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Abstract

This thesis focuses on the job shop problem where we minimize the
makespan. This problem has been studied exhaustively and is proven to
be NP-hard. Past research has explored both approximation methods and
exact methods to solve this problem. Constraint programming techniques
have shown potential and they present some interesting unexplored paths
for research. In constraint programming there is a balance between the
search heuristic used to explore the solution space by adding constraints
and constraint propagation used to reduce the solution space by making
it consistent with some number of constraints or to deduce additional con-
straints. Opportunities for constraint propagation have been thoroughly
studied. However, strategies that combine multiple opportunities can be
further explored. Besides that, this thesis focuses on new search heuristics
based on the notion of the propagation amount. All new ideas have been
implemented and experimentally tested on well known instances from the
literature. As results, we present an alternative edge finding constraint
propagation algorithm based on ideas from previous literature. Besides
that, we show that graph constraint propagation can best be applied more
often and more locally. Lastly, we develop a search heuristic based on the
observed full propagation amount which outperforms the full propagation
amount search heuristic from previous literature.
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1 Introduction

We will start our introduction with an anecdotal example of the kind of problem
that can be solved with the methods mentioned in this thesis. Imagine a facility
suitable for a physical strength training. Such a facility has a number of stations
where exercises can be performed. Each of these stations can be used by one
person at a time. A training at such a facility usually take place in groups where
the participants each have their own schedule of exercises that they want to do
in a specific order. Additionally some participants might need more time for an
exercise than others. In other words the duration of an exercise depends not
solely on the exercise but also on the participant. If everyone would just do as
they pleased, then it might take a long time before everyone is finished and the
facility has to be reserved for an equally long time.

Imagine, for example, a situation where a group of 60 people all want to
start with the same exercise for one minute. After that exercise one person
continues with a second exercise for an hour and the remaining people are done.
If everyone does their first exercise before the one person gets to do so, then the
training will take two hours. If, on the other hand, the one person gets to go
first, then the remaining people can do their exercise one-by-one whilst the one
person does their second exercise. In that case the training will take only one
hour and one minute.

This example illustrates the effectiveness of some global schedule that de-
scribes the order according to which the participants get to do each exercise.
Finding the global schedule that results in the shortest possible reservation or
training duration might seem trivial in our example. However, it is a complex
problem to solve in general.

The problem. The example described above is more formally known as a job
shop problem. The name job shop problem describes a class of scheduling
problems (Graham et al., 1979). This thesis focuses on the most common variant
where the makespan is minimized. Using Graham’s notation this variant is
denoted by J ||Cmax.

With a job shop problem we are given a set of jobs and a set of machines.
Each job consists of a sequence of operations (a.k.a. activities or tasks) and each
operation has to be processed on a given machine for some processing time.
The order in which operations appear in the sequence of their job imposes
precedence constraints (i.e. an operation can only start processing once its
preceding operation has finished processing). Besides that, each machine can
only process one operation at a time or it can be idle and operations can not be
interrupted. The goal with a job shop problem is to find a schedule that satisfies
these constraints. Additionally, with J ||Cmax, a solution is required to have a
minimum makespan, where the makespan is simply the maximum completion
time over all operations. We will use the term job shop problem to refer to
this variant of the problem. Section 2 provides a more formal definition of the
problem, the model, the constraints and the objective.
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The relevance. The job shop problem has applications in actual production
facilities that manufactures products. Solving it optimally can reduce opera-
tional costs of these job shops. However, even a simplified variant of the prob-
lem with only 2 machines (J2||Cmax) has been shown to be NP-hard (Garey &
Johnson, 1979).

Related work. Since the problem is NP-hard, we can either try to solve it ap-
proximately in polynomial time or we can try to solve it optimally in exponential
time. In the literature both avenues have been explored. Approximation meth-
ods that have been applied include: heuristics such as priority dispatch rules
by Haupt, 1989 and the shifting bottleneck approach by Adams et al., 1988;
and local search using various neighbourhoods and meta-heuristics such as sim-
ulated annealing by Van Laarhoven et al., 1992 and tabu search by Nowicki and
Smutnicki, 1996. Exact methods that have been applied include: integer linear
programming models solved using branch and bound (Carlier & Pinson, 1989)
or branch and cut (Applegate & Cook, 1991) and constraint programming ap-
proaches such as the one by Cheng and Smith, 1997. Section 3 provides a more
extensive overview of any work related to our problem and the listed methods.

Our plan. This thesis will focus on the exact method constraint programming.
Any constraint programming method generally consists of four parts: the model,
a search heuristic, constraint propagation and a backtracking strategy (Baptiste
et al., 2001). The search heuristic and backtracking strategy roughly correspond
to a branching scheme. Combined with constraint propagation they form a
branching structure. This thesis focuses on exploring new branching structures.
Section 3 provides more context to these concepts.

Our motivation. Our focus is motivated by previous work that has shown
that there is room for improvement with the branching structure. van der
Sluis, 2022 showed that the size of search tree can be significantly reduced if a
better search heuristic is used. He showed this by using a search heuristic that
determines all consequences for each possible choice at a decision point. This
strategy has one problem. Determining all those consequences at each decision
point takes a lot of time. We note that this strategy could be improved upon
by keeping track of a heuristic score for each choice that approximates those
consequences. We will explore that idea in this thesis. Besides that, we note
that there are many sources on specific procedures for constraint propagation
but it is not often mentioned how those procedures can and should be combined.
We will also work on determining a good structure that does combine these
various procedures.

The remainder of this thesis. Section 2 will give a more formal definition
of the problem. Section 3 will give an overview of relevant related work. Section
4 will describe the research questions and how we aim to answer them. Section
5 will describe some fundamental implementation details. Section 6 will discuss
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our ideas in more detail accompanied by results of related experiments and some
discussion. Lastly, Section 7 will summarize the conclusions that can be drawn
from this thesis.
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2 The job shop problem

This section will provide a more formal definition of the job shop problem and
some other relevant concepts.

2.1 The input

As input we are given a set of n jobs Jj (j = 1, . . . , n) and a set of m machines Mi

(i = 1, . . . ,m). Additionally, each job Jj consists of a sequence of m operations
Oi,j (i = 1, . . .m). Lastly, each operation Oi,j has an assigned machine µi,j and
a processing time pi,j . Note that Oi,j refers to the i-th operation of job Jj . If
that operation is assigned to machine Mi, then that is purely coincidental. In
other words, µi,j is not necessarily equal to Mi. Besides that, the operations
are assigned to machines such that each job has one operation assigned to each
machine. However, the order of assigned machines is arbitrary for each job. So,
µi,j is not necessarily equal to µi,k. Lastly, the processing times are positive
and discrete. However, there are no relations between the processing times of
operations. Again, any similarities are purely coincidental. Table 1 provides the
data for an example instance of the problem.

job j operation i machine µi,j processing time pi,j
0 0 0 2
0 1 1 7
0 2 2 7
1 0 1 2
1 1 0 4
1 2 2 6
2 0 0 2
2 1 2 2
2 2 1 3

Table 1: Example instance data.

In addition to the above notation, we will use O(Jj) to refer to the sequence
of operations of job Jj . Respectively, we will use O(Mi) to refer to the set of
operations assigned to machine Mi.

Input format. Before we continue, we briefly describe how problem instances
are commonly provided. Input files for the problem are generally formatted
as one line containing the number of jobs n and the number of machines m
followed by n lines (one for each job), each containing m tuples of a machine
and processing time. Besides this most widely used standard, there also exists a
different specification by Taillard, 1993. Figure 1 presents the example instance
data as a text file in the standard format.
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3 3
0 2 1 7 2 7
1 2 0 4 2 6
0 2 2 2 1 3

Figure 1: Example instance file.

2.2 The model

Given the above definitions we can now describe how the job shop problem can
be modelled using variables, domains and constraints. We will do so whilst
referring to the (in)equalities in Equations 1a through 1e on the next page.

Variables. The problem asks for a schedule that satisfies some constraints
and minimizes the makespan. Such a solution is represented by the start time
of each operation in the instance. Therefore the variables consist of a start time
Si,j for each operation Oi,j . Since the problem does not allow for preemption
(i.e. operations can not be interrupted), we can define the completion time Ci,j

of an operation as the start time plus the processing time, as represented in
Equation 1a.

Domains. The start time for each operation must be greater than or equal to
zero, represented by Equation 1b. Additionally, in some algorithms we define
an upper bound ub on the makespan. In other words, the maximum completion
time can not exceed the upper bound. This is represented by Equation 1c.
These two inequalities represent the domains of our variable start times (since
the completion times are defined in terms of the start times and processing
times).

Constraints. Besides the domain constraints, we have two more main types
of constraints. Within each job, the operations have to be processed in order.
In other words, operation Oi,j must complete before Oi+1,j can start. These
precedence relations are also referred to as conjunctive constraints, since the
conjunction of all these precedence relations must be satisfied. They are mod-
eled in Equation 1d. Additionally, we have that each machine can process at
most one operation at a time. Therefore, we have, for each pair of operations
Oi,j and Ok,l assigned to the same machine (µi,j = µk,l) a pair of precedence
relations describing which one of them is processed before the other. Such a
pair of precedence relations is referred to as a disjunctive constraint since a dis-
junction of each pair of relations must be satisfied. Moreover, only one of the
disjuncts of each pair can be satisfied at the same time. Equation 1e models
these constraints.
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Ci,j = Si,j + pi,j ∀i∈{1...m} ∀j∈{1...n} (1a)

0 ≤ Si,j ∀i∈{1...m} ∀j∈{1...n} (1b)

Ci,j ≤ ub ∀i∈{1...m} ∀j∈{1...n} (1c)

Ci,j ≤ Si+1,j ∀i∈{1...m−1} ∀j∈{1...n} (1d)

Ci,j ≤ Sk,l ∨ Si,j ≤ Ck,l ∀{Oi,j ,Ok,l}∈O(Mx) ∀x∈{1,...,m} (1e)

Equations 1d and 1e present precedence relations as a comparison between a
start time and a completion time. In this thesis and in some related work such
a precedence relation Ci,j ≤ Sk,l is sometimes written as Oi,j << Ok,l.

2.3 The solutions

As mentioned, a solution to a problem instance consists of a start time for each
operation.

Gantt charts. Generally solutions to scheduling problems like the job shop
problem can be visualised using a Gantt Chart (Clark, 1923). In such a chart
the vertical axis lists the machines and the horizontal axis represents time. See
Figure 2 for a Gantt chart of a solution to the example instance corresponding
to the solution presented in Table 2.

job j operation i start time Si,j completion time Ci,j = Si,j + pi,j
0 0 0 2
0 1 2 9
0 2 14 21
1 0 0 2
1 1 2 6
1 2 6 12
2 0 6 8
2 1 12 14
2 2 14 17

Table 2: Example solution to the example instance.
(Cmax in bold)

Unnecessary idle time. Since we want to minimize the makespan, we want
the last operation to complete as early as possible. Therefore, it has to start
as soon as possible. The only things that prevent all operations from starting
at time instant zero are the precedence relations from the conjunctive and dis-
junctive constraints. In other words, given a set of precedence relations, we can
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Figure 2: A Gantt Chart of the example solution.
(J0 = red, J1 = green and J2 = blue)

find a solution with no unnecessary idle time by determining the corresponding
earliest start times and the related makespan. This only works if we have de-
cided or can deduce the direction of the precedence relation between each pair of
operations within each machine (corresponding to the disjunctive constraints).
Otherwise, two operations on the same machine could be scheduled to process
at the same time. A schedule without unnecessary idle time is sometimes called
an active schedule in the literature as described in Giffler and Thompson, 1960.

The precedence graph. The set of precedence relations can be modeled as a
directed graph G = (V,A), where we have a vertex Oi,j ∈ V for each operation
and a directed arc (Oi,j , Ok,l) ∈ A for each precedence relation Ci,j ≤ Sk,l. Such
a directed graph is often referred to as a precedence graph. The precedence
graph of the example instance including only the conjunctive constraints is
presented in Figure 3.

Longest paths. If the precedence graph contains a cycle, then there is no
feasible solution since two operations have to precede each other. On the other
hand, if the precedence graph does not contain a cycle, then we can find the
earliest start time for each operation by finding the longest path from any of the
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J0

J1

J2

O0,0 O0,1 O0,2

O1,0 O1,1 O1,2

O2,0 O2,1 O2,2

Figure 3: The precedence graph of the example instance
including only the conjunctive constraints.

first operations of the jobs to that operation. The length of a path is defined as
the sum of the processing times of the operations that are visited by the path.
The completion time of each operation is then simply its processing time added
to its earliest start time. In this case the maximum makespan can be found
by taking the maximum over the completion times of the last operations of the
jobs.

The process of finding the earliest start times and the makespan can be il-
lustrated even better by adding two dummy nodes to the precedence graph. We
add one source vertex s with zero processing time that precedes the first oper-
ations of the jobs. Respectively, we add one sink vertex t with zero processing
time that is preceded by the last operation of each job. Now, finding the earliest
start times is equivalent to finding the longest path from the source vertex s
and the makespan is equal to the earliest start time of the sink vertex t.

J0

J1

J2

s

O0,0 O0,1 O0,2

O1,0 O1,1 O1,2

O2,0 O2,1 O2,2

t

Figure 4: The precedence graph of the example instance
including the conjunctive constraints and the source and sink.
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The disjunctive graph. The precedence graph only represents the given con-
junctive constraints for the jobs. It can be augmented with a set of undirected
edges E representing the disjunctive constraints between pairs of operations
assigned to the same machine. This augmented graph is referred to as a dis-
junctive graph G = (V,A + E) in the literature (Roy & Sussmann, 1964).The
disjunctive graph of our example instance is shown in Figure 5.

A disjunctive graph basically contains a clique of undirected edges on each
set of vertices corresponding to the operations of one machine. Deciding or
deducing the directions of the disjunctive constraints is equivalent to giving a
direction to each of the undirected edges. Giving a direction to an edge is often
called ”selecting” and if we can deduce a direction (for example by transitivity),
then we are speaking of an ”immediate selection”. If all edges have been selected,
then the graph is called completely selected, otherwise it is partially selected. If
the directed part of a partially or completely selected graph is acyclic, then it is
called consistent. Figure 6 presents a consistent and completely selected version
of the disjunctive graph of our example instance. It corresponds to the example
solution which can be verified by determining longest paths as described.

For the interested reader, the concepts of a precedence graph and a disjunc-
tive graph have been further generalized to the notion of a generalized temporal
constraint network (Meiri, 1996).

