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tsNET is able to create very high quality graph layouts, but is to slow to run on large
graphs. We propose a new graph layout method, NNP-NET, based on tsNET, with the
aim of generating layouts for very large graphs. NNP-NET uses NNP to approximate
the t-SNE step of tsNET with neural networks with a similar quality compared to layouts
generated by tsNET. This thesis will go into the challenges of adapting NNP to a graph
layout context and how we solved them. NNP-NET is compared to other state of the art
methods, were we show that NNP-NET gets good quality results when compared to other
fast methods. Here we also show that NNP-NET is able to create layouts for graphs with
millions of nodes in a reasonable amount of time. For very large graphs, the execution
time of NNP-NET ends up lower than competing state of the art methods.
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Chapter 1

Introduction

Generating good layouts for graphs is an important problem to solve in order to easily
visualize graph data. There are numerous graph layout methods created in order to ful-
fill this purpose, all taking different approaches to create a good graph layout. These
approaches largely fall into two main categories: force-directed and dimensionality re-
duction based. Lately however, a lot of research is focusing on leveraging graph neural
networks in order to generate graph layouts.

All graph layout methods try to solve the same problem however: Trying to gener-
ate readable, pleasing graph layouts from a given input graph. Mathematically defining
what constitutes a good graph layout is not easy however, leading to different methods
optimizing different metrics of what makes a good layout. Another important factor some
methods look at is running time/scalability. These methods try to generate the best pos-
sible graph layouts within a reasonable time, making them suitable for generating layouts
for bigger graphs. Methods that sacrifice runtime for better quality graphs are often un-
able to generate layouts for larger graphs, as it would either take too much time, or too
much memory.

Graphs can come with weights attached to the edges, that say something about the
importance of that edge. These edge weights would ideally be reflected in the resulting
layout. However, this data is often ignored by most graph layout methods, choosing to
instead assume as constant weight for each edge. In this thesis, we introduce a method
that takes these edge weights into account. It is also scalable, making it suitable for large
graphs with 100.000 or more nodes. It is also important that the layout quality does not
suffer, where we are particularly interested in the neighborhood preservation metric.

In this thesis, we incorporate edge weights into tsNET, a promising graph layout tech-
nique that uses t-SNE dimensionality reduction in order to preserve neighborhoods of the
original graph. A large problem with tsNET however is its runtime. tsNET gives good
results, but takes a long time to execute and is unable to run on larger graphs due to its
memory requirement. Another goal of this thesis is to modify tsNET in order to get better
performance. This is achieved using NNP, a technique which uses neural networks in or-
der to imitate any dimensionality reduction method, which includes the t-SNE step used
by tsNET.

The final method should fulfill the following criteria:

• Scalability: The method needs to be able to handle large graphs in a reasonable
amount of time, comparable to other fast layout algorithms. The easiest way to as-
sess this is by looking both the time complexity and the memory usage. Both of these
should ideally scale linearly with the input size, and should be less then quadratic.
Layout methods that have a quadratic memory footprint will run out of memory on
larger graphs. If the time complexity of the method is not linear, then it will end up
significantly slower than other methods that do scale linearly with input size. There
are two different times to consider in this case: The training time, and the layout
time. In theory, a model trained for a graph could be reused later use on a similar
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graph. While it would be nice to get the training time also down to linear time com-
plexity, this will not be the focus. The main scalability goal will be to lay out graphs
using a trained model in linear time.

• Layout Quality: The generated layouts needs to be of comparable quality to other
graph layout algorithms. When looking at graphs with hundred thousands/millions
of nodes, the visual clutter will become very significant, which could also make judg-
ing the quality of a graph by looking at it hard. Judging layouts by hand would
also introduce bias. Neighborhood preservation is used an objective metric to assess
graph quality.

• Robustness: The layout algorithm should work for all types of graphs, not just on
certain types of graphs.

• Ease of use: The method should be easy to use for an end user, without requiring
fine tuning of multiple complex parameters.

• Edge Weights: The method should be able to take edge weights into account.

The final method, NNP-NET, creates a high dimensional embedding using PMDS,
which is used as the input for NNP. NNP is trained on a subset of the complete graph,
which is created by reducing the graph into a smaller representation of itself. A ground
truth is created using tsNET on the smaller graph, which is used as the training data to-
gether with the high dimensional embedding created by PMDS. This network is then used
to infer the position of all points in the graph using the high dimensional embedding as
the input.

This thesis starts with a literature review of the graph layout problem, as well as how
other state of the art methods are generating graph layouts. Section 3 explain our pro-
posed method, NNP-NET, along with some alternative options that were also considered
and tested. Section 4 will go over the results gathered both from tests comparing differ-
ent versions of our algorithm, as well as comparisons to state of the art graph drawing
methods. This is followed with a discussion and a subsequent conclusion.
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Chapter 2

Background and Related Work

In this chapter, we give a definition of the graph layout problem, along with metrics to
evaluate the solutions. We then take a look at dimensionality reduction, which is closely
linked to graph layout. Current graph layout algorithms are then explained.

Some common notations that are used in the following sections are summarized in
table 2.1

Symbol Definition
G The input graph
V List of all nodes in G
xi Node in V
E List of all edges in G
Y List containing the output positions
yi Output position corresponding to input node xi
dij Distance between xi and xj
n Number of input dimensions used for dimensionality reduction
m Number of dimensions used for the resulting graph layout

TABLE 2.1: Common notations used throughout the thesis

2.1 Problem Definition

Graph layout problems are given a graph G = (V, E). Here, V = {xi}N
i=1 and E =

{(xi, xj)} ⊆ V × V. Alternatively, E = {(xi, xj) ∈ V × V, wij}, where wij is a weight associ-
ated with that edge. Most graph layout methods assume a constant weight however.

Graph layout algorithms will map G into positions Y = {yi}N
i=1. Each yi is a position in

m dimensions, where typically m ∈ {2, 3} for visualization purposes. The goal is to place
the output positions yi in an intuitive and easy to interpret way so that the user can easily
read information from the resulting graph.

There are a lot of methods to generate graph layouts. We do not cover all of these
methods in this thesis. Only recent developments and methods that are very relevant
to our research are discussed. To learn about other methods, we refer to the following
literature (Gibson, Faith, and Vickers, 2013, Tamassia, 2013).

2.2 Quality metrics

How "good" a given graph layout is hard to define. A multitude of metrics have been
proposed to quantify how good a layout is perceived by end users. Some of the more
prevalent metrics will be discussed in this section.
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2.2.1 Stress

Stress measures how far the distances in Y are deviating from the the graph theoretical
distances from G. The stress σ is calculated using the following formula:

σ = ∑
i,j

(
dij − ∥yj − yi∥

dij

)2

. (2.1)

Here, dij is the graph theoretical distance between xi and xj. A lower value for σ is better,
with 0 as the minimum value and no upper bound.

2.2.2 Neighborhood preservation

The neighborhood preservation metric represents how well neighborhoods from G are
preserved in Y. The formula used by Kruiger et al., 2017 is based on Gansner, Hu, and
North, 2013. Firstly, the neighborhood NG(xi, rG) of each node is defined as

NG(xi, rG) = {xj ∈ V|dij ≤ rG}, (2.2)

where rG is the maximum distance nodes can be apart to be considered neighbors, and dij
is the graph theoretical distance between xi and xj. This can then be used to compute the
neighborhood preservation metric v as follows:

v =
1
|V| ∑

i

|NG(xi, rG) ∩ NG(yi, rG)|
|NG(xi, rG) ∪ NG(yi, rG|

. (2.3)

v will have a value between 0 and 1, where a higher value is better.

2.2.3 Crosslessness

Crosslessness (Purchase, 2002) looks at the number of edge crossings in the graph, where
less edge crossings is better. The crosslessness metric k is calculated using an estimated
upper-bound on the maximum number of possible edge crossings, and using that to scale
the actual number of edge crossings as followed:

k =

{
1 −

√
c

cmax
, If cmax > 0

1 , Otherwise
(2.4)

cmax =
|E|(|E| − 1)

2
− 1

2 ∑
x∈V

degree(x)(degree(x)− 1). (2.5)

Here, c is the number of crossings, cmax is the estimated upper-bound on the number of
crossings and degree(x) the number of edges connected to x. k has a value between 0 and
1, with a higher value being better. This metric is the reversed version of the number of
edge crossings, which can instead be used as a metric depending on preference.

2.2.4 Minimum Angle

The minimum angle metric looks at the smallest angle created between all edges attached
to each xi. This will be compared to the theoretical maximum for the smallest angle be-
tween each of those edges. Minimum angle a will then be the average value across all
nodes:
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a = 1 − 1
|V| ∑

i
| θ(xi)− θmin(xi)

θ(xi)
| (2.6)

θ(xi) =
360

degree(xi)
. (2.7)

Here, θmin(xi) is the actual minimum angle calculated from V, and θ(xi) is the theoretical
minimum angle. a has a value between 0 and 1, with a higher value being better.

2.3 Dimensionality Reduction

Dimensionality reduction (DR) maps a high n dimensional input to a low dimensional m
output. Here, X = {xi}N

i=0 is the input data, where each xi is a n dimensional datapoint,
and Y = {yi}N

i=0 is the corresponding output data, where each yi is a m dimensional output
point. Typically, m ≪ n and m ∈ {2, 3} for visualization purposes.

Dimensionality reduction has its own set of metrics to evaluate the output of the method.
Some of these are very similar to metrics used for graph layout. Some of the metrics used
for DR are:

• Normalized Stress: Very similar to the stress metric used for graph layouts. Mea-
sures the difference between the distances in the input space X and output space
Y. This used almost the same formula (Equation 2.1), except for how dij is defined.
When using stress for graph layouts, dij is defined as the graph theoretical distance
between xi and xj. For DR, dij is defined as dij = ||xi − xj||.

• Trustworthiness and Continuity: Trustworthiness (Venna and Kaski, 2001) is very
similar to the neighborhood preservation metric used for graph layout as it looks at
how many points that are close in Y are also close in X. Continuity is the same, except
it looks the other way around, how many points that are close in X are also close in Y.
These metrics say how well local patterns and neighborhoods are preserved between
the input and output space, just as the neighborhood preservation metric for graph
layouts.

• Neighborhood hit: Neighborhood hit (Paulovich et al., 2008) looks at how many of
a point yi’s closest neighbors have the same label. This tells how well separable the
output plot is. Graph layout does not have a similar metric, as Graphs generally do
not come with labels attached to its nodes.

• Shepard diagram correlation: A shepard diagram (Joia et al., 2011) is a scatterplot
that is drawn where every pair of points is plotted, where one axis is the distance
between those points in X, and the other axis the distance in Y. Ideally, the result-
ing scatterplot would be a diagonal line. A point that is not on the diagonal would
indicate either a missing/falls neighbor. The spearman rank correlation is then cal-
culated on the scatterplot which is used as the metric. Graph layout does not have a
similar metric.

DR shares a lot of commonalities with generating graph layouts, which results in mul-
tiple metrics that are very similar in what they try to achieve. Similarly to what DR tries
to achieve, generating Graph layouts reduces the input data into a m dimensional output.
The dimensionality of this graph data however is not really known, only the distances
between the nodes are. The difference here comes from the structure of the data. Graphs
can’t be given to DR algorithms directly, as they use n dimensional points as input.
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There are a lot of different DR algorithms, but the one relevant for this research is t-
SNE, as it is the basis of tsNET. Because of this, other methods are not listed in this thesis.
For information about other DR methods, we refer to an extensive literature study done
by Ayesha, Hanif, and Talib, 2020.

