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Abstract

The transition from hospital to home is a critical period for patients often accompanied by com-
plications that can lead to readmission. Effective post-discharge monitoring is essential to enhance
patient recovery and reduce healthcare costs. Despite existing monitoring methods, quantitatively
analyzing the reports from these methods remains challenging. Recent advancements in Natu-
ral Language Processing (NLP) offer new opportunities to extract meaningful information from
clinical texts. This thesis explores the use of an NLP model specifically designed to classify and
rate mentions of the International Classification of Functioning, Disability, and Health (ICF) from
clinical notes to predict post-discharge functioning levels. The research goals are defined in two
research questions:

1. How does a professional’s judgment of a patient’s functioning as extracted from
unstructured clinical data correlate with the patient’s own perception of their func-
tioning?

2. How effectively can NLP-extracted ICF functioning levels from in-hospital patient
notes predict post-discharge functioning as documented in follow-up notes?

The first experiment assesses the correlation between the ICF classifier model’s outputs on clin-
ical notes and patients’ self-reported functioning levels. We found that for each of the relevant
ICF classes except Weight Maintenance there is at least some data representation that yields a
significant correlation with the self-reported values. However, discrepancies were noted in specific
classes due to infrequent labeling and the nature of the questions. The second experiment evalu-
ates the predictive value of in-hospital functioning levels on post-discharge functioning levels. The
constructed prediction models were able to predict post-discharge functioning with a comparable
error as the researchers that developed the ICF models reported as performance metrics for their
models. This thesis shows that while the extracted functioning data has some predictive value for
post-discharge functioning, more efforts are needed to evaluate the used ICF models further to
better understand its implications.
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Chapter 1

Introduction

1.1 The challenge of post-discharge monitoring

Many patients encounter a variety of problems in the first weeks after being discharged from the
hospital (Bull et al., 2000; Cole, 2001; Hyde et al., 2000; Mistiaen et al., 1999; Parker et al., 2002;
Shepperd et al., 2004). Patients with post-discharge complications are more likely to be readmitted
to the hospital, and early identification of these complications can significantly reduce readmission
rates (Tevis and Kennedy, 2014). Effective post-discharge monitoring and support can enhance a
patient’s capacity for self-care while reducing hospital readmission risk (Leppin et al., 2014).

Inadequate transitional care processes can lead to impaired functional statuses, increased mor-
tality rates, and greater healthcare costs (Burke et al., 2016). McIlvennan et al. (2015) note that
preventing readmissions by even 10% could save the United States Medicare system $1 billion
annually. In the Netherlands, about 1.2 million people have surgery every year. Between 3-16%
of these patients face complications after their surgeries (World Alliance for Patient Safety, 2009;
Haynes et al., 2009).

Despite clear benefits, monitoring post-discharge complications can be very challenging. During
hospitalization, patients receive frequent assessments of vital signs and symptoms, allowing health-
care providers to respond promptly to changes in patient functioning. After discharge, however,
the care burden partially shifts to the patient and their families. Many struggle to handle the com-
plex and evolving demands of managing their conditions without significant support (Brandberg
et al., 2021).

Most hospitals already employ post-discharge monitoring methods, including constructing a
post-discharge plan of care, documenting discharge summaries, regular telephone follow-ups, and
scheduling post-discharge checkup appointments. Mistiaen and Poot (2006) found that telephone
follow-ups are not only appreciated by patients; they also facilitate information exchange, symptom
management, early recognition of complications, and quality aftercare services. However, the study
also described a wide variety of approaches and outcomes for the telephone follow-ups, complicating
consistent and automatic analysis.

Similarly, studies have shown that patients who attend their follow-up appointment have a
lower chance of being readmitted in 30 days (Coppa et al., 2021; Chang et al., 2012). Patients
with follow-up appointments with physicians that have access to discharge summaries also show a
trend toward reduced readmissions compared to those without (Walraven et al., 2002).

Before surgery, patients go through a Preoperative Screening (POS) to check their health risks
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1. Studies have found that lifestyle choices such as smoking, excessive alcohol consumption, and
lack of exercise can increase the likelihood of complications and delay recovery. Improving these
lifestyle factors before surgery has been shown to lead to better post-operative outcomes.

While these post-discharge monitoring methods have in common that they decrease a patient’s
chance of being readmitted, they are also of qualitative nature. They involve a physician’s pro-
fessional assessment and are recorded in an unstructured linguistic manner, making additional
quantitative analysis challenging.

1.2 Using NLP to understand clinical notes

Recent advancements in Natural Language Processing (NLP) have opened new possibilities for
utilizing these unstructured data sources. Techniques such as word embeddings, recurrent neural
networks, and Transformers have significantly enhanced our ability to extract and analyze complex
medical information from clinical notes.

Word embeddings like Word2Vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014)
marked the first step in understanding the relationships between words, enabling models to capture
semantic similarities. With recurrent neural networks (RNNs), particularly LSTMs (Hochreiter
and Schmidhuber, 1997), models were able to retain and interpret the contextual meaning of words
across longer text sequences, providing more accurate analyses. Transformer models (Vaswani
et al., 2017) built on these developments by incorporating an attention mechanism which prioritizes
important parts of the text while allowing computations to be parallelized and by using positional
embeddings to maintain sequence order without sequential processing constraints.

Transformers have shown particular promise in healthcare, where they are used to predict
medical diagnoses, analyze patient outcomes, and stratify patient risks based on vast amounts of
unstructured clinical notes. In the context of this transformative capability, the ICF classification
model developed by Kim et al. (2022) at Amsterdam University Medical Centers (AUMC) is a
relevant example. This model, leveraging a Transformer architecture, was specifically trained to
predict relevant classes from the WHO’s International Classification of Functioning, Health, and
Disability (ICF), focusing on conditions critical for COVID-19 related research such as exercise
tolerance, mobility, and respiratory functions.

The ICF classification model operates by analyzing each clinical note to determine the presence
of specific ICF classes and assessing the qualifier level of mentioned conditions. This process
effectively transforms unstructured textual data into a structured format of classes and severity
levels, facilitating trend analysis of patient functioning over time. The model’s ability to track these
trends not only during hospitalization but also through post-discharge follow-ups—using notes
from telephone follow-ups and checkup appointments—makes it a powerful tool for quantitatively
analyzing the results from continuous patient monitoring. In this project, the ICF classifier models
are used to construct functioning trends over time to predict functioning levels after discharge.

1.3 The difference between a patient’s and a professional’s

perception of functioning

The ICF classification model leverages clinical notes annotated by healthcare professionals, re-
flecting professional judgments of patient functioning during and post-hospitalization. However,

1Richtlijn ”Het Preoperatieve Traject”. Netherlands Society of Anesthesiologists, 2010
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discrepancies often exist between clinician-assessed and patient self-reported functional statuses,
as evidenced in various studies (Feuering et al., 2014; Sabbag et al., 2012). These discrepan-
cies highlight the potential for bias or misunderstanding in professional assessments or patient
self-evaluations.

This thesis not only aims to explore correlations between functioning statuses recorded during
hospitalization and those post-discharge but also intends to examine the alignment between the
ICF classification results and patient self-reports. Such comparisons are crucial for validating the
clinical utility of the ICF model and enhancing the accuracy of patient care strategies. Since this
is purely observational and not interventional, we do not expect this alignment to be perfect. The
constructs to which we compare the ICF classification results were not originally intended for this
purpose, and discrepancies between timing of self-reporting and professional reporting, as well as
differences in what is being measured, are expected to affect the potential alignment.

In 2021, a small-scale study at the AUMC hospital in Amsterdam was conducted using ques-
tionnaires to map patients’ rehabilitation progress after elective surgery; the ’Beter Voorbereid’
(Be Prepared) application (Velde et al., 2021). This study aimed to understand recovery by asking
specific questions related to patients’ daily activities and lifestyle changes. These questions focused
on:

Preoperative risk assessment (on lifestyle risk factors)

Preoperative patient education (on increasing physical activity, increasing muscle strength,
smoking cessation, alcohol intake reduction, and dietary changes)

Preoperative exercise therapy for high-risk patients (prehabilitation).

The aim of this study was to provide insights into whether tailored lifestyle advice to patients
undergoing surgery is feasible and effective in improving postoperative functional recovery. They
assessed this by randomizing the patients among a control and intervention group, with the inter-
vention being given advice to reduce lifestyle risk factors. Both groups were asked to fill in the
questionnaires to keep track of the self-reported functional rehabilitation.

While the “Beter Voorbereid” application showed potential in terms of usability and changing
risk behavior prior to major surgery, no preliminary effect of the app on functional recovery was
found. However, in order to test these effects, the research group gathered a lot of data on the
functional recoveries of patients after elective surgery in general. This is still very valuable data
that could be used for correlational and predictive analyses. Detailed information about the dataset
will be discussed in the methodology section, outlining how these elements contribute to validating
the ICF classification outcomes.

Recognizing these discrepancies between a professional’s assessment and a patient’s own expe-
riences is pivotal, as it underscores the complexity of accurately assessing patient functioning from
clinical notes alone. This thesis aims to bridge this gap by employing advanced NLP techniques
to analyze and predict functioning levels, comparing these predictions with patient self-reports to
validate the accuracy and utility of the ICF classification model.

1.4 Research objectives and questions

In the introduction of this thesis, we discussed the relevance of post-discharge monitoring, the
limitations of textual reporting making them hard to quantitatively analyze, and how NLP can
potentially structure this information for analysis purposes. We introduced a previously developed

6



NLP model that extracts ICF class mentions and severity levels and we discussed how this can be
used to predict post-discharge functioning. Furthermore, we also discussed how we can clinically
validate the utility of the output by this model by making a comparison to existing self-reported
functioning data.

This thesis explores the relationship between the functioning levels reported in clinical notes
during hospitalization and those documented in post-discharge notes. It aims to assess the predic-
tive value of in-hospital functioning trends on post-discharge outcomes, enhancing the efficacy of
post-discharge monitoring. By identifying functioning classes that may require heightened atten-
tion due to predicted risks, this research seeks to improve continuity of care and support targeted
interventions, ultimately aiming to improve patient recovery trajectories.

As such, the primary research question is:

How effectively can NLP-extracted ICF functioning levels from in-hospital patient notes
predict post-discharge functioning as documented in follow-up notes?

The methodology section will go in-depth on the construction of the ICF classifier models
and how methodological choices might affect the quality of downstream tasks such as the one
introduced in this thesis. While these choices can affect the generalizability of the results, since
the main research question is about predicting post-discharge ICF results based on the ICF results
during hospitalization, any systematic mistakes the model makes will be present both during
hospitalization as well as after discharge. As such, we hypothesize that this experiment can show
good results.

Additionally, we want to explore to what extent the extracted ICF classes relate to a patient’s
own perception of their functioning. This is formulated as the secondary research question:

How does a professional’s judgment of a patient’s functioning as extracted from un-
structured clinical data correlate with the patient’s own perception of their functioning?

Contrary to the hypothesis for research question 1, here any systematic inconsistencies in the
model can affect the potential upper bound quality of the analysis, so we hypothesize that this
experiment could warrant suboptimal results.

Additionally, since this project is a continuation of previous research done at the AUMC hos-
pital, we will discuss obstacles and potential solutions that are connected to downstream modeling
tasks. Since this is not the main research objective, it will be discussed throughout the thesis and
especially in the discussion section. This might not be academically as relevant as the experiments,
but it will be useful for hospitals to circumvent any of the challenges we encountered during this
research.
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Chapter 2

Literature Review

This literature review explores the role of Natural Language Processing (NLP) in healthcare, par-
ticularly through its integration with predictive modeling to enhance patient care and outcomes.
NLP sits at the intersection of computer science, artificial intelligence, and linguistics, providing
tools to decode the complexities of human language. In healthcare, these tools offer unprecedented
opportunities to extract, structure, and analyze clinical data from unstructured text sources like
patient records and notes. This review not only outlines the evolution of relevant NLP tech-
niques but also illustrates their current applications in healthcare and how they support predictive
modeling to better anticipate patient needs and improve treatment outcomes post-discharge.

2.1 Natural Language Processing

Natural Language Processing (NLP) enables powerful interactions between computers and human
language by employing various computational techniques. Fundamental to NLP are methods
like tokenization, which breaks text into manageable pieces for analysis, and embeddings, which
translate these pieces into numerical forms that capture their underlying meanings. Furthermore,
advancements in sequence models like Recurrent Neural Networks (RNNs) and Long Short-Term
Memory Networks (LSTMs) are pivotal for understanding and predicting textual context, making
them valuable in handling complex linguistic data in medical documents.

2.1.1 Word Embeddings

Word embeddings represent a significant advancement in the way machines understand human
language. Embeddings map words into a continuous vector space where semantic similarities
between words are reflected by their closeness in the space. This concept was popularized by
breakthrough models such as Word2Vec (Mikolov et al., 2013) and GloVe (Pennington et al.,
2014) which efficiently encode linguistic patterns and relationships from large text corpora.

Word2Vec, developed by Mikolov et al. (2013) at Google, uses shallow neural networks to
produce embeddings that capture complex word relationships such as analogies, demonstrating
that certain linguistic intuitions can be represented algebraically. It offers two architectures: Skip-
Gram and Continuous Bag of Words (CBOW). Skip-Gram predicts surrounding context words
given a target word, whereas CBOW predicts a target word from a bag (unordered list) of context
words.

GloVe, developed by researchers at Stanford Pennington et al. (2014), extends this idea by
effectively leveraging global word-to-word co-occurrence statistics from a corpus to yield embed-
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dings. It constructs a co-occurrence matrix (of size words x context) that counts how often things
appear in context with each other. The model then learns embeddings by approximating this
matrix through least squares fitting, effectively capturing global statistics of the corpus in the
embeddings.

Representing text in terms of word embeddings has several benefits. First of all, it reduces
the dimensionality of the input because they transform sparse high-dimensional vectors (one-hot
encoding) into dense lower-dimensional spaces. As explained above, word embeddings also capture
contextual similarity. An embedding for the word “cat” would be more similar to the embedding
of “dog” than the embedding of “car” because both words are expected to appear in a similar
context, namely that of “pet” even when the words “cat” and “car” are orthographically less
different. Finally, once embeddings are trained, they can be used across different tasks without
needing retraining, accounting for an increase in the transferability of the trained concepts.

An example of this unique capability is given by Sousa et al. (2020), who explored in different
languages how words are represented in word embedding vectors. The example used in all languages
is the one of the embedding of the word “king”. If you subtract the embedding for “man” from the
one for “king”, you essentially subtract the gender association. If you then add the embedding for
“woman”, you shift the gender association to a female context, which brings the resulting vector
closer to the one for “queen”. This demonstrates how word embeddings encapsulate the meaning
of words. While this was not the first research exploring this concept, it includes a comparison
between multiple languages, and shows that the same logic applies for all language explored, which
shows the generalizability of this concept to other target languages.

2.1.2 Sequence Modeling: From RNNs to LSTMs

Word embeddings have shown to be a powerful representation of language that can be used by
computers due to their numerical nature. Several different machine learning models can use these
representations, among which are Recurrent Neural Networks (RNNs) and Long Short-Term Mem-
ory Networks (LSTMs).

RNNs are fundamental in natural language processing for their capability to handle sequential
input, such as text or speech. RNNs process sequences by maintaining a memory of previous
inputs, allowing them to make predictions based on what they have processed so far. However,
RNNs often face challenges with long-term dependencies within text due to vanishing gradients,
where the contribution of information decays geometrically over time, making it hard to maintain
long-range dependencies.

To overcome these limitations, LSTMs were introduced. LSTMs enhance the basic RNN archi-
tecture with a complex system of gates that regulate the flow of information. These gates control
the extent to which new input should change the memory and the extent to which the current
content of memory should contribute to the output. By selectively updating and retrieving in-
formation, LSTMs can maintain long-term dependencies, making them highly effective for tasks
that require understanding over longer contexts, such as document classification or conversational
models.

2.1.3 Transformers: Revolutionizing Contextual Understanding

The development of Transformers marked a significant evolution in how models process textual
data. Unlike RNNs and LSTMs, which process data sequentially, Transformers use self-attention
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mechanisms and positional encoding to analyze all words in the input data simultaneously. This ar-
chitecture allows them to capture contextual relationships between word embeddings in a sentence
regardless of their positional distances. Because of this parallel processing capability, Transform-
ers are not only more efficient in handling longer texts but also significantly faster to train. The
ability to attend to all parts of the input simultaneously makes Transformers especially powerful
for complex NLP tasks that require a nuanced understanding of language context.

2.1.4 BERT: Bidirectional Context Tuning

Building on the success of Transformers, BERT (Bidirectional Encoder Representations from
Transformers) introduced a novel approach to training language models (Devlin et al., 2019).
BERT is trained on a large corpus of text and then fine-tuned for specific tasks. The bidirectional
encoder allows it to understand the context from both left and right sides of a token simulta-
neously. This deep bidirectional training is particularly effective for tasks that require a precise
understanding of language context, such as question answering and language inference. BERT has
significantly advanced the state-of-the-art in NLP, providing a new framework for building more
nuanced and effective models.

2.1.5 MedRoBERTa

In the same year that BERT was published, Liu et al. (2019) replicated the study and found that
BERT was significantly undertrained and would perform even better if the training procedure
was optimized. They aggregated their proposed results in a new model, RoBERTa, the Robustly
Optimized BERT Approach.

Building on the framework of RoBERTa, the MedRoBERTa model was specifically trained
to address the nuances of Dutch clinical data. Developed through a collaboration between the
AUMC hospital and VU university, MedRoBERTa was subjected to both transfer learning and
training from scratch methodologies, with the latter showing better performance (Verkijk and
Vossen, 2021). The model was further fine-tuned to predict the presence four specific classes
from the ICF classifier model—Walking, Exercise Tolerance, Emotional Functions, and Work and
Employment—to externally validate it and compare various training setups and hyperparameters.

2.1.6 ICF Classifier Model

The next step in the construction of the ICF classifier model is to take the MedRoBERTa pretrained
model and finetune it on the required classification and regression tasks (Kim et al., 2022). Since the
ICF classifier’s purpose was to aid in the identification of COVID patients and their complications,
the selection of the ICF classes to use was based on classes related to COVID. As such, a selection
of 9 classes was made: Respiration functions, Attention functions, Work and employment, Energy,
Eating, Walking, Exercise tolerance, Weight management and Emotional functions.

The International Classification of Functioning, Disability, and Health (ICF), developed by the
World Health Organization (WHO), provides a standard language and framework for the descrip-
tion of health and health-related states. The ICF is structured around the following components:

• Body Functions and Structures: Physiological functions of body systems and anatomical
parts of the body.

• Activities and Participation: Execution of tasks or involvement in life situations.
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• Environmental Factors: Physical, social, and attitudinal environment in which people
live and conduct their lives.

• Personal Factors: Personal influences on functioning and disability not classified in the
ICF but considered in assessments (World Health Organization, 2001, 2013).

Paragraph 3.1 in the Methodology chapter discusses the methodological setup of the ICF clas-
sifier project in more detail.

Transitioning from the specific application of the ICF classifier model to the broader context
of predictive modeling in healthcare, we can see how integrating sophisticated NLP techniques
with predictive analytics can enhance patient care. Predictive modeling plays a critical role in
transforming reactive medical practices into proactive health management. This approach allows
for better forecasting of patient outcomes, management of post-discharge care, and improvement
of rehabilitation strategies.

2.2 Predictive Modeling in Healthcare

Predictive modeling in healthcare plays a critical role in transforming reactive medical practices
into proactive health management. This section explores how predictive analytics aids in forecast-
ing patient outcomes, managing post-discharge care, and improving rehabilitation strategies.

2.2.1 Overview of Predictive Modeling Techniques in Healthcare

Predictive modeling utilizes historical data and machine learning techniques to forecast future
outcomes. In healthcare, this involves predicting patient risks, disease progression, and potential
readmission, which can significantly enhance clinical decision-making and resource allocation. By
anticipating future health events, healthcare providers can implement preventative measures, tailor
treatments to individual needs, and improve overall patient care quality. Rajkomar et al. (2018)
demonstrated that deep learning models could predict a range of clinical outcomes from electronic
health records with high accuracy, outperforming traditional models.