J0

J1

J2

s

O0,0 O0,1 O0,2

O1,0 O1,1 O1,2

O2,0 O2,1 O2,2

t

Figure 5: The disjunctive graph of our example instance.
(M0 = red, M1 = green and M2 = blue)

Total enumeration. As we have seen, for every consistent and completely
selected version of the disjunctive graph we can find a solution with no unnec-
essary idle time. Conversely, every solution (with or without unnecessary idle
time) maps to a consistent and completely selected disjunctive graph. Lastly,
any solution with unnecessary idle time can not be better than the correspond-
ing solution with all that idle time removed. Therefore, we can exhaustively
search the entire solution space by enumerating all consistent and completely
selected disjunctive graphs and checking their makespan.
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J0

J1

J2

s

O0,0 O0,1 O0,2

O1,0 O1,1 O1,2

O2,0 O2,1 O2,2

t

Figure 6: The completely selected disjunctive graph corresponding to our
example solution.

(M0 = red, M1 = green and M2 = blue)

Since there are n jobs, we have
(
n
2

)
= n(n−1)

2 edges per machine. With m

machines that gives us m ∗ n(n−1)
2 binary decisions. That means that there are

2m∗
n(n−1)

2 = O(2mn2

) different complete selections. Many of those complete
selections might not be consistent but it does give an upper bound. Using
topological ordering, determining the longest paths can be done in |V |+ |A| =
|V | + |A| + |E| = (mn) + (m(n − 1)) + (m ∗ n(n−1)

2 ) = O(mn2). These two

bounds give us a total worst case time complexity of O(2mn2 ∗mn2).

Intuition. Given the presented ideas and concepts we can develop some in-
tuition regarding strategies to solve the problem. As we select disjunctive con-
straints one-by-one, we can keep applying a longest path algorithm to determine
the earliest start time and makespan given the partial solution. If this partial
solution has a makespan that exceeds some upper bound we can be sure that
there is no feasible solution regardless of the choice we make for the remaining
disjunctive constraints.

Machine sequences. Note that a complete selection of the edges of one ma-
chine can be represented by simple ordering of the operations by applying tran-
sitive reductions (if we have (a, b), (b, c), (a, c) ∈ A, then we can remove (a, c)).
Conversely, a complete selection is the transitive closure of such an ordering.
This gives a compact method to represent solutions as an ordering of operations
for each machine. These orderings are referred to as machine sequences which
leads us to the term machine sequencing that can be found in the literature.
Figure 7 presents the example solution as a machine sequence where opera-
tions are represented by a tuple consisting of the job and the index within that
job. Since each job has only one operation per machine this could be simplified
further by dropping the index within the job.

14



0 0 1 1 2 0
1 0 0 1 2 2
1 2 2 1 0 2

Figure 7: Machine sequences of the example solution.

2.4 Additional definitions

In some cases we will refer to operations simply by Oi (i = 1, . . . n∗m). In those
cases it should be clear from the context which operation this refers to. Fur-
thermore, besides the processing time pi and the assigned machine µi, there are
some additional attributes of operations which will be used in some algorithms.
We will define them here.

Operations can have a release date ri and a deadline di. An operation can
not start before its release date (ri ≤ Si) and it can not end after its deadline
(Ci ≤ di). In some literature these terms are replaced by the earliest start time
esti and the the latest end time leti. Given the processing time of each op-
eration we can then also define the earliest end time eeti = esti + pi and the
latest start time lsti = leti − pi. All these terms refer to the window in which
an operation can be scheduled (i.e. the domain of the variable start time of an
operation).

Initially these attributes are determined by the sums of processing times of
preceding and succeeding operations in the same job. These sums are sometimes
called the head and tail respectively. As we select more disjunctive constraints
these sums might increase resulting in tighter bounds on the domains of the
variables. These bounds are induced by the selections that we make. Therefore,
we speak of an induced release date, induced deadline, etc.

One important thing to note is the duality between release dates and dead-
lines. This gives rise to a symmetry that can be exploited to reuse algorithms
in primal and dual form.

The concepts of release dates, deadlines, heads, tails, start times and end
times can also be extended to apply to sets of operations by taking the minimum
or maximum of those values among the operations in the set. It should be
intuitive or clear from context whether such a term refers to the mininum or
maximum.
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3 Related work

This section will give an overview of relevant related work. There have been
some excellent surveys in the past by Graham et al., 1979, Vaessens et al.,
1996, B lazewicz et al., 1996 and Jain and Meeran, 1999. The last of those
gives a very complete overview of the state of well known instances at that
point in time. Da Col and Teppan, 2019 provide a good reference point of
the recent state of the art of constraint programming solvers applied to the job
shop problem. They applied OR-Tools (Google, 2024) and CP Optimizer (IBM,
2024) to the well known instances and experimented with some significantly
larger instances. In Da Col and Teppan, 2022 they provide a more in depth
analysis of the similarities and differences between those two solvers. We will
not repeat too much from the mentioned works but we do want to touch upon
the more important steps that have been made in the literature.

3.1 Instances

Over time, many different problem instances have been developed to test the
performance of various algorithms for the job shop problem. We will go over im-
portant sets instances that by now form the classic set of benchmark instances.

Of the three instances (ft06, ft10 and ft20) by Muth and Thompson, 1963,
the 10 x 10 (jobs x machines) instance (ft10) was one of the first surprisingly
hard instances that sparked more interest in the job shop problem. It remained
unsolved until 1986 (more than 20 years later) when it was solved using a method
later reported in Carlier and Pinson, 1989. Later, Lawrence, 1984 generated 40
instances (la01-la40) of various sizes to accompany his PhD thesis. Applegate
and Cook, 1991 published 10 more instances (orb01-orb10) generated based on
input from visitors of a conference who were challenged to create hard problems.
Storer et al., 1992 presented 20 more instances (swv01-swv20) with their article
on new search spaces for the job shop problem. Yamada and Nakano, 1992
created 4 instances (yn01-yn04) to test their genetic algorithm. Taillard, 1993
generated a larger set of benchmark problems (ta01-ta80) of sizes representa-
tive of the real industrial problems at that time. Lastly, Demirkol et al., 1998
generated another set (dmu01-dmu80) with some larger instances and different
routing structures through the machines.

van Hoorn, 2016 created a website with an overview of the mentioned in-
stances accompanied by a table with lower bounds, upper bounds and references
to the literature that presents those bounds.

3.2 Approximation methods

There are various methods to find an approximately optimal solution to an
optimization problem. Broadly, there are two types of approximation methods.
We have heuristic methods that iteratively construct a solution from scratch
and there are local search methods that start out with an initial solution
(usually obtained with a heuristic method) and iteratively modify it to improve
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it. Both types of approximation methods can be designed in such a way that
they always make locally optimal decisions with an increased risk of ending up
in a local optimum as opposed to a global optimum. Methods that do this are
often classified as greedy methods. This subsection will give an overview of
approximation methods that have been applied to the problem.

3.2.1 Heuristics

As mentioned heuristic approximation methods construct a solution. Such a
method is often based on some simple rule of thumb or intuition.

Priority rules (a.k.a. dispatching rules) are fast and intuitive heuristic meth-
ods used to solve scheduling problems. Haupt, 1989 provides a comprehensive
survey of these methods. For some simpler scheduling problems, priority rules
can quickly find an optimal solution. One example is the ”earliest due date”
(EDD) priority rule which optimally solves the one machine problem minimiz-
ing maximum tardiness (1||Tmax) or lateness (1||Lmax) as described in Jackson,
1955. Due dates are soft constraints similar to deadlines. If the completion
time of an operation is greater than its due date then it is considered late or
tardy. The lateness of an operation is defined as its completion time minus its
due date. This can be negative. The tardiness is defined similarly, but it is
bounded to be non-negative. For our problem, priority rules can only be used
to find approximately optimal solutions.

Briefly, priority rules can be defined as policies that specify what to do
in any situation where a machine becomes idle. Generally, you would want
to schedule any available operation on such a machine. If there are multiple
available operations competing for the same machine, then the priority rule is
used to resolve that conflict. Priority rules make their decisions based on (parts
of) the information in the problem instance.

A good example of a priority rule that can be described as a greedy approxi-
mation method for the job shop problem is the ”shortest processing time” (SPT)
priority rule. At any decision point, scheduling the operation with the shortest
processing time will minimize the makespan of the next partial solution.

However, it will not be optimal in general. Take for example an instance
with two machines. One job has its first operation assigned to machine 1 with
processing time 2 followed by an operation assigned to machine 2 with process-
ing time 100. Additionally there are 100 more jobs with their first and only
operation assigned to machine 1 with processing time 1.

In this case SPT will schedule the operations of the 100 jobs on machine
1 before it schedules operation 1 of job 2 on that machine. This means that
operation 2 of job 2 has to wait a long time before it can start processing
resulting in a makespan of 100 ∗ 1 + 1 ∗ 2 + 1 ∗ 100 = 202. If we were to schedule
operation 1 of job 2 first, then operation 2 of job 2 can start at time instant 2
and we would get a makespan of 1 ∗ 2 + 1 ∗ 100 = 102.

A good example of a less greedy and very useful priority rule is ”most work
remaining” (MWKR). Here the intuition is that we pick the operation that has
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the largest processing time including the processing time of its successors from
the same job. Basically we want to process a part of the job that still has
the most work to do as early as possible. This priority rule would optimally
solve the problem instance described above because operation 1 of job 2 has
more work remaining (work = 2 + 100 = 102) than the operations of the
other 100 jobs (work = 1). The MWKR priority rule is an important part
of other approximation and exact methods as will be mentioned in the following
paragraphs and sections.

Note that some priority rules are more greedy than others. However the
decisions made by priority rules are always final. Therefore priority rules should
be considered greedy heuristics.

Even though we are focusing on an offline scheduling problem, it is interesting
to note that priority rules also work for online variants of scheduling problems
where the problem instance is given step by step since they can easily be adapted
to decide based on only information from the past. The survey by Haupt, 1989
classifies common priority rules based on which information they depend on.

The survey by B lazewicz et al., 1996 places priority rules in a context of
all existing methods to solve the job shop problem at that time. They note
how, for a while, priority rules were the only methods that had any success
with approximately solving problem instances of more than 100 operations. One
effective method made use of probabilistic combinations of multiple priority rules
as presented in a chapter of the book by Muth and Thompson, 1963. At each
decision point this method would choose which priority rule to apply based on
probabilities as opposed to always applying the same priority rule. Crowston et
al., 1963 improved on this by combining priority rules into hybrids and applying
a learning process to derive probabilities for the selection of priority rules.

The shifting bottleneck procedure is another important heuristic method
that can approximately solve the job shop problem. Adams et al., 1988 noted,
as we have mentioned in the previous paragraphs, that priority rules are rather
greedy in the sense that all decisions are final. Therefore, the authors propose
their shifting bottleneck procedure.

It works as follows. We have the set of all machines M and sequence them
one by one. The set M0 represents the set of sequenced machines. Initially no
machines are sequenced. For each unsequenced machine k ∈M \M0 we solve a
one machine relaxation.

These relaxations are created as follows. We remove the disjunctive edges
corresponding to all unsequenced machines M \M0 and replace the disjunctive
edges corresponding to all sequenced machines M0 by the conjunctive arcs as
they have been sequenced.

Using a longest path algorithm from the source vertex, as we described in
Section 2, we can now determine the release dates for the operations of the
unsequenced machines and a makespan as induced by the graph. Note that the
induced release date of an operation is simply equal to the amount of processing
time required before an operation. This is also called the head as we described
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in Section 2. Using the same longest path algorithm from the sink vertex in
the same graph with all conjunctive arcs reversed we can also determine how
much processing time is required after each operation as induced by the graph.
As we mentioned in Section 2 this is also called the tail. Using the tails we can
define a due date with respect to the determined makespan for all the operations
of the unsequenced machines. We simply set the due date for an operation of
an unsequenced machine equal to the derived makespan minus the tail of that
operation.

Lastly, we can use the determined release dates and due dates to solve
the one machine problem with release dates minimizing the maximum lateness
(1|ri|Lmax). We will explain how these one machine problems can be solved at
the end of this paragraph.

The unsequenced machine with the largest makespan given by the one ma-
chine relaxation is called the bottleneck machine. It is sequenced as in the
solution to the one machine relaxation and added to the set of sequenced ma-
chines.

After sequencing a new machine, the set of sequenced machines is reop-
timized. First, the sequenced machines are ordered by decreasing makespan.
Next, those machines are resequenced one by one in that order. Resequencing
is performed using the same one machine relaxation as before. The only differ-
ence is that the disjunctive arcs from the the machine that is being resequenced
are also removed as opposed to replacing them by the correct conjunctive arcs.
This cycle of ordering and resequencing is repeated three times after every newly
sequenced machine.

After the last machine has been newly sequenced, the reoptimization cycle
is repeated until no improvement has been made during a full cycle.

One important part of the shifting bottleneck procedure is the algorithm
that solves the one-machine relaxations. Garey and Johnson, 1979 show that
these relaxations are still NP-hard. McMahon and Florian, 1975 present an
algorithm that can be used to solve these one-machine problems. Later, Carlier,
1982 developed a better method that can solve realistically sized instances in
a matter of seconds with branch and bound by using a heuristic based on the
MWKR priority rule (which we described before).

Vandevelde et al., 2005 performed a computational study on lower bounds
for a generalization of this one machine problem with a variable number of
parallel/identical machines.

3.2.2 Local search

As we mentioned before, local search methods start out with an initial solution
(often obtained with a fast heuristic) and iteratively modify it to improve it.
Such modifications are performed by considering a neighbourhood of solutions
based on the current solution. Using that neighbourhood, a meta-heuristic is
employed to decide which solution will replace (and hopefully improve on) the
current solution. The neighbourhood and meta-heuristic are the main parts of
any local search method.
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The most basic meta-heuristic is a greedy one where we always move to a
better neighbour as soon as we find one. It might be the case that there is
an even better option in the neighbourhood but we pick the first one that is
better than our current solution. This meta-heuristic is called ”hill-climbing”.
Other common meta-heuristics are simulated annealing, variable depth search
and tabu search (Glover & Laguna, 1997). Genetic algorithms are sometimes
classified as local search algorithms as well.

We will briefly describe some interesting results from the literature. For
more details, Vaessens et al., 1996 provide an exhaustive survey of the many
forms of local search that have been applied to the job shop problem up to that
point in time. B lazewicz et al., 1996 also present a nice overview.

Simulated annealing is a meta-heuristic for a local search procedure that is
based on the idea of annealing hot metal. With simulated annealing we use a
notion of temperature and an annealing schedule and we allow moves to worse
neighbours in an attempt to not get stuck in a local optimum. The neighbour
that will replace the current solution is chosen randomly, where the probability
of choosing a certain neighbour depends in some way on its quality and the
temperature. The chance that a worse neighbour is accepted is determined by
the current temperature (a lower temperature lowers the chance of worse neigh-
bours being accepted). The annealing schedule describes how the temperature
changes and decreases over time.