2.3.1 t-SNE

t-SNE (Maaten and Hinton, 2008) is the DR method that is the basis for tsNET, which is
explained later in this thesis. t-SNE starts by defining the probability pj|i, which is the
probability that xj would pick xi as its neighbor. Probability pj|i is defined as follows:

pj|i =
exp(−||xi − xj||2/2σ2

i )

∑k ̸=i exp(−||xi − xk||2/2σ2
i )

, pi|i = 0, (2.8)

where σi is the Gaussian standard deviation for xi. σ has to be chosen so that perplexity
Perp(Pi) = 2−∑j pj|i log2 pj|i . This is done using binary search to get to a right value for σi. The
perplexity value itself is given by the user. This probability is symmetrized where

pji = pij =
pi|j + pj|i

2
. (2.9)

The probabilities qij are the corresponding probabilities for the output space, where pij is
the probability that yi would pick yj as its neighbor in the output space. qij is defined with
a different function as opposed to pi|j. pi|j is defined with a gaussian distribution, where
qij uses a student t-distribution:

qij =
(1 + ||yi − yj||2)−1

∑k ̸=l(1 + ||yk − yl ||2)−1 , qii = 0. (2.10)

These probabilities are then used to calculate the Kullback-Leibler divergence CKL between
the probabilities:

CKL = ∑
i ̸=j

pijlog
pij

qij
(2.11)

The desired output positions Y can then be found by optimizing for CKL. The focus of
t-SNE is not to have an accurate distance from each point to each other point, but instead
for the k-nearest neighbors for each point to be the same in both X and Y, where k is the
perplexity given by the user. This results in good overall performance relative to other
dimensionality reduction method (Maaten and Hinton, 2008).

t-SNE uses the distances between points, which can be given as either the full distance
matrix, or as a list of feature vectors, from which the distance matrix is calculated. Being
able to give the distance matrix directly gives as an advantage that t-SNE can be run on
data where you do not have feature vectors, but only distances between points, which
tsNET takes advantage of. t-SNE performs very well on the trustworthiness and continuity
metrics, as it is build to preserve neighborhoods instead of distances (stress).

t-SNE does have some downsides. Firstly, it is very slow. Each iteration has a time
complexity of O(N2), resulting in long running times on larger datasets. Secondly, t-SNE
is not stable. This means, running t-SNE twice on the same dataset does not result in
the same output twice. This is the result of the random initialization used by t-SNE. This
could be solved by either using a different initialization method, or a set random seed.
t-SNE will however always lack out of sample (OOS), meaning that data points can not be
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added to Y once Y is already created. The only way to add additional points to Y once Y
is calculated is by redoing t-SNE from the start.

2.3.2 Deep Learning t-SNE

Espadoto, Hirata, and Telea, 2020 found that it is possible to simulate any dimensionality
reduction technique, like t-SNE, using neural networks. The network used consisted of an
input layer the size n, corresponding to the higher dimensional space of xi, three hidden
layers sized {256, 512, 256} and an output layer size 2, one for each output dimension m. It
was mentioned that there is nothing particularly special about this setup, and that it can
likely be changed to something else with similar results.

The network is trained using a ground truth output obtained from running the dimen-
sionality reduction method that will be simulated. Afterwards, xi can be inputted into
the neural network, which results in the corresponding yi. This is then repeated for every
xi ∈ X to get the desired scatterplot.

This method is very fast. It has a linear time complexity with respect to number of
points plotted. The network is evaluated once per data point. Evaluating the network
only dependent on the point being evaluated, giving the linear time complexity. It is also
stable, plotting every point xi in the same place as the ground truth did. This method also
has OOS, meaning a plot can also be extended with new unseen points after it has already
been drawn, even if the method it is trained on can not do that.

This approach does have some limitations however. Most importantly, it is not gen-
eralizable. It has to be retrained for each different dataset, which requires a ground truth
from the original dimensionality reduction method. Having to run the original method to
obtain the ground truth for training gets rid of all time advantage this method had over
running the base algorithm.

Another limitation is that it has to use the input data X, and can not use the distance
matrix directly, like t-SNE was able to do. Because of this, this method is usable in less
situation compared to using t-SNE directly.

2.4 tsNET

From here on out, different already established methods will be discussed that create
graph layouts. The first one discussed is tsNET, as it is the method that we are trying
to improve.

tsNET is a DR-based graph drawing algorithm proposed by Kruiger et al., 2017. It
leverages a modified version of t-SNE to create a scatterplot of all vertices of G, over which
all edges are drawn. The value that is optimized for in tsNET is not just CKL, but instead:

C = λKLCKL +
λc

2N ∑
i
||yi||2 −

λr

2N2 ∑
i ̸=j

log(||yi − yj||+ ϵr). (2.12)

Here, λKL, λc and λr are weights for the three different terms of the equation. The first term
is the Kullback-Leibler divergence as used by t-SNE. The second term is the compression
term, which is known to reduce optimization time (Maaten and Hinton, 2008) as described
in the original paper. Term 3 is used to repulse nodes that are to close together. ϵr is a small
regularization constant which is set to 1

20 . This is done for situation where nodes are almost
in the exact some location. This term is the entropy model from Gansner, Hu, and North,
2013.

tsNET does its optimization in three different steps. In the first step, the values of Y
are given random initial values. The second steps runs the modified t-SNE with weights
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{λKL, λc, λr} = {1, 1.2, 0}. In the third stage, the weights are changed to {λKL, λc, λr} =
{1, 0.01, 0.6}.

An alternative method was also proposed in the paper, called tsNET*. In this variation,
the first stage is replaced with PMDS (Brandes and Pich, 2007), and the weights for the
second stage are changed to {λKL, λc, λr} = {1, 1.2, 0}. Overall, tsNET* is faster than
tsNET (reported to be about 15% (Kruiger et al., 2017)), and produces better results. tsNET*
is a stable algorithm as opposed to tsNET, thanks to the initialization step done by PMDS.

tsNET inherits all problems from t-SNE. It does not scale well to larger graphs. tsNET
memory usage is also O(N2) to store the distance matrix, resulting in high memory costs
for large graphs. Just like t-SNE, tsNET is not stable, although using tsNET* does solve
t-SNE’s stability problem. Both tsNET and tsNET* do not have OOS.

2.5 DR based Graph Layouts

There are more DR based graph layout algorithms aside from tsNET. In this section we
look at what other algorithms are doing when compared to tsNET.

2.5.1 PMDS

Pivot Mulitidimensional scaling (PMDS, Brandes and Pich, 2007) is an extension of Classic
MDS (Torgerson, 1952) and Landmark MDS (Silva and Tenenbaum, 2002). MDS is not
only a graph layout method, but is also used for dimensionality reduction. Classic MDS
makes use of the same distance matrix used by tsNET. A matrix B is then constructed by
double-centering the distance matrix so that all rows and columns sum up to a total of 0.
Eigendecomposition can then be applied to B to calculate the resulting output positions.

Pivot MDS changes this by not considering the full distance matrix, but instead using a
set number of pivot points. This results in a distance matrix that is not N × N, but instead
N × k, where k is the number of pivot points used. Here, the distance matrix only contains
the distance from each point to every pivot point. The pivot points are chosen using a
max − min scheme. In a max − min scheme, the next pivot point chosen is the point that
has the largest minimum distance to any other point pivot point already chosen.

A strong point of PMDS in comparison to other graph layout algorithms is its running
time. The time complexity of PMDS ends up at O(k2N). This is a linear time complexity
with respect to the input size N. In other papers that compare the running time of multiple
graph layout algorithms, PMDS ends up faster than other methods (Zhu et al., 2020). This
speed does come at the expense of quality. The layouts produced by PMDS are of lower
quality compared to other available methods (Kruiger et al., 2017, Zhu et al., 2020).

2.5.2 DRGraph

DRGraph (Zhu et al., 2020) uses tsNET as a basis, and made changes in order to greatly
improve both performance and memory cost. Three major changes were made to the
pipeline:

Firstly, DRGraph uses a sparse distance matrix instead of the full distance matrix. The
only distances that are taken into account are the k-order nearest neighbors, in other words,
all nodes that are at most k edges away from the current node. These distances are stored
in a sparse matrix, which is then used for the next steps. Only the points that are in the
sparse matrix are used for all calculations afterwards, giving a large performance increase,
as only the closest, most relevant nodes are used. This can be done without a significant
impact on quality because of how t-SNE works. Large distances have almost no effect on
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pij, and can thus be omitted for a performance improvement with only a minimal loss in
quality.

Secondly, a different way to calculate the gradient is used. tsNET uses gradient decent
in order to minimize its cost function. Calculating the gradient for this gradient decent has
a time complexity of (N2), where N is the number of vertices. DRGraph uses a negative
sampling technique, which approximates the gradient (Mikolov et al., 2013). This method
does not sample every point when calculating the gradient for a single point, but instead
takes M points, where M is the number of negative samples used. This sampling method
reduces the time complexity for the optimization step from O(tN2) to O(tMN), where N
is the number of vertices and t is the number of iterations.

Lastly, DRGraph uses a different initial layout. Where tsNET and tsNET* uses a ran-
dom layout and PMDS respectively, DRGraph uses a multi-level layout scheme. First,
the graph gets coarsened. This is done by taking a random vertex, finding its first order
neighbors (directly connected by an edge), and reducing them into a single vertex. This
is repeated up to a certain point, after which the resulting graph will be initialized with a
random initialization. From here, the coarsening steps can be reverted one by one, with
refining steps in between.

In testing, DRGraph was significantly faster than tsNET. This is unsurprising, as the
time complexity of DRGraph ends up as O(N). Important to note is that the implemen-
tation of tsNET used changed from the original paper. A GPU accelerated version of t-
SNE was used instead of the original python implementation. This has no impact on the
resulting graphs, but is significantly faster than the original implementation. DRGraph
also used significantly less memory, allowing it to draw bigger graphs than possible with
tsNET.

The quality of the resulting graph depended on the metric. tsNET and DRGraph got
comparable results when looking at neighborhood preservation. DRGraph seemed to out-
perform tsNET on the other metrics that were calculated. Important to note is the DR-
Graph was not compared to tsNET*, which got better results than tsNET in the original
paper.

The quality for the resulting graph does rely on 5 different parameters. A similar con-
figuration of parameters can be used for most graphs however. The sparse matrix ap-
proach to the iteration steps makes it hard for DRGraph to create a good global graph
structure, as the global structure is not represented in the sparse matrix. This is partially
alleviated by the coarsened graph initialization. There is however no guarantee that all
nodes are coarsened precisely, as the coarsening is done randomly.

Expanding DRGraph to include edge weights might be harder than for other meth-
ods like tsNET. With tsNET, the calculations for the graph theoretical distances can be
expanded to include the edge weights. Doing this with DRGraph would present potential
problems. With edge weights, there is no guarantee that the k-order nearest neighbors are
the closest points, as it looks at all nodes at most k edges away without taking the edge
length into account. k-order nearest neighbors could be replaced by either k-nearest (the
k closest nodes) or r-nearest neighbors (all nodes at most r distance away). Using the k
nearest points can end up ignoring certain edges if either a node has more than k edges, or
when there are nodes more than one edge away that are closer. r-nearest neighbors looks
at all nodes that are at most r distance away. r would have to be chosen sufficiently high,
so that it is at least as long as the longest edge, else some edges would never be taken into
account. Taking a too high r value could have a negative performance impact however.
A lot of neighbors would have to be considered if a graph has a lot of very short edges
in comparison with the chosen r value. Whether any of these potential problems would
result in real world problems for the algorithm would have to be tested.
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2.5.3 Graph Drawing by High-Dimensional Embedding

Harel and Koren, 2002 start by generating a n-dimensional embedding of the graph. This is
done using n pivot points. The pivot points are chosen in the same way as done by PMDS
(Brandes and Pich, 2007), where the first is chosen randomly, and the rest by maximizing
the minimum distance to the other already chosen pivot points. This results in each xi
having a n dimensional embedding with the graph theoretical distances between it and
each pivot point. This n dimensional embedding is then reduced to a 2 or 3 dimensional
graph layout using Principal Component Analysis (PCA). In the paper, n was typically set
to a value of 50, which proved to be sufficient for all input sizes.