Traditional statistical models have been foundational in healthcare predictions but often strug-
gle with the complex non-linear relationships inherent in medical data. These models typically
require explicit programming for each variable and interaction, limiting their adaptability and
scalability. Furthermore, they struggle with large datasets, high dimensionality, and missing or
unstructured data, which are common in medical records. Inouye (2001) illustrates the effectiveness
of simpler, more adaptable predictive models in clinical settings, especially for stroke rehabilitation
outcomes.

2.2.2 Post-Discharge Monitoring

Traditional methods for post-discharge monitoring, while essential, often fall short due to their
reactive nature and inability to capture subtle signs of patient deterioration. The integration of
advanced monitoring technologies, such as TeleHealth Electronic Monitoring (THEM) systems,
offers a proactive approach. For instance, a study by Mousa et al. (2019) demonstrated the
effectiveness of THEM in reducing post-operative complications and improving patient outcomes
through real-time data transmission and monitoring.
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Another innovative approach is the use of Interactive Voice Response Systems (IVRS), which
have been shown to significantly improve patient safety following hospital discharge by enabling
better monitoring and quicker response to patient needs (Forster and van Walraven, 2007).

Despite these technological advances, there are barriers to effective post-discharge monitoring
and communication. A qualitative study by Brajcich et al. (2021) identified key barriers such as
discrepancies in technology access, literacy, and the need for enhanced education on post-discharge
care (Brajcich et al., 2021). Addressing these barriers is crucial for the successful implementation
of post-discharge monitoring technologies.

The future of post-discharge monitoring looks promising with the advent of virtual healthcare
solutions, particularly for chronic conditions like heart failure. These solutions offer comprehensive
monitoring capabilities that significantly enhance patient management outside the hospital setting,
reducing rehospitalization rates and improving quality of life (Lee et al., 2023).

2.2.3 Predictive Models for Rehabilitation and Readmission

Predictive modeling in rehabilitation is pivotal for optimizing patient recovery trajectories. These
models use historical data on treatment outcomes and individual patient characteristics to predict
and customize therapy regimens. Such models are instrumental in determining the most effective
interventions for each patient, thereby enhancing the potential for successful recovery. For example,
research by Whiteneck et al. (2012) illustrates that the volume and type of treatment received,
combined with specific patient characteristics, can significantly influence rehabilitation outcomes.
These findings underscore the capability of predictive models to tailor rehabilitation efforts to
individual needs, thereby improving the effectiveness of therapeutic interventions (Whiteneck et al.,
2012).

Models predicting the risk of hospital readmission play a crucial role in post-discharge care,
particularly for patients at high risk of readmission. These models assess a range of factors such
as medical history, the specifics of treatment received, and conditions of the post-discharge envi-
ronment to estimate the likelihood of a patient returning to the hospital. Shirkavand et al. (2023)
demonstrate how transformer-based models can effectively predict postoperative complications,
a key factor in readmissions. Their work highlights the potential of advanced predictive models
to not only foresee but also mitigate the risk of readmission, thus significantly contributing to
improved patient care and reducing the burden on healthcare facilities (Shirkavand et al., 2023).

The integration of predictive models in healthcare settings, particularly in the domains of
rehabilitation and readmission risk management, offers substantial benefits. These models enhance
the ability of healthcare providers to make data-driven decisions that are critical for patient care
post-discharge. By effectively predicting and addressing potential complications and optimizing
rehabilitation processes, predictive models serve as a cornerstone of proactive healthcare strategies,
aiming to reduce readmissions and improve overall patient outcomes.

2.3 Integrating NLP with Predictive Modeling in Health-

care

This section examines the intersection of NLP and predictive modeling in healthcare, highlight-
ing how NLP technologies are instrumental in enhancing the predictive capabilities of healthcare
systems. It discusses the role of NLP in transforming unstructured clinical data into structured
analyzable formats that significantly improve the accuracy and effectiveness of predictive models.
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NLP is pivotal in extracting meaningful information from unstructured clinical text such as
patient records, doctor’s notes, and medical transcripts. By employing techniques like named entity
recognition, sentiment analysis, and topic modeling, NLP helps in identifying critical information
that forms the basis for predictive analysis (Wu et al., 2015; Kabaev et al., 2023; Huddar et al.,
2016). These NLP processes convert unstructured text into structured data that can be easily
analyzed by predictive algorithms, enhancing their ability to forecast health outcomes based on
comprehensive data sets.

Lineback et al. (2021) tested three NLP techniques for feature selection in predicting unplanned
readmission within 30 days of discharge. They constructed patient-word co-occurrence matrices for
both unigrams and bigrams in the clinical notes. They tested predictive models using differently
aggregated data from the clinical notes, such as tf-idf metrics calculated from the co-occurrence
matrices, the same co-occurrence matrix with Principal Component Analysis (PCA) applied to
extract the principal components that describe the most variance in the dataset, and finally a
Word2Vec word embedding model to represent the data in the notes.

These numerical representations were used in combination with different machine learning
models such as logistic regression, Näıve Bayes modeling, support vector machines, random forests,
gradient boosting machines, and extreme gradient boosting techniques (XGBoost). Additionally,
they employed a method called stacking, where they combined the generated outputs of a base
ML model with the existing set of features to train a second model. They found that this stacked
classifier ensemble model performed best.

Wang et al. (2022) evaluated multiple similar research papers where ML was used for the predic-
tion of readmission risks. They identified strengths and weaknesses of these employed techniques,
as well as the strengths of different types of features, rebalancing techniques, the interpretability
of different models, and the challenges of taking these solutions into production. They also dis-
cussed how embeddings can effectively capture high-dimensional features and mentioned attempts
at constructing a word embedding model similar to Word2Vec: Med2Vec.

Huddar et al. (2016) used NLP-extracted features from clinical notes to predict complications
for patients in critical care. They identified that the mention of a medical term can have different
meanings depending on the part of the note it was present in. For example, the word “blood”
can have different meanings depending on whether it’s part of the note describing cardiovascular
complications or the genitourinary part of the note. They created a supervised topic modeling
system using Latent Dirichlet Allocation (LDA) techniques. The target labels were extracted from
the text using a rule-based system after identifying a standardized structure in their dataset, which
was selected from the open-source MIMIC-III dataset. This renders their approach very specific
to their dataset and hinders the generalizability of the approach. Huddar et al. combined the
text-extracted features with structured data using a multi-view learning method, which essentially
means they created co-occurrence matrices for the structured data and the extracted text features.
This feature representation was used to train multiple machine learning models: logistic regression,
support vector machines, decision trees, AdaBoost, and Random Forest.

The last publication that outlines the relevance of this thesis is written by Murff et al. (2011):
Automated Identification of Postoperative Complications Within an Electronic Medical Record Us-
ing Natural Language Processing. While this publication is from before recent advancements in AI
and NLP in particular, it is very close to the research objective described in this thesis. This pa-
per describes the use of rule-based search queries to map clinical notes to SNOMED-CT concepts
(Systematized Nomenclature of Medicine Clinical Terms). They compared how these extracted
concepts differ in their predictivity of postoperative complications compared to traditional patient
safety indicators assigned to the dataset (VASQIP) by previous studies.
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In conclusion, while there is a lot of research in the topic of representing unstructured textual
clinical data in a way that it can be used as features in predictive ML models, it is also apparent
that most applied methods are relatively traditional machine learning methods that generally do
not capture the nuanced non-linear relationships between complex medical terms. The approach
described in the next chapter will differ from those methods as it employs a data source that was
preprocessed using complex deep neural networks.
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Chapter 3

Methodology

This thesis consists of two experiments. The first experiment assesses the correlation between
the previously developed ICF classifier model’s output on clinical notes and patients’ self-reported
functioning levels. The second experiment evaluates the predictive value of in-hospital functioning
levels on post-discharge functioning. Since this research project continues on work done previously
at the AUMC, this section starts by explaining the methodology and data of the previous work:
the ICF classifier models. Additionally, it explains the chosen methodology for the rest of the
thesis.

3.1 Overview Methodology

This thesis consists of two experiments:

Experiment 1

The first experiment serves as a response to the research question: How does a professional’s
judgment of a patient’s functioning as extracted from unstructured clinical data correlate with the
patient’s own perception of their functioning?

We attempt to answer this question by plotting the self-reported functioning data from the
BV questionnaires against an average of the extracted ICF labels from the clinical notes written
by healthcare professionals. We apply a statistical test to see if these two datasets appear to be
correlated and therefore describing the same functioning. The aim of this experiment is to validate
the usability of the ICF classifier models in a healthcare environment.

Experiment 1 involves the Beter Voorbereid data which consists of five questionnaires admin-
istered at different time points: prior to hospitalization, and one, three, six, and twelve weeks
post-discharge. Due to patient variability in completing these questionnaires, mapping responses
to specific times and corresponding clinical notes is challenging. We selected relevant questions for
each ICF class and manually extracted the corresponding time periods.

Three scenarios were identified, each requiring a specific approach. They are described in table
3.1
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Scenario Approach
Lowest Score in Specific Period Selecting the lowest

ICF level predicted
during a specified pe-
riod for weight man-
agement questions.

Day-Specific Questions Average the 2 closest
ratings.

Repeated Day-Specific or Period-Specific Questions Weighted average in
same period. Analyz-
ing trends over time
using delta changes in
ratings.

Table 3.1: Three identified scenarios based on questionnaire constructs and the approach to select
corresponding ICF data

Kendall’s Tau-b is used to analyze the relationship between ICF outputs and self-reported data
because of the ordinal nature of the self-reported data.

Experiment 2

The aim of the second experiment is to explore to what extent this now validated ICF model output
can be used for predictive modeling. We use the ICF model output assigned to notes during a
patient’s hospitalization as features for a model that predicts an average ICF rating assigned to
post-discharge notes. This experiment is the basis for the answer to the main research question
be posed in chapter 1: How effectively can NLP-extracted ICF functioning levels from in-hospital
patient notes predict post-discharge functioning as documented in follow-up notes?

For experiment 2, we selected 1,037 patients, focusing on the ICF ratings assigned to follow-up
appointments around six weeks post-discharge. We test two methods of aggregating the target
labels: a weighted average approach that targets all ICF predictions between four and eight weeks
post-discharge and a nearest two neighbors approach that only looks at the two closest measure-
ments to the 6 week target.

Given the variability in patient lengths of stay, LSTM models were chosen for their ability to
handle variable-length sequences and capture temporal patterns. Missing values are represented
as a separate feature to preserve information, and structured data from the EHR (age, gender,
BMI, etc.) is included to test whether those features affect model performance.

We employ Mean Absolute Error (MAE) to evaluate model performance. We compare the
performance of models with and without ICF ratings (baseline test) to evaluate the added pre-
dictive value of the ICF data. In an error analysis we will identify model mistakes and areas for
improvement.

3.2 ICF Classifier

This section outlines the methodology that was employed for the construction of the ICF classi-
fier models, integrating insights from several research efforts conducted previously at the AUMC
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hospital and Vrije Universiteit Amsterdam (Verkijk and Vossen, 2021; Kim et al., 2022). The de-
velopment of the ICF classifier models involved multiple phases: the construction of a specialized
medical language model, gathering and annotating data, and the development of the classifier. We
added the important methodological aspects of these previous works to the methodology of this
thesis because they directly affect the results we gathered.

3.2.1 Language Model Construction

The initial step in developing the ICF classifier involved creating a language model tailored to
Dutch medical texts. The MedRoBERTa.nl model was specifically developed for this purpose
(Verkijk and Vossen, 2021).

The research team conducted an experiment to determine the most effective approach for
training the language model. They compared two methodologies:

Training from Scratch: The MedRoBERTa.nl model was trained from the ground
up using millions of Dutch clinical notes. This approach involved initializing the model
with random weights and employing a specialized vocabulary designed to capture the
nuances of medical terminology.

Pretrained Model with Frozen Layers: Alternatively, the team used a general
Dutch language model RobBERT and extended its training on the medical corpus.
In this method, certain layers of the pretrained model were frozen, meaning their
parameters were not updated during training, while other layers were fine-tuned on the
medical text data.

There were two different evaluation methods employed to assess the quality of the language
model. The first one, referred to as intrinsic validation, assessed the quality of the model by
comparing similarity metrics between texts as computed through the word embeddings with a
professional’s similarity assessment. It is important to note that text similarity was defined in this
research with respect to ICF classes. Verkijk and Vossen (2021) used a set of triples of phrases
from clinical notes that may or may not contain mentions of specific ICF classes. One of the three
sentences was defined as being most dissimilar to the others. The triples were categorized into one
of four groups reported in 3.2.

Description
All sentences belonging in the same ICF domain but two of them contain overlapping
keywords.
Two sentences from the same ICF domain without overlapping keywords, one from an-
other domain.
Two sentences from the same ICF domain with overlapping keywords, one from another
domain.
All sentences from the same ICF domain but only one differs in terms of the assigned
qualifier level.

Table 3.2: Four different triple sets used for extrinsic evaluation of the Language Model
MedRoBERTa.nl

The extrinsic evaluation method included two tasks: a scaled-down version of the ICF classi-
fication task that contained 4 classes, and a general Named Entity Recognition (NER) task on a
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pre-existing dataset 1.
The results from the intrinsic evaluation showed that the transfer learning approach on the

RobBERT architecture performs best, albeit by a few percent. The researchers defined the best
model as the one with the highest accuracy but did not account for sample size by not employing
a statistical test 2.

For the extrinsic evaluation, a p-value showing a significant relation was reported but only
for the ICF class where the model trained from scratch outperformed the pre-existing models:
Walking (FAC). It was not mentioned in the publication based on which statistical test this was
computed nor what assumptions were tested. The other three ICF categories were identified with
a higher accuracy by the non-finetuned model BERTje (De Vries et al., 2019).

3.2.2 Data Collection and Annotation

This section explains the data collection, annotation, and evaluation processes for training the
ICF classifier models that were trained previously at the AUMC hospital (Kim et al., 2022). It
focuses on the methodology the researchers used, highlighting how these considerations impact
our research and downstream modeling tasks. Chapter 2.1.6 discussed the academic relevance and
background of the ICF classes; here we address the methodological considerations.

The process of mapping natural language descriptions from clinical notes into the ICF frame-
work is traditionally known as ‘ICF coding’. This task involves assigning an ICF category and a
qualifier to each relevant mention within the clinical texts. For example, “The patient was able to
eat independently” would be coded as “d550.00” where “d550” denotes the ’Eating’ category and
“00” signifies no impairment. For ICF annotation task, the researchers reversed the original ICF
scale, with 0 signifying the lowest functioning status and 4 or 5 denoting no impairment. In this
thesis, we use the same reversed scale for analysis, where higher levels mean better functioning.

The annotation process was conducted by six native Dutch-speaking (para)medical students to
ensure accurate understanding and interpretation of the clinical data. These annotators identified
mentions of the selected ICF classes within clinical notes and assigned the appropriate qualifier
levels. Each ICF class features five qualifier levels (0 to 4) except ‘Walking’ and ‘Exercise Tolerance’
which have six levels to cover a broader spectrum of functionality.

To ensure high annotation accuracy, the annotators received initial training from a core team of
healthcare professionals and NLP experts. This team provided essential background and technical
knowledge. Additionally, weekly mentoring sessions were held throughout the annotation period
to address ongoing challenges and complex cases, allowing the annotators to continuously learn
and adapt.

The annotation process involved two primary tasks: identifying phrases that describe an ICF
category and labeling phrases that depict the level of functioning. For example, in the sentence
“Concentratie is nog wel iets verminderd” (Concentration is still slightly diminished), “concen-
tratie” (concentration) is labeled with the category code ATT (Attention). Simultaneously, “iets
verminderd” (slightly diminished) is labeled with the level code att-3, indicating a mild functioning

1The distribution of sentences across training and test sets was reported and this shows a discrepancy. The
difference in the amount of sentences per note was significant between the test and training set and since no details
were shared on how those were gathered, it’s difficult to assess what effect this might have on downstream tasks
(chi-squared test with df = 7 shows a p-value of 2× 10−273).

2Based on the support values provided in the report, we recalculated the difference between models while
contributing for sample size and found none of the models statistically outperformed the others: p = 0.5, chi =
44.37, df = 45).

18



problem. Which qualifier level to assign to which class was outlined in the annotation guidelines.
These levels were of categorical nature. For instance, for Respiratory Functioning (ADM), a qual-
ifier level of 0 means the patient was intubated for additional oxygen.

An important aspect of the annotation protocol is the exclusion of mentions referring to past
or predicted future functioning. This ensures that the model focuses solely on the current state
of functioning, avoiding extracting mentions in historical or predictive contexts. Consequently,
during model evaluation, the computed performance metrics do not account for how the model
handles mentions of functioning from other timeframes 3.

To ensure the accuracy and consistency of the annotations, an inter-annotator agreement (IAA)
was calculated. This process involves multiple annotators working on the same texts, which allows
for a comparative analysis of their annotations. By evaluating the similarity in annotations across
different annotators, the IAA provides a quantitative measure of annotation reliability.

For the ICF classifier model, two types of IAA metrics were employed:

F1-score: Used for the annotation task for identifying classes. The F1-score is the
harmonic mean of precision and recall, providing a balance between the completeness
and accuracy of the classification.

Mean Absolute Error (MAE): Used to assess quality of assigned qualifier levels.
MAE measures the average magnitude of errors in the annotations, giving insights into
the typical deviation seen in qualifier assignments4.

A total of 206 sentences from 35 clinical notes were selected as an overlapping set for the
computation of IAA 5. This subset was used to assess both the class allocation and qualifier level
allocation accuracy, though it is not specified whether the same sentences were used for both
calculations. Table 3.3 below shows the IAA metrics.

ICF Class F1-score MAE
FAC: Mobility 0.78 0.17

ADM: Respiratory Functions 0.64 0.25
ENR: Energy 0.66 0.39
STM: Mood 0.57 0.31

MBW: Weight Maintenance 0.62 0.32
BER: Work 0.42 0.38

ATT: Attention 0.58 0.32

Table 3.3: Inter-Annotator Agreement Metrics as reported by Kim et al. (2022)

This table shows that while there is some agreement between annotators, many of the classes
were inconsistently annotated, especially INS, ETN, BER, and ATT. Consequently, this inconsis-

3While these decisions make sense for a research project in isolation, this does complicate how the model can be
used for downstream tasks. There is no consistent way to filter out past and future references to ICF class mentions
from the clinical notes and since the model was never evaluated on these type of notes, it is uncertain how the
models handle these events. As such, this uncertainty gets carried over to the downstream tasks.

4To in terpret any metric that relies solely on the size of the error, it is important to also take into account the
total range of the potential error. This is not specifically mentioned in table 3.3. All class levels range from 0-4
except for FAC and INS, which can range from 0-5.

5It is challenging to assess the representativeness of these 35 selected notes from the total set of 6000 notes. To
best interpret the results from this research, it would be beneficial to assess representativeness of the selection by
comparing it to a truly random selection. Additionally, distributional and variance information of the datasets is
essential to interpret these metrics.
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tently annotated data is used during evaluation, which places an upper bound on the maximum
performance of subsequent models and downstream tasks.

Given the expectation that relevant ICF classes would appear infrequently in the clinical notes,
the annotation strategy did not rely solely on random sampling. Instead, to increase the efficiency
of finding relevant cases, a keyword search was implemented. This method was designed to ele-
vate the frequency at which certain ICF classes were found, particularly those that are typically
low-frequency such as Attention, Weight Management, and Emotional Functions. Interestingly,
comparative analysis between the random samples and keyword-based samples indicated a similar
total presence of relevant classes across the datasets, though it did increase the presence in the
aforementioned low-frequency categories.

Overall, the annotation effort covered approximately 6000 clinical notes, which included over
286,000 sentences. Approximately 10% of these notes were marked as ‘disregard’. Of the remaining
notes, 5%—or about 15,000 sentences—contained at least one relevant ICF label. However, the
distribution of different qualifier levels among these labeled sentences was not detailed in the
report. Table 3.4 below shows the distribution of labeled positive classes across the dataset.

