynamics

based on past relational events as well as disentangling location effects on communication and

comparing the extent to which results from various models differ.

Reciprocity. The reciprocity statistic assumes there is a tendency for node 1 to reciprocate

communication to node 2 if node 2 has contacted node 1 in the past. Indeed, studies have shown

that nodes that have received communications are likely to reciprocate these in the future (Stadfeldt

& Block, 2017; Shafiee Kamalabad et al., 2023).

In-degree sender. The in-degree of the sender statistic refers to the number of communications a

node has received and assumes that those with a higher in-degree have a higher likelihood of

initiating contact in the future (Butts & Marcum, 2017). For instance, when node 1 receives

relatively many communications up to a certain time-point, it is expected that node 1 has a

relatively high probability of initiating contact in the future compared to a node that has received

fewer communications.

Out-degree receiver. The out-degree of the receiver statistic refers to the number of

communications a receiver node has transmitted, and it is assumed that nodes with a higher out-

degree have a higher likelihood of being contacted in the future (Butts & Marcum, 2017). For

instance, when node 2 sends relatively many communications up to a certain time-point, it is

expected that node 2 has a relatively high probability of being contacted in the future themselves

compared to a node that has sent fewer communications.

Same location. The same location statistic reflects an exogenous attribute that a sender and

receiver’s rate of interacting is determined by whether the dyad shares the same location. In other

words, whether the nodes are in the same group – astronauts or ground control. A binary variable

was coded where intragroup communication among the space crew (node 17, node 18, and node

19) and ground control (the other actors) was assigned a 1, and intergroup communication a 0. A

negative effect of ‘same location’ reflects that nodes who are in the same location initiate future

communication with a lower event rate compared to nodes in different locations. Because there is

a clear structure and hierarchy before sending a message from ground control to the astronauts it

13

is expected that 'same location' will have a negative effect on the event rate. Ground crew, as well

as the astronauts, are likely to communicate off the record before sending a coordinated message

via the Apollo 13 channel.

3.3 Analysis strategy

 The analysis can be divided into three main components, and these are 1) missingness

amputation, 2) missingness imputation, and 3) the REM analyses.

Missingness amputation. The first step in the analysis was to create missingness through the NDD

mechanism in the Apollo 13 data in 100 simulations. To include every node in each simulated

dataset the same 1500 relational events were drawn and preserved from the complete data and

included in each simulation. Part of the data was preserved because some nodes occurred rarely

and would have been removed altogether in some simulations by amputation over all relational

events. Therefore, preserving some communication resulted in the same number of nodes (16) in

each simulation, and thus equal risk set sizes (240), a requirement for comparisons of different

REMs.

 For robustness, the amputation was done 100 times by creating various versions of Apollo

13 data with 40% of rows containing at least one missing value in the remaining data. So, 40% of

these rows had either one, two or three missing values in time, sender and/or receiver columns.

This proportion allowed for stable enough analyses under a substantial amount of random

missingness.

 As an example, Figure 2 contains the missingness patterns of the first simulated dataset.

Blue cells indicate that a value has been observed, whereas red represents a missing value. The

stacked rows then represent the various missingness patterns. The patterns show that in the first

simulation, 2929 relational events are completely observed and seven patterns of missingness exist

that occur from 130 to 143 times each.4 Note that a pattern where all columns are missing – the

bottom pattern - could occur in REH data. Communications with missing time, as well as missing

sender, and receiver nodes, are still transmitted and logged as a relational event. Here, it is

unknown what the time and sender and receiver nodes of this communication are but that an event

4 The MICE package in R (van Buuren & Groothuis-Oudshoorn, 2011) was used to create missingness as well as to

impute missingness in the data in the next step.

14

occurred is known because a relational event is stored automatically. In the first simulated dataset

the number of communications with completely missing information except for the rank is 134

times.

Missingness imputation. The second step of the analysis was to impute the missing values through

(multiple) imputation. This required considerations regarding the number of imputations, the

number of iterations, the methods employed and the specification of predictors for the imputation

model. Imputation refers to how many times the missing values are to be imputed, while the

number of iterations refers to how often each imputation is updated to calculate the eventual

imputation. It was opted to set the number of imputations and iterations both to five for

computational efficiency. Furthermore, research shows this number is often sufficient for reliable

imputations (van Buuren, 2018).

 The employed methods differed per missing variable, as time was imputed by interpolation

using the values before and after the missing times rather than multiple imputed. This was done in

Figure 2.

Missingness patterns of the first simulated dataset

Note. Rows represent different missingness patterns whereas columns represent receiver, sender, and time

information. The number on the left stands for how often a pattern occurred, the number on the right how

many missing variables occur in the corresponding patterns, and the numbers below how often that column is

missing in the data in total. Blue cells indicate an observed while red cells indicate missing values.

15

three ways, as time was interpolated linearly at first, but in two additional analyses time was

interpolated using the spline and Stineman methods. Spline interpolation fits a polynomial function

to the data, whereas the Stineman algorithm interpolates by using linear segments to adjust the

smoothness of interpolation rather than polynomials (Stineman, 1980). Interpolation of time might

in some cases be a realistic option for REH data with missingness in times as specific times may

be lost but due to data being stored chronologically, the order might still be preserved.5

 In contrast, missing sender and receiver data were multiple imputed through predictive

mean matching. Predictive mean matching interpolates from a pool of candidate donors that are

most like the missing observation in other variables and one or more of such observations are used

to determine the imputed value (van Buuren, 2018). Consequently, such ‘regular’ predictive mean

matching can result in an imputed node seemingly communicating to themselves whereas the

Apollo 13 data does not allow for such communications. Therefore, a custom method was

employed that prevents imputed data from containing nodes that communicate with themselves

(Vink, 2023). In all multiple imputation models, the target variables were regressed on both

remaining variables. For instance, in the sender imputation model both time and receiver were

used as predictors of missing sender values.

Analyses. The third step of the analysis was conducting the REMs and comparing their

performance. The statistics for the models were computed using the package remstats (Meijerink-

Bosman et al., 2024), while the REMs were conducted with remify (Arena et al., 2024) using the

Cox proportional hazard function from the survival package (Therneau, 2023). The REMs in

combination with the obtained statistics output the number of events and nodes, the amount of

time that passed from the first to the last event and well as the estimated parameters for each

statistic of interest.

 The Apollo 13 mission data used in this paper is assumed to be the complete population.

