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Abstract

The optimal transport distance provides us with a method of assigning a distance
between two probability vectors. One downside of this metric is that it can be com-
putationally expensive to compute. One method of estimating the optimal transport
distance is by using an entropic regularization, which allows for the use of Sinkhorn’s
theorem, providing a lower computational load. In this thesis we investigate the con-
vergence of this method and utilise it to study the change of the attractor of the Hénon
system. Our results show that the speed of convergence heavily depends on the level of
desired accuracy, which is encapsulated by the regularization parameter λ. The results
on the attractor show that it is important to use a large sample size of data points to
be able to draw a solid conclusion.
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1 Introduction

The optimal transport problem can easily be understood intuitively: how does one minimise
the cost of moving resources to their destinations. The optimal transport distance has many
applications in for example machine-learning [1], imaging [2] and data analysis for biology
[3]. While it has many practical applications it comes with the downside of being computa-
tionally expensive for larger datasets.

In this thesis we investigate a numerical method of estimating the optimal transport dis-
tance by adding an entropic regularization to the minimisation problem as described by Ref.
[4]. Adding this regularization changes the traditional problem from a linear programming
problem into a matrix-scaling problem, by making use of Sinkhorn’s theorem [5]. This has the
benefit of being easier to compute, but comes at the cost of resulting in a slightly suboptimal
solution, depending on the regularization parameter λ. The standard linear programming
method has a complexity of O(n3 log(n)), whereas the solution described in this thesis has a
complexity of O(n2) [4].

We will be using this regularization method of calculating the optimal transport distance
to study the behaviour of the chaotic Hénon system. This is a dynamical system that exhibits
either chaotic or periodic behaviour depending on two parameters. The shape of the attractor
changes as a result of the parameters and we will be looking at the distances between these
attractors.

In Chapter 2 we recap the basics of optimal transport, look at Sinkhorn’s theorem and
introduce the entropic regularization. Next we explain and analyse the convergence of our
methodology in Chapter 3. In Chapter 4 we present and discuss the results. Finally we
provide a brief explanation of the assumptions and limitations, as well as some closing words,
in Chapter 5.



2 THEORY 2

2 Theory

2.1 The optimal transport problem

In this section we will recap the concept of optimal transport, also known as the earth mover’s
distance. We will first give an intuitive description as background, after which we state the
formal definition.

2.1.1 Earth mover’s distance

The optimal transport problem brings forth a distance, which can be intuitively understood
as the Earth mover’s distance. Suppose that we have been given a pile of sand with a certain
shape, and that we want to move each grain of sand such that our pile forms a new, predefined
shape. Of course, there are many ways in which we could move each individual grain, as any
one can end up at any point of the desired new shape. However, when we assign some sort
of cost to moving a grain, then it is not unreasonable to want to minimise the total cost of
moving the entire pile, obtained by summing over the costs of moving each individual grain.
This minimum possible cost defines a distance between the two piles, the Earth mover’s
distance, and the problem of finding it is called the optimal transport problem.
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Figure 1: Two different ways of moving the grains from the old configuration into the new
one. The transport plan of figure 1a has total cost 23 and the plan of figure 1b has a total
cost of 13, this happens to be the minimum cost of any transport plan between these two
piles, so that makes their earth mover’s distance 13.

In figure 1 we compare two different plans for moving a pile of sand from one configu-
ration into another. For the cost c of moving a single grain from x1 to x2, we have used
c(x1, x2) = deucl(x1, x2) = |x1 − x2|, which is the Euclidean distance, but we could have
used any other distance function d, called the ground metric. Now that we have an intuitive
understanding of optimal transport we can state the formal definitions.
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2.1.2 Optimal transport distance

Instead of comparing the distance between piles of sand we will instead be comparing prob-
ability vectors.

Definition 2.1 (Probability vector). An n-dimensional probability vector x is a vector of Rn

such that all its components are positive and add up to 1, i.e.

x ∈ Rn
+ , such that

∑
i

xi = 1 .1 (1)

The main difference between optimal transport of piles of sand and probability vectors
is that with sand we have to discretely move the grains from one location to another, but
with probability vectors we can split its entries and divide it over multiple destinations. The
objects that describe the transport between an n-dimensional probability vector r and an m-
dimensional probability vector c are called transport matrices. The entries Pij of P ∈ Rn×m

describe the amount of mass moving from ri to cj. The set of all transport matrices is the
transport polytope.

Definition 2.2 (Transport polytope). The transport polytope describes all possible transport
matrices between two probability vectors,

U(r, c) :=
{
P ∈ Rn×m

+ |
∑
j

Pij = ri , ∀j ,
∑
i

Pij = cj , ∀i
}

(2)

Lemma 2.3. The set U(r, c) is compact for any r and c.

Proof. We start by showing that U(r, c) is closed. Define the following function

f : Rn×m → Rn ×Rm, f(P) :=

(∑
j

P1j, · · · ,
∑
j

Pnj,
∑
i

Pi1, · · · ,
∑
i

Pmi

)
, (3)

which is clearly continuous in the components of P, hence the preimage of the closed set
{(r, c)} is also closed. By the fact that Rn×m

+ is closed we find that

f−1
(
{(r, c)}

)
∩Rn×m

+ =
{
P ∈ Rn×m

+ |
∑
j

Pij = ri , ∀j ,
∑
i

Pij = cj , ∀i
}
= U(r, c) (4)

is closed.
For P ∈ U(r, c) we clearly have that

0 ≤ Pij ≤ ri < M, ∀i, j , (5)

for some M ∈ R and thus U(r, c) is bounded.

1Throughout this thesis we use the convention 0 ∈ R+.
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For now we suppose thatm = n and that we have been given a distance matrix M ∈ Rn×n
+ ,

this is a matrix that satisfies the following

(i) M is symmetric,

(ii) Mij = 0 if and only if i = j, (6)

(iii) Mik ≤ Mij +Mjk , for all i,j,k,

where
Mij = c(ri, cj) . (7)

This lets us quantify the cost of moving r to c using the transport matrix P as the Frobenius
inner product between P and M, i.e.