This approach is very fast. Its time complexity is linear (O(N)) with respect to the input
size. This is at the cost of layout quality however. PCA tries to fit a plane through the n
dimensional space. This will only result in an accurate representation of the data when all
the data directly falls on that plane in high dimensional space. This often is not the case,
resulting in worse quality layouts in comparison to layouts generated by other methods.
Harel and Koren, 2002 mentioned that force directed methods generally generate more
pleasing layouts. This was also from 2002, after which even better layout methods have
emerged. This method for creating high dimensional embeddings for a graph does seem
promising, although using PCA to generate the low dimensional embedding does not
seem suitable.

2.6 Force-directed methods

Force-directed methods are a different class of graph layout methods opposed to DR based
methods. Force-directed methods work by modeling the graph as a physical system with
forces. These methods are often easy to understand, but tend to have a quadratic time
complexity, making them slow on large graphs. There are a lot of different Force-directed
graph layout algorithms, but we will only talk about a few recent developments in the
field.

2.6.1 Stochastic Gradient Descent

Zheng, Pawar, and Goodman, 2019 proposed a graph layout method using Stochastic
Gradient Descent (SGD) that tries to minimize stress. Often, the gradient at a specific
vertex is calculated by looking at every other vertex in the graph. SGD does not calculate
the gradient on a vertex basis, but instead by only looking at a pair of vertices at a time.
A small modification was made, adding an additional step size modifier η when applying
the forces. η decreases every iteration towards 0.

SGD was compared to other stress minimization graph layout methods, where SGD
took less iterations to converge then the alternative methods, while also reaching lower
stress. SGD was not tested for neighborhood preservation and was also not compared to
methods that aim for neighborhood preservation. It is likely however that SGD would
perform worse then methods that do aim for high neighborhood preservation. Although
SGD has better performance compared to other similar methods, it still has time complex-
ity O(N2), making it to slow for large graphs.

2.6.2 (GD)2 and (SGD)2

Ahmed et al., 2020 use gradient decent in order to create graph layouts. Where (GD)2

differs from other methods using gradient decent is what they are minimizing. Gradient
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decent methods typically try to minimize stress. (GD)2 argued that you can use any aes-
thetic metric to optimize a graph layout, or even combine multiple metrics. The metric
functions are required to be smooth function to make this possible. Non-smooth metric
functions were extended in order for them to be usable for gradient decent.

(GD)2 was tested by giving it either a random layout, or a layout generated by a differ-
ent graph layout algorithm. (GD)2 was then tasked to improve a specific quality metric.
When given a random layout, it was almost always able to improve the layout for the
given metric. The results were more mixed when given a layout from a different graph
layout algorithm. Whether (GD)2 was able to improve the metric was dependent on the
metric that was optimized for. In none of the cases did the results get worse however.

(GD)2 is slow and not suitable for large graphs as it had a O(N2) time complexity.
To partially remedy this, SGD was used to optimize (GD)2, which was named (SGD)2

(Ahmed et al., 2022). This gave a significant speed up, while still getting similar results.
(SGD)2 still is not fast enough to draw very large graphs, as it relies on SGD which itself
was also not fast enough.

2.7 Graph layouts using Deep Learning

More and more research is being done looking at applying neural networks to graph prob-
lems. One of these problems is the graph layout problem. This section will talk about how
neural networks are applied to graph problems, and the methods developed to generate
graph layouts using them.

2.7.1 Graph Neural Networks

Graph neural networks (GNN) is a concept first introduced by Gori, Monfardini, and
Scarselli, 2005, which has seen a lot of research and interest in the last few years. At
its very core, GNN’s are neural networks that are able to take in graph structured data.
GNN’s can be applied to any type of problem involving graphs, including graph drawing.
There are numerous variations and extensions of the original GNN, which can be read
about in literature studies like Zhou et al., 2020 and Wu et al., 2021.

The variants that will be relevant for graph drawing are Convolutional Graph Neural
Networks (ConvGNN). ConvGNN is an overarching term for GNN that apply ideas from
conventional Convolutional Neural Networks to graph structured data. This is done using
message passing between nodes in the graph. Each node will send the data located at the
node along its connected edges to its neighboring nodes. Per node, the data used will be
its own data together with the data received from its neighboring nodes. The exact details
of how this is done differs between variants within ConvGNNs.

2.7.2 (DNN)2

(DNN)2 (Giovannangeli et al., 2021) build upon the work of Kruiger et al. and uses the
foundation of tsNET is a novel way using Deep Neural Networks. (DNN)2 replaces the
entire pipeline with a convolutional neural network using graph convolutions, which they
train using C from tsNET (Equation 2.12) as the loss function. The weights used for C
are the same weights used by tsNET. The best results were when the network was first
trained on a large set of randomly generated graphs, and subsequently fine-tuned on the
training+validation dataset used. A alternative was also proposed, (DNN)2∗, mirroring
tsNET and tsNET*. Here, PMDS is also used in the first phase. The second phase also uses
the second phase weights used by tsNET*. (DNN)2∗ tended to give slightly better results,
but also took longer to execute due to the extra PMDS step.
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(DNN)2 and (DNN)2∗ do have some limitations. The main limitations is on the input
size. A max input size has to be defined before the training can start. A network with more
vertices than the max input size of the network can not be drawn by the network. The
input size could be set arbitrarily large, but this would greatly increase the training and
execution time. It is also not known how well a larger model would work, as it was only
tested with a max size of 128 nodes. Training the model also takes considerable resources.
The resulting model is also not able to draw every type of graph, and would have to be
retrained to handle different type of graphs.

(DNN)2 is not suited for our purposes as it does not scale well, as well as not working
on all graphs without retraining.

2.7.3 GraphTSNE

GraphTSNE (Leow, Laurent, and Bresson, 2019) is a graph layout algorithm using similar
ideas to tsNET, using t-SNE to draw graphs. GraphTSNE however focuses on drawing
multivariate graphs (graphs that include a feature vector at each vertex). GraphTSNE uses
a Graph convolutional network (GCN, which falls under ConvGNN) to map between the
feature vectors and low dimensional output space. The GCN is trained with a loss function
that is made up from two different parts: The Graph distance loss Cg, and the feature
distance loss Cx. These two are then combined into a single loss metric with the using
Ct = aCg + (1 − a)Cx. Here, a is a user defined variable telling the system whether to
prioritize optimizing feature distance or graph distance. GraphTSNE’s was not compared
to any other other graph drawing methods, so the relative performance to other methods
is not known.

2.7.4 DeepDrawing

DeepDrawing (Wang et al., 2020) uses a Long Short Term Memory (LSTM) network as a
basis for their method. In such a network, each node is fed into the network one at a time.
A LSTM network is able to remember the nodes that it has seen previously, and use that
information for the node that it is currently processing.

This approach raised three important questions to be solved:

• How to represent a node as a feature vector that can be fed to the network

• In which order should the nodes be fed into the network

• On what type of data should the network be trained

The feature vector used by DeepDrawing is a k-sized adjacency vector, where k is set
to a fixed number before training the network. This vector represents for the k-previous
nodes whether this node is a direct neighbor, where a one means it is neighbor, and zero
means it is not.

The order that the nodes are few into the network becomes very important as a result
of this encoding. A random order would not work optimally. The network would have
to be trained on every possible permutation of random orderings. The order chosen by
DeepDrawing is a breadth-first-search (bfs) ordering. This way, the network only has to
be trained on inputs that are ordered by bfs, making the problem significantly easier.

The model is trained using ground truth data generated by a different graph layout
method. DeepDrawing is then trained to replicate those layouts. The aim was to make
DeepDrawing replicate the layout style of the ground truth input, which they were able
to accomplish by giving the ground truth results of that method. The loss function used
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in training was thus set to how far the network was from the ground truth created by a
different graph layout method.

DeepDrawing has some limitations. Firstly, it was only tested on relatively small
graphs (with around 40-50 nodes), and it is thus unknown how well this method will
scale to bigger graphs. Poor drawing performance was also observed for graphs that have
a significantly differing structure from the graphs in the training set. This would result in
having to re-train the network to handle a specific case, which requires you to run the base
algorithm that it is imitating, making DeepDrawing redundant in such cases.

2.7.5 DeepGD

DeepGD (Wang et al., 2021) uses Convolutional Graph Neural Networks in order to gen-
erate graph layouts. The network takes as input an adjacency matrix, as well as a matrix
for both node and edge features. This allows DeepGD to also take the features of the a ver-
tex/edge into account. Multiple loss functions were tested in the paper, each optimizing
for different quality metrics. Multiple loss functions also could be combined to optimize
for multiple quality metrics at the same time.

DeepGD was only tested on smaller graphs due to long training times on larger graphs.
DeepGP also suffers from a common problem with deep learning methods: The ability to
generalize on unseen data. If a graph has a structure that differs from the structures that
were present in the input data, DeepGD will not provide satisfactory results. DeepGD
also requires the user to choose a loss (or multiple) themselves, which requires knowledge
about how the underlying metrics work and how that will reflect in the resulting graphs.

2.8 Multilevel methods

Multilevel layout methods optimize other layout methods by introducing a multi level
layout scheme. The general idea is to iteratively reduce the size of G until a certain stop-
ping criteria. A graph layout is then created for the smallest graph. This layout will then
be used as the initial layout for the graph one iteration back. After refining that layout, the
process will be repeated until we arrive back at the original graph G. DRGraph (explained
back in section 2.5.2) also falls in this category, as well as the DR section it is placed in.

2.8.1 Fast Multipole Multilevel Method ( f m3)

Fast Multipole Multilevel Method (Hachul, 2005) is a multilevel method that uses force
directed ideas as a base for creating the layouts. The authors explained their multilevel
step by relating it to solar systems. Sun nodes are picked. The shortest path between each
pair of sun nodes needs to have at least two other nodes in between. Each node directly
connected to a sun nodes will become a planet node of that sun. Any leftover nodes
become moon nodes of a neighboring planet node. These solar system are than collapsed
into one node for the next iteration. This is repeated until the graph size is not reduced
enough for a set number of iterations.

The suns are not chosen randomly however. Each nodes will be assigned a weight. At
the start, each node has weight 1. When nodes are merged into a single node, all weights
are added together. For choosing the next sun node, the node with the lowest weight that
is eligible is chosen. This is done in order to ensure that enough iterations are performed.
The time complexity of this method ends up as O(NlogN) in the end.
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2.8.2 SFDP

SFDP (Hu, 2005) is a popular graph drawing method that uses multilevel techniques.
SFDP is in essence a force directed method, that applies those ideas to smaller graphs that
are created by the multilevel layout scheme. While this is similar to what f m3 does, the
multilevel approach used differs between the two methods. SFDP start by using edge col-
lapse. Edge collapse chooses pairs of nodes that are connected with an edge. This is done
until no more nodes can be matched with another node. Each pair of nodes is collapsed
into a single node. This is repeated until the node count does not decrease far enough
within one iteration.

This is not where SFDP stops however. After having performed edge collapse on G,
maximal independent vertex set (MIVS) will be ran on the result. MIVS works by first
choosing as many points as possible that all are not connected by an edge. This subset will
be all points in the reduced graph. Edges will be places between each node pair whose
distance is at most 3. This will be done until only 2 nodes are left in the graph. The final
time complexity of SFDP ends up the same as f m3, O(NlogN).

2.9 Comparing methods

In this section, we compare all methods discussed using multiple criteria. The criteria
looked at are the following:

• Layout quality: A general idea of the quality of the generated layouts using a given
method. This will be somewhat imprecise, as it is not only hard to define what a
"good" graph layout is, but also hard to compare multiple methods without running
them on the same dataset. The scale used to compare the various methods consists
of {−−,−, /,+,++}, where −− is the lowest value, and ++ the highest, with / as
a mid point.

• Scalability: This looks at how well a method can handle large graphs. This is mostly
determined by the time complexity of a given method. Linear method are able to
handle large graphs, while quadratic methods run into problems on large graphs.

• Requires training: Whether or not a method requires the user to have a trained
model before they can generate graph layouts using the method.

