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0. Abstract 
Unsupervised visual representation learning remains a significant challenge in computer vision, 
particularly in recognizing the morphology of different river types from geographical data. Current 
research has focused on pretext tasks for self-supervised learning using colored images, leaving a 
gap in unannotated geographical data analysis. This study addresses this gap by applying several 
self-supervised models to unannotated geographical data. Through a series of experiments, the 
models' abilities to learn useful visual representations are evaluated. The effectiveness of these 
methodologies in geographical morphology recognition is critically assessed. 

 

1. Introduction 
Over the past decades, computer vision 
systems have advanced exponentially [1]. 
Models designed for tasks such as object 
recognition and detection often outperform 
humans on complex benchmarks [2], [3], [4]. 
However, these models rely heavily on large, 
annotated datasets and are typically task-
specific. For instance, ImageNet [5] is trained to 
recognize 1,000 different categories. 
Consequently, implementing such models on 
data with different dimensions, such as black-
and-white images, can be challenging. 

The Faculty of Geosciences of Utrecht 
University is particularly interested in 
recognizing the morphology of the vast variety of 
rivers on earth. Many studies classify these 
rivers in four categories: Anastomosing, 
Braided, Wandering and Meandering rivers [6], 
[7]. However, a single river is often made up of 
more than one morphology type and can have 
meandering sections leading into braided or 
anastomosing and back to meandering, which 
makes the classification of a single morphology 
challenging. 

This paper focuses on self-supervised learning, 
a subclass of unsupervised learning, to try and 
recognize the different river morphologies.  

Figure 1: Examples of the four river morphologies with id  (left 
to right, top to bottom): Wandering, Meandering, Braided and 
Anastomosing. Wandering rivers exhibit a sporadic 
morphology, while Meandering rivers follow a sinusoidal 
pattern. Braided rivers feature multiple channels within a 
single riverbed, whereas Anastomosing rivers have multiple 
channels that split and merge. 
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Self-supervised learning techniques produce 
unsupervised representations of the data that 
can be used as a transfer learning model for later 
annotated modeling. The self-supervised 
learning framework does not require annotated 
data in order to formulate pretext learning tasks 
such as image rotation [8] or jigsaw-solving [9], 
for these tasks generate their own predictive 
measurements; the rotation of the image and 
the position of the jigsaw-pieces, respectively. 
As a result, the middle layers of the 
Convolutional Neural Networks (CNNs) trained 
for solving these pretext tasks encode complex 
semantic visual representations that can be 
used for solving other tasks, like predicting the 
type of morphology of a river once an annotated 
dataset is available. 

In Chapter 5 the experimental results of the 
trained pretext tasks are presented. To hold the 
reproducibility of these experiments, the code is 
provided in the appendix [10]. 

2. Related Work 
Self-supervision is a learning framework that 
generates supervised signals for pretext tasks 
automatically, aiming to learn representations 
that effectively address downstream tasks. Due 
to its generic structure, self-supervision covers 
a broad range of applications. A pioneering 
effort in self-supervised learning is the use of 
pretext tasks to generate supervisory signals 
from the data itself. Doersch et al. (2015) [11] 
introduced a method where the pretext task 
involved predicting the relative positions of 
image patches, enabling the network to learn 
useful visual representations. These 
representations, which include spatial 
hierarchies, edges, and object parts, benefit 
various computer vision tasks such as object 
detection, segmentation, and classification. 
Similarly, Noroozi and Favaro (2016) [9] 
demonstrated that solving jigsaw puzzles as a 
pretext task helps in learning semantic features 
that transfer well to other tasks. 

The application of self-supervised learning to 
remote sensing and geographical data has seen 
some preliminary work. For example, Ayush et 
al. (2020) [12] applied self-supervised 
techniques to satellite imagery, demonstrating 
the potential for these methods to extract 
meaningful features from unannotated 
geographical data. Their aim was to improve 
land cover classification and change detection 
in satellite images by learning robust 
representations without relying on labeled data. 
Their work underscores the feasibility of our 
approach and highlights the gap that our study 
aims to fill by specifically targeting river 
morphology recognition. 