Therefore, the variance around the statistics in the simulations is calculated in alignment with Vink

and van Buuren (2014), who would argue that because we have a finite population from which we

draw samples (the sub section of Apollo 13 data) we can treat the fully observed data as the 'truth'.

Subsequently, this finite population feature removes sampling variance in calculating the total

5 Interpolation was conducted through the imputeTS package in R (Moritz & Bartz-Beielstein, 2017).

16

variance in the statistics, resulting in substantially smaller estimates for standard errors in REMs

that utilize the multiple imputed data.

 That said, the REM on the fully observed data was conducted first as this constitutes the

‘truth’. Thereafter, the REM was conducted as a complete case analysis pooled over the 100

simulations and compared to its fully observed counterpart. Finally, the REM was analyzed over

the imputed datasets and its pooled result was compared to the previous analyses.

 Performance evaluation of the imputed simulations compared to the true coefficients was

done based on Oberman and Vink’s (2023) recommendations. These recommendations include

analyzing the amount of bias in the estimate, and the coverage rate (CR). The bias of a coefficient

represents how far off from the true coefficient the estimation is, while coverage represents how

often the true coefficient is in the range of the estimate’s confidence interval. The proportion of

bias (PB) in the coefficients should ideally be lower than five percent, while the coverage should

be at least 95%. A small amount of bias with sufficient coverage would indicate that the estimation

method is a viable method for imputation and yields valid inferences. Moreover, the average width

(AW) of the 95% confidence intervals is used for evaluation, where more narrow intervals in

combination with sufficient coverage suggest less uncertainty in the estimates than wider ones

(Oberman & Vink, 2014).

4. Results

4.1 Descriptive statistics

 Table 2 shows descriptive statistics of the static Apollo 13 network; so, for now, the

emphasis is on whether a dyad communicated at all and not on the intensity of contact. The number

of nodes is 16 of which 3 are astronauts. Also, the number of communications is 3882 of which

1813 are sent to the same location and 2069 between locations. Furthermore, characteristics

derived from the network in Figure 1 are included. The density, or the number of connected nodes

over all possible nodes, is .21, while the longest shortest path spans 4 nodes. The average closeness

centrality is .68, implying most nodes seem to be close to other nodes while the average

eigenvector centrality or the average centrality based on neighbors’ influence is also high, reflected

in the score of .61. The average shortest path in the network is 1.92, meaning that any pair of

nodes, on average, is separated by less than two nodes. Relatedly, the average betweenness, or the

17

extent to which nodes fall on another dyad’s shortest path is .57, while transitivity, or the overall

closure of triplets into connected triangles is .33.

Table 2.

Network characteristics of complete Apollo 13 data.

 Amount Network-level

Nodes 16 Density .21

 Astronauts 3 Diameter 4

 Ground control 13 Closeness .68

Communications 3882 Eigenvector .61

 Same locations 1813 Average shortest path 1.92

 Different locations 2069 Betweenness .57

 Transitivity .33

4.2 Fully observed data

 The results of the REM utilizing the fully observed Apollo 13 data can be found in Table

3. Firstly, it can be derived that the total events in the data used for the Cox proportional hazard

functions is 931.680. This number amounts to the product of the number of events, 3882,

multiplied by the number of possible pairs, or the risk set at each timepoint (16 x 15). Secondly, it

shows that reciprocity has a small positive effect on the event rate although this is not statistically

significant (β = 2.332-02, p = .209). Nodes do not seem to return past communications in this

network. Perhaps the hierarchical nature of this network with strict communication guidelines

inhibits reciprocal communication. Thirdly, a sender’s past in-degree positively affects the

likelihood of an event happening and this effect is statistically significant (β = 4.314-04, p < .001).

Receiving a larger number of communications results in a higher likelihood of becoming a future

sender. Fourth, the out-degree of the receiver has a small negative and statistically insignificant

effect on communication happening (β = -9.023-05, p = .225). This coefficient implies that the

number of communications a node has sent does not determine whether that node will be a receiver

of future communications.

18

 Finally, there is a tendency to engage in contact with nodes that are in a different location.

Whether a pair of nodes are in a different location proves to be a strong predictor of future

communication, as those in a different location are more likely to engage in contact with each other

through the Apollo 13 channel (β = -.863, p < .001). This might be explained considering ground

crew possibly talks to each other outside of the mission’s channel before a final message is sent to

the astronauts, and vice versa.

Table 3.

REM Results for the fully observed Apollo 13 data.

Statistic β p-value

Reciprocity 2.332-02

(1.856-02)

.209

In-degree sender 4.314-04

(7.398-05)

< .001

Out-degree receiver -9.023-05

(7.437-05)

.225

Same location -.863

(.032)

< .001

Note. Number of possible events = 931.680, number of events = 3882. Standard

errors in parentheses. BIC = 98241. The number of simulations is 100.

4.3 Complete case analysis

 Table 4 contains the results of the aggregated complete case analysis over 100 simulations.

Compared to their true counterparts the coefficients for reciprocity (β = 2.773-02, p = .196), in-

degree sender (β = 5.679-04, p < .001) are somewhat overestimated whereas out-degree receiver (β

= -1.208-04, p = .293) is somewhat underestimated. Also, same location seems to be relatively

biased as its estimate is severely underestimated in the complete case analysis (β = -1.349, p <

.001). Unsurprisingly in this complete case analysis where missingness occurred randomly; all

19

standard errors are larger than their true counterparts, which implies there is more uncertainty in

the estimates.

Table 4.

Aggregated REM results for complete case analysis.

Statistic β p-value Bias

Reciprocity 2.773-02

(2.121-02)

.196 4.413-03

In-degree sender 5.679-04

(1.126-04)

< .001 1.364-04

Out-degree receiver -1.208-04

(1.129-04)

.293 -3.054-05

Same location -1.349

(.039)

<.001 -.486

Note. The total risk set size ranges from 690.720 to 717.360, and number

of relational events ranges from 2878 to 2989 across simulations. Standard

errors in parentheses. The average BIC is 71786. Number of simulations

is 100.

4.4 Imputed simulations

 Table 5 shows the aggregated REM results over 100 simulations where time was imputed

via linear interpolation and sender and receiver through multiple imputation. Results indicate that

reciprocity has a small positive effect, and this is statistically significant (β = 2. 2.516-02, p < .001,

95% CI = [2.217-02,2.814-02]). Similarly, receiving more communications now positively predicts

sending communications in the future (β = 4.177-04, p < .001, 95% CI = [3.901-04, 4.453-04]), while

sending more communications has a small negative and statistically significant effect on being a

receiver of future communications (β = -9.313-05, p < .001, 95% CI = [1.044-05, -8.187-05]). The

20

coefficient for same location is still underestimated but the bias is smaller than in the complete

case analysis (β = -.910, p < .001, 95% CI = [-.943, -877]).6

Table 5.