• Ease of choosing parameters: Some methods require fine tuning of multiple param-
eters to get a good results. This makes it harder for an end user to easily use the
method.

• Ease of implementation: How easy it is to understand and implement a given graph
layout method. The scale used in the evaluation for the criteria is the same as the one
used for the layout quality.

• Handles weights: Whether or not the method can take edge weights into account.
If a value of "Can be added" means that adding support for edge weights can be
done trivially (e.g by taking them into account when calculating graph theoretical
distances) but has not been tested, and thus does not guarantee good results. No is
given if it would require a more significant change to the algorithm to support it.

Not all of these criteria will be easily extracted from their papers, and will thus not be
filled in. Some other criteria are a bit fuzzy and imprecise, like how "good" the resulting
layouts are. Other criteria like how easy a method is to understand and implement are
subjective, and are therefore up for debate. Table 2.2 is discussed in the following section.
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Method
Layout
quality Scalability

Requires
training

Ease of choos-
ing parameters

Ease of imple-
mentation

Handles
weights

tsNET ++ O(N2) No 1 (perplexity) /
Can be
added

PMDS / O(N) No 0 (optional 1) +
Can be
added

DRGraph ++ O(N) No
5 (most can be
default) −−

More Chal-
lenging

HDE −− O(N) No 0 (1 optional) +
Can be
added

SGD + O(N2) No 2 ++ Yes

(SGD)2 + O(N2) No
1 or more target
criteria + Yes

(DNN)2 +

O(N), fixed
max size (set
before train-
ing) (O(N2)
training) Yes 0 /

Can be
added

Graph- TSNE Yes 1 (perplexity) -
Can be
added

Deep- Draw-
ing /

O(N) (Not
validated for
graphs bigger
than 50) Yes

Multiple NN
parameters /

Can be
added

DeepGD +

O(N), fixed
max size (set
before train-
ing) (O(N2)
training) Yes

1 or more target
criteria / Yes

fm3 + O(Nlog(N)) No 0 - Yes
SFDP + O(Nlog(N)) No 0 - No

NNP-NET ++ O(N)

Training
part of
pipeline

8 (Can all stay
default) - Yes

TABLE 2.2: Table comparing methods discussed in the previous sections

2.9.1 Comparison evaluation

A top priority for the method will be very good layout quality. tsNET and DRGraph
both score very well in this regard. tsNET main problem is scalability, as it is unable to
process large graphs. DRGraph however is able to process large graphs. DRGraph has
other downsides. For example incorporating edge weights into DRGraph is significantly
harder than for other methods. DRGraph also has significantly more parameters than
other methods. While HDE scores very well on a lot of metrics, it has the worst layout
quality. This could be remedied by using a different DR method than PCA, which would
make it a very strong candidate.

Both SGD and (SGD)2 suffer from bad scalability. Aside from that, they do score very
well on all criteria expect parameters. They are also one of the few methods that have
been tested using edge weights. The deep learning methods do have a linear inference
time. The training time is most of them is O(N2), making it very costly to train a network
that is able to handle graphs of that size. The quality of the resulting layouts also fall short
of both tsNET and DRGraph.

Not all methods present in table 2.2 are used for the evaluation of our method. Only
methods with a time complexity better than quadratic are tested against, with the excep-
tion of tsNET. A lot of bigger graphs are used in the comparisons between methods. Meth-
ods with a quadratic time complexity will not be able to create a layout for these larger
graphs, making them not useful for comparisons. HDE is also excluded, as it is an old
method that did not get good results overall.
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Method

The basic idea of our method is to speed up tsNET calculations using NNP in place of t-
SNE. This allows us to get similar quality graph layouts in linear time instead of quadratic.
However, NNP is not a drop-in replacement for t-SNE. There are two main problems that
need to be solved in order to use NNP in place of t-SNE for tsNET. These problems are the
following:

• What input would be used for NNP?

• On what data would NNP be trained?

In the next sections, we take a closer look at these to problems individually and see
what the requirements for a potential solution are. Figure 3.1 shows an overview of the
pipeline that is explained in the following sections.

FIGURE 3.1: Overview of NNP-NET that will be explained in the following
sections.
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3.1 Embedding method

Firstly, even though tsNET allows for both feature vectors and a complete distance metric
as input, NNP specifically requires feature vectors as input. The graphs used for graph
drawing do not provide a feature vector per node in most cases, meaning that an embed-
ding needs to be created per node to function as a feature vector. This embedding has to
fulfill a few requirements in order to be useable for this application:

• Scalability: The goal is to keep the entire method (near) linear in time complexity.
The embedding needs to be created for every node in the graph. This mandates that
the creation on the embedding for each node is not dependent on the size of the
graph in any way. This rules out any embedding method that would use the entire
distance matrix for example, as it would not scale good enough.

• Out of Sample ability: NNP needs to be able to learn how to translate the embed-
dings into layout positions. More crucially, it needs to be able to generate a position
for a node that was not in the ground truth by interpolating between positions that
were in the ground truth data. NNP will only be able to do this if the embedding
contains the nodes position in the graph in some way that is learnable by a neural
network. This is hard to measure, but should become apparent by testing how well
NNP can learn the embedding method.

Any embedding method that fulfills these requirements should work well for this
method. Some of these requirements are not trivial to work out without testing them,
so that is the main way we show that the embedding we end up choosing is viable. Next,
we will discuss the two potential embedding methods that were considered.

3.1.1 Pivot Point Embedding

The first potential method is the same method that is used by PMDS (Brandes and Pich,
2007) and the high dimensional embedding paper ((HDE)). First, a random first point is
chosen. All subsequent points are chosen by taking the point with the lowest maximum
distance to the already chosen points. This is done until the required number of points are
chosen. The resulting embedding is then the distance from a point to all pivot points.

The time complexity of this embedding method is O(Nn), where n is the embedding
size and N the number of nodes in G. This is in line with our time complexity requirements
for the embedding method. Creating an n dimensional embedding for N points can by
definition not be faster than O(Nn). This embedding method does not guarantee that
all embeddings will be unique, although this only happens in specific cases. Consider a
graph with four nodes arranged in a square. If two pivot points are chosen, than those
will be two opposite corners. The other two corners would then end up with the same
embedding, namely being 1 distance away from both pivot points. Not much can be said
at the moment about the out of sample support of this embedding method without testing
it and comparing to other methods.

3.1.2 Embedding using Graph Layout

An alternative is to use a different, fast graph layout algorithm to generate an embedding
in n dimensions. The value for n should be higher than the output dimensions of NNP.
The logic behind this method is that the fast method might not be able to generate the same
quality of layouts as our method, but by giving it more dimensions to work with, it will
be able to generate a better layout. This layout is then used as the embedding required
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for NNP, which in turn translate the high n dimensional graph layout into the target m
dimensional layout.

Any graph layout technique that fulfills the criteria needed for this embedding method
should work, as long as it can output any arbitrary number of dimensions. For our test
we chose to use PMDS, as it very fast and should work well for this purpose. It is impor-
tant to keep in mind however that PMDS can be swapped out for any other graph layout
algorithm without it affecting the rest of the pipeline.

3.2 Ground truth

NNP needs to be trained on a ground truth graph layout that it will emulate. Using a
pretrained network would be hard, as it has to be trained on very similar network in
order to work. The embedding method might also not guarantee that every individual
dimension of the embedding means the same thing from graph to graph, making a pre-
trained network not a viable option. This forces us to train NNP every time the user wants
to create a graph layout. Using a ground truth that contains all nodes from a graph is not
a logical solution, as that would require a already complete graph layout to emulate. But
if the user already has a graph layout that they like, why would they try to emulate it
with our method? Because of this, the decision was made to take a small portion of G, a
subgraph G’, and train NNP on the layout created by running tsNET* on G’.

This changes our question from "On what data do we train NNP" to "Which nodes do
we use to generate a ground truth layout using tsNET*". The method for choosing the
points for G’ comes with the following requirements:

• Scalability: It is important that the time complexity does not exceed linear complex-
ity, just as it is for the embedding method. In this case however, the time complexity
for a single point can be linear without breaking linear time complexity. This is be-
cause the number of points chosen does not have to be dependent on the input size,
making it a constant value. A linear time complexity per chosen point will be slow
for choosing a lot of points from large graphs, so is ideally avoided.

• Distance preservation: Ideally, the distance between two nodes in G’ is the same as
the distance between the same nodes in G. Important to note however is that this is
only possible by finding the distance from each subpoint to all other subpoints in G,
which is O(N) per node, where N is the size of G. The accuracy of the distances in
G’ would have to be compromised in order to avoid this time complexity cost.

• Representativeness: G’ needs to be a good representation of the original G. Running
tsNET on G’ has to result in a similar structure as running tsNET on G. To accomplish
this, all parts of G need to be sampled evenly.

A tradeoff between run time and accuracy becomes apparent when looking at these
requirements. Next, we look into two potential methods for creating subgraph G’ from G,
where each one focusses on a different aspect. Both of the subgraph methods will get their
own named variant of NNP-NET, namely NNP-NET-p when using the pivot subgraph
method and NNP-NET-c when using the coarsening subgraph method.

3.2.1 Pivot (NNP-NET-p)

This is the same method as was explained in 3.1.1 and is also used in PMDS (Brandes and
Pich, 2007) and the HDE paper (Harel and Koren, 2002). Here, each pivot point is one
point in G’. This method has a time complexity of O(Np) where p is the number of nodes
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in G’. Using this method, all points in G’ will be spaced as far apart as possible, resulting
in all parts of G being sampled evenly. The distances are also perfectly preserved. The
time complexity however might limit the size of G’ in order to be viable, which likely has
a negative impact on the overall performance of this method.

3.2.2 Coarsening (NNP-NET-c)

An alternative is to create G’ by repeatedly coarsening G until the number of nodes reaches
the target number of nodes. This coarsening is similar to the multi-level approach used by
DRGraph (Zhu et al., 2020). We start with the full graph G (G0). A coarsening iteration will
then be performed to obtain the next graph G1. This is repeated until a target is reached,
from where the last graph can be returned to be used as the subgraph G’.

The basic idea of the coarsening steps is to choose a node vi from the current graph
Gj. This node must not be part of the next graph Gj+1 yet. The first order neighbors of vi
together with vi are replaced by a new node, with edges towards all nodes that are con-
nected to the first order neighbors of vi, and subsequently is added to Gj+1. The weights
of the edges will also be updated to reflect the distance needed to reach vi instead of to the
original node that it went to. The iteration will stop once all nodes from Gj are represented
in Gj+1.

In other applications, coarsening would stop once the number of nodes does not de-
crease significantly anymore. More formally, no more iterations are performed once ρ||Vj|| <
||Vj+1||, where ρ is a user defined variable with a value between 0 and 1. This stopping
method can not be used in our case however, as a certain target value needs to be reached.
A problem arises however on certain graphs if you try to reach a specific target value, as
the coarsening can become very inefficient at later stages. In the worst case, the graph will
collapse into a stargraph, where all nodes are only connected to a center node. When per-
forming the coarsening on a star graph, either only one node will be removed (if a node
other than the center node is chosen), or alternatively, all nodes can be collapsed into a
single node (if the center node is chosen). This situation needs to be avoided at all cost, as
both options are undesirable.

The order in which nodes are chosen to be coarsened was changed in order to mitigate
this problem. Before, the nodes where chosen randomly. This was changed to use the
degree of the node, were we start with the node with the lowest degree, and end with the
node with highest degree. The nodes are sorted using radix sort, in order to keep the time
complexity linear. Using this ordering results in the first few iteration reducing the node
count slightly less than with a random ordering, but in turn allows for more iterations.
This reduces the problem, but does not solve it. While more graphs are able to reach
the target node count without problems using this method, some still display undesirable
behavior. In these cases, we bring back the original stopping method, with ρ set to 0.95.
The target number of points still needs to be reached however. This is done by giving
the result from the coarsening to the pivot subgraph method. The slower runtime of the
pivot method is less of a concern in this case, as the graph is already smaller than when
we started.

