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Abstract

All the way back to the time of the ancient Greeks, it was the great mathematician Euclid who proved that
there are infinitely many primes. In his proof, he presents a method for constructing an infinite sequence
of distinct primes. Specifically, the method ensures that given a finite sequence of distinct primes, we
can always find a new prime that is different from all the primes in that sequence, which proves that the
sequence of all primes cannot be finite. However, Euclid does not specify exactly which prime we should
choose in each step of the method, but merely how we should choose one. Hence, the infinite sequence
that eventually arises from following Euclid’s method depends on our specific choice of the next prime
in each step. This thesis is concerned with one specific such sequence called the second Euclid-Mullin
sequence. In particular, it has been proven that infinitely many primes are missing from this sequence.
In this thesis, we will analyze and expand upon two such already existing proofs.
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1 Introduction

Around 300 BC, Euclid - one of the most prominent mathematicians of all time - proved that there exist
infinitely many primes.

To provide a bit of background on Euclid, it is worth knowing that he pioneered especially in the field of
geometry. He is most famous for his treatise called “The Elements” [6]. Although a large part of this treatise
concerns geometry, a significant portion of it actually deals with number theory. In particular, it is in The
Elements where Euclid’s proof of the infinitude of primes appeared for the first time.

Theorem 1.1 (Euclid). There are infinitely many prime numbers.

Proof. We construct an infinite sequence p1, p2, p3, . . . of distinct prime numbers. First, we choose p1 = 2.
Second, we choose p2 to be a prime divisor of p1 + 1, so we obtain p2 = 3. Third, we choose p3 to be
a prime divisor of p1p2 + 1, yielding p3 = 7. Suppose we have created a strictly monotonically increasing
finite sequence p1, p2, . . . , pn of prime numbers (where n ≥ 1). Consider the sum P := 1 +

∏n
j=1 pj , which

is either prime or composite. If P is prime, then since it is different from all of the primes in the sequence
p1, p2, . . . , pn, we choose pn+1 = P . If P is composite, we define pn+1 to be a prime divisor of P . Then
pn+1 is different from all of p1, p2, . . . , pn. To see why, suppose that it is not. Then pn+1 = pj for some
j ∈ {1, 2, . . . , n}, and thus pn+1|

∏n
j=1 pj and also pn+1|P . However, using the distributive law, we see that

we must then have that pn+1|1. This is a contradiction since no prime is a divisor of 1. So in both the case
that P is prime and the case that P is composite, we have found a prime pn+1that is different from all the
n primes in our initial sequence, with which the theorem has been proven.

Note that Euclid’s proof is a proof by construction. The method that Euclid presents ensures that given a
finite sequence of distinct primes, we can always find a new prime that is different from all the primes in that
sequence. This proves that the sequence of all primes cannot be finite.

However, in the case that the sum P is composite, Euclid does not specify exactly which prime divisor of
P we should choose. That is, the infinite sequence that eventually arises from following Euclid’s method
depends on our specific choice of the next prime in each step.

The two most intuitive ways of choosing the prime divisor of the sum P are, as proposed by Mullin [14]:

1. always choosing the smallest such one;

2. always choosing the largest such one.

The two sequences arising this way are

2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, . . . (1)

and

2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129, 1368845206580129, . . . , (2)

respectively. They appear in the OEIS [11] as the sequences A000945 and A000946 and they are known as
Euclid-Mullin sequences.

Several papers have been written on the sequence (1), but in general not much is known about it still.
Nonetheless, there is a conjecture by Shanks [13] that says that it contains all the primes.

However, this thesis is concerned with the sequence (2), which is often referred to as the second Euclid-Mullin
sequence. Henceforth, we will denote this sequence by {Pn}∞n=1. To be specific, the sequence {Pn}∞n=1 is
formally defined as: P1 = 2, and for n ≥ 1 the entry Pn+1 is the largest prime divisor of 1 +

∏n
j=1 Pj .

In particular, it has been proven that infinitely many primes are missing from the second Euclid-Mullin
sequence. Building on the work of Cox and Van der Poorten [5], it was Booker who, in 2012, was the first



1 INTRODUCTION 2

to prove this in [3]. Booker provides an analytic proof which involves quadratic Dirichlet characters, funda-
mental discriminants, and Burgess’s bounds [4].

Then, in 2014, Pollack and Treviño [12] gave an alternative, entirely elementary proof. Their proof uses
quadratic residues and nonresidues, and Legendre and Jacobi symbols as well as their properties.

In this thesis, both the proof of Booker and the proof of Pollack and Treviño are analyzed and expanded
upon. Therefore, the main theorem of this thesis is the following:

Theorem 1.2 (Booker). Infinitely many primes are missing from the second Euclid-Mullin sequence.

In Chapter 3 we will be dealing with the proof of Pollack and Treviño, and in Chapter 4 we will cover the
proof of Booker. But before we delve into the proofs of Pollack and Treviño and Booker, we will first establish
the necessary prior knowledge in Chapter 2.
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2 Preliminaries

This chapter introduces certain concepts that we will need to comprehend before we get started on the proofs
presented in Chapters 3 and 4.

We will assume throughout that the reader is familiar with modular arithmetic and some basic concepts and
results from linear algebra as well as from group theory.

The results in the first part of this chapter, up to and including Theorem 2.15, are taken from Beukers’s book
[2] (specifically pages 35, 37, 59 and 60, and Chapter 11), with the exception of the parts that deal with the
concept of the (full) (non)square reach.

We start by stating a theorem that can be used to determine the total number of divisors of any integer
greater than 1.

Theorem 2.1. Let n > 1 be an integer and let pk1
1 p

k2
2 · · · pkm

m be the prime factorization of n. Let us denote
the denote the total number of divisors of n by d(n). Then

d(n) =

m∏
i=1

(ki + 1).

The following theorem says something about the solvability of linear congruences.

Theorem 2.2. Let a, b and M be integers such that M ≥ 2. Let d = gcd (a,M). Then the congruence

ax ≡ b (mod M)

has solutions x ∈ Z if and only if d|b.
Next, we introduce quadratic residues and nonresidues.

Definition 2.3. Let p be an odd positive prime number and let a ∈ Z such that p ∤ a. We say that a is a
quadratic residue modulo p if the congruence x2 ≡ a (mod p) has a solution x ∈ Z. If this congruence
does not have a solution x ∈ Z, the number a is called a quadratic nonresidue modulo p.

Remark 2.4. Note that in order to determine the quadratic residues and nonresidues modulo p, it suffices
to determine x2 (mod p) for x = 1, 2, . . . , p−1

2 . This is due to the fact that (p− x)2 ≡ (−x)2 ≡ x2 (mod p).

Example 2.5. As an example, we determine the quadratic residues and nonresidues modulo 23. So, we have
to determine x2 (mod 23) for x = 1, 2, . . . , 11. We obtain

12 ≡ 1, 22 ≡ 4, 32 ≡ 9, 42 ≡ 16, 52 ≡ 2, 62 ≡ 13, 72 ≡ 3, 82 ≡ 18, 92 ≡ 12, 102 ≡ 8, 112 ≡ 6.

Therefore, the quadratic residues modulo 23 are 1, 2, 3, 4, 6, 8, 9, 12, 13, 16 and 18, whereas the quadratic
nonresidues modulo 23 are 5, 7, 10, 11, 14, 15, 17, 19, 20, 21 and 22.

Throughout Chapter 3 we will denote by n∗(p) the least positive quadratic nonresidue modulo an odd positive
prime p. Note that for all odd positive primes p we have n∗(p) > 1 (since 1 is a quadratic residue modulo
any positive prime) and n∗(p) < p.

We now introduce a new notion, namely that of the (full) (non)square reach.

Definition 2.6. Let M > 1. The length of the longest sequence of consecutive quadratic residues (respectively
nonresidues) modulo M is called the square reach of M (respectively nonsquare reach of M) and denoted
by R□(M) (respectively R⊠(M)). In both instances, if we allow multiples of M to be included in the longest
sequences, we refer to the full square reach of M and the full nonsquare reach of M and denote these
by R□(M) and R⊠(M), respectively.