Finally, A study has been conducted by Chen 
Zheng (2024) [13] on Alzheimer’s disease 
classification using 3D convolutional neural 
networks, which makes use of rotation 
classification and image reconstruction of 
black-and-white images during pretext training. 
These methods proved to be valuable for their 
research by enhancing the network's ability to 
understand and process 3D medical images, 
which are crucial for accurate disease 
classification. This highlights the versatility and 
potential of self-supervised learning 
techniques, making them promising for our task 
at hand in river morphology recognition. 

3. Dataset 
The data utilized in this experiment originates 
from The Surface Water and Ocean Topography 
River Dataset (SWORD) [14] and the Global River 
Widths from Landsat (GRWL) Database [15]. The  
images from GRWL depict the Earth in black-
and-white, with the surface shown in black and 
water in white. The SWORD dataset contains the 
centerlines of these images. All river reaches, 
cut up segments of rivers between confluence 
points, in Asia and South America have been 
considered because of the extensive variety of 
river types found on these continents. 
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Every reach is clipped based on the extreme 
coordinates of the river. A box is created around 
these extremes with an additional buffer of 10% 
to account for errors in the original dataset. 
Subsequently, the reaches are filtered 
according to labels given by the SWORD 
dataset. The dataset includes river types and 
lake flags that identify the type of water body. 
Only rivers are considered, while lakes and other 
water bodies are excluded. Following this, any 
images containing empty or gray pixels are 
discarded, which is a result of the discrepancies 
between the centerline dataset of SWORD and 
the binary satellite images from GRWL. These 
images either contain null data or residual lake 
clips. Finally, only images with at least one 
dimension of 30 pixels are included, as smaller 
images contain insufficient morphological 
information. The filtering results in 24,709 
unique river segments. Examples of the 
resulting images are presented in Figure 1. 

4. Methodology and Evaluation 
This chapter explores the self-supervised 
learning models that are designed to recognize 
river morphology from unannotated 
geographical data. The focus is on training Deep 
Convolutional Neural Networks (DCNNs) and 
Deep Convolutional Inverse Graphics Networks 
(DC-IGNs) through various pretext tasks. These 
pretext tasks, including image rotation, 
inpainting, and jigsaw puzzle solving, are crafted 
to enable the models to learn visual 
representations without the need for labeled 
datasets. 

 
 
 

a. CNN Models 
The pretext tasks are trained using DCNNs, with 
each task necessitating a specific structure. For 
instance, a rotation pretext task can be learned 
using a DCNN, whereas image reconstruction 
requires a DC-IGN structure. 

A DCNN consist of multiple 2D convolutional 
layers, as proposed by Fukushima et al. (1982) 
[16], later formalized by Lecun et al. (1998)[17]. 
Each layer is followed by a ReLu activation 
function [18] and a 2D max pooling layer [19], 
[20] for batch normalization. The output of the 
final pooling layer is then used in a fully-
connected layer comprising multiple layers with 
ReLU activation functions in between. The final 
layer employs a Sigmoid activation  function [21] 
instead of ReLu. The sigmoid activation 
function, serving as a binary output function, 
has demonstrated superiority over the other 
activation functions [22], despite slower 
learning speed during backpropagation [23]. 
This final layer is then transformed into the 
appropriate number of predicted values.  

