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Abstract 

 Relational event history (REH) data is a specific type of dynamic network data containing 

the time-stamped interactions between nodes in a network. REH data is characterized by its high 

resolution compared to regular network data and is increasingly available due to technological 

advancements. Therefore, it can potentially be crucial in investigating complex social and 

behavioral phenomena. The state-of-the-art method to analyze REH data is through a relational 

event model (REM) and managing missing data within this context is crucial as it can significantly 

impact the validity of results. While (multiple) imputation methods are well-regarded for their 

reliability, they remain underexplored within the realm of dynamic social networks, particularly 

in REH data. This study aims to bridge this gap by focusing on REH data to improve the robustness 

of REM analyses involving missing data in social network research. 

 By simulation and imputation of missing data in part of the Apollo 13 mission data, this 

study compares REM analyses of imputed data to their true and complete case analysis 

counterparts. Multiple imputation was employed for missingness in sender and receiver nodes, 

while time values were interpolated in several ways. Bias, coverage, and confidence interval width 

are evaluated in reciprocity, in-degree sender, out-degree receiver, and the same location statistics.  

  Results revealed biases in the estimated statistics. Imputed analyses showed reduced 

absolute and relative bias, but incorrect statistical significance compared to complete case analysis. 

Multiple imputation improved effect size estimation compared to complete case analysis, 

suggesting its potential in REH data. This finding also highlights the need for refined methods 

specifically tailored to imputing time data, ensuring more accurate and reliable analyses in the 

study of dynamic social networks. 

 Key words: relational event history, relational event model, social network analysis, 

missing data, multiple imputation, interpolation 
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1. Introduction 

 Because of the widespread occurrence of missingness in social network data the necessity 

of addressing missing data problems in social network analysis (SNA) is generally accepted 

(Kossinets, 2006; Huisman, 2009). However, current SNA often utilizes incomplete data, resulting 

from the exclusion of nodes (actors) or edges (associations) between nodes (e.g., applying listwise 

deletion). Employing such approaches may lead to biased results in SNA, even when missingness 

is randomized (Kossinets, 2006; Huisman, 2009). Even randomized missingness can lead to bias 

because the architecture of the network might change drastically even at small proportions of 

missingness.  

 Typically, SNA originates from static social network data that merely allows for analyzing 

a snapshot of that network or from panel data that allows for analyzing the same network over time 

in similar static snapshots (e.g., Böhnke & Link, 2017). In recent decades, however, statistical and 

computational advances have made it possible to model more complex network dynamics, through 

analyzing the network’s time-ordered interactions. This type of dynamic data is referred to as 

relational event history (REH) data and the state-of-the-art method to analyze such data is through 

the relational event model (REM; Butts, 2008). 

 Three reasons together legitimize addressing the missing data problem in REH data (and 

REMs) in favor of more traditional social network data (and models). Firstly, REH data is one of 

the highest resolution and precise network data, which allows a deeper understanding of how social 

interactions evolve over time and for the modelling of more complex social phenomena. By 

maintaining the order of interactions, it is possible to include the past in the prediction of future 

interactions rendering it more informative than traditional SNA. Secondly, REH data is becoming 

increasingly available due to data being more and more recorded in a time series fashion (e.g., 

digital communication is often stored automatically, and updated when a new communication is 

sent). And thirdly, there is even less research on the missingness problem in REH compared to 

traditional social network data.  

 There are numerous options for handling missing (network) data. In many statistical 

software packages, the default method ignores missing values and merely uses the measured 

observations – referred to as complete case analysis or listwise deletion. When missingness occurs 

randomly, this method may produce reliable means, regression coefficients and correlations. 
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However, it results in overestimated standard errors depending on the proportion of missing values 

(van Buuren, 2018). Unfortunately, applying complete case analysis often leads to a loss of 

information, reduction of statistical power, and more worryingly, bias in the coefficients (van 

Buuren, 2018; Schafer & Graham, 2002). Other treatments of missing values involve weighting, 

likelihood-based procedures, and single-value - or multiple imputation and much is known about 

how these treatments affect the harm inflicted by missingness in various types of data (e.g., Schafer 

& Graham, 2002; Newman, 2014). Consequently, it is also known that multiple imputation is often 

a reliable method to manage missingness in statistical analyses compared to other methods (van 

Buuren, 2018).  

 However, there still is a gap in the literature on the effects of missingness and treatment 

thereof in social network models in general, and in dynamic social network models such as the 

relational event model (REM) specifically. The current study simulates and imputes such 

missingness in a section of Apollo 13 REH data containing the timestamped, chronologically 

ordered communications sent among ground and space crew and compares resulting analyses to 

their true coefficients and the complete case analysis. Researching to what extent missingness in 

REH data (time, sender, and/or receiver of communications) introduces bias and to what extent 

imputation of missing values corrects for biases are the focal questions in this study.  

 In the subsequent sections, the theoretical background of social network analysis, REH 

data and REM, as well as the implications of missing data will be discussed first. Afterwards, the 

data and methods, as well as the analysis strategy will be elaborated upon and then the results of 

the various REMs will be discussed. In the fifth and final section, the study's results will be 

discussed along with the study's conclusions and directions for future research. 

2. Theoretical Background 

2.1 Social network analysis 

 A (social) network can be defined as a collection of nodes connected through edges 

(Newman, 2018). The units of interest in social network analysis revolve around the relationships 

among nodes, such as the edges between individuals, between communities, or between other 

entities. An example of a social network is displayed in Figure 1, which shows the aggregated 

communication network among nodes in a section of the Apollo-13 mission communication data. 
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An arrow from one node to another indicates that the former has sent a message to the latter at 

least once.  

 Some informative network characteristics can be derived from such network graphs as it 

clearly shows node seven is a central unit that connects peripheral nodes and that the blue nodes 

form a triangle within the network. Considering node seven represents the flight director and the 

triplet constitutes the three astronauts, such an architecture seems plausible in this network (see 

Appendix A for the actor IDs and their roles). 

 

 Consequently, because of its emphasis on interaction among nodes, social network analysis 

(SNA) requires data on the edges between nodes, and these edges can take various forms. For 

example, SNA may focus on friendships between colleagues or on communication instances 

between astronauts and ground control. Based on the characteristics of these edges and the research 

objectives, edges can either be directed or undirected (Newman, 2018). Undirected edges 

encompass mutual ties such as shared affiliations while directed edges involve a certain flow or 

Figure 1. 

Network graph (directed) of communication between nodes in Apollo-13 data. 

Note. Astronaut nodes are in blue, and ground control nodes are in red. An arrow represents whether a node 

communicated with a target node. 
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direction in the relationship such as a communication sent from ground control to an astronaut at 

a certain time point.  

 This focus on edges and nodes contrasts with traditional studies that focus on individual 

attributes to understand behavior (McGloin & Kirk, 2014). An individual attribute could be a 

measure of a person's communication skills and researchers are then interested in associations 

between variables. In contrast, the occurrence or intensity of communication between individuals 

represents a relational event which can be modelled to analyze the evolution of interaction within 

a network. 

 SNA based on such relational events implicitly suggests that the quantity and type of 

connections among nodes can be informative explanatory factors in predicting future events 

(McGloin & Kirk, 2014). In other words, the relational history in the data may be predictive of 

further network dynamics. In the context of the Apollo-13 mission, past communication may be 

an informative characteristic in predicting further communication dynamics within the Apollo 13 

network. For the dynamics in these relational event data to be analyzed a specific type of network 

model needs to be employed – the relational event model. 

2.2 Relational event history data and relational event models 

 Relational events can be understood as actions that occur as discrete events at a certain 

point in time where one node exhibits a behavior targeted at one or multiple other nodes in the 

network (Bates & Harvey, 1975; Butts, 2008). A sequence of those discrete events, in continuous 

time, is then described as relational event history (REH) data and encompasses at least the times 

or order of events, and dyads of sender and receiver nodes (Butts, 2008). Table 1 entails the first 

two and last two cases of the Apollo 13 REH data, as each row represents a discrete time-stamped 

event where a message is sent from a sender to a receiver node. Here, the sender column shows 

what node sent the message, while the receiver column contains the target of that message.  
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Table 1.  

Relational events of Apollo-13 communication. 

Time Sender ID Receiver ID 

11849.2 18 2 

11854.2 2 18 

… … … 

50012.8 7 4 

50014.8 4 7 

Note. Total number of recorded events is 3882 among 16 nodes. 

Time is in seconds from the onset of the mission. 

  

 The relational event model (REM) is a gold standard for analyzing REH data and provides 

a framework for modelling the predictors (statistics) that explain how interactions or relationships 

evolve. In this model, events occur at discrete moments in time and thus have a well-defined 

duration, and ties between nodes exist in these short moments in continuous time and dissolve 

after. These points imply that there is a clear understanding of the order and duration of interaction 

over time and allow for examining the expected dyad of nodes that will communicate, and the 

expected time till a relational event occurs (Butts, 2008). Note that a static (panel) network model 

differs herein as in the REM ties are short-lasting and exist at exact time points. 