Remark 2.7. We emphasize that a sequence corresponding to the full square reach of M merely allows
integers congruent to 0 moduloM , but that does not mean that it necessarily contains such integers. Only in
the case that allowing multiples of M results in a sequence of consecutive quadratic residues that has length
greater than the square reach of M , the full square reach of M is strictly greater than the square reach of
M . Otherwise, the full square reach and square reach of M are equal. The same reasoning holds for the full
nonsquare reach ofM compared to the nonsquare reach ofM . Put more formally, we have R□(M) ≥ R□(M)
and R⊠(M) ≥ R⊠(M) for all M > 1.
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Example 2.8. In Example 2.5 we determined the quadratic residues and nonresidues modulo 23. If we
look at the sequence 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18 of quadratic residues, we see that the longest sequence of
consecutive terms is 1, 2, 3, 4, which is of length 4, so R□(M) = 4. If we allow multiples of 23 to be included,
the longest sequence of consecutive residues is obtained by adding 0 to the latter sequence, yielding the
sequence 0, 1, 2, 3, 4, so R□(23) = 5. Likewise, if we consider the sequence 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22 of
quadratic nonresidues, we see that 19, 20, 21, 22 is the longest sequence of consecutive terms. So R⊠(23) = 4.
Lastly, we have R⊠(23) = 5, because if we allow multiples of 23 to be included, we obtain the longest sequence
of consecutive nonresidues by adding 23 to the latter sequence, yielding the sequence 19, 20, 21, 22, 23.

The Legendre symbol, which we will define next, is used for detecting quadratic residues and nonresidues
modulo odd primes p.

Definition 2.9. Let p be an odd prime number and let a ∈ Z. The Legendre symbol is defined as follows:

(
a

p

)
:=


1, if a is a quadratic residue modulo p

−1, if a is a quadratic nonresidue modulo p

0, if p|a

Rather than mentioning all properties of the Legendre symbol, we will point out one that will be of particular
importance in this thesis.

Property 2.10. The Legendre symbol is a completely multiplicative function of its first argument. Precisely,
this means that for all a, b ∈ Z and all odd primes p we have(

ab

p

)
=

(
a

p

)(
b

p

)
.

In particular, Property 2.10 implies the following theorem.

Theorem 2.11. Let p be an odd positive prime. Then we have the following:

1. The product of two quadratic residues modulo p is again a quadratic residue.

2. The product of two quadratic nonresidues modulo p is a quadratic residue.

3. The product of a quadratic residue and a quadratic nonresidue is a quadratic nonresidue modulo p.

The Jacobi symbol is a generalization of the Legendre symbol in the sense that its second argument is defined
for all odd natural numbers. It is defined in terms of the Legendre symbol, as follows:

Definition 2.12. Let n ∈ N>0 be odd and let a ∈ Z. Let n = pk1
1 · · · pkm

m be the prime factorization of n.
The Jacobi symbol

(
a
n

)
is defined as(

a

n

)
:=

(
a

p1

)k1
(
a

p2

)k2

· · ·
(
a

pm

)km

.

Example 2.13. Consider n = 33 and a = 4. The prime factorization of 33 is 3 · 11. The number 4 is a
quadratic residue modulo 3, because 12 ≡ 4 (mod 3), so

(
4
3

)
= 1. And, since 22 ≡ 4 (mod 11), the number 4

is also a quadratic residue modulo 11, so
(
4
11

)
= 1. Therefore, we have

(
4
33

)
=
(
4
3

)(
4
11

)
= 1 · 1 = 1.

The following property for the Jacobi symbol follows directly from Definition 2.12 and Property 2.10.

Property 2.14. The Jacobi symbol is a completely multiplicative function of its first argument as well as of
its second argument. More formally, this means that for all a, b ∈ Z and all positive odd integers m and n
we have (

ab

n

)
=

(
a

n

)(
b

n

)
and

(
a

mn

)
=

(
a

m

)(
a

n

)
,

respectively.
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In particular, Property 2.14 implies that(
a2

n

)
=

(
a

n

)2

as well as

(
a

n2

)
=

(
a

n

)2

,

ensuring that both of these expressions are equal to either 0 or 1.

We state the following important theorem.

Theorem 2.15 (Law of quadratic reciprocity for the Jacobi symbol). Let m and n be positive odd
integers such that gcd (m,n) = 1. Then,

1.
(−1

n

)
= (−1)

n−1
2

2.
(
2
n

)
= (−1)

n2−1
8

3.
(
m
n

)(
n
m

)
= (−1)

m−1
2

n−1
2 .

The next part of this chapter deals with Dirichlet characters. The content of this part, up to and including
Theorem 2.28, is taken from Apostol’s book [1], in particular page 24 and Chapters 6 and 8.

Before we state the definition of a Dirichlet character, we first need the notions of characters of a group and
arithmetic functions.

Definition 2.16. Let G be any group. A character of G is a complex-valued function f defined on G that
satisfies the following two conditions:

1. For all a, b ∈ G we have f(ab) = f(a)f(b).

2. For some c ∈ G we have f(c) ̸= 0.

Definition 2.17. An arithmetic function is a real- or complex-valued function defined on N>0.

Definition 2.18. Let G be the group of reduced residue classes modulo k. We associate to each character f
of G an arithmetic function χ = χf such that

χ(m) =

{
0, if gcd (m, k) > 1

f(m̂), if gcd (m, k) = 1,

where m̂ = {a : a ≡ m (mod k)} is the residue class for m. We call the function χ a Dirichlet character
modulo k.

In particular, a quadratic Dirichlet character takes on only real values.

Remark 2.19. We note that the only non-zero values that a Dirichlet character takes on are roots of unity,
which are complex numbers that result in the value 1 when they are taken to the power of some positive
integer. More precisely, an n-th root of unity is a complex number z such that zn = 1, where n is a positive
integer. Therefore, the only non-zero values that a quadratic Dirichlet character takes on are 1 and −1, since
these are the only two real roots of unity.

Theorem 2.20. Let χ be a Dirichlet character modulo k. Then the following two statements hold:

1. The character χ is completely multiplicative. That is, we have χ(mn) = χ(m)χ(n) for all m and n.

2. The character χ is periodic with period k, meaning that χ(m+ k) = χ(m) for all m.

Example 2.21. The most basic example of a quadratic Dirichlet character is the principal character (some-
times called the trivial character), denoted by χ0, which is defined as

χ0(m) =

{
0, if gcd (m, k) > 1

1, if gcd (m, k) = 1,

where k is the modulus of χ0.
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Example 2.22. Let p be an odd prime and letm ∈ Z. Consider the Legendre symbol
(
m
p

)
(see Definition 2.9),

which is 0 if gcd (m, p) > 1 and either 1 or −1 if gcd (m, p) > 1, and moreover, which is periodic with period
p. Furthermore, recall from Property 2.10 that the Legendre symbol is completely multiplicative. We see
that it follows that χ(m) :=

(
m
p

)
is a non-principal quadratic Dirichlet character modulo p.

Next, we will define the notions of induced moduli, conductors, and primitive Dirichlet characters.

Definition 2.23. Let χ be a Dirichlet character modulo k. Let d > 0 be such that d|k. If we have χ(a) = 1
for all a such that gcd (a, k) = 1 and a ≡ 1 (mod d), the number d is said to be an induced modulus for
the character χ.

In particular, for every Dirichlet character χ modulo k, the modulus k is an induced modulus for χ.

Definition 2.24. Let χ be a Dirichlet character modulo k. The conductor of χ is the smallest induced
modulus for χ.

Definition 2.25. A Dirichlet character χ modulo k is called primitive if there exists no integer d < k that
is an induced modulus for χ.

In other words, a Dirichlet character χ modulo k is primitive precisely when the conductor of χ is equal to k.

Next, we state the following result regarding the conductor of a Dirichlet character.

Theorem 2.26. The conductor of a Dirichlet character χ is a divisor of every induced modulus for χ.

Remark 2.27. Note that Theorem 2.26 implies in particular that the conductor of a Dirichlet character χ
modulo k is a divisor of k.

An important result for Dirichlet characters is the following:

Theorem 2.28. Let χ be a Dirichlet character modulo k. Then χ can be expressed as

χ(n) = ψ(n)χ0(n) for all n,

where χ0 is the principal character modulo k and ψ is a primitive character modulo the conductor of χ.

Let us introduce some notation. When we write f(x) ≪ϵ g(x) for two functions f and g, we will understand
this to mean that there exists a constant Cϵ > 0 such that |f(x)| ≤ Cϵ|g(x)|. We emphasize that the constant
Cϵ is dependent on ϵ. The following theorem uses this notation.