Aggregated REM results after imputation of missingness.

Statistic β p-value CI-95%

[LB, UB]

CR Bias PB AW

Reciprocity 2.516-02

(1.076-03)

< .001 [2.217-02,

2.814-02]

.75 1.834-03 7.866 5.975-03

In-degree

sender

4.177-04

(9.946-06)

< .001 [3.901-04,

4.453-04]

.88 -1.373-05 3.306 5.523-05

Out-degree

receiver

-9.313-05

(4.053-06)

< .001 [-1.044-04,

-8.187-05]

.89 -2.894-06 4.523 2.251-05

Same

location

-.910

(1.181-02)

< .001 [-.943,

-.877]

.17 -4.761-02 5.517 6.560-02

Note. Number of possible events = 931.680, number of events = 3882. 'Time' is imputed as a single

value by interpolation. 'Sender' and 'Receiver' are imputed through multiple imputations in MICE.

Standard errors in parentheses. The number of imputations is 5 in each simulation. The number of

simulations is 100.

 There are both similarities and differences when comparing the imputed simulation results

to the fully observed REM. The effect sizes are like the fully observed REM, leading to only

marginal absolute and acceptable relative bias as the estimated coefficients are close to the truth.

Considering the missingness mechanism was NDD, only a relatively small amount of bias was

anticipated because the missingness occurred randomly across the data and was not associated

with any observed or unobserved characteristics of the data. The bias introduced by these

simulations is smaller than in complete case analysis because the latter discards around 20% of the

6 As a sensitivity analysis, the REM was conducted on simulations where 'same location' was used as an additional

predictor in multiple imputation models. This analysis yielded similar conclusions, but coverage was substantially

better for same location at .51. See Table 7 in Appendix B.

21

data resulting in less accurate estimates in the latter method. Furthermore, the relative biases range

from 3.306% to 7.866% which would imply an acceptable amount of bias.

 However, the standard errors in the imputed simulations are substantially smaller than in

the fully observed scenario, resulting in statistically significant effects for reciprocity and out-

degree receiver statistics that were not found in the fully observed REM (and not in the complete

case analysis either). Using the finite population results in a smaller variance because sampling

variance is not included in estimating the total variance. Absence of sampling variance results in

substantially smaller stander errors. Consequently, the confidence intervals of the statistics in the

imputed data analysis are narrow as well, as showcased by the narrow average widths (AW) across

the simulations. Unfortunately, the coverage rates (CR), or the proportion of times the 95%

confidence intervals include the ‘true’ value are suboptimal. In only 75% of the confidence

intervals for reciprocity does the truth fall within the boundaries, while this reaches 88% and 89%

for the in-degree sender and out-degree receiver statistics. Same location only contains the true

coefficient in 17% of confidence intervals because of the severe bias in this statistic and small

standard error. Ideally, these rates should at least be 95% (Oberman & Vink, 2023). This

underperformance implies that the current imputation procedure may lead to invalid inferences

when caution is not preserved regarding the standard errors of the effect sizes. Although absolute

(and relative) bias is smaller than in the complete case analysis the smaller standard error may

falsely suggest statistically significant results.

4.5 Time imputed with spline and Stineman interpolation

 Two additional REMs were conducted where time was first interpolated through spline

interpolation and then according to the Stineman algorithm instead of the previous linear

interpolation of time. Table 6 contains the results of these REMs and conclusions remain like the

main analysis. Reciprocity and out-degree of the receiver become statistically significant while all

standard errors become substantially smaller. The small standard errors also result in similar

confidence intervals and their average widths, as well as comparable absolute and relative bias to

the main analysis with linear interpolation. Using the spline method improves reciprocity and

decreases out-degree receiver and same location coverage while in-degree sender remains the

same. At the same time, the Stineman algorithm slightly improves the coverage rates for

reciprocity and out-degree receiver but decreases it for in-degree sender while same location is the

same.

22

Table 6.

Aggregated REM results after imputation of time spline and Stineman interpolation.

Statistic β p-value CI-95%

[LB, UB]

CR Bias PB AW

Spline

Reciprocity 2.514-02

(1.057-03)

< .001 [2.220-02,

2.807-02]

.78 1.817-03 7.826 5.869-03

In-degree

sender

4.184-04

(1.062-05)

< .001 [3.887-04,

4.478-04]

.88 -1.310-05 3.194 5.897-05

Out-degree

receiver

-9.320-05

(4.188-06)

< .001 [-1.048-04,

-8.157-05]

.87 -2.965-06 4.928 2.326-05

Same location -.910

(1.081-02)

< .001 [-.940,

-.880]

.13 -4.740-06 5.493 6.000-02

Stineman

Reciprocity 2.517-02

(1.090-03)

< .001 [2.214-02,

2.819-02]

.80 1.844-03 7.957 6.050-03

In-degree

sender

4.180-04

(1.009-05)

< .001 [3.900-04,

4.461-04]

.82 -1.342-05 3.325 5.604-05

Out-degree

receiver

-9.324-05

(3.891-06)

< .001 [1.040-04,

-8.244-05]

.90 -3.006-06 4.524 2.161-05

Same

location

-.910

(1.173-02)

< .001 [-.943,

-.877]

.17 -4.734-02 5.486 6.516-02

Note. Number of possible events = 931.680, number of events = 3882. 'Time' is imputed as a single

value by interpolation. 'Sender' and 'Receiver' are imputed through multiple imputations in MICE.

Standard errors in parentheses. The number of imputations is 5 in each simulation. The number of

simulations is 100.

23

5. Discussion and Conclusions

 This study aimed to explore the extent to which (multiple) imputation of missing values

affects analyses of REH data. Missingness was simulated 100 times through the NDD mechanism

in part of the Apollo 13 data and was allowed to occur in any combination of time, sender, and

receiver information. In subsequent imputation models missing values in sender and receiver nodes

in the simulated dataset were imputed via multiple imputation, while missing time values were

interpolated by the prior and subsequent values. Next, the results of the REMs in the simulations

were aggregated and compared to the fully observed analysis and complete case analysis based on

the bias introduced in the statistics of reciprocity, in-degree sender, out-degree receiver and

whether the dyad shared the same location.