 In a REM the time between events with exponential distribution is modelled with rate 

parameter 𝜆. The events rate, 𝜆, shows the propensity of an event to occur which determines which 

nodes will interact and when this interaction will occur (Butts, 2008; Meijerink-Bosman et al., 

2023).  It is assumed that 𝜆 is a log-linear function of exogenous and endogenous statistics. 

Exogenous statistics entail characteristics such as ‘age’ or ‘location’ of individual nodes or edges 

and allow for researching to what extent certain attributes determine the event rate. In contrast, 

endogenous statistics encompass the likelihood of potential subsequent events conditional on past 

events, such as a dyad's prior communication. The event rate can then be modelled as the outcome, 

regressed on by predetermined statistics in a log-linear function (Meijerink-Bosman et al., 2023):  
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log 𝜆 (𝑠, 𝑟, 𝑡) =  ∑𝛽𝑝𝑋𝑝(𝑠, 𝑟, 𝑡), 

 where βp refers to the impact of the p-th statistic Xp(s,r,t) on the event rate. Consequently, 

by estimating the model parameters, βp, linked to exogenous and endogenous statistics inferences 

can be made on the occurrences and dynamics of communication within a network over time 

(Meijerink-Bosman et al., 2022).  

 To estimate the event rates, it is first necessary to construe a risk set entailing all possible 

events that might occur, resulting in a matrix of all conceivable dyads. In the context of directed 

edges of a sending node, defined as s and a receiving node, defined as r at time-point t, the matrix 

s times r represents all possible relational events at time-point t. Thus, the Apollo-13 

communication risk set comprises N (N - 1), or (16 x 15 =) 240 potential events at each time-point, 

where N represents the number of nodes in the network.1  

 Second, the likelihood of an event (s, r, t) to occur is equal to the occurrence rate of that 

event relative to the sum of rates for all events in the risk set at that time point (Butts, 2008). This 

rule ensures more common events are assigned higher event rates compared to the less common 

events, and can be defined as: 

𝑃((𝑠, 𝑟)|𝑡) =
𝜆(𝑠,𝑟,𝑡)

∑𝜆(𝑠,𝑟,𝑡)
. 

2.3 Missing data 

 There could be numerous reasons that social network data, including REH data, are 

incomplete and these include but are not limited to respondent inaccuracy, non-response, and 

technological failures (Kossinets, 2006; Kiang et al., 2021). For example, nodes might falsely 

portray the absence of edges to other nodes, nodes might not respond at all, or data might go 

missing due to electronic malfunctioning. The mechanisms by which missingness occurs can vary 

too and in the literature are described as Not Data Dependent (NDD), Seen Data Dependent (SDD), 

and Unseen Data Dependent (UDD) (Rubin, 1976; van Buuren, 2018).2 

 
1 For practical reasons it is assumed in the current study that a node cannot send messages to multiple other nodes 

simultaneously however it is possible to model such interaction in a REM. 

2 NDD, SDD and UDD are typically referred to as Missing Completely at Random (MCAR), Missing at Random 

(MAR) and Missing Not at Random (MNAR), respectively. However, in the current study, the 'data dependent' 

terminology from Hand (2020) is used as it directly conveys the missingness mechanism at play.  
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 NDD describes situations where the probability of missingness is equal across all cases, 

meaning that the research questions we pose to answer are unrelated to the distribution of the 

missing values. Consequently, beyond the loss of information, various complexities stemming 

from such missing data may be overlooked. In contrast, in situations where missingness is affected 

by either observed (SDD), or unobserved (UDD) characteristics of the data, the research questions 

of interest are related to the missingness. Hence, making inferences from subsequent analyses 

requires more critical evaluation than in an NDD context (van Buuren, 2018).  

 Because the current article is exploratory in terms of imputing missing values in relational 

event history (REH) data, only NDD is further described as it serves as the benchmark against 

which imputation should be evaluated. In other words, if imputation is not satisfactory in the more 

convenient NDD context, it will likely also not be in one defined by the more problematic contexts 

of SDD or UDD (van Buuren, 2018). Mathematically, the NDD situation can be formulated as:  

Pr(R = 0|Yobs, Ymis,ψ) = Pr(R = 0|ψ). 

 Here, Y is a matrix composed of Yobs and Ymis, or the observed and missing values, R 

represents a missingness matrix in which each cell indicates whether the aligning cell in Y is 

missing (0) or observed (1), while ψ encompasses the missing data model parameters such as the 

probability for a missing value to occur. So, the probability of data being missing in an NDD 

context depends on ψ, the general missingness probability, as each value has an equal chance to 

be missing, rather than on Yobs or Ymis. In sum, NDD is a mechanism resulting in missingness to 

occur randomly across the data. 

 Most social network analyses ignore the problem of missingness by analyzing complete 

cases while others transform missing edges between nodes to be non-existing edges, which can 

lead to biased inferences (Gile & Handcock, 2017). A more truthful method to handle missing data 

is through multiple imputation as it acknowledges the uncertainty and variance surrounding 

missing values. By creating multiple versions of the data through the replacement of a missing 

value by a plausible one, multiple imputation allows for analyzing each imputed dataset 

individually before merging the estimates (van Buuren, 2018).   

2.4 This study 

 This study aims to analyze how (multiple) imputation of missing values affects analyses of 

REH data. Missingness is simulated through the NDD mechanism in part of the Apollo-13 
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communication data and is allowed to occur in the time, sender, or receiver information or in any 

combination of this information. Subsequently, missing values are imputed through (multiple) 

imputation. Next, REMs of imputed datasets are compared to the analysis utilizing the fully 

observed communication data (the true estimates) and the complete case analysis (the default 

method to handle missing values in many applications) In doing so, the current research improves 

our understanding of 1) to what extent missing data occurring randomly, specifically missingness 

in time, biases results in REMs, and 2) to what extent current techniques for imputing missing data 

may help correct for bias.  

3. Data and Methods 

3.1 Data 

 Following Shafiee Kamalabad et al. (2023), communication data from the Apollo 13 

mission, as REH data, was used for the empirical analyses, specifically from the time surrounding 

the iconic phrase “Houston, we’ve had a problem.”3 This ‘problem’ occurred fifty-six hours into 

the mission and referred to an exploded oxygen tank. At that moment, the mission turned from a 

routine journey destined to the moon into a mission to solve life threatening issues and safely 

return the astronauts to Earth. Luckily, they did in the end - aided by clear communication within 

the network.  

 In this study part of the Apollo 13 communication data is analyzed, focusing on the 

sequence of communications that occurred within the network. As such, the relational events are 

time-stamped directed communications from a sender to a receiver node (see Table 1). Note that 

time is in seconds from the onset of the mission, and the sender and receiver columns contain the 

ID rather than the role of the nodes (see Appendix A for more information). After selecting the 

Apollo 13 communications from around an hour before to approximately six hours after the 

moment the tank exploded, a dataset of 3882 relational events among 16 nodes remained.  

3.2 Measures 

 In this study, we focus on the impact of missing data and how to make valid inferences 

through (multiple) imputation in REMs rather than analyzing the exact content of communications. 

 
3 The complete communication transcript can be retrieved from http://apollo13realtime.org/. The used 

subset of Apollo 13 is web-scraped and does not have any privacy or ethical limitations. 

http://apollo13realtime.org/
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Therefore, the content of the communications is excluded but like Shafiee Kamalabad et al. (2023 

the endogenous statistics; reciprocity, indegree sender, and outdegree receiver are included. Also, 

as an exogenous statistic, it is considered whether a sender and receiver of a communication are in 

the same or different locations. Including these statistics allows for modelling network dynamics 

based on past relational events as well as disentangling location effects on communication and 

comparing the extent to which results from various models differ.  

Reciprocity. The reciprocity statistic assumes there is a tendency for node 1 to reciprocate 

communication to node 2 if node 2 has contacted node 1 in the past. Indeed, studies have shown 

that nodes that have received communications are likely to reciprocate these in the future (Stadfeldt 

& Block, 2017; Shafiee Kamalabad et al., 2023).  

In-degree sender. The in-degree of the sender statistic refers to the number of communications a 

node has received and assumes that those with a higher in-degree have a higher likelihood of 

initiating contact in the future (Butts & Marcum, 2017). For instance, when node 1 receives 

relatively many communications up to a certain time-point, it is expected that node 1 has a 

relatively high probability of initiating contact in the future compared to a node that has received 

fewer communications. 

Out-degree receiver. The out-degree of the receiver statistic refers to the number of 

communications a receiver node has transmitted, and it is assumed that nodes with a higher out-

degree have a higher likelihood of being contacted in the future (Butts & Marcum, 2017). For 

instance, when node 2 sends relatively many communications up to a certain time-point, it is 

expected that node 2 has a relatively high probability of being contacted in the future themselves 

compared to a node that has sent fewer communications. 