Simulated annealing has a proof of convergence. This means that it will
result in a global optimum, given enough time and the right annealing schedule.
Granville et al., 1994 show that in practice the required time and annealing
schedule often aren’t feasible.

Simulated annealing has been applied to job shop scheduling by Van Laarhoven
et al., 1992.

Genetic algorithms keep track of a population of solutions and apply oper-
ations that combine or modify them to (hopefully) improve the quality of the
solutions in the population. The idea is that good characteristics of a number of
solutions can be combined into one solution. Yamada and Nakano, 1992 apply
a genetic algorithm to the job shop problem.

Tabu search is another meta-heuristic mechanism aimed at escaping local
optima. With this method we keep track of a tabu list. Each iteration, once we
make a move, the inverse of the move is appended to the tabu list. The tabu
list has a maximum length and older moves are removed to make room for new
moves. Whenever we are looking to make a new move, we are not allowed to
make a move that is on the tabu list. Therefore, once we reach a local optimum
and make a move to some neighbour, we can not immediately make a move
back to that local optimum. Thus, we might escape from that local optimum.
However, there is one exception. If a move on the tabu list leads to a solution
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that is better than the current best known solution, then we allow it. Tabu
search can be implemented as follows.

During each iteration, we split the neighbourhood in three sets. U (un-
forbidden), FP (forbidden and profitable/better than the current best known
solution) and FN (forbidden and not profitable/worse than or equal to the cur-
rent best known solution). Generally, we apply the best move from U ∪ FP . If
there is no such move (i.e. |U ∪FP | = 0), then we remove the oldest move from
the tabu list and duplicate the youngest move at the front of the tabu list. If
a move in the neighbourhood is now not forbidden, then we choose that one.
Otherwise, we repeat the removal and duplication. In essence this means that
we apply the oldest move on the tabu list that is also in our current neighbour-
hood and duplicate the youngest move on the list to keep the tabu list length
the same.

Tabu search usually ends after a predefined number of iterations since the
last time that we improved the current best known solution.

An expensive part of the tabu search method is the evaluation of the neigh-
bouring solutions to determine which solutions are profitable. Taillard, 1994
aimed to alleviate this problem by applying some parallelization in their tabu
search implementation for the job shop problem.

Nowicki and Smutnicki, 1996 achieved better performance by reducing the
size of the neighbourhood that was used by the simulated annealing procedure
of Van Laarhoven et al., 1992 and the tabu search approach by Taillard, 1994.

They also proposed a version of tabu search with backjump tracking. In
this version, every time we improve on the current best known solution, we
keep track of that solution, the current tabu list and the neighbourhood of that
solution excluding the move we make in the next iteration and append those to
a backjump list. Where we would usually end our tabu search after a number
of iterations without improvement, we now go the the most recent element
on the backjump list, restore that solution, tabu list and neighbourhood and
we continue iterating. Additionally we remove the move we make in the next
iteration from the neighbourhood in the backjump list. In essence this means
that we keep track of a limited number of recent improvements to the global
optimum and once we end a search we try alternatives from the neighbourhood
of those improvements.

In their paper the authors also present some additional mechanism to reduce
the runtime of the algorithm by detecting cycles in the search path and later, in
Nowicki and Smutnicki, 2005, they present a further improved implementation
of their algorithm.

Simulated annealing and tabu search have been combined by Zhang et
al., 2008, hoping to exploit the good characteristics of both meta-heuristics in
one algorithm.

Variable depth search aims to not get stuck in local optima by considering
larger neighbourhoods. Since larger neighbourhoods become too expensive to
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completely evaluate, variable depth search methods vary to which depth they
explore a neighbourhood. This way, a larger part of the search space can be
traversed and explored without computation becoming infeasible. Balas and
Vazacopoulos, 1998 apply variable depth search to the job shop problem. Inter-
estingly, in their implementation, the authors make use of the shifting bottleneck
procedure, which we described previously, to guide their search.

3.3 Exact methods

In this section we will go over some important results from the literature regard-
ing exact methods used to solve the job shop problem. The main approaches
that have been used so far are general branch and bound, integer linear pro-
gramming and constraint programming. Ideas from these approaches are often
transferable from one to another with some slight modifications. We will go
over some integer linear programming and constraint programming approaches.

3.3.1 Integer linear programming

Linear programming is a method that can be used to model decision and
optimization problems. Linear programming starts by defining variables and
linear constraints on these variables. A linear program can also have an opti-
mization objective.

We will describe the idea in the context of a diet optimization problem for
a hiking trip. In such a problem we have a few types of food that contain
various ratios of macro nutrients like fat, carbohydrates and protein and we
want to bring enough food to reach our daily goals for each macro nutrient
whilst packing as little weight as possible.

The variables in this problem are the amount of each food type that we pack.
As first constraints we have that we can not bring a negative amount of any
food type. Secondly, we have constraints that require that we bring at least the
daily goal’s worth of each macro nutrient. Lastly, we might add constraints that
represent a limited supply of any food type or we can consider how much volume
they take up in our backpack. To complete the model we add an optimization
objective that requires the minimization of the total weight of everything we
bring. All these constraints can be expressed as linear (in)eqautions which
makes it a linear program. Solutions to linear programs can be found using the
simplex method developed by Dantzig et al., 1945.

Integer linear programming is an extension of the linear programming
model that allows variables to be constrained to integral (and therefore also
binary) values. Integer linear programs are not as straightforward to solve as
linear programming problems. Integer linear programs are essentially combi-
natoric problems. Despite the similarities an (optimal) solution to an integer
linear program might not be anywhere close to the optimal solution of the non
integral version in the solution space.
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The linear program example can be transformed by restricting the variables
to integral values. The problem can then be changed from variables representing
an amount of each food that is packed to an integral number of packages of each
food type that is packed.

The model from Equations 1a through 1e can easily be repurposed to repre-
sent an integer linear program. In that case 1e can be implemented using two
linear constraints from which one is selected to be active using a binary decision
variable. Additionally, the upper bound (ub) from 1c becomes the objective
variable that we want to minimize.

A naive method to find the optimal solution in an integer linear program
is the total enumeration and evaluation of all possible combinations of values
for the variables. In practice this is often infeasible. Therefore, some other
strategies have been developed over time. These methods include but are not
limited to branch and bound, branch and cut and branch and price.

Branch and bound is a procedure used to solve optimization problems. As
the name suggests, it consists of two steps, branching and bounding, that are re-
peated to find a solution to a minimization (maximization) problem as described
by Morrison et al., 2016.

Usually, before starting a branch and bound procedure, we find an initial
feasible solution using some fast approximation method. The initial feasible
solution is saved and its objective value is used as an initial upper (lower)
bound for the minimization (maximization) problem. Alternatively, the initial
upper (lower) bound is set to ∞ (−∞).

Throughout the algorithm we explore a search tree with nodes representing
parts of the solution space. We start at the root node representing the entire
solution space. From there, we start branching and bounding.

We start with the branching step. From the current node we construct two
(or more) child nodes by partitioning the part of the solution space represented
by the current node using an additional constraint. The various methods of
branching for a given problem are called branching schemes and the overall
strategy describing which schemes to use is called the branching structure.

During the bounding step, for each child node, we calculate a lower (upper)
bound on the objective value of solutions in the part of the solution space
represented by that node. This is done by solving a relaxed version of the
problem.

If the lower (upper) bound is greater (less) than or equal to the current
upper (lower) bound, then we do not have to evaluate that part of the solution
space any further and we can discard the corresponding child node.

If any of the child nodes are not discarded, then we continue the procedure by
evaluating those child nodes. The order in which those child nodes are evaluated
is described in the branching structure.

If, during the bounding step, the solution to the relaxed problem also satisfies
all constraints of the unrelaxed problem (all values are integral in the linear
relaxation), then we have found the optimal solution for that part of the solution
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space. Next, we can update the upper (lower) bound with the objective value of
that solution. If there are no more nodes left to be evaluated, then our search
is complete.

Intuitively, better lower (upper) bounds will allow us to discard nodes earlier
in the search tree. However, there is a trade-off because finding better bounds
will generally require more time.

A lower bound for the makespan of the job shop problem can be found by
solving a relaxed one-machine problem with release dates minimizing the max-
imum lateness (1|ri|Lmax) for each machine. As mentioned in our description
of the shifting bottleneck procedure, McMahon and Florian, 1975 and Carlier,
1982 implemented algorithms to solve these relaxations.

Using that lower bound in a branch and bound algorithm for the job shop
problem, Carlier and Pinson, 1989 are the first to solve the 10 x 10 instance (ft10)
by Muth and Thompson, 1963. Each node in their search tree corresponds to a
partial selection. The presented algorithm branches by choosing an unselected
disjunctive constraint and creating a new node for both choices. Additionally
the authors implement a method to derive immediate selections to reduce the
size of the search tree. This method will later be known as edge finding.

In Carlier and Pinson, 1989, the authors implement edge finding in O(n4).
Later, in Carlier and Pinson, 1990, they implement a faster edge finding algo-
rithm that runs in O(n2). This faster variant is based on the preemptive variant
of Jackson’s schedule as described in Jackson, 1955. That is, the one-machine
problem with release dates and preemption minimizing the maximum lateness
(1||ri, pmtn|Lmax). In Carlier and Pinson, 1994 they reduce the time complexity
to O(n log n) using a complex data-structure based on a binary search tree.

Branch and cut is very similar to branch and bound. It assumes that bound-
ing is performed using the linear programming relaxation. After finding a solu-
tion to a relaxed problem, cutting planes can be added to tighten the relaxed
problem. Cutting planes are additional constraints that are ideally violated by
the relaxed solution but not by any feasible integral solutions.

Applegate and Cook, 1991 apply branch and cut to the job shop problem.
The authors use cutting planes from some other authors and develop some them-
selves to find lower bounds. They present a branch and cut approach (”edge-
finder”) that uses ideas from Carlier and Pinson, 1989 with some enhancements.
Additionally, they present a heuristic method that combines the shifting bot-
tleneck procedure Adams et al., 1988 and the ideas from ”edge-finder”. That
heuristic method is called ”shuffle”. Their final optimization strategy uses the
shifting bottleneck procedure followed by an iteration of ”shuffle” to find an
initial upper bound. Afterwards, they use ”edge-finder” to find and prove the
optimal solution. This algorithm solves a large number of classic instances for
the first time and is one of the first successful exact algorithms.
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Branch and price can not always be applied to any problem because it
requires a rather specific problem formulation. However, Martin and Shmoys,
1996 present an alternative formulation and algorithm for the job shop problem
that could be considered a branch and price algorithm. The authors formulate
the job shop problem as a packing problem for job-schedules. A job-schedule is
an assignment of starting times to the operations of a single job such that the
precedence constraints imposed by that job are satisfied. The goal is to find a
job-schedule for each job such that no two jobs make use of the same machine
at the same time, whilst minimizing the makespan.

3.3.2 Constraint programming

Constraint programming is a concept that can be compared to integer linear
programming. It is aimed at solving combinatorial problems. In constraint
programming we model problems as an instance of the constraint satisfaction
problem and find a solution using a constraint programming system. The biggest
difference between integer linear programming and constraint programming is
that integer linear programs are solved using one clear algorithm whilst con-
straint programming is performed using multiple separate constraint propaga-
tion algorithms that operate on parts of the problem. Additionally, integer linear
programs originate from the continuous mathematical optimization linear pro-
grams whilst constraint programming was designed from the ground up aimed
at discrete combinatorial problems without a clear optimization objective.

The constraint satisfaction problem is a generalized model for combina-
torial problems. Dechter, 2003 has written a great book on the constraint satis-
faction problem. Informally, an instance of the constraint satisfaction problem
can be defined as a triple of variables, domains and constraints.

The goal with a constraint satisfaction problem is to find an assignment of
values to the variables from their respective domains such that all constraints
are satisfied. This can be achieved with a constraint programming system as
we will describe later. It is important to note that the constraint satisfaction
problem does not allow for optimization objectives. A well known problem that
can be modelled as a constraint satisfaction problem is a sudoku as shown in
Figure 8.

The sudoku can be modeled as an instance of constraint satisfaction problem
as follows. Firstly, we have a variable for each individual cell in the 9x9 grid.
Secondly, we have as domain for each variable the numbers that are allowed in
its respective cell (initially the integers 1-9). Lastly, we have as constraints the
three main rules of a sudoku (no duplicate numbers within rows, no duplicate
numbers within columns and no duplicate numbers within each of the nine 3x3
sub grids). The domains and constraints in the sudoku example are called
explicit because they explicitly include, exclude or compare values for variables.
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Figure 8: A sudoku

Implicit domains and constraints can also be modeled in a constraint
satisfaction problem. That way we can define domains as ranges of integral or
real numbers and constraints as more complex inequalities. The domains of the
variables in a sudoku can be modeled implicitly by bounding them to be greater
than or equal to 1 and less than or equal to 9. Using such constraints we can
model Equations 1a through 1e.

Constraint programming is a programming paradigm where the program-
mer declaratively specifies constraints over variables which a solution has to
satisfy. Instances of the constraint satisfaction problem can be solved using
constraint programming. Baptiste et al., 2001 state that the four main parts of
a constraint programming system are: the model, a search heuristic, constraint
propagation and a backtracking strategy.

The model describes how an instance of a problem will be formulated in
terms of constraints and variables with domains. We previously described how
to do this for a sudoku and we have already modeled the job shop problem
in 1a through 1e. During constraint propagation we try to make the domains
of the variables consistent with the constraints or we try to derive additional
constraints. For sudoku this corresponds to trying to reduce the options for
numbers that are allowed in a cell based on the constraints and the numbers
that have already been filled in. At some point in a sudoku we might not be
able to fill in additional numbers anymore without any doubt. In that case
we have to make a guess using some intuition and see if it works out. If it
does not work out we have to try some other idea. A situation that does not
work out is usually called a contradiction. An example of a contradiction is a
variable in a sudoku that does not have an assigned value yet but does not have
any remaining values in its domain either. The intuition used to make a guess
corresponds to the search heuristic in a constraint programming system and the
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strategy that decides how to continue if our guess does not work out is called
the backtracking strategy.

Constraint propagation rules are used to achieve consistency between do-
mains and constraints or to derive additional constraints in a constraint satis-
faction problem.

When we aim for consistency over all values in the domain of a variable we
talk about D-consistency (referring to the domain). If we only aim to make the
lower and upper bounds of the domains consistent with the constraint then it
is called B-consistency (referring to the bounds). Ideally we would make the
domains completely consistent with all the constraints at the same time. If
we achieve that, then, for each variable and for each value within its remaining
domain, we can find an assignment of values to all the other variables from their
domains that results in a feasible solution. Such complete consistency is called
n-consistency (n-D-consistency or n-B-consistency), where n refers to the total
number of constraints. For completion we note that there is also a concept of
k-consistency for some 0 < k < n.