 In the fully observed analysis – the truth – the in-degree of the sender and same location

were statistically significant predictors of the event rate as higher in-degree was associated with

being a sender in the future and nodes were more likely to engage with receiver nodes who were

in a different location. The results of the subsequent analyses indicated that missingness in

relational event history (REH) data, even in a randomized fashion, biased the estimates. This

conclusion is in line with studies conducted by Kossinets (2006) and Huisman (2009) which

utilized static network data. In line with the literature on the NDD mechanism and complete case

analysis (e.g., van Buuren, 2018), complete case analysis seemed moderately reliable in an NDD

context with a substantial amount of data remaining. Although coefficients for reciprocity and in-

degree sender were overestimated, while out-degree receiver and same location were

underestimated, the statistical significance of the coefficients was not altered, which speaks in

favor of complete case analysis.

 In the analysis involving the imputed simulations, coefficients were less biased compared

to complete case analysis in how far from the 'truth' the coefficients were estimated to be. However,

smaller standard errors of the coefficients led to the reciprocity and out-degree receiver statistics

incorrectly being identified as statistically significant predictors of the event rate. Based on the

criteria of relative bias of the estimates and narrow average width of the confidence intervals these

simulated imputations seemed acceptable, but the suboptimal coverage rates for the statistics

warrant caution for making inferences from these imputations. Additional analyses where time

was interpolated through the spline and Stineman algorithms (Stineman, 1980) yielded somewhat

24

different results in the statistics, but overall conclusions were alike. In sum, while the REM after

imputation does estimate the effect size more accurately than complete case analysis, the former

falsely detected statistically significant results in reciprocity and out-degree of the receiver

whereas the latter did not.

 The are several limitations in the current study that should be mentioned. First, missing

times in the current study were interpolated from the timepoint before and after those missing

values rather than through multiple imputation. This was done because the challenge of multiple

imputations of time in REH data proved to be more complex than expected because it is essential

to preserve the chronological order while adding sufficient noise to the multiple imputations to

obtain reliable inferences. The noise in some imputations of missing times caused the order to shift

in some cases resulting in a violation of one of REH’s assumptions – that there is at least an order

in the relational events (Butts, 2008). Despite this limitation of employing single imputation, the

single imputation of missing times could perhaps be worthwhile to explore further too as indicated

by the to some extent varying results in the REMs where interpolation of time differed (linear,

spline, and the Stineman method). Because REH data is stored chronologically, in some contexts

missing values in time may be imputed with relative certainty through a single imputation as the

order may have been retained even though some of the exact times are missing. However, when

the order of social interaction in REH data is missing too, multiple imputation should most likely

be the baseline for imputation of time. Therefore, correct methods for multiple imputation of time

in REH data should be explored further as the element of time is so pivotal.

 Second, the content of the communications is overlooked in imputing missingness, but it

is reasonable to assume the messages themselves could provide valuable information for more

reliable imputation models. For instance, some communications may have a more positive

sentiment whereas others have a more negative sentiment, and including such exogenous statistics

could be an exciting direction for subsequent studies.

 Third, the current study simulates missingness through the 'simpler' NDD mechanism as it

serves as a baseline to explore the missingness problem in REH data and a logical step would be

to perform similar analyses in an SDD (or UDD) context too.

 Fourth, because samples were drawn from a finite population the variance and resulting

standard errors of the statistics were substantially smaller in the imputed simulations than in the

25

fully observed and complete case analyses. However, had sampling variance been included in the

simulations this would have led to overestimation of standard errors, and would have been

incorrect as we had the finite population at our disposal. Therefore, an important task for future

research lies in finding a balance between an appropriate amount of variance and conserving part

of the data in each simulation.

 Despite these limitations, the current study does indicate that multiple imputation of sender

and receiver data and single imputation of time performs better than complete case analysis in an

NDD context when looking at effect sizes. However, caution is required when making further

inferences from these imputation analyses based on the extremely small standard errors – and

resulting statistically significant p-values.

References

Apollo 13 Real-time. (n.d.). Retrieved from http://apollo13realtime.org/

Bates, F. L., & Harvey, C. C. (1975). The Structure of Social Systems. New York: Gardner Press.

Böhnke, P., & Link, S. (2017). Poverty and the dynamics of social networks: An analysis of

German panel data. European Sociological Review, 33(4), 615-632.

https://doi.org/10.1093/esr/jcx063

Butts, C. T. (2008). A relational event framework for social action. Sociological

methodology, 38(1), 155-200. https://doi.org/10.1111/j.1467-9531.2008.00203.x

Gile, K. J., & Handcock, M. S. (2017). Analysis of networks with missing data with application

to the National Longitudinal Study of Adolescent Health. Journal of the Royal Statistical

Society Series C: Applied Statistics, 66(3), 501-519. https://doi.org/10.1111/rssc.12184

Huisman, M. (2009). Imputation of missing network data: Some simple procedures. Journal of

Social Structure, 10(1), 1-29. https://doi.org/10.21307/joss-2019-050

Kamalabad, M. S., Leenders, R., & Mulder, J. (2023). What is the Point of Change? Change

Point Detection in Relational Event Models. Social Networks, 74, 166-181.

https://doi.org/10.1016/j.socnet.2023.03.004

Kiang, M. V., Chen, J. T., Krieger, N., Buckee, C. O., Alexander, M. J., Baker, J. T., ... &

Onnela, J. P. (2021). Sociodemographic characteristics of missing data in digital

http://apollo13realtime.org/
https://doi.org/10.1093/esr/jcx063
https://doi.org/10.1038/s41598-021-94516-7
https://doi.org/10.1111/rssc.12184
https://doi.org/10.21307/joss-2019-050
https://doi.org/10.1016/j.socnet.2023.03.004

26

phenotyping. Scientific reports, 11(1), 15408. https://doi.org/10.1038/s41598-021-94516-

7

McGloin, J. M., & Kirk, D. S. (2014). An overview of social network analysis. Advancing

Quantitative Methods in Criminology and Criminal Justice, 67-79.

Meijerink-Bosman, M., Leenders, R., & Mulder, J. (2022). Dynamic relational event modeling:

Testing, exploring, and applying. PLoS One, 17(8), e0272309.

https://doi.org/10.1371/journal.pone.0272309

Meijerink-Bosman, M., Back, M., Geukes, K., Leenders, R., & Mulder, J. (2023). Discovering

trends of social interaction behavior over time: An introduction to relational event

modeling: Trends of social interaction. Behavior Research Methods, 55(3), 997-1023.

https://doi.org/10.3758/s13428-024-02423-2

Moritz S, Bartz-Beielstein T (2017). “imputeTS: Time Series Missing Value Imputation in R.”