Same location. The same location statistic reflects an exogenous attribute that a sender and 

receiver’s rate of interacting is determined by whether the dyad shares the same location. In other 

words, whether the nodes are in the same group – astronauts or ground control. A binary variable 

was coded where intragroup communication among the space crew (node 17, node 18, and node 

19) and ground control (the other actors) was assigned a 1, and intergroup communication a 0. A 

negative effect of ‘same location’ reflects that nodes who are in the same location initiate future 

communication with a lower event rate compared to nodes in different locations. Because there is 

a clear structure and hierarchy before sending a message from ground control to the astronauts it 
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is expected that 'same location' will have a negative effect on the event rate. Ground crew, as well 

as the astronauts, are likely to communicate off the record before sending a coordinated message 

via the Apollo 13 channel. 

3.3 Analysis strategy 

 The analysis can be divided into three main components, and these are 1) missingness 

amputation, 2) missingness imputation, and 3) the REM analyses. 

Missingness amputation. The first step in the analysis was to create missingness through the NDD 

mechanism in the Apollo 13 data in 100 simulations. To include every node in each simulated 

dataset the same 1500 relational events were drawn and preserved from the complete data and 

included in each simulation. Part of the data was preserved because some nodes occurred rarely 

and would have been removed altogether in some simulations by amputation over all relational 

events. Therefore, preserving some communication resulted in the same number of nodes (16) in 

each simulation, and thus equal risk set sizes (240), a requirement for comparisons of different 

REMs.  

 For robustness, the amputation was done 100 times by creating various versions of Apollo 

13 data with 40% of rows containing at least one missing value in the remaining data. So, 40% of 

these rows had either one, two or three missing values in time, sender and/or receiver columns. 

This proportion allowed for stable enough analyses under a substantial amount of random 

missingness. 

  As an example, Figure 2 contains the missingness patterns of the first simulated dataset. 

Blue cells indicate that a value has been observed, whereas red represents a missing value. The 

stacked rows then represent the various missingness patterns. The patterns show that in the first 

simulation, 2929 relational events are completely observed and seven patterns of missingness exist 

that occur from 130 to 143 times each.4 Note that a pattern where all columns are missing – the 

bottom pattern - could occur in REH data. Communications with missing time, as well as missing 

sender, and receiver nodes, are still transmitted and logged as a relational event. Here, it is 

unknown what the time and sender and receiver nodes of this communication are but that an event 

 
4 The MICE package in R (van Buuren & Groothuis-Oudshoorn, 2011) was used to create missingness as well as to 

impute missingness in the data in the next step. 
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occurred is known because a relational event is stored automatically. In the first simulated dataset 

the number of communications with completely missing information except for the rank is 134 

times. 

Missingness imputation. The second step of the analysis was to impute the missing values through 

(multiple) imputation. This required considerations regarding the number of imputations, the 

number of iterations, the methods employed and the specification of predictors for the imputation 

model. Imputation refers to how many times the missing values are to be imputed, while the 

number of iterations refers to how often each imputation is updated to calculate the eventual 

imputation. It was opted to set the number of imputations and iterations both to five for 

computational efficiency. Furthermore, research shows this number is often sufficient for reliable 

imputations (van Buuren, 2018).  

 The employed methods differed per missing variable, as time was imputed by interpolation 

using the values before and after the missing times rather than multiple imputed. This was done in 

Figure 2. 

Missingness patterns of the first simulated dataset 

Note. Rows represent different missingness patterns whereas columns represent receiver, sender, and time 

information. The number on the left stands for how often a pattern occurred, the number on the right how 

many missing variables occur in the corresponding patterns, and the numbers below how often that column is 

missing in the data in total. Blue cells indicate an observed while red cells indicate missing values.  
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three ways, as time was interpolated linearly at first, but in two additional analyses time was 

interpolated using the spline and Stineman methods. Spline interpolation fits a polynomial function 

to the data, whereas the Stineman algorithm interpolates by using linear segments to adjust the 

smoothness of interpolation rather than polynomials (Stineman, 1980). Interpolation of time might 

in some cases be a realistic option for REH data with missingness in times as specific times may 

be lost but due to data being stored chronologically, the order might still be preserved.5  

 In contrast, missing sender and receiver data were multiple imputed through predictive 

mean matching. Predictive mean matching interpolates from a pool of candidate donors that are 

most like the missing observation in other variables and one or more of such observations are used 

to determine the imputed value (van Buuren, 2018). Consequently, such ‘regular’ predictive mean 

matching can result in an imputed node seemingly communicating to themselves whereas the 

Apollo 13 data does not allow for such communications. Therefore, a custom method was 

employed that prevents imputed data from containing nodes that communicate with themselves 

(Vink, 2023). In all multiple imputation models, the target variables were regressed on both 

remaining variables. For instance, in the sender imputation model both time and receiver were 

used as predictors of missing sender values. 

Analyses. The third step of the analysis was conducting the REMs and comparing their 

performance. The statistics for the models were computed using the package remstats (Meijerink-

Bosman et al., 2024), while the REMs were conducted with remify (Arena et al., 2024) using the 

Cox proportional hazard function from the survival package (Therneau, 2023). The REMs in 

combination with the obtained statistics output the number of events and nodes, the amount of 

time that passed from the first to the last event and well as the estimated parameters for each 

statistic of interest.  

 The Apollo 13 mission data used in this paper is assumed to be the complete population. 

Therefore, the variance around the statistics in the simulations is calculated in alignment with Vink 

and van Buuren (2014), who would argue that because we have a finite population from which we 

draw samples (the sub section of Apollo 13 data) we can treat the fully observed data as the 'truth'. 

Subsequently, this finite population feature removes sampling variance in calculating the total 

 
5 Interpolation was conducted through the imputeTS package in R (Moritz & Bartz-Beielstein, 2017). 
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variance in the statistics, resulting in substantially smaller estimates for standard errors in REMs 

that utilize the multiple imputed data. 

 That said, the REM on the fully observed data was conducted first as this constitutes the 

‘truth’. Thereafter, the REM was conducted as a complete case analysis pooled over the 100 

simulations and compared to its fully observed counterpart. Finally, the REM was analyzed over 

the imputed datasets and its pooled result was compared to the previous analyses.   

 Performance evaluation of the imputed simulations compared to the true coefficients was 

done based on Oberman and Vink’s (2023) recommendations. These recommendations include 

analyzing the amount of bias in the estimate, and the coverage rate (CR). The bias of a coefficient 

represents how far off from the true coefficient the estimation is, while coverage represents how 

often the true coefficient is in the range of the estimate’s confidence interval. The proportion of 

bias (PB) in the coefficients should ideally be lower than five percent, while the coverage should 

be at least 95%. A small amount of bias with sufficient coverage would indicate that the estimation 

method is a viable method for imputation and yields valid inferences. Moreover, the average width 

(AW) of the 95% confidence intervals is used for evaluation, where more narrow intervals in 

combination with sufficient coverage suggest less uncertainty in the estimates than wider ones 

(Oberman & Vink, 2014).  

4. Results 

4.1 Descriptive statistics 

 Table 2 shows descriptive statistics of the static Apollo 13 network; so, for now, the 

emphasis is on whether a dyad communicated at all and not on the intensity of contact. The number 

of nodes is 16 of which 3 are astronauts. Also, the number of communications is 3882 of which 

1813 are sent to the same location and 2069 between locations. Furthermore, characteristics 

derived from the network in Figure 1 are included. The density, or the number of connected nodes 

over all possible nodes, is .21, while the longest shortest path spans 4 nodes. The average closeness 

centrality is .68, implying most nodes seem to be close to other nodes while the average 

eigenvector centrality or the average centrality based on neighbors’ influence is also high, reflected 

in the score of .61. The average shortest path in the network is 1.92, meaning that any pair of 

nodes, on average, is separated by less than two nodes. Relatedly, the average betweenness, or the 
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extent to which nodes fall on another dyad’s shortest path is .57, while transitivity, or the overall 

closure of triplets into connected triangles is .33.  

Table 2.  

Network characteristics of complete Apollo 13 data. 

 Amount Network-level 

Nodes 16 Density .21 

  Astronauts 3 Diameter 4 

  Ground control 13 Closeness .68 

Communications 3882 Eigenvector .61 

  Same locations 1813 Average shortest path 1.92 

  Different locations 2069 Betweenness .57 

  Transitivity .33 

 

4.2 Fully observed data 

 The results of the REM utilizing the fully observed Apollo 13 data can be found in Table 

3. Firstly, it can be derived that the total events in the data used for the Cox proportional hazard 

functions is 931.680. This number amounts to the product of the number of events, 3882, 

multiplied by the number of possible pairs, or the risk set at each timepoint (16 x 15). Secondly, it 

shows that reciprocity has a small positive effect on the event rate although this is not statistically 

significant (β = 2.332-02, p = .209). Nodes do not seem to return past communications in this 

network. Perhaps the hierarchical nature of this network with strict communication guidelines 

inhibits reciprocal communication. Thirdly, a sender’s past in-degree positively affects the 

likelihood of an event happening and this effect is statistically significant (β = 4.314-04, p < .001). 

Receiving a larger number of communications results in a higher likelihood of becoming a future 

sender. Fourth, the out-degree of the receiver has a small negative and statistically insignificant 

effect on communication happening (β = -9.023-05, p = .225). This coefficient implies that the 

number of communications a node has sent does not determine whether that node will be a receiver 

of future communications.  
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 Finally, there is a tendency to engage in contact with nodes that are in a different location. 