Theorem 2.29 ([10, Theorem 1]). Let ϵ > 0 be arbitrarily small. Let χ be a non-principal Dirichlet
character modulo q, and let nχ be the least positive integer for which χ takes on a value that is not 0 or 1.
Then for all integers q ≥ 2, we have

nχ ≪ϵ

{
q

1
4
√

e
+ϵ

if q is cubefree,

q
1

3
√

e
+ϵ

otherwise.

Lastly, we define fundamental discriminants and we state an important result that connects these to primitive
quadratic Dirichlet characters.

Definition 2.30 ([9]). An integer D is called a fundamental discriminant if one of the following three
statements holds:

1. D ≡ 1 (mod 4) and D is squarefree.

2. D = 4m, where m ≡ 2 (mod 4) and m is squarefree.

3. D = 4m, where m ≡ 3 (mod 4) and m is squarefree.

The next theorem involves the concept of Kronecker symbols. We will not give a formal definition of the
Kronecker symbol, but we will merely state that, similar to the Jacobi symbol being a generalization of the
Legendre symbol, the Kronecker symbol is a generalization of the Jacobi symbol. That is, the Kronecker
symbol

(
a
n

)
is defined for all a, n ∈ Z.

Theorem 2.31 ([7, Theorem 1.1]). Let D be a fundamental discriminant. Then the Kronecker symbol(
D
·
)
is a primitive quadratic Dirichlet character modulo |D| (which is also the conductor of χ). Conversely,

let χ be a primitive quadratic Dirichlet character. Then there exists a unique fundamental discriminant D
such that χ =

(
D
·
)
.
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3 An elementary proof

This chapter is completely based on the article [12] by Pollack and Treviño; all results are from [12] and we
follow the treatment and proof strategies of [12].

This chapter deals with Pollack Treviño’s elementary proof of Theorem 1.2 as provided in their article [12].

We start by proving a bound on n∗(p).

Lemma 3.1 ([12, Lemma 1]). If p is a positive odd prime, then n∗(p) < 1
2 +

√
p.

Proof. Let p be a positive odd prime, and let us write n := n∗(p). Since p is prime, the number p
n is not an

integer. Therefore, we know that
⌈
p
n

⌉
> p

n . Multiplying both sides of this inequality by n yields

n

⌈
p

n

⌉
> p. (1)

By definition of the ceiling function, we have that⌈
p

n

⌉
<
p

n
+ 1, (2)

or equivalently (since n > 0),

n

⌈
p

n

⌉
< p+ n. (3)

Subtracting p from both sides of inequalities (1) and (3) and combining the resulting inequalities, we obtain
0 < n

⌈
p
n

⌉
− p < n. All integers in the open interval (0, n) are strictly smaller than p and hence not divisible

by p, meaning each of them is either a quadratic residue or a quadratic nonresidue modulo p. But, since n
is the least positive quadratic nonresidue modulo p, all integers in the open interval (0, n) must be quadratic
residues modulo p. Therefore, particularly the number n

⌈
p
n

⌉
−p is a quadratic residue modulo p. Equivalently,

this means that n
⌈
p
n

⌉
is a quadratic residue modulo p (since n

⌈
p
n

⌉
− p ≡ n

⌈
p
n

⌉
(mod p)). Since n

⌈
p
n

⌉
is a

quadratic residue and n is a quadratic nonresidue, it follows from Theorem 2.11 that
⌈
p
n

⌉
must be a quadratic

nonresidue modulo p. Hence by definition of n (and since
⌈
p
n

⌉
is positive), we have⌈

p

n

⌉
≥ n (4)

Combining inequalities (2) and (4), we obtain

1 +
p

n
>

⌈
p

n

⌉
≥ n =⇒ 1 +

p

n
> n

=⇒ n+ p > n2 (since n > 0)

=⇒ p > n2 − n

=⇒ p ≥ n2 − n+ 1,

where the last step follows from the fact that both p and n2 − n are integers. Therefore we obtain(
n− 1

2

)2

= n2 − n+
1

4
< n2 − n+ 1 ≤ p.

So we have found in particular that
(
n− 1

2

)2
< p, from which it follows that n − 1

2 <
√
p, or equivalently

n < 1
2 +

√
p, as desired.

Next, we show that the square reach of a positive odd prime is bounded.

Lemma 3.2 ([12, Lemma 2]). If p is a positive odd prime and 2 ≤ n < p is a quadratic nonresidue modulo
p, then R□(p) ≤ max

{
p
n , n− 1

}
.
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Proof. Let p be a positive odd prime, and let 2 ≤ n < p be a quadratic nonresidue modulo p. Define
R := R□(p). We want to prove that either R ≤ p

n , or R ≤ n − 1. To this end, we proceed by assuming
that R > p

n , in which case we need to show that R ≤ n − 1. Let us fix a number a ∈ Z such that
a+ 1, a+ 2, . . . , a+R is a sequence of consecutive quadratic residues modulo p. If we multiply each term in
this sequence by n, this yields the sequence na+ n, na+ 2n, ..., na+Rn. Each term in the latter sequence
is a product of a quadratic nonresidue (n) and a quadratic residue (a+ i, where i ∈ {1, 2, . . . , R}) and hence
by Theorem 2.11 is a quadratic nonresidue modulo p.
Consider the intervals

(na+ jn, na+ (j + 1)n) with 1 ≤ j <

⌈
p

n

⌉
, and

(
na+

⌈
p

n

⌉
n, na+ n+ p

)
. (∗)

We will show that each quadratic residue can be viewed modulo p in such a way that it is contained in exactly
one of these intervals.
Since p is prime, the number p

n is not an integer. But R is an integer. So R > p
n is equivalent to R ≥

⌈
p
n

⌉
.

This means that
{
na+n, na+2n, . . . , na+

⌈
p
n

⌉
n
}
⊂
{
na+n, na+2n, . . . , na+Rn

}
, where the latter set is a

set of quadratic nonresidues. Therefore, na+ jn for 1 ≤ j ≤
⌈
p
n

⌉
are quadratic nonresidues. Note that since

na+n+ p ≡ na+n (mod p), this means that all boundaries of the intervals in (∗) are quadratic nonresidues
modulo p.
Consider the union of the intervals in (∗). That is, consider the set
U := (na+ n, na+ 2n) ∪ (na+ 2n, na+ 3n) ∪ · · · ∪

(
na+

(⌈
p
n

⌉
− 1
)
n, na+

⌈
p
n

⌉
n
)
∪
(
na+

⌈
p
n

⌉
n, na+ n+ p

)
.

The set U ranges over exactly one period of length p; as stated above, the left boundary of the first interval
is congruent modulo p to the right boundary of the last interval. Every integer that is not contained in the
set U is a quadratic nonresidue (these are the boundaries). Put differently, considered modulo p, (at least)
all of the integers in the sequence 0, 1, . . . , p− 1 that are not quadratic nonresidues are contained in the set
U , and no two distinct integers in the set U are congruent modulo p. Therefore, by each quadratic residue
must be contained in exactly one of the intervals that make up the set U .
The number of integers in an interval of the form (na+ jn, na+ (j + 1)n) is
na+ (j + 1)n− (na+ jn)− 1 = n− 1, and the number of integers in the interval

(
na+

⌈
p
n

⌉
n, na+ n+ p

)
is na+ n+ p− (na+

⌈
p
n

⌉
n)− 1 = n+ p−

⌈
p
n

⌉
n− 1. Note that since p is prime, we have

⌈
p
n

⌉
> p

n , or

equivalently,
⌈
p
n

⌉
n > p. It follows that n+ p−

⌈
p
n

⌉
n− 1 < n− 1.

The construction of the intervals in (∗) ensures that each sequence of consecutive quadratic residues is
contained in exactly one of these intervals. Hence we see that the square reach of p is at most n− 1, which
completes the proof.

This allows us to show that also the full square reach of a positive odd prime is bounded.

Lemma 3.3 ([12, Proposition 3]). If p is a positive odd prime, then R□(p) < 2
√
p.

Proof. Let p be a positive odd prime, and let us define n := n∗(p). We give a proof by cases.