One problem with n-consistency is that it is generally not feasible to achieve
efficiently. Therefore constraint programming systems use a limited but efficient
set of constraint propagation rules to achieve some degree of consistency and a
search heuristic and backtracking strategy to decide how to continue. For more
information constraint propagation rules and consistency we refer to B lazewicz
et al., 1996.

In our model, constraint propagation can be used to tighten the bounds of
the start time of a variable, to make selections for some disjunctive constraints or
to derive that no solution is possible given the current domains and constraints.
We will discuss techniques to achieve this later in this section.

The constraint optimization problem is the name for the generalization
of the constraint satisfaction problem that also includes optimization objec-
tives. The book by Dechter, 2003 also describes this generalized problem. In
the constraint optimization problem we want to find a feasible solution to the
related constraint satisfaction problem whilst also optimizing a certain objective
function. This search can be performed in many ways.

One interesting strategy to solve a constraint optimization problem is the
following. Start with any feasible initial solution. This can be found with a fast
heuristic or by solving the original constraint satisfaction problem. If we have
any feasible solution, then we note that there might still be a better solution.
However, now, we can restrict our search to a smaller range of objective values.
The search can be restricted to this range by adding additional constraints. We
already included these constraints in our model in Equation 1c. Let’s say that
the objective value of the last found solution is Cmax. Then a modified con-
straint satisfaction problem can be constructed by taking the original constraint
satisfaction problem and replacing the ub with Cmax − 1.
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If we find a new feasible solution by solving the modified constraint satisfac-
tion problem, then we can repeat this procedure by constructing a new modified
constraint satisfaction problem based on the new Cmax. If, at some point, we
can not find a solution in a modified constraint satisfaction problem, then we
know that there is no solution with a better objective value than the last Cmax.

Follow path is a strategy that can be used when solving an instance of the
constraint optimization problem. The idea originates from the fact that the
search heuristic in the constraint programming system made some choices to
end up at the previous best solution. It might have taken some time to make
these decisions and other good solutions might be nearby in the solution space.
Therefore, once we modified the constraint satisfaction problem with a new
upper bound, we follow the path of choices we made to end up at the previous
best solution until we encounter a contradiction.

Constraint propagation rules for the job shop problem are summarized
in Baptiste et al., 2001. We will briefly go over two of them that are often
combined.

The disjunctive constraint propagation rule aims to derive immediate
selections of individual disjunctive constraints and therefore tighter bounds on
the start times. Disjunctive constraint propagation can be performed on any
pair of operations on the same machine. The logic behind the rule is modeled
in Equations 2a through 2d.

Equation 2a models the following idea. If we can not process two operations
Oi and Oj , both assigned to the same machine, between the induced release
date of Oi and the induced deadline of Oj , then Oj must be processed before
Oi. The same holds when swapping Oi and Oj .

Equations 2b and 2c continue from there (in symmetrical fashion as men-
tioned in Section 2). If some operation Oi must precede some operation Oj ,
regardless of whether they are assigned to the same machine. Then the induced
deadline of Oi must be less than or equal to the induced deadline of Oj minus
the processing time of Oj . The same goes for the induced release date of Oj

with respect to the processing time and induced release date of Oi.
Equation 2d models the fact that we encounter a contradiction when we can

derive that two operations must precede each other. This becomes clear when
you apply Equation 2a to both parts of the left-hand side of the implication.

∀Oj∀Oi ̸=j [dj − ri < pi + pj ] =⇒ [Oj << Oi] (2a)

∀Oj∀Oi ̸=j [Oi << Oj ] =⇒ [di ≤ dj − pj ] (2b)

∀Oj∀Oi̸=j [Oi << Oj ] =⇒ [ri + pi ≤ rj ] (2c)

∀Oj∀Oi ̸=j [di − rj < pj + pi] ∧ [dj − ri < pj + pi] =⇒ Contradiction (2d)

Equations 2a and 2d are most interesting to apply to pairs of operations that
are part of a disjunctive constraint that has not yet been selected.
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Equations 2b and 2c are only relevant to pairs of operations that have an
established precedence relation.

The edge finding constraint propagation rule is in some sense a gen-
eralization of the disjunctive constraint propagation rule where we replace the
operation Oj with a set of operations Ω. Edge finding is applied to the set of
operations assigned to one individual machine. The logic of the edge finding
constraint propagation rule is described in Equation 3, taken from Baptiste et
al., 2001.

Before we explain the individual parts of this rule, we first want to explain
some notation. Given a set of operations S, we have that rS is the minimum
induced release date over the operations in S, dS is the maximum induced
deadline over the operations in S and pS is the sum of the processing times of
the operations in S.

3a states that, if Ω and Oi /∈ Ω (all assigned to the same machine) can not
be processed between the induced release date of Ω and induced deadline of
Ω ∪Oi, then Oi must be processed before Ω.

3c continues from there. If Oi must be processed before Ω, then the induced
deadline of Oi should be less than or equal to the minimum latest start time of
any non-empty subset Ω′ of Ω.

This might be somewhat hard to grasp, so we will elaborate a bit. Intuitively
if Oi << Ω, then we must have enough time after Oi to process the sum of the
processing times of the operations in Ω before the latest induced deadline of
the operations in Ω. This results in the bound on the induced deadline of Oi

in Equation 3c. If we have Oi << Ω, then we also have Oi << Ω′ for any non-
empty Ω′ ⊆ Ω and such a subset might result in a tighter bound on the induced
deadline of Oi. Therefore, we take the minimum over the non-empty subsets of
Ω.

Equations 3b and 3d present the same idea in the other direction. This is
the symmetry that we touched upon in Section 2.

Equation 3e states that, if we have a set of operations that can not be pro-
cessed between its release time and latest end time, then we have a contradiction.
Notice that if its left hand side holds, then we can apply Equations 3a and 3b
to derive two contradicting orderings.

∀Ω,∀Oi /∈ Ω[dΩ∪Oi
− rΩ < pΩ + pi] =⇒ [Oi << Ω] (3a)

∀Ω,∀Oi /∈ Ω[dΩ − rΩ∪Oi
< pΩ + pi] =⇒ [Ω << Oi] (3b)

∀Ω,∀Oi /∈ Ω[Oi << Ω] =⇒ [di ≤ min
∅̸=Ω′⊆Ω

(dΩ′ − pΩ′)] (3c)

∀Ω,∀Oi /∈ Ω[Ω << Oi] =⇒ [ max
∅̸=Ω′⊆Ω

(rΩ′ + pΩ′) ≤ ri] (3d)

∀Ω[dΩ − rΩ < pΩ] =⇒ Contradiction (3e)

Currently, the fastest algorithm for edge finding is that of Carlier and Pinson,
1994. We already touched upon this algorithm when we covered a lower bound
for integer linear programming.
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Baptiste et al., 2001 present another edge finding algorithm that runs in
O(n2). Their algorithm is somewhat easier to adapt to other scheduling prob-
lems.

Note that both algorithms only update induced release dates and induced
deadlines and we would need an additional procedure to explicitly make the
immediate selections.

Search heuristics and backtracking schemes in a constraint program-
ming system are very comparable to a branching scheme. They direct how we
split up and search through our search space and what we do if we reach a dead
end. If we can not derive any more information about the solution of a sudoku
then the search heuristic is the part that decides how we continue. It can try
to guess a value for a cell or it can split up the remaining possible values for
a cell into multiple sets. If a search heuristic choice does not work out we try
something else. The backtracking scheme decides how we do that.

The slack based search heuristic described by Smith and Cheng, 1993 has
been applied in a constraint programming system for the job shop problem.
The heuristic assumes that all possible immediate selections have been applied.
Therefore, all remaining unselected disjunctive constraints have some slack in
both directions such that Equation 2a can not be applied. The authors propose
to make a decision for the disjunctive constraint that is the most constrained.

The formula for the slack of a disjunctive constraint on Oi and Oj in the
direction Oi << Oj is presented in Equation 4. Since we assume that all im-
mediate selections have been made, the slack can not be negative. Otherwise,
we should fix that disjunctive constraint in the opposite direction based on
Equation 2a.

slack(Oi << Oj) = dj − pj − pi − ri (4)

Now, when the authors need to make a decision, they find the disjunctive
constraint with minimum slack in either direction and fix that constraint in
the direction in which it has the most slack. Sometimes search heuristics for
constraint programming systems are described in terms of orderings according to
which we test variables and values for those variables. In this case we prioritize
variables in order of increasing minimum slack in either direction and values
in decreasing order of slack. Sadeh and Fox, 1996 explore some alternative
orderings.

Smith and Cheng, 1993 also note that, if we use the described formula for
slack to order variables, then variables are only ordered based on a part of the
available information. The variable with the minimum slack in either direction
is selected without any regard of the slack in the other direction and ties are
broken randomly. The authors propose another search heuristic which does take
the slack in the other direction into account. For a disjunctive constraint on Oi

and Oj they define a measure of the similarity S of the slack values as shown
in Equation 5.
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S(Oi, Oj) =
min {slack(Oi << Oj), slack(Oj << Oi)}
max {slack(Oi << Oj), slack(Oj << Oi)}

(5)

This measure of similarity is used to determine a biased variant of slack as
shown in Equation 6. The authors propose to select the variable with the least
biased slack in either direction. Values are always ordered the same regardless
of whether we use the biased or unbiased slack since the denominator of biased
slack will be the same for both values of each variable. With their new approach
the authors still pick the value with the most slack.

biased slack(Oi << Oj) =
slack(Oi << Oj)√

S(Oi, Oj)
(6)

In Cheng and Smith, 1997, the same authors also make use of their biased
slack based search heuristic.

The impact based search heuristic as described by Refalo, 2004 is a gen-
eral purpose search strategy for constraint programming. The idea is that we
try to learn about the impact of decisions throughout our search. The authors
start by describing a measure of the size of the search space. This can be used
to define the impact of a decision in terms of the size of the search space before
and after that decision. The authors define the size of the search space P as the
product of the sizes of the domains of all variables. Given the size before Pbefore

and after Pafter a decision, they define the impact of that decision as shown
in Equation 7. For this formula we have that 0 ≤ impact(decision) ≤ 1 and if
impact(decision) = 1, then we have reached a contradiction because there is a
variable with an empty domain.

impact(decision) = 1− Pafter

Pbefore
(7)

For each variable we can determine the impact of assigning each of the
values in its domain. Those impacts can be used to determine some measure
of the impact of focusing our decisions or branching on a certain variable. The
authors propose to do so by summing the impacts of the remaining values in
the domain of a variable. Note that computing all these impacts at each node
in a search before making a decision will take too much time. Therefore, the
authors propose to define the impact as the average of the observed impacts of
making a certain decision. This is possible because the same decision can be
applied in different sub trees of our search tree.

During our search we can now focus on variables and values with maximum
impact such that we hopefully reduce the search space as much as possible with
each choice. Note that focusing on choices with maximum impact is different
from guiding the search to a solution. Therefore, impact based strategies are
more suitable when we have the idea that finding a solution will be hard, for
example when a heuristic can not find it.
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The authors also touch upon another problem with the proposed idea. If
we only make use of observed impacts, then we don’t have any information to
base our initial choices on. However, these initial choices have a lot of influence
on the rest of the search tree. Therefore the authors propose to initialize the
impacts by testing many of the options at the start of our search tree before the
first decision is made.

Lastly, the authors show that an impact based search heuristic outperforms
purely focusing on variables with the smallest domain which is a strategy that
can be compared to the slack based search heuristic. Additionally they show
that initialization of impacts improves results.

The failure directed search heuristic as described by Viĺım et al., 2015 can
be compared to the impact based search heuristic mentioned above. The authors
assume that the current solution is optimal and want to prove this with a small
search tree. Failure directed search differs from the described impact based
search heuristic in how choices are rated. Failure directed search puts more
emphasis on making choices that fail immediately. The formula for the ratings
in failure directed search is given in Equation 8. Note that R represents the
reduction in effort necessary to explore the remaining search space and should
have that 0 ≤ R ≤ 1. One measure that can be used is R =

Pafter

Pbefore
defined in

similar terms as the impact in the previous paragraph. Failure directed search
prioritizes choices with lower rating (as opposed to higher impact in the impact
based strategy) as they are hopefully more likely to result in contradictions
quickly.

rating(decision) =

{
0 if the branch fails immediately

1 + R otherwise
(8)

The authors compare this rating strategy with the regular impact based
strategy and show that failure directed search has better performance.

Additionally, the authors pay attention to the fact that ratings for the same
decision will most likely be higher when they are made earlier (or higher up) in
the search tree. Therefore, they keep track of the average rating of decisions at
each depth of the search tree and use it to normalize ratings.

Lastly, the authors solve the problem of initializing the ratings by restarting
the search after a number of backtracks.

The full propagation amount search heuristic described by van der Sluis,
2022 can be compared to the impact based search heuristic of Refalo, 2004. The
author shows its potential in reducing the size of the search tree compared to
the (unbiased) slack based search heuristic of Smith and Cheng, 1993. The full
propagation amount search heuristic differs from the impact based strategy in
how the impact is calculated. The full propagation strategy sums the absolute
reduction of each domain whilst the impact based strategy calculates a ration
that represents the reduction in size of the search space. We also note that
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the full propagation amount strategy recomputes the impact of each possible
choice at each decision point. As we mentioned during our explanation of the
impact based strategy this is results in excessive run times. We will be working
on applying the idea of only using observed scores with some initialization from
the impact based strategy to the full propagation amount strategy.

3.4 The state of the art

Currently one of the best methods for solving scheduling problems like the job
shop problem is large neighbourhood search coupled with a failure directed
search as implemented in CP Optimizer (IBM, 2024).

Large neighbourhood search is comparable to local search. It starts with
an initial solution. This is followed by a loop that aims to iteratively optimize
this solution. The initial solution is relaxed, for example by replacing some
conjunctive arcs by disjunctive edges again. For the relaxed problem a temporal
linear relaxation is solved to find a lower bound as described by Laborie and
Rogerie, 2016. Next, a completion strategy is applied to find a solution again.
The relaxation strategy can be viewed as a local search neighbourhood and the
completion strategy is comparable to the meta heuristic that decides where to
move. CP Optimizer uses a portfolio of relaxation and completion strategies.
Godard et al., 2005 describe the application of large neighbourhood search to a
scheduling problem related to the job shop problem.

Failure directed search is added as a last resort after large neighbourhood
search can not find any better solutions. It is used to quickly prove that there
are no better solutions than the current best.
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4 Research questions and methodology

In this section we enumerate the questions that we aimed to answer in this thesis
and we will describe the methodology used to answer them.

4.1 Research questions

1. What is the effect of adding a follow path mode to the solver?

2. Can we develop a faster edge finding algorithm (w.r.t the O(n2) by Bap-
tiste et al., 2001) without the complex binary search tree of Carlier and
Pinson, 1994?