A DC-IGN [24] is a neural networks designed 
primarily to reconstruct its input. Its structure 
comprises three sections: an encoder network, 
fully connected layers, and a decoder network. 
The first two sections resemble the suggested 
DCNN. The final fully connected layer serves as 
the input for the decoder section, which 
reconstructs the image using 2D transposed 
convolutional layers. These upsampling  layers 
generate the output feature map [25]. Each layer 
concludes with a ReLu activation function, and 
the output of the final ReLu function is reshaped 
to the appropriate output size.
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b. Pretext Tasks 
Various pretext tasks are employed during the 
development of the experiments. Some tasks 
are executed exactly as initially designed, while 
others are adapted to investigate new 
opportunities and research areas. This strategy 
enables a thorough assessment of different 
techniques and their effectiveness in diverse 
contexts, thereby expanding the study's scope. 
The five pretext tasks under examination are 
briefly outlined below. 

Rotation DCNN 
Gidaris et al (2018) [8] proposed a pretext 
method that involves creating four copies of the 
original image, each rotated by 0°, 90°, 180°, and 
270°. These images are then fed into a single 
network tasked with predicting the applied 
rotation. A robust model should learn to 
recognize patterns within the images, regardless 
of their rotation, demonstrating its ability to 
understand and interpret the underlying 
structure of the images. Figure 2 provides a 
visual representation of the DCNN for the 
rotation pretext task. 

Inpainting DC-IGN 
Image inpainting is a generative pretext task 
proposed by Pathak et al. (2016) [26] ,which 
aims to learn representations by filling in a 
missing patch of the original image. This 
technique involves three variants of masking: 
central patch, random patches, and random 
regions. This research focuses solely on the 
central patch variant. The model learns to 
reconstruct the missing central part of the 
image, enhancing its ability to understand 
contextual information. Figure 3 provides a 
visual representation of the network's structure. 

Figure 2: A visual representation of the DCNN network for 
the Rotation pretext task 

Figure 3: A visual representation of the DC-IGN network 
for the Inpainting pretext task 
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High-Context Inpainting DC-IGN 
A self-proposed variant of the random region 
inpainting method has been developed to 
reconstruct the original image by filling in the 
masked patch and the rest of the image pixel by 
pixel. The blacked-out patch is chosen based on 
the region of the original image containing the 
most information. Similar to the original 
inpainting task, a competent model should learn 
the spatial relationships between the blacked-
out and unedited patches and accurately fill in 
all the pixels. This approach aims to enhance the 
model's ability to understand and recreate 
complex patterns within the image. Figure 4 
provides a visual representation of the DC-IGN 
for the High-Context Inpainting pretext task. 

Jigsaw DCNN 
The Jigsaw DCNN task involves dividing an 
image into nine equally sized patches arranged 
on a 3x3 grid and then randomly shuffling these 
patches. The primary objective is for the model 
to learn and predict the relative spatial positions 
of these nine patches to determine their original 
order accurately. This task requires the model to 
focus on understanding the spatial relationships 
between the patches, rather than just their 
sequential order. To train the model effectively, 
multiple permutations of the shuffled patches 
are fed into it, as proposed by Noroozi et al. 
(2016) [9]. However, increasing the number of 
permutations leads to a larger volume of input 
data, which in turn demands more 
computational power. A visual representation of 
the jigsaw concept can be found in Figure 5. 

 

Figure 5: A visual representation of the DCNN network for 
the Jigsaw pretext task 

Figure 4: A visual representation of the DC-IGN network for 
the High-Context Inpainting pretext task 
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Jigsaw DC-IGN 
The Jigsaw DC-IGN task shares similar 
properties with the regular Jigsaw DCNN task, 
but with a different focus. Instead of predicting 
the relative positions of the patches, the Jigsaw 
DC-IGN task aims to reconstruct the original 
image pixel by pixel. This is achieved using the 
encoder, fully connected layers, and decoder 
structure of the DC-IGN. By reconstructing the 
image in this manner, the model is able to learn 
global patterns in the data, capturing more 
comprehensive contextual information. The 
process of reconstructing the image enhances 
the model's understanding of spatial 
relationships within the image. A visual 
representation of this structure is shown in 
Figure 6. 
 

c. Assessing Learned Visual 
Representations 

During training and validation, the Cross Entropy 
Loss [27], [28] is used for efficiently validating 
the trained layers. The DCNN models make use 
of a simple implementation of the Cross Entropy 
Loss. The DC-IGNs use the Cross Entropy Loss 
in combination with an extra weight for correctly 
predicting the white pixels in an image, because 
a one-to-one ratio of black and white pixels 
resulted in fully black generated images, a result 
of the skewed ratio in black and white pixels in 
the data. 