Train Dev Test Support

Categories

Respiratory (ADM) 4,988 411 775 6,174
Attention (ATT) 247 22 39 308

Work and Employment (BER) 486 29 54 569
Energy (ENR) 989 105 160 1,254
Eating (ETN) 2,420 225 382 3,027
Mobility (FAC) 2,489 119 253 2,861

Exercise Tolerance (INS) 1,967 127 287 2,381
Weight Management (MBW) 755 96 125 976

Mood (STM) 3,390 147 181 3,718

Levels

Respiratory functioning (ADM) 5,233 440 421 6,094
Attention (ATT) 251 23 32 306

Work and Employment (BER) 216 29 26 271
Energy (ENR) 1,005 107 100 1,212
Eating (ETN) 2,491 236 183 2,910
Mobility (FAC) 1,086 124 139 1,349

Exercise Tolerance (INS) 1,104 132 136 1,372
Weight Management (MBW) 766 98 60 924

Mood (STM) 1,420 148 155 1,723

Table 3.4: Distribution of Categories and Levels across Train set, Dev set and Test set. Including
support levels for each category. (Kim et al., 2022)

The table shows how some of the labels appear more frequently in the dataset, creating a more
substantial dataset for the model to converge on. The infrequency of certain labels in the training
set affects how well the model can converge on the task, and the infrequency of these labels in
the development and test sets affect the confidence interval of any of the computed performance
metrics.
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3.2.3 Model Training and Evaluation

The annotated dataset was divided into training (80%), validation (10%), and test (10%) sets to
prepare for the model training phase. Two distinct tasks were set for the MedRoBERTa model:

Multilabel Classification Task: A single instance of MedRoBERTa was fine-tuned
to classify sentences based on the presence of any of the 9 relevant ICF labels.

Regression Tasks for Qualifier Levels: Separate instances of MedRoBERTa—one
for each ICF class—were fine-tuned to perform regression on qualifier levels, adjusting
for the degree of impairment or functioning as specified by the annotations.

For both tasks, default hyperparameters were used without modifications, focusing on sentence-
level predictions.

The outcomes of these training tasks are detailed in the following tables 3.5 and 3.6, which
present the performance metrics for both the classification and regression models as they were
reported in the publication (Kim et al., 2022). It is important to note that each modeling task was
validated individually on gold data. This approach does not account for potential interdependencies
or transferability of errors between the two tasks. For instance, the regression models only evaluate
sentences flagged by the classification model, implicitly assuming perfect accuracy in the initial
classification stage, which could skew the validation results.

Moreover, since the annotation task was performed on a token level, the class mention and the
qualifier level can appear in different places in the text. To split the clinical notes into sentences,
a SpaCy package (Honnibal and Montani, 2017) was used, which contains a rule-based system
to split sentences. However, due to the non-standard writing style in clinical notes, SpaCy is
regularly expected to incorrectly split sentences into chunks. Since the article did not report on
any inspection on the sentence splitting task, it is unknown how many class mentions and qualifier
levels got separated in the process. Since the proposed system only sends a sentence and the
context sentences to the regressor model if and only if the class mention was identified by the
multi-label ICF classifier model, it is uncertain how incorrectly split sentences are evaluated in the
current pipeline.

Results for both training tasks are reported in the below tables 3.5 and 3.6.
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P R F1 Support

Sents

ADM 0.98 0.49 0.66 775
ATT 0.98 0.41 0.58 39
BER 0.56 0.29 0.35 54
ENR 0.96 0.57 0.72 160
ETN 0.92 0.49 0.63 382
FAC 0.84 0.71 0.76 253
INS 0.89 0.26 0.41 287
MBW 0.79 0.26 0.40 125
STM 0.70 0.75 0.72 181

Notes

ADM 1.0 0.89 0.94 231
ATT 1.0 0.56 0.71 27
BER 0.66 0.44 0.50 34
ENR 0.96 0.87 0.91 92
ETN 0.95 0.72 0.82 165
FAC 0.84 0.89 0.86 95
INS 0.95 0.46 0.61 116
MBW 0.87 0.87 0.87 64
STM 0.80 0.87 0.84 94

Table 3.5: Category classification: evaluation (Precision - P, Recall - R and harmonic mean of P
and R - F1) on test set for sentence-level (sents) and note-level (notes). Including support levels
for each category (Kim et al., 2022)
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MAE MSE RMSE Support

Sents

ADM 0.48 0.55 0.74 421
ATT 0.99 1.35 1.16 32
BER 1.56 3.06 1.75 26
ENR 0.48 0.49 0.70 100
ETN 0.59 0.65 0.81 183
FAC* 0.70 0.91 0.95 139
INS* 0.69 0.80 0.89 136
MBW 0.81 0.83 0.91 60
STM 0.76 1.03 1.01 155

Notes

ADM 0.37 0.34 0.58 200
ATT 1.03 1.47 1.21 21
BER 1.49 2.85 1.69 22
ENR 0.43 0.42 0.65 70
ETN 0.50 0.47 0.68 123
FAC* 0.66 0.93 0.96 79
INS* 0.61 0.64 0.80 74
MBW 0.60 0.56 0.75 41
STM 0.68 0.87 0.93 84

Table 3.6: Levels regression: evaluation (Mean Absolute Error - MAE, Mean Squared Error - MSE,
Root Mean Squared Error - RMSE) on test set for sentence-level (sents) and note-level (notes).
Including support levels for each category (Kim et al., 2022)

Table 3.5 highlights that certain classes, notably ATT (Attention) and BER (Work and Em-
ployment), have low support values, indicating a small number of positive samples for evaluation.
Reporting on the sample size alongside precision and recall metrics is crucial for assessing the
statistical significance of these performance metrics.

Table 3.6 illustrates the use of Mean Absolute Error (MAE), Mean Squared Error (MSE), and
Root Mean Squared Error (RMSE) to evaluate the regression models. Although the annotation
of qualifier levels followed the ICF practical guide with discrete categories, using MAE, MSE, and
RMSE assumes continuous data. For instance, a prediction of 3.2 with a target of 4 incurs a lower
loss than a prediction of 2.8, even though both round to the same discrete category. This raises
challenges in assessing the significance of decimal predictions. Therefore, we recommend retraining
and evaluating the model using discrete levels to compare methodologies in a follow-up research.
In order to facilitate intuitive comparisons of error rates between the models proposed in this thesis
and the ICF classifier models used as input, we employ the same performance metric.

It is also important to note that performance metrics improve when the model is evaluated
on a note level. Although the model was not retrained for note-level prediction, sentence-level
predictions were averaged out, as well were the annotations. This averaging seems to improve
output quality but reduces sample size which increases the standard error. Averaging predicted
and annotated values may lose original resolution and information provided by outliers.

Evaluating at the note level instead of the sentence level also rebalances the dataset. For
instance, ADM sentences appear 775 times in the 22,802 test set sentences (3.3%), but in 231 out
of 431 notes (54%). This can inflate precision and recall by increasing the proportion of positive
samples, thereby reducing the impact of false positives and negatives. The improved performance
metrics may reflect this rebalance rather than actual model improvement. Without the exact
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distribution of true and false positives and negatives, the resampling effect on the performance
metrics is challenging to quantify.

The improvement in performance metrics might indicate that the original class imbalance
affected model performance. In a follow-up experiment, retraining the model on a sentence-level
classification and regression task using a rebalanced dataset could clarify the impact of the original
class imbalance.

Evaluating the methodology and results of the ICF research is crucial for two reasons. First, it
helps identify methodological decisions that might affect previous and current research outcomes.
Second, it allows us to determine which ICF classes are most relevant to focus on and which may
generate labels of inadequate quality.

Due to the low inter-annotator agreement (IAA) values for the INS functioning class, poor
F1 scores on the test set, and the inconsistency of the test set results being higher than the IAA
scores6, we decided to exclude this class from all further analyses. As for the other ICF classes,
while the IAA metrics for those classes are only slightly better, for now we decide to keep those in
the analysis.

3.3 Experiment 1: Correlation Analysis between Beter

Voorbereid Data and ICF Outputs

The aim of experiment 1 is to assess the correlation between the Beter Voorbereid questionnaire
responses and the ICF classifier models output on notes written around the same date as the ques-
tionnaire was filled in. This is especially important because there were methodological decisions
made by the previous researchers that complicate downstream modeling tasks, such as not eval-
uating the models in pipeline, not providing enough distributional information on their datasets
and evaluating the ordinal discrete levels on a continuous scale. These decisions make it more
difficult to assess what the generated labels really mean in the context of functioning over time.
Since the focus of this project is to explore to what extent the ICF labels during hospitalization
can confidently predict what ICF labels would have been given to post-discharge clinical notes, we
need to quantify what these labels mean for a patient. We do this by comparing the ICF output
with existing questionnaire-based self-reported patient functioning data that was gathered in the
Beter Voorbereid (BV) project.

We investigate whether there is a correlation between the self-reported functioning levels in the
Beter Voorbereid Dataset and the ICF outputs. This serves as an external validation, exploring
how the model relates to external datasets on the same topic. This experiment, referred to as
“Experiment 1,” is a prerequisite for the predictive modeling task.

3.3.1 Data Description Beter Voorbereid

The BV project consists of five questionnaires. The first is a baseline measurement filled in prior to
hospitalization. The subsequent questionnaires were administered one week, three weeks, six weeks,
and twelve weeks after discharge, respectively. However, patients had the flexibility to decide when
to complete these questionnaires. Additionally, patients often took several days to complete each

6While it is not impossible for a model to reach higher performance scores than the IAA score for that class, it
would still be useful to explore the effect of inconsistent annotations on the model training and evaluation further.
One way to test the effect of different annotators on the model performance is to stratify the test set on the
annotators and compare the model output quality between annotators.
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questionnaire, resulting in varying start and end dates. This variability complicates mapping the
questionnaire responses to specific moments in time and consequently to corresponding clinical
notes. Since most questionnaires focus on the post-discharge period, which coincides with less
frequent entries in the Electronic Health Records (EHR), this data mismatch further complicates
the analysis.

Since this dataset was originally gathered for different purposes, the constructs measured in
the Beter Voorbereid questionnaires do not directly correspond to ICF classes. Some ICF classes
have multiple related questions, while others have none. Therefore, to accurately relate the ICF
labels to the BV questions, we need to analyze each individually. Tables 3.7 and 3.8 below shows
the relevant questions for each ICF class except INS.

ICF Class Relevant Question Answer Options

FAC: Mobility “Please select one op-
tion for each of the
groups in the list below
that contains a sentence
that best describes your
health situation today.
Mobility:”

-I don’t have difficulties
walking.
-I have some difficulties
walking.
-I am bedridden.

ADM: Respiratory Functions “Did you - during your
hospitalization - expe-
rience any issues with
your lungs (such as
coughing and/or short-
ness of breath)?”

-Not at all
-A little
-Moderately
-Quite a lot
-Extremely much

ENR: Energy “How would you rate
your average fatigue?”
(Hoe zou u gemiddeld
uw vermoeidheid beo-
ordelen?)

-No fatigue.
-Light fatigue.
-Medium fatigue.
-Heavy fatigue.
-Extremely heavy fa-
tigue.

STM: Mood “Please select one op-
tion for each of the
groups in the list below
that contains a sentence
that best describes your
health situation today.
Mood:“ (Wilt u bij
iedere groep in de lijst
hieronder één mogeli-
jkheid aanklikken voor
de zin die het best past
bij uw eigen gezond-
heidstoestand van van-
daag. Stemming: )

-I am not anxious or
feeling down.
-I am somewhat anxious
or feeling down.
-I am very anxious or
feeling down.

Table 3.7: Relevant Questions and Answer Options for Each ICF Class (Part 1)
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ICF Class Relevant Question Answer Options
MBW: Weight Maintenance “Did you unintention-

ally lose more than
3kg weight in the last
month?” “Did you
unintentionally lose
more than 6kg in the
last 6 months?”

-Yes
-No

ETN: Eating None None
BER: Work A dynamic set of ques-

tions according to the
PROMISS Itembank
“Social Score” (Cella
et al., 2007)

A T-score ranging
from 0 to 100.

ATT: Attention “Did you generally
feel confused during
your hospitalization?”

-Never
-Rarely
-Sometimes
-Quite often
-Extremely often

Table 3.8: Relevant Questions and Answer Options for Each ICF Class (Part 2)

The ICF category ETN Eating (ETN) did not have any corresponding questions in the BV
project, so we also ignored this class for further analysis.

Number Participants
Started as participant 144
Stopped prematurely 49

Had no clinical notes post-discharge 21
Remaining number of participants 74

Table 3.9: Number of Participants in the BV study

Table 3.9 reports on the amount of partipants that took part in the BV study. A total of
144 patients participated in the Beter Voorbereid project. 49 did not complete the project for
various reasons. Of the 95 patients who finished, 21 did not have any clinical notes in the relevant
post-discharge period. Therefore, 74 patients were selected for Experiment 1.

As explained previously and shown in table 3.7 and 3.8, the questions in the Beter Voorbereid
questionnaires do not always refer to the same period. Therefore, for each question, we manually
extracted the relevant time period. For the questionnaire dates, we chose the completion date
as the anchor point. Additionally, because we do not always have a relevant clinical note with
the correct class mention on the exact date the question was asked, we averaged the two nearest
neighboring ratings around the relevant date for all cases where questions refer to a single moment
in time. Table 3.10 shows the extracted timeframes for each question and the questionnaire number,
indicated with T0 to T4, in which the question appeared. It only includes the 5 ICF classes we
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considered usable for this thesis, because we identified those as best-performing and of highest
quality. We illustrate this decision in section 4.1: Data Analysis.

ICF Class Relevant Timeframes Questionnaire Number (in-
dicating time point)

FAC: Mobility Day of question + 2-week window T0, T1, T2, T3, T4
ADM: Respiratory Functions Hospitalization period T1

ENR: Energy Day of question + 2-week window T0, T1, T2, T3, T4
STM: Mood Day of question + 2-week window T0, T1, T2, T3, T4

MBW: Weight Maintenance
1 month prior to day of question;
6 months prior to day of question

T0, T4

Table 3.10: Extracted Timeframes for Relevant Questions and the questionnaire numbers - indi-
cated with T0 - T4 - in which they appear

3.3.2 Statistical Correlation Metrics and Data Aggregation

To effectively analyze the correlation between the ICF results and the questionnaire responses, we
must account for differences in periods, frequencies, and constructs measured by the questions.
We have identified three distinct cases, each requiring a specific approach:

Case 1: Lowest Score in Specific Period

Questions about weight management pertain to any experience of losing a specified amount of
weight within a certain period (e.g., 3kg/6kg, 1 month/6 months). A patient might have lost the
weight at some point during the period but regained it later. The response would still be “yes”
as the weight loss happened at some point. Therefore, for this construct, we select the lowest ICF
class predicted for any of the notes during the relevant period.

Case 2: Hospital Period Questions

One of the questions in the questionnaire was about respiratory functioning, and this question
was only present at timepoint T1, while inquiring the patient about their experience during hospi-
talization. This is a single question referring to a period in time. Therefore, we aggregate the ICF
ratings into a single rating by taking an average of all relevant ICF ratings during hospitalization.

Case 3: Repeated Day-Specific or Period-Specific Questions

The last case we identified is one where the same question is being repeated throughout the
BV study, once for each questionnaire. The questions either refer to the day itself or to a period
(i.e. last week). For the question about the same day, we aggregate the ICF ratings by taking the
average of two nearest ratings and for the questions about a period in time, we aggregate the ICF
information by taking an average over the whole period.

In addition to identifying the methods to aggregate ICF qualifier levels into a single rating
that represents the same functioning level as the questionnaire responses, it is also essential to
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look at the BV questions themselves and compare them with the ICF classes. This would help us
hypothesize about the relationship between the BV rating and the ICF ratings, which is required for
finding a suitable measure of association to quantify this relationship. Whether the BV constructs
measure the same functioning element as the ICF classifier models do, is different for each of the
ICF classes. For example, for Weight Maintenance (MBW) the annotation guidelines are in table
3.11.

level generic qualifier Weight Maintenance (MBW)
4 no problem Healthy weight, no unintentional weight loss or gain,

SNAQ 0 or 1.
3 mild problem Some unintentional weight loss or gain, or lost a lot of

weight but gained some of it back afterwards.
2 moderate problem Moderate unintentional weight loss or gain (more than

3 kg in the last month), SNAQ 2.
1 severe problem Severe unintentional weight loss or gain (more than 6 kg

in the last 6 months), SNAQ ≥ 3.
0 complete problem Severe unintentional weight loss or gain (more than 6 kg

in the last 6 months) and admitted to ICU.

Table 3.11: Description of MBW Levels and Generic Qualifiers

Qualifier levels 0 and 1 directly match with the Weight Maintenance questions in the BV
project when it comes to weight loss, but it also includes unintentional weight gain, which the BV
questions do not: “Did you unintentionally lose more than 3kg weight in the last month?” and
“Did you unintentionally lose more than 6kg in the last 6 months?”

While the BV question about weight loss and the ICF class about Weight Maintenance are mea-
suring almost the same constructs, we can see a different relationship for Respiratory functioning
(ADM). The question from the questionnaire is:

“Did you - during your hospitalization - experience any issues with your lungs (such
as coughing and/or shortness of breath)?”.

The possible responses were: Not at all, A little, Moderately, Quite a lot, Extremely much.
Table 3.12 shows the description of the ICF qualifier levels for ADM.

level Respiratory functioning (ADM)
4 No problem with respiration, and/or respiratory rate is

normal (EWS: 9-20).
3 Shortness of breath in exercise (saturation ≥90), and/or

respiratory rate is slightly increased (EWS: 21-30).
2 Shortness of breath in rest (saturation ≥90), and/or res-

piratory rate is fairly increased (EWS: 31-35).
1 Needs oxygen at rest or during exercise (saturation

<90), and/or respiratory rate >35.
0 Mechanical ventilation is needed.

Table 3.12: Description of ADM Levels
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We can see that these constructs do not completely overlap. The BV question is referring to
coughing and shortness of breath, which corresponds with ADM qualifier levels 2 and 3. However,
a patient who is intubated or is supplied with oxygen, might not experience a shortness of breath
due to the intervention. This means that the relationship between the BV responses and the ICF
labels is not linear for all classes. In other words, while both the BV and the ICF labels are scaled
ordinally and not rationally, due to the mismatch in measured constructs, we cannot assume that
the relationship is monotonic. In appendix .1 we shared the full annotation guidelines for all
relevant classes.

Since the BV questionnaire responses are always on an ordinal scale and the ICF qualifier
levels can be handled as either continuous data (using the qualifier levels as assigned by the ICF
classifier models) or as ordinal data (rounding the values so they reflect the original ordinal ICF
scale), we need to use a correlation metric that can handle data of ordinal nature. Spearman Rank
Correlation is an option, but as we explained, we do not assume all relationships to be monotonic,
which is assumed when using Spearman. Additionally, our ordinal scales are relatively small, with
anywhere between 2 and 5 values. Khamis (2008) argues that for ordinal datasets with a small
amount of levels, Spearman rank correlation is not sufficient, since it does not handle ties in the
ranks well. Instead, Kendall’s Tau b is preffered, this measure of association is appropriate when
one variable is ordinal and the other one is ordinal or continuous. Therefore, we use Kendall’s Tau
b for all three idenfitied cases.

Kendall’s Tau scores range from -1 to 1. 0 indicates no association and Kendall’s Tau values
toward -1 and 1 indicate a stronger negative or positive association respectively.

In section 3.2.3, we discussed how the qualifier assignment by the ICF classifier models is
evaluated using the MAE, which assumes the data is on a rational measurement level. Because
experiment 1 involves using correlational tests to determine the strength of the relationship between
the datasets and since the BV questionnaire responses are also on a ordinal discrete level instead of
a continuous measurement level, we round each ICF value to its nearest whole number, to reflect
the original scale of the data.

This results in experiment 1 consisting of 3 different cases, each aggregating the ICF ratings
in a unique way to reflect the relationship between measurable constructs. Each analysis consists
of ICF ratings being used on a continuous scale and on an ordinal scale. Additionally, in case 3,
where the relevant questionnaire questions are repeated throughout the BV study, we also compare
the change between BV rating and ICF ratings between each point in time, which would quantify
the relationship of the trends as described by both measures. We use Kendall’s Tau b for each of
these analyses.

3.4 Experiment 2: Predictive modeling of ICF ratings dur-

ing hospitalization on expected ICF ratings after dis-

charge.