The runtime complexity for each iteration is O(N). While this is not better than the
pivot method, the constant multiplier is lower, resulting in significantly better real world
performance. The distances between nodes does get distorted however, as the paths com-
puted have to go through the nodes that end up in G’. This reduces the number of paths
available, and can get rid of the true shortest path. Bigger subgraph can be created with
this method however, which might offset the quality loss coming from the distortion in
the distances. This is tested later on to see which of these methods performs better.
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3.3 Smoothing

Early results showed that the layouts generated using NNP contained a significant amount
of high frequency noise. The layout resulting from NNP are smoothed in order to combat
the noise. The smoothing method chosen is a simple laplacian filter. Laplacian smoothing
is performed by setting the position of each node to the average each of its first order
neighbors as follows:

Y’i =
1

||Vi|| ∑
Yj∈Vi

Yj. (3.1)

Here Vi are the first order neighbors of vi, and Y’i is the new position of vi after smoothing.
This smoothing can be repeated any number of times.

3.4 Implementation details

In this section, we will take a look at some details about the implementation used for the
tests done in this thesis. The method was implemented in c++. The PMDS implementation
used was taken from OGDF and modified to allow for more output dimensions than 3. The
NNP-NET and tsNET* implementation created for this thesis can be found here.

3.4.1 tsNET

tsNET(*) has been reimplemented for use in this thesis. This was done because the original
implementation is fairly slow. Our tsNET implementation is based of the bhtsne imple-
mentation (Van Der Maaten, 2014). This implementation contains a faster, approximate
t-SNE implementation, which can also be used for our tsNET implementation. The exact
version of t-SNE can still be used to generate graph layout if the θ that is used by bhtsne
is set to a value of 0.

This implementation of tsNET is significantly faster even when θ is set to a value of 0.
In the original tsNET paper, it took 63.9 seconds to create a graph layout for the dwt_1005
graph. With our implementation, it took only 1.4 seconds. Different machines were used
to obtain these times, making them not directly comparable. But in this case, the difference
is large enough to say with certainty that our implementation is significantly faster.

The above comparison only looked at the exact tsNET implementation, while an ap-
proximate version is also available. For the approximate variant, a θ value of 0.25 was
used in all tests. Layouts for graph with a node count of 100000 can be generated using
this variant, while the exact variant stopped at 10000 nodes. Both can also be used in the
* variant, where the initial layout is generated using PMDS.

3.4.2 NNP

We originally reimplemented NNP using the tiny_dnn c++ library, in order to have NNP
nicely integrated in the main code base for the method. It became apparent however that
this library does not give the performance that is expected from NNP. Because of this,
the switch to keras tensorflow was made. While tensorflow does have a c++ interface,
getting it to work proved to be fairly hard. Tensorflow is therefore called from a python
script instead of from the c++ code. This python script is ran inside the c++ code using
pybind11. Using this allows us to directly use the buffers that were created in c++ in the
python code, without having to copy any data over.

https://github.com/IlanHartskeerl/NNP-NET
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Tensorflow also allows us to run NNP on the GPU. It was decided after some testing
however to not use the GPU for NNP, as it performed slightly worse. While running
neural networks on the GPU is almost always a lot faster than running them on the CPU,
that was not the case in our testing. This is likely because of the small network size used
by NNP. The small network makes the load on the GPU very small, making it so the time
taken up by NNP is dominated by the communication speed between the CPU and GPU.
While the CPU takes longer to execute the neural network calculations, it does not have to
deal with these same communications, making it faster.

Training time 1 million inference time 10 million inference time
CPU 18 seconds 1 second 11 seconds
GPU 32 seconds 1 second 4 seconds

TABLE 3.1: Performance comparison between GPU and CPU.

Table 3.1 shows both the training time and the inference time of NNP on a randomly
generated benchmark. The training was done on a training set with 10000 randomly gen-
erated 50 dimensional points. This ground truth labels were 10000 randomly generated
2d positions. The network does not converge to a low error on such a randomly generated
dataset, but that does not impact the execution time in any way. The training time is only
dependent on the training size, and therefore constant in this test. The input dimension
was set to 50, as that is used for the tests later on in this thesis. Inference was done for
both 1 million points and 10 million points. This test shows that the training is faster on
the CPU, while inference is faster on the GPU. The difference in training time is greater
than the difference in inference time however, making the CPU a better option for the data
sizes used in this thesis.

Important to note however is that the results are very close, meaning that a different
hardware setup might benefit more using the GPU than the one used in this test. Increas-
ing the input size will also increase the work load, which would benefit the GPU more.
Because the results are so close, choosing either the CPU or GPU does not have a big im-
pact on the final result.

3.5 Complexity analysis

In this section we’ll take an in depth look at the time complexity of the method, not just in
relation to the input size |G|, but also to the parameters that have to be chosen.

3.5.1 Embedding methods

There are two possible embedding methods proposed. First, lets look at the time complex-
ity for the PMDS embedding:

O(npN + p2N), (3.2)

where n is the size of the resulting embedding, and p is the number of pivot points used
by PMDS. This is the time complexity needed for the eigen decomposition that is part of
PMDS. The theoretical lowest time complexity for creating an n dimensional embedding
for N points is O(nN), which the PMDS embedding does reach if the number of pivot
points used by PMDS is seen as a constant.
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The alternative is to use the pivots directly as the embedding. Such a pivot embedding
would have the following time complexity:

O(nN). (3.3)

This is theoretical minimum, and can not be improved. This method will be faster than
using the PMDS embedding, as the work that needs to be done for the pivot embedding
is a subset of the work that is done for the PMDS embedding. Whether this performance
difference is significant enough to make it the better option will have to tested.

3.5.2 Creating G’

There were two proposed methods to create G’. Lets first take a look at the time complexity
for the coarsening method:

O(iN), (3.4)

where i is the number of iterations needed to reach the desired size. the value of i will
differ significantly between graphs and is hard to estimate. From testing, it can range
anywhere from 2 to 100. Important to keep in mind however is that later iterations take
less time, as the size of the graphs has been reduced by that point. This time complexity
also only holds if the graph can be reduced with this method. As explained earlier, if the
coarsening method fails to reduce the graph to an adequate size, it will switch over to the
pivot method. The pivot method for generating G’ has the following time complexity:

O(|G’|N). (3.5)

The speed of the pivot method depends heavily on the target number of subpoints for G’.
If the pivot method is called from the coarsening method, than the N will be the lowest
size of G’ that the coarsening method was able to accomplish. Especially for larger sizes
of G’, the coarsening method will be significantly faster. Even though the pivot method
technically has a linear time complexity, it will likely take quite a long time on large graphs
when reducing to a decently sized G’.

3.5.3 Generating the Ground Truth Layout

The ground truth layout gets generated by running the approximate version of tsNET* on
G’. This has the following time complexity:

O(|G’|log(|G’|)). (3.6)

This time complexity indicates that generating the ground truth information is a constant
cost, assuming that a constant value for |G’| is used. It also becomes clear why G’ is
needed, as the approximate tsNET has a time complexity that is larger than linear. From
later test it becomes apparent that it is not able to handle graphs larger than about 150000
nodes.

3.5.4 Training and inference

Training NNP has the following time complexity:

O(|G’|n ∗ epochs), (3.7)
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Where epochs is the number of training epochs used. Important here is that time needed
for training is completely independent from the size of G. This is in contrast with the
inference time, which has the following time complexity:

O(nN). (3.8)

Inference has a linear time complexity with respect to the number of nodes inferred, which
should not result in any slowdown. As earlier shown in the section 3.4.2, both the inference
and training only take a few seconds, even on large datasets.
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Chapter 4

Results

In this section we will take a look at the results of the different embedding and subgraph
methods, as well as compare the complete pipeline to other graph layout algorithms. The
full list of graphs used in this section is given in table 4.1. The graphs used are a com-
bination of graphs used in other papers like the tsNET and DRGraph paper. They are
sourced from the suitsparce collection (Davis and Hu, 2011). Most graphs used are on the
larger side, with a few small graphs added. This is done because our method is most use-
ful when working with larger graphs, as it will always be slower on smaller graphs than
tsNET, without an improvement in quality.

Name |V| |E| Weighted?
dwt_1005 1005 3808 no

sierpinski3d 2050 6144 no
MISKnowledgeMap 2427 28511 yes

3elt 4720 13722 no
optdigits_10NN 5620 39825 yes

fe_4elt2 11143 32818 no
bcsstk36 23052 1143140 no

k49_norm_10NN 38547 309079 yes
fe_bcsstk32 44609 985046 no

m_t1 97578 9753570 no
ship_003 121728 3777036 no
fe_ocean 143437 819186 no
ok2010 269118 1274148 yes

web-NotreDame 325729 1497134 no
coPapersCiteseer 434102 16036720 no

gsm_106857 589446 21758924 no
tx2010 914231 4456272 yes

com-Youtube 1134890 5975248 no
Flan_1565 1564794 59485419 no

com-LiveJournal 3997962 34681189 no
asia_osm 11950757 25423206 no

TABLE 4.1: Graphs used in the tests.

The dataset contains less weighted graphs than desired. This is because the selection
of good weighted graphs is fairly limited. The Suitesparce collection contains three large
weighted graphs collections that were suitable (Fully connected, undirected and symmet-
rical): DIMACS10, Gset and ML_Graph. Of these, DIMACS10 and ML_Graph are good
candidates. Gset is a collection of randomly generated graphs. We decided to only use
graphs from real world data. The largest graph Gset is also only 10000, which is on
the smaller side for the graphs used in this thesis. There are some other smaller sets of
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weighted graphs, but not all of them clearly say what the weights mean. Our pipeline
interprets the weights as a target length. This means that we need to be able to trans-
late/interpret the given weights into a target length in order to use them. It was not
clear how to do this for some weighted graphs. Two graph from both DIMACS10 and
ML_Graph were chosen, as more graphs from the same dataset would have been redun-
dant.

The tsNET implementation used for the testing is our own implementation, based on
the bhtsne implementation. If the approximate version of tsNET was used, then the θ
value was set to 0.25. The PMDS used is the implementation present in our code base,
which was originally taken from OGDF (Chimani et al., 2013). OGDF was used for the
f m3 implementation. All parameters used were the default used by OGDF. The SFDP
implementation used was from GraphViz. For DRGraph, the implementation provided by
the original authors was used. The parameters used for DRGraph were the recommended
parameters provided by the authors. All tests were run on the CPU using a system with a
Intel i7-11370H CPU, NVIDIA 3050 ti laptop GPU and 16 gigabytes if RAM.

Unless stated otherwise, coarsening was used as the subgraph method, and PMDS was
used to create the embedding. The default parameters used for NNP-NET-c can be seen in
table 4.2.

Parameter Value
|G′| 10000

n (embedding size) 50
Smoothing Passes 3

Perplexity 40
θ 0.25

PMDS Pivot Points 250
Batch size 64

Training epochs 40

TABLE 4.2: Parameters used for NNP-NET-c.

4.1 Visualization

First some notes on the visualization used in this thesis before getting into the results. To
start, nodes are colored black while edges are colored blue. Because of the high density of
some of the larger graphs, an alpha value was used to increase visual clarity. The alpha
value was set dynamically based on the number of nodes in the graph, using alpha =
min(1, 10000/|G|).