Finally, a set of five different reaches with 
notable patterns are manually chosen as a test 

set for visual assessments. These images are 
not seen by the model during training and 
validation, making them an effective visual test 
set. Five images are selected because they 
provide a manageable number for detailed 
visual inspection, allowing for thorough 
assessment without being overwhelming. The 
original, mutated and predicted images are 
visualized side by side in Chapter 5. 

  

Figure 6: A visual representation of the DC-IGN structure of 
the jigsaw shuffle pretext task 
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Table 1: Train, validation and test loss for the different models of the pretext tasks. The DCNN models use a regular Cross 
Entropy Loss, where the DC-IGN the inbalance of black and white pixels models use a Weighted Cross Entropy Loss to 
account for the inbalance of black and white pixels. For each model, the first epoch where the validation loss does not 
decrease is chosen as the best model.

1Loss of the best found epoch 
2Loss of the last ran epoch 

5. Experiments and Findings 
This section presents the results of the small-
scale study, divided into two parts due to the 
differences in model structure and evaluation 
methods. All pretext tasks are trained on the 
unannotated SWORD dataset. The dataset is 
split into a 90:10 ratio for the training and 
validation sets, respectively, using a fixed 
random seed to ensure consistent 
comparisons. Five images are excluded from the 
training and validation process for testing, as 
detailed in Chapter 4.c. This setup allows for a 
systematic evaluation of the models' 
performance across different tasks and ensures 
the reliability of the obtained results. All found 
results are summarized in Table 1. 

a. Evaluation on DCNN models 
Two different DCNN pretext tasks are 
experimented on: the rotation and the jigsaw 
tasks. Each are trained and validated using the 
same data and similar model structures, where 
only the last outcome layer is modified to fit the 
task at hand.  

Rotation DCNN 
There are only four possible permutations when 
rotating an image: 0°, 90°, 180°, and 270°. This 
limited variation enables the randomization of 
the rotation of input images for each epoch 
during the training of the Rotation pretext task 
model. As demonstrated in Figure 7, the optimal 
model was identified at epoch 14, achieving a 
Cross-Entropy Loss of 0.7844 on the validation 

set. Notably, this validation loss is quite high, 
suggesting a certain level of uncertainty in the 
model. Consequently, stopping the training 
after 14 epochs yielded an effective model. This 
is evidenced by its perfect predictions on the five 
test cases, illustrated in Figure 8.

 DCNN models DC-IGN models 
Rotation Jigsaw Inpainting High-Context 

inpainting 
Jigsaw 

10x 25x 50x 100x 1x 5x 10x 25x 100x 
Train 0.7547 0.0101 0.0259 0.0247 0.0516 0.1427 0.0955 0.0457 0.1059 0.1047 0.1334 0.1445 

Validation 0.7844 0.0466 0.0751 0.1110 0.1093 0.1622 0.1051 0.0558 0.1228 0.1050 0.1449 0.1500 

Best epoch 14 of 25 9 of 10 7 of 10 9 of 10 9 of 10 7 of 20 15 of 20 14 of 50 13 of 20 19 of 25 18 of 25 15 of 50 