⟨P,M⟩F :=
∑
i,j

PijMij . (8)

This then allows us to define the optimal transport distance.

Definition 2.4 (Optimal transport distance). The optimal transport distance between two
probability vectors r and c is given by

dM(r, c) := min
P∈U(r,c)

⟨P,M⟩F . (9)

Finding this minimum is called an optimal transport problem. Note that this minimum is
well-defined by lemma 2.3 and the continuity of the Frobenius norm.

2.2 Sinkhorn’s theorem

Definition 2.5 (Bistochastic matrix). A square matrix A is called bistochastic iff all rows
and all columns sum to 1, i.e.∑

i

Aij = 1 , ∀j and
∑
j

Aij = 1 , ∀i . (10)

Definition 2.6 (Convex combination). A convex combination X of a finite set of points
x1, x2, · · · , xN ∈ R is a linear combination of said points, such that the coefficients are non-
negative and sum to 1, i.e.

X = α1x1 + α2x2 · · ·+ αNx,, such that
∑
i

αi = 1 and αi ≥ 0 . (11)

Lemma 2.7. 2 Let X be a convex combination of x1, x2, · · · , xN ∈ R, then

min
i

xi ≤ X ≤ max
i

xi . (12)

The following theorem plays a central role in this thesis, so we will review the proof given
by Ref. [5].

2The proof has been omitted, as it is self-evident.
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Theorem 2.8 (Sinkhorn’s theorem). Let A be an N × N matrix, with Aij > 0 for all i, j.
There exist non-negative diagonal matrices D1 and D2, such that D1AD2 is bistochastic.
These matrices are uniquely defined up to a multiplicative factor.

Proof. (This proof is adapted from Ref. [5]) We start by proving the uniqueness of D1 and
D2. Suppose that there exist two pairs of non-negative diagonal matrices D1, D2 and C1, C2

such that both P := D1AD2 and Q := C1AC2 are bistochastic. We show that D1 = λC1 and
D2 =

1
λ
C2.

Let D1 = diag (d11, · · · , d1N), with similar definitions for D2, C1 and C2. Define Bi =

diag
(

ci1
di1

, · · · , ci1
di1

)
= diag (bi1, · · · , biN) for i = 1, 2, then B1PB2 = Q. Note that

Qij = (B1PB2)ij = b1ipijb2j, (13)

so by the fact that Q is bistochastic we have that the sum of the j-th column is∑
i

b1ipijb2j = 1 ⇒
∑
i

b1ipij = 1/b2j . (14)

By the fact that P is bistochastic we find that 1/b2j is a convex combination of the elements
of B1, so by lemma 2.7 we find

min
i

b1i ≤ 1/b2j ≤ max
i

b1i. (15)

A similar argument for the row-sums yields

min
j

b2j ≤ 1/b1i ≤ max
j

b2j. (16)

Now suppose that there exist i0, j0, such that b1i0b2j0 < 1, then certainly b1i0 minj b2j < 1.
Let j1 = argmin

j
b2j, then by equation 14 we find the following inequality

1 =
∑
i

b1ipij1b2j1 < pi0j1 +
n∑

i=1
i ̸=i0

b1ipij1b2j1 , (17)

and so
n∑

i=1
i ̸=i0

b1ipij1b2j1 > 1− pi0j1 . (18)

From the fact that
∑

i pij1 = 1 we conclude that there must exist an i1 such that b1i1b2j1 > 1,
i.e. minj b2j = b2j1 > 1/b1i1 , which is in contradiction with equation (16). A similar argument
holds when assuming there exist i0, j0 such that b1i0b2j0 > 1, so we find that b1ib2j = 1 for all
i, j, that is, b2i = 1/b1j = λ for all i, j. Since b1i :=

c1i
d1i

we have

λc1i = d1i , ∀ i . (19)
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We conclude that D1 = λC1 and similarly D2 =
1
λ
C2, which was to be shown.

We now show that D1 and D2 exist. Let

A0 := A, An+1 := λnAnδn, λn := diag (1/λn1, · · · , 1/λnN) and δn := diag (1/δn1, · · · , 1/δnN) .
(20)

Let λni be the sum of the i-th row of An, such that left-hand multiplication of An by λn

normalises the rows.3 Let δnj be the sum of the j-th column of λnAn, i.e.

δnj :=
∑
i

Anij/λni , (21)

such that right-hand multiplication of λnAn by δn normalises the columns. Let an denote the
minimal element of An.

4

We will prove that the sequence {An} converges to a doubly stochastic matrix, to do
this we must show two things. Firstly we need that Anij ≥ c > 0 for all n, i, j and some
constant c, secondly we require that λni approaches 1 arbitrarily close for all i. From now we
assume that n ≥ 1 such that An has normalised columns. Finally define λn = mini λni and
λn = maxi λni.

Lemma 2.9. For this setup we have that

λn ≤ 1 ≤ λn , ∀n . (22)

Proof. Notice that the sum of all row-sums and of all column-sums of An should be equal,
and since all column sums are 1 we find that this should amount to N . If λni = 1 for all i
than we have found a bistochastic matrix and we can prove the main theorem, so let’s say
that λni0 < 1. If all λni ≤ 1, then the sum of all row-sums is∑

i

λni = λni0 +
∑
i ̸=i0

λni < 1 +
∑
i ̸=i0

λni ≤ N . (23)

This is a contradiction, so we find that there must be at least one λni > 1. Similar arguments
can be used when assuming λni0 > 1, this proves the lemma.