3. Can we improve the performance of graph propagation?

(a) Can we limit the part of the graph that we propagate through?

(b) Is there an alternative longest path algorithm that is more suitable
for our application?

4. What is a good method for combining the various constraint propagation
rules in a constraint programming system?

(a) Does it help if we apply graph propagation immediately after apply-
ing edge finding or disjunctive constraint propagation to an individual
machine?

(b) Does it help if we only apply edge finding or disjunctive constraint
propagation to machines where heads and tails changed since the last
time we applied that propagation?

(c) Does it help if we perform edge finding on machines in order of most
critical to least critical?

5. Can we improve on the full propagation amount search heuristic by van
der Sluis, 2022 to select a good choice to branch on?

(a) Can we improve performance by using less costly propagation meth-
ods in our search heuristic?

(b) Can we improve performance by using only observed full propagation
amount values and some initialization similar to the impact based
search heuristic by Refalo, 2004?

(c) Can we improve performance by using a combination of the full prop-
agation amount search heuristic by van der Sluis, 2022 and the ob-
served full propagation amount strategy from the previous question?

6. How important is the quality of the initial upper bound?
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4.2 Methodology

All the research questions correspond to variations in a constraint programming
system aimed at solving the job shop problem. Such a system requires an initial
upper bound.

We implemented a tabu search algorithm based on the algorithm described
by Nowicki and Smutnicki, 1996 and a priority dispatch algorithm to find a
starting point for that local search algorithm. Even though we implemented
these algorithms, we ended up using the same problem instances and upper
bounds as van der Sluis, 2022 to allow for a fairer comparison of performance
of our results.

The instances are described in Table 3. The columns jobs and machines
refer to the number of jobs and machines in the instances. The column opt
contains the optimum makespan for each instance. These values are taken from
van Hoorn, 2016. Lastly, the column init ub contains the initial upper bound
from van der Sluis, 2022, which we will be using as well.

To answer our research questions we started with a basic constraint program-
ming system which we will describe in the next section and we experimented
with variations of this system to evaluate their effectiveness.

For question 1 through 4 each variant of the constraint programming system
will also include the features introduced by the preceding questions.

For question 5 we will take the system that includes all features from question
1 through 4 and create three separate systems that only vary in their search
heuristic.

For question 6 we compare the system from question 4 with the best result
from question 5 using better upper bounds.

All algorithms have been implemented in Python 3.10.12. All experiment
ran using the CPython interpreter on a personal desktop with an Intel Core
i7-10700 CPU and 16 GB RAM running Ubuntu 22.04.3 LTS.
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instance jobs machines opt init ub
abz5 10 10 1234 1276
abz6 10 10 943 976
ft06 6 6 55 55
ft10 10 10 930 1074
ft20 20 5 1165 1410
la01 10 5 666 666
la02 10 5 655 977
la03 10 5 597 653
la04 10 5 590 644
la05 10 5 593 593
la06 15 5 926 926
la07 15 5 890 985
la08 15 5 863 863
la09 15 5 951 951
la10 15 5 958 958
la11 20 5 1222 1222
la12 20 5 1039 1039
la13 20 5 1150 1150
la14 20 5 1292 1292
la15 20 5 1207 1251
la16 10 10 945 979
la17 10 10 784 795
la18 10 10 848 891
la19 10 10 842 893
la20 10 10 902 953
la30 20 10 1355 1536
la40 15 15 1222 1324

orb01 10 10 1059 1270
orb02 10 10 888 945
orb03 10 10 1005 1170
orb04 10 10 1005 1099
orb05 10 10 887 981
orb06 10 10 1010 1102
orb07 10 10 397 429
orb08 10 10 899 1048
orb09 10 10 934 1012
orb10 10 10 944 944

Table 3: Instance characteristics.
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5 Implementation

In this section we will describe the implementation details of the algorithms
that we used to answer the research questions. We start with a brief description
of some important data structures and the strategy that we could use to find an
initial upper bound, since that is required for a constraint optimization solver.
As described in the methodology we ended up using the initial upper bounds
from van der Sluis, 2022 instead of those found by our own implementation.

5.1 Important data structures

When an instance is parsed we create a tuple (job, job index) for each operation
where job corresponds to j and job index corresponds to i for an operation Oi,j .
The assigned machines and processing times are each stored in their own two
dimensional array that is indexed using the tuples. Heads and tails are also
each stored in their own two-dimensional array.

Machine sequences are implemented as a list containing one machine se-
quence for each machine. And each machine sequence is simply a list of tuples
representing the operations as we described. This data-structure is mostly rele-
vant for our tabu search algorithm. Each individual machine sequence can only
contain at most one copy of each operation that is assigned to the corresponding
machine. If all the operations are present in their corresponding machine se-
quence, then we have a complete solution. Otherwise we have a partial solution.

The directed part of the disjunctive graph is implemented using adjacency
sets for fast adding and removing of arcs. We keep track of two versions of the
directed part. One version contains the arcs in their normal direction which
we refer to as the primal precedence graph. The other contains all arcs in
their reversed direction which we refer to as the dual precedence graph. This is
necessary because we need fast successor enumeration in both directions.

The undirected part of the disjunctive graph is kept track of using a set of
edges for each machine.

5.2 Finding an upper bound

To find a good upper bound we implemented a version of the tabu search algo-
rithm by Nowicki and Smutnicki, 1996. We describe this algorithm in Section
5.2.3. That algorithm does require an initial feasible solution from which it
can start its local search procedure. To find such an initial feasible solution
we initially implemented a very naive algorithm as presented in Section 5.2.1.
Later we also implemented a priority dispatch algorithm based on the most work
remaining rule as presented in Section 5.2.2.

5.2.1 Naive algorithm

Our naive algorithm starts with empty machine sequences. Next, we iterate
over the jobs. For each job, we iterate over its operations and append each
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operation to the sequence of its assigned machine. This can never create cycles.
However, the quality of the solutions is not great.

5.2.2 Priority dispatch algorithm

The most work remaining priority dispatch algorithm works as follows.
Before the algorithm starts, we calculate the work remaining for each oper-

ation. For each operation Oi this is simply equal to the sum of processing times
of the operations after Oi in the same job. This is also called the tail as we
mentioned before. These tail values do not change throughout the algorithm.

Furthermore, the algorithm keeps track of the time at which each machine
finishes processing the operation that it is currently processing (the machine
release dates).

Lastly, the algorithm uses one heap to prioritize which operation to consider
for scheduling. Each element on the heap is a triple containing a reference
to an operation and the current release date and tail of that operation. The
heap will prioritize triples with a smaller release date. If the release dates are
equal, then the heap will prioritize the triple with the larger tail. If those
are also equal, then we prioritize in triples based on the order in which they
appear in the instance. Note that the release dates of elements on the heap
will be updated throughout the algorithm such that this ordering essentially
corresponds to prioritizing available operations with the largest tail (i.e. the
most work remaining).

The algorithm starts by setting the machine release dates to zero and pushing
the first operation of each job onto the heap with a release date equal to zero
and the tail value that we just calculated before.

The algorithm proceeds by taking the first element from the heap, call it
current.

If the release date of current is less than the release date of the machine
of the operation of current (the machine is busy), then current is pushed
back on the heap with an updated release date equal to the release date of that
machine.

Otherwise (the machine is available), the operation of current is appended
to the sequence of its assigned machine. Additionally, the release date of its
assigned machine is updated to be equal to the completion time of the operation
of current. Lastly, if the operation has a successor in the same job, then that
successor is pushed onto the heap with as release date the completion time of
the operation of current.

If, after these steps, the heap is empty, then we are done. Otherwise, we
repeat these steps.

We will briefly explain how this algorithm correctly schedules available op-
erations with the most work remaining. There are two cases where we can have
multiple available operations contesting to be scheduled. Either the predeces-
sors of these operations all finished at the same time or the machines that they
are assigned to were busy whilst the predecessors of these operations finished
processing.
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In the first case the release dates of the contesting operations will be the same
because they are initially equal to the completion time of their predecessor as
we described. Therefore, the heap will prioritize the available operation with
the largest tail.

In the second case the release dates of the contesting operations will be the
same because they have all been updated to the release date of the machine as
we described above. Therefore, the heap will prioritize the available operation
with the largest tail.

5.2.3 Tabu search algorithm

The tabu search algorithm which we implemented consists of two main parts: a
neighbourhood and a meta heuristic.

The neighbourhood we use is the same neighbourhood as in Nowicki and
Smutnicki, 1996. The neighbourhood roughly consists of swapping operations
at the borders of blocks in critical paths. We can find this neighbourhood as
follows.

We start by finding all critical paths. As mentioned machine sequences
simply represent a solution. For such a solution we can apply a longest path
algorithm to find the start time of each operation and the makespan which is
simply the start time of the sink t. The operation that enforces this makespan is
called the critical operation. There might be multiple critical operations. Think
of the simple case where there are two jobs, two machines, each operation has
unit processing time and both jobs visit the machines in different orders. In
this case the second operation of both job ends at time instant 2 and they both
enforce the makespan to be equal to 2.

The longest path to a critical operation is a critical path. Since there might
be multiple critical operations, there might also be multiple critical paths. There
might even be multiple critical paths to the same critical operation as was also
seen in Figure 2.

The critical paths can be represented by a directed graph in the dual di-
rection. This graph contains an arc Oi,j ← Ok,l if Oi,j is a critical predeces-
sor of Ok,l. This is the case if, after finding the longest paths, we have that
Si,j +pi,j = Sk,l. We can find all critical paths during one run of a longest path
algorithm as follows. Whenever we update the longest path to an operation we
also keep track of the preceding operation that caused the update. Additionally,
if another operation does not update the longest path to some operation but it
does match the path length to that operation, then we also add it to the critical
predecessors of that operation.

A block in a critical path is simply a sequence of consecutive operations
that are assigned to the same machine. We can take two consecutive operations
in a block and swap their position in the machine sequence of their assigned
machine to obtain another feasible solution. The moves we described so far
form the neighbourhood that was described by Van Laarhoven et al., 1992.
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Nowicki and Smutnicki, 1996 noted that swapping operations in the middle
of a block will not have any effect because it doesn’t reduce the length of that
critical path. Therefore they proposed to only consider moves where we swap
the first or last pair of operations in a block of a critical path. This is also what
we implemented.

The meta heuristic from Nowicki and Smutnicki, 1996 that we implemented
is a form of tabu search. This method keeps track of a tabu list. Each iteration,
once we make a move, the inverse of the move is appended to the tabu list. The
tabu list has a maximum length (maxt) and older moves are removed to make
room for new moves.

Additionally, during each iteration, we split the neighbourhood in three sets:
U (unforbidden), FP (forbidden and profitable/better than best solution found
so far) and FN (forbidden and not profitable/worse than or equal to the best
solution found so far). This is done by first filtering out the unforbidden moves.
For each forbidden move we evaluate the makespan of the associated neighbour
to determine whether they are profitable or not.

Next, we take the best move from U ∪ FP . If there is no such move (|U ∪
FP | = 0), then we remove the oldest move from the tabu list and duplicate the
youngest move at the front of the tabu list. If a move in the neighbourhood is
now not forbidden we choose that one. Otherwise we repeat the removal and
duplication. In essence this means that we apply the oldest move in the tabu
list that is also in our current neighbourhood and duplicate the youngest move
on the list to keep the tabu list length the same.

We keep iterating until we reach a predefined number of iterations (maxiter)
since the last time that we improved the best solution found so far. At this point
our basic variant of the tabu search algorithm returns the best solution found
so far.

Nowicki and Smutnicki, 1996 also proposed an idea which they called back-
jump tracking which we implemented as well. We did so as follows. In addition
to the tabu list we created a backjump list with a maximum length maxl. This
list is used as follows. If we improve the best solution found so far, then we
append an element to the backjump list that contains that solution, the set of
moves representing the neighbourhood of that solution and a copy of the tabu
list at that point. We remove the move we make next from the set of moves in
that element.

Now, instead of returning the best solution found so far after maxiter iter-
ations, if the backjump list is not empty, then we restore the solution and tabu
list from the most recently added element on the backjump list and we choose
our next move from the set of moves stored in that element. After making that
move we remove it from the set in that element. If the set of moves is now
empty we remove that element from the backjump list.
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5.3 The basic solver

The basic solver is our initial constraint programming system which we adapt to
test various algorithmic ideas to answer our research questions. For this system,
we modelled the problem as in Equation 1. Furthermore, the basic solver was
implemented as follows.

The constraint optimization system takes a complete description of a
problem instance and an initial upper bound ub (which is based on a feasible
solution found as described above). It contains one main loop that repeatedly
finds a solution to the problem with an increasingly tighter upper bound. During
one iteration of the main loop we call our constraint programming system to find
a feasible solution with the instance description and the current upper bound.
If that succeeds, then we save the solution and we update the upper bound to
the makespan of the solution minus one. If it fails, then we return the most
recently saved solution.

constraint
optimization
system

constraint
programming
system

instance description
initial upper bound

instance description
current upper bound

solution

new upper bound

infeasible

Figure 9: The constraint optimization system

The constraint programming system starts by constructing the initial
disjunctive graph. The graph starts with a directed arc for each precedence
relation from the conjunctive constraints on the jobs and an undirected edge for
each disjunctive constraint. Next, we set the initial heads and tails to zero for
all operations. Before, we go on, we immediately apply constraint propagation
to make heads and tails consistent with the current disjunctive graph and to
derive additional edges that can be fixed. This will initialize the heads and
the tails correctly (equal to the sum of the processing times of preceding and
succeeding operations respectively) and it will derive everything we can without
making any heuristic guesses. If we encounter a contradiction at this stage we
can never find a feasible solution and return.

Next, we initialize the branch path and the backtrack path as two empty
lists. The branch path will be used to keep track of the branching decisions that
have been made and whether there are unexplored alternatives for the decision.
The backtrack path will contain for each branching decision a description of how
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we can revert the changes that have been made to the disjunctive graph, heads
and tails as a result of that branching decision and the following constraint
propagation. Together these lists allow us to backtrack and continue our search
when we encounter a contradiction. The backtrack list requires less memory
than an implementation that saves explicit copies of the entire state (graph,
heads and tails), however it might take a bit more time to revert changes.

Following the described setup, the constraint programming system enters a
loop that continues as long as there are undirected edges in the disjunctive graph.
The loop starts by selecting a branching decision (see below). Next, it applies
that branching decision. Applying the branching decision consists of making
the corresponding changes in the model and applying constraint propagation.
If that succeeds, then we repeat the loop. If we encounter a contradiction,
then we start backtracking. We will explain the underlined procedures in the
following paragraphs.