The objective of the second experiment is to predict the expected ICF classes for clinical notes post-
discharge based on ICF predictions during hospitalization. This involves developing a predictive
model that leverages the ICF ratings assigned to patient notes during their hospital stay to forecast
the ICF classes that would likely be assigned to notes created after discharge.
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3.4.1 Model Choice and details: LSTM

Previously, we explained that there is a variability in patients’ lengths of stay. This variability
impacts our modeling approach, particularly concerning the variable lengths of input sequences.
Each patient’s hospital stay consists of a different number of clinical notes, resulting in sequences
of varying lengths. This section delves into the methods to handle variable input lengths and
justifies our choice of the Long Short-Term Memory (LSTM) model for this task.

3.3.2.1 Handling variable sequence lengths

When dealing with sequences of variable lengths, several strategies can be considered:
Dimensionality Reduction: Methods such as Principal Component Analysis (PCA) can

reduce the dimensionality of the input data by transforming the original variables into a smaller
set of uncorrelated variables, called principal components, which still capture most of the data
variance.

Embeddings: Creating embeddings for the ICF outputs helps represent the notes in a fixed-
dimensional space. This involves learning a mapping from the high-dimensional space of the
original data to a lower-dimensional space. One common approach is using a neural network model
trained on an unsupervised task, such as predicting ICF model output and the type of note based
on input features. Alternatively, a next-rating prediction task can be used, where the network
starts with random weights and learns to predict the target of the next ICF ratings, updating
the representations in the last hidden layer. These embeddings capture meaningful patterns and
relationships in the data.

Alternatively, we could use a model that handles variable-length sequences directly. Recurrent
Neural Networks, such as LSTMmodels, can process each note in the sequence step-by-step without
the need for padding or truncation, making them ideal for our dataset where each patient’s sequence
of notes varies in length.

Additionally, the LSTM architecture allows for generating predictions even on incomplete se-
quences, aligning with the hospital’s interest in obtaining predictions partway through a patient’s
hospitalization. While this is not the primary evaluation goal, it provides additional utility and
flexibility. Moreover, LSTMs excel at capturing temporal patterns in sequential data, which is
crucial for understanding the progression of patient health over time. Therefore, we expect that
using LSTMs will enhance our ability to forecast ICF ratings post-discharge.

3.3.2.2 Missing value representation

For this research, we compared several feature representation methods to handle variable lengths.
However, in addition to the fact that each patient has a different amount of clinical notes entries
in the EHR, not all entries contain ICF class mentions. As a result, input sequences per patient
often contain empty values. Missing ICF values can have different meanings depending on the type
of note from which the value is missing, for example, a note without a mention of the patient’s
mobility can mean nothing is wrong (i.e. if the note was written by the physiotherapist) or it can
mean the patient’s mobility was not relevant (i.e. a note written by a dietitian). Ignoring notes
with missing values or imputing these values risks losing important information. However, simply
representing a missing value as 5 could mislead the model into interpreting it as an actual ICF
qualifier level of 5, meaning there is no impairment. Therefore, we model the presence of an ICF
qualifier level binarily as a separate feature and we denote the missing value itself as 5, which
corresponds to no issues in the functioning domain.
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For example, if a patient has three consecutive notes in the EHR with the following FAC
ratings: 0, missing, 2, this would be represented as:

Ratings: [0, 5, 2]

Presence: [0, 1, 0]

Resulting in the total vector being: [0, 5, 2, 0, 1, 0]. Here, the second sequence indicates the
presence of missing values.

3.3.2.3 Structured Data

In addition to the extracted ICF class ratings, we include structured data from the EHR to
improve model performance. These features are age, gender, BMI, number of diagnoses, ICU stay
requirement, and total surgery duration, which are relevant indicators of a patient’s overall health
and recovery trajectory.

Unlike ICF ratings, missing values in these structured features are treated as genuine absences.
Continuous features such as age, BMI, and number of diagnoses are imputed with the median
value, while categorical features such as gender and ICU stay requirement are imputed with the
most frequent label.

3.3.2.4 Baseline

To evaluate the added predictive value of ICF ratings during hospitalization, we compare the
performance of models with and without these ratings. The model without the ICF ratings from
the hospital set is considered the baseline model and it includes only structured data features (age,
gender, BMI, number of diagnoses, ICU stay requirement, and surgery duration). By comparing
this baseline with a model that also includes ICF ratings, we can assess the impact of the ICF
data on predictive performance.

If the model with ICF ratings outperforms the baseline, it would indicate a predictive relation-
ship between in-hospital ICF ratings and post-discharge functioning. This comparison is crucial for
validating our hypothesis that functioning during hospitalization, as captured by the ICF models,
can predict post-discharge outcomes.

3.3.2.5 Model choice: post-discharge functioning prediction

The aim of this thesis project is to explore how information about a patient’s functioning through-
out hospitalization can be used to predict the expected functioning levels after being discharged
from the hospital. If we can confidently predict how a patient rehabilitates after a surgery, we can
target interventions for patients with worse expected functioning. This section explains the model
architecture decision for the purpose of building predictive models that utilize functioning data
throughout hospitalization to predict post-discharge functioning.

In section 3.4.1, we discussed that RNN models, such as LSTM, can handle input sequences of
variable lengths, making them a viable choice. In section 3.3.2, we highlighted that ICF constructs
do not always relate linearly to the BV questions. A significant benefit of using Neural Networks,
such as LSTM models, is their ability to capture these non-linear relationships through non-linear
activation functions and gating mechanisms.

There are multiple ML methods that can address non-linear relationships. However, tradi-
tional ML methods like random forests and SVMs cannot handle variable-length input sequences.
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Additionally, methods such as linear regression models cannot capture non-linear relationships
effectively. Although traditional ML techniques offer interpretability, the interpretability of the
ICF classifier output itself is not quantified, complicating the interpretability of downstream tasks.
While GRU, another RNN architecture, can be used, LSTMs are more effective at capturing long
dependencies, which is crucial given the average sequence length of 70 to 85 notes per patient.

Transformer models share the benefits of LSTMs but require padding for variable-length se-
quences. While Transformers handle padding through masked tokens, sequences longer than the
maximum input size need complex techniques like truncation or rolling windows to fit into the
input layer. Additionally, due to their dense attention layers, Transformers require larger, more
varied datasets to converge. Given our dataset size (300-500 patients per subset), LSTMs are more
appropriate.

A key practical reason for choosing LSTM models is our collaboration with AUMC hospital,
which aims to integrate the developed models within their EHR software. While Transformer
models are faster for training and inference due to parallel computations, they require specialized
Tensor GPUs, which are not available in the EPIC EHR software. Therefore, LSTMs, which are
computationally less expensive and can run on standard hardware, are a more practical choice for
deployment in a healthcare environment.

The LSTM architecture includes several parameterizable values: number of layers, batch size,
learning rate, optimizer choice, dropout rate, activation functions, and initialization schemes.
Due to the size of this project and the multitude of experiments, we are not able to search the
hyperparameter space for the best set of parameters.

In conclusion, we chose the LSTM architecture for its ability to handle variable-length se-
quences, capture non-linear relationships, and meet practical implementation constraints. We will
explore different data representation methods and combinations of structured and unstructured
data. Additionally, we will compare the results with a baseline model that excludes the ICF ratings
to evaluate the added predictive value of these ratings.

3.3.2.6 Model Training

For the training setup of the model, we split the data into a training, development and test set
following a 60-20-20 split. Since this experiment includes constructing multiple models for each
of the 5 classes, with different input feature representations, we cannot employ cross-validation
during these experiments due to technical and time-related limitations.

In table 4.2 we show that, for each of the ICF classes, there are approximately 300 to 550 positive
target labels, meaning there are anywhere between 500 and 700 samples per ICF class without the
corresponding ICF rating in the target period. We represent these missing values as qualifier level
5, meaning no impairment. However, since this results in level 5 being over-represented in the
target labels, we rebalance the dataset by removing some of the negative samples so it contains
as many items as the positive samples. We only rebalance the set of imputed target labels, if a
post-discharge note was assigned a qualifier level 5 naturally, we always keep them in the dataset.

Ideally, we use a grid search to find the optimal combination of (hyper)parameters that allows
the model to best generalize on the data. However, due to the number of different model input
representations we want to explore, this would greatly increase training time. It would also com-
plicate a direct comparison between the experiments, since it would result in many more models to
compare. Therefore, we use the same default settings for each of the trained models in Experiment
2. Table 3.13 contains all (hyper)parameters we used in this experiment.
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Hyperparameter Value
Activation Function tanh
Recurrent Activation sigmoid
Input Layer Shape (None, # of features)
Layer 1 Dimensions 64
Layer 2 Dimensions 32
Output Layer Activation linear
Optimizer Adam
Learning Rate 0.001
Loss Function MAE
Batch Size 8
Number of Epochs 20
Dropout Rate 0
Weight Initialization random

Table 3.13: Model Hyperparameters

3.4.2 Model Evaluation

Model evaluation is a critical component of this research, ensuring that our predictive model
performs accurately and reliably. The next sections describe all methods we use to evaluate the
final models.

3.4.2.1 Evaluation Metric

The prediction models we propose in this thesis aim to predict post-discharge functioning of pa-
tients based on their functioning data during hospitalization. Both the input of the model and the
target label are based on the output by the previously developed ICF classifier models. While ICF
qualifier levels are originally ordinally scaled discrete levels, the researchers who developed these
models chose to use Mean Absolute Error (MAE) as a loss function and as the evaluation metric.
This essentially got rid of the discrete levels, because the model evaluates an output of 1.45 as
opposed to a target of 2 as an error rate of 0.55 and an output of 2.45 as opposed to the target of
2 as a slightly better error of 0.45. In reality, 1.45 would correspond to the ICF qualifier level 1
and 2.45 relates to qualifier level 2.

While we believe using a classification error metric is better suitable to evaluate a predicted
ICF level, to be able to directly compare our proposed models against the ICF classifier models,
we employ the MAE score for model evaluation and as a loss function instead. The MAE scores
as reported for the ICF classifier models in Kim et al. (2022) are essentially the average expected
errors, so as long as the MAE scores of the prediction model are of the same magnitude, those
predictions are within the expected error margins of the assigned ICF labels. We would consider
this to be a positive result.

3.4.2.2 Error Analysis

To gain deeper insights into the model’s performance and identify areas for improvement, we will
conduct an error analysis. This involves examining the types of mistakes the model makes. For each
ICF class, we randomly select examples of correct and incorrect predictions. We also anonymize
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the phrases referring to those classes to be able to report on them as well. This analysis will
provide deeper insights into the model’s performance and help identify areas for improvement.

By combining these evaluation metrics and error analysis, we can comprehensively assess the
model’s performance and ensure that future improvements are meaningful.

The methodology outlined in this chapter provides the foundation for analyzing the correlation
between ICF outputs and self-reported functioning, and predicting post-discharge ICF classes. The
next chapter will present the results of these experiments.
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Chapter 4

Results

This chapter presents the findings from the two experiments that are introduced in the previous
chapters. The first experiment assesses the correlation between the ICF classifier model’s outputs
on clinical notes and patients’ self-reported functioning levels from the Beter Voorbereid (BV)
project. The second experiment evaluates the predictive value of in-hospital ICF ratings on post-
discharge ICF ratings, utilizing data from oncological surgery patients. For both experiments, we
compare results between analyzing the ICF scores as continuous values and analyzing ICF scores
as ordinal categorical values.

4.1 Data Analysis

In chapter 3 we evaluated the methodology applied by the researchers who developed the Language
Model (Verkijk and Vossen, 2021) and the ICF classifier models (Kim et al., 2022). Based on the
Inter-Annotator Agreement they reported for the ICF classed, we identified that the class of
Exercise Tolerance (INS) is not a suitable class to use for downstream modeling tasks.

We also compared the questions in the BV set with the ICF classes, to identify the questions
that most closely resemble what the ICF classes are measuring. For the Eating (ETN) ICF class
we found no corresponding question, therefore we also ignore that class in future analysis.

In this section, we continue this analysis by computing distributional statistics of the output
of the ICF classifier models on the notes from the participating patients in the BV study. Based
on these statistics we can further analyse which ICF class mentions appear frequently enough to
be suitable for correlational analysis. Since the correlational analysis serves as the validation of
the usability of the ICF classifier models, if we decide to exclude a class for experiment 1, we also
exclude it for experiment 2.

4.1.1 Data Description ICF Classifier Output on Patients from the
Beter Voorbereid Project

Table 4.1 shows the average amount of ICF class mentions found in the clinical notes for all
patients, including notes from hospitalization until 8 weeks post-discharge.
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ICF Class Amount of Notes containing Class Mentions per Patient (Average)
FAC: Mobility 30

ADM: Respiratory Functions 53
ENR: Energy 10
STM: Mood 19

MBW: Weight Maintenance 16
BER: Work 5

ATT: Attention 3

Table 4.1: Average Amount of notes containing ICF Class Mentions per Patient

Since the BER (work) and ATT (attention) classes appear infrequently, they cannot be used
for the correlation analysis. Therefore, only the following classes are considered: FAC (mobility),
ADM (respiratory functioning), ENR (energy), STM (mood), MBW (weight maintenance).

In addition to looking at the frequency of notes containing the relevant ICF class mentions, it
is also essential to look at the distribution of qualifier levels. This is useful to test assumptions to
determine a suitable statistical test, but it also helps us reason about the MAE evaluation scores.
4.2 until 4.5 show histograms per ICF class containing the total distribution of assigned levels
across all 74 patients.



Figure 4.1: Distribution of Mobility (FAC)
class mention qualifier levels across all pa-
tients

Figure 4.2: Distribution of Respiratory func-
tioning (ADM) class mention qualifier levels
across all patients

Figure 4.3: Distribution of Energy (ENR)
class mention qualifier levels across all pa-
tients

Figure 4.4: Distribution of Mood (STM)
class mention qualifier levels across all pa-
tients

Figure 4.5: Distribution of Weight Mainte-
nance (MBW) class mention qualifier levels
across all patients
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These histograms clearly show that the distribution of levels varies across classes. FAC appears
to follow a near-normal distribution while ADM and STM show more skewed distributions. In
paragraph 3.2.3, we noted the absence of distributional information about qualifier levels in previ-
ous publications. While one of the reports contains pie charts displaying the relative distribution
of the levels, it is important to have the exact values in order to compare error metrics between
ICF classes. If this information had been available, we could have compared both distributions to
better understand dataset differences. Significant distribution differences might indicate a lack of
transferability from the training environment to a production environment. Additionally, compar-
ing the distribution of qualifier levels from the annotated and predicted data could provide more
insight into model performance than an error-rate performance metric can on its own.

Using the ICF classifier output, we can graph the functioning over time for each patient in
figure 4.6. Since FAC qualifier levels range from 0 to 5 instead of 0 to 4, we rescaled all other
values to the same scale.

Figure 4.6: Functioning Over Time for a Sample Patient, a colored line per ICF class and vertical
lines for the Intake (Red), Surgery (Blue) and Discharge (Green) dates (ADM = respiratory
functioning, ENR = energy, FAC = mobility, MBW = weight maintenance, STM = mood)

Due to the low frequency of ICF mentions appearing in general, many days do not contain
an ICF label. For visualization purposes in this graph, we filled those in by carrying over the
last observation. Therefore, any change in ratings reflects a note with a newly identified ICF
class mention. If a line does not change over time, that means there were no new observations.
The vertical lines denote the intake date, surgery date, and the discharge date respectively. It
is clear from the graph that between surgery and discharge, most notes with new ICF-related
information are written, which is expected because monitoring is much more precise and frequent
during hospitalization.
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Figure 4.7: Zoomed in Functioning Over Time for a Sample Patient, a colored line per ICF class and
vertical lines for the Surgery (Blue) and Discharge (Green) dates (ADM = respiratory functioning,
ENR = energy, FAC = mobility, MBW = weight maintenance, STM = mood)

When zooming in on the period between surgery and discharge, as can be seen in figure 4.7,
we can see the functioning over time in more detail. For example, ADM (respiratory functioning)
is assigned an average qualifier level of less than 1 on July 30th. By July 31st, it is up to slightly
over 2, and it continues to rise until the first of August. We identified three notes from July 30th
with ADM qualifiers levels assigned to them, the relevant phrases from those notes are:

“RESP: Extubated at 5 PM. Acceptable gasses with 3L O2 on the nasal cannula.”
Dutch: (RESP: Om 17uur gedetubeerd. Acceptabel gas met 3L O2 op de neusbril)
ADM: 1.06

“Based on the decreased Tiffeneau index (FEV1/VC), there is an expiratory obstruc-
tion. Perioperative details: A: double-lumen tube on the left, good position --> switch
to single-lumen tube at the end of the operation B: tolerates one-lung ventilation well
(left lung collapsed). [...] Saturation 100% under 12L O2, ventilation 16/min over
Ambu bag.”
Dutch: )Op basis van de verlaagde tiffeneau index (FEV1/VC) is er sprake van een ex-
piratoire obstructie. Bijzonderheden per-operatief: A: dubbellumen tube links, goede
positie --> wissel naar single lumen tube op einde OK B: verdraagt 1-long beademing
goed (linkerlong gecollabeerd) [...] sat. 100% onder 12L O2, beademing 16/min over
ambuballon.)
ADM: 0.40

“COPD with reduced lung function. Management per problem: 1. reduce sedation and
extubation [...] [DATE: 30 July] Addendum by [NAME DOCTOR] [DATE: 31 July]:
Clear and awake. Extubated. [DATE: 17 July] VC is normal. FEV1 is moderately
reduced (60-69%). Based on the decreased Tiffeneau index (FEV1/VC), there is an
expiratory obstruction. [...] [DATE: 30 July] Respiration: Ventilation/O2 therapy.”
Dutch: (COPD met vermiderde longfunctie Beleid per probleem: 1. sedatie afbouwen
en detubatie [...] [DATE: 30 July] Addendum door [NAME DOCTOR] [DATE: 31
July]: Goed helder wakker. Gedetubeerd. [DATE: 17 July] VC is normaal. FEV1 is
matig verlaagd (60-69%). Op basis van de verlaagde tiffeneau index (FEV1/VC) is er
sprake van een expiratoire obstructie. [...] [DATE: 30 July] Respiratie: Beademing/O2-
therapie)
ADM: 1.5
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The first two notes got assigned 1.06 and 0.40 ADM qualifier levels respectively. This seems
to reflect the note content, where the first note describes extubation and the second one describes
intubation. Both notes were written on the day of surgery, but the first one is a Plan of Care
type of EHR entry, while the second one is a postoperative anesthesia handover note. However,
the third example also shows how the identified ICF classmentions in an EHR entry on a specific
date do not always necessarily reflect the functioning of a patient on that day. In this case, the
note seems to be continuously expanded on, which is mentioned in the note with “Addendum”.
Additionally, the note also is appended with a previous note, which describes the situation on
the day of hospitalization. Consequently, the functioning status that is extracted from this note
does not reflect this patient’s functioning at that time, and it decreases the average qualifier level
assigned for respiratory functioning for that patient on that day

This is a complicating factor in most research that focuses on extracting information from
clinical notes: a note does not always reflect the date of creation. The ICF model extracts class
mentions - the mention of a patient’s functioning - it does not extract events. The EHR from
a patient that is intubated and consequently is assigned an ADM score of 0, can have multiple
mentions of the intubation in different notes in the EHR. However, if a patient has 10 ADM=0
ratings or just a single one, we cannot disambiguate the two, we do not know whether a patient
with 10 intubation mentions was experiencing respiratory issues for a longer period than a patient
with a single mention did.

That being said, if the appended older notes or the chance of a note being expanded on
through means of an addendum, are expected to appear in the dataset relatively consistently, then
this results in a latent lagging variable affecting all scores evenly. For example, the addition of
information that reflects the functioning status on the date of admission is expected to be present
in other progress or department handover notes as well, which would result in the same misplaced
qualifier level affecting the average score of a note across hospitalization.

However, if there are more notes for a patient on a certain date, the effect the misplaced qualifier
levels have on the average score changes, which means that averaging out scores for a given day
is likely not the best approach. Also, there is a possibility that the type of the note (e.g. progress
note, plan of care, telephone appointment) affects the chance of such an addendum appearing,
which is why we expect that adding the note type as a feature in experiment 2 would benefit the
model. For example: if mobility functioning is not mentioned in a neurosurgical report, it might
mean this was not worth mentioning while mobility could still have been impaired. However, if a
physiotherapist does not mention mobility in their notes, this probably means there was no issue
with mobility, since we expect this doctor to report on this class more frequently.