Whether a pair of nodes are in a different location proves to be a strong predictor of future 

communication, as those in a different location are more likely to engage in contact with each other 

through the Apollo 13 channel (β = -.863, p < .001). This might be explained considering ground 

crew possibly talks to each other outside of the mission’s channel before a final message is sent to 

the astronauts, and vice versa.  

Table 3.  

REM Results for the fully observed Apollo 13 data.  

Statistic β p-value 

Reciprocity 2.332-02 

(1.856-02) 

.209 

 

In-degree sender 4.314-04 

(7.398-05) 

< .001 

 

Out-degree receiver -9.023-05 

(7.437-05) 

.225 

Same location -.863 

(.032) 

< .001 

Note. Number of possible events = 931.680, number of events = 3882. Standard 

errors in parentheses. BIC = 98241. The number of simulations is 100. 

 

4.3 Complete case analysis 

 Table 4 contains the results of the aggregated complete case analysis over 100 simulations. 

Compared to their true counterparts the coefficients for reciprocity (β = 2.773-02, p = .196), in-

degree sender (β = 5.679-04, p < .001) are somewhat overestimated whereas out-degree receiver (β 

= -1.208-04, p = .293) is somewhat underestimated. Also, same location seems to be relatively 

biased as its estimate is severely underestimated in the complete case analysis (β = -1.349, p < 

.001). Unsurprisingly in this complete case analysis where missingness occurred randomly; all 
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standard errors are larger than their true counterparts, which implies there is more uncertainty in 

the estimates.  

Table 4.  

Aggregated REM results for complete case analysis. 

Statistic β p-value Bias 

Reciprocity 2.773-02 

(2.121-02) 

.196 4.413-03 

In-degree sender 5.679-04 

(1.126-04) 

< .001 1.364-04 

Out-degree receiver -1.208-04 

(1.129-04) 

.293 -3.054-05 

Same location -1.349 

(.039) 

<.001 -.486 

Note. The total risk set size ranges from 690.720 to 717.360, and number 

of relational events ranges from 2878 to 2989 across simulations. Standard 

errors in parentheses. The average BIC is 71786. Number of simulations 

is 100. 

4.4 Imputed simulations 

 Table 5 shows the aggregated REM results over 100 simulations where time was imputed 

via linear interpolation and sender and receiver through multiple imputation. Results indicate that 

reciprocity has a small positive effect, and this is statistically significant (β = 2. 2.516-02, p < .001, 

95% CI = [2.217-02,2.814-02]). Similarly, receiving more communications now positively predicts 

sending communications in the future (β = 4.177-04, p < .001, 95% CI = [3.901-04, 4.453-04]), while 

sending more communications has a small negative and statistically significant effect on being a 

receiver of future communications (β = -9.313-05, p < .001, 95% CI = [1.044-05, -8.187-05]). The 
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coefficient for same location is still underestimated but the bias is smaller than in the complete 

case analysis (β = -.910, p < .001, 95% CI = [-.943, -877]).6 

Table 5.  

Aggregated REM results after imputation of missingness.  

Statistic β p-value CI-95% 

[LB, UB] 

CR Bias PB AW 

Reciprocity 2.516-02 

(1.076-03) 

< .001 [2.217-02, 

2.814-02] 

.75 1.834-03 7.866 5.975-03 

In-degree 

sender 

4.177-04 

(9.946-06) 

< .001 [3.901-04, 

4.453-04] 

.88 -1.373-05 3.306 5.523-05 

Out-degree 

receiver 

-9.313-05 

(4.053-06) 

< .001 [-1.044-04, 

-8.187-05] 

.89 -2.894-06 4.523 2.251-05 

Same 

location 

-.910 

(1.181-02) 

< .001 [-.943, 

-.877] 

.17 -4.761-02 5.517 6.560-02 

Note. Number of possible events = 931.680, number of events = 3882. 'Time' is imputed as a single 

value by interpolation. 'Sender' and 'Receiver' are imputed through multiple imputations in MICE. 

Standard errors in parentheses. The number of imputations is 5 in each simulation. The number of 

simulations is 100. 

 There are both similarities and differences when comparing the imputed simulation results 

to the fully observed REM. The effect sizes are like the fully observed REM, leading to only 

marginal absolute and acceptable relative bias as the estimated coefficients are close to the truth. 

Considering the missingness mechanism was NDD, only a relatively small amount of bias was 

anticipated because the missingness occurred randomly across the data and was not associated 

with any observed or unobserved characteristics of the data. The bias introduced by these 

simulations is smaller than in complete case analysis because the latter discards around 20% of the 

 
6 As a sensitivity analysis, the REM was conducted on simulations where 'same location' was used as an additional 

predictor in multiple imputation models. This analysis yielded similar conclusions, but coverage was substantially 

better for same location at .51. See Table 7 in Appendix B. 
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data resulting in less accurate estimates in the latter method. Furthermore, the relative biases range 

from 3.306% to 7.866% which would imply an acceptable amount of bias. 

 However, the standard errors in the imputed simulations are substantially smaller than in 

the fully observed scenario, resulting in statistically significant effects for reciprocity and out-

degree receiver statistics that were not found in the fully observed REM (and not in the complete 

case analysis either). Using the finite population results in a smaller variance because sampling 

variance is not included in estimating the total variance. Absence of sampling variance results in 

substantially smaller stander errors. Consequently, the confidence intervals of the statistics in the 

imputed data analysis are narrow as well, as showcased by the narrow average widths (AW) across 

the simulations. Unfortunately, the coverage rates (CR), or the proportion of times the 95% 

confidence intervals include the ‘true’ value are suboptimal. In only 75% of the confidence 

intervals for reciprocity does the truth fall within the boundaries, while this reaches 88% and 89% 

for the in-degree sender and out-degree receiver statistics. Same location only contains the true 

coefficient in 17% of confidence intervals because of the severe bias in this statistic and small 

standard error. Ideally, these rates should at least be 95% (Oberman & Vink, 2023). This 

underperformance implies that the current imputation procedure may lead to invalid inferences 

when caution is not preserved regarding the standard errors of the effect sizes. Although absolute 

(and relative) bias is smaller than in the complete case analysis the smaller standard error may 

falsely suggest statistically significant results. 

4.5 Time imputed with spline and Stineman interpolation 

 Two additional REMs were conducted where time was first interpolated through spline 

interpolation and then according to the Stineman algorithm instead of the previous linear 

interpolation of time. Table 6 contains the results of these REMs and conclusions remain like the 

main analysis. Reciprocity and out-degree of the receiver become statistically significant while all 

standard errors become substantially smaller. The small standard errors also result in similar 

confidence intervals and their average widths, as well as comparable absolute and relative bias to 

the main analysis with linear interpolation. Using the spline method improves reciprocity and 

decreases out-degree receiver and same location coverage while in-degree sender remains the 

same. At the same time, the Stineman algorithm slightly improves the coverage rates for 

reciprocity and out-degree receiver but decreases it for in-degree sender while same location is the 

same. 
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Table 6.  

Aggregated REM results after imputation of time spline and Stineman interpolation.  

Statistic β p-value CI-95% 

[LB, UB] 

CR Bias PB AW 

Spline 

Reciprocity 2.514-02 

(1.057-03) 

< .001 [2.220-02, 

2.807-02] 

.78 1.817-03 7.826 5.869-03 

In-degree 

sender 

4.184-04 

(1.062-05) 

< .001 [3.887-04, 

4.478-04] 

.88 -1.310-05 3.194 5.897-05 

Out-degree 

receiver 

-9.320-05 

(4.188-06) 

< .001 [-1.048-04, 

-8.157-05] 

.87 -2.965-06 4.928 2.326-05 

Same location -.910 

(1.081-02) 

< .001 [-.940, 

-.880] 

.13 -4.740-06 5.493 6.000-02 

Stineman 

Reciprocity 2.517-02 

(1.090-03) 

< .001 [2.214-02, 

2.819-02] 

.80 1.844-03 7.957 6.050-03 

In-degree 

sender 

4.180-04 

(1.009-05) 

< .001 [3.900-04, 

4.461-04] 

.82 -1.342-05 3.325 5.604-05 

Out-degree 

receiver 

-9.324-05 

(3.891-06) 

< .001 [1.040-04, 

-8.244-05] 

.90 -3.006-06 4.524 2.161-05 

Same 

location 

-.910 

(1.173-02) 

< .001 [-.943, 

-.877] 

.17 -4.734-02 5.486 6.516-02 

Note. Number of possible events = 931.680, number of events = 3882. 'Time' is imputed as a single 

value by interpolation. 'Sender' and 'Receiver' are imputed through multiple imputations in MICE. 