If the loop ends that must mean that there are no more disjunctive edges and
we have not encountered a contradiction. This means that we have a feasible
solution (no cycles) that does not violate the upper bound. The system returns
this solution to the solver.

Partial solution

Select branching decision

Apply branching decision

Backtracking

Constraint propagation loop

initial
state

contradiction

alternative
decision

incomplete
solution

complete
solution

infeasible

Figure 10: The constraint programming system

Selecting a branching decision is the procedure that corresponds to the
search heuristic in the general definition of a constraint programming system.
The basic solver implements a search heuristic based on slack as in Cheng and
Smith, 1997. We describe it in Section 3.3.2. Basically, we find an arc with
minimal slack corresponding to an unfixed edge and start by exploring the
branch that fixes the edge in the opposite direction of that arc. As we mentioned
we will adapt the basic solver with other search heuristics to answer our research
questions.
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Applying a branching decision consists of making changes corresponding
to the branching decision and applying constraint propagation to derive tighter
heads and tails and potentially more edges to fix.

For branching decisions where we fix an edge in some direction we start with
modifying the disjunctive graph by removing the edge and adding the correct
arc. Next, we apply Equations 2b and 2c to the new arc. These are described
in Section 3. For a new arc Oi → Oj Equation 2b updates the induced deadline
of Oi based on the induced deadline and processing time of Oj . Equation 2c
updates the induced release date of Oj based on the induced release date and
processing time of Oi.

Constraint propagation applies constraint propagation rules until there are
no more updates from any of the rules. Applying one constraint propagation
rule might create new opportunities for another rule. Therefore constraint prop-
agation is implemented as a loop as shown in Figure 11. As mentioned in Section
3.3.2 there are a number of constraint propagation rules for the job shop prob-
lem. We have implemented the disjunctive constraint propagation rule and the
edge finding constraint propagation rule. Additionally, we implemented a form
of graph propagation which we further describe at the end of this section. We
will explain how we implemented these three rules in the following paragraphs.

Graph
propagation
- directed graph

Edge finding
propagation
- machine

Disjunctive constraint
propagation
- machine

Figure 11: Constraint propagation loop

The disjunctive constraint propagation rule is applied to each machine
individually. It applies Equation 2a to each unfixed edge in both directions to
check if it can be fixed and immediately applies Equations 2b and 2c to update
heads and tails along any new arcs.

The edge finding constraint propagation rule is applied to each machine
individually as well. We described the general idea of this rule in Section 3. In
our basic solver we implement the O(n2) edge finding algorithm by Baptiste
et al., 2001. The pseudo code of that algorithm is presented in Algorithm 1.
The pseudo code applies Equations 3b, 3d and 3e. A dual variant of the same
algorithm applies Equations 3a, 3c and 3e.
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We will explain how the pseudo code works for the operations of one machine
x. The idea of the algorithm is to iterate over all relevant combinations of a
set Ω and an operation Oi /∈ Ω. The algorithm requires that the operations of
machine x are sorted and labeled (starting from 1) in order of increasing release
dates. This can be done in O(n log n) time.

The algorithm fixes an operation Ok and defines Ω as the set of operations
with an induced deadline less than or equal to that of Ok. Next the algorithm
iterates over all operations and for each operation Oi that is not in Ω (based on
the induced deadlines) it checks if we can process Oi and Ω between rΩ∪Oi

and
dΩ (dΩ is equal to dk by definition). If we can not do so, then Oi must succeed
Ω. This corresponds to Equation 3b.

The algorithm does not explicitly fix the edges between Oi and Ω. Instead it
updates the induced release date of Oi to be at least as great as the maximum
minimal completion time of any non-empty subset Ω′ of Ω. This corresponds
to 3d.

However, applying disjunctive constraint propagation after this algorithm
will fix the correct edges. Carlier and Pinson, 1990 prove this.

In practice, the pseudo code in Algorithm 1 first determines the maximum
minimal makespan of subsets that could be used to update release dates and
then it checks if these updates should actually be applied. It does this once for
each operation Ok. For a further and lower level analysis of the pseudo code see
Appendix A

Graph propagation is used to propagate updates to heads and tails through
the entire disjunctive graph and therefore between machines as opposed to the
previous two rules that only update operations and edges of a single machine.
As described before, the head (tail) of an operation is essentially the length of
a longest path from (to) the start (end) of the disjunctive graph. Graph prop-
agation should ensure that these longest paths are consistent with the current
disjunctive graph and potentially updated heads (tails). In our basic solver we
implemented this as finding a topological order in the primal (dual) directed
part of the graph and updating heads (tails) for all operation in that order.

Backtracking is implemented as another loop. In that loop we take the most
recent branching decision and the description of the resulting changes from the
branch path and the backtrack path respectively. Using those, we first revert
the described changes. After the changes are reverted, we check if there is an
alternative to the branching decision from the branch path that we have not yet
explored. If that is the case, we return that alternative branching decision to
the constraint programming system. In that case the constraint programming
system applies this alternative branching decision. If all alternatives have been
explored for the last decision, then we repeat the backtracking loop for another
iteration by taking the next elements from the branch path and backtrack path
and repeat the above.

If there are no more elements on the branch path and backtrack path, then
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that must mean that we have explored the entire solution space without finding a
feasible solution that does not violate the current upper bound. In that case the
constraint programming system is done and the last saved solution is optimal.

45



Algorithm 1 Edge finding by Baptiste et al., 2001

Require: That operations are sorted and labeled by increasing release date
Ensure: That Equations 3b, 3d and 3e are exhaustively applied
1: for i← 1 up to n do
2: r′i ← ri
3: end for
4: for k ← 1 up to n do ▷ Fix dΩ = dk
5: P ← 0, C ← −∞, H ← −∞
6: for i← n down to 1 do ▷ Fix ri
7: if di ≤ dk then
8: P ← P + pi
9: C ← max(C, ri + P )

10: if C > dk then ▷ Equation 3e
11: Contradiction
12: end if
13: end if
14: Ci ← C
15: end for
16: for i← 1 up to n do ▷ Fix ri
17: if di ≤ dk then
18: H ← max(H, ri + P )
19: P ← P − pi
20: else
21: if ri + P + pi > dk then ▷ Equation 3b and 3d
22: r′i ← max(r′i, Ci) ▷ Ω contains each Oj with ri ≤ rj ∧ dj ≤ dk
23: end if
24: if H + pi > dk then ▷ Equation 3b and 3d
25: r′i ← max(r′i, C) ▷ Ω contains each Oj with rh ≤ rj ∧ dj ≤ dk
26: end if ▷ Where Oh is the last operation that increased H
27: end if ▷ Which means that rh < ri
28: end for
29: end for
30: for i← 1 up to n do
31: ri ← r′i
32: end for

46



6 Results and discussion

The performance of the basic solver can be found in Table 4 under basic solver.

6.1 Adding a follow path mode

In this section we aim to answer the research question: What is the effect of
adding a follow path mode to the solver?

This question originates from the fact that van der Sluis, 2022 does not
provide a clear argument for why a follow path mode was added. To answer
this we added a follow path mode to the basic solver. The results of the new
solver can be found in Table 4 under follow path. By comparing it with the
results of the basic solver we see that adding a follow path mode improves the
performance of the algorithm.

• follow path performs better than basic solver for 30 instances.

– Notably, follow path solves 1 instance that basic solver didn’t solve.

• follow path performs equivalent to basic solver for 3 instances.

• follow path performs worse than basic solver for 4 instances.

This can be explained as follows. In any parts of the solution space where
we previously found a contradiction we will definitely find a contradiction with
a new upper bound. We shouldn’t waste any time exploring those areas again
to find that same contradiction. Therefore it works better to retrace the path to
the previous best solution and continue our search from the first contradiction
we encounter whilst doing so.

6.2 Improving edge finding constraint propagation

In this section we aim to answer the research question: Can we develop a faster
edge finding algorithm (w.r.t the O(n2) by Baptiste et al., 2001) without the
complex binary search tree of Carlier and Pinson, 1994?

This question originates from that fact that a number of papers in the lit-
erature van der Sluis, 2022 state that the O(n log n) algorithm by Carlier and
Pinson, 1994 uses complex data structures and that many opt to use the O(n2)
algorithm by Baptiste et al., 2001 instead.

To answer this question we implemented an edge finding algorithm based on
that by Carlier and Pinson, 1994 excluding the binary search tree. The pseudo
code for this algorithm is found in Algorithm 2. The algorithm builds Jack-
son’s Preemptive Schedule and determines for each operation at its release date
whether it is blocked by a set of operations. Jackson’s Preemptive Schedule can
be found with the most work remaining priority dispatch rule as we described
before. We will briefly explain how we find a blocking set of operations.

Note that edge finding is performed on the operations of a single machine.
For a given machine x this set of operations is denoted by O(Mx). Throughout
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the construction of Jackson’s Preemptive Schedule on these operations, we keep
track of the remaining processing time p+j for each operation j. When an oper-
ation c is released we look for an operation s with some remaining processing
time (0 < p+s ) that satisfies Equation 9 (similar to Equation 5 from Carlier and
Pinson, 1994) if any exists.

rc + pc +
∑

{j∈O(Mx)|0<p+
j ∧qs≤qj}

p+j + qs > ub (9)

Carlier and Pinson, 1994 use a binary search tree to search for such an
operation s in O(log n) time. On the other hand, we simply iterate over the
operations in order of decreasing tails and keep track of the sum of p+j ’s in O(n)
time.

So, for each operation we use O(n) time. This means that we still have total
time complexity O(n2) for edge finding on a single machine as compared to the
algorithm by Baptiste et al., 2001.

We took the solver that includes the follow path mode and replaced the edge
finding algorithm by Baptiste et al., 2001 with the algorithm we just described.
The results of this new solver can be found in Table 4 under edge finding. As
can be seen, in practice, our algorithm has better performance.

• edge finding performs better than follow path for 32 instances.

– Notably, edge finding solves 1 instance that follow path didn’t solve.

• edge finding performs equivalent to follow path for 5 instances.

• edge finding performs worse than follow path for 0 instances.

It is also important to note that n is often rather small. Therefore, the
performance gain of the algorithm by Carlier and Pinson, 1994 is also heavily
influenced by their overhead (i.e. the constant factor that is omitted in time
complexity analysis).

6.3 Improving graph constraint propagation

In this section we aim to answer the research question: Can we improve the
performance of graph propagation?

This research question will be answered by answering two research questions
in the following two subsections.

6.3.1 Partial graph constraint propagation

In this subsection we aim to answer the research question: Can we limit the
part of the graph that we propagate through?

In the basic solver we apply graph propagation by finding a topological order
over the entire graph and updating the heads and tails as longest paths in that
order. Essentially we are recalculating the longest paths every time. We could
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save some time here, since we already know the longest paths before the most
recent changes were made.

Between two applications of graph propagation we can have two types of
changes. If edge finding updates the head (tail) of an operation i, then only the
heads (tails) of operations reachable in the primal (dual) directed part of the
graph can be affected through graph propagation. The same goes for disjunctive
propagation rule when we fix a new arc Oi → Oj and possibly update the head
(tail) of Oj (Oi). To test the effect of this idea we keep track of all operations for
which the head (tail) was updated since the last application of graph propagation
and call them the sources. During the next application of graph propagation we
construct a topological order that only includes those sources and the operations
that they can reach in the current primal (dual) graph. This was added to the
edge finding solver and the results can be found in Table 4 under partial graph.
As we can see the partial graph propagation performs better.

• partial graph performs better than edge finding for 32 instances.

– Notably, partial graph solves 2 instance that edge finding didn’t solve.

• partial graph performs equivalent to edge finding for 5 instances.

• partial graph performs worse than edge finding for 0 instances.

6.3.2 Using an alternative longest path algorithm

In this subsection we aim to answer the research question: Is there an alternative
longest path algorithm that is more suitable for our application?

So far we used a topological order to find and update heads and tails as
longest paths. Alternatively we could use a kind of depth first algorithm to
update the longest paths from the sources. In that case we can restrict further
propagation to only those operations that were updated. That is, let i be one
of the sources from which we are propagating heads. We only update heads
of successors of i if the completion time of i is greater than the head of that
successor. Next, we only continue propagation for successors whose heads we
updated based on the completion time of i.

Theoretically there is no clear winner between these two alternatives, because
there are no clear bounds or characteristics for the parts of the graph that
are affected. The advantage of the topological order method is that, if there
are multiple paths that can update the head of a certain operation i, then we
propagate through all those paths before we propagate further from i. With
depth first search we might propagate from i multiple times (roughly once for
each path that updates i). On the other hand the depth first method can stop
further propagation from successors as soon as they are not updated where the
topological order includes all successors regardless of whether they are affected.
We implemented a depth first variant of graph propagation and added it to
the previous partial graph solver as replacement of the topological order graph
propagation. The results of this new solver can be found in Table 4 under depth
first.
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• depth first performs better than partial graph for 30 instances.

• depth first performs equivalent to partial graph for 7 instances.

• depth first performs worse than partial graph for 0 instances.

6.4 Combining constraint propagation algorithms

In this section we aim to answer the research question: What is a good method
for combining the various constraint propagation rules in a constraint program-
ming system?

This question will be answered by answering three questions in the following
three subsections.

6.4.1 Granular graph constraint propagation

In this subsection we aim to answer the research question: Does it help if we
apply graph propagation immediately after applying edge finding or disjunctive
constraint propagation to an individual machine?

Edge finding and disjunctive constraint programming can derive new con-
straints based on current heads and tails. If these heads and tails are tighter we
might be able to derive more new constraints. Therefore, it might be beneficial
to propagate updates to heads and tails immediately after an application of ei-
ther of those rules before we apply that rule to the next machine as opposed to
propagating once after applying all rules to all machines. This way any changes
can be taken into account immediately. We add this idea to the depth first
solver and present the results in Table 4 under granular graph.

• granular graph performs better than depth first for 32 instances.

• granular graph performs equivalent to depth first for 5 instances.

• granular graph performs worse than depth first for 0 instances.

6.4.2 Using flags to signal constraint propagation opportunities

In this subsection we aim to answer the research question: Does it help if we
only apply edge finding or disjunctive constraint propagation to machines where
heads and tails changed since the last time we applied that propagation?

As mentioned, edge finding and disjunctive constraint propagation derive
new constraints based on current heads and tails. If, for a specific machine,
these haven’t changed since the last time we applied one of those propagation
rules, then that rule will not derive any new constraints. Therefore we should
not waste time on applying that rule to that machine again. We implement
this by maintaining a flag for each machine for both rules. The flag for edge
finding on a certain machine is turned on when disjunctive constraint or graph
propagation update a head or tail on that machine and vice versa for disjunctive
constraint propagation on a machine when edge finding or graph propagation
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update a head of tail on a machine. We added this idea to the granular graph
solver and the results of this solver can be found in Table 4 under flags.