We can see that the graph for ADM increases a day after, on July 31st, to 2.07. This correctly
reflects the fact that the patient’s intubation was ended. In total, 8 different EHR entries were
assigned ADM scores on that day. These range from 0.40 to 4.02. The note that was assigned
0.40 is a progress report that contains an exact copy of the postoperative anesthesia handover note
from the day before, hence the exact same score. However, since the patient also has a few notes
describing the increased respiratory functioning, the average score still increased, which correctly
reflects the content of the notes. As we can see, the score keeps increasing until August first. While
this is a small qualitative inspection of the ICF output, it shows how the lagging latent variable
affects the score, but also how over time the scores still display a trend that fits the functioning
development of the patient.

Finally, the ADM line decreases again before increasing to a high level prior to discharge. When
we inspect the note ADM ratings on the local minimum on August 4th (average ADM = 1.96), we
can see multiple ratings ranging from 1.30 to 2.76. The highest rating is assigned to the following
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phrases:

“Respiration rate 22 — spO2 94% [...] Xth consistent with the differential diagnosis of
pneumonia, however, given the decreasing infection markers and absence of fever, no
treatment is necessary.”
Dutch: (Ademhal. 22 — spO2 94% [...] Xth conform dd pneumonie echter nu gezien
dalend infectielab en geen koorts niet behandelen.)
ADM: 2.76

The lowest rate (ADM = 1.30) and the next lowest (ADM = 1.65) were assigned to the following
phrases:

“Resp: Still requiring oxygen.”
Dutch: (Resp: Nog zuurstofbehoeftig)

“Question: pneumonia?”
Dutch: (Vraagstelling: pneumonie?)

This local minimum corresponds with a decrease in respiratory functioning, which is indicated
by still requiring oxygen and the question whether the patient might be suffering from pneumo-
nia. The highest rating is given to the mention of the O2 saturation and the fact that treating
pneumonia is being discontinued. These examples show that the overall trend of the assigned ICF
labels seem to reflect the note content, but on an individual note level we cannot easily conclude
that an ICF label reflects the functioning at that moment in time.

4.1.2 Data Description: selected patients and ICF classifier output on
the notes

Healthcare professionals that were part of this research identified that post-surgery patients typ-
ically have a follow-up appointment around six weeks after discharge, making the ICF ratings
assigned to these reports a good target for prediction. Since the exact timing of these appoint-
ments can vary, we use a weighted average approach targeting ICF predictions between four and
eight weeks post-discharge, with the highest weight given to the six-week mark. This method
ensures alignment with the expected follow-up period. We refer to the set of post-discharge notes
in the four to eight-week period as the ‘discharge set ’ and the notes written during hospitalization
as the ‘hospital set ’ throughout this section.

Since the BV project focused mainly on post-surgical oncological patients, experiment 2 also
uses data from oncological surgery patients. Unlike the previous experiment, which was limited
by the small sample size, this experiment benefits from a larger dataset, allowing the employment
of complex ML methods such as neural networks.

Out of 1380 patients selected for experiment 2, 1037 had at least one EHR entry in the 4
to 8 week period post-discharge, but not all post-discharge notes contained ICF class mentions.
The table below lists the number of patients with at least one class mention in the discharge set
for each relevant ICF class, along with the average number of notes during hospitalization and
post-discharge periods. For example, only 329 of the 1037 patients were assigned at least one
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ADM rating in the discharge set, meaning that the remaining 708 patients’ EHR did not contain a
post-discharge note with an ADM rating. Additionally, the table below also describes the average
number of notes in the hospital and discharge sets as well as the number of notes that contain the
relevant ICF rating. For the total dataset, on average, a patient has 68 notes in the EHR in the
hospital set, and 16 in the discharge set.

ICF Class #patients #notes
hospital
set

#notes
discharge
set

#notes
hospital
set - notes
with class-
mention

#notes
discharge
set - notes
with class-
mention

Respiratory functioning (ADM) 329 79 40* 26 11

Energy (ENR) 302 75 36* 7 3

Mobility (FAC) 366 85* 36* 17 5

Weight Maintenance (MBW) 541 84* 24* 6 3

Mood (STM) 348 79 35* 10 5

Whole dataset 1037 68 16 - -

Table 4.2: Average amount of notes per ICF category for patients with at least one relevant class
mention in their post-discharge notes (* denotes statistical significance according to paired t-test
as compared with the total set)

Comparing the average number of notes without class mentions during hospitalization and
during the post-discharge period with the averages for all patients (68 and 16 notes for hospital
and discharge set respectively) shows how the selection of these categories affects the distribution of
the notes. For FAC and MBW, we can see that the averages during hospitalization are significantly
higher than the overall average (using the paired t-test and compared with the total population).
For all classes it holds that the number of notes in the discharge set is significantly higher than the
overall population. This significance can be interpreted as, for each of these subsets, the number
of notes in the post-discharge set cannot be explained if the subset had been a random sample of
the population. Filtering on patients with notes containing relevant classes in the discharge set
significantly alters the distribution of those notes.

Additionally, we can observe that the size of the difference between the overall population
hospital set size is smaller than that of the discharge set. Where all subset’s hospital set sizes
range from 75 to 85 as opposed to the 68 overall average, the discharge set sizes differ much more,
ranging from 24-40 as opposed to the average of 16. And where FAC and MBW were the only
significantly different subsets for the hospital period, all subsets were significantly different for
the discharge set (paired t-test due to the subsets being sampled from the population, hence no
independence).

By comparing the average number of notes per ICF class with the average number of notes
that contain the relevant class mention, we can get a better understanding of how frequent the
class mentions appear. For instance, while patients with MBW mentions in the discharge set have
on average 84 notes in the hospital set, only 6 of those on average contain the relevant MBW
label (9.5%). This is a different percentage than if we take a look at the ADM class, where the
329 patients with at least one ADM mention in the discharge set have 79 notes on average during
hospitalization, out of which 26 contain the relevant mention (32.9%).

We observed that patients in all of the subsets contain - on average - more notes during
hospitalization than in the total population. Table 4.3 explains this observation by reporting the
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average length of stay and the average number of notes per day. The average length of stay for all
patients, regardless of whether ICF mentions are present in their discharge set is 12.4 days, and
with 68 notes on average per patient in this period, that amounts to 5.5 notes per day on average.

ICF Class Average Length of Stay Average amount of
notes per day in
hospital set

Respiratory functioning (ADM) 12.5 6.3
Energy (ENR) 11.7 6.4
Mobility (FAC) 13.7 6.2

Weight Maintenance (MBW) 12.9 6.5
Mood (STM) 13.0 6.1
Whole dataset 12.4 5.5

Table 4.3: Average Length of Stay and Average Amount of Notes per during hospitalization for
patients whose post-discharge note contains at least a single relevant ICF class mention

To interpret these values, we take ADM as an example. Out of the 1073 patients selected
for this experiment, 329 patients have post-discharge notes with at least 1 ADM mention. These
patients have on average 79 EHR entries during their hospitalization as opposed to the 68 EHR
entries we found for the total dataset (4.2). This greater amount of EHR entries can be explained
in two ways: either they were hospitalized for a longer period or - on average - more notes are
written for this patient per day. By looking at 4.3 we can observe that it is in fact the latter;
patients with at least one ADM mention in their post-discharge notes get - on average - 6.3 new
EHR entries per day, as opposed to the overall average of 5.5.

The table shows that patients with FAC, STM and MBW functioning mentions in the discharge
set are hospitalized anywhere between 0.6 and 1.3 days longer than the overall population. For all
classes it holds that patient with a mention of said ICF class in their post-discharge notes received
- on average - more new EHR entries per day of hospitalization than the overall population. This
suggests that both the length of stay and the number of notes per day have predictive value for
determining whether these patients will have functioning mentions in their post-discharge notes. To
leverage this insight, we will include the length of stay and the frequency of note entries as features
in our predictive models by encoding the days since hospitalization into the vector representation.
By incorporating these variables, we aim to enhance the model’s ability to accurately forecast ICF
ratings post-discharge.

4.2 Experiment 1: Correlation Analysis Between ICF Out-

puts and Self-Reported Functioning

The objective of the first experiment is to validate the ICF classifier model by examining its
correlation with patient-reported outcomes. This serves as an external validation of the model’s
outputs, ensuring that the extracted ICF ratings are reflective of the patients’ actual experiences
as reported in the BV questionnaires. In chapter 3: Methodology, we identified three different
relationships between the BV questions and the ICF output, for all of these we will employ different
analyses.
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As detailed in the methodology section, the BV project comprises five questionnaires admin-
istered at different stages relative to the patient’s hospitalization. These questionnaires measure
various aspects of patient functioning and well-being. The dataset used for this experiment in-
cludes responses from 74 patients who completed the project and had corresponding clinical notes
with ICF ratings.

To analyze the correlation between the ICF outputs and the BV questionnaire responses, we
employed different strategies tailored to the nature of the questions. Three primary scenarios were
identified and detailed in table 3.1.

For each of these cases, we will provide data visualisations per ICF class and corresponding BV
questionnaire responses. We include the original exact ICF values on a continuous scale, but we
analyse the results by converting these measurements to an ordinal scale. We use these graphs to
reason about potential correlations and end each section with a table reporting on the Spearman
Rank correlation and - where applicable - Kendall’s Tau metric.

4.2.1 Results Experiment 1 - Case 1: Weight Management

The Beter Voorbereid questions related to weight management were:

“Did you unintentionally lose more than 3kg in the last month?”
“Did you unintentionally lose more than 6kg in the last 6 months?”

These questions were present in the intake questionnaire (T0) and the last questionnaire (T4)
(see: table 3.10). The possible responses were “Yes” (encoded as 1) and “No” (encoded as 2).
The ICF values are on the same scale, with higher values indicating better Weight Management
functioning.

Before we can interpret the relationship between the ICF ratings and the BV responses, we need
to inspect the distribution of the BV responses. Especially because not every patient responded
to both questions and in order to reason about the plots that visualize the correlations this is
important information
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(a) MBW BV responses: 3KG loss - timepoint T0 (b) MBW BV responses: 3KG loss - timepoint T4

(c) MBW BV responses: 6KG loss - timepoint T0 (d) MBW BV responses: 6KG loss - timepoint T4

Figure 4.8: Histograms MBW BV responses for both weights (3KG, 6KG) and timepoints (T0, T4)

The main observation in figure 4.8c and 4.8d is that many patients did not respond to the
second question about losing 6kg in the last six months when comparing with the question about
losing 3kg in 1 month (figure 4.8a and 4.8b). When they did respond, “yes” was a more common
answer.

We identified the following relevant time periods: 1 month and 6 months. As explained in
chapter 3, this question refers to the worst weight management functioning in the time period,
regardless of better functioning at other times. Therefore, we compare the self-rated values to the
minimum values in the MBW ICF class.

Figure 4.9 contains box plots for each BV weight question, showing the distribution of paired
ICF ratings.
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(a) Question about 3KG loss at T0 (b) Question about 3KG loss at T4

(c) Question about 6KG loss at T0 (d) Question about 6KG loss at T4

Figure 4.9: Box plots of ICF MBW ratings for each BV weight loss question

Graphs 4.9a and 4.9b show that the distribution of ICF ratings does not change a lot depending
on whether the BV response was “yes” or “no”. For “no”, the median is slightly higher and the
interquartile range is slightly bigger, but the overall distribution does not shift a lot between both
responses. For graph 4.9c and 4.9d, the shift is slightly bigger, but there are also less datapoints.
Especially for figure 4.9d this is the case, as we saw in figure 4.8d previously: only 2 participants
responded with “no” to this question and 5 with “yes”.

For each of the plots, it holds that most ICF ratings were between 2 and 3, regardless of
the question response. In section 3.3.2, table 3.11 shows that MBW qualifier level 2 is described
as “Moderate unintentional weight loss or gain (more than 3kg in the last month).” Since this
question in 4.9a and 4.9b measure the exact same construct as ICF qualifier level 2 does, and the
distributions look very identical for both question responses, we can conclude that the ICF values
likely do not correlate with the BV question responses.

In table 4.4 we reported on the Kendall’s Tau correlation coefficient, for each weight-related
question, except for the last one (6KG loss in the last 6 months at timepoint T4). This is because
we only have 7 datapoints for that question, which is not enough to compute statistical significance
for. The table shows that the only statistically significant correlation was found for the BV question
about having lost 6kg in 6 months at T0. A statistically significant correlation means that we have
enough evidence to reject the null hypothesis that there is no correlation between the variables.
However there are not as many respondents for this question as for the questions about 3KG, and
based on the distribution of replies, we believe this was more biased towards patients who would
have replied with “No” to the question. Therefore, we do not believe these question responses are
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representative of what the patients really experienced.
In addition to evaluating a potential correlation while using the exact ICF ratings, we also

evaluate it using the rounded ICF values. This essentially converts the data on a continuous
scale back to the original ordinal scale the ICF system was build for. We display this data using
contingency tables (4.5) and we also report on the Kendall’s Tau correlation metric.

3KG - 1
Month - T0

3KG - 1
Month - T4

6KG - 6
Months -
T0

6KG - 6
Months -
T4

Kendall’s Tau Coef: 0.07, p
= 0.5

Coef: 0.11, p
= 0.4

Coef: 0.50,
p = 0.01

X

Table 4.4: Kendall’s Tau Correlation Coeffecient (Coef) for exact ICF values vs BV responses for
each Weight Maintenance question

Self-Ratings /
ICF Ratings

3KG T0 3KG T4 6KG T0 6KG T4

Yes No Tot. Yes No Tot. Yes No Tot. Yes No Tot.
MBW = 1 0 0 0 0 0 0 0 0 0 0 0 0
MBW = 2 16 35 51 5 21 26 12 4 16 5 2 7
MBW = 3 2 5 7 0 12 12 0 2 2 0 0 0
MBW = 4 0 1 1 0 0 0 0 0 0 0 0 0
Total 18 41 59 5 33 38 12 6 18 5 2 7

Table 4.5: Combined Contingency Tables of ICF Ratings vs BV Ratings for All Different Weights (3KG and 6 KG)
and Timepoints (T0 and T4). Tot. is abbreviation for Total

Table 4.5 contains the data when comparing the rounded ICF values with the BV questionnaire
responses, essentially converting the ICF qualifier levels back to their original ordinal scale. We
display this data in a contingency data and we also calculate a Kendall Tau Correlation coefficient
for each question. This also shows that for the questions about losing 6kg weight, we have fewer
responses. We can also see that there were no ICF MBW qualifier levels of 0 assigned to the
notes and only a single time did MBW level 4 appear. The latter is likely because we selected the
minimum rating in each relevant period.

3KG 1
Month T0

3KG 1
Month T4

6KG 6
Months T0

6KG 6
Months T4

Kendall’s
Tau

Coef: 0.05, p
= 0.7

Coef: 0.26, p
= 0.1

Coef: 0.5, p
= 0.04

X

Table 4.6: Kendall’s Tau Correlation Coeffecient (Coef) for rounded ICF values vs BV responses
for each Weight Maintenance question

As evident from the graphs and contingency tables (4.5 and as reported on in table 4.6, we did
not find a strong statistically significant correlation. The only statistically significant correlation
was for 6kg loss in 6 months at T0. However, similarly to table 4.4 we believe this is a result of
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a bias introduced by the patients not replying as much to this question and if they do, they are
more likely to reply with “yes”.

In conclusion, the relative size of the “yes” answers to the weight loss (encoded as 1) increased
while the expected minimum value did as well, increasing the correlation even if the question and
ICF classes are not necessarily related. We expect that if we were to encode all patients who did
not respond to this question with value 2 (indicating they did not lose the specified amount of
weight), this correlation would fade away as well.

4.2.2 Results Experiment 1 - Case 2: Respiratory Functioning

For case 2, which contains the Hospital Period Question, we identified the following class: ADM -
respiratory functioning. This question was only asked a single time, at timepoint T1.

The related question from the BV questionnaires is:

Did you - during your hospitalization - experience any issues with your lungs (such as
coughing and/or shortness of breath)?

The possible responses were: “Extremely much” (1), “Quite a lot” (2), “Moderately” (3), “A
little” (4) and “Not at all” (5)

Figure 4.10 shows the distribution of BV responses for this question.

Figure 4.10: Histogram ADM BV Question Responses

As explained in section 3.3.2, the measurable construct from the questionnaires differs from
the ICF class. As such, we do not expect the minimum value in this period to relate to the
question response, as we did for Weight Management. For example, if a patient was intubated
during hospitalization, the minimum rating should be 0. However, this does not necessarily mean
the patient experienced respiratory problems or coughing.

Figure 4.11 shows the relationship between the average ICF rating during hospitalization and
the BV responses for the same period using exact ICF values and table 4.7 using the rounded
values.
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Figure 4.11: Box plot of ICF ADM ratings for each BV Respiratory Functioning question
response

ICF Ratings / Self-Ratings 1 2 3 4 5 Total
ADM = 1 0 0 0 0 0 0
ADM = 2 2 1 0 2 2 7
ADM = 3 2 7 7 9 8 33
ADM = 4 0 0 1 5 3 9

Total 4 8 8 16 13 49

Table 4.7: Contingency Table of ADM ICF Ratings vs Self-Ratings, with for self-ratings: 1 =
Extremely much, 2 = Quite a lot, 3 = Moderately, 4 = A little, 5 = Not at all

For both the case where ICF ratings are rounded and the case where they are used as their
exact value, we report Kendall’s Tau Correlation coefficients in table 4.8:

Correlation
Kendall’s Tau (unrounded) Coef: 0.36, p ≪ 0.0001
Kendall’s Tau (rounded) Coef: 0.20, p = 0.12

Table 4.8: Kendall’s Tau Correlation Coeffecient (Coef) for exact ICF values and for rounded ICF
values vs BV responses for the respiratory functioning question

When using the exact ICF values prior to aggregating them for the relevant period, we find
a statistically significant correlation. We do not find such a correlation when using the rounded
values.

4.2.3 Results Experiment 1 - Case 3: Repeated Day-Specific Questions

The third case we identified involves BV questions about the day itself or a recent period, asked
multiple times across the research period. This applies to the following classes: Mobility (FAC),
Energy (ENR), and Mood (STM). Since we have measurements at multiple points in time, we can

49



consider both direct correlations at each timepoint and the changes between each questionnaire
and their relevant time periods. To compute the latter, we plot the delta change of ratings between
each timepoint. Additionally, to evaluate average trends over time, we will plot the average rating
for all patients over time for both ICF and BV ratings into a single figure. While this does not
quantify the relationship, it helps visualize how average functioning over time is reflected in these
ratings.

Mobility (FAC)

The mobility-related BV question was:

“Please select one option for each of the groups in the list below that contains a sentence
that best describes your health situation today. Mobility:”

With the following possible responses and their encodings in below graphs and tables: “I don’t
have difficulties walking” (3), “I have some difficulties walking” (2) and “I am bedridden” (1).

Figure 4.12 shows the distribution of the question answers.

Figure 4.12: Histogram of Mobilty (FAC) BV Question Responses for each
timepoint (t0 to t4) seperately

It is apparent that almost no one responded with answer option 1: I am bedridden. We can
also see that most people rated their mobility with “I don’t have difficulties walking” at timepoint
T0, but did so less frequently for the subsequent timepoints.

Figures 4.13 and 4.14 show the distribution of the ICF ratings for each BV Mobility question
response and the relationship between changes in ratings between subsequent points in time. The
same data for rounded ICF values can be found in table 4.9 for the pairwise comparison ratings
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and table 4.10 for the delta change between timepoints. For both analyses, we computed Kendall’s
Tau Correlation coefficient again in 4.11.

Figure 4.13: Box plot of ICF FAC ratings for each BV
Mobility question response

Figure 4.14: Box plot of Delta FAC ratings for each BV
Mobility question response

ICF Ratings / Self-Ratings Bedridden Some Difficul-
ties Walking

No Difficulties
Walking

Total

FAC = 1 0 0 0 0
FAC = 2 1 0 7 8
FAC = 3 0 12 61 73
FAC = 4 2 77 109 188
Total 3 89 177 269

Table 4.9: Contingency Table of FAC ICF Ratings vs Self-Ratings
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In table 4.9, we see that two patients who rated their mobility as 1 (bedridden) received an
ICF rating of 4 during the same period, indicating almost no issues with mobility, only requiring
verbal assistance. This is an interesting case to observe in detail, which we do in the Error Analysis
chapter. Figure 4.14 plots same data, but instead of using the exact values, it used the delta change
from T-1 to T. This helps us understand the relationships between our the change in ratings in
our datasets. We also included the contingency table for the delta change between the rounded,
discrete values.