From the definition of δnj in equation 21, the fact that the columns of An are normalised
and lemma 2.7 we find that

min
i

1/λni ≤ δnj ≤ max
i

1/λni ⇒ 1/λn ≤ δnj ≤ 1/λn , ∀j . (24)

Then from the fact that λn+1,i is a convex combination of 1/δnj we get

min
j

1/δnj ≤ λn+1,i ≤ max
j

1/δnj ⇒ λn ≤ λn+1,i ≤ λn , ∀i . (25)

If we then combine this with our result from lemma 2.9 then we find

λn ≤ λn+1 ≤ 1 ≤ λn+1 ≤ λn . (26)

3Note that λ1 > 0
4Note that a1 > 0.
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This gives that the minimal and maximal elements of the row-sums are monotone sequences
that thus approach some limit, it remains to show that these two limits are all 1. Define the
following quantities

Xn =
n∏

k=1

λk, Xni =

(
n∏

k=1

λki

)−1

, Yn =
n∏

k=1

δk, Ynj =

(
n∏

k=1

δkj

)−1

. (27)

From these definitions we obtain the following inequalities,

Ynj =

(∑
i

A1ijXni

)−1

≤ (A1ijXni)
−1 ≤ (a1Xni)

−1 , ∀i, j . (28)

∑
j

XniAijYnj = λn+1,i ≥ λn+1 ≥ λ1 ⇒ Xni ≥ λ1

(∑
j

AijYnj

)−1

≥ a1λ1max
i

Xni/N .

(29)
Lemma 2.7 and the fact that the columns of A1 sum up to 1 gives

Ynj = 1/
∑
i

AijXni ≥ 1/max
i

Xni . (30)

If we now combine equation (29) and equation (30), then we find for all n, i, j the desired
property,

An+1,ij = XniAnijYnj ≥ a1λ1/N > 0 . (31)

From equation (26) it follows that λn → 1 + c for some c ≥ 0. Let λn = 1 + cn, such that
cn → c, and define

µ
j
=
∑
i

λni≤1

Anij , µj =
∑
i

λni>1

Anij , (32)

then

δnj ≥ µ
j
+

1

1 + cn
µj =

µ
j
+ µj + cnµj

1 + cn
≥ 1 + cnan

1 + cn
. (33)

Finally let i0 = argmin
i

λni, then

1 + c ≤ λn+1,i0 =
∑
j

Ani0j/λni0δnj ≤ 1δnj ≤
1 + cn
1 + cnan

. (34)

However, because an > 0 and cn → c, we have that c > 0 leads to a contradiction, so c = 0.
In similar fashion it follows that λn → 1. We conclude that An = XnAYn approaches a
doubly stochastic matrix, such that Xn → D1 and Yn → D2.

Corollary 2.10. Let A ∈ Rn×m
>0 , and r and c be n- and m-dimensional probability vectors.

There exist non-negative diagonal matrices D1 and D2 such that D1AD2 is unique and has
row-sums r and column-sums c, i.e.∑

j

(D1AD2)ij = ri ∀i (35)∑
i

(D1AD2)ij = cj ∀j . (36)
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Remark 2.11. The proof of corollary 2.10 is similar to that of 2.8 and is therefore omitted.
More detail can be found in Ref. [6].

Algorithm 2.12. In order to find D1AD2 as described above, one can preform the following
algorithm:

1. If there exist one or multiple i0 such that ri0 = 0 then set Ai0j = 0 for all j. Similarly
for cj0 = 0 set Aij0 = 0 for all i.

2. Multiply each row i ̸= i0 of A by ri/
∑

j Aij to obtain A′ with all row sums equal to r.

3. Multiply each column j ̸= j0 of A′ by cj/
∑

i A
′
ij to make all column sums equal to c.

4. Repeat step 2. and 3. until the differences between the row-sums and r are smaller than
needed.

In order to calculate these steps we will be executing a slightly modified version of this algo-
rithm with python, the details can be found in Section 3.2.

2.3 Entropic regularization

We have seen that solving the optimal transport problem 9 can be computationally expensive,
so in order to solve this we introduce an entropic regularization. For this purpose we define
the entropy of a probability vector r and a transport matrix P,

h(r) := −
∑
i

ri log ri , h(P) := −
∑
i,j

Pij logPij , (37)

with the substantiated5 convention

x logx = 0 if x = 0 . (38)

Note that a more equally distributed probability vector or transport matrix has a higher
entropy than one that is more localised, therefore entropy can be seen as a measure of
smoothness. Also note that rcT has h(rcT ) = h(r) + h(c) and that it is the smoothest
possible transport matrix [4]. Because problem 9 is a complex problem we can make an
approximation by reducing the space of the allowed transport matrices to

Uα(r, c) :=
{
P ∈ U(r, c) |h(P) ≥ h(rcT )− α

}
. (39)

This is essentially the set of transport matrices which are sufficiently smooth.

Lemma 2.13. The set Uα(r, c) is compact for any r, c and α.

Proof. Recall from lemma 2.3 that U(r, c) is compact. We show that Uα(r, c) is closed and
bounded.

Because Uα(r, c) ⊂ U(r, c) it is certainly bounded.

5This comes from limx→0 x logx = 0 .
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The function for the entropy in equation 37 is clearly continuous so the preimage of the
closed set [h(rcT )− α,∞) is also closed, hence

h−1
(
[h(rcT )− α,∞)

)
∩ U(r, c) =

{
P ∈ U(r, c) |h(P) ≥ h(rcT )− α

}
= Uα(r, c) (40)

is closed.

Definition 2.14 (Sinkhorn distance). The Sinkhorn distance is given by

dM,α(r, c) :=

{
0 , if r = c

minP∈Uα(r,c)⟨P,M⟩F , else
. (41)

We will see why this distance is more easily computed than dM(r, c) in Section 2.4. Note that
this minimum is well-defined by lemma 2.13 and the continuity of the Frobenius norm.

Remark 2.15. Note that for r = c we obviously have P = diag(r) and ⟨diag(r),M⟩F = 0. It
is however not guaranteed that diag(r) ∈ Uα(r, c) for all α. For this reason we cannot simply
say,

dM,α(r, c) = min
P∈Uα(r,c)

. (42)

2.3.1 Properties of the Sinkhorn distance

Since we have crowned Sinkhorn distances with the name distance, it is desirable to show
that it does indeed satisfy the axioms of a metric.