Figure 7: Train and Validation Cross-Entropy Loss of the 
Rotation Pretext Task 

Figure 8: Results of the 14th epoch of the Rotation DCNN Pretext 
Task. The top row shows the input images, the middle row the 
rotated images, and the third row the predicted images. 
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Jigsaw DCNN 
The Jigsaw Pretext task model is trained using 
10, 25, 50, and 100 permutations of the jigsawed 
image to explore how the number of 
permutations influences the model's 
performance. As depicted in Figure 9, the 
learning curves change significantly as the 
model processes an increasing number of 
permutations. The graphs clearly show that all 
four models ultimately converge to a similar 
conclusion, achieving comparable loss values. 
However, the time required for convergence 
increases with the number of permutations. 
Specifically, models trained with fewer 
permutations reach optimal performance more 
quickly, while those with higher permutations 
require more epochs to achieve similar results. 
This suggests that while handling more 
permutations might offer a more comprehensive 
learning process, it also demands additional 
epochs to achieve optimal performance. These 
observations underline the trade-off between 
the number of permutations and the training 
efficiency of the models. 

The optimal models achieved Cross-Entropy 
Losses of 0.0466, 0.0751, 0.1110, and 0.1093 
after the 9th, 9th, 7th, and 9th epochs for 10, 25, 
50, and 100 permutations, respectively. The first 
three models performed identically on the test 
set, demonstrating consistent accuracy and 
reliability. However, the model trained with 100 
permutations exhibited slightly inferior 
performance compared to the other models. 
This discrepancy is particularly evident in the 
leftmost test river depicted in Figure 10, where 
the predictions of the 100 permutation model 
are less accurate. This indicates that while 
increasing the number of permutations might 
enhance the model's learning capacity, it can 
also introduce complexity that might not 
necessarily translate to improved performance 
on external data.  

  

Figure 10: Jigsaw DCNN Pretext Task results. The top row shows 
the input images, the middle row the rotated images, the third 
row the predicted images for 10, 25, and 50 permutations, and 
the fourth row for 100 permutations. 

Figure 9: Training and Validation Cross-Entropy Loss for the 
Jigsaw DCNN Pretext Task across four distinct models: 10, 25, 
50, and 100 permutations 
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b. Evaluation on DC-IGN models 
The DC-IGN pretext task models are evaluated 
separately due to their added complexity. 
These tasks include inpainting, high-context 
inpainting, and jigsaw DC-IGN tasks. 

Inpainting DC-IGN 
The inpainting task is designed without 
permutations because it inherently involves 
filling in a single, specific area. In this case, the 
center patch of the image is blacked out, 
similar to the background color of the river 
images, which are also black. Therefore, the 
center patch remains constant. To guide the 
model more effectively, a weighted loss ratio of 
5:1 is applied, giving more importance to white 
pixels  over black pixels during the training 
process. 

The best model achieved a Cross-Entropy Loss 
of 0.1622 on the validation set after 7 epochs. 
Training for more than 7 epochs causes the 
model to overfit, as illustrated in Figure 11. 
While the training loss continues to decline 
steadily, the validation loss stabilizes and 
eventually worsens. Figure 12 showcases the 
model's generative capabilities, which are 
optimal when the river is broad and continuous 
without multiple channels, as seen in the fourth 
example. However, the model struggles with 
complex, braided river structures, like those in 
the first and last examples. Additionally, when 
the river is relatively thin, the model often 
misinterprets it two separate rivers or as noise, 
resulting in no predictions at all. 

Interestingly, an overfit model appears to have 
better generative capabilities for more complex 
riverbeds. As shown in Figure 13, the model 
attempts to predict the black islands within the 
braided river structure while maintaining decent 
performance on other types of rivers.  

Figure 11: Train and Validation Cross-Entropy Loss of the Inpainting 
DC-IGN Pretext Task 

Figure 12: Results of the 7th epoch of the Inpainting DC-IGN Pretext 
Task. The top row shows the input images, the middle row the 
rotated images, and the third row the predicted images. 