ICF Ratings / Self-Ratings -1 0 1 Total
-1 4 6 4 14
0 16 115 18 149
1 0 17 5 22
2 0 3 1 4

Total 20 141 28 189

Table 4.10: Contingency Table of FAC delta ICF Ratings between subsequent timepoints vs delta
Self-Ratings

To interpret figure 4.14, a diagonal line would indicate a perfect relationship. We can see that
if the self-rated delta value is 0, indicating no change in rating between timepoints, then the delta
ICF rating ranges between -1 and +2, centering around 0. An ICF delta of -1 when the delta
BV rating equals 0 indicates that the ICF rating decreased with 1 in the same period that the
self-rated BV value did not change. Table 4.10 clearly shows how, for most delta changes, the
delta value equals to 0. This means that between two subsequent timepoints, the rating did not
change. We can see that for 16 delta ICF ratings of 0, the self-rating decreased with 1. For 18
delta ICF ratings of 0, the BV score increased with 1. However, for most cases, if the ICF rating
did not change between two measurements, the same happened to the BV score.

Pairwise Delta change
Kendall’s Tau (unrounded) Coef: 0.06, p = 0.25 Coef: -0.16, p = 0.01
Kendall’s Tau (rounded) Coef: 0.18, p = 0.003 Coef: -0.12, p = 0.08

Table 4.11: Kendall’s Tau Correlation Coeffecient (Coef) for exact ICF values and for rounded
ICF values vs BV responses for the mobility question for both the pairwise comparison as the delta
change between timepoints

Table 4.11 shows that the Kendall’s Tau correlation found a significant correlation for the
pairwise comparison when using the rounded ICF ratings. For the delta change between sub-
sequent timepoints, however, the significant correlation was only found for the unrounded ICF
values. Additionally, the coefficient is negative, indicating a negative correlation, which is con-
trary to expectations. This means that if one variable increases for a patient between subsequent
questionnaires, the other variable is likely to decrease a little bit.

Figures 4.15 and 4.16 show the average rating over time and the average change over time.
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Figure 4.15: Overall Trend FAC ratings Figure 4.16: Overall Trend delta FAC ratings

Figure 4.15 clearly shows that while there is an absolute distance between ratings, with ICF
ratings generally being lower than BV ratings, they develop similarly over time. When interpreting
this graph with respect to the Kendall’s Tau correlation we found earlier, it is important to consider
that this graph is averaging the values for all patients at each timepoint. The above analysis is
agnostic to timepoints, it groups all pairs of ratings together. Additionally, by averaging out all
values, we lose some of the resolution provided by a pairwise comparison. This figure mainly
serves to display the overall functioning curve a patient goes through, it is not a validation of the
correlation we calculated.

Figure 4.16 shows the average change in values between subsequent points in time. It is, in a
sense a derivative of figure 4.15 and therefore, it mainly serves to show the speed at which ratings
change. We can see that when the ICF rating change is negative, the self-rated change is also
negative, except for T4, which indicates the change from T3 to T4.

Energy (ENR)

The question for the Energy class is:

In the past 7 days, how would you rate your fatigue on average?

With the following possible responses: “Extremely heavy fatigue” (1), “Heavy fatigue” (2),
“Medium fatigue” (3), “Light fatigue” (4), “No fatigue” (5).
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Figure 4.17: Histogram of Energy (ENR) BV Question Responses for each
timepoint (t0 to t4) seperately

In figure 4.17 we can see how most people refered to their own energy as “Medium fatigue”,
however, there are also observations of patient with worse an better functioning. It is essential
to look at this distribution in combination with the distribution of extract ICF ENR labels, as
reported in 4.3, since that shows clear differences.

Since the question inquires about the patient’s fatigue over the past 7 days, we aggregated
the ICF levels by averaging the ratings for the same period and plotted them in a box plot 4.18.
The first observation we make when reviewing this plot, is that BV rating 5 - No fatigue is not
represented here. This is because in all 6 cases a participant replied with this option, no ICF ENR
mentions were found in any of the notes in the last week. In figure 4.3 we showed the distibution
of all ICF Energy levels extracted from the clinical notes. This shows that no ENR level above 2.5
was ever assigned to a clinical note. The fact that for this BV response, no relevant notes with
ENR mentions were found, correctly represents no decreased Energy functioning. That being said,
since we also cannot find any ENR qualifier level of 3 or 4, we have no way of representing medium
and light fatigue in the clinical notes. Since the ENR qualifier levels only reach up to 2.5, we do
not expect to find a strong correlation.
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Figure 4.18: Box plot of ICF ENR ratings for each BV
Energy question response

Figure 4.19: Box plot of Delta ENR ratings for each BV
Energy question response

ICF Ratings / Self-Ratings 1 2 3 4 Total
ENR = 1 1 3 2 0 6
ENR = 2 2 14 16 7 39

Total 3 17 18 7 45

Table 4.12: Contingency Table of ENR ICF Ratings vs Self-Ratings with 1: Extremely heavy
fatigue, 2: Heavy fatigue, 3: Medium fatigue, 4: Light fatigue

Based on figure 4.18, it is difficult to identify a relationship between the datasets. The plot
shows a weak relationship, as the distribution shifts up when self-rated energy levels increase.
However, we do not expect this relationship to be significant. A similar observation can be made
from table 4.12.
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Due to the infrequency of the ENR labels, computing the delta change for a 1-week period
results in fewer data points, as only patients with two subsequent measurements are included.
Therefore, we used the average of the past 2 weeks instead. This still did not result in a large
dataset, but we could not increase the window further, as it would cause overlapping windows for
different timepoints.

ICF Ratings / Self-Ratings -2 -1 0 1 Total
-1 0 0 2 0 2
0 0 7 18 8 33
1 2 0 1 0 3

Total 2 7 21 8 38

Table 4.13: Contingency Table of ENR delta ICF Ratings changes vs delta Self-Ratings changes

Inspecting figure 4.19, we can deduce that there is likely no relationship between changes over
time for the self-reported values and the extracted ICF ratings. This is likely because most delta
BV scores are around 0, indicating no change between measurements. We can see the same effect
in table 4.13. It can also be due to the infrequency of ENR labels. In section 4.1.1, we identified
that a patient has 10 ENR labels on average. Additionally, in section 4.1.2, we reported that 7 out
of 10 notes appear during hospitalization, with only 3 on average in the post-discharge period.

This is similar to Weight Maintenance (MBW), where also only 10 mentions were identified
on average, but since that class referred to the last 1 month and 6 months respectively, it did not
result in many empty observations. The BV question about fatigue and energy is repeated in each
questionnaire, focusing mainly on the post-discharge period, except for the intake questionnaire
(T0). As a result, we expect only 3 out of 4 post-discharge questionnaire periods to contain an
ICF value on average. Since these plots visualize changes between measurements, we end up with
only 1 or 2 subsequent measurements per patient on average.

Pairwise Delta change
Kendall’s Tau (unrounded) Coef: 0.26, p = 0.03 Coef: 0.05, p = 0.87
Kendall’s Tau (rounded) Coef: 0.21, p = 0.14 Coef: -0.59, p = 0.12

Table 4.14: Kendall’s Tau Correlation Coeffecient (Coef) for exact ICF values and for rounded
ICF values vs BV responses for the energy question for both the pairwise comparison as the delta
change between timepoints

Table 4.14 shows that for the exact values, we did not find a statistically significant correlation
using Kendall’s Tau correlation. This is different than the result for Mobility (FAC), where the
statistically significant correlation was only found for the rounded values. We suspect this is
because the Mobility questions refer to the day itself, making categorical ICF ratings yield better
results. In contrast, Mood and Energy questions refer to a period, requiring an aggregation method
to find a single representative value. Rounding the ICF values before aggregation likely loses some
nuances that the ICF classifier model picks up.

The delta change for ICF against BV ratings shows no significant relationship. Moreover, the
delta change for the rounded values even shows a negative relationship, albeit not statistically,
which is contrary to expectations. This is likely due to data sparsity for this class.
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Figure 4.20 and 4.21 show the average ICF ratings versus the average BV ratings for all patients
and the average change in values over time. Note that the change over time suffers from the same
infrequency of labels as the individual delta change graphs.

Figure 4.20: Overall Trend ENR ratings Figure 4.21: Overall Trend delta ENR ratings

These graphs also show no obvious relationship between the two datasets. We hypothesize that
this is mainly due to infrequent labels rather than a mismatch in measured constructs. We can see
the effect of the data sparsity very clearly by comparing both graphs, as it is clear that the delta
change (4.21) over time is not correctly reflecting figure 4.20. Where the former shows a decrease
in ratings between T0 and T1, the latter says that self-ratings increased from T0-T1. This is likely
because of missing values, which only affects the average value on the same timepoint in figure
4.20, but affects the delta change to and from the timepoint containing the missing value.

Mood (STM)

The mood-related BV question was:

“Please select one option for each of the groups in the list below that contains a sentence
that best describes your health situation today. Mood:”

With the following possible responses and their encodings in below graphs and tables: “I am
not anxious or feeling down” (3), “I am somewhat anxious or feeling down” (2), “I am very anxious
or feeling down” (1).
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Figure 4.22: Histogram STM

Figure 4.22 shows that only a single patient rated themselves as very anxious or down for each
timepoint. Most patients, however, responded with value 3, indicating no issues with their mood.
Similar to the other ICF categories, we can see that participants were more likely to respond to
questionnaire at timepoint T0 than for the subsequent questionnaires.
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Figure 4.23: Box plot of ICF STM ratings for each BV
Mood question response

Figure 4.24: Box plot of Delta STM ratings for each BV
Mood question response

ICF Ratings / Self-Ratings 1 2 3 Total
STM = 2 1 21 43 65
STM = 3 3 46 83 132
STM = 4 1 12 59 72

Total 5 79 185 269

Table 4.15: Contingency Table of STM ICF Ratings vs Self-Ratings with 1: Very anxious/down,
2: Somewhat anxious/down, 3: Not anxious/down

In both figure 4.23 and table 4.15, most data points for the BV responses are at level 3. The
relevant ICF ratings for these levels are scattered across 2, 3 and 4, centering around 3 and with
slightly more (59) at ICF level 4 than level 3 (43), indicating good mood-related functioning. For
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a BV response of 2, the distribution of ICF ratings shifts to slightly lower values (21 at level 2
versus 12 at level 4), suggesting a weak to medium correlation between both datasets.

When inspecting figure 4.24 containing the delta change over time, the relationship between
the datasets becomes less clear. For a delta change of -1 up to +2 for self-rated Mood levels, the
median of delta changes in ICF ratings stays around 0. This means that regardless of a change
in self-rated Mood levels, the ICF ratings tend to stay the same. This can also be observed
when inspecting the contingency table 4.16 with delta ratings for the rounded ICF values. Values
centered around a diagonal in this table would indicate a strong relationship, but we can see the
values being centered across the middle column and row instead, indicating that for most changes
in the values between subsequent timepoints, the other variable tends to stay static.

ICF Ratings / Self-Ratings -2 -1 0 1 2 Total
-2 0 0 1 1 0 2
-1 1 4 13 4 0 22
0 0 21 93 15 1 130
1 0 4 14 5 0 23
2 0 0 4 0 0 4

Total 1 29 125 25 1 181

Table 4.16: Contingency Table of STM delta ICF Ratings vs delta Self-Ratings

Both figure 4.24 and table 4.16 do not clearly show a relationship between the change of ratings
between timepoints. The correlation metrics for the delta change confirm this, as can be seen in
the table 4.17.

Mood (STM) Pairwise Delta change
Kendall’s Tau (unrounded) Coef: 0.12, p = 0.02 Coef: -0.02, p = 0.76
Kendall’s Tau (rounded) Coef: 0.12, p = 0.04 Coef: 0.01, p = 0.77

Table 4.17: Kendall’s Tau Correlation Coeffecient (Coef) for exact ICF values and for rounded
ICF values vs BV responses for the mood question for both the pairwise comparison as the delta
change between timepoints

Table 4.17 contains the Kendall’s Tau correlation coefficients for the pairwise comparison and
the delta change over time. We can see that for both the unrounded and the rounded ICF values,
a significant correlation was found, however, when inspecting the delta change over time, we do
not find such a relationship. Similar to the other analyses in case 3, we also plot the average
rating per timepoint and the average delta change in ratings between each timepoint to inspect
the general functioning curve described by both datasets. These can be found in figures 4.25 and
4.26. An interesting observation is that the self-rated Mood tends to be higher rated than the
ratings as assigned by the ICF classifier models. The self-ratings from the BV questionnaire -
on average - stays between 4 and 5, while the average ICF rating at each timepoint does not
exceed 3.25. However, we can still observe a peak at timepoint T1, which is the first questionnaire
post-discharge, followed by a decrease afterwards.
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Figure 4.25: Overall Trend STM ratings Figure 4.26: Overall Trend delta STM ratings

4.3 Experiment 1: Error Analysis

In chapter 3, we argued that the implications of the ICF classifier models were not sufficiently
explored and quantified. Experiment 1 serves as an external validation of the ICF classifier output.
For each of the relevant ICF classes, we compared the constructs measured by the questionnaire
data with the extracted ICF qualifier levels. For each class, we found that at least one aggregation
method of ICF ratings showed significant correlations with the self-reported values.

While this is valuable information for verifying the usefulness of the ICF classifiers, we need to
perform an error analysis to fully understand these relationships. In this section, we will extract
examples for each ICF class where the functioning data from both datasets overlaps and, perhaps
more importantly, where the datasets disagree.

Weight Maintenance (MBW)

For Weight Management, we are particularly interested in identifying patients who gave themselves
a rating of 2, indicating no unintentional weight loss, but were still assigned an ICF rating of 2.5
or lower, indicating some unintentional weight loss. We de-identified the notes (indicated with
[square brackets]) and removed any irrelevant sentences for this analysis.

We identified a patient who responded to the question about losing 3kg unintentionally in the
last month with a rating of 2 for T0 and 1 for T4, indicating they had lost weight in the month
prior to hospitalization, but not in the month before their last questionnaire.

The lowest assigned ICF MBW rating in the same period is from a phone consultation 20 days
prior to their intake. This EHR entry was assigned an MBW qualifier level of 1.83, indicating
unintentional weight loss of 3kg in the last month. However, the patient indicated they had not
lost 3kg. Upon inspection of the clinical note, we found the following description:

“Height: [170+] cm Weight: 73 kg Body Mass Index is [24+] kg/m2. Weight 1 month
ago (% change compared to current weight): 75 kg (-2.67%) Weight 6 months ago (%
change compared to current weight): 78 kg (-6.41%) Usual weight (% change compared
to current weight): 78 kg (-6.41%)”

(Original: “Lengte: [170] cm Gewicht: 73 kg Body Mass index is [24+] kg/m2̂. Gewicht
1 maand geleden (% verandering tov huidig gewicht): 75 kg (-2.67%) Gewicht 6 maan-
den geleden (% verandering tov huidig gewicht): 78 kg (-6.41%) Gebruikelijk gewicht
(% verandering tov huidig gewicht): 78 kg (-6.41%)”)
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This example describes a (supposedly unintentional) weight loss, but it amounts to 2kg in the
last month. Therefore, the patient correctly responded to the BV question that they had not
lost 3kg, while the ICF classifier model still assigned a low qualifier level. This is not unexpected
behavior for the model, as it uses word embeddings to represent words and numbers, likely losing
the arithmetic information present in the numbers. In other words, a language model does not
inherently understand the rational quality of numbers; it knows 5 is bigger than 4 but does not
necessarily understand the exact difference between 5 and 4 compared to 4 and 3. The model likely
learned from the annotations that any weight loss results in a lower MBW ICF score, regardless
of the size of the loss.

This patient answered the same question for T4 with 1, indicating they had lost 3kg weight
unintentionally. Upon inspection, we found another phone consult that was assigned MBW level
2.04.

“Weight [date of note]: 71 kg Admission weight: 74.8 kg Usual weight: 78 kg.”

(Original: “Gewicht [datum van notitie]: 71 kg Opnamegewicht 74,8 kg Gebruikelijk
gewicht: 78 kg.”)

This description corresponds with the patient’s self-reported weight loss of over 3kg in the last
month. The ICF label was correctly assigned as 2. It is interesting to note that this ICF rating
is higher, unrounded, than the previous rating, even though the weight loss exceeded 3kg only the
second time. The first example has more separate mentions of weight loss, but without a sentence
boundary, all mentions are part of the same sentence in the model pipeline. We expect that the
higher density of weight loss mentions in the first example caused the model to assign a lower level,
even when the weight loss was smaller.

Mobility (FAC)

In the analysis of Walking or Mobility-related functioning, we noticed that out of 3 patients who
said they were bedridden at some point, 2 received a relatively high FAC rating in the nearest
clinical note. Upon inspection of the note in question, however, we did not find a specific walking
related mention. The note seems to be a progress report focusing on gastrointestinal issues.
However, there is a single sentence present that we expect might have affected the ICF output:

Translation: “During the day, frequently gags and burps up mucus.”

Original: “Loopt overdag veel te kokhalzen en opboeren van slijm.”

Transliteration: “Walking during the day a lot gagging and burping of mucus.”

The translation of this sentence does not make it clear why the model might have misidentified
this mention. However, the transliteration shows how the original Dutch sentence starts with
words that could be translated as “Walking during the day a lot.” We suspect the model learned
to identify mentions like these as mobility-related. The fact that it did, suggests the model did
not generalize well during training.

Another patient, who also rated their mobility as 1 (indicating they were bedridden), received
an ICF rating of 4. However, after inspecting the relevant note, it does not seem the model made
a similar mistake this time.
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“Around the surgery, spent two months in the hospital, of which two weeks in the ICU.
Four weeks after discharge, things were going very well, could walk 2 km without a
walker, all aids were removed from the house. Now 2 months at home, things have
been getting progressively worse, especially in the last 3 weeks. Not short of breath at
rest. But with very mild exertion already breathless. Panting, high breathing, really
has to make an effort to regain composure. It hinders him in everything.”

(Original: “Rondom operatie twee maanden in ziekenhuis gelegen, waarvan twee weken
op IC. Vier weken na ontslag ging het heel goed, kon 2km lopen zonder rollator, alle
hulpmiddelen uit het huis weggehaald. Nu 2 maanden thuis, het gaat sindsdien steeds
slechter, met name de laatste 3 weken. Niet kortademig in rust. Maar bij hele milde
inspanning al benauwd. Hijgen, hoge ademhaling, moet echt zijn best doen weer tot
zinnen te komen. Het belemmert hem in alles.”)

From this excerpt, we can conclude that the model mistakenly identified a historic mention of
good mobility as a current event, even though the rest of the excerpt explains otherwise. This
excerpt contains multiple sentences, indicated by full stops. Since the ICF classifier models analyze
each sentence individually, and only the positive sentence specifically mentions the word “walk,”
only this sentence was identified as a mobility mention. The other sentences, which describe wors-
ened functionality, do not contain the word “walk” and are likely identified as “exercise tolerance”
mentions instead. The same note was assigned an Exercise Tolerance qualifier of 2.5.

This example highlights the importance of temporal disambiguation. While annotators marked
any annotation specifically when referring to past or future events, this was not included in the
training set. Since all historic and future mentions were filtered out, the model has never seen
such a sample during training and was never evaluated on how it handles these cases. If these
disregarded notes had been left in the training set and labeled as ’no mention,’ the model would
have used this loss to generalize and improve its performance, which would have been reflected in
the evaluation. We recommend improving the current model setup by retraining and evaluating it
with temporal disambiguation.

Energy (ENR)

For the Energy ICF classes, we noted that the only existing identified levels by the ICF models
were 1 and 2. Therefore, we are mainly interested in cases where the self-rated energy level reflects
no issues with energy and fatigue. The following excerpt is from a note that was assigned an ICF
ENR value of 1.90, which corresponds to the following description from the annotation guidelines:

Moderate fatigue; the patient gets easily tired from light activities or needs longer time to
recover after an activity.

“[Date 2 weeks prior to current date]: [...] Less energy and power.”

(Original: “[Datum 2 weken voor huidige datum]: [...] Minder energie en kracht.”)