Theorem 2.16. The Sinkhorn distance dM,α as defined in definition 2.14 satisfies the axioms
for a metric for all α ∈ R and all distance matrices M, i.e.

(i) dM,α(r, c) = 0 ⇔ r = c

(ii) dM,α(r, c) = dM,α(c, r)

(iii) dM,α(r, c) ≤ dM,α(r,v) + dM,α(v, c) , for all probability vectors c, r,v

Proof. This proof is inspired by Ref. [4].
(i) The first property is a trivial consequence of the definition of dM,α. Properties (ii)

and (iii) are also trivial under the assumption r = c and so their proofs are omitted. For the
remainder of the proof we assume r ̸= c.

(ii) Next we prove symmetry. Note that M is a distance matrix, where Mij denotes the
distance between the i-th bin of r and the j-th bin of c. Since M is symmetric by the second
property of properties (6), it also describes the distance between the i-th bin of c and the
j-th bin of r. Note that if P ∈ U(r, c), then PT ∈ U(c, r), the same goes for Uα(r, c) and
Uα(c, r). This gives us

dM,α(r, c) = min
P∈Uα(r,c)

⟨P,M⟩F = min
P∈Uα(c,r)

⟨PT ,M⟩F = min
P∈Uα(c,r)

⟨P,M⟩F = dM,α(c, r) . (43)

(iii) Finally we want to show that the triangle inequality holds. Let c, r,v be three d-
dimensional probability vectors. Let P ∈ Uα(r,v) and Q ∈ Uα(v, c). Define S as the d × d
transport matrix with Sik :=

∑
j
pijqjk
vj

. In order to prove (iii) we will need the following

lemma.
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Lemma 2.17 (Gluing lemma). 6 Let S, r and c be as defined above, then S ∈ Uα(r, c).

Assume now that P and Q are optimal solutions of their respective optimal transport prob-
lems, then by using property 6 (iii) and the gluing lemma 2.17,

dM,α(r, c) = min
P∈Uα(r,c)

⟨P,M⟩F ≤ ⟨S,M⟩F =
∑
i,k

Mik

∑
j

pijqjk
vj

≤
∑
i,j,k

(Mij +Mjk)
pijqjk
vj

(44)

=
∑
i,j,k

Mij
pijqjk
vj

+Mjk
pijqjk
vj

≤
∑
i,j

Mijpij
∑
k

qjk
yj

+
∑
j,k

Mjkqjk
∑
i

pij
vj

(45)

=
∑
i,j

Mijpij +
∑
j,k

Mjkqjk = dM,α(r,v) + dM,α(v, c) . (46)

2.4 Computing Sinkhorn distance

We will now look at the effects of adding an entropic regularization. Take a look at the
following,

for λ > 0, dλM(r, c) := ⟨Pλ,M⟩F , where Pλ = argmin
P∈U(r,c)

⟨P,M⟩F − 1

λ
h(P) .7 (47)

But how does this relate to our original problem? When we take λ → ∞, then

Pλ → argmin
P∈U(r,c)

⟨P,M⟩F , and so dλM → dM,∞ = dM . (48)

If we take λ → 0 on the other hand, we get

Pλ → argmin
P∈U(r,c)

− h(P) = argmax
P∈U(r,c)

h(P) = rcT , and so dλM → dM,0 . (49)

What this means is that for every α in between we have that there exists a λ such that dM,α =
dλM , see Ref. [7]. By adding the constraints to our original problem (9) and introducing dual
variables β, γ ∈ Rd we obtain what is known as the Lagrangian:

L(P, β, γ) =
∑
i,j

pijmij + βT (P1d − r) + γT (PT1d − c) , pij ≥ 0, ∀i, j . (50)

This allows us to solve problem (9) by means of ∂L
∂pij

= 0, for more detail see Ref. [7]. In

doing so we get to the following linear problem

mij + βi + γj = 0 , pij ≥ 0 ,
∑
j

pij = ri ,
∑
i

pij = cj , ∀i, j , (51)

6Unfortunately the proof of this lemma is beyond the scope of this thesis, but for more information see
Ref. [4].

7This minimum is well-defined by lemma 2.13 and the continuity of the Frobenius norm and the entropy.



2 THEORY 11

consisting of 2nm+ n+m constraints, and the following unknown variables,

pij ,mij , βi , γi , for 1 ≤ i ≤ n , 1 ≤ j ≤ m, (52)

such that the number of variables are equal to the number of constraints. This problem can
be solved using linear programming methods, and in the worst case scenario of n = m has a
complexity of O(n3 log(n)), see Ref. [4]. Conversely, the Lagrangian of problem (47) is given
by

L(P, β, γ) =
∑
i,j

1

λ
pij log pij + pijmij + βT (P1d − r) + γT (PT1d − c) . (53)

This implicitly requires pij ≥ 0 for all i, j. Furthermore if we again set all partial derivatives
to 0, then this time we get

1

λ
log pij +

1

λ
+mij + βi + γj = 0 ⇒ pij = e−

1
2
−λβie−λmije−

1
2
−λγj > 0 . (54)

Some simple matrix multiplication allows us to rewrite this as

Pλ = diag
(
e−1/2−λβ

)
e−λM diag

(
e−1/2−λγ

)
, (55)

where the exponential denotes component-wise exponentiation. Note that e−λMij > 0, for all
i, j. By corollary 2.10 it follows that there exist matrices D1 and D2 such that D1e

−λMD2 is
unique and has row-sums r and column-sums c. Since Pλ has these exact row- and column
sums it follows that D1 = diag

(
e−1/2−λβ

)
, and D2 = diag

(
e−1/2−λγ

)
, and so in order to

find Pλ we can simply perform algorithm 2.12 on the matrix e−λM, from here it is a simple
multiplication to find dλM(p,q) with equation (47). For n = m this algorithm has a complexity
of O(n2), which is better than the O(n3 log(n)) of the linear programming solution, see Ref.
[4].