Standard errors in parentheses. The number of imputations is 5 in each simulation. The number of 

simulations is 100. 
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5. Discussion and Conclusions 

 This study aimed to explore the extent to which (multiple) imputation of missing values 

affects analyses of REH data. Missingness was simulated 100 times through the NDD mechanism 

in part of the Apollo 13 data and was allowed to occur in any combination of time, sender, and 

receiver information. In subsequent imputation models missing values in sender and receiver nodes 

in the simulated dataset were imputed via multiple imputation, while missing time values were 

interpolated by the prior and subsequent values. Next, the results of the REMs in the simulations 

were aggregated and compared to the fully observed analysis and complete case analysis based on 

the bias introduced in the statistics of reciprocity, in-degree sender, out-degree receiver and 

whether the dyad shared the same location.  

 In the fully observed analysis – the truth – the in-degree of the sender and same location 

were statistically significant predictors of the event rate as higher in-degree was associated with 

being a sender in the future and nodes were more likely to engage with receiver nodes who were 

in a different location. The results of the subsequent analyses indicated that missingness in 

relational event history (REH) data, even in a randomized fashion, biased the estimates. This 

conclusion is in line with studies conducted by Kossinets (2006) and Huisman (2009) which 

utilized static network data. In line with the literature on the NDD mechanism and complete case 

analysis (e.g., van Buuren, 2018), complete case analysis seemed moderately reliable in an NDD 

context with a substantial amount of data remaining. Although coefficients for reciprocity and in-

degree sender were overestimated, while out-degree receiver and same location were 

underestimated, the statistical significance of the coefficients was not altered, which speaks in 

favor of complete case analysis.  

 In the analysis involving the imputed simulations, coefficients were less biased compared 

to complete case analysis in how far from the 'truth' the coefficients were estimated to be. However, 

smaller standard errors of the coefficients led to the reciprocity and out-degree receiver statistics 

incorrectly being identified as statistically significant predictors of the event rate. Based on the 

criteria of relative bias of the estimates and narrow average width of the confidence intervals these 

simulated imputations seemed acceptable, but the suboptimal coverage rates for the statistics 

warrant caution for making inferences from these imputations. Additional analyses where time 

was interpolated through the spline and Stineman algorithms (Stineman, 1980) yielded somewhat 
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different results in the statistics, but overall conclusions were alike. In sum, while the REM after 

imputation does estimate the effect size more accurately than complete case analysis, the former 

falsely detected statistically significant results in reciprocity and out-degree of the receiver 

whereas the latter did not.  

 The are several limitations in the current study that should be mentioned. First, missing 

times in the current study were interpolated from the timepoint before and after those missing 

values rather than through multiple imputation. This was done because the challenge of multiple 

imputations of time in REH data proved to be more complex than expected because it is essential 

to preserve the chronological order while adding sufficient noise to the multiple imputations to 

obtain reliable inferences. The noise in some imputations of missing times caused the order to shift 

in some cases resulting in a violation of one of REH’s assumptions – that there is at least an order 

in the relational events (Butts, 2008). Despite this limitation of employing single imputation, the 

single imputation of missing times could perhaps be worthwhile to explore further too as indicated 

by the to some extent varying results in the REMs where interpolation of time differed (linear, 

spline, and the Stineman method). Because REH data is stored chronologically, in some contexts 

missing values in time may be imputed with relative certainty through a single imputation as the 

order may have been retained even though some of the exact times are missing. However, when 

the order of social interaction in REH data is missing too, multiple imputation should most likely 

be the baseline for imputation of time. Therefore, correct methods for multiple imputation of time 

in REH data should be explored further as the element of time is so pivotal. 

 Second, the content of the communications is overlooked in imputing missingness, but it 

is reasonable to assume the messages themselves could provide valuable information for more 

reliable imputation models. For instance, some communications may have a more positive 

sentiment whereas others have a more negative sentiment, and including such exogenous statistics 

could be an exciting direction for subsequent studies.  

 Third, the current study simulates missingness through the 'simpler' NDD mechanism as it 

serves as a baseline to explore the missingness problem in REH data and a logical step would be 

to perform similar analyses in an SDD (or UDD) context too.  

 Fourth, because samples were drawn from a finite population the variance and resulting 

standard errors of the statistics were substantially smaller in the imputed simulations than in the 



25 

 

fully observed and complete case analyses. However, had sampling variance been included in the 

simulations this would have led to overestimation of standard errors, and would have been 

incorrect as we had the finite population at our disposal. Therefore, an important task for future 

research lies in finding a balance between an appropriate amount of variance and conserving part 

of the data in each simulation.  

 Despite these limitations, the current study does indicate that multiple imputation of sender 

and receiver data and single imputation of time performs better than complete case analysis in an 

NDD context when looking at effect sizes. However, caution is required when making further 

inferences from these imputation analyses based on the extremely small standard errors – and 

resulting statistically significant p-values. 
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Appendix A: Apollo 13 Actors and IDs 

• AFD: Assistant Flight Director from Flight directors (1) 

• CAPCOM: Capsule Communicator from Flight directors (2) 

• CONTROL: Control Officer from Flight directors (3) 

• EECOM: Electrical, Environmental and Consumables Manager from Flight directors (4) 

• All : Ground control team (without flight directores) (5) 

• FDO : Flight dynamics officer (FDO or FIDO) (6) 

• FLIGHT: Flight Director from Flight directors (7) 

• GNC: The Guidance, Navigation, and Controls Systems Engineer from Flight directors (8) 

• GUIDO: Guidance Officer from Flight directors (9) 

• INCO: Integrated Communications Officer from Flight directors (10) 

• NETWORK: Network of ground stations from Flight directors (11) 

• TELMU: Telemetry, Electrical, and EVA Mobility Unit Officer from Flight directors (12) 

• RECOVERY: Recovery Supervisor from Flight directorsc (13) 

• PROCEDURES: Organization & Procedures Officer from Flight directors (14) 

• FAO: Flight activities officer from Flight directors (15) 

• RETRO: Retrofire Officer from Flight directors (16) 

• CDR: Commander James A. Lovell Jr. crew (astronauts) (17) 

• CMP: Command Module Pilot John (Jack) L. Swigert Jr. crew (astronauts) (18) 

• LMP: Lunar module pilot Fred W. Haise Jr. crew (astronauts) (19) 
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Appendix B: Sensitivity Analysis 

In this analysis same location was used in imputation models of sender and receiver as 

additional predictor. Conclusions are similar but note that coverage rates are substantially 

lower in this REM – except for reciprocity. 

Table 7.  

Aggregated REM results of 100 simulations after imputation of missingness with same location as 

additional predictor.  

Statistic β p-value CI-95% 

[LB, UB] 

CR Bias PB AW 

Reciprocity 2.483-02 

(1.001-03) 

< .001 [2.205-02, 

2.761-02] 

.85 1.509-03 6.702 5.560-03 

In-degree 

sender 

4.072-04 

(1.047-05) 

< .001 [3.781-04, 

4.363-04] 

.66 -2.424-05 5.612 5.815-05 

Out-degree 

receiver 

-9.340-05 

(3.888-06) 

< .001 [-1.042-04, 

-8.261-05] 

.92 -3.167-06 4.890 2.159-05 

Same 

location 

-.886 

(8.795-03) 

< .001 [-.911, 

-.862] 

.51 -2.330-02 2.700 4.884-02 

Note. Number of possible events = 931.680, number of events = 3882. ‘Time’ imputed as single value 

by interpolation. ‘Sender’ and ‘Receiver’ imputed through multiple imputation in MICE. Standard 

errors in parentheses. The number of imputations is 5 in each simulation. The number of simulations 

is 100. 
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Appendix C: GitHub Repository and R Syntax 

Comerford D., Dominic_2024 (2024). GitHub repository, 

https://github.com/mshafieek/ADS-Missing-data-social-network/tree/main/Dominic_2024 

##Loading Packages and Data 

##### Load packages 

packages_to_install <- c("purrr", "furrr", "magrittr", "dplyr",  

                         "tibble", "survival", "tidyverse",  

                         "devtools", "igraph", "sna", "imputeTS", "stats") 

 

for (pkg in packages_to_install) { 

  if (!require(pkg, character.only = TRUE)) { 

    # If not, install the package 

    install.packages(pkg) 

  } 

} 

 

library(purrr, warn.conflicts = FALSE)     # for functional programming 

library(furrr, warn.conflicts = FALSE)     # for functional futures 

library(magrittr, warn.conflicts = FALSE)  # for pipes 

library(dplyr, warn.conflicts = FALSE)     # for data manipulation 

library(tibble, warn.conflicts = FALSE)    # for tibbles 

library(survival, warn.conflicts = FALSE)  # for REM analysis 

library(tidyverse, warn.conflicts = FALSE) # tidyverse 

library(tidyr, warn.conflicts = FALSE)     # tidyr 

library(igraph, warn.conflicts = FALSE)    # network graphs 

library(sna, warn.conflicts = FALSE)       # social network analysis 

library(imputeTS, warn.conflicts = FALSE)  # time interpolation 

library(stats, warn.conflicts = FALSE)     # for a range of model stats 

 

devtools::install_github("TilburgNetworkGroup/remify") 

devtools::install_github("gerkovink/mice@match_conditional_current")  

devtools::install_github("TilburgNetworkGroup/remstats") 