Similar to the case we discussed about Mobility, this note contains a history of previous phone
contact and describes worsened energy levels 2 weeks before the date of the note. As such, the ICF
classifier assigns labels to this date, even though it does not reflect a description of functioning on
that date.
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Another patient rated their own energy levels as being good upon hospital admission, and while
the note seems to confirm that, the ENR rating was still 2.2, indicating some energy-related issues.
The description, however, is very positive:

“History: Triple therapy went well, few side effects, and now in good condition: tennis,
exercise bike, skiing. Not fatigued, no dyspnea or cough. [...] General: Vital man,
appearance conforming to calendar age, does not look ill, no pallor, no jaundice.”

(Original: “Anamnese Tripletherapie goed gegaan, weinig bijwerkingen en nu goede
conditie: tennis, hometrainer, gietsen. Niet vermoeid, geen dyspnoe of hoest. [...] Al-
gemeen: Vitale man, uiterlijk conform kalenderleeftijd, oogt niet ziek, bleek -, icterus.”)

It is unknown why the ICF classifier model misidentified these sentences. The MAE score for
the IAA computation was 0.39, indicating the average disagreement in annotated qualifier levels.
Additionally, the MAE score for the sentence-level evaluation is 0.48. This means we can expect a
maximum mismatch between the assigned ICF level and the real functioning level of, on average,
0.87. Even assuming this standard error, the maximum ENR rating divergence would be 3.1, which
still does not completely reflect this description.

In chapter 3, we argued that reporting the distribution of annotated data is essential to in-
terpreting these results. Since the ICF classifier output on the notes used during experiment 1
was always around 1 or 2, we expect the annotated data had similar distributions. Therefore, the
model might not have learned that any ICF label over 2 was possible. Without knowing this for
certain, we cannot fully explain these results. However, if the distribution of annotated ICF ENR
labels is similar to the distribution in this dataset, we can assume that the originally selected notes
for annotation were not representative of the full variety of clinical notes.

Mood (STM)

For the mood class, we identified that most BV responses were label 3. We only noticed a small
shift of distributions when comparing the ICF distribution at BV label 3 and BV label 2, which
indicated a small effect size, but a linear relationship. The correlation metrics showed a similar
effect, where the effect size was small, but the relationship significant. In this error analysis, we
will take a look at any case where there was a big mismatch between the self-reported mood and
the ICF-based mood score.

“Psycho-Social: has had trouble a week after the treatment, nausea, malaise, no ap-
petite. Was happy that the blood count had improved.”

(Original: “Psycho-Sociaal: heeft een week na de kuur last, misselijk- malaise- geen
eetlust. Was blij dat het bloedbeeld was verbeterd.”)

We expect that this misidentification of the mood level stems from the description “was happy
that the blood count had improved”. This is identified as mood being good, while in reality only
one day later the patient responded to the question in the BV questionnaire with “I am somewhat
anxious or feeling down”.

The next example is the other way around, the extracted Mood level is higher than the patient’s
own Mood rating. They responded with rating 1: I am very anxious or feeling down.
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“Spent a long time talking with mr in the role of case manager after discharge. Physi-
cally, it is going better, mr is tapering off the pain medication. [...] Mr feels mentally
not well. Feels like he has fallen into a black hole now that he is home and the
surgery is behind him. Has also had two panic attacks. Is very worried about the
future/prognosis. Feels lonely. Has already been to the GP and will receive supportive
conversations. Mr was happy with our conversation.”

(Original: “Lange tijd met dhr gesproken in de rol van casemanager na ontslag. Fysiek
gaat het eigenlijk wel, dhr is de pijnstilling aan het afbouwen. [...] Dhr voelt zich
mentaal echter nite goed. Heeft het idee dat hij in een zwart gat is gevallen nu hij
thuis is en de operatie achter de rug is. Heeft ook twee keer een paniek aanval gehad.
Maakt zich erg zorgen om de toekomst/prognose. Voelt zich eenzaam. Is al bij de HA
geweest en zal ondersteunende gesprekken krijgen. Dhr was blij met ons gesprek.”)

This is an interesting example because almost the entire note is negative about the patient’s
mood, clearly stating that he has had panic attacks and feels lonely. However, the last sentence
says the patient was happy with the conversation. We expect this unevenly affected the final
rating, as this sentence was likely assigned a high level, pushing the average score up.

This also shows how sentence splitting could affect the final rating. If the note author was
inconsistent with sentence full stops, as seen in previous examples, the number of sentences rated
low could vary. This affects the weight the final good score has on the total average. If we delete
the full stops between all sentences describing the patient’s mood as negative, but keep the final
sentence separate and run the classifier again, the final rating becomes 3.53 instead of 2.73, without
changing the note’s content.

Therefore, we know the model is sensitive to sentence boundaries, even though the meaning
or content of the note is not significantly affected by them. We recommend conducting a broader
sensitivity analysis to determine how other text alterations that do not affect the meaning impact
model output in future research.

In the this section, we reported the results of the external validation of the ICF model output
using questionnaire data. We found that 5 out of the 9 ICF classes that the ICF classifier models
were trained on were sufficiently described and evaluated for the original publication. For each of
these classes, there is some correlation between the extracted functioning level and the self-reported
functioning classes.

4.4 Experiment 2: Predicting post-discharge functioning

using in-hospital functioning data

The purpose of Experiment 2 is to quantify the predictive value of in-hospital functioning data on
post-discharge functional recovery. In Experiment 1, we described the utility of the ICF classifier
models output by comparing them with a patient’s self-reported functioning experience. Now that
we have established the correlation between functioning data as assigned by the ICF classifier
model and self-reported functioning data, we will use the ICF classifier output as a proxy of a
patient’s functioning.

In section 3.4, we described the methodology for training the prediction model. We experi-
mented with different combinations of input representation techniques, such as rounding the ICF
qualifier levels to fit the original ordinal and discrete distribution instead of the continuous lev-
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els. We also experimented with the addition of structured clinical data to see its effect on model
performance. For all these experiments, we used an LSTM architecture.

Next to testing different input representations, we also test different ways of aggregating the
post-discharge data into a target label. In the previous section, we showed that there are multiple
ways of aggregating multiple ICF ratings into a single rating, used for correlation analysis. Two
methods were taking a weighted average of multiple ratings in a specified window and taking two
of the closest measurements on both sides of the target date and weighing them based on the
distance to the target date. For the target labels for the prediction model training, we will use
both aggregation methods as well.

The LSTM model uses the Mean Absolute Error (MAE) as the loss function, similarly to how
the qualifier level prediction loss was calculated. We evaluate the performance on the test set using
the MAE.

We train a prediction model for each of the target ICF categories. For each of these, we
rebalance the overrepresented samples with negative target labels (missing values represented as
5) to contain as many samples as positive labels. Figure 4.27 shows the distribution of the target
labels for the ADM class if the dataset is not rebalanced:

Figure 4.27: Distribution of Respiratory Functioning target labels

This shows that the aggregation method of selecting the two nearest neighbors provides us with
a distribution with more variation. Therefore, we expect slightly worse performance metrics for
this aggregation method.

We trained the LSTM models using the same setup. The optimizer is Adam, the loss function
MAE and the activation function in the last layer linear and for the hidden layers it’s tanh and
the recurrent activation function in sigmoid. We use a batch size of 8. The LSTM models contain
an input layer, output layer and two hidden layers. The input layer has no specified dimensions to
allow for variable input sizes, the hidden layers exist of 64 and 32 cells respectively and the output
layer is a dense layer of size 1. We train for 20 epochs with the amount of steps per epoch specified
as the length of the training set divided by the batch size. This model setup is also detailed in
3.13.

Tables 4.18 to 4.22 report the MAE on the test set for each of the 5 ICF classes: Repiratory
Functioning (ADM), Mobility (FAC), Mood (STM), Weight Maintenance (MBW) and Energy
(ENR).
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Respiratory Functioning (ADM)
Unrounded Rounded

Weighted Av-
erage Target

Two nearest
neighbors
Target

Weighted Av-
erage Target

Two nearest
neighbors
Target

Excluding Structured Data 0.48 1.67 0.49 1.62
Including Structured Data 0.49 1.77 0.50 1.76

Table 4.18: Comparison of MAE score on test set for Respiratory Functioning for each combi-
nation of ICF representation (Unrounded/Rounded), target label aggregation method (weighted
average/two nearest neighbors) and inclusion of structured data (including/excluding)

Mobility (FAC)
Unrounded Rounded

Weighted Av-
erage Target

Two nearest
neighbors
Target

Weighted Av-
erage Target

Two nearest
neighbors
Target

Excluding Structured Data 0.52 1.81 0.52 1.73
Including Structured Data 0.53 1.74 0.53 1.94

Table 4.19: Comparison of MAE score on test set for Mobility for each combination of ICF
representation (Unrounded/Rounded), target label aggregation method (weighted average/two
nearest neighbors) and inclusion of structured data (including/excluding)

Mood (STM)
Unrounded Rounded

Weighted Av-
erage Target

Two nearest
neighbors
Target

Weighted Av-
erage Target

Two nearest
neighbors
Target

Excluding Structured Data 0.41 1.61 0.41 1.62
Including Structured Data 0.41 1.49 0.39 1.55

Table 4.20: Comparison of MAE score on test set for Mood for each combination of ICF repre-
sentation (Unrounded/Rounded), target label aggregation method (weighted average/two nearest
neighbors) and inclusion of structured data (including/excluding)

Weight Maintenance (MBW)
Unrounded Rounded

Weighted Av-
erage Target

Two nearest
neighbors
Target

Weighted Av-
erage Target

Two nearest
neighbors
Target

Excluding Structured Data 0.47 1.09 0.47 1.10
Including Structured Data 0.49 1.09 0.49 1.11

Table 4.21: Comparison of MAE score on test set for Weight Maintenance for each combination
of ICF representation (Unrounded/Rounded), target label aggregation method (weighted aver-
age/two nearest neighbors) and inclusion of structured data (including/excluding)
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Energy (ENR)
Unrounded Rounded

Weighted Av-
erage Target

Two nearest
neighbors
Target

Weighted Av-
erage Target

Two nearest
neighbors
Target

Excluding Structured Data 0.27 1.00 0.26 1.04
Including Structured Data 0.26 0.94 0.26 0.94

Table 4.22: Comparison of MAE score on test set for Energy for each combination of ICF repre-
sentation (Unrounded/Rounded), target label aggregation method (weighted average/two nearest
neighbors) and inclusion of structured data (including/excluding)

The first thing we notice when reviewing the results, is the minimal change in MAE scores
between rounding and not rounding the ICF values. We can also see that the weighted average
aggregation method yields better results. The inclusion of structured data does not seem to affect
the model performance much.

Upon first inspection of these results, it looks like ENR is performing the best. This, however,
is likely due to the lower variation in the ENR labels. This illustrates the importance of reporting
on the label distribution, because a score like MAE is dependent on the range of possible labels.
However, we have no reason to expect that the distribution of ENR labels differs in our datasets
from the annotated dataset used to train those models, so we can still use this score to compare
with the MAE scores as reported about the ICF classifier models.

In conclusion, most prediction models predict the physical functioning of patients after dis-
charge with a similar error margin as the ICF classifier models have for their functioning level
predictions. We expect that if the ICF model’s performance were to increase, the predictive value
of those labels on post-discharge functioning would increase as well.

4.4.1 Baseline

We compare these results with baseline models for each ICF class, consisting of an LSTM prediction
model trained on solely the structured notes, with the exact same setup as the prediction models
from Experiment 2, to be able to reason about the added predictive power of the ICF ratings.
This model was trained using only the structured data from the EHR, excluding the assigned ICF
levels during hospitalization. The MAE scores on the test set, including a comparison with the
best-performing prediction model, can be found in table 4.23.

Baseline Weighted Average Target (MAE) Two nearest neighbors Target (MAE)
ADM MAE: 0.48 (prediction model MAE: 0.48) MAE: 1.81 (prediction model MAE: 1.62)
FAC MAE: 0.75 (prediction model MAE: 0.52) MAE: 1.79 (prediction model MAE: 1.73)
STM MAE: 0.93 (prediction model MAE: 0.41) MAE: 1.62 (prediction model MAE: 1.49)
MBW MAE: 0.67 (prediction model MAE: 0.47) MAE: 1.30 (prediction model MAE: 1.09)
ENR MAE: 0.25 (prediction model MAE: 0.26) MAE: 1.20 (prediction model MAE: 0.94)

Table 4.23: MAE score on test set for the baseline model, for both the Weighted Average Target and
the Two nearest neighbors target. In brackets the MAE scores for the best performing prediction
models

This comparison against a baseline shows us that even just using the structured data has some
predictive value on post-discharge functioning. It would be very interesting to see which of these
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variables affected the output most. We can also see how the MAE score for the ENR and ADM
predictions are almost the same for the baseline model as for the experimental models. For ENR,
this is likely the lowest score due to the lower variation in target labels. ENR was the ICF class
that we identified as showing the weakest correlation with self-reported functioning in Experiment
1, which can explain why this is the class where the baseline model and experimental models do
not differ as much as some other classes.

The case for ADM is more difficult to explain. It appears that the structured data alone can
identify the post-discharge ADM score to the same degree as the in-hospital functioning data.
However, this might be because the ICF classifier models were originally trained for a COVID-19
project, where respiratory functioning issues are more likely to appear. As a result, the dataset
used for this thesis likely differs most in terms of the frequency of labels from the dataset used
to train the ICF models for the ADM class. Closer inspection of these results is required to
understand this better.

4.4.2 Error Analysis

For each of the 5 ICF classes, we explore the errors and correctness of the prediction models by
analysing individual predictions. Since the target label for this modeling task is an average of the
ICF ratings around the target date of the 6th week post-discharge, this inspection is of qualitative
nature. It entails assessing whether the average rating corresponds with the described functioning
(i.e. was the ICF classifier model correct to begin with) and reasoning about what the error margin
of the predictions mean in a hospital context. Ideally, in the error analysis, we pay attention to
all features the model used for prediction, which includes looking at whether the assigned ICF
labels to the in-hospital notes were correct. However, a qualitative inspection of all notes during
hospitalization and all notes after discharge is too time consuming. Therefore we focus mostly on
the prediction and the potential error while not speculating on which input features might have
caused the error.

Respiratory Functioning (ADM)

Correct Prediction:

We identified a patient with the target ADM rating of 3.121. The predicted ADM rating is
3.183. This patient received a two identical ADM ratings in the discharge period, both 3.121,
resulting in the same value for the average. While both notes are different EHR entries, they both
contain the identical sentence, which is why both received the same ADM rating.

“Accompanied by mild dyspnea symptoms, with the sensation of occasionally not get-
ting enough air or skipping breaths.”

Dutch: “Hierbij lichte dyspnoe klachten, idee af en toe geen lucht te krijgen of ademhal-
ing over te slaan.”

While the note describes shortness of breath, it does not describe whether this happens only
during exercise (ADM: 3) or in rest (ADM: 2). Therefore, it is difficult to assess whether this
rating is correct. In any case, we know that the prediction model correctly predicted the same
rating the ICF classifier models gave to this description.

Incorrect Prediction:
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This paragraph shows an example of a wrong prediction by the model. This patient received
the average rating of ADM: 1.445. Again, this average was computed from three identical ratings,
all assigned to different EHR entries, two for progress reports and one for a telephone consultation.
We identified only a single word referring to respiratory functioning in the first note:

“dyspnea”

Dutch: “dyspnoe”

In the second and third note, we found the following description:

“Bothered by a dry, tickling cough for which codeine is used as needed.”

Dutch: “Last van droge kriebelhoest waarvoor zo nodig codëıne.”

First of all, it interesting to see that all three notes received the exact same ICF ADM rating,
up to 8 decimals precision, which is not expected from a regression model trained on such a large
dataset given the difference between both descriptions.

All three notes describe readmission of the patient after discharge. While readmissions often
indicate decreased functioning, none of these descriptions describe a respiratory functioning level
of 1. The example of of a correct prediction above is much more specifically describing a decrease
in respiratory functioning, yet they received a higher ADM rating.

The ADM prediction model from Experiment 2 predicted an ADM functioning level of 3.971.
While this is also not reflective of the described respiratory functioning, it is a more realistic
rating given these descriptions. The rating of 1.455 which was assigned to all three notes would
correspond to the patient needing additional oxygen, which does not correspond to these EHR
entries. This is an example of why we expect the prediction models to improve in performance
when the ICF classifier models are able to more precisely identify functioning description in clinical
notes.

Mobility (FAC)

Correct Prediction:

The patient we selected for this review, is one who received a single FAC = 3.883 rating for
a progress report near the 6th week post-discharge target. The prediction model predicted it
would be 4.435. Both reflect the same ICF qualifier level, with the following description in the
annotation guidelines: “Patient requires verbal supervision for walking, without physical contact.
It was difficult to find the corresponding part in the note, because it does not seem to describe
decreased mobility specifically.”

We identified these phrase that might have affected the assigned ICF rating:

“Medical history: Progressing slowly. Feels pressure in the lower abdomen and sensi-
tivity there after standing and walking for a long time.”

Dutch: “Anamnese: Gaat langzaam vooruit. Houdt druk op onderbuik en gevoeligheid
daar na lang staan en lopen.”
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This does not describe a decreased mobility. However, the first part “Slowly improving”, is
literally written in Dutch (transliteration): “is slowly moving forward.” This might be incorrectly
identified as decreased mobility. The ICF classifier model’s input were word embeddings, trained
on a large medical dataset. We are not certain how this sentence would be represented, whether
the embedding model was able to differentiate this “moving forward” from literal mobility-related
“moving forward”. It would be very interesting to experiment with the embedding model to
determine if it is able to represent the different meanings these words can have.

The second phrase does talk about mobility (walking), but only in relation with pain in the
abdomen. If anything, the only real mobility-related statement is that patient is able to walk for
a longer period, which would get an ICF label of 4.

Incorrect Prediction:

An example of a wrong prediction, is the following. This is the telephone consult that was
taken with the patient’s husband. It received a Mobility (FAC) rating of: 3.354. The prediction
model predicted the following post-discharge FAC functioning: 4.849. This rating would reflect a
perfect functioning or the absence of any ratings post-discharge.

“”Yesterday walked 3000 steps. [...] In contact with Erasmus.”

Dutch: “Gisteren 3000 stappen gelopen. [...] Contacten met Erasmus lopen.”

The rating of 3.354 corresponds with the same qualifier level description as the previous ex-
ample. While this is not specifically described in the note, the context does show some difficulties
with walking. The fact that the 3000 steps are mentioned at all, means that mobility related is-
sues were probably expected. Additionally, since they mention the mobility department of another
hospital, we know that this functioning level is not yet perfect. Therefore, while it is difficult to
assess whether the ADM rating of 3 is correct based on this limited information, we do know that
the predicted level of 5 is incorrect. We asked to one of the original annotators to assign a label to
this sentence as they would have during the annotation task, and they identified this is a level 4.
Therefore, is seems as if the prediction model is as far off as the extraction model, but we have to
keep in mind that the prediction model was trained on the extraction model’s assessment of the
target period.

Mood (STM)

Correct Prediction:

For the correct prediction, we identified a patient with 4 mood-related ICF ratings assigned to
post-discharge notes: 2.970 (progress report), 3.596 (Plan of Care), 3.352 (Plan of Care) and 2.586
(Plan of Care). These round to 3 and 4, which have the following descriptions in the annotation
guidelines respectively: “Slight problem with emitional functioning: irritable, gloomy, etc.” and
“No problem with emotional functioning, emotions are appropriate, well regulated, etc.”

We extracted the relevant phrases from each note.

STM = 2.970: “Eating is excellent, very satisfied with the care at [care location].”

Dutch: “Eten gaat voortreffelijk, zeer tevreden over verzorging in de [zorglocatie].”
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STM = 3.596: “Pain is bearable. Mr. seems somewhat gloomy.”

Dutch: “Pijn is draaglijk Dhr komt wat somber over”

STM = 3.352: “Mr. seems gloomy, which he knows.”

Dutch: “Dhr komt somber over, is hiermee bekend.”

STM = 2.586: “Mr. looks very gloomy, found everything very difficult this morning,
and is tired.”

Dutch: “Dhr oogt erg somber, en vond het vanmorgen allemaal erg moeilijk en is moe.”