Some of the graphs had a large cluster of points, with a few points relatively far away
from that cluster. This created images with a large portion of whitespace. We allowed
for 1% of the nodes to be outside of the image in order to mitigate this problem. This is
accomplished by first creating the smallest possible square box the fits all nodes. We then
repeatedly loop over all 4 corners of the box. Each corner tries to move 10% closer to the
opposite corner. This will be rejected if the movement causes more than 1% of the nodes
to be outside of the box. This loop is stopped once none of the corners can move closer
without breaking the constraint.

https://graphviz.org/
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4.2 Embedding Method

Firstly, we’ll compare the two different embedding methods, the pivot embedding (sec-
tion 3.1.1) and the PMDS embedding (section 3.1.2). Both of the embedding methods were
run with an embedding size set to 50. The time recorded is only the time that it takes to
compute the embedding, as the rest of the pipeline will run at the same speed for both em-
bedding methods. The error to the ground truth is the average euclidean distance between
a point Yi in the ground truth and the corresponding Yi in the result generated using NNP-
NET-c. No smoothing was applied to any of the results, as this could have hidden some
of the imperfections making it harder to visually compare the results. The neighborhood
preservation is also recorded, although the error to ground truth is the more important
metric in this case. This is because NNP’s goal is to imitate the original layout as closely
as possible. The error to the ground truth accurately encapsulate how close the generate
layout is to the ground truth, while neighborhood preservation only represents how good
a given layout is.

Graph tsNET* Ground
Truth

PMDS embed-
ding

Pivot Embed-
ding

3elt

dwt_1005

optdigits_
10NN

sierpinski3d

TABLE 4.3: Visual results trying to recreate a ground truth using different
embedding methods.
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Graph embedding Time Neighborhood preservation Error to GT
3elt PMDS 1.228 0.547 0.014
3elt Pivot 0.015 0.499 0.024

dwt_1005 PMDS 2.253 0.521 0.019
dwt_1005 Pivot 0.007 0.484 0.027

optdigits_10NN PMDS 6.649 0.598 0.017
optdigits_10NN Pivot 0.799 0.586 0.025

sierpinski3d PMDS 3.487 0.498 0.017
sierpinski3d Pivot 0.005 0.462 0.028

TABLE 4.4: Results trying to recreate a ground truth using different embed-
ding methods.

Table 4.3 shows the graphs resulting from using the two different embedding methods,
while table 4.4 shows the corresponding metrics. The PMDS embedding outperforms the
pivot embedding slightly on all graphs tested. The PMDS embedding does take more time
to compute. While the time needed for the PMDS embedding is significantly slower, this
does not necessarily have to be a problem, as it is only a part of the total time needed for
the entire pipeline. The PMDS embedding is fast enough, while getting results that are
closer to the ground truth.
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4.3 Embedding Dimensions

With the following test, we look at the effect of changing the dimensions n used for the
PMDS embedding. The values used for n in this test are 10, 25, 50 and 100. For each value
of n for each graph, the neighborhood preservation, execution time and error to ground
truth are recorded. The error to the ground truth is the more important metric in this case,
as we are trying to recreate the tsNET layout as closely as possible. If we can recreate the
ground truth as closely as possible, than the neighborhood preservation will be good as
well (unless the ground truth used is of low quality).

Graph Ground Truth n = 10 n = 25 n = 50 n = 100

3elt

bcsstk36

dwt_1005

optdigits_
10NN

sierpinski3d

TABLE 4.5: Visual results using a different number of dimensions n for the
embedding used by NNP-NET-c.
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Graph embedding dim Neighborhood preservation Error to GT Time (seconds)
3elt 10 0.532 0.013 15.5
3elt 25 0.580 0.019 20.9
3elt 50 0.579 0.011 38.2
3elt 100 0.574 0.012 105.7

bcsstk36 10 0.411 0.027 30.2
bcsstk36 25 0.435 0.019 36.3
bcsstk36 50 0.457 0.014 54.4
bcsstk36 100 0.463 0.016 118.9

dwt_1005 10 0.504 0.018 5.5
dwt_1005 25 0.542 0.012 11.3
dwt_1005 50 0.543 0.012 28.8
dwt_1005 100 0.544 0.012 94.0

optdigits_10NN 10 0.607 0.029 57.7
optdigits_10NN 25 0.621 0.019 56.6
optdigits_10NN 50 0.623 0.015 45.6
optdigits_10NN 100 0.624 0.014 106.9

sierpinski3d 10 0.495 0.023 10.7
sierpinski3d 25 0.509 0.019 17.8
sierpinski3d 50 0.507 0.021 35.6
sierpinski3d 100 0.502 0.014 99.2

TABLE 4.6: Performance metrics for the different embedding sizes.

Looking at table 4.5, there is not a very large visual improvement when using more
dimensions compared to using only 10. From table 4.6 it does become apparent however
that there is an improvement in performance using more dimensions looking at the perfor-
mance metrics. Both the neighborhood preservation and error to ground truth are better
using more dimensions. The difference between 50 and 100 dimensions is very small for
all graphs tested with sierpinski3d as an exception. From these results, giving n a value
higher than 50 does not seem necessary.

This is further strengthened when looking at the execution times. Execution seems to
scale non-linearly with n, which is surprising, as nothing in PMDS suggests that it scales
worse than linear with respect to the number of output dimensions. After some investi-
gation, this behavior comes from the eigen decomposition done by the PMDS implemen-
tation used. While each eigen decomposition iteration is linear with respect to n, more
iterations are needed to archive the desired results when using higher values for n. The
performance impact of using a higher n value are not consistent between different graphs.
For all tests going forward, the value of n used will be 50 in order to make sure the results
are of high quality, at the cost of some performance.
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4.4 Subgraph Size

Next, we’ll look at the performance of different sizes of G’. These tests were all performed
using the coarsening subgraph method, as it is significantly faster for generating bigger
subgraphs. The metrics recorded for these tests are neighborhood preservation and exe-
cution time.

Graph |G’| = 1000 |G’| = 2500 |G’| = 5000 |G’| = 10000

bcsstk36

k48_norm_
10NN

ok2010

ship_003

TABLE 4.7: Visual results using different sizes for the G’.
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Graph subgraph size Neighborhood preservation Time (seconds)
bcsstk36 1000 0.411 32.4
bcsstk36 2500 0.373 41.4
bcsstk36 5000 0.340 58.2
bcsstk36 10000 0.408 103.6

k49_norm_10NN 1000 0.030 74.8
k49_norm_10NN 2500 0.047 102.6
k49_norm_10NN 5000 0.060 127.1
k49_norm_10NN 10000 0.083 219.0

ok2010 1000 0.392 90.2
ok2010 2500 0.408 103.2
ok2010 5000 0.424 107.8
ok2010 10000 0.436 160.2

ship_003 1000 0.155 45.1
ship_003 2500 0.208 56.2
ship_003 5000 0.214 85.0
ship_003 10000 0.229 131.3

TABLE 4.8: Performance metrics for the different sizes for G’.

Increasing the size of the G’ increases the performance of the entire pipeline in most
cases. This size of this effect heavily depends on the graph. Comparing the results shown
in table 4.8 for bcsstk36, the neighborhood preservation was nearly the same for both 1000
and 10000 subpoints. In contrast, the neighborhood preservation for k49_norm_10NN
more than doubled when comparing 1000 and 10000 subpoints. These results can also be
visually observed when looking at table 4.7. The results for bcsstk36 are the most unclear
when visually looking at them. It is clear that there are different results when changing
the number of subpoints, but it is not very obvious which is better. Creating a layout for
ship_003 with 1000 subpoints results in a curve in the structure, which is not supposed to
be there. Increasing the number of points used for G’ resolves this issue. k49_norm_10NN
benefitted the most from increasing the number of subpoints when looking at the metrics.
Comparing the layouts generated from 1000 and 10000 points, it becomes clear why the
neighborhood preservation increases this drastically for this graph. This graph contains
a lot of clustering, which is captured very poorly when using only 1000 subpoints for G’.
With 10000 subpoints, clustering can be observed more clearly, which explains the increase
in neighborhood preservation.

Using a bigger G’ does come with a downside however: Increased runtime. This in-
creased runtime does not come from generating G’. With the coarsening method, gener-
ating a larger subgraph is actually faster as it reduces the number of iterations needed.
This increase in runtime is due to two factors: Generating the ground truth from G’, and
training NNP. The ground truth is generated using the approximate version of tsNET*,
which has a time complexity of O(Nlog(N)), which heavily contributes to the increase in
runtime. Important to keep in mind is that these are constant costs. These cost are indepen-
dent from the size of G. If you were to use the pivot method to get G’, than performance
cost for using more points in G’ would scale with the size of G.
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4.5 Subgraph Method

Here we’ll compare the performance of the two different methods to create G’. For these
tests, a different target size for G’ is used for the methods. For the pivot method (NNP-
NET-p), a target size of 1000 is used, while a target size of 10000 is used for the coarsening
method (NNP-NET-c). This was chosen as this is the main advantage of the coarsening
method. While it does not give a accurate comparison between the performance of each
method when using the same settings, it does give a more useful comparison. Namely,
this test compares how you would use the two different methods in practice. Saying that
the pivot method performs better when using the same target number of points is not
very useful if you can not run the pivot method with that number of target points. This
test will thus look at what is more important: choosing better points with perfect distance
preservation, or having more target points.

Graph NNP-NET-c NNP-NET-p

bcsstk36

k49_norm_10NN

ok2010

ship_003

TABLE 4.9: Visual results using different methods for creating G’.
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Graph Method + points Neighborhood preservation Time
ok2010 Pivot, 1000 points 0.382 255.4
ok2010 Coarsening, 10000 points 0.436 160.2

ship_003 Pivot, 1000 points 0.194 78.4
ship_003 Coarsening, 10000 points 0.229 131.3

k49_norm_10NN Pivot, 1000 points 0.045 209.4
k49_norm_10NN Coarsening, 10000 points 0.083 219.0

bcsstk36 Pivot, 1000 points 0.422 37.9
bcsstk36 Coarsening, 10000 points 0.408 103.6

TABLE 4.10: Performance metrics for the different subgraph method.

it’s hard to draw strong conclusions from looking at the resulting layouts in table 4.9.
k49_norm_10NN seems to have better clustering when using NNP-NET-c. NNP-NET-c
also results in more space being utilized for both ok2010 and ship_003. However, whether
this is positive or negative is hard to quantitatively determine.

When looking at table 4.10, NNP-NET-c performs about the same on most graphs,
but significantly better k49_norm_10NN. With the settings used, NNP-NET-p is faster on
smaller graphs, while NNP-NET-c is faster for larger graphs. This is to be expected, as
increasing the target size for G’ is a constant cost which does not depend on the input size
|G| when using NNP-NET-c. These results indicate that using NNP-NET-c with a higher
target size for G’ is the better option. The execution time is lower for large graph, which is
what NNP-NET focusses on, while also having better results on some graphs with similar
results on the rest.
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4.6 Smoothing

While the results are close to the ground truth when looking at the error values, visu-
ally, the results contain a lot of noise. To reduce this, a post processing smoothing step is
introduced to the pipeline. This gives the following results:

Graph Ground truth No Smoothing 2 passes 10 passes

3elt

dwt_1005

optdigits_
10NN

sierpinski3d

TABLE 4.11: Results smoothing the output of our method.
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Graph Smoothing Passes Neighborhood preservation
3elt Ground Truth 0.634
3elt 0 0.545
3elt 2 0.599
3elt 10 0.605

dwt_1005 Ground Truth 0.618
dwt_1005 0 0.521
dwt_1005 2 0.520
dwt_1005 10 0.486

optdigits_10NN Ground Truth 0.628
optdigits_10NN 0 0.622
optdigits_10NN 2 0.615
optdigits_10NN 10 0.595

sierpinski3d Ground Truth 0.530
sierpinski3d 0 0.495
sierpinski3d 2 0.519
sierpinski3d 10 0.496

TABLE 4.12: Results smoothing the output of our method.

Applying the smoothing pass greatly improves the visual quality of the method, as can
be seen in table 4.11. This can already be observed even when using only 2 passes. Using
to many smoothing passes gets worse results, as it causes the nodes to get too close to each
other. The main purpose of the smoothing step is to create more visually pleasing results,
not to increase performance metrics like neighborhood preservation. It is therefore not
surprising that, looking at the results in table 4.12, the neighborhood preservation tends
to stay at a similar level. Most importantly, this shows that our smoothing passes do not
negatively impact our clustering reliability. The neighborhood preservation even went up
significantly for 3elt after applying 2 smoothing passes.
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4.7 Effect of weights

Our method can take edge weights into account. It does this by viewing them as target
lengths for the given edge. These lengths are then used when calculating the distances be-
tween nodes. The weighted graphs are layed out both with weights and without weights
in order to test whether using the weights in this manner has any impact on the resulting
layouts. If the resulting layouts change because of the weights, than that implies that the
results generate without the weights show an inaccurate representation of the data.