The R Journal, *9*(1), 207-218.

Newman, D. A. (2014). Missing data: Five practical guidelines. Organizational Research

Methods, 17(4), 372-411. https://doi.org/10.1177/1094428114548590

Newman, M. F. (2018). Networks. In Oxford University Press eBooks.

https://doi.org/10.1093/oso/9780198805090.001.0001

Oberman, H. I., & Vink, G. (2023). Toward a standardized evaluation of imputation

methodology. Biometrical Journal. https://doi.org/10.1002/bimj.202200107

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581–590.

https://doi.org/10.1093/biomet/63.3.581

Salgado CM, Azevedo C, Proença H, Vieira SM. Missing Data. In: Secondary Analysis of

Electronic Health Records. Springer, Cham (CH); 2016. PMID: 31314252.

Schafer, J. L., & Graham, J. W. (2002). Missing data: our view of the state of the

art. Psychological methods, 7(2), 147. https://doi.org/10.1037/1082-989X.7.2.147

Stadtfeld, C., & Block, P. (2017). Interactions, actors, and time: Dynamic network actor models

for relational events. Sociological Science, 4, 318-352. https://doi.org/10.15195/v4.a14

https://doi.org/10.1038/s41598-021-94516-7
https://doi.org/10.1038/s41598-021-94516-7
https://doi.org/10.1371/journal.pone.0272309
https://doi.org/10.3758/s13428-024-02423-2
https://doi.org/10.1177/1094428114548590
https://doi.org/10.1093/oso/9780198805090.001.0001
https://doi.org/10.1002/bimj.202200107
https://doi.org/10.1093/biomet/63.3.581
https://psycnet.apa.org/doi/10.1037/1082-989X.7.2.147
https://doi.org/10.48550/arXiv.1409.8542

27

Stineman, R. W. (1980). A consistently well-behaved method of interpolation. Creative

Computing, 6(7), 54-57.

Therneau, T. M. (2023, March 12). Survival Analysis [R package survival version 3.5-5].

https://cran.r-project.org/package=survival

van Buuren, S. (2018). Flexible Imputation of Missing Data (2nd ed.). Boca Raton: CRC Press.

van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained

equations in R. Journal of statistical software, 45, 1-67.

https://10.18637/jss.v045.i03

Vieira, F., Leenders, R., & Mulder, J. (2024). Fast meta-analytic approximations for relational

event models: applications to data streams and multilevel data. Journal of Computational

Social Science, 1-37. https://doi.org/10.1007/s42001-024-00290-7

Vink, G., & van Buuren, S. (2014). Pooling multiple imputations when the sample happens to be

the population. arXiv preprint arXiv:1409.8542.

https://doi.org/10.48550/arXiv.1409.8542

Vink G., (2023). mice::mice.impute.pmm.conditional()

https://github.com/gerkovink/mice/tree/match_conditional_current

https://doi.org/10.48550/arXiv.1409.8542
https://doi.org/10.1007/s42001-024-00290-7
https://doi.org/10.48550/arXiv.1409.8542
https://github.com/gerkovink/mice/tree/match_conditional_current

28

Appendix A: Apollo 13 Actors and IDs

• AFD: Assistant Flight Director from Flight directors (1)

• CAPCOM: Capsule Communicator from Flight directors (2)

• CONTROL: Control Officer from Flight directors (3)

• EECOM: Electrical, Environmental and Consumables Manager from Flight directors (4)

• All : Ground control team (without flight directores) (5)

• FDO : Flight dynamics officer (FDO or FIDO) (6)

• FLIGHT: Flight Director from Flight directors (7)

• GNC: The Guidance, Navigation, and Controls Systems Engineer from Flight directors (8)

• GUIDO: Guidance Officer from Flight directors (9)

• INCO: Integrated Communications Officer from Flight directors (10)

• NETWORK: Network of ground stations from Flight directors (11)

• TELMU: Telemetry, Electrical, and EVA Mobility Unit Officer from Flight directors (12)

• RECOVERY: Recovery Supervisor from Flight directorsc (13)

• PROCEDURES: Organization & Procedures Officer from Flight directors (14)

• FAO: Flight activities officer from Flight directors (15)

• RETRO: Retrofire Officer from Flight directors (16)

• CDR: Commander James A. Lovell Jr. crew (astronauts) (17)

• CMP: Command Module Pilot John (Jack) L. Swigert Jr. crew (astronauts) (18)

• LMP: Lunar module pilot Fred W. Haise Jr. crew (astronauts) (19)

29

Appendix B: Sensitivity Analysis

In this analysis same location was used in imputation models of sender and receiver as

additional predictor. Conclusions are similar but note that coverage rates are substantially

lower in this REM – except for reciprocity.

Table 7.

Aggregated REM results of 100 simulations after imputation of missingness with same location as

additional predictor.

Statistic β p-value CI-95%

[LB, UB]

CR Bias PB AW

Reciprocity 2.483-02

(1.001-03)

< .001 [2.205-02,

2.761-02]

.85 1.509-03 6.702 5.560-03

In-degree

sender

4.072-04

(1.047-05)

< .001 [3.781-04,

4.363-04]

.66 -2.424-05 5.612 5.815-05

Out-degree

receiver

-9.340-05

(3.888-06)

< .001 [-1.042-04,

-8.261-05]

.92 -3.167-06 4.890 2.159-05

Same

location

-.886

(8.795-03)

< .001 [-.911,

-.862]

.51 -2.330-02 2.700 4.884-02

Note. Number of possible events = 931.680, number of events = 3882. ‘Time’ imputed as single value

by interpolation. ‘Sender’ and ‘Receiver’ imputed through multiple imputation in MICE. Standard

errors in parentheses. The number of imputations is 5 in each simulation. The number of simulations

is 100.