Figure 13: Results of the 19th epoch of the Inpainting DC-IGN 
Pretext Task. The top row shows the input images, the middle row 
the rotated images, and the third row the predicted images. 
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High-Context Inpainting DC-IGN 
The high-context inpainting task shares the 
same design as the center patch inpainting. A 
patch covering 1/9 of the total image area, 
containing the most white pixels, is identified. 
This patch is then blacked out and provided as 
input to the model, resulting in a single possible 
permutation of the input image. 

Figure 14 illustrates the model's steady 
improvement, with a slight bump observed at 
the 7th epoch. This bump is likely due to the 
cyclic learning rate activating when the 
validation loss surpasses the training loss. This 
approach temporarily degrades the model's 
performance for an epoch, allowing it to explore 
alternative strategies, which ultimately has a 
positive effect. The optimal model is achieved 
after 15 epochs, with a Cross-Entropy Loss of 
0.1051 on the validation set. 

The best found model seems to have issues 
recognizing the overall pattern of the rivers. The 
blacked-out patch is often reconstructed with 
noticeable inaccuracies, particularly in complex 
river structures. As seen in Figure 15, the third, 
fourth and last examples show significant 
discrepancies between the predicted and actual 
river patterns. The model struggles with 
capturing the detailed features of braided rivers, 
leading to blurred or incomplete 
reconstructions. Despite its steady 
improvement in Cross-Entropy Loss, these 
visual inconsistencies highlight the challenges 
faced by the model in generalizing across 
diverse and complex river structures.   

Figure 14: Train and Validation Cross-Entropy Loss of the High-
Context Inpainting DC-IGN Pretext Task 

Figure 15: Results of the 15th epoch of the High-Context Inpainting 
DC-IGN Pretext Task. The top row shows the input images, the 
middle row the rotated images, and the third row the predicted 
images. 



11 
 

 
Jigsaw DC-IGN 
The jigsaw DC-IGN pretext task is capable of 
generating multiple permutations. Specifically, 
1, 5, 10, 25, and 100 permutations are created 
and used as inputs for the model. The training 
duration varies for different models; some are 
trained longer while others are stopped earlier 
based on their learning progress. This 
adjustment ensures that each model is trained 
for an optimal period, ceasing training when the 
model has either fully learned the task or 
reached a plateau in its learning curve. 

When incorporating more than one permutation 
of the input data, the models encounter 
difficulties in identifying the overall morphology 
of the river bands. This issue is reflected in the 
learning curves shown in Figure 16. Models with 
5, 10, 25, and 100 permutations exhibit similar 
trends, where increasing the number of 
permutations leads to a higher Cross-Entropy 
Loss in the best-performing models. Despite the 
additional data permutations, the models 
struggle to achieve lower loss values, indicating 
that a greater number of permutations 
complicates the learning process and hinders 
the models' ability to accurately capture the 
river morphology. 

When examining the test images in Figure 17, it 
becomes clear that models utilizing more than 
one permutation struggle with accurately 
recognizing river morphology. In contrast, the 
model with just one permutation demonstrates 
a strong ability to identify the riverbend’s 
morphology and capture details of complex 
multi-channel rivers, as seen in the first, 
second, and fourth images. Additionally, it 
effectively identifies a clear single-channel river, 
as evident in the third image. The increased 
number of permutations seems to introduce 
noise, making it harder for the models to 
generalize and maintain focus on essential river 
features.  

Figure 16: Training and Validation Cross-Entropy Loss for the 
Jigsaw DC-IGN Pretext Task across five distinct models: 1, 5, 10, 
25, and 100 permutations 

1x 

5x 

10x 

25x 

100x 

Figure 17: Jigsaw DC-IGN Pretext Task results. The top row shows the 
input images, the middle row the rotated images, the third to last row 
the predicted images for 1, 5, 10, 25, and 100 permutations. 
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6. Discussion 
This chapter discusses the key limitations and 
considerations encountered during the 
research, focusing on pooling layer 
effectiveness, challenges with the inpainting 
pretext task, and hardware constraints. These 
insights are crucial for understanding the 
study's limitations and guiding future 
improvements. 
 