Table 4.13 shows the results from this experiment. The layouts shift around substan-
tially between the runs. This does not have to be because of the weights however. The
clearest effect of the weights is visible in both ok2010 and tx2010. When weights are used,
a network structure becomes more clear in the layout, where without weights, the result-
ing layout is more blob-like. This network structure is partially lost when not taking the
weights into account, showing that the weights are integrated in a useful way into the
pipeline of our method.

Different results do not directly imply correct results however. NNP-NET-c was also
ran on a 40 by 40 grid graph with the last 9 edges on one axis having twice the weight as
all other edges. The expected result for this graph would be a regular grid with one side
stretched out in a single direction. The result of this can be seen in figure 4.1. This image
shows that at the right side of the graph, the horizontal edges suddenly become longer at
the last 9 edges, showing that they have been taken into account correctly.

FIGURE 4.1: 40 by 40 grid graph with the last 9 edges on one axis having
twice the weight.
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Graph With Weights Ignoring Weights

k49_norm_10NN

MISKnowledge-
Map

ok2010

optdigits_10NN

tx2010

TABLE 4.13: Comparison between layouts created using NNP-NET-c, left
took weights into account, while right ignored the edge weights.
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4.8 Other Ground truth method than tsNET*

In all tests done up until now, the ground truth was always generated using approximate
tsNET*. NNP is able to imitate any dimensionality reduction method. NNP is also able
to imitate graph drawing algorithm tsNET*, which raises the question whether we could
also use any graph drawing algorithm to generate the ground truth. To test this, graph
layouts were generated using both SFDP and f m3 on the entire graph. A subset of these
points was then taken using the coarsening method. These points were then used to train
NNP, which then tried to recreate the layouts, which gave the following results:

Graph SFDP Ground
truth

Recreated layout fm3 Ground truth Recreated layout

bcsstk36

dwt_1005

ok2010

optdigits_
10NN

TABLE 4.14: Results of our method recreating ground truth methods other
than tsNET

As can be seen in table 4.14, the results that NNP created are extremely close to the
ground truth results. The main difference between the ground truth and the recreated
results can be seen in optdigits_10NN, where the clusters are smaller in the recreation.
This is due to the smoothing that is applied, which pushes the nodes closer to each other.
Other than that, the results look close to the same visually, which shows that NNP can also
recreated multiple different graph layout methods.
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4.9 Timings

Next, we’ll look at the time each individual component of the pipeline takes. There are
three different component that will be looked at: Calculating the embedding, getting G’
from G, generating the ground truth on G’, and training + inference time. The graphs are
ordered based on vertex count, from low to high.

FIGURE 4.2: Chart with execution time per component per graph

Looking at the results in figure 4.2, the time needed for getting subgraph G’ stands out
for having a few graphs that do not have results in line with the results for the rest of the
graphs. For almost all graphs, getting G’ takes less than a second. There are three graphs
where it takes longer: web-NotreDame, com-Youtube and com-LiveJournal. Both web-
NotreDame and com-LiveJournal have results in the neighborhood of 100 seconds, while
com-Youtube takes more than 1000 seconds to create G’. These increased execution times
are because the coarsening subgraph method was not able to reach the target number of
nodes. This results in a fail over to the pivot subgraph method, which is substantially
slower. The coarsening method was able to get fairly close for both web-NotreDame and
com-LiveJournal, making the time penalty not as big as it is for com-Youtube. These re-
sults show that execution time of the coarsening subgraph method is negligible for most
graphs, but can be very significant if the graph does not collapse nicely using the coars-
ening method. Lets remove the subgraph results from the chart to get a better look at the
rest of the results.

When looking at figure 4.3, it is important to keep in mind that from fe_4elt2 onwards
the graphs are large enough that G’ is calculated and used. The times for training and
creating the ground truth should from then on have a constant time, which is caused by
the set size of 10000 used for G’. This can be clearly observed in the Train and inference
times, which follow an almost completely strait line after fe_4elt2. This is despite the fact
the inference times are also included, which are not constant but linear with respect to the
input size. The inference time is significantly less in comparison to the training, such that
it does not have a visible impact on the results, except for the small uptick at the largest
graph.
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FIGURE 4.3: Chart with execution time per component per graph, with sub-
graph creation removed

The results for creating the ground truth using the approximate tsNET* show different
results however. While the overall trend might indicate the constant time complexity, it
is heavily obscured by a significant amount of noise. Depending on the graph, creating
the ground truth might take significantly longer than for other graphs. Embedding cre-
ation times also show inconsistent results. This is mainly the case for weighted graphs.
Weighted graphs can not use BFS for distance calculations, and have to use Dijkstra in-
stead. This causes significantly longer embedding creation times for the weighted graphs.
This causes our method to take a different amount of time for graphs of the same size.

4.10 Results compared to other methods

Lastly, the results from our method will be compared against other methods from litera-
ture. The methods that are compared against are SFDP, f m3, PMDS, DRGraph and tsNET*
(both our exact and approximate implementations). Any empty entry is either because of
memory constraints or a very high runtime.
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Graph SFDP f m3 PMDS DRGraph tsNET* (ex-
act)

tsNET*
(Approx)

NNP-NET-c

dwt_1005

sierpinski3d

MIS-
Knowledge-
Map

3elt

optdigits_
10NN

fe_4elt2

bcsstk36

k49_norm_
10NN

fe_bcsstk32

m_t1

ship_003

fe_ocean
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Graph SFDP f m3 PMDS DRGraph tsNET* (ex-
act)

tsNET*
(Approx)

NNP-NET-c

ok2010

web-
NotreDame

CoPapers-
Citeseer

gsm_106857

tx2010

com-Youtube

Flan_1565

com-
LiveJournal

asia_osm

TABLE 4.15: Layouts created by various methods on various graphs
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Execution time per method
Graph SFDP f m3 PMDS DRGraph tsNET* (exact) tsNET* (Approx) NNP-NET-c

dwt_1005 0.34 0.12 0.02 0.06 1.44 2.61 10.13
sierpinski3d 0.75 0.12 1.37 0.11 6.52 5.42 11.38

MISKnowledgeMap 1.23 0.76 1.20 0.13 40.42 13.71 24.27
3elt 1.71 0.20 0.07 0.27 110.70 18.92 21.14

optdigits_10NN 2.59 0.58 2.38 0.30 155.46 59.68 36.88
fe_4elt2 6.06 0.22 0.15 0.59 931.18 107.97 58.96
bcsstk36 10.89 2.28 0.53 1.49 - 288.91 56.96

k49_norm_10NN 37.28 2.14 37.13 2.66 - 1718.79 156.79
fe_bcsstk32 28.25 3.07 2.47 3.64 - 572.96 86.68

m_t1 77.61 14.22 4.04 8.21 - 1133.24 87.81
ship_003 94.44 14.24 5.85 9.61 - 1456.06 66.40
fe_ocean 117.74 1.80 2.28 14.39 - - 94.24
ok2010 260.64 4.13 44.83 23.98 - - 94.18

web-NotreDame 270.48 10.26 6.13 25.49 - - 166.56
coPapersCiteseer - 99.34 23.69 45.49 - - 98.20

gsm_106857 - 57.28 35.35 55.86 - - 160.41
tx2010 1165.55 12.95 200.21 83.18 - - 254.17

com-Youtube 2209.56 - 23.47 132.47 - - 1293.10
Flan_1565 - - 55.92 171.44 - - 124.12

com-LiveJournal - - 220.14 618.30 - - 394.85
asia_osm - - - 1647.95 - - -

TABLE 4.16: Execution time for creating a layout using a specific method for
each of the graphs.

The reasons for the empty entries differ per method. SFDP failed because of memory
constraints due to high edge counts. f m3 also suffered from high memory consumption.
PMDS only failed on asia_osm, again due to high memory consumption. Exact tsNET*
had both to high memory consumption as well as execution times that would be too long.
Approximate tsNET* took more than an hour for larger graphs. NNP-NET-c, as it uses
PMDS, also suffered from to high memory consumption on asia_osm.

NNP-NET-c needs significantly longer to create layouts for small graphs than other fast
methods need, which can be seen in table 4.16. The execution time does not go up very
fast however, and depends heavily on the specific graph. k49_norm_10NN for example
takes longer than coPapersCiteseer, even though coPapersCiteseer has more than 10 times
as many nodes, and is also slower than creating a layout for Flan_1565, which has about
40 times as many nodes. While NNP-NET-c is slower than DRGraph for most graphs, it
overtakes DRGraph in performance once the graphs get large enough. NNP-NET-c was
faster for both Flan_1565 and com-LiveJournal.

Visually for the smaller sized graphs (table 4.15), the results from NNP-NET-c come
very close to the ground truth results from the approximate tsNET*. Approximate tsNET*
does exhibit weird behavior where all nodes seem to snap to a grid structure on the larger
sized graphs that it can still handle. NNP-NET-c lucky does not copy this behavior and
continues to output good looking graphs. Looking at the even larger graphs, NNP-NET-c
creates results that differ from the other methods, but not necessarily in a bad way. Our
results look good, although judging which layout better represents the input data is hard
to do by just looking at the output.

Comparing the neighborhood preservation of NNP-NET-c with DRGraph shown in
table 4.17, NNP-NET tends to get similar but slight lower results. An exception to this are
both ok2010 and tx2010, which have significantly higher results for NNP-NET-c compared
to DRGraph on both graphs. Both of these graphs are weighted, and originate from the
same dataset, both of which likely are contributing factors to why NNP-NET-c performs
so much better specifically on these two graphs. Another important comparison here is
with PMDS, as NNP-NET-c uses PMDS as part of its pipeline. NNP-NET-c has a higher
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Neighborhood preservation per graph
Graph SFDP f m3 PMDS DRGraph tsNET* (exact) tsNET* (Approx) NNP-NET-c

dwt_1005 0.50 0.53 0.47 0.50 0.62 0.59 0.53
sierpinski3d 0.51 0.51 0.20 0.52 0.55 0.53 0.52

MISKnowledgeMap 0.17 0.16 0.13 0.33 0.40 0.41 0.24
3elt 0.62 0.65 0.36 0.63 0.66 0.63 0.63

optdigits_10NN 0.52 0.50 0.35 0.62 0.61 0.63 0.61
fe_4elt2 0.47 0.52 0.25 0.56 0.60 0.59 0.59
bcsstk36 0.45 0.41 0.30 0.49 - 0.51 0.44

k49_norm_10NN 0.048 0.045 0.034 0.12 - 0.18 0.093
fe_bcsstk32 0.32 0.38 0.21 0.41 - 0.24 0.37

m_t1 0.30 0.34 0.21 0.37 - 0.35 0.32
ship_003 0.21 0.21 0.17 0.24 - 0.20 0.24
fe_ocean 0.11 0.12 0.09 0.12 - - 0.09
ok2010 0.48 0.46 0.27 0.32 - - 0.44

web-NotreDame 0.38 0.31 0.33 0.46 - - 0.39
coPapersCiteseer - 0.079 0.058 0.17 - - 0.091

gsm_106857 - 0.17 0.12 0.24 - - 0.21
tx2010 0.42 0.39 0.26 0.21 - - 0.36

com-Youtube 0.015 - 0.092 0.055 - - 0.069
Flan_1565 - - 0.09 0.20 - - 0.21

TABLE 4.17: Neighborhood preservation per graph per method.

neighborhood preservation than PMDS for all graphs except com-Youtube. com-Youtube
also had problems with creating G’, which possibly could be related in some way. Overall
however, NNP-NET-c performs similar to DRGraph and significantly better than PMDS.