30

Appendix C: GitHub Repository and R Syntax

Comerford D., Dominic_2024 (2024). GitHub repository,

https://github.com/mshafieek/ADS-Missing-data-social-network/tree/main/Dominic_2024

##Loading Packages and Data

Load packages

packages_to_install <- c("purrr", "furrr", "magrittr", "dplyr",

 "tibble", "survival", "tidyverse",

 "devtools", "igraph", "sna", "imputeTS", "stats")

for (pkg in packages_to_install) {

 if (!require(pkg, character.only = TRUE)) {

 # If not, install the package

 install.packages(pkg)

 }

}

library(purrr, warn.conflicts = FALSE) # for functional programming

library(furrr, warn.conflicts = FALSE) # for functional futures

library(magrittr, warn.conflicts = FALSE) # for pipes

library(dplyr, warn.conflicts = FALSE) # for data manipulation

library(tibble, warn.conflicts = FALSE) # for tibbles

library(survival, warn.conflicts = FALSE) # for REM analysis

library(tidyverse, warn.conflicts = FALSE) # tidyverse

library(tidyr, warn.conflicts = FALSE) # tidyr

library(igraph, warn.conflicts = FALSE) # network graphs

library(sna, warn.conflicts = FALSE) # social network analysis

library(imputeTS, warn.conflicts = FALSE) # time interpolation

library(stats, warn.conflicts = FALSE) # for a range of model stats

devtools::install_github("TilburgNetworkGroup/remify")

devtools::install_github("gerkovink/mice@match_conditional_current")

devtools::install_github("TilburgNetworkGroup/remstats")

library(mice, warn.conflicts = FALSE) # for imputation and amputation

library(remstats, warn.conflicts = FALSE) # for REM statistics

library(remify, warn.conflicts = FALSE) # for converting

Load data

con <- url("https://github.com/mshafieek/ADS-Missing-data-social-

network/raw/main/literature_%20REM/Tutorial_REM_REH_DATA/UUsummerschool.Rdata

")

load(con)

apollo <- PartOfApollo_13 %>%

 rename(

 actor1 = sender,

 actor2 = receiver

)

rm(Class, PartOfApollo_13, Twitter_data_rem3, WTCPoliceCalls, ClassIntercept,

 ClassIsFemale, ClassIsTeacher, WTCPoliceIsICR, con, pkg)

Same location dummy

apollo$s_ast <- ifelse(apollo$actor1 > 16, 1, 0)

https://github.com/mshafieek/ADS-Missing-data-social-network/tree/main/Dominic_2024

31

apollo$r_ast <- ifelse(apollo$actor2 > 16, 1, 0)

apollo$same_location <- ifelse(apollo$s_ast == apollo$r_ast, 1, 0)

apollo$s_ast <- NULL

apollo$r_ast <- NULL

head(apollo)

tail(apollo)

summary(apollo)

str(apollo)

#Descriptive network analysis

edges_apollo <-

data.frame(from=c(as.character(apollo[,2])),to=c(as.character(apollo[,3])))

graph_apollo <- graph_from_data_frame(edges_apollo,directed = TRUE)

net <- simplify(graph_apollo, remove.multiple = T) # remove multiple edges

for snapshot network analysis

edge_density(net)

centr_clo(net, mode="all", normalized=T)$centralization

centr_betw(net, directed=T, normalized=T)$centralization

centr_eigen(net, directed=T, normalized=T)$centralization

transitivity(net, type="global")

diameter(net, directed=T)

mean_distance(net, directed=T)

sum(apollo$same_location)

set.seed(0)

ApolloNet <- as.sociomatrix.eventlist(apollo[1:3], 19)

Figure_1 <- gplot(ApolloNet, jitter = TRUE, pad = .075,

 mode = "target",

 displaylabels = TRUE, label.pos = 0, label.cex = .75,

 boxed.labels = TRUE, label.pad = .5,

 displayisolates = FALSE, vertex.cex=.6,

 arrowhead.cex = .75, edge.lwd = -.75, edge.col = "gray",

 vertex.col = ifelse(seq_along(ApolloNet) %in% c(17, 18, 19),

"blue", "red")) # astronauts as blue

##Sufficient set & Missingness function

set.seed(123) # fix seed to realize a sufficient set

apollo <- apollo |> as_tibble()

indic <- sample(1:nrow(apollo), 1500)

remify(apollo[indic,], model = "tie") %>% dim() # check if 16 nodes

Combine the sufficient set and the incomplete set

make_missing <- function(x, indic) {

 x$time_index <- seq_len(nrow(x))

 sufficient <- x[indic,]

 miss <- x[-c(indic),] |>

 ampute(prop = 0.4,

 mech = "MCAR", # (4th column is same location, 5th column is

time_index)

 patterns = matrix(c(1,1,0,1,1, # missing in actor 2

 1,0,1,1,1, # missing in actor 1

 0,1,1,1,1, # missing in time

 0,0,0,1,1, # missing in all

32

 1,0,0,1,1, # missing in actor 1 + 2

 0,1,0,1,1, # missing in time + actor 2

 0,0,1,1,1 # missing in time + actor 1

), nrow=7,

 byrow=TRUE)) %>%

 .$amp

 combined <- rbind(sufficient, miss)

 combined <- combined[order(combined$time_index),]

 combined <- combined[-5] # remove time_index

 return(combined)

}

##Interpolate 'time' before MICE

set.seed(123)

mbased_finite_apollo_miss <-

 furrr::future_map(1:100, ~ { # Create 100 simulated datasets with

missingness

 make_missing(apollo, indic) }, .options = furrr_options(seed = 123))

mbased_finite_apollo_miss_cc <- mbased_finite_apollo_miss # for later

complete case analysis before time gets imputed

Figure_2 <- md.pattern(mbased_finite_apollo_miss[[1]], rotate.names = TRUE)

##Impute time with interpolation (single imputation)

for (i in 1:length(mbased_finite_apollo_miss)) {

 # Impute missing values in the 'time' column using na_interpolation

 mbased_finite_apollo_miss[[i]]$time <-

na_interpolation(mbased_finite_apollo_miss[[i]]$time)

}

When using the spline and stineman methods for interpolation of time:

for (i in 1:length(mbased_finite_apollo_miss)) {

Impute missing values in the 'time' column using na_interpolation

mbased_finite_apollo_miss[[i]]$time <-

na_interpolation(mbased_finite_apollo_miss[[i]]$time, option = "spline")

}

for (i in 1:length(mbased_finite_apollo_miss)) {

Impute missing values in the 'time' column using na_interpolation

mbased_finite_apollo_miss[[i]]$time <-

na_interpolation(mbased_finite_apollo_miss[[i]]$time, option = "stine")