 

library(mice, warn.conflicts = FALSE)     # for imputation and amputation 

library(remstats, warn.conflicts = FALSE) # for REM statistics 

library(remify, warn.conflicts = FALSE)   # for converting 

 

##### Load data 

con <- url("https://github.com/mshafieek/ADS-Missing-data-social-

network/raw/main/literature_%20REM/Tutorial_REM_REH_DATA/UUsummerschool.Rdata

") 

load(con) 

apollo <- PartOfApollo_13 %>% 

  rename( 

    actor1 = sender, 

    actor2 = receiver 

  ) 

rm(Class, PartOfApollo_13, Twitter_data_rem3, WTCPoliceCalls, ClassIntercept,  

   ClassIsFemale, ClassIsTeacher, WTCPoliceIsICR, con, pkg) 

 

## Same location dummy 

apollo$s_ast <- ifelse(apollo$actor1 > 16, 1, 0) 

https://github.com/mshafieek/ADS-Missing-data-social-network/tree/main/Dominic_2024
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apollo$r_ast <- ifelse(apollo$actor2 > 16, 1, 0) 

apollo$same_location <- ifelse(apollo$s_ast == apollo$r_ast, 1, 0) 

apollo$s_ast <- NULL 

apollo$r_ast <- NULL 

 

head(apollo) 

tail(apollo) 

summary(apollo) 

str(apollo) 

 

#Descriptive network analysis 

edges_apollo <- 

data.frame(from=c(as.character(apollo[,2])),to=c(as.character(apollo[,3]))) 

graph_apollo <- graph_from_data_frame(edges_apollo,directed = TRUE) 

 

net <- simplify(graph_apollo, remove.multiple = T) # remove multiple edges 

for snapshot network analysis 

edge_density(net) 

 

centr_clo(net, mode="all", normalized=T)$centralization 

centr_betw(net, directed=T, normalized=T)$centralization 

centr_eigen(net, directed=T, normalized=T)$centralization 

transitivity(net, type="global") 

 

diameter(net, directed=T) 

mean_distance(net, directed=T) 

sum(apollo$same_location) 

 

set.seed(0) 

ApolloNet <- as.sociomatrix.eventlist(apollo[1:3], 19) 

Figure_1 <- gplot(ApolloNet, jitter = TRUE, pad = .075, 

              mode = "target", 

              displaylabels = TRUE, label.pos = 0, label.cex = .75, 

              boxed.labels = TRUE, label.pad = .5,  

              displayisolates = FALSE, vertex.cex=.6, 

              arrowhead.cex = .75, edge.lwd = -.75, edge.col = "gray", 

              vertex.col = ifelse(seq_along(ApolloNet) %in% c(17, 18, 19), 

"blue", "red")) # astronauts as blue 

 

##Sufficient set & Missingness function 

 

set.seed(123) # fix seed to realize a sufficient set 

apollo <- apollo |> as_tibble() 

indic <- sample(1:nrow(apollo), 1500) 

remify(apollo[indic, ], model = "tie") %>% dim() # check if 16 nodes 

#### Combine the sufficient set and the incomplete set 

make_missing <- function(x, indic) { 

  x$time_index <- seq_len(nrow(x)) 

  sufficient <- x[indic, ] 

  miss <- x[-c(indic), ] |> 

    ampute(prop = 0.4,  

           mech = "MCAR", # (4th column is same location, 5th column is 

time_index) 

           patterns = matrix(c(1,1,0,1,1, # missing in actor 2  

                               1,0,1,1,1, # missing in actor 1 

                               0,1,1,1,1, # missing in time 

                               0,0,0,1,1, # missing in all 
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                               1,0,0,1,1, # missing in actor 1 + 2 

                               0,1,0,1,1, # missing in time + actor 2 

                               0,0,1,1,1  # missing in time + actor 1 

                               ), nrow=7,  

                             byrow=TRUE)) %>%  

    .$amp 

  combined <- rbind(sufficient, miss) 

  combined <- combined[order(combined$time_index), ] 

  combined <- combined[-5] # remove time_index 

  return(combined) 

} 

 

##Interpolate 'time' before MICE 

set.seed(123) 

mbased_finite_apollo_miss <- 

  furrr::future_map(1:100, ~ {   # Create 100 simulated datasets with 

missingness 

    make_missing(apollo, indic) }, .options = furrr_options(seed = 123)) 

mbased_finite_apollo_miss_cc <- mbased_finite_apollo_miss # for later 

complete case analysis before time gets imputed 

 

Figure_2 <- md.pattern(mbased_finite_apollo_miss[[1]], rotate.names = TRUE) 

 

##Impute time with interpolation (single imputation) 

for (i in 1:length(mbased_finite_apollo_miss)) { 

  # Impute missing values in the 'time' column using na_interpolation 

  mbased_finite_apollo_miss[[i]]$time <- 

na_interpolation(mbased_finite_apollo_miss[[i]]$time) 

} 

#### When using the spline and stineman methods for interpolation of time: 

# for (i in 1:length(mbased_finite_apollo_miss)) { 

#   # Impute missing values in the 'time' column using na_interpolation 

#   mbased_finite_apollo_miss[[i]]$time <- 

na_interpolation(mbased_finite_apollo_miss[[i]]$time, option = "spline") 

# } 

# for (i in 1:length(mbased_finite_apollo_miss)) { 

#   # Impute missing values in the 'time' column using na_interpolation 

#   mbased_finite_apollo_miss[[i]]$time <- 

na_interpolation(mbased_finite_apollo_miss[[i]]$time, option = "stine") 

# } 

 

##Impute sender and receiver through MICE 

 

##Multiple imputation specification 

whichcol <- c("", "actor2", "actor1", "") # Ensure that actor 1 != actor 2 in 

imputations 

names(whichcol) <- colnames(apollo) 

## predictor matrix 

pred <- make.predictorMatrix(apollo) 

pred[c("actor1", "actor2"), "same_location"] <- 0 # exclude same location as 

predictor of actor 1 + 2. Comment out for sensitivity analyses (Table 7) 

 

## use the pmm.conditional method 

method <- make.method(apollo) 

method[c(2,3)] <- "pmm.conditional" 

mbased_finite_apollo <-  

  furrr::future_map(1:100, ~ { 
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  mice(mbased_finite_apollo_miss[[.x]], 

       m = 5,  

       maxit = 5, 

       method = method, 

       whichcolumn = whichcol, 

       predictorMatrix = pred, 

       print = FALSE) 

}, .options = furrr_options(seed = 123)) 

 

##Multiple imputation check 

# ##### Missing data pattern of all simulations. 

convergence <- plot(mbased_finite_apollo[[5]]) 

convergence 

stripplot <- stripplot(mbased_finite_apollo[[5]]) 

stripplot 

 

##Defining REM effects and preparing data for Cox function 

##### Defining effects for REM 

effects <- ~ -1 + reciprocity(scaling = ("std")) + indegreeSender() + 

outdegreeReceiver() 

 

##### Function to get the statistics of the previously defined effects. 

stats_function <- function(data) { 

  # remify the data 

  reh <- remify::remify(edgelist = data, model = "tie") 

  # calculate effect statistics 

  statsObject_imp <- remstats(reh = reh, tie_effects = effects) 

  # Return the statistics 

  return(statsObject_imp) 

} 

 

##### Function for making the data compatible with coxph() 

prepare_coxph_data <- function(statsObject, apollo) { 

  risk_sets <- attr(statsObject, "riskset") 

  risk_sets <- risk_sets %>% select(-'id') 

  # Get the times 

  time <- apollo$time 

  # merge riskset with each timepoint 

  combined <- merge(risk_sets, time, by = NULL) 

   

  combined <- combined %>% rename("time" = "y") 

  combined <- lapply(combined, as.numeric) 

  combined <- as.data.frame(combined) 

   

  # Create matrices for subtraction to make a status column for coxph 

  combined_matrix <- data.matrix(combined) 

  matrix_rows <- nrow(combined) 

   

  repeated_df <- apollo[rep(seq_len(nrow(apollo)), each = 240), ]  

  repeated_df <- repeated_df[, c(2,3,1)] 

  apollo_matrix <- data.matrix(repeated_df) 

   

  status_matrix <- apollo_matrix - combined_matrix 

   

  # create a status column 

  status <- as.integer(rowSums(status_matrix == 0) == ncol(status_matrix)) 

  status <- as.data.frame(status) 



34 

 

   

  # Add status to the combined set 

  combined <- cbind(combined, status) 

   

  # Extract statistics and add them to the dataframe 

  reciprocity <- statsObject[,,1] 

  indegreeSender <- statsObject[,,2] 

  outdegreeReceiver <- statsObject[,,3] 

   

  combined$reciprocity <- c(reciprocity) 

  combined$indegreeSender <- c(indegreeSender) 

  combined$outdegreeReceiver <- c(outdegreeReceiver) 

   