4.10.1 Execution time comparison with DRGraph

Table 4.16 shows that the execution time of NNP-NET-c is lower than DRGraph for the
two largest graphs. It is however hard to argue from those results that NNP-NET-c is
expected to be faster than DRGraph for very large graphs, as the execution time of NNP-
NET-c seems to be fairly random. These two results could be because of random chance.
In this section we show a comparison with as much noise removed from our execution
time results as possible. This is done in order to create a more meaningful execution time
comparison between NNP-NET-c and DRGraph, showing our expected runtime for a cer-
tain size graph. There are three main sources of noise in our execution time results than
can easily be removed:

• Approximate tsNET*: The running time for creating the ground truth using ap-
proximate tsNET* varies significantly between graphs of the same size. It took ap-
proximate tsNET* somewhere between 20 to 90 seconds to create a layout for our
subgraphs with size 10000. For this time comparison, we set the time needed for
creating the ground truth to 50 seconds for all graphs that have at least 10000 nodes.
50 seconds was used, as it was exactly the average time needed to create the GT for
graphs with at least 10000 nodes.

• Weighted graphs: Dijkstra has to be used when creating a layout for a weighted
graph, were BFS can be used when it is not weighted. BFS is significantly faster then
dijkstra. This results in significantly higher embedding creation times when using
weights. To remove this noise, the weighted graphs were run again, but with the
weights removed. The embedding creation times of these runs was then used. DR-
Graph does not use the weights in the graphs, making this still a valid comparison.
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• Subgraph pivot fallback: The coarsening subgraph method was not able to success-
fully reduce all graphs down to the required size. In these cases, the pivot subgraph
method was used as a fallback. The pivot fallback is significantly slower however,
increasing the running time on those graphs. The subgraph time was set to 1 sec-
ond for all graphs that had this happen, as all other graphs were able to create the
subgraph in less than a second time.

FIGURE 4.4: Chart comparing the execution time of DRGraph with NNP-
NET-c, both the actual obtained results as well as the noise reduced results

The graphs are order from lowest node count to highest node count. From this, the
expectation is that the execution time of each graph is higher than the time needed for the
graphs smaller than itself. From figure 4.4 it becomes apparent however that this is not
the case for the NNP-NET-c results. Removing the noise does create a more consistent
line however. Only gsm_106857 has a result that is significantly higher than expected,
which resulted from a longer embedding creation time. This graph shows quite clearly
that the NNP-NET-c execution time increases quite rapidly for graphs under the subgraph
size of 10000. After this point however, the execution time stays almost constant up until
coPapersCiteseer with about half a million nodes. This slow growth causes DRGraph to
be slower from com-Youtube onwards when comparing with our noise reduced results.
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Discussion

A few criteria for our method were layed out at the start of this thesis. Lets take a closer
look at each of these criteria and whether NNP-NET-c fulfills them.

• Scalability: Our method needs to have a linear time complexity and be able to lay-
out very large graphs in a reasonable amount of time. NNP-NET-c has succeeded on
this front, and performed even better than we aimed for. In the introduction, we es-
tablished that our main focus was to get the layout time to linear, while the training
time was allowed to be slower. The final pipeline is linear in both of these aspects
however, making it possible to generate layouts from start to finish in linear time.
NNP-NET-c does take significantly more time than other linear graph layout meth-
ods for smaller graphs, but becomes more competitive for larger graphs, eventually
being faster than DRGraph on very large graphs. The actual time needed to create
a layout is heavily dependent on the graph however, where some graphs could take
significantly longer than other graphs with a similar size.

• Layout quality: The layouts generated by our method should be of similar quality to
other methods and to the original tsNET* results. On smaller graphs, where we use
the entire graph as ground truth, the results are extremely close to the approximate
tsNET* results, which we use as the ground truth. The layouts generated for larger
graphs using our method visually look good when comparing with other methods.

• Robustness: Our method should be able to generate a layout for any given graph.
In the testing performed, it only failed on one graph, asia_osm, which was because
of to high memory requirements. A result should be able to be obtained using a
system with more memory. NNP-NET-c did have more trouble with certain graphs
than others. Most notably is com-Youtube, that took significantly longer than other
graphs as the coarsening subgraph method was not able to create a G’ that was small
enough. It was still able to create a layout however, as it should be able to create a
layout for any given graph.

• Ease of use: While our method has a lot of parameters that could be changed (per-
plexity, target G’ size, training epochs, embedding size n, approximate tsNET*’s θ
and PMDS pivot count), all of these were set to the same constant set value for all
tests. These values gave good results for all tests performed. While these values can
be tinkered with to possibly obtain better results, it is not needed in order to get good
results from this method.

• Edge weights: Edge weights are used in NNP-NET-c’s pipeline. The results show
that the edge weights have a noticeable impact on the end results, meaning that they
are being used to generate a more correct representation of the input data.
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Our method largely fulfilled the requirements that were layed out at the start of this
thesis. It is also gets competitive results with other methods, making it a viable alternative
to those methods.

The core of NNP-NET is to use NNP to generate a layout for a given graph. In order to
accomplish this, multiple different components are needed to get NNP working in a graph
context. An embedding needs to be created for each point in the graph. Furthermore,
a ground truth needs to be generated for NNP to learn from. Learning from the entire
ground truth is pointless however, as in that case we already have a good layout, so a
way is needed to choose specific points and generate a ground truth from that. We will
take a closer took at each of these aspects and reflect on the choices made and whether
alternatives could be used.

5.1 Embedding method

Two different embedding methods were considered in this paper: Using pivot points as
the embedding, or using a high dimensional PMDS layout. The results showed that the
PMDS embedding was able to get results closer to the original ground truth layout. The
PMDS embedding did take significantly more time however. NNP-NET-c’s execution time
is largely dominated by the creation of the PMDS embedding when creating a layout for
larger graphs, as evident by the results from section 4.9. Using the pivot embedding in-
stead of the PMDS embedding might be a worth while tradeoff. While it would reduce
the quality of the layout somewhat, it would reduce the execution time significantly. How
significantly is hard to estimate from the tests performed, as the pivot embedding has only
been tested on smaller graphs, which do not necessarily give a good indication of how well
the embedding would perform on larger graphs. This might be an interesting approach to
revisit however, as it could allow NNP-NET-c to have a lower execution time compared to
other methods earlier.

More experimentation can also be done with the PMDS embedding, or more precisely,
with the embedding using a high-dimensional graph layout. The idea of this embedding
as explained in 3.1.2, any graph layout that fulfills the needed criteria could be used to
generate the embedding. In our testing, only PMDS was tested for this purpose. There
might however be a different graph layout algorithm that better fits our requirements and
would perform better, either in layout quality or execution time, compared to using PMDS
for the embedding.

There always is the possibility to use a completely different method for creating the
embedding. The embedding method can freely be swapped out for any method as long as
the new embedding method fits all the necessary requirements. Swapping out the embed-
ding method can be done without having requiring any changes to the rest of the pipeline,
as all the components are completely separate from each other.

5.2 Ground Truth

One of the goals of this thesis was to accelerate tsNET(*) in order to use it on large large
graphs. This made it a logical choice to use tsNET* to generate the ground truth that NNP
learns from. As shown in section 4.8 however, other graph layout algorithms can be used
to generate the ground truth, which also produces good results. In order to effectively use
a graph layout algorithm to generate the ground truth used by NNP-NET it needs to be
able to generate a layout of G’ in a reasonable amount of time. This is why the choice was
made to use the approximate tsNET* implementation instead of an exact tsNET* imple-
mentation. Generating a graph layout using approximate tsNET* for a G’ of size 10000
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still takes somewhere between 20 to 90 seconds depending on the graph, as shown in sec-
tion 4.9. This time cost causes our method to be significantly slower than other method
for smaller graphs. Once the graphs get bigger, this problem is alleviated as this time cost
does not increase with the input size. A different faster method could be chosen in order
to minimize this time cost.

On the other hand, using the exact version of tsNET* might improve the quality of
the results. This would however likely require that less than 10000 points are chosen to
generate G’, as the execution time would increase significantly by using exact tsNET*.
Reducing the number of points in G’ would however reduce the quality of the results, as
shown in section 4.4, so it would have to be tested whether this would have an overall
positive or negative impact on the quality of the results.

5.3 Subgraph method

There were two subgraph methods proposed and tested in order to create the subgraph
G’ from the full graph G: Using pivot points to choose the points, and coarsening the
entire graph to get a smaller representation of the original G. The coarsening method was
chosen as it had a significantly lower execution time and was therefore able to generate
larger subgraphs than the pivot method. Using this method does come with its downsides
however. Coarsening the graph can distort the between points in a graph. This is because
edges get deleted in the process of coarsening the graph, which reduces the number of
possible paths that can be taken, including paths that are the shortest distance between
two points. The impact that this loss of information has on the end result has not been
directly measured in this thesis, nor how large the error in the distances between points
is because of the coarsening process. Using the pivot method for this purpose would
not have this issue, although the execution time would go up significantly, which is not
desirable.

The other problem with the coarsening method is that it is not always able to reach the
target number of nodes for G’. While falling back to the pivot method allows NNP-NET-c
to still produce results, even for the graphs that suffer from this issue, it does come with
a significant time cost. Ideally, the coarsening would be changed in a way that ensures
that it will always be able to reach the target number of points. This has already been
tried by changing the order the nodes are collapsed in to go from the node with the lowest
degree to the node with the highest degree. While this helped, it did not get rid of the
issue completely. More research would have to be put into this method in order to make
sure it can reduce all graphs to the required size within a reasonable amount of time.
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Conclusion

This thesis has presented a new graph layout method, NNP-NET-c, that can create layouts
for graphs in the style of tsNET*, but for far larger graphs than tsNET* can do. While our
method is not competitive on small graphs (as it gets the same results as tsNET*, while
taking longer), it gets good results on larger graphs that tsNET* can not handle. It is able
to generate graphs in the style of tsNET* for graphs that are far larger than what tsNET*
can handle. This thesis has also shown that tsNET* and PMDS can be extended to use
edge weights by simply incorporating them in the shortest path algorithm as edge length.
NNP-NET-c also takes the edge lengths into account because they are used in the ground
truth used for our algorithm.

Keeping all this mind, we can reflect back on the original goal of this thesis. The goal of
this thesis was to create a faster version of tsNET that would be able to create graph layouts
for very large graphs while also taking edge weights into account. The focus would be on
making sure that the inference time would be very low, while not focussing on getting the
training time to a reasonable level. In the end however, both the inference and training
time were low enough to outperform DRGraph on very large graphs. We’ve also shown
that NNP-NET-c is able to successfully take edge weights into account in a meaningful
way. We were able to exceed our original requirements for our method.

NNP-NET-c is created from multiple different components that each can be swapped
out for a different algorithm that fulfills the same requirements, without having to change
anything about the rest of the pipeline. Future work can build on this method by changing
these components individually in order to either get better quality results, or to reduce the
execution time. The main improvements would include a more robust subgraph method
for creating G’. While the current method works well on most graphs, it struggles with
some others. Changing out the graph layout method that is used to create the embed-
ding could also have a large positive impact. We were unable to run NNP-NET-c on the
largest graph in our set, as the memory requirements of PMDS were to high for the limit
amount of RAM in the test system. PMDS also ended up as the bottleneck for the larger
graphs. A faster method than PMDS would increase performance significantly for very
large graphs. Furthermore, these results were all generated using tsNET* as the ground
truth. NNP-NET-c can use any method as a ground truth method. It would be interesting
to see whether a different ground truth method could yield better results in this pipeline.
Lastly, NNP-NET-c does contain a good number of parameters. The results have shown
that they can all be set to a default value while generating competitive results compared
to other state of the art methods. For a lot of these parameters however, no in depth test-
ing was done to determine what a good default value should be. Tweaking some of these
values has the potential to improve the results even more.
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