}

##Impute sender and receiver through MICE

##Multiple imputation specification

whichcol <- c("", "actor2", "actor1", "") # Ensure that actor 1 != actor 2 in

imputations

names(whichcol) <- colnames(apollo)

predictor matrix

pred <- make.predictorMatrix(apollo)

pred[c("actor1", "actor2"), "same_location"] <- 0 # exclude same location as

predictor of actor 1 + 2. Comment out for sensitivity analyses (Table 7)

use the pmm.conditional method

method <- make.method(apollo)

method[c(2,3)] <- "pmm.conditional"

mbased_finite_apollo <-

 furrr::future_map(1:100, ~ {

33

 mice(mbased_finite_apollo_miss[[.x]],

 m = 5,

 maxit = 5,

 method = method,

 whichcolumn = whichcol,

 predictorMatrix = pred,

 print = FALSE)

}, .options = furrr_options(seed = 123))

##Multiple imputation check

Missing data pattern of all simulations.

convergence <- plot(mbased_finite_apollo[[5]])

convergence

stripplot <- stripplot(mbased_finite_apollo[[5]])

stripplot

##Defining REM effects and preparing data for Cox function

Defining effects for REM

effects <- ~ -1 + reciprocity(scaling = ("std")) + indegreeSender() +

outdegreeReceiver()

Function to get the statistics of the previously defined effects.

stats_function <- function(data) {

 # remify the data

 reh <- remify::remify(edgelist = data, model = "tie")

 # calculate effect statistics

 statsObject_imp <- remstats(reh = reh, tie_effects = effects)

 # Return the statistics

 return(statsObject_imp)

}

Function for making the data compatible with coxph()

prepare_coxph_data <- function(statsObject, apollo) {

 risk_sets <- attr(statsObject, "riskset")

 risk_sets <- risk_sets %>% select(-'id')

 # Get the times

 time <- apollo$time

 # merge riskset with each timepoint

 combined <- merge(risk_sets, time, by = NULL)

 combined <- combined %>% rename("time" = "y")

 combined <- lapply(combined, as.numeric)

 combined <- as.data.frame(combined)

 # Create matrices for subtraction to make a status column for coxph

 combined_matrix <- data.matrix(combined)

 matrix_rows <- nrow(combined)

 repeated_df <- apollo[rep(seq_len(nrow(apollo)), each = 240),]

 repeated_df <- repeated_df[, c(2,3,1)]

 apollo_matrix <- data.matrix(repeated_df)

 status_matrix <- apollo_matrix - combined_matrix

 # create a status column

 status <- as.integer(rowSums(status_matrix == 0) == ncol(status_matrix))

 status <- as.data.frame(status)

34

 # Add status to the combined set

 combined <- cbind(combined, status)

 # Extract statistics and add them to the dataframe

 reciprocity <- statsObject[,,1]

 indegreeSender <- statsObject[,,2]

 outdegreeReceiver <- statsObject[,,3]

 combined$reciprocity <- c(reciprocity)

 combined$indegreeSender <- c(indegreeSender)

 combined$outdegreeReceiver <- c(outdegreeReceiver)

 ## add same location

 combined$s_ast <- ifelse(combined$sender > 16, 1, 0)

 combined$r_ast <- ifelse(combined$receiver > 16, 1, 0)

 combined$same_location <- ifelse(combined$s_ast == combined$r_ast, 1, 0)

 combined$s_ast <- NULL

 combined$r_ast <- NULL

 return(combined)

}

##Fully observed data

TRUE ANALYSIS

true.reh <- remify(edgelist = apollo,

 model = "tie")

calculate stats

stats <- remstats(tie_effects = effects,

 reh = true.reh)

use the function to create the correct format of the dataframe

true.cox.set <- prepare_coxph_data(stats, apollo)

fit cox model

true.cox.fit <- coxph(Surv(time, status) ~ reciprocity + indegreeSender +

 outdegreeReceiver + same_location,

 data=true.cox.set)

true <- coefficients(true.cox.fit) # save the true values

true.cox.fit

BIC(true.cox.fit)

##Analysis on time (interpolated), actor 1 + 2 Multiple imputed

Running the REM on simulations

Results1 <-

 mbased_finite_apollo[1:10] %>%

 map(~.x %>% # for every simulation

 complete("all") %>%

 map(~.x %>% # for every imputation

 stats_function() %>% # do stats function

 prepare_coxph_data(apollo = .x) %$% # prepare cox ph

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver +

 same_location)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

35

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound

CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper

bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term") # `term` as rownames

)

Results2 <-

 mbased_finite_apollo[11:20] %>%

 map(~.x %>% # for every simulation

 complete("all") %>%

 map(~.x %>% # for every imputation

 stats_function() %>% # do stats function

 prepare_coxph_data(apollo = .x) %$% # prepare cox ph

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver+

 same_location)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound

CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper

bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term") # `term` as rownames

)

Results3 <-

 mbased_finite_apollo[21:30] %>%

 map(~.x %>% # for every simulation

 complete("all") %>%

 map(~.x %>% # for every imputation

36

 stats_function() %>% # do stats function

 prepare_coxph_data(apollo = .x) %$% # prepare cox ph

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver+

 same_location)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound

CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper

bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term") # `term` as rownames

)

Results4 <-

 mbased_finite_apollo[31:40] %>%

 map(~.x %>% # for every simulation

 complete("all") %>%

 map(~.x %>% # for every imputation

 stats_function() %>% # do stats function

 prepare_coxph_data(apollo = .x) %$% # prepare cox ph

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver+

 same_location)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound

CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper

bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

37

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term") # `term` as rownames

)

Results5 <-

 mbased_finite_apollo[41:50] %>%

 map(~.x %>% # for every simulation

 complete("all") %>%

 map(~.x %>% # for every imputation

 stats_function() %>% # do stats function

 prepare_coxph_data(apollo = .x) %$% # prepare cox ph

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver+

 same_location)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound

CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper

bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term") # `term` as rownames

)

Results6 <-

 mbased_finite_apollo[51:60] %>%

 map(~.x %>% # for every simulation

 complete("all") %>%

 map(~.x %>% # for every imputation

 stats_function() %>% # do stats function

 prepare_coxph_data(apollo = .x) %$% # prepare cox ph

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver+

 same_location)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

38

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound

CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper

bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term") # `term` as rownames

)

Results7 <-

 mbased_finite_apollo[61:70] %>%

 map(~.x %>% # for every simulation

 complete("all") %>%

 map(~.x %>% # for every imputation

 stats_function() %>% # do stats function

 prepare_coxph_data(apollo = .x) %$% # prepare cox ph

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver+

 same_location)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound

CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper

bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term") # `term` as rownames