Pooling Layer Considerations 
The 2x2 max-pooling layers were used to extract 
patterns in the data. Max pooling is particularly 
effective for edge detection and is widely 
employed in training neural networks. However, 
it is highly sensitive to noise. The dataset 
contains numerous side branches or tributaries, 
which can be interpreted as noise, leading the 
models to overfit on these features. This 
overfitting can diminish model performance. 
Considering this, alternative pooling methods, 
such as median pooling, may offer better results 
for this specific dataset. Median pooling could 
reduce the impact of noisy branches, providing 
a more robust feature extraction process. 

Discarded Inpainting Pretext Task 
A variant of the implemented high-context 
inpainting pretext task was quickly discarded 
due to the model's inability to generate any 
useful output. The task aimed to reconstruct just 
the blacked-out patch of the image based on 
surrounding context. However, the models 
struggled with this challenge, failing to produce 
coherent or meaningful inpainted regions. This 
inability likely stemmed from insufficient 
context or complexity within the dataset, 
rendering the task ineffective for training 
purposes. As a result, this approach was 
deemed unsuitable for further exploration in this 
research. However, the method might prove 
effective if more samples are added to the 
dataset. 

 

Hardware Limitations 
The research was conducted using a PC with an 
Intel Core i7-13700K (16 cores, 24 threads), 
64GB DDR5 RAM, an NVIDIA GeForce RTX 4080 
16GB GPU, and 1TB SSD storage. While the GPU 
facilitated model training, the single GPU setup 
limited the ability to perform multiprocessing 
efficiently. Utilizing multiple GPUs can 
significantly enhance training speed and model 
complexity by parallelizing computations and 
handling larger datasets, and exploring more 
complex models in the same time span. 
However, this isn't feasible with the current 
single-GPU configuration, highlighting a need for 
more advanced hardware in future research to 
fully leverage multiprocessing benefits. 

 
7. Further Research 

Given the limited timeframe of this research, 
certain methodologies and approaches were 
not fully explored. This chapter outlines those 
unexamined strategies and suggests future 
directions for enhancing the robustness and 
performance of the models. 
 
Dataset comparison and Expansion Strategy 
Much of the previous research in this area has 
utilized large datasets, often consisting of 
hundreds of thousands of images. For instance, 
C. Zheng [13], employed the LDM100K 
neuroimaging dataset, which contains 100,000 
images, while Noraazi et al. [9] utilized a random 
subset of the ImageNet dataset comprising 1.3 
million images. In contrast, the current study's 
pretext tasks were trained on a comparatively 
modest dataset of approximately 25,000 
images. These images encompass the entire 
continents of Asia and South America.  

To enhance the robustness and generalizability 
of the models, it is proposed to expand the 
dataset to include images from all continents. 
This expansion would increase the dataset size 
to approximately 100,000 images, aligning it 
more closely with the dataset sizes used in 
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related studies. Incorporating a larger dataset 
may significantly impact the learning curves of 
more complex models, particularly for tasks 
such as inpainting and jigsaw puzzle solving with 
multiple permutations. Such an increase in data 
volume could provide these models with a richer 
variety of examples to learn from, potentially 
leading to improved performance and more 
nuanced understanding of the river 
morphologies. 

Skipping model validation 
Skipping traditional model validation in favor of 
training the models on the entire dataset might 
be advantageous in this specific case. When 
using data from every continent, all relevant 
data is included, eliminating the need to validate 
and test the model against external data. 
However, one risk of this method is overfitting 
the models to noise in the data. This approach is 
particularly compelling if all global data is used 
and noise in the river segment clips is 
minimized, potentially leading to more accurate 
and comprehensive models. The results of 
fitting a model while ignoring validation is shown 
in chapter Inpainting DC-IGN in Figure 13,  where 
the model appears to have better generative 
capabilities for more complex riverbeds. 
 