  ## add same location 

  combined$s_ast <- ifelse(combined$sender > 16, 1, 0) 

  combined$r_ast <- ifelse(combined$receiver > 16, 1, 0) 

  combined$same_location <- ifelse(combined$s_ast == combined$r_ast, 1, 0) 

  combined$s_ast <- NULL 

  combined$r_ast <- NULL 

  return(combined) 

} 

 

##Fully observed data 

###### TRUE ANALYSIS 

true.reh <- remify(edgelist = apollo,  

                   model = "tie") 

# calculate stats 

stats <- remstats(tie_effects = effects,  

                  reh = true.reh) 

# use the function to create the correct format of the dataframe 

true.cox.set <- prepare_coxph_data(stats, apollo) 

 

# fit cox model  

true.cox.fit <- coxph(Surv(time, status) ~ reciprocity + indegreeSender +  

                        outdegreeReceiver + same_location,  

                      data=true.cox.set) 

true <- coefficients(true.cox.fit) # save the true values 

true.cox.fit 

BIC(true.cox.fit) 

##Analysis on time (interpolated), actor 1 + 2 Multiple imputed 

###### Running the REM on  simulations 

Results1 <-  

  mbased_finite_apollo[1:10] %>%  

  map(~.x %>% # for every simulation 

        complete("all") %>%  

        map(~.x %>% # for every imputation 

              stats_function() %>% # do stats function 

              prepare_coxph_data(apollo = .x) %$% # prepare cox ph 

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver + 

                      same_location)) %>% 

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool 

coefficients 

        .$pooled %>% # extract table of pooled coefficients 

          mutate(true = true, # add true 
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                 df = m-1,  # correct df 

                 riv = Inf, # correct riv 

                 std.error = sqrt(t), # standard error 

                 statistic = estimate / std.error, # test statistic 

                 p.value = 2 * (pt(abs(statistic),  

                                   pmax(df, 0.001),  

                                   lower.tail = FALSE)), # correct p.value 

                 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound 

CI 

                 `97.5 %` = estimate + qt(.975, df) * std.error, # upper 

bound CI 

                 cov = `2.5 %` < true & true < `97.5 %`, # coverage 

                 bias = estimate - true) %>% # bias 

          select(term, m, true, estimate, std.error, statistic, p.value,  

                 riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

          column_to_rownames("term") # `term` as rownames 

    ) 

 

Results2 <-  

  mbased_finite_apollo[11:20] %>%  

  map(~.x %>% # for every simulation 

        complete("all") %>%  

        map(~.x %>% # for every imputation 

              stats_function() %>% # do stats function 

              prepare_coxph_data(apollo = .x) %$% # prepare cox ph 

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender + 

                      outdegreeReceiver+ 

                      same_location)) %>% 

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool 

coefficients  

        .$pooled %>% # extract table of pooled coefficients 

          mutate(true = true, # add true 

                 df = m-1,  # correct df 

                 riv = Inf, # correct riv 

                 std.error = sqrt(t), # standard error 

                 statistic = estimate / std.error, # test statistic 

                 p.value = 2 * (pt(abs(statistic),  

                                   pmax(df, 0.001),  

                                   lower.tail = FALSE)), # correct p.value 

                 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound 

CI 

                 `97.5 %` = estimate + qt(.975, df) * std.error, # upper 

bound CI 

                 cov = `2.5 %` < true & true < `97.5 %`, # coverage 

                 bias = estimate - true) %>% # bias 

          select(term, m, true, estimate, std.error, statistic, p.value,  

                 riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

          column_to_rownames("term") # `term` as rownames 

    ) 

 

Results3 <-  

  mbased_finite_apollo[21:30] %>%  

  map(~.x %>% # for every simulation 

        complete("all") %>%  

        map(~.x %>% # for every imputation 
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              stats_function() %>% # do stats function 

              prepare_coxph_data(apollo = .x) %$% # prepare cox ph 

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver+ 

                      same_location)) %>% 

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool 

coefficients  

        .$pooled %>% # extract table of pooled coefficients 

          mutate(true = true, # add true 

                 df = m-1,  # correct df 

                 riv = Inf, # correct riv 

                 std.error = sqrt(t), # standard error 

                 statistic = estimate / std.error, # test statistic 

                 p.value = 2 * (pt(abs(statistic),  

                                   pmax(df, 0.001),  

                                   lower.tail = FALSE)), # correct p.value 

                 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound 

CI 

                 `97.5 %` = estimate + qt(.975, df) * std.error, # upper 

bound CI 

                 cov = `2.5 %` < true & true < `97.5 %`, # coverage 

                 bias = estimate - true) %>% # bias 

          select(term, m, true, estimate, std.error, statistic, p.value,  

                 riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

          column_to_rownames("term") # `term` as rownames 

  ) 

 

Results4 <-  

  mbased_finite_apollo[31:40] %>%  

  map(~.x %>% # for every simulation 

        complete("all") %>%  

        map(~.x %>% # for every imputation 

              stats_function() %>% # do stats function 

              prepare_coxph_data(apollo = .x) %$% # prepare cox ph 

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver+ 

                      same_location)) %>% 

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool 

coefficients  

        .$pooled %>% # extract table of pooled coefficients 

          mutate(true = true, # add true 

                 df = m-1,  # correct df 

                 riv = Inf, # correct riv 

                 std.error = sqrt(t), # standard error 

                 statistic = estimate / std.error, # test statistic 

                 p.value = 2 * (pt(abs(statistic),  

                                   pmax(df, 0.001),  

                                   lower.tail = FALSE)), # correct p.value 

                 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound 

CI 

                 `97.5 %` = estimate + qt(.975, df) * std.error, # upper 

bound CI 

                 cov = `2.5 %` < true & true < `97.5 %`, # coverage 



37 

 

                 bias = estimate - true) %>% # bias 

          select(term, m, true, estimate, std.error, statistic, p.value,  

                 riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

          column_to_rownames("term") # `term` as rownames 

  ) 

 

Results5 <-  

  mbased_finite_apollo[41:50] %>%  

  map(~.x %>% # for every simulation 

        complete("all") %>%  

        map(~.x %>% # for every imputation 

              stats_function() %>% # do stats function 

              prepare_coxph_data(apollo = .x) %$% # prepare cox ph 

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver+ 

                      same_location)) %>% 

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool 

coefficients  

        .$pooled %>% # extract table of pooled coefficients 

          mutate(true = true, # add true 

                 df = m-1,  # correct df 

                 riv = Inf, # correct riv 

                 std.error = sqrt(t), # standard error 

                 statistic = estimate / std.error, # test statistic 

                 p.value = 2 * (pt(abs(statistic),  

                                   pmax(df, 0.001),  

                                   lower.tail = FALSE)), # correct p.value 

                 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound 

CI 

                 `97.5 %` = estimate + qt(.975, df) * std.error, # upper 

bound CI 

                 cov = `2.5 %` < true & true < `97.5 %`, # coverage 

                 bias = estimate - true) %>% # bias 

          select(term, m, true, estimate, std.error, statistic, p.value,  

                 riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

          column_to_rownames("term") # `term` as rownames 

  ) 

 

Results6 <-  

  mbased_finite_apollo[51:60] %>%  

  map(~.x %>% # for every simulation 

        complete("all") %>%  

        map(~.x %>% # for every imputation 

              stats_function() %>% # do stats function 

              prepare_coxph_data(apollo = .x) %$% # prepare cox ph 

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver+ 

                      same_location)) %>% 

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool 

coefficients  

        .$pooled %>% # extract table of pooled coefficients 

          mutate(true = true, # add true 

                 df = m-1,  # correct df 
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                 riv = Inf, # correct riv 

                 std.error = sqrt(t), # standard error 

                 statistic = estimate / std.error, # test statistic 

                 p.value = 2 * (pt(abs(statistic),  

                                   pmax(df, 0.001),  

                                   lower.tail = FALSE)), # correct p.value 

                 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound 

CI 

                 `97.5 %` = estimate + qt(.975, df) * std.error, # upper 

bound CI 

                 cov = `2.5 %` < true & true < `97.5 %`, # coverage 

                 bias = estimate - true) %>% # bias 

          select(term, m, true, estimate, std.error, statistic, p.value,  

                 riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

          column_to_rownames("term") # `term` as rownames 

  ) 

 

Results7 <-  

  mbased_finite_apollo[61:70] %>%  

  map(~.x %>% # for every simulation 

        complete("all") %>%  

        map(~.x %>% # for every imputation 

              stats_function() %>% # do stats function 

              prepare_coxph_data(apollo = .x) %$% # prepare cox ph 

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver+ 

                      same_location)) %>% 

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool 

coefficients  

        .$pooled %>% # extract table of pooled coefficients 

          mutate(true = true, # add true 

                 df = m-1,  # correct df 

                 riv = Inf, # correct riv 

                 std.error = sqrt(t), # standard error 

                 statistic = estimate / std.error, # test statistic 

                 p.value = 2 * (pt(abs(statistic),  

                                   pmax(df, 0.001),  

                                   lower.tail = FALSE)), # correct p.value 

                 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound 

CI 

                 `97.5 %` = estimate + qt(.975, df) * std.error, # upper 

bound CI 

                 cov = `2.5 %` < true & true < `97.5 %`, # coverage 

                 bias = estimate - true) %>% # bias 

          select(term, m, true, estimate, std.error, statistic, p.value,  

                 riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

          column_to_rownames("term") # `term` as rownames 

  ) 