Case 1 Assume that R□(p) > R□(p). Then, if we allow integers congruent to 0 modulo p to be included
when determining the longest sequence of consecutive quadratic residues, this sequence must contain
a multiple of p. Hence we can view this sequence modulo p in such a way that it contains 0, which is
exactly what we will do in the following two subcases:

Case 1a Assume that −1 is not a quadratic residue modulo p. Then we can regard our sequence as
starting at 0. Moreover, it follows from the way that n is defined that the least positive integer
that is not included in the sequence is n. Thus, we can consider our sequence modulo p as the
sequence 0, 1, 2, . . . , n− 1, which has length n.

Case 1b Assume that −1 is a quadratic residue modulo p. Then, again, the integer n is the least
positive integer that is not included in our sequence. Moreover, each −k = −1 · k, where k =
1, 2, . . . , n− 1, is the product of two quadratic residues and hence by Theorem 2.11 is a quadratic
residue. Note that −n = −1 ·n is the product of a quadratic residue and a nonresidue, so again by
Theorem 2.11 it is a quadratic nonresidue and therefore it is not included in the sequence. Hence,
we obtain the sequence −(n− 1),−(n− 2), . . . ,−2,−1, 0, 1, 2 . . . , n− 2, n− 1 of length 2n− 1.
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From the fact that n > 1 it follows that 2n > 1 + n, or equivalently 2n − 1 > n. So in both cases 1a
and 1b we see that R□(p) ≤ 2n− 1. Moreover, by Lemma 3.1 we have n < 1

2 +
√
p, which implies that

2n < 1 + 2
√
p, and hence 2n− 1 < 2

√
p. This shows that in case 1 we indeed have R□(p) < 2

√
p.

Case 2 Assume that R□(p) = R□(p). We again distinguish between two subcases:

Case 2a Assume that the interval
(
1
2

√
p, 2

√
p
]
contains a quadratic nonresidue modulo p, say m. We

will show that in this case the bound on R□(p) results from Lemma 3.2.
As m is an integer, requiring m to satisfy 1

2

√
p < m ≤ 2

√
p means the same as requiring m to

satisfy
⌈
1
2

√
p
⌉
≤ m ≤

⌊
2
√
p
⌋
. In order to apply Lemma 3.2, we need to verify that 2 ≤ m < p.

That is, we have to check that
[⌈

1
2

√
p
⌉
,
⌊
2
√
p
⌋]

⊆ [2, p). If the prime p is greater than or equal to

5 we obtain the following:

p ≥ 5 =⇒ √
p ≥

√
5

=⇒ 1

2

√
p ≥ 1

2

√
5

=⇒
⌈
1

2

√
p

⌉
≥
⌈
1

2

√
5

⌉
= 2

and

p ≥ 5 > 4 =⇒ 1

4
p > 1

=⇒ 1

4
p2 > p

=⇒ 1

2
p >

√
p

=⇒ p > 2
√
p >

⌊
2
√
p
⌋
.

If p = 3, we note that
[⌈

1
2

√
p
⌉
,
⌊
2
√
p
⌋]

= [1, 3] ⊈ [2, 3) = [2, p). However, the only quadratic

nonresidue modulo 3 in the interval [1, 3] is 2, and 2 ∈ [2, 3) so also if p = 3 we can apply
Lemma 3.2.
So, since p is a positive odd prime and 2 ≤ m < p is a quadratic nonresidue modulo p, it follows

from Lemma 3.2 that R□(p) = R□(p) ≤ max
{

p
m ,m−1

}
. If max

{
p
m ,m−1

}
= p

m , then we obtain

m >
1

2

√
p =⇒ 1

m
<

2
√
p

=⇒ p

m
< 2

√
p.

On the other hand, if max
{

p
m ,m− 1

}
= m− 1, then m ≤ 2

√
p implies that m− 1 < 2

√
p.

Hence, we see that in case 2a we have R□(p) = max
{

p
m ,m− 1

}
< 2

√
p.

Case 2b Assume that the interval
(
1
2

√
p, 2

√
p
]
does not contain a quadratic nonresidue modulo p.

Since p is a positive prime, we have

p > 1 =⇒ √
p > 1

=⇒ 2
√
p > 1 +

√
p >

1

2
+
√
p > n,

where the last inequality of the compound inequality follows from Lemma 3.1. Consequently,
since n < 2

√
p and since n is a quadratic nonresidue and is therefore not contained in the interval(

1
2

√
p, 2

√
p
]
, we must have that

n ≤ 1

2

√
p. (5)
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Each of the integers 1, 2, . . . , p−1 is either a quadratic residue or a quadratic nonresidue modulo p
(because none of these integers is a mulitple of p). Therefore, by Theorem 2.11 each of the squares
12, 22, . . . , (p− 1)2 is a quadratic residue.

Consider the integers k2n, where 1 ≤ k < p. As each of these is the product of a quadratic residue
(k2) and a quadratic nonresidue (n), again it follows from Theorem 2.11 that each is a quadratic
nonresidue modulo p.

Let us choose k to be the greatest integer such that

k2n ≤ 1

2

√
p, (6)

or equivalently,

−k2n ≥ −1

2

√
p. (7)

(Note that this statement is validated by inequality (5), which guarantees that inequality (6) holds
in any case at the very least for k = 1.) Then we have (k + 1)2n > 1

2

√
p, where (k + 1)2n is a

quadratic nonresidue. And because there are no quadratic nonresidues in the interval
(
1
2

√
p, 2

√
p
]
,

it follows that
(k + 1)2n > 2

√
p. (8)

Adding inequality (7) to inequality (8), we find

(k + 1)2n− k2n > 2
√
p− 1

2

√
p =⇒ k2n+ 2kn+ n− k2n >

3

2

√
p

=⇒ (2k + 1)n >
3

2

√
p.

Moreover, if we multiply both sides of inequality (6) by 3, we obtain 3
2

√
p ≥ 3k2n. Hence, we have

found that (2k + 1)n > 3k2n. Since n is positive, the latter inequality is equivalent to

2k + 1 > 3k2. (9)

On the other hand, we have 1 ≤ k, which implies that

1 + 2k ≤ 3k. (10)

And, 1 ≤ k also implies that k ≤ k2, or equivalently,

3k ≤ 3k2. (11)

Combining inequalities (10) and (11), we obtain 1+2k ≤ 3k2. However, this contradicts inequality
(9).

The above shows that in case 2, there must be a quadratic nonresidue modulo p in the interval(
1
2

√
p, 2

√
p
]
, in which case we have proved that R□(p) < 2

√
p.

Since case 1 and case 2 exhaust all possibilities (see Remark 2.7), we have shown that R□(p) < 2
√
p,

concluding the proof.

Remark 3.4. The careful reader will notice that if k = p− 1 is the largest k such that inequality (6) holds,
then (k+1)2n = p2n is not a quadratic nonresidue since p|p2n, such that inequality (8) need not necessarily
be true. However, although this might not be intuitively clear directly, we will show that it is impossible for
k to be equal to p− 1. To that end, let us assume for the sake of arriving at a contradiction, that k = p− 1
is the largest k such that inequality (6) holds. We first check that

(p− 1)2 >
√
p (12)

holds for positive odd primes p. Solving this inequality by hand would require our use of the quar-
tic formula, but this is a considerably complicated and very extensive formula. Therefore, we will
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rather enter the inequality into a calculator. Doing so, we find that its solution is given by the set
{p | p ∈ [0, 0.275508) ∪ (2.220744,∞)}. Hence we see that inequality (12) holds in particular for all posi-
tive odd primes p. Moreover, we know that n > 1 > 1

2 . Combining inequality (12) and the fact that n > 1
2 ,

we find that, since (p− 1)2,
√
p and n are all positive,

n(p− 1)2 >
1

2

√
p

for positive odd primes p, contradicting inequality (6) for k = p− 1.

Next, we will prove that the full nonsquare reach of a positive odd prime is bounded. The idea of the proof
is very similar to that of the proof of Lemma 3.2.

Lemma 3.5 ([12, Proposition 4]). If p is a positive odd prime, then R⊠(p) < 2
√
p.

Proof. Let p be a positive odd prime. Consider the intervals(
j2, (j + 1)2

)
, where 1 ≤ j <

⌊√
p
⌋
, and

(⌊√
p
⌋2
, p+ 1

)
. (∗∗)

We will prove that each quadratic nonresidue and each multiple of p can be regarded modulo p as being
included in exactly one of these intervals.
First of all, note that every multiple of p can be viewed modulo p as being contained in the interval(⌊√

p
⌋2
, p+ 1

)
since p ∈

(⌊√
p⌋2, p+ 1

)
. The integers 1, 2, . . . ,

⌊√
p
⌋
are not divisible by p; hence by Theo-

rem 2.11 their squares are quadratic residues modulo p. Thus, noting that 12 ≡ p + 1 (mod p), we see that
all boundaries of the intervals in (∗∗) are quadratic residues modulo p.