3 METHODOLOGY 12

3 Methodology

We denote with Ja, bK the set {n ∈ N | a ≤ n ≤ b}, or simply JbK if a = 1.

3.1 Sinkhorn distances between points

Let X be a set of n points and Y a set of m points of a metric space Z, with normalised
weights, i.e.

X := {(xi, wi) ∈ Z × (0, 1) | i ∈ JnK,
∑
i

wi = 1}, (56)

such that xi ̸= xj for i ̸= j, and with a similar definition for Y . Define the (n+m)× (n+m)
distance matrix 8 M for X and Y with the following entries

Mij = d(zi, zj) , (57)

where d is the ground metric, and

zi =

{
xi if i ∈ JnK
yi−n if i ∈ Jn+ 1, n+mK

. (58)

Now define the following two probability vectors,

p ∈ Rn+m, where pi = wi for i ∈ JnK and pi = 0 for i ∈ Jn+ 1, n+mK , (59)

q ∈ Rn+m, where qj = 0 for j ∈ JnK and qj = vj−n for j ∈ Jn+ 1, n+mK , (60)

where vj are the weights of Y . These definitions allow us to use the Sinkhorn distance to
define a distance between two sets of points, like X and Y , i.e.

Definition 3.1 (Sinkhorn distance (of sets)). Let X and Y be two sets of points of R2 with
normalised weights, then their Sinkhorn distance is given by

dλ(X, Y ) := dλM(p,q)
λ→∞−−−→ dM(p,q) , (61)

where p,q, and M are as defined above.

We have seen a method of computing dλM(r, c) for arbitrary r, c and M in Section 2.4, of
which we will now show a small example.

Example 3.2. Let X = {(0, 0, 1
2
), (1, 0, 1

2
)} and Y = {(0, 3, 1

4
), (2, 1, 3

4
)}, then we have the

following quantities

M =


d(x1,x1) d(x1,x2) d(x1,y1) d(x1,y2)
d(x2,x1) d(x2,x2) d(x2,y1) d(x2,y2)
d(y1,y1) d(y1,x2) d(y1,y1) d(y1,y2)
d(y2,y1) d(y2,x2) d(y1,y1) d(y2,y2)

 ≈


0.0 1.0 3.0 2.2
1.0 0.0 3.2 1.4
3.0 3.2 0.0 2.8
2.2 1.4 2.8 0.0

 (62)

p =

(
1

2
,
1

2
, 0, 0

)T

(63)

q =

(
0, 0,

1

4
,
3

4

)T

. (64)

8It can be easily shown that this matrix meets the conditions (6).
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With the method described in Section 2.4 and taking λ = 200 we find,

Pλ =


0 0 0.25 0.25
0 0 0 0.50
0 0 0 0
0 0 0 0

 (65)

which can be easily checked by hand for such a small example. The cost associated with this
transport matrix is, dλM(p, c) = ⟨Pλ,M⟩F = 2.06 . . . .

This example illustrates one small problem with this methodology - the resulting transport
matrix contains a lot of zeroes. This is not much of a problem for small systems as in this
example, but because the matrix scales with (n+m)2 it can quickly becomes computationally
expensive for larger systems. Ideally we would like to shrink the problem down a bit. Luckily,
with the setup described in this section, we can slightly simplify the problem. This leads us
to the following theorem.

Theorem 3.3. Let X and Y be two sets of points as in Section 3.1. One can find the
Sinkhorn distance between X and Y by carrying out the following steps.

1. First define
M′ ∈ Rn×m, M ′

ij := d(xi,yj) , (66)

this will serve as a sort of distance matrix, but it does not satisfy the requirements for
a real distance matrix. We will also need the following probability vectors,

w ∈ Rn, w := (w1, w2, · · · , wn)
T , (67)

v ∈ Rm, v := (v1, v2, · · · , vm)T . (68)

2. Now perform algorithm 2.12, starting with the matrix e−λM′
, such that the row-sums

are w and the column-sums are v, and name the resulting matrix P′λ.

3. We now claim the following

dλ(X, Y ) = ⟨P′λ,M′⟩F . (69)

Proof. What we know from Section 2.4, is that if we take M as above, and Pλ found with
algorithm 2.12, then

dλ(X, Y ) := dλM(p,q) = ⟨Pλ,M⟩F . (70)

What we would like to show is that this is equal to ⟨P′λ,M′⟩F . From step 1. in algorithm
2.12 and equations (59) and (60) it follows that

Pij = 0 for i ∈ Jn+ 1, n+mK for all j, (71)

Pij = 0 for j ∈ JnK for all i. (72)

This means that

⟨Pλ,M⟩F =
∑

i∈Jn+mK
j∈Jn+mK

PijMij =
∑
i∈JnK

j∈Jn+1,n+mK

PijMij =
∑
i∈JnK
j∈JmK

Pi,j+nMi,j+n . (73)
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From the definitions of M and M′ we get that

M ′
ij = Mi,j+n, ∀ i ∈ JnK, ∀ j ∈ JmK , (74)

and by extension
e−λM ′

ij = e−λMi,j+n , ∀ i ∈ JnK, ∀ j ∈ JmK . (75)

Similarly

wi = pi , ∀i ∈ JnK , (76)

vj = qj+n , ∀j ∈ JmK . (77)

Let Pλ
0 and P′λ

0 be the matrices after performing step 1. of algorithm 2.12 on e−λM and
e−λM′

respectively, then by (75),

P ′
0,ij = P0,i,j+n , ∀ i ∈ JnK, ∀ j ∈ JmK . (78)

Suppose now that

P ′
k,ij = Pk,i,j+n , ∀ i ∈ JnK, ∀ j ∈ JmK, for some k ∈ N , (79)

Then for all i0 ∈ JnK and all j0 ∈ JmK,

Pk+1,i0,j0+n = (80)