• flags performs better than granular graph for 31 instances.

• flags performs equivalent to granular graph for 6 instances.

• flags performs worse than granular graph for 0 instances.

6.4.3 Prioritizing critical machines during constraint propagation

In this subsection we aim to answer the research question: Does it help if we
perform edge finding on machines in order of most critical to least critical?

Intuitively the most critical machine might be more likely to present a con-
tradiction or new constraints through propagation. All mentioned methods of
edge finding can return the makespan of Jackson’s Preemptive Schedule for the
machine to which it is applied. For the O(n2) method from Baptiste et al., 2001
one can return the maximum value that C attains over all Ok. For methods
that explicitly build Jackson’s Preemptive Schedule one can simply return the
makespan. That makespan is indication of how critical a certain machine is.
We use the makespan determined during the most recent application of edge
finding for each machine to sort the machines in order of most to least critical
before we apply edge finding or disjunctive constraint propagation. This idea is
added to the flags solver and the results of this solver can be found in 4 under
critical.

• critical performs better than flags for 13 instances.

• critical performs equivalent to flags for 12 instances.

• critical performs worse than flags for 12 instances.

The results of flags and critical are roughly equivalent. One possible expla-
nation for this is that the cost of sorting the machines each time outweighs the
benefit of finding a contradiction or some new edges to fix earlier.

6.5 Improving the full propagation amount search heuris-
tic

In this section we aim to answer the research question: Can we improve on the
full propagation amount search heuristic by van der Sluis, 2022 to select a good
choice to branch on?

To answer this research question we test three ideas to answer three questions
in the following subsections. Before we do so, we start by implementing the full
propagation amount search heuristic as described by van der Sluis, 2022. This
will be used as a baseline to compare our ideas against.

As we described in Section 5, we have a procedure that applies a branching
decision and we have the constraint propagation loop. Additionally we have a
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backtracking procedure that can revert changes made by those two parts. While
we apply a branching decision and the constraint propagation loop, we can keep
track of the number of edges that we fix and by what amount we increase the
heads and tails of the operations.

During the application of a branching decision and the constraint propaga-
tion loop, let rδi be the amount by which we have increased the head of Oi.
Respectively, let qδi be the amount by which we have increased the tail of Oi.
We can sum these amounts over all operations and add the number of new
edges fixed (edges fixedδ). This is what we call the propagation amount (PA).
It is presented in Equation 10. Note that the number of fixed edges contributes
relatively little to this score. It could even be left out since the effect of fixing
these edges also included in the form of increased heads and tails of other oper-
ations. We implemented it like this to keep our heuristic similar to the one by
van der Sluis, 2022.

PA = edges fixedδ +
∑

i∈{1...n∗m}

rδi + qδi (10)

The full propagation amount search heuristic works as follows. Whenever
we need to select a new branching decision, we have to choose an edge to fix
and an direction to fix it in. For each edge and direction we can simply apply
that decision and the constraint propagation loop to calculate PA. Next, we
can revert the changes made using our backtracking procedure. This way we
can calculate the amount of propagation that each possible decision would give
if it were applied at the current point in our search.

Let PAi→j refer to the propagation amount resulting from fixing the edge
between Oi and Oj to the arc Oi → Oj . If we were to simply pick the edge and
direction that has the largest PAi→j and we eventually have to backtrack, then
it might be the case that the alternative decision has a much smaller PAi←j .
Therefore, we select the edge with the largest sum PAi,j = PAi←j + PAi→j(=
PAj,i) and we fix it in the direction that has the largest propagation amount.

Note that calculating PA might result in a contradiction. If this happens for
both directions of an edge, then we have reached a contradiction. There is an
edge that can not be fixed in either direction without reaching a contradiction.
Therefore, we have to start backtracking.

It might also be the case that only one of the directions for an edge results
in a contradiction whilst calculating PA. In that case we can simply fix it in
the other direction.

Lastly, the search heuristic by van der Sluis, 2022 only considers branching
decisions for the edges on the most critical machine that has any remaining
unfixed edges. We implemented this as well. We already explained how we can
find the most critical machine in Section 6.4.3. We focus on the most critical
machine that has any remaining unfixed edges.

We took the solver corresponding to the critical column in Table 4 and
replaced the search heuristic with the described full propagation amount search
heuristic to create a new solver. The results of the new solver can be found in
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Table 5 under fpa.
Note, that fpa performs worse than critical on nearly all 37 instances. There-

fore, this heuristic should definitely be improved before it can be used.

6.5.1 Using the partial propagation amount

In this subsection we aim to answer the research question: Can we improve
performance by using less costly propagation methods in our search heuristic?

In the full propagation amount search heuristic we determine the propagation
amount by applying a branching decision and constraint propagation as if we
were normally branching. This way we know exactly what we can expect as a
result of each option. However it takes a lot of time to determine the propagation
amount for each choice.

Therefore, we implemented a variant of this search heuristic that uses less
complex constraint propagation when we are calculating each PA. This way we
can get an indication of the propagation amount that would result from that
choice with less computation time. When we actually select a branch to apply
we still fully propagate as before.

Less complex constraint propagation simply means that we do not use the
edge finding constraint propagation rule during constraint propagation. Obvi-
ously, there are other methods for reducing the complexity of constraint prop-
agation.

We call our new search heuristic: partial propagation amount. Similar to the
full propagation amount search heuristic we focus on the most critical machine
that has any remaining unfixed edges. Within that machine we select the edge
that has the largest PAi,j value and we explore the direction that has the largest
partial propagation amount first.

To test this solver we took the full propagation amount (fpa) solver and
simply replaced the search heuristic. The results of the new solver can be found
in Table 5 under ppa.

• ppa performs better than fpa for 21 instances.

• ppa performs equivalent to fpa for 4 instances.

• ppa performs worse than fpa for 12 instances.

– Notably, ppa didn’t solve 1 instance that fpa did solve.

6.5.2 Using the observed full propagation amount

In this subsection we aim to answer the research question: Can we improve
performance by using only observed full propagation amount values and some
initialization similar to the impact based search heuristic by Refalo, 2004?

This idea is inspired by the impact based search heuristic described by Re-
falo, 2004. It is based on the idea that the same branching decision might have
similar results regardless of where we apply it in our search tree. Additionally,
it uses the fact that we can keep track of the observed full propagation amount
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resulting from each past application of a branching decision. Using these ob-
served propagation amounts we can approximate the propagation amount that
the same branching decision will have in an unexplored part of the search tree.

This is exactly what we do in our observed full propagation amount search
heuristic. OPAi→j will represent the expected full propagation amount of fixing
Oi → Oj based on past observations. Whenever we actually select an edge and
direction to fix it in (Oi → Oj), we update our measure as shown in Equation
11.

OPAi→j = 0.9 ∗OPAi→j + 0.1 ∗ PAi→j (11)

Note that we do need to initialize OPAi→j . At the start of our search we
simple set OPAi→j = PAi→j .

The important difference between this this search heuristic and the full prop-
agation amount search heuristic is the following. The observed full propagation
amount search heuristic only uses the observed PAi→j value when we actually
apply a decision as part of our search. That observed value is then used to
update OPAi→j . When we want to select a decision to apply we only use the
OPAi→j and OPAi,j values as they have already been calculated and updated.
On the other hand, the full propagation amount search heuristic, calculates
PAi→j for each possible decision every time we need to select a new decision to
apply in our search. The latter obviously takes a lot more time.

Just like our previous search heuristics, we focus on the most critical machine
with unfixed edges and select the edge with the largest sum OPAi,j the direction
with the largest OPAi→j first.

To test this search heuristic we take the full propagation amount solver (fpa)
and replace the search heuristic. The results of this observed full propagation
amount search heuristic can be found in Table 5 under ofpa.

• ofpa performs better than fpa for 27 instances.

– Notably, ofpa solves 4 instance that fpa didn’t solve.

• ofpa performs equivalent to fpa for 2 instances.

• ofpa performs worse than fpa for 8 instances.

6.5.3 Kick-starting the observed full propagation amount using the
full propagation amount

In this subsection we aim to answer the research question: Can we improve
performance by using only observed full propagation amount values and some
initialization similar to the impact based search heuristic by Refalo, 2004?

The observed full propagation amount search heuristic from the previous
section has one potential downside. The first few choices are always made based
on very little information. However, it is crucial to make good choices at the
start of our search tree to reduce its total size.
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Therefore, we implemented a new search heuristic that combines the full
propagation amount and observed full propagation amount search heuristics.
We combined these search heuristics as follows. We use the full propagation
amount search heuristic until we reach a certain depth in the search tree. We
experimented with a depth of 5. So, the first 5 choices in any search path are
made using the full propagation amount search heuristic. From that point on
we use the observed full propagation amount search heuristic. Note, that we
do use the results from all applications of branching decisions to update our
observed full propagation amount mapping.

As before we focus on the most critical machine with remaining edges, we
select the edge with the largest sum PAi,j or OPAi,j and we explore the di-
rection with the largest propagation amount first. As before, we took the full
propagation amount (fpa) solver and replaced the search. The results of the
new solver can be found in Table 5 under iofpa.

• iofpa performs better than fpa for 28 instances.

– Notably, iofpa solves 2 instance that fpa didn’t solve.

• iofpa performs equivalent to fpa for 1 instances.

• iofpa performs worse than fpa for 8 instances.

6.6 How important is the quality of the initial upper bound?

To answer this question we compare the critical solver and the ofpa solver when
using the optimal makespan as the initial upper bound for each instance. The
results of this experiment can be found in Table 6. The critical solver performs
better in most cases. The difference in required time is at most a factor 10
(with one outlier). However, the ofpa solver can solve the instances ”ft20” and
”la40” where no other test from this research has been able to do that. This
might suggest that the ofpa solver scales better to larger instances if it receives
a strong initial upper bound.

6.7 How do our results compare with past results?

So far we only compared our own implementations. To check if we made any
progress we will now compare the results of our best solver using the slack based
search heuristic with the results where van der Sluis, 2022 uses the same slack
based search heuristic. Note that, we are running our algorithms on a different
computer with a CPU that has better single-thread performance according to
cpubenchmark.net (Intel Core i7-10700 @ 2.90GHz vs AMD Ryzen 5 3600).

Therefore, we obtained the code from van der Sluis, 2022 and ran it on our
computer. Table 7 contains the original results from van der Sluis, 2022 (their
Table 7 under SC), the replicated results from running the same code on our
computer and the best results from our algorithms when using the same search
heuristic (Table 4 under critical).
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One thing that can be observed is that there is no clear winner between
the original results and the replicated results. We would have expected the
replicated results to be better since it should be the same code running on a
better processor. It is hard to really pinpoint why the results are so inconclusive
since we can not be sure that the code that we received is in the exact same as
the code that produced the original results.

However, for 30 out of the 37 our algorithm performs better. For 3 of those
instances we find a solution where the algorithm by van der Sluis, 2022 could
not. On the other hand there are 7 instances where we perform worse. In two
of those instances he could find a solution and we could not.
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instance opt basic solver follow path edge finding partial graph depth first granular graph flags critical
abz5 1234 1253 1242 229.869 146.45 135.134 102.001 79.714 71.443
abz6 943 59.641 7.925 5.041 3.443 3.162 2.198 1.702 1.838
ft06 55 0.022 0.022 0.018 0.013 0.012 0.011 0.006 0.006
ft10 930 951 951 943 278.436 260.543 183.662 147.503 138.887
ft20 1165 1377 1267 1267 1267 1267 1267 1267 1267
la01 666 0.16 0.149 0.1 0.074 0.071 0.058 0.034 0.034
la02 655 3.949 2.922 1.81 1.264 1.192 0.924 0.601 0.605
la03 597 1.997 1.316 0.856 0.625 0.589 0.426 0.291 0.291
la04 590 5.145 0.994 0.644 0.472 0.446 0.347 0.238 0.234
la05 593 0.136 0.129 0.089 0.065 0.063 0.055 0.034 0.036
la06 926 0.755 0.717 0.443 0.32 0.304 0.251 0.179 0.179
la07 890 0.688 0.664 0.408 0.303 0.288 0.243 0.177 0.179
la08 863 0.734 0.709 0.406 0.313 0.29 0.225 0.154 0.155
la09 951 0.743 0.701 0.412 0.303 0.289 0.231 0.167 0.166
la10 958 0.788 0.774 0.452 0.331 0.319 0.269 0.176 0.176
la11 1222 2.387 2.295 1.256 0.929 0.891 0.746 0.537 0.54
la12 1039 2.412 2.355 1.255 0.918 0.877 0.742 0.51 0.516
la13 1150 2.232 2.189 1.19 0.868 0.836 0.696 0.51 0.509
la14 1292 2.016 1.927 1.057 0.778 0.751 0.637 0.477 0.478
la15 1207 1238 1208 1208 1208 1208 1208 1208 1208
la16 945 28.714 18.431 12.196 8.528 7.937 5.692 4.5 4.235
la17 784 0.345 0.454 0.305 0.246 0.216 0.137 0.099 0.099
la18 848 6.381 4.726 3.15 2.273 2.093 1.527 1.194 1.134
la19 842 16.903 16.426 10.59 7.014 6.632 4.606 3.764 3.767
la20 902 8.212 3.603 2.342 1.67 1.592 1.163 0.834 0.817
la30 1355 1388 1404 1404 1404 1404 1404 1404 1404
la40 1222 1295 1314 1295 1295 1295 1295 1295 1295

orb01 1059 1152 1152 1144 1116 1116 1103 1103 1098
orb02 888 74.198 34.288 22.748 15.908 14.691 10.26 8.195 8.208
orb03 1005 1052 1043 1043 1039 1039 1031 1031 1031
orb04 1005 244.109 97.138 65.064 46.826 43.775 29.655 23.595 23.55
orb05 887 915 150.427 103.043 73.441 69.147 49.856 40.571 37.782
orb06 1010 268.833 202.653 137.886 100.763 94.148 68.919 55.98 48.808
orb07 397 136.521 64.916 42.321 29.19 26.829 20.02 15.715 15.72
orb08 899 913 918 918 918 918 918 918 918
orb09 934 975 959 939 213.718 199.107 138.439 107.659 102.699
orb10 944 9.79 8.327 5.586 4.105 3.868 2.627 2.151 2.241

Table 4: Results of the first set of variants of our algorithm. We set a time
limit of 5 minutes. We present the time in seconds required to find an optimal

solution (as a real number) or the best solution found if the time limit is
exceeded (as an integral number). A tilde indicates that a solver did not find

any solution within the time limit. Note that each column (except opt)
represents a solver that includes a new feature and all the features to its left.