Define U :=
(
12, 22

)
∪
(
22, 32

)
∪ · · ·

(
⌊√p⌋2, p+ 1

)
, the union of the intervals in (∗∗). The set U encompasses

one whole period of length p; as already mentioned, the left boundary of the most left interval and the right
boundary of the most right interval are congruent modulo p. Each integer that is excluded from the set U is a
quadratic residue; these are represented by the boundaries. In other words, the set U can be regarded modulo
p to contain (at least) all of the integers in the sequence 2, 3, . . . , p that are not quadratic residues. Also,
there are no two different integers in the set U that are congruent modulo p. Consequently, each quadratic
nonresidue and each multiple of p is included in precisely one of the intervals in (∗∗).
The number of integers in an interval of the form

(
j2, (j + 1)2

)
is (j + 1)2 − j2 − 1 = 2j. We have

j <
⌊√

p
⌋
<

√
p, and so 2j < 2

√
p. The number of integers in the interval

(⌊√
p
⌋2
, p+ 1

)
is

p+ 1−
⌊√

p
⌋2 − 1 = p−

⌊√
p
⌋2
< p− (

√
p− 1)2 = 2

√
p− 1 < 2

√
p,

where the first inequality follows from the fact that
⌊√

p
⌋
>

√
p− 1 by definition of the floor function.

The way that the intervals in (∗∗) are defined guarantees that each sequence of consecutive quadratic non-
residues modulo p allowing multiples of p is included in precisely one of these intervals. Therefore, we conclude
that the full nonsquare reach of p is striclty smaller than 2

√
p, as desired.

Finally, now that we have verified that the full square and full nonsquare reaches of any odd positive prime
p are strictly bounded by 2

√
p, we are ready to prove the main result, Theorem 1.2.

The upcoming theorem implies Theorem 1.2: In particular, we will show that given any finite sequence of
distinct primes that are missing from the second Euclid-Mullin sequence, we can find a prime that is different
from all of these primes and that is also missing from the second Euclid-Mullin sequence. This proves that
the sequence of all primes that are missing from the second Euclid-Mullin sequence cannot be finite.

Theorem 3.6 ([12, Proposition 5]). If Q1, Q2, . . . , Qr (where r ≥ 1) are the smallest r primes missing
from the sequence {Pn}∞n=1, then there is another missing prime smaller than

122

(
r∏

i=1

Qi

)2

.
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Proof. Let Q1, Q2, . . . , Qr, where r ≥ 1, be the smallest r primes missing from the sequence {Pn}∞n=1. Define

U := 122
(∏r

i=1Qi

)2
. Assume, to the contrary, that all primes smaller than U - other than Q1, Q2, . . . , Qr -

are contained in the sequence {Pn}∞n=1. Consider the interval (2, U ]. Let q be the prime in the interval (2, U ]
that is latest to turn up in the sequence {Pn}∞n=1. In particular, say that q is the n-th entry of the sequence
{Pn}∞n=1, so q = Pn. Then, by construction of the sequence {Pn}∞n=1, the prime q is the largest prime divisor

of p := 1 +
∏n−1

j=1 Pj .
We will show that the only possible prime factors of p are, aside from q, the primes Q1, Q2, . . . , Qr. Since q
is the prime in (2, U ] that is latest to appear in the sequence {Pn}∞n=1, all other primes in the interval (2, U ],
except for the primes Q1, Q2, . . . , Qr, turn up in the sequence {Pn}∞n=1 before q does. Hence, the primes in
(2, U ] are precisely P1, P2, . . . , Pn and Q1, Q2, . . . , Qr. Moreover, since q is the largest prime factor of p, all
possible other prime factors of p must be in the interval (2, q), which is a subset of (2, U ]. So certainly, any
prime factor of p that is not q must be one of P1, P2, . . . , Pn−1 or one of Q1, Q2, . . . , Qr. But a prime factor
of p can never be one of P1, P2 . . . , Pn−1. (To see why, suppose that Pi|p for some i ∈ {1, 2, . . . , n− 1}. Then
since Pi|

∏n−1
j=1 Pj , it follows from the distributive law that Pi|1, which is a contradiction since no prime is

a divisor of 1.) Hence, the only remaining candidates for possible prime factors of p, aside from q, are the
primes Q1, Q2 . . . , Qr. Therefore, we can write

p = Qe1
1 Q

e2
2 · · ·Qer

r q
e (13)

for certain integers e1, . . . , er ≥ 0 and e ≥ 1.

Next, we state and prove the following claim:

Claim. There exists a natural number m ≤ U satisfying the following three conditions:

1. m ≡ 1 (mod 4)

2. m ≡ −1 (mod Q1 · · ·Qr)

3.
(
m
q

)
=
(−1

q

)
Proof of claim. Define X := 2Q1 · · ·Qr − 1 and Y := 4Q1 · · ·Qr. Let m be a natural number
that is congruent to X modulo Y . Then,

m = kY +X = 4kQ1 · · ·Qr + 2Q1 · · ·Qr − 1 = (4k + 2)Q1 · · ·Qr − 1 ≡ −1 (mod Q1 · · ·Qr)

for some integer k, so m satisfies condition 2 of the claim.
Note that we must have 2Q1 · · ·Qr ≡ 2 (mod 4); if 4|2Q1 · · ·Qr, then 2|Q1 · · ·Qr, which is not
possible because Q1 · · ·Qr is a product of odd primes. Therefore,

m = 4kQ1 · · ·Qr + 2Q1 · · ·Qr − 1 ≡ 2Q1 · · ·Qr − 1 ≡ 1 (mod 4),

so the number m satisfies condition 1.
Now that we have verified that an integer of the form m = kY +X satisfies conditions 1 and 2,
condition 3 boils down to finding a (small) non-negative integer k such that(

kY +X

q

)
=

(
−1

q

)
. (14)

The prime divisors of Y are precisely 2 and Q1, . . . , Qr. The number q appears in the sequence
{Pn}∞n=1, so it is different from all of the Qi (where i ∈ {1, . . . , r}). Also, q ̸= 2. Therefore, we
have gcd (Y, q) = 1.
From Theorem 2.2 it follows that the congruence Y Y ′ ≡ 1 (mod q) has solutions Y ′ ∈ Z. Let
us fix such a number Y ′. Then Y Y ′k +XY ′ ≡ k +XY ′ (mod q). Thus, the equation in (14) is
equivalent to (

k +XY ′

q

)
=

(
−Y ′

q

)
. (15)

Hence, we seek a non-negative integer k such that equation (15) holds. If q| − Y ′, then there
exists a non-zero integer a such that q ·a = −Y ′. But then q ·−a ·Y = Y Y ′, meaning that q|Y Y ′,
which contradicts the fact that Y Y ′ ≡ 1 (mod q). Therefore, we have q ∤ −Y ′ (or equivalently,(−Y ′

q

)
̸= 0). There are two cases:
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Case 1. The number −Y ′ is a quadratic residue modulo q.

Case 2. The number −Y ′ is a quadratic nonresidue modulo q.

Assume that we are in case 1. Then, we seek a non-negative integer k such that
(−Y ′

q

)
= 1.

Suppose that XY ′ is congruent to l (mod q). Then k +XY ′ ≡ k + l (mod q). So for k =
0, 1, 2, . . ., we obtain the following:

XY ′ ≡ l (mod q)

1 +XY ′ ≡ l + 1 (mod q)

2 +XY ′ ≡ l + 2 (mod q)

3 +XY ′ ≡ l + 3 (mod q)

...

where the terms k +XY ′ for k = 0, 1, 2, . . ., are consecutive terms.
In Lemma 3.5 we showed that full nonsquare reach of any odd positive prime p′ is strictly
smaller than 2

√
p′. So in particular, since q is an odd positive prime, we have R⊠(q) < 2

√
q.