Pk,i0,j0+n
pi0∑

j∈Jn+mK Pk,i0,j

qj0+n∑
i∈Jn+mK

(
Pk,i,j0+n pi/

(∑
j∈Jn+mK Pk,ij

)) = (81)

P ′
k,i0,j0

wi0∑
j∈JmK Pk,i0,j+n

vj0∑
i∈JnK

(
Pk,i,j0+n pi/

(∑
j∈JmK Pk,i,j+n

)) = (82)

P ′
k,i0,j0

wi0∑
j∈JmK P

′
k,i0,j

vj0∑
i∈JnK

(
P ′
k,i,j0

pi/
(∑

j∈JmK P
′
k,ij

)) = (83)

P ′
k+1,i0,j0

. (84)

By induction we find that

P ′
k,ij = Pk,i,j+n , ∀ i ∈ JnK, ∀ j ∈ JmK,∀k ∈ N . (85)

Since Pλ
k → Pλ and P′λ

k → P′λ we find

P ′
ij = Pi,j+n , ∀ i ∈ JnK, ∀ j ∈ JmK . (86)

By combining equations (73), (74) and (86) we finally conclude.

⟨Pλ,M⟩F =
∑
i∈JnK
j∈JmK

Pi,j+nMi,j+n =
∑
i∈JnK
j∈JmK

P ′
i,jM

′
i,j = ⟨P′λ,M′⟩F . (87)



3 METHODOLOGY 15

3.2 Python algorithm

In order to perform algorithm 2.12 we will be using python. The script used to obtain the
results of this thesis will be made available together with the thesis itself, but below is a short
overview in pseudo-code. Let w, v and M be as defined in theorem 3.3, then we numerically
calculate the Sinkhorn distance as follows,

Algorithm 3.4 (Python Sinkhorn).

Division of two vectors is defined as a/b = (a1/b1, · · · , an/bn).
1: K = e−λM

2: K̄ = diag(1n/w)K
3: u = (1/n, · · · , 1/n)T ∈ Rn

4: while (row sums of Pλ) - w are bigger than desired do
5: u = 1n/(K̄(vT/(KTu)))
6: end while
7: Pλ = diag(u)K diag(v/KTu)
8: dλM(w,v) = sum (PijMij)

3.2.1 On the choice of λ

The smallest positive number that can be represented in python is approximately 10−323.6, or
roughly e−744.03; anything smaller is rounded down to 0. Our matrix e−λM contains entries
e−λMij , and we do not want any of these to be rounded down to 0. This has some implications
for the values of λ that we can choose. A safe choice for λ is the following,

λ = ⌊744/max
i,j

Mij⌋ ≤ 744/max
i,j

Mij ⇒ e−λMij > e−744.03 ≈ 0 , ∀i, j . (88)

We will demonstrate why this is required with a small example.

Example 3.5. Suppose that we are interested in the distance between X and Y such that
they both contain two elements. In order to find the Sinkhorn distance between these two sets
we are going to use the method described in theorem 3.3. Let M be as defined in said theorem
and suppose that

M =

(
1 2
2 1

)
. (89)

Now note that ⌊744/maxi,j Mij⌋ = 372, but for this example we will take λ = 400. We are
assuming that none of the weights are zero, so we start with the matrix

e−λM =

(
e−400 e−800

e−800 e−400

)
. (90)

However, in memory this is stored as

e−λM =

(
e−400 0
0 e−400

)
, (91)
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and so algorithm 2.12 simply converges to

e−λM =

(
v1 0
0 v2

)
. (92)

In general this obviously does not converge to a matrix with row-sums w.

One might argue that the condition (88) is insufficient, since we perform a number of
operations on the entries of eλM. While this is true, we do not have to worry about this,
since python will raise a ZeroDivisionError in these cases as we will now show.9 The first
operation that could cause issues is the first time KTu is calculated, i.e.

(KTu)j =
n∑

i=1

1

n
e−λMij . (93)

While it is unlikely if could be that yj0 happens to be relatively far away from all xi, such
that for all i,

1

n
e−λMij0 ≈ 1

n
e−744 < e−744 , (94)

which would mean that (KTu)j0 = 0, however, this would raise a ZeroDivisionError in the
next step when calculating vT/(KTu).

Python has another limitation on the other and of the scale, because any number greater
than approximately e710 will be assigned inf . While this does not crash the script, it does
notify you of an overflow. This ’number’ inf has the property that 1/inf = 0. Because
|710| < | − 744| we can have that 1/e−740 = inf. This allows vT/(KTu) to have some infinity
entries, however this is not a problem since we are notified, allowing us to lower λ accordingly.

The final component that could potentially suffer from round-off errors is K̄, however,
note that 0 < wi < 1 for all i and so 1/wi > 1. We now that K does not suffer from round-off
errors and so neither does

K̄ij = Kij
1

wi

> Kij > e−744 , ∀i, j . (95)

Since none of the operations cause round-off errors that go unnoticed we conclude that
restraint (88) is sufficient, provided that no errors are raised, in which case we can simply
lower λ a little.

3.3 Method analysis

Theorem 3.3 provides us with a method of estimating the Sinkhorn distance of points in an
underlying metric space. The accuracy of our estimation of the optimal transport distance
mainly depends on two factors.

9Of course, a ZeroDivisionError is not something we want, but if this does happen we can easily lower
λ a bit, which resolves the issue. This is different from the problem with e−λM since in that case the error
goes undetected, which results in an incorrect estimate of Pλ. If one performs algorithm 3.3 then it will run
indefinitely since the difference between the row sums and w does not converge to 0.
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The first of these is our value of λ. Since for λ → ∞ we have dλM → dM , so higher
values for λ provide a higher accuracy, we cannot however, increase λ as much as we like
as we have just seen in Section 3.2.1. For values that exceed a certain limit, computers will
round e−λMij down to zero, which breaks our algorithm, this is commonly referred to as the
”machine-precision limit”.