 

Results8 <-  

  mbased_finite_apollo[71:80] %>%  

  map(~.x %>% # for every simulation 

        complete("all") %>%  

        map(~.x %>% # for every imputation 

              stats_function() %>% # do stats function 
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              prepare_coxph_data(apollo = .x) %$% # prepare cox ph 

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver+ 

                      same_location)) %>% 

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool 

coefficients  

        .$pooled %>% # extract table of pooled coefficients 

          mutate(true = true, # add true 

                 df = m-1,  # correct df 

                 riv = Inf, # correct riv 

                 std.error = sqrt(t), # standard error 

                 statistic = estimate / std.error, # test statistic 

                 p.value = 2 * (pt(abs(statistic),  

                                   pmax(df, 0.001),  

                                   lower.tail = FALSE)), # correct p.value 

                 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound 

CI 

                 `97.5 %` = estimate + qt(.975, df) * std.error, # upper 

bound CI 

                 cov = `2.5 %` < true & true < `97.5 %`, # coverage 

                 bias = estimate - true) %>% # bias 

          select(term, m, true, estimate, std.error, statistic, p.value,  

                 riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

          column_to_rownames("term") # `term` as rownames 

  ) 

 

Results9 <-  

  mbased_finite_apollo[81:90] %>%  

  map(~.x %>% # for every simulation 

        complete("all") %>%  

        map(~.x %>% # for every imputation 

              stats_function() %>% # do stats function 

              prepare_coxph_data(apollo = .x) %$% # prepare cox ph 

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver+ 

                      same_location)) %>% 

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool 

coefficients  

        .$pooled %>% # extract table of pooled coefficients 

          mutate(true = true, # add true 

                 df = m-1,  # correct df 

                 riv = Inf, # correct riv 

                 std.error = sqrt(t), # standard error 

                 statistic = estimate / std.error, # test statistic 

                 p.value = 2 * (pt(abs(statistic),  

                                   pmax(df, 0.001),  

                                   lower.tail = FALSE)), # correct p.value 

                 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound 

CI 

                 `97.5 %` = estimate + qt(.975, df) * std.error, # upper 

bound CI 

                 cov = `2.5 %` < true & true < `97.5 %`, # coverage 

                 bias = estimate - true) %>% # bias 
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          select(term, m, true, estimate, std.error, statistic, p.value,  

                 riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

          column_to_rownames("term") # `term` as rownames 

  ) 

 

Results10 <-  

  mbased_finite_apollo[91:100] %>%  

  map(~.x %>% # for every simulation 

        complete("all") %>%  

        map(~.x %>% # for every imputation 

              stats_function() %>% # do stats function 

              prepare_coxph_data(apollo = .x) %$% # prepare cox ph 

              coxph(Surv(time, status) ~  

                      reciprocity +  

                      indegreeSender +  

                      outdegreeReceiver+ 

                      same_location)) %>% 

        pool(custom.t = ".data$b + .data$b / .data$m") %>% # pool 

coefficients  

        .$pooled %>% # extract table of pooled coefficients 

          mutate(true = true, # add true 

                 df = m-1,  # correct df 

                 riv = Inf, # correct riv 

                 std.error = sqrt(t), # standard error 

                 statistic = estimate / std.error, # test statistic 

                 p.value = 2 * (pt(abs(statistic),  

                                   pmax(df, 0.001),  

                                   lower.tail = FALSE)), # correct p.value 

                 `2.5 %` = estimate - qt(.975, df) * std.error, # lower bound 

CI 

                 `97.5 %` = estimate + qt(.975, df) * std.error, # upper 

bound CI 

                 cov = `2.5 %` < true & true < `97.5 %`, # coverage 

                 bias = estimate - true) %>% # bias 

          select(term, m, true, estimate, std.error, statistic, p.value,  

                 riv, `2.5 %`, `97.5 %`, cov, bias) %>%  

          column_to_rownames("term") # `term` as rownames 

  ) 

 

##Combining Results 

##### Combining Results 

Results <- list(Results1, 

               Results2, 

               Results3, 

               Results4, 

               Results5, 

               Results6, 

               Results7, 

               Results8, 

               Results9, 

               Results10) %>% 

  purrr::flatten() 

 

##Save results 

save(Results, file = "TimeINT_A12_MI.RData") 

##Percentage bias and average width 

load("TimeINT_A12_MI.RData") 
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##### Adding percentage bias and average width to the Results 

#function for average width and percentage bias. 

AW <- function(df) df[["97.5 %"]] - df[["2.5 %"]] 

PB <- function(df) 100 * abs((df[["estimate"]] - df[["true"]]) / 

df[["true"]]) 

 

Results_with_extra <- lapply(Results, function(df) { 

  df$PB <- PB(df) 

  df$AW <- AW(df) 

  df 

}) 

###### Average sims 

Reduce("+", Results_with_extra) / length(mbased_finite_apollo) 

 

##Complete Case Analysis 

cox_sets_for_incomplete <- function(data) { 

 statsObject <- remify::remify(edgelist = data, model = "tie") %>%  

 remstats(tie_effects = effects) # create statistics for every amputed 

dataset 

  

 # make sure that complete apollo data to compare with is the same size as 

 # amputed dataset with only complete cases 

 complete.cases <- data[complete.cases(data), ]  

 index <- as.numeric(rownames(complete.cases)) 

 apollo.missing <- apollo[index, ] 

  

 # take the single riskset  

 

 # remove the id column 

 risk_sets <- attr(statsObject, "riskset") %>% select(-'id') 

 # creating one set with all risksets for each time point  

 combined <- merge(risk_sets, apollo.missing$time, by=NULL) %>%  

 rename(time = y) %>%  

 .[, c("time", "sender", "receiver")] %>%  

 mutate(sender = as.numeric(sender),  

 receiver = as.numeric(receiver)) 

  

 # GV: Calculate divergence 

 diff <- apollo.missing[rep(seq_len(nrow(apollo.missing)), each = 240), ] %>%  

 data.matrix() %>%  

 .[, 1:3] - combined 

 # GV: identify non-divergence 

 combined$status <- 

 rowSums(diff == 0) == ncol(diff) 

  

 #combining the dataset with riskset to the statistic 

 combined$reciprocity <- c(statsObject[,,1]) 

 combined$indegreeSender <- c(statsObject[,,2]) 

 combined$outdegreeReceiver <- c(statsObject[,,3]) 

  

 combined$status <- as.integer(as.logical(combined$status)) 

  

  ## add same location 

 combined$s_ast <- ifelse(combined$sender > 16, 1, 0) 

 combined$r_ast <- ifelse(combined$receiver > 16, 1, 0) 

 combined$same_location <- ifelse(combined$s_ast == combined$r_ast, 1, 0) 

 combined$s_ast <- NULL 
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 combined$r_ast <- NULL 

  

 return(combined) 

} 

 

set.seed(123) 

# cox model on complete cases 

complete.case.fit <- mbased_finite_apollo_miss_cc %>%  

 map(~.x %>% # for every completed data set.... 

 cox_sets_for_incomplete() %$%  

 coxph(Surv(time, status) ~  

 reciprocity +  

 indegreeSender +  

 outdegreeReceiver + 

 same_location)) 

 

# create a dataframe out of the cox model objects 

results <- list() 

# Generate 100 dataframes 

for (i in 1:100) { 

 # Create a dataframe with columns of results from the cox models 

 df <- data.frame( 

 coef = complete.case.fit[[i]]$coefficients, 

 se = coef(summary(complete.case.fit[[i]]))[, "se(coef)"], 

 p = coef(summary(complete.case.fit[[i]]))[, "Pr(>|z|)"], 

 true = true[1:4] 

 ) 

 rownames(df) <- c("reciprocity", "indegreeSender", "outdegreeReceiver", 

"same_location") 

 # Append the dataframe to the list 

 results[[i]] <- df 

} 

 

bic_complete_case <- numeric(length(complete.case.fit)) 

# Iterate over the list and extract BIC values 

for (i in seq_along(complete.case.fit)) { 

  bic_complete_case[i] <- BIC(complete.case.fit[[i]]) 

} 

# Compute the average BIC 

average_bic_complete_case <- mean(bic_complete_case) 

average_bic_complete_case 

 

# average the results across all simulations 

average <- results %>% 

 map(~.x %>% 

 mutate(bias = coef - true) %>% # bias 

 select(true, coef, se, p,  

 bias)) %>%  

 Reduce("+", .) / length(mbased_finite_apollo_miss_cc) 

average 

# Calculate risk set size and number of relational events in CC-analysis 

nevent_values <- map_dbl(complete.case.fit, "nevent") 

min(nevent_values) 

max(nevent_values) 

n_values <- map_dbl(complete.case.fit, "n") 

min(n_values) 

max(n_values) 