Equivalently, since the largest integer that is strictly smaller than 2
√
q is ⌊2√q⌋, we haveR⊠(q) ≤

⌊2√q⌋. Therefore, in the ‘worst’ case, we have(
XY ′

q

)
̸= 1,

(
1 +XY ′

q

)
̸= 1,

(
2 +XY ′

q

)
̸= 1, . . . ,

(
⌊2√q⌋ − 1 +XY ′

q

)
̸= 1. (16)

But then, since this is a sequence of consecutive quadratic nonresidues modulo q of length ⌊2√q⌋,
we must necessarily have for k = ⌊2√q⌋, that

(
k+XY ′

q

)
= 1. Note that, since ⌊2√q⌋ is striclty

smaller than one period of q, the sequence in (16) can contain at most one zero. If it contains a
zero, we see that in this ‘worst’ case, we have k = R⊠(q). If it does not contain a zero, we have
k = R⊠(q). Since R⊠(q) ≥ R⊠(q)), we see that k ≤ R⊠(q).
We can make a similar analysis of case 2, applying Lemma 3.3 instead of Lemma 3.5 in the
above analysis, in which case we obtain k ≤ R□(q). Therefore, we see that there indeed exists
a non-negative integer k ≤ max{R⊠(q), R□(q)} < 2

√
q such that equation (14) holds, so the

number m satisfies condition 3 of the claim.
Using that k < 2

√
q, we obtain

0 < m = kY +X < 2Y
√
q + Y < 2Y

√
q + Y

√
q = 3Y

√
q ≤ 3Y

√
U = U,

where in the last step we use that 3Y = 12Q1 · · ·Qr =
√
U . Hence, m < U . This proves the

claim. ■

We continue with the proof of the theorem. Letm ≤ U be a natural number that satisfies the three conditions
of the claim. Let us write Q := Q1 · · ·Qr.
We determine the possible prime factors of m. Since in particular the prime 2 is contained in the sequence
{Pn}∞n=1, it follows that Qi > 2 for all i ∈ {1, . . . , r}. Combining this fact with the fact that m ≤ U
and condition 2 of the claim, we see that m ∈ (2, U ]. Recall that each prime in the interval (2, U ] is one of
P1, P2, . . . , Pn or one of Q1, Q2, . . . , Qr. Since q ∤ −1, it follows from condition 3 in the claim that Pn = q ∤ m.
Condition 2 of the claim says that there exists some non-zero integer b such that m = bQ− 1. Suppose that
Qi|m for some i ∈ {1, 2, . . . , r}. Then we have Qi|bQ − 1 and Qi|bQ. Again, using the distributive law we
see that Qi|1, which is a contradiction. Therefore, the only possible prime factors of m are P1, P2, . . . , Pn−1.
Any integer d can be written in the form st2, where s and t are integers and s is squarefree. So in particular,
since m is odd (and positive), we can write m = xy2 for certain positive odd integers x and y, where x is
squarefree. Since m ≡ 1 (mod 4), it follows from the law of quadratic reciprocity for the Jacobi symbol
(Theorem 2.15) that

(
m
p

)(
p
m

)
= 1. This means that either

(
m
p

)
and

(
p
m

)
are both equal to 1, or they are both

equal to −1. Either way, we have
(
m
p

)
=
(
p
m

)
. Hence,(

m

p

)
=

(
p

xy2

)
=

(
p

x

)(
p

y2

)
=

(
p

x

)(
p

y

)2

, (17)



3 AN ELEMENTARY PROOF 14

where the last two steps follow from the complete multiplicativity of the Jacobi symbol (Property 2.14).

From the fact that x is squarefree it follows that x = P l1
1 P

l2
2 · · ·P ln−1

n−1 , where each li (with i ∈ {1, 2, . . . , n−1})
is either equal to 0 or 1. Hence, x|P1P2 · · ·Pn−1, from which it follows that p ≡ 1 (mod x). Consequently,
we have

(
p
x

)
=
(
1
x

)
. The right hand side of this equation is equal to 1, because the number 1 is a quadratic

residue modulo any natural number greater than 1.
Recall that the only possible prime factors of m are P1, P2, . . . , Pn−1. So certainly, each prime divisor of y is
among P1, P2, . . . , Pn−1. Moreover, the corresponding exponent of each of the prime divisors of y is greater
than or equal to 1 in the prime factorization of y. It follows that y ∤ p. Hence,

(
p
y

)
equals 1 or −1, which

means that
(
p
y

)2
= 1.

Therefore, since
(
p
x

)
=
(
p
y

)2
= 1, it follows from equation (17) that

(
m
p

)
= 1 · 1 = 1.

On the other hand, using equation (13) and repeatedly applying the complete multiplicativity of Jacobi
symbols (Property 2.14), we obtain(

m

p

)
=

(
m

Qe1
1 Q

e2
2 · · ·Qer

r qe

)
=

(
m

Qe1
1

)(
m

Qe2
2

)
· · ·
(
m

Qer
r

)(
m

qe

)
=

(
m

Q1

)e1(m
Q2

)e2

· · ·
(
m

Qr

)er(m
q

)e

=

[
r∏

i=1

(
m

Qi

)ei
]
·
(
m

q

)e

. (18)

Using condition 2 of the claim and the fact that Qi|Q for all i ∈ {1, 2, . . . , r}, we see that m ≡ −1 (mod Qi)
for all i. Hence, we have

(
m
Qi

)
=
(−1
Qi

)
for all i, from which it follows together with condition 3 in the claim

that the expression in (18) is equivalent to
[∏r

i=1

(−1
Qi

)ei](−1
q

)e
. We can rewrite this expression as follows:[

r∏
i=1

(
−1

Qi

)ei
]
·
(
−1

q

)e

=

[
r∏

i=1

(
−1

Qei
i

)]
·
(
−1

qe

)
=

(
−1

Qe1
1 · · ·Qer

r q
e

)
=

(
−1

p

)
,

where we again used the complete multiplicativity of the Jacobi symbol (Property 2.14).

Furthermore, since P1 = 2, we have p = 1 + P1 · · ·Pn−1 = 1 + 2
∏n−1

j=2 Pj . We must have that either

2
∏n−1

j=2 Pj ≡ 2 (mod 4), or 4|2
∏n−1

j=2 Pj . However, 4|2
∏n−1

j=2 Pj implies that 2|
∏n−1

j=2 Pj , which is a contra-

diction since
∏n−1

j=2 Pj is a product of odd primes and therefore must be odd. Thus, 2
∏n−1

j=2 Pj ≡ 2 (mod 4),

so p = 1 + 2
∏n−1

j=2 Pj ≡ 3 (mod 4). But then by the law of quadratic reciprocity for the Jacobi symbol

(Theorem 2.15), we have
(
m
p

)
=
(−1

p

)
= −1. However, this contradicts our previously found result that(

m
p

)
= 1. Therefore, there must be a prime Qr+1 < U that is different from all of the primes Q1, Q2, . . . , Qr

and that is not contained in the sequence {Pn}∞n=1, which concludes the proof.
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4 An analytic proof

This entire chapter is based on Booker's paper [3]; all results presented in this chapter are acquired from [3]
and we follow the approach, including the proof strategies, of [3].

This chapter covers the analytic proof of Theorem 1.2 that Booker provides in [3].

In preparation for proving the main result, we state and prove two lemmas.

Lemma 4.1 ([3, Lemma 1]). Let ϵ > 0 be arbitrarily small. If χ is a non-principal quadratic Dirichlet

character modulo q, then there is a positive prime number n≪ϵ q
1

4
√

e
+ϵ

such that χ(n) = −1.

Proof. Let χ be a non-principal quadratic Dirichlet character of modulus q. Because the character χ is
quadratic, it only takes on the values 0, 1, and −1. Moreover, since the character χ is non-principal,
there must be certain integers (coprime to q) for which χ takes on the value −1. Define n to be the least
positive integer for which this is the case. We will show that n must be prime. To that end, suppose
that n is composite. Let n = qm1

1 qm2
2 · · · qmk

k be the prime factorization of n. In particular, if we set
a = qm2

2 · · · qmk

k , we can write n = qm1
1 a. Hence, since χ is completely multiplicative (Theorem 2.20), we

find that −1 = χ(n) = χ(qm1
1 a) = χ(qm1

1 )χ(a). This implies that either χ(qm1
1 ) = 1 and χ(a) = −1, or

χ(qm1
1 ) = −1 and χ(a) = 1. In either case we have found a positive integer (namely a or qm1

1 , respectively)
that is smaller than n and for which χ takes the value −1, contradicting the minimality of n.
To complete the proof of the lemma, it remains to verify the upper bound on n. There are two cases:

Case 1 Assume that q is cubefree.