)

Results8 <-

 mbased_finite_apollo[71:80] %>%

 map(~.x %>% # for every simulation

 complete("all") %>%

 map(~.x %>% # for every imputation

 stats_function() %>% # do stats function

39

 prepare_coxph_data(apollo = .x) %$% # prepare cox ph

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver+

 same_location)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound

CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper

bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term") # `term` as rownames

)

Results9 <-

 mbased_finite_apollo[81:90] %>%

 map(~.x %>% # for every simulation

 complete("all") %>%

 map(~.x %>% # for every imputation

 stats_function() %>% # do stats function

 prepare_coxph_data(apollo = .x) %$% # prepare cox ph

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver+

 same_location)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound

CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper

bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

40

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term") # `term` as rownames

)

Results10 <-

 mbased_finite_apollo[91:100] %>%

 map(~.x %>% # for every simulation

 complete("all") %>%

 map(~.x %>% # for every imputation

 stats_function() %>% # do stats function

 prepare_coxph_data(apollo = .x) %$% # prepare cox ph

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver+

 same_location)) %>%

 pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool

coefficients

 .$pooled %>% # extract table of pooled coefficients

 mutate(true = true, # add true

 df = m-1, # correct df

 riv = Inf, # correct riv

 std.error = sqrt(t), # standard error

 statistic = estimate / std.error, # test statistic

 p.value = 2 * (pt(abs(statistic),

 pmax(df, 0.001),

 lower.tail = FALSE)), # correct p.value

 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound

CI

 `97.5 %` = estimate + qt(.975, df) * std.error, # upper

bound CI

 cov = `2.5 %` < true & true < `97.5 %`, # coverage

 bias = estimate - true) %>% # bias

 select(term, m, true, estimate, std.error, statistic, p.value,

 riv, `2.5 %`, `97.5 %`, cov, bias) %>%

 column_to_rownames("term") # `term` as rownames

)

##Combining Results

Combining Results

Results <- list(Results1,

 Results2,

 Results3,

 Results4,

 Results5,

 Results6,

 Results7,

 Results8,

 Results9,

 Results10) %>%

 purrr::flatten()

##Save results

save(Results, file = "TimeINT_A12_MI.RData")

##Percentage bias and average width

load("TimeINT_A12_MI.RData")

41

Adding percentage bias and average width to the Results

#function for average width and percentage bias.

AW <- function(df) df[["97.5 %"]] - df[["2.5 %"]]

PB <- function(df) 100 * abs((df[["estimate"]] - df[["true"]]) /

df[["true"]])

Results_with_extra <- lapply(Results, function(df) {

 df$PB <- PB(df)

 df$AW <- AW(df)

 df

})

Average sims

Reduce("+", Results_with_extra) / length(mbased_finite_apollo)

##Complete Case Analysis

cox_sets_for_incomplete <- function(data) {

 statsObject <- remify::remify(edgelist = data, model = "tie") %>%

 remstats(tie_effects = effects) # create statistics for every amputed

dataset

 # make sure that complete apollo data to compare with is the same size as

 # amputed dataset with only complete cases

 complete.cases <- data[complete.cases(data),]

 index <- as.numeric(rownames(complete.cases))

 apollo.missing <- apollo[index,]

 # take the single riskset

 # remove the id column

 risk_sets <- attr(statsObject, "riskset") %>% select(-'id')

 # creating one set with all risksets for each time point

 combined <- merge(risk_sets, apollo.missing$time, by=NULL) %>%

 rename(time = y) %>%

 .[, c("time", "sender", "receiver")] %>%

 mutate(sender = as.numeric(sender),

 receiver = as.numeric(receiver))

 # GV: Calculate divergence

 diff <- apollo.missing[rep(seq_len(nrow(apollo.missing)), each = 240),] %>%

 data.matrix() %>%

 .[, 1:3] - combined

 # GV: identify non-divergence

 combined$status <-

 rowSums(diff == 0) == ncol(diff)

 #combining the dataset with riskset to the statistic

 combined$reciprocity <- c(statsObject[,,1])

 combined$indegreeSender <- c(statsObject[,,2])

 combined$outdegreeReceiver <- c(statsObject[,,3])

 combined$status <- as.integer(as.logical(combined$status))

 ## add same location

 combined$s_ast <- ifelse(combined$sender > 16, 1, 0)

 combined$r_ast <- ifelse(combined$receiver > 16, 1, 0)

 combined$same_location <- ifelse(combined$s_ast == combined$r_ast, 1, 0)

 combined$s_ast <- NULL

42

 combined$r_ast <- NULL

 return(combined)

}

set.seed(123)

cox model on complete cases

complete.case.fit <- mbased_finite_apollo_miss_cc %>%

 map(~.x %>% # for every completed data set....

 cox_sets_for_incomplete() %$%

 coxph(Surv(time, status) ~

 reciprocity +

 indegreeSender +

 outdegreeReceiver +

 same_location))

create a dataframe out of the cox model objects

results <- list()

Generate 100 dataframes

for (i in 1:100) {

 # Create a dataframe with columns of results from the cox models

 df <- data.frame(

 coef = complete.case.fit[[i]]$coefficients,

 se = coef(summary(complete.case.fit[[i]]))[, "se(coef)"],

 p = coef(summary(complete.case.fit[[i]]))[, "Pr(>|z|)"],

 true = true[1:4]

)

 rownames(df) <- c("reciprocity", "indegreeSender", "outdegreeReceiver",

"same_location")

 # Append the dataframe to the list

 results[[i]] <- df

}

bic_complete_case <- numeric(length(complete.case.fit))

Iterate over the list and extract BIC values

for (i in seq_along(complete.case.fit)) {

 bic_complete_case[i] <- BIC(complete.case.fit[[i]])

}

Compute the average BIC

average_bic_complete_case <- mean(bic_complete_case)

average_bic_complete_case

average the results across all simulations

average <- results %>%

 map(~.x %>%

 mutate(bias = coef - true) %>% # bias

 select(true, coef, se, p,

 bias)) %>%

 Reduce("+", .) / length(mbased_finite_apollo_miss_cc)

average

Calculate risk set size and number of relational events in CC-analysis

nevent_values <- map_dbl(complete.case.fit, "nevent")

min(nevent_values)

max(nevent_values)

n_values <- map_dbl(complete.case.fit, "n")

min(n_values)

max(n_values)