Results are bold if they are worse than the result directly to the left.
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Algorithm 2 Edge finding

Require: U : operations sorted by decreasing head
Require: A: empty max tail heap
Require: p+UAi ← pi: remaining processing time
Require: I: unique tail values sorted in increasing order
Require: p+Ij ←

∑
qi=j p

+UA
i : remaining processing time by unique tail value

Require: t← 0: current time instant
1: while 0 < |U|+ |A| do ▷ While 0 < |unavailableops + availableops|
2: while 0 < |U| ∧ rU.peek() = t do ▷ Move each op c that release at t
3: c← U .pop()
4: A.push(c)
5: P ← 0
6: for j : reversed(I) do
7: if j = qc then
8: break
9: end if

10: if 0 < p+Ij then

11: P ← P + p+j
12: if rc + pc + P + qj > ub then
13: blockerc ← j
14: end if
15: end if
16: end for
17: end while
18: if |A| = 0 then
19: t← rU [−1]
20: while 0 < |U|+ |A| do
21: while 0 < |U| ∧ rU [−1] = t do
22: A.push(U [−1])
23: U .pop()
24: end while
25: end while
26: end if
27: i← A.peek()
28: ϵ← p+i
29: if 0 < |U| then
30: ϵ← max(ϵ, rU [−1] − t)
31: end if
32: t← t + ϵ
33: p+i ← p+i − ϵ
34: if p+i = 0 then
35: A.pop()
36: end if
37: end while
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instance opt critical fpa ppa ofpa iofpa
abz5 1234 71.443 48.924 146.45 26.73 39.614
abz6 943 1.838 6.945 3.443 3.531 4.407
ft06 55 0.006 0.017 0.013 0.059 0.065
ft10 930 138.887 167.301 278.436 45.202 23.87
ft20 1165 1267 ~ 1267 ~ ~
la01 666 0.034 0.076 0.074 0.188 0.247
la02 655 0.605 18.949 1.264 2.186 3.296
la03 597 0.291 4.716 0.625 0.704 0.973
la04 590 0.234 5.353 0.472 0.799 1.104
la05 593 0.036 0.125 0.065 0.19 0.301
la06 926 0.179 1.404 0.32 0.723 1.016
la07 890 0.179 932 0.303 35.922 957
la08 863 0.155 2.077 0.313 0.695 1.45
la09 951 0.166 116.936 0.303 0.725 1.272
la10 958 0.176 1.465 0.331 0.681 1.164
la11 1222 0.54 14.628 0.929 2.517 7.681
la12 1039 0.516 33.87 0.918 2.699 4.469
la13 1150 0.509 4.901 0.868 130.048 4.467
la14 1292 0.478 6.824 0.778 1.9 3.908
la15 1207 1208 ~ 1208 ~ 129.152
la16 945 4.235 19.757 8.528 2.482 15.167
la17 784 0.099 1.544 0.246 1.033 0.99
la18 848 1.134 12.75 2.273 3.171 3.133
la19 842 3.767 17.338 7.014 8.785 6.041
la20 902 0.817 3.679 1.67 3.677 6.592
la30 1355 1404 1524 1404 ~ ~
la40 1222 1295 1306 1295 ~ 1314

orb01 1059 1098 1083 1116 236.435 1059
orb02 888 8.208 82.294 15.908 17.537 22.841
orb03 1005 1031 1099 1039 1040 1052
orb04 1005 23.55 129.653 46.826 38.881 26.771
orb05 887 37.782 280.393 73.441 78.644 84.469
orb06 1010 48.808 1013 100.763 40.843 108.804
orb07 397 15.72 21.736 29.19 32.823 20.733
orb08 899 918 940 918 256.854 1026
orb09 934 102.699 22.18 213.718 5.71 4.234
orb10 944 2.241 10.004 4.105 14.437 7.312

Table 5: Results of the second set of variants of our algorithm. We set a time
limit of 5 minutes. We present the time in seconds required to find an optimal

solution (as a real number) or the best solution found if the time limit is
exceeded (as an integral number). A tilde indicates that a solver did not find

any solution within the time limit. Note that each column (except opt)
represents a similar solver which only varies in the search heuristic. The best

result (excluding critical) for each row is in bold.
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instance opt critical ofpa
abz5 1234 31.848 21.482
abz6 943 1.316 2.285
ft06 55 0.006 0.055
ft10 930 31.598 13.181
ft20 1165 ~ 10.401
la01 666 0.034 0.173
la02 655 0.064 0.291
la03 597 0.014 0.179
la04 590 0.317 0.207
la05 593 0.036 0.173
la06 926 0.188 0.667
la07 890 0.161 1.079
la08 863 0.16 0.665
la09 951 0.179 0.687
la10 958 0.181 0.66
la11 1222 0.55 2.397
la12 1039 0.523 2.421
la13 1150 0.525 121.396
la14 1292 0.491 1.802
la15 1207 ~ 6.237
la16 945 2.263 1.156
la17 784 0.035 0.964
la18 848 0.814 1.024
la19 842 3.695 4.95
la20 902 0.658 2.798
la30 1355 ~ ~
la40 1222 ~ 176.726

orb01 1059 248.799 184.561
orb02 888 6.794 7.696
orb03 1005 209.775 1005
orb04 1005 9.378 15.345
orb05 887 29.827 50.237
orb06 1010 43.993 14.952
orb07 397 6.783 13.49
orb08 899 4.621 10.496
orb09 934 10.021 1.623
orb10 944 2.254 13.863

Table 6: Results of running the critical and ofpa solver with the optimal
makespan as initial upper bound. We set a time limit of 5 minutes. We

present the time in seconds required to find an optimal solution (as a real
number) or the best solution found if the time limit is exceeded (as an integral
number). A tilde indicates that a solver did not find any solution within the

time limit. opt is the optimal makespan for each instance. The best result for
each row is shown in bold.
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instance opt original replicated critical
abz5 1234 1263 152.439 73.458
abz6 943 24.67 5.893 1.749
ft06 55 0.017 0.016 0.007
ft10 930 967 940 155.801
ft20 1165 1180 1226 1267
la01 666 0.126 0.103 0.033
la02 655 0.629 1.194 0.437
la03 597 3.92 4.268 0.308
la04 590 5.60 2.485 0.312
la05 593 0.232 0.195 0.038
la06 926 3.34 2.605 0.175
la07 890 11.89 10.629 0.162
la08 863 0.659 7.526 0.143
la09 951 5.837 3.960 0.163
la10 958 38.56 36.291 0.154
la11 1222 6.45 22.094 0.461
la12 1039 62.59 40.263 0.463
la13 1150 51.95 ~ 0.478
la14 1292 28.72 25.660 0.448
la15 1207 227.01 1232 1208
la16 945 979 8.955 5.672
la17 784 5.20 2.744 0.142
la18 848 75.49 26.086 1.165
la19 842 181.83 23.587 3.833
la20 902 916 912 0.854
la30 1355 ~ 1467 1404
la40 1222 1282 1294 1295

orb01 1059 1099 1065 1098
orb02 888 925 126.345 8.571
orb03 1005 1087 1073 1031
orb04 1005 192.518 59.324 25.957
orb05 887 906 889 40.018
orb06 1010 1071 282.727 49.05
orb07 397 409 251.222 15.646
orb08 899 934 91.007 918
orb09 934 939 40.254 122.467
orb10 944 3.54 2.508 2.392

Table 7: Best results compared to results from van der Sluis, 2022. In all cases
the solver had a time limit of 5 minutes. The table presents the time in

seconds required to find an optimal solution (as a real number) or the best
solution found if the time limit is exceeded (as an integral number). A tilde

indicates that a solver did not find any solution within the time limit. Results
in the critical column are bold if they are better than the original and

replicated results.
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7 Conclusions

In conclusion, in this thesis we have aimed to develop an improved branching
structure for constraint programming applied to the job shop problem.

We started with the description and implementation of a reference constraint
programming system. Next, we presented several ideas that can be added to
such a system to improve its performance. These ideas have been tested on a set
of classical problem instances. Most of these instances had a size of up to 100
operations with varying numbers of jobs and machines. Only two instances had
more than 100 operations (la30 and la40), however, not one of the presented
methods could successfully solve either of those instances.

The first half of the the tested ideas focused on the constraint propagation
part of the constraint programming system.

First, we showed that adding a follow path mode to a constraint program-
ming system is beneficial. For a number of instances it halved the required time
to find an optimal solution.

Next, we presented an alternative edge finding algorithm based on that by
Carlier and Pinson, 1994. For some instances it allowed to shave off up to a
third of the required time to find a solution when compared to the algorithm
by Baptiste et al., 2001.

Then, we experimented with various graph propagation strategies. We
showed that it helps to only propagate updates from recently affected parts
of the disjunctive graph as opposed to updating through the entire disjunctive
graph at once. Additionally, we showed that a depth first graph propagation
approach works better than an algorithm based on finding a topological order
first. After that we also tested an idea where we apply graph propagation more
locally in the graph propagation loop after other propagation rules cause up-
dates. These three ideas combined again allowed to half the required time to
solve some instances (comparing the edge finding and granular graph solvers).
This success seems to indicate that applying graph propagation more often and
more locally works better than applying it only a few times globally.

Lastly, we explored a way to optimize the amount of times and the order in
which we apply an edge finding algorithm during constraint propagation. This
resulted in slightly better performance, but the improvement is not as dramatic
as with the previous ideas.

The second half of the presented research focused more on alternative search
heuristics that could improve on the full propagation amount search heuristic
(fpa) by van der Sluis, 2022. We developed the following new search heuristics.

The partial propagation amount search heuristic (ppa) was aimed at saving
time by using a less complex constraint propagation technique to determine the
amount of propagation. In nearly all cases it performed better than the full
propagation amount search heuristic.

The observed full propagation amount search heuristic (ofpa) inspired by Re-
falo, 2004 was aimed at saving time by approximating the expected full propa-
gation amount based on results observed in the past. In most cases it performed
better than the full and partial search heuristics.
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The initialized observed full propagation amount search heuristic (iofpa)
aimed to improve on this by using the full propagation amount search heuris-
tic at the start of the search tree where it is crucial to make good branching
decisions. However, the results from our experiments are inconclusive about its
success.

Among these four search heuristics based on the propagation amount the
observed full propagation amount (ofpa) search heuristic generally performed
the best. It wasn’t always the fastest, but it could solve two instances that none
of the other three heuristics could. However, compared to the slack based search
heuristic used in the critical solver there is still a lot of room for improvement.

To conclude our research we also tested how important the quality of the
initial upper bound is. It is too early to draw general conclusion but it seems
as though the observed full propagation amount search heuristics scales better
to larger instances if the initial upper bound is strong enough.

7.1 Limitations

One limitation of the presented research is related to the first half of the pre-
sented ideas. For each new presented idea we take the solver including all the
preceding presented ideas and evaluate the effect of adding the new presented
idea. This means that we do not know the actual individual impact of each
change and there might be some dependencies. For completion it would be nice
to test each idea individually and/or all possible combinations of ideas.

One example of a possible dependency between multiple ideas is the follow-
ing. Starting from the edge finding solver we first made a change to use graph
propagation starting at recently affected operations to obtain the partial graph
solver. Next, we replaced the graph propagation algorithm based on finding a
topological ordering with a depth first approach to obtain the depth first. In
both steps we observed improved performance. However, it might be the case
that the depth first algorithm only performs better if we apply it to recently af-
fected operations and not when we apply it to the entire graph. In other words,
the second change might only help if we also include the first change.

The same can be said about the change made to obtain the granular graph
solver. We applied graph propagation more locally after other propagation
rules caused updates but we suspect that this only works well if the two ideas
mentioned above in the previous paragraph are applied as well.

Additionally, this thesis only considered 2 larger instances and time limit of
5 minutes and many of the included instances were solvable within less than 1
minute. For a more general conclusion it might be important to test on larger
instances as well. In that case the time limit should also be increased.

7.2 Future work

There are still many ways in which the presented constraint programming sys-
tems can be improved. Firstly, you can focus on implementing the O(n log n)
edge finding algorithm by Carlier and Pinson, 1994 and presenting it in such
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a way that it can become more widely adopted. Besides that, Katriel et al.,
2005 present an algorithm for maintaining longest paths that could be used
to improve the graph propagation part of the constraint programming system.
Lastly, there might be better heuristics that can be used to predict the success
of an application of an edge finding algorithm. Such heuristics could be used to
reduce the number of useless edge finding calls.
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A Edge finding analysis

In this appendix we will analyse the pseudo code of Algorithm 1.
The first and last three lines of the pseudo code are simply there such that

we apply the changes after all possible changes have been determined and not
whilst we are still running the algorithm.

The loop in line 4 fixes an operation k. It will be used to define sets of
operations.

Next, the loop in line 6 fixes an operation i. These two operations define
a set Ωi,k which contains each operation j with ri ≤ rj and dj ≤ dk. In other
words, rΩi,k

= ri and dΩi,k
= dk. Note that operation i is only part of this set

if it has a deadline less than or equal to operation k (see line 7).
Lines 7-14 ensure that after each iteration of the inner loop we have that

P = pΩi,k
and that Ci = C = max∅̸=Ω′⊆Ωi,k

rΩ′ + pΩ′ .
Note that the inner loop iterates in decreasing order of release dates (since

the operations are sorted in increasing order of release dates). This allows us to
quickly update P and it allows the use of a rolling maximum to keep track of
C (line 9).

Additionally, in lines 10-12 of the algorithm we can find the application of
Equation 3e.

After the first inner loop we will have that P = pΩ1,k
and that C =

max∅̸=Ω′⊆Ω1,k
rΩ′ + pΩ′ .

The loop in line 16 fixes an operation i again. If operation i is part of Ωi,k,
then we update H and P (lines 17-20). This way we ensure that P = pΩi,k

stays
true. Later, we will explain what H does.

If operation i is not part of Ωi,k (because di ≤ dk is false), then we attempt
to apply Equation 3b. We can do this by substituting Ω = Ωi,k in the equation
and Oi from the equation is simply operation i defined in line 16. Next we have
that rΩi,k∪Oi

= ri, pΩi,k
= P and dΩi,k

= dk. So the inequality in line 21 is the
same as the one in the left-hand side of Equation 3b.

If the inequality holds, then we do not fix any edges explicitly but we do
immediately apply Equation 3d (line 22). Note that Ci is exactly equal to the
maximum taken in the right hand side of that equation. In essence, lines 21-23
check Equation 3b for the case where rΩ∪Oi

= ri.
The variable H and lines 24-26 are used to check the case where rΩ∪Oi

=
rj < ri. H is updated to maintain H = maxj<i rΩj,k

+ pΩj,k
. Therefore,

H + pi > dk = dΩj,k
from line 24 is the same as the inequality in the left-hand

side of Equation 3b. This can be seen by substituting Ω = Ωj,k in the equation
whilst Oi still refers to operation i from line 16. Based on the definition of j, C
and the values of each Ci we have that Cj = C, as seen in line 25.
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