Another factor that impacts the accuracy of our estimation is the number of times (or
steps) we repeat step 2. and 3. of algorithm 2.12. While the repeatedly scaled matrix
eventually converges to Pλ, it takes some steps to get there, and if we were to prematurely
stop before we have sufficiently converged then this would negatively impact the validity of
our results.

Other sources of inaccuracies like the miscalculations caused by the use of floating-point
arithmetic, are not considered and deemed insignificant.

In order to analyse the convergence of algorithm 3.4 we generated 20 pairs of sets of 200
points of (0, 1)2 ⊂ R2. We performed steps 1.-3. of the algorithm. Then we performed one
iteration of step 5. and calculated Pλ, if all row-sums were within a% of w then we considered
the algorithm to have converged10, if not we performed another iteration and repeated. We
repeated this process for different values of λ and a on the same pairs of sets and recorded the
number of steps needed for the algorithm to converge. We then took the mean and median
over the 20 pairs of sets for each combination of λ and a. The results can be seen in figure 2.
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Figure 2: Figures that show the number of steps needed for algorithm 3.4 to converge for
multiple values of λ. Convergence is achieved when the difference between the row-sums of
Pλ, and w differ no more than a%. On the left-hand side we show the mean of the steps
needed, error bars denote the standard deviation. On the right-hand side the median is
shown, error bars denote the 25-th and 75-th percentile.

In order to see the differences in dλM for various numbers of steps we generated 20 systems
of two sets of 200 random points in (0, 1)2 with uniform weights. For each of these systems
we calculated the Sinkhorn distances between the two sets after multiples of 50 steps. Then
for each number of steps we averaged over the distances of all 20 systems. Since all points

10Note that it is guaranteed that the column-sums yield v, so there is no need to check this.
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lie within the unit cube, we know that the distance between two points cannot exceed
√
2,

and so we have chosen λ = 526 = ⌊744/
√
2⌋. The results can be seen in figure 3a. We have

done a similar analysis for different values of λ, where we fixed the number of steps to be the
100-th percentile, i.e. the maximum, of the 20 data points for each λ of a = 0.001% of figure
2a. This was done to ensure that we at least estimate Pλ with an error less than 0.001%.
The results are shown in figure 3b. These two variables show different behaviour - a higher
λ results in a lower distance, whereas a higher number of steps results in a higher distance.
However, this does not imply that we can simply find the ’best’ solution with a high λ and
a low number of steps. Notice that a high λ is a luxury, whereas a high number of steps is
a necessity. From theory we know that a higher λ corresponds to a higher α for dM,α, and
that if a1 < a2 then Ua1(r, c) ⊂ Ua2(r, c) and so

dM,α1 := min
P∈Uα1 (r,c)

⟨P,M⟩F ≤ min
P∈Uα2 (r,c)

⟨P,M⟩F =: dM,α2 . (96)

What we mean by a luxury is that while a higher λ provides us with an answer closer to the
optimal transport distance, it also comes at a higher computational cost as is described by
figure 2. Conversely, the number of steps is required to be high enough, because if it is not
then Pλ has not fully converged to a matrix with row sums w, hence it is a necessity to have
a high number of steps.
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Figure 3: Figures that show the average Sinkhorn distance between two random sets of points
of R2. On the left we varied the number of steps for the calculation of Pλ, and on the right
the value of λ. For every value of the two parameters we averaged the Sinkhorn distance of
20 systems, each containing two set of 200 random points in (0, 1)2. On the left we fixed
λ = 526 and on the right we fixed the number of steps, steps = 3000.

3.4 Hénon systems

We will be testing our methodology on a dynamical system called the Hénon system, we have
taken inspiration from Ref. [8]. Given some initial (x0, y0), we calculate subsequent points
as follows,

(xn+1, yn+1) = (1 + yn − ax2
n, bxn) . (97)
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The behavior of this system is governed by the parameters a and b, the sets generated for
some different parameters can be seen in figure 4.

1.0 0.5 0.0 0.5 1.0
x

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

y

a = 1.290, b = 0.300

(a)

1.0 0.5 0.0 0.5 1.0
x

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

y

a = 1.300, b = 0.300

(b)

Figure 4: Two sets of points generated with the Hénon map. Both sets result from the
starting conditions x0 = 0.1 and y0 = 0, but the first 1000 points of the iteration are
considered transient and do not appear in the plot. Both sets contain 5000 points. Figure 4a
has parameters a = 1.29, b = 0.30 and figure 4b has parameters a = 1.30, b = 0.30. The dots
are transparent, so dark spots indicate a more data points and lighter spots indicate fewer
data points.

While the parameters of figure 4a and figure 4b are very close, the resulting set of points
are completely different. The latter appears to be periodic, while the former is attracted to
some attractor. This results from the fact that the Hénon system is a chaotic one. Figure
5 shows the behavior of the Hénon iteration for different values of a at b = 0.3. For some
values of a the system exhibits periodic behaviour, like a = 1 and a = 1.25, and for others,
like a = 1.4 (the most commonly studied value), the system exhibits chaotic behaviour.

In order to see the change in the attractor as a result of varying the parameters a and b
we have created a python script. In this script we generate subsequent points with the Hénon
map starting from (x0, y0) = (0.1, 0). Since we consider the first 1000 points as transient,
the impact of the exact starting position is minute. We define the set Ha,b as the set that
contains N non-transient points of the iteration with parameters a and b, where N can vary
from plot to plot. We generate two of these sets which differ in either a or b and calculate
M′ as in Theorem 3.3. For the histograms we simply use uniform ones, i.e.

r = c = (1/N, · · · , 1/N) ∈ RN . (98)

Finally we calculate the Sinkhorn distance between the two sets of Hénon points using
algorithm 3.4.



4 RESULTS 20

Figure 5: The y-axis shows the probability of x for a given a, a darker colour indicates a
higher probability. Credit: [9].

4 Results

In this chapter we present the results of the method described in Section 3.4.