Theorem 2.29 applies to all non-principal Dirichlet characters, so it applies in particular to quadratic
characters such as χ. Adopting the notation of Theorem 2.29, we have n = nχ, by definition of n.

Then, since q is cubefree, this theorem says that n≪ϵ q
1

4
√

e
+ϵ
.

Case 2 Assume that q is not cubefree.

Let q1 be the conductor of χ. Recall from Theorem 2.26 (and Remark 2.27) that the conductor of a
Dirichlet character is a divisor of the corresponding modulus, meaning in this case that q1|q. So, we
can write q = q0q1 for some positive integer q0.

According to Theorem 2.28, we can write χ as a product χ(n) = ψ(n)χ0(n) for all n ∈ Z, where ψ is
a primitive character modulo q1 and χ0 is the principal character modulo q. Let χ̃0 be the principal
character modulo q0, and define a character χ̃ := ψχ̃0. We will show that χ̃ = χ.
Since q0|q, we have gcd (m, q) > 1 for any integer m such that gcd (m, q0) > 1. For all integers m, this
means that if χ̃0(m) = 0, then χ0(m) = 0.
Furthermore, from the fact that q0|q, it follows that gcd (m, q0) = 1 for any integer m satisfying
gcd (m, q) = 1. So, for all integers m we have that if χ0(m) = 1, then χ̃0(m) = 1.
There is one remaining possibility that we need to check. Suppose that m is an integer such that
gcd (m, q) > 1 while gcd (m, q0) = 1. Then, since q = q0q1, this implies that we must necessarily have
that gcd (m, q1) > 1. From gcd (m, q) > 1 it follows that χ0(m) = 0 and from gcd (m, q0) = 1 it follows
that χ̃0(m) = 1. Moreover, the fact that gcd (m, q1) > 1 implies that ψ0(m) = 0. Therefore, we obtain
χ(m) = ψ(m)χ0(m) = 0 · 0 = 0 and χ̃(m) = ψ(m)χ̃0(m) = 0 · 1 = 0.
We have considered each possibility; hence, we see that χ̃ = χ.

According to Theorem 2.31, the number q1 is a fundamental discriminant. Recall (from Definition 2.30)
that this means that one of the following holds:

• q1 ≡ 1 (mod 4) and q1 is squarefree.

• q1 = 4m, where m ≡ 2 (mod 4) and m is squarefree.

• q1 = 4m, where m ≡ 3 (mod 4) and m is squarefree.

Let us define the number q′0 :=
∏

p prime
p|q0
p∤q1

p, which is squarefree and coprime to q1. Let χ
′
0 be the principal

character modulo q′0, and define χ′ := ψχ′
0. We will show that χ = χ′. Recall that
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χ0(m) =

{
1, if gcd (m, q0) = 1,

0, if gcd (m, q0) > 1,

and similarly,

χ′
0(m) =

{
1, if gcd (m, q′0) = 1,

0, if gcd (m, q′0) > 1.

Furthermore, we have

ψ(m)

{
̸= 0, if gcd (m, q1) = 1,

= 0, if gcd (m, q1) > 1.

First, note that if gcd (q0, q1) = 1, then q′0 = q0. In that case, the characters χ′
0 and χ0 are equivalent,

from which it follows that χ′ = χ.
So let us assume that gcd (q0, q1) > 1. Let m be a random integer. If gcd (m, q1) > 1, then we have
ψ(m) = 0, which implies that χ(m) = 0 = χ′(m). On the other hand, if gcd (m, q1) = 1 then we must
have that gcd (m, q0) = gcd (m, q′0). This means that χ0(m) = χ′

0(m), and thus χ(m) = χ′(m).
So, we indeed have χ = χ′.

What the above argument shows us is that, if the modulus q0 of χ0 was not already squarefree as well
as coprime to q1, then we may replace the character χ = ψχ0 with the character χ′ = ψχ′

0, where the
modulus q′0 of χ′

0 is squarefree and comprime to q1. Therefore, we may restrict ourselves to the case in
which q0 is squarefree and coprime to q1.

Since by assumption q is not cubefree, it must be that q1 = 4m, where m ≡ 2 (mod 4) and m is
squarefree. Consequently, q1 contains a factor of 23 in its prime factorization, and, moreover, we see
that this is the only cube factor in its prime factorization. Combining this with the facts that q = q0q1
and that q0 is squarefree and coprime to q1, we see that also the only cube factor of q is 23. And, as it
turns out, even with this being the case we can still apply Theorem 2.29. (The explanation hereof goes
beyond the scope of this thesis. We refer the interested reader to [8, (12.56)], which, as Booker says,
accurately expresses how Burgess's bounds [4, Theorem 2] that (according to Booker) Theorem 2.29
rests on still applies, the only difference being the implicit constant). Hence, applying Theorem 2.29

we find also in this case that n≪ϵ q
1

4
√

e
+ϵ
.

So the bound on n holds in both cases, which concludes the proof.

Lemma 4.2 ([3, Lemma 2]). Let q1, . . . , qr be positive integers that are pairwise coprime. For every
i ∈ {1, . . . , r}, let χi be a non-principal quadratic Dirichlet character of modulus qi. Furthermore, let
ϵi ∈ {±1}. Then there exists a squarefree positive integer n with no more than r prime factors, that are

each ≪ϵ (q1 · · · qr)
1

4
√

e
+ϵ
, and such that χi(n) = ϵi for all i ∈ {1, . . . , r}.

Proof. For each i ∈ {1, . . . , r} we denote by ψi the principal character modulo qi. Let q = q1 · · · qr. Further-
more, let χS be a character modulo q such that

χS(n) =

r∏
i=1

{
χi(n) if i ∈ S,

ψi(n) if i ̸∈ S,

which is defined for every non-empty subset S of {1, · · · , r}. Then χS is, as a product of quadratic characters,
a quadratic character. Furthermore, we see that the fact that the integers q1, q2, . . . , qr are pairwise coprime
ensures that the character χS is non-principal.
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Hence, since χS is a non-principal quadratic Dirichlet character, we can apply Lemma 4.1, which says that

there is a positive prime number nS ≪ϵ q
1

4
√

e
+ϵ

such that χS(nS) = −1.

Consider the field Fr
2. This is the field of dimension r in which addition and multiplication are modulo 2.

That is, the entries of each vector take on only the values 0 and 1. Fix a non-empty subset S of the set
{1, . . . , r}. Let vS = (a1, · · · , ar) ∈ Fr

2 be the indicator vector of S. Precisely, this means that ai = 1 if i ∈ S
and ai = 0 if i ̸∈ S.
Each χi(nS) either equals 1 or −1: If for some i ∈ S we would have χi(nS) = 0, this would imply that
χS(nS) = 0, which is a contradiction. On the other hand, if i ̸∈ S, then ψi(nS) ̸= 0 because ψi(nS) is a factor
of the product χS(nS). Moreover, ψi(nS) ̸= 0 implies that gcd (nS , qi) = 1, since ψi is a principal character.
But gcd (nS , qi) = 1 implies that χi(nS) ̸= 0. Hence, we can define the vector wS = (b1, . . . , br) ∈ Fr

2 to be
the vector for which χi(nS) = (−1)bi for i ∈ {1, . . . , r}. Note that the vector wS is unique.

We will show that the scalar product of the vectors vS and wS equals 1. The scalar product of wS and vS
is wS · vS = a1b1 + a2b2 + · · · + arbr. Since ai is defined to be zero whenever i ̸∈ S, we can reduce this
sum to include only the terms aibi for which i ∈ S. In other words, we have wS · vS =

∑
i∈S aibi. Given

that ai = 1 for all i ∈ S this sum can be reduced further to
∑

i∈S bi. Moreover, since χS(nS) = −1, the
principal characters ψi(n) for which i ̸∈ S must all be equal to 1, so that we can write χS(nS) as the product∏

i∈S χi(nS). Because this product is equal to −1, an odd number of the χi(nS) must be equal to −1. This
means that, considered modulo 2, an odd number of the bi must be equal to 1 (while the rest of the bi are
equal to 0). Therefore, the scalar product wS · vS is equal to the sum of an odd number of 1’s and hence is
an odd number. Any odd number considered modulo 2 is equal to 1. Thus, wS · vS = 1.