Stratified Splitting of the dataset 
Implementing stratified splitting of the dataset 
based on the average pixel value could enhance 
the models' performance. For instance, an 
image with a white pixel fraction of 0.10 may 
indicate a small, meandering river, whereas a 
white pixel fraction of 0.40 might suggest a 
braided or anastomosing river. By applying 
stratified splitting, an equal distribution of river 
types is ensured across both training and 
validation datasets. This approach balances the 
dataset, preventing bias towards any particular 
river morphology and eventually leading to more 
accurate and generalized model predictions. 
Stratified splitting thus aids in achieving more 
robust and reliable results. 

Implementation of Clustering 
To better compare the found pretext task 
models, one can implement a clustering 
method to find the best clusters of the final non-
predictive fully-connected layer of the model. 
These clusters can be visualized using a 2D 
TSNE plot [29]and assessed using a Silhouette 
score [30] to see how well these models can 
categorize the input rivers in different groups. 
 
Finetuning model 
In a perfect scenario, the layers of the pretext 
task models are frozen and used as the first set 
of layers for a finetuning model. This model 
should take the learned visual representations 
of the entire dataset and use these to train a 
more successful model on a small annotated 
dataset. 
 

8. Conclusion 
This research advances the understanding and 
application of self-supervised learning in 
recognizing river morphology from unannotated 
geographical data. By employing various visual 
pretext tasks, the study evaluates the 
effectiveness of these methodologies in learning 
useful visual representations without labeled 
data. 

The study assesses several pretext tasks using 
Deep Convolutional Neural Networks (DCNNs) 
and Deep Convolutional Inverse Graphics 
Networks (DC-IGNs), including rotation, jigsaw, 
inpainting, and high-context inpainting. These 
tasks challenge the models to understand and 
reconstruct complex patterns within the 
images. 

For DCNN models, the rotation task proved 
effective, achieving a Cross-Entropy Loss of 
0.7844 on the validation set after 14 epochs. 
This model generalized well, accurately 
predicting rotations on the test set. The jigsaw 
task also showed promising results with fewer 
permutations, achieving Cross-Entropy Losses 
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of 0.0466, 0.0751, and 0.1110 for 10, 25, and 50 
permutations, respectively. However, the model 
with 100 permutations performed slightly worse, 
indicating that more permutations can 
complicate the learning process without 
improving accuracy. 

The DC-IGN models faced more challenges. The 
inpainting task achieved a Cross-Entropy Loss 
of 0.1622 after 7 epochs but struggled with 
complex braided river structures. The high-
context inpainting task showed steady 
improvement but had difficulties accurately 
reconstructing blacked-out patches, especially 
in intricate river systems. The jigsaw DC-IGN 
task with a single permutation performed well, 
capturing the morphology of riverbends and 
some of the complex multi-channel rivers. 
However, models with multiple permutations 
encountered difficulties, highlighting the trade-
off between the number of permutations and 
model performance. Despite these challenges, 
these models could be superior in later fine-
tuning tasks due to their complex structure. 

Experiments showed that self-supervised 
learning techniques can indeed learn 
meaningful visual representations from 
unannotated geographical data. The jigsaw 
tasks were particularly effective for DCNN 
models, while the DC-IGN models showed 

potential but need further refinement for more 
complex tasks like inpainting and high-context 
inpainting. 

Despite limitations, this research underscores 
the potential of self-supervised learning in 
geographical morphology recognition. Training 
models on unannotated data opens new 
possibilities for large-scale geographical 
analysis, where obtaining labeled data is often 
difficult and time-consuming. Future research 
should focus on expanding the dataset, 
exploring alternative pooling methods, further 
evaluations using clustering or fine-tuning tasks, 
and leveraging advanced hardware to enhance 
the training process. Addressing these areas 
can further improve the robustness and 
performance of self-supervised models in 
geographical data analysis. 
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