In Figure 6 we show the Sinkhorn distances between points on the attractor of H1.22,0.3

and Ha,0.3, where a is shown on the x-axis. As expected the attractors differ more for greater
differences in a, however the curve is not nice and smooth. This is likely a result from the
fact that we have a limited number of points of the Hénon system. This hypothesis is further
substantiated by the fact that the graph of the ”fast calculation” dataset which used less
points is more jagged than the graph of the ”slow calculation” which used more points of the
Hénon system. This shows that the system is sensitive to the number of data points used.
We expect that the graph will become more smooth if the number of points is increased and
the steps between a made smaller. Unfortunately we do not currently posses the resources
to perform a more sophisticated calculation.11 We do not necessarily expect the graph to
decrease monotonically as the attractors can have different topologies for different ranges of a.
In order to demonstrate this we would also have to perform a more sophisticated calculation.

11Another theory we have is that the graph approaches a fractal as the number of points increase to infinity
and as the step size becomes infinitesimally small. We think this could be a possibility due to the fractal-like
nature of the attractor. We have however, no supporting evidence for this theory and it should be seen as a
mere suggestion.
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Figure 6: Figure that shows the distance between the points of a Hénon system with b = 0.3
and a as shown on the x-axis, and the points of a Hénon system with b = 0.3 and a =
1.22. The ’slow calculation’ shows 30 values of a on a regular interval, with the distances
calculated with 10000 steps of algorithm 3.4 and 6000 data points of the Hénon system. The
’fast calculation’ was made with 2000 steps and 2000 points of the Hénon system and was
calculated for 90 values of a with regular intervals. For every distance calculation we picked
λ as described in Section 3.2.1.
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Figure 7: Figure that shows the distance between the points of a Hénon system with b = 0.3
and a as shown on the x-axis, and the points of a Hénon system with b = 0.3 and a+0.005 in
Figure 7a, and a+0.001667 in Figure 7b. Figure 7a shows 20 values of a on a regular interval,
with the distances calculated with 5000 steps of algorithm 3.4 and 5000 data points of the
Hénon system. The Figure 7b was made with 1500 steps and 2000 points of the Hénon system
and was calculated for 60 values of a with regular intervals. For every distance calculation
we picked λ as described in Section 3.2.1.

In Figure 7 we performed a similar analysis as in Figure 6 but instead of calculating the
distance to a fixed set of points we calculated the distance to the ”next” set of points. While
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the data is very noisy, both the ”slow” and the ”fast” calculation show two peaks at similar
values of a. Combined with the small peak in Figure 6 at the same value of a one might
expect that this is due to a change in topology, but the sets H0.3,1.17 and H0.3,1.17166 show no
drastic differences.

Unlike Figure 6 we have split the results into two plots. We made this decision because
in Figure 6 both graphs show to same data for a given a, i.e. the Sinkhorn distance between
H0.3,a and H0.3,1.22, for different numbers of Hénon points. Conversely, in Figure 7, the data
shown for a given a is the Sinkhorn distance between H0.3,a and H0.3,a+δa, where a differs for
Figure 7a and 7b making it unfair to compare the two.

In Figure 8 we performed an analysis similar to the one in Figure 6, but this time we
varied b. This curve shows a more monotonic behaviour. As a sanity check we see that the
distance approaches zero as the two sets approach each other. In Figure 9 the analysis was
the same as in Figure 7 but instead we varied b. The huge peak is caused by the fact that
the Hénon system is periodic for a = 1.4 and b = 0.225 as can be seen in Figure 10. The
reason we do not see a similar peak in Figure 8 is because it uses slightly different values for
b and hence the value of b that has a periodic behaviour was narrowly avoided.12
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Figure 8: Figure that shows the distance between the points of a Hénon system with a = 1.4
and b as shown on the x-axis, and the points of a Hénon system with a = 1.4 and b = 0.3.
The calculation was done by performing 5000 steps of algorithm 3.4 for each of the 20 values
of b, and by using 5000 data points for the Hénon system, without the first 1000 transient
data points.

12This is one of the effects caused by the coarseness of the calculations; using a finer x-axis will result in
less detail being missed, but comes at the cost of being more computationally expensive.
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Figure 9: Figure that shows the distance between the points of a Hénon system with a = 1.4
and b as shown on the x-axis, and the points of a Hénon system with a = 1.4 and b+0.005 in
Figure 9a, and b+0.001667 in Figure 9b. Figure 9a shows 20 values of a on a regular interval,
with the distances calculated with 5000 steps of algorithm 3.4 and 5000 data points of the
Hénon system. The Figure 9b was made with 1500 steps and 2000 points of the Hénon system
and was calculated for 60 values of b with regular intervals. For every distance calculation
we picked λ as described in Section 3.2.1.

(a) (b)

Figure 10: On the left H1.4,0.225 and on the right H1.4,0.227. The number of points visible are
5000. The Sinkhorn distance between these sets can be seen in Figure 9.
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5 Conclusion

In this thesis we looked at the concept of optimal transport and how an entropic regularisa-
tion allowed the application of Sinkhorn’s theorem. We investigated the rate of convergence
of this method and applied it to investigate the attractor of the Hénon system.

Our results show that the distribution of the points along the attractor is impacted by the
number of data points. Unfortunately we did not posses the computational power required
to generate enough data points such that this dependency can be mitigated. We tried to
generate a system with 20000 points but python could not handle a matrix this big and raised
a MemoryError.

In order to find the exact optimal transport distance between two sets you would need
to let λ and the number of steps go to infinity. Of course this is not possible with any com-
puter. Because of this we had to settle for the concerned values, but our results in Chapter
3.3 show that the concerned values provided ample convergence of the Sinkhorn distance to
the optimal transport distance.

If I were to revisit this project I would start by rewriting my python script into a faster
language like C + +, this way I can calculate the Sinkhorn distances between the Hénon
systems much faster which allows me to use more data points for the Hénon systems. This
would hopefully resolve the noisy data like the one in Figure 6. With the extra speed in mind
I could vary both a and b simultaneously, allowing for a ”grid” of parameters. This would
give more insight in the effects these parameters have on the attractor.
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