Next, we show that the vector field Fr
2 is spanned by the set {wS : ∅ ≠ S ⊂ {1, . . . , r}}. Suppose to the

contrary that the set {wS : ∅ ≠ S ⊂ {1, . . . , r}} does not span Fr
2. Then there is a non-zero vector v in Fr

2

that cannot be written as a linear combination of the vectors wS . This implies that v is not a scalar multiple
of any of the wS . (Note that, in the context of Fr

2, this means that there is no vector wS such that v = λwS ,
where λ ∈ {0, 1}. Since the vector v is non-zero it follows that there is no vector wS such that v = wS .) Put
differently, the vector v is linearly independent of each of the vectors wS (considered separately), so v ·wS = 0
for each non-empty subset S of {1, . . . , r}. On the other hand, all non-zero vectors in Fr

2 are covered by the
vectors vS ; hence, the vector v must be equal to one of the vectors vS and as we have seen above, vS ·wS = 1
(for all non-empty subsets S of {1, . . . , r}). So in particular, we have v · wS = 1. This is a contradiction.

Every spanning set of a vector space can be reduced to a basis for that vector space. Hence, there exists a
subset of {ws : ∅ ≠ S ⊂ {1, . . . , r}} that forms a basis for Fr

2. In other words, we can find a set T of non-empty
subsets of {1, . . . , r} for which {ws : S ∈ T} forms a basis for Fr

2. Let T be such a set.

We will prove that the primes nS for which S ∈ T are distinct. Suppose that nS1
= nS2

for certain S1, S2 ∈ T
such that S1 ̸= S2. For i ∈ {1, . . . , r}, let wS1

= (x1, . . . , xr) be the vector for which χi(nS1
) = (−1)xi ,

and wS2
= (y1, . . . , yr) the vector for which χi(nS2

) = (−1)yi . Then, since nS1
= nS2

, we have that
χi(nS1) = χi(nS2) for all i ∈ {1, . . . , r}, which implies that (−1)xi = (−1)yi for all i. However, this means
that xi ≡ yi (mod 2), so considered in Fr

2, we have wS1 = (x1, . . . , xr) = (y1, . . . , yr) = wS2 . This contradicts
the fact that {ws : S ∈ T} is a basis for Fr

2.

Therefore, we have found a positive integer m :=
∏

S∈T nS , which is squarefree as it is the product of
distinct primes. Furthermore, since dim(Fr

2) = r, there are r vectors wS in the basis {ws : S ∈ T}, each
corresponding to a specific set S ∈ T . Hence, the number m has exactly r prime factors which, moreover,

each are ≪ϵ (q1 · · · qr)
1

4
√

e
+ϵ
. So we can write m = nS1nS2 · · ·nSr , where the nSi (with i ∈ {1, . . . , r}) are

distinct primes. Then, by Theorem 2.1, the total number of divisors of m is

d(m) =

r∏
i=1

(1 + 1) =

r∏
i=1

2 = 2r.

Moreover, each divisor n of m corresponds to a unique sequence (χ1(n), χ2(n), . . . , χr(n)), and vice versa.
Each of these sequences is a sequence whose entries are either 1 or −1; hence, there are 2r of these sequences.
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Therefore, we have a bijective relation between the divisors of m and {±1}r. In conclusion, the number m is

a squarefree positive integer with no more than r prime factors, that are each ≪ϵ (q1 · · · qr)
1

4
√

e
+ϵ
, and such

that χi(m) = ϵi for all i ∈ {1, . . . , r}, exactly as claimed in the lemma.

We are now ready to prove the main result that infinitely many primes are missing from the second Euclid-
Mullin sequence. Similar to the proof of Theorem 3.6, we show that given a finite sequence of distinct primes
that are omitted from the second Euclid-Mullin sequence, there exists a prime that is different from the
primes in our finite sequence and which, moreover, is omitted from the second Euclid-Mullin sequence. This
shows that it is impossible for the sequence of all omitted primes to be finite.

Theorem 4.3 ([3, Theorem 1]). The sequence {Pn}∞n=1 omits infinitely many primes. If {Qn}∞n=1 denotes
the sequence of omitted primes in increasing order, then for n sufficiently large, we have

Qn+1 ≤ (Q1 · · ·Qn)
1

4
√

e−1 .

Proof. We give a proof by contradiction. Let Q1, Q2, . . . , Qr, where Q1 < Q2 < · · · < Qr (and r ≥ 1),
be the smallest r primes that are omitted from the sequence {Pn}∞n=1. Suppose that all primes up to a
certain number x ≥ 3, with the exception of Q1, . . . , Qr, are contained in the sequence {Pn}∞n=1. Let p ≤ x
be the prime that is last to turn up in the sequence {Pn}∞n=1. In particular, say that p = Pn+1. Recall
that by construction of the sequence {Pn}∞n=1, we must then have that p is the largest prime that divides
q := 1 +

∏n
j=1 Pj . So possible other prime factors of q are strictly smaller than p. Any prime that is strictly

smaller than p must be one of P1, . . . , Pn, or one of Q1, . . . , Qr. It follows from the distributive law that
Pi ∤ q for all i ∈ {1, . . . , n}. This means that, if p ̸= q, then the other prime divisor(s) of q must be one of
Q1, . . . , Qr. Therefore, we can write

q = Qk1
1 Q

k2
2 · · ·Qkr

r p
k

for certain integers k ≥ 1 and k1, . . . , kr ≥ 0.

Recall from Example 2.22 that the Legendre symbol is a non-principal quadratic Dirichlet character. Consider
the Legendre symbols

( ·
Q1

)
,
( ·
Q2

)
, . . . ,

( ·
Qr

)
and

( ·
p

)
. Then

( ·
Qi

)
(where i = 1, 2, . . . , r) and

( ·
p

)
are non-principal

quadratic Dirichlet characters modulo Qi, and modulo p, respectively. Furthermore, the integers Q1, . . . , Qr

and p are pairwise coprime positive integers, as they are all distinct positive primes. Therefore, we can
apply Lemma 4.2 to the integers Q1, . . . , Qr and p and the Legendre symbols

( ·
Qi

)
(with i = 1, 2, . . . , r) and( ·

p

)
. This lemma says that there exists a squarefree positive integer d such that each prime divisor of d is

≪ϵ (pQ1 · · ·Qr)
1

4
√

e
+ϵ
, and such that each of

(
d
Qi

)
for i = 1, 2, . . . , r and

(
d
p

)
is either 1 or −1. So in particular,

there is such a d ≡ 1 (mod 4) that satisfies(
d

Qi

)
=

(
−4

Qi

)
for all i ∈ {1, . . . , r}, and

(
d

p

)
=

(
−4

p

)
.

Note that indeed
(

d
Qi

)
̸= 0 for all i and also

(
d
p

)
̸= 0, because for all i we have Qi ∤ −4, and p ∤ −4 since the Qi

and p are odd primes. This means that the only possible prime divisors of d are P1, P2, . . . , Pn. In other words,
we can write d as the product of the distinct primes in some non-empty subset of {P1, P2, . . . , Pn}. However,

if x is sufficiently large, then the bound (pQ1 · · ·Qr)
1

4
√

e
+ϵ

(which is dependent on ϵ) is smaller than x, because

p ≤ x and 1
4
√
e
= 0.15163... < 1. Actually, Booker claims that we can find such an x ≪ϵ (Q1 · · ·Qr)

1
4
√

e−1
+ϵ

based on our choice of ϵ. However, this means that d must have a small prime factor which is not one of
P1, . . . , Pn. This contradicts the fact that each prime factor of d is one of P1, . . . , Pn. Therefore, there exists

a prime Qr+1 ≪ϵ (Q1 · · ·Qr)
1

4
√

e−1
+ϵ

that is different from all of the primes Q1, . . . , Qr, and that is not
contained in the sequence {Pn}∞n=1. This proves the theorem.

Remark 4.4. Recall (from Chapter 2, page 6) that the notation Qr+1 ≪ϵ (Q1 · · ·Qr)
1

4
√

e−1
+ϵ

that appears in

the proof of Theorem 4.3 means that that there exists a constant Cϵ > 0 such thatQr+1 ≤ (Q1 · · ·Qr)
1

4
√

e−1 · Cϵ.

This is equivalent to saying that there exists an ϵ > 0 such that Qr+1 ≤ (Q1 · · ·Qr)
1

4
√

e−1
+ϵ
.
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