Based on these phrases, it does not seem as if the assigned mood levels are correct. First of all,
out of the four examples, the first describes the most positive mood, but was assigned a similar
rating as the others. The other descriptions are all very similar, they are describing sadness. The
last example, however, is much more specific and therefore received a slightly worse score.

The prediction model from experiment 2 also predicted this patient would have a decreased
mood.

Incorrect Prediction:

Another patient was assigned a mood level of 2 in their post-discharge period, while the pre-
diction model predicted a slightly higher functioning level: 3. The EHR entry to which this level
was assigned, did not have a note type assigned in our database.

“This is experienced by the patient as very distressing, and she panics and initially
pulls out the scope. [...] Given the persistent agitation/panic in the patient and the
drop in oxygen saturation, it was decided to stop the procedure and reschedule it under
propofol.”

Dutch: “Dit wordt door patiënte als zeer vervelend ervaren en zij raakt in paniek en
trekt aanvankelijk de scoop eruit. [...] Gezien de persisterende onrust/ paniek bij
patiënte en saturatiedaling wordt besloten de procedure te staken en opnieuw in te
plannen onder propofol.”

The main difference between a mood level of 2 and 3, according to the annotation guidelines,
is that for 2, a severe problem with emotional functioning had to be identified and for 3, it is
only regarding a moderate problem. While the example above seems to describe a more severe
emotional functioning than the examples we gave for the correct predictions, it is difficult to asses
whether the ICF model is more correct than what our prediction model predicted.

Weight Maintenance (MBW)

Correct Prediction:

For the correct prediction, we identified a patient with MBW rating 2.728 for a progress report
and a predicted MBW rating of 2.613.

“Medical history: Before surgery 91 kg. After surgery 94 kg with fluid, still during
hospitalization 89 kg. Currently 87.5 kg, approximately 4 kg lost. Has lost muscle
mass.”

72



Dutch: “Anamnese Voor de ok 91 kg. Na ok 94 kg met vocht, nog tijdens opname 89
kg. G nu 87,5 kg, Ca. 4 kg kwijt Is spiermassa kwijt.”

The patient lost 4 kg weight, which is more than 3 kg (MBW level 2), but not over 6 kg (MBW
level 1). Therefore, both the extracted ICF level as well as the predicted level are correct.

Incorrect Prediction:

Another patient received a single MBW ICF rating for a Plan of Care. It was assigned a level
of 2, while the prediction model predicted it to be 3.

“Ms. has gained 2 kg compared to yesterday, with no additional complaints.”

Dutch: “Mw os 2kg aangekomen t.o.v. gister, geen klachten erbij.”

An MBW rating of 2 corresponds with weight gain or loss of over 3kg. MBW 3 corresponds
with some unintentional weight gain or loss, but without a specific amount. Therefore, we can
see that the predicted value is more correct than the ICF rating as extracted by the ICF classifier
models.

Energy (ENR)

Correct Prediction:

In both experiment 1 and 2 we identified that the Energy (ENR) class is the worst performing
of all ICF classes. Even though the MAE scores for this class are the lowest, which normally
indicates better performance, we know that ENR ratings range mostly from 1 to 2. We identified a
patient whose post-discharge Plan of Care note was assigned an ENR level of 1.545. The prediction
model predicted the level to be 1.614. This corresponds to the description: “Moderate fatigue; the
patient gets easily tired from light activities or needs a long time to recover after an activity.”

“Medical history: Mr. indicated that he doesn’t feel well and is tired. He did shower
independently. Walked around the ward.”

Dutch: “Anamnese: Dhr gaf aan zich niet lekker te voelen en moe te zijn. Heeft wel
zelfstandig gedoucht. Liep rondjes over de afdeling.”

This description does fit the ENR level of 2. Both the ICF classifier models and the prediction
model correctly identified it as such.

Incorrect Prediction:

Another patient received a rating of 1.712 for a progress report. However, the prediction model
predicted it would be 3.976.

“Recovery is disappointing. Still tired. Physiotherapy twice a week.”

Dutch: “Herstel valt tegen. Nog moe. 2 maal per week fysio.”
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The only part of this example directly refering energy and fatigue, is “still tired”. It does
not talk about any limitations due to this fatigue. While it is clear that the predicted level of
4 is incorrect, we also do not believe the label of 2 is correct either. This includes getting tired
easily from light activities, and no such thing was described in the note. Similarly to all previous
“Incorrect Predictions” for the other classes, except for FAC, the incorrectness of the prediction
stems partly from the incorrectness of the target label.

In this error analysis we showed the kind of mistakes the prediction models make. Interest-
ingly, for the most of the incorrect predictions, we found that it was the ICF classifier model that
misidentified the qualifier level and therefore the prediction models from experiment 2 were evalu-
ated against this misrepresentation. Only for Mobility (FAC) it seems that the identified incorrect
prediction was evaluated against a correctly assigned ICF rating. It is important to note that none
of these examples were specifically selected, we evaluated a set of random patients from the test
set. As a result of the inconsistencies among the target labels, the MAE scores we reported as
performance metrics might have gotten inflated. We know we are evaluating certain predictions
as being wrong that upon inspection proved to be right. We expect that, if the ICF models are
retrained and make less mistakes, that the prediction models will benefit from this increase in
target correctness.
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Chapter 5

Discussion

The findings of this research provide significant insights into the relationship between in-hospital
International Classification of Functioning, Disability, and Health (ICF) ratings and post-discharge
functioning, validated against patient self-reports. This section discusses the usability of the ICF
classifier model, its predictive capabilities, and the correlation with patient-reported outcomes. We
compare our findings with existing literature and we provide recommendations for future research.

Usability of ICF Classifier Model

This thesis describes the usability of the previously developed ICF classifier models in two ways.
Once by comparing the model’s output with self-reported functioning data (Experiment 1) and
once by exploring the predictive relationship by the model’s output on in-hospital clinical notes
and on the model’s output on post-discharge clinical notes (Experiment 2). In these experiments,
we identified a few limitations of the ICF classifier models. This section discusses these aspects of
the model.

The ICF classifier model demonstrated reasonable accuracy in extracting functioning levels
from clinical notes. However, certain limitations were identified. Some annotated ICF classes
had a low Inter-Annotator Agreement score, in particular Exercise Tolerance (INS). The classifier
pipeline consists of two models in sequence, but both models were only evaluated on gold data, with
as a result that there is no quantification of the interdependency of errors. It was insufficiently
explored how sensitive the models were to changes in the text that did not affect its meaning.
Additionally, it is challenging to reason about the transferability and usability of the model due
to the lack of distributional data on the datasets.

It is also essential to quantify what portion of the model’s increased performance, after aggre-
gating data on a note level and evaluating against the aggregated annotations in the same note,
is due to the redistribution of data and downsizing of the total sample size, and what portion is
due to an actual increase in model performance. We therefore recommend controlling for dataset
imbalance in future studies.

In section 1.3 we explained that the professional’s opinion and the self-reported functioning is
not expected to be the same, even if both measurements are without mistakes. Ideally, we would
have prefaced experiment 1 with a similar comparison, but using a professional’s assessment of the
clinical notes from the BV project participants prior to using the ICF model output. It would have
been useful to assess how professional opinions (i.e., as annotated by the annotators) relate to self-
reported functioning levels prior to comparing the model outputs with self-reported functioning
data. That would show us to what extent correlations can be explained by the relationship between
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ICF classes and self-reported functioning data and what proportion can be explained by wrongfully
predicted labels by the model.

Nevertheless, in this thesis we showed several examples of the ICF classifier output and the cor-
responding note text. Regardless of all limitations we identified earlier, the trend of the extracted
ICF levels over time seems to correspond with what the notes are reporting.

Correlation with Patient-Reported Outcomes

The first experiment focused on validating the ICF classifier model by correlating its outputs
with patient-reported outcomes from the Beter Voorbereid (BV) project. Significant correlations
were observed for all classes except Weight Maintenance (MBW) for at least one of the input
representations. Moreover, we found that for questions referring to a single day, a correlation is
only found when taking the rounded value for each ICF rating, while for questions about a longer
period of time, the unrounded exact ICF ratings proved more useful. We suspect this is because -
while aggregating multiple ratings over a period of time - the unrounded ICF ratings carry more
nuanced information. Conversely, when a question refers to only a single day and we select the
closest ICF rating, rounding the rating to reflect the original ordinal scale of the ratings, gave us
a stronger correlation.

We showed that there is some commonality between what both measurements measure about
a patient’s functioning. This overlap between both datasets is the basis for experiment 2, since we
know that the average rating in a window around a target date reflects a patient’s own experience
of their functioning.

While we found a significant correlation for 4 out of 5 relevant ICF classes, the correlation
coefficients were relatively small, indicating a weak to medium correlation. We also found that the
correlation between the delta change of ICF values and self-reported BV responses was smaller
or non-existent than for the pair-wise comparison. We hypothesise that this is mainly because
smaller sample sizes, since any missing value affects the presence of a delta change value to and
from the time point of the missing value.

We identify a few limitations to our approach. First and foremost, only 74 patients from the
Beter Voorbereid study were considered. This is a relatively small sample size and we expect that
using a bigger dataset would provide better insights in the relationship between the functioning
data as extracted by the ICF clasifier models and the self-reported functioning data. Additionally,
only 5 out of the 9 ICF classes were considered for this project due to data scarcity, insufficient
performance reported by previous researchers and non-overlapping constructs between the ques-
tionnaires and the classifier models.

Predictive Value of In-Hospital ICF Data

The second experiment attempted to quantify the predictive value of in-hospital ICF data on post-
discharge functioning. We found that the in-hospital ICF classes are able to confidently predict
post-discharge functioning with a similar error rate as was reported for the original models (Kim
et al., 2022). We expect that if the original ICF classifier models increase in performance, the
predictive value of these labels increases as well.

In Experiment 2, we also identified limitations to our approach. We employed the Mean
Absolute Error evaluation metric, which considers all data to be on a rational scale. We used this
evaluation metric because it allows us to directly compare the predictive value of the models with
the average error rate on the ICF ratings as assigned by the ICF classifier models.
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For Respiratory funcioning (ADM), the best performing prediction model had an MAE score of
0.48. This means that - on average - the model is 0.48 off. Table 3.6 reported on the MAE scores
for the ICF model output itself, and ADM scored 0.37 here. This means that the prediction model
is 0.48 off of predicting a score that itself has an error margin of 0.37. So while using another
evaluation metric that better reflects the ordinal nature of the ICF labels would be more useful in
terms of interpreting the result in a hospital context, it complicates a direct comparison between
the ICF models performance and the prediction models performance in Experiment 2.

While it is a good sign that the prediction models make mistakes within the same error margin
as the ICF classifier models, this does not necessarily mean that these models can be directly used
within a hospital context. For example, for the ADM class, where we have an average absolute
error of 0.48, on top of a potential error in the target label of - on average - 0.38, means that
the predicted ADM outcome of patients is also, on average, off by 0.4 to 0.9. Realistically, this
means that we can predict a level 4, which means “no problems”, while the target is ADM = 3.5
and while the real respiratory functioning was 3: “shortness of breath during exercise”. Similarly
for the other cases: while an error of 1 does not look like a lot, it can be the difference between
predicting a patient will suffer moderate weight loss (MBW 3) while in reality the patient did
experience some weight loss, but also regained it afterwards (MBW 4).

We showed that the addition of structured data to the training samples does not necessarily
improve the model performance. However, we also showed that the baseline model, which contains
only the structured data, performs slightly worse than when only the ICF data is used, meaning
that the structured data alone does have some predictive value on post-discharge functioning. We
believe that experimentation with different ways of combining the ICF data and the structured
EHR data would result in better performance of the models overall.

Additionally, due to time restrictions and the size of the current analyses, we were not able to
optimize the LSTM prediction models themselves by finding optimal (hyper)parameter settings.

Comparison with Existing Literature

While it is challenging to compare the outcomes of this thesis with existing literature, due to the
unique approach based on a previously developed ICF classifier model, this is an important aspect
of placing this research into the scientific field. Even without a direct comparison, we can still link
this research to others by evaluating each aspect separately.

The first comparison we would like to make, is for Experiment 1, where we compare the
automatically extracted ICF functioning data with the same patient’s self-reported experience.
Velikova et al. (2001) conducted a research into the relationship between Quality of Life information
in medical records as annotated by professional’s and the self-reported Quality of Life as reported
in Quality of Life Questionnaire (QLQ)-C30 from the European Organization for the Research
and Treatment of Cancer (EORTC). They identified for each of the Quality of Life categories that
an overall higher proportion of the patients reported symptoms and functional problems in the
questionnaire than was found in the medical records. The categories for which the lowest rate of
problem recording in medical records was found as opposed to the self-rated rate of recording were:
pain, fatigue, emotional distress and nausea. While our project did not focus on pain and nausea,
we did also find a relative low reporting rate for fatigue (Energy) and emotional distress (Mood).

Secondly, we want to compare the outcomes of Experiment 2 with existing literature. Tankumpuan
et al. (2015) wrote an article about the predictors of physical functioning in postoperative brain
tumor patients. They found that mood and fatigue were the best predictors of post-discharge
physical functioning. However, we also found that fatigue and mood are least frequently reported
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in clinical notes, and according to Velikova et al. (2001) this is not because those Quality of Life
categories are not an issue for patients, but rather because they are underrepresented in medical
records. These two findings together explain why, even though the prediction models in Experi-
ment 2 perform similarly in terms of the MAE scores as the ICF classifier models do, the outcome
is not satisfactory to be usable in a healthcare setting.

Finally, we discussed the challenges of using an NLP model for downstream modeling tasks, like
we did in Experiment 2. We explained how a research in isolation can provide good results, but
when used in practice, the proposed approach performs worse. This is because of methodological
choices made that complicate downstream tasks, such as filtering out samples are expected to
decrease the model’s performance (i.e. filtering out all historic and future mentions), but also
because any errors made by the first model will automatically be transferred to the downstream
model. Therefore, we are essentially building a model that uses incomplete information. Velupillai
et al. (2018) wrote an article on the use of NLP models for health outcomes research and they
describe the same challenges. They describe that an NLP model can never be 100% accurate,
cannot be easily transferred from one domain to another, are rarely developed with clinical experts
in mind and that they should be externally validated with the clinical production environment in
mind. This is what we attempted to do with Experiment 1.

Recommendations for Future Research

Based on the findings, several recommendations can be made to enhance the model’s performance
and usability. We focus on both recommendations to improve the quality and therefore utility
of the ICF classifier models and on recommendations to improve the analyses introduced in this
thesis.

Recommendations for ICF Classifier models

Reannotating data and calculating an Inter-Annotator Agreement Score on a bigger subset
would likely be very beneficial for both model performance and interpretability. However, we
recognize that annotating data is often very time-consuming and expensive. Therefore, we also
identify steps to evaluate the consistency in annotated data without needing a new annotation
round. The first recommendation is to stratify the test set on annotator. This would yield some
insight in which annotator diverged most from the generalized patterns the model extracted.
Additionally, a sensitivity analysis could be very useful. This would include, based on examples
of where the annotators disagreed on a label of qualifier level, qualitatively assessing why that
might be the case and construct a custom dataset, possibly with synthetic data, to do a sensitivity
analysis on those variations.

Finally, we recommend the following adaptations to the methodology to further increase the
usability of those models. Future studies should focus on rebalancing the dataset to ensure a more
even distribution of ICF ratings. This could involve oversampling underrepresented classes or using
advanced data augmentation techniques. Additionally, in order to better describe the quality of
annotations, calculating an Intra-Annotator Agreement could also be useful to see how consistent
annotators are with themselves.

Recommendations for approach in this thesis

While these recommendations focus on the previous research, which we expect would affect the
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performance of downstream tasks as well, there were also a few limitations to the methodology
used in this thesis. Primarily due to time limitations, we were not able to employ cross-validation
to better represent the model’s performance. We expect that this would benefit the model, given
that we used a relatively small dataset.

We also did not conduct a grid search to find the optimal hyperparameter settings, as this
would require training multiple models and our experiment 2 already contained 40 trained models.
Our focus was on comparing different methods of representing the input data rather than finding
the optimal modeling setup.

In our experiments, we measured the relationship between self-reported functioning values and
automatically extracted ICF functioning levels. We explained that these constructs are not mea-
suring the same aspects of a patient’s functioning, which is part of the reason why the correlation
coefficients were relatively small. We expect that by taking different datasets with a clearer con-
nection would increase the value of the output of this experiment. We recommend redoing a
similar experiment with questionnaires containing questions that directly correlate with the ICF
functioning levels.

For experiment 2, we created prediction models that predicts the average post-discharge func-
tioning level at the 6-week mark. While we know this average rating relates to a patient’s expe-
rience, it is a vaguely defined target label. In order to solidify the predictive value of in-hospital
functioning level on post-discharge functioning, we recommend extending this experiment with
prediction tasks of other post-discharge functioning data. For example, predicting readmission
chances of patients post-surgery would be a good measure of a patient’s functioning, while being
a clearly defined target that can easily be extracted from the Electronic Health Records.

Additionally, we used the Mean Absolute Error (MAE) score to evaluate the model to allow
direct comparison with the ICF models’ performance. However, this metric does not correctly re-
flect the ordinal categorical nature of the ICF qualifier levels. Using evaluation metrics specifically
designed for classification tasks would likely yield better interpretable descriptions of the model’s
performance.

Code and Data Availability

Since this project included privacy-sensitive patient data, we are not allowed to share the dataset.
The same holds for all code that preprocesses and selects the data, since this includes hard-coded
privacy sensitive data as well. The rest of the code will be published at a later date.
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Chapter 6

Conclusion

In this thesis, we made an attempt at showing how unstructured clinical data during a patient’s
hospitalization can be used to gain insights in their functioning status after they are discharged
from the hospital. We have shown how this extracted data relates to a patient’s own experiences
and how this can subsequently be used to predict post-discharge functioning. While the results are
promising, we realize additional evaluation steps on both this research and the previous research
are needed to quantify the usability of these prediction models in a healthcare setting.

In the introduction of this thesis, we introduced two research questions:

1. How does a professional’s judgment of a patient’s functioning, as extracted from unstructured
clinical data, correlate with the patient’s own perception of their functioning?

2. How effectively can NLP-extracted ICF functioning levels from in-hospital patient notes
predict post-discharge functioning as documented in follow-up notes?

In Experiment 1, we answered the first question and showed that there is a significant correlation
between a professional’s judgment of a patient’s functioning and the patient’s own perception for 4
out of 5 ICF classes. For the ICF class Weight Maintenance we found no such significant correlation,
which we suspect might be due to a smaller dataset. For any mismatches between the datasets,
we could not assess whether these were due to a poor relationship between the professional’s and
the patient’s judgment or due to the ICF classifier model making incorrect predictions.

In Experiment 2, we answered the second research question. We showed that the ICF func-
tioning levels can predict post-discharge functioning with similar accuracy to the ICF models’
extraction of those functioning levels. For most classes, except for MBW and ADM, this is a bet-
ter performance than the baseline, consisting of a prediction model trained on only the structured
clinical data. We expect that if the quality of the ICF models increases, a similar increase in
performance will be observed when retraining the prediction models using the same setup.

In this thesis, we showed how Natural Language Processing can be used in healthcare to
extract useful information from unstructured clinical notes that was previously not available in
the Electronic Health Records. We made initial steps towards showing how this information can
then be used for downstream modeling tasks, such as predictions tasks, which could help target
the correct intervention to patients. While there is a lot of room for improvement, we believe that
NLP can benefit healthcare immensely.
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Level Generic Qualifier MBW STM FAC ENR

4 No problem Healthy weight,
no unintentional
weight loss or
gain, SNAQ 0 or
1.

No problem with
emotional func-
tioning: emo-
tions are appro-
priate, well regu-
lated, etc.

Patient can walk
independently
anywhere: level
surface, uneven
surface, slopes,
stairs.

No problem with
the energy level.

3 Mild problem Some uninten-
tional weight
loss or gain,
or lost a lot
of weight but
gained some of it
back afterwards.

Slight problem
with emotional
functioning: ir-
ritable, gloomy,
etc.

Patient can walk
independently
on level surface
but requires
help on stairs,
inclines, uneven
surface; or, pa-
tient can walk
independently,
but the walking
is not fully nor-
mal.

Slight fatigue
that causes mild
limitations.

2 Moderate problem Moderate unin-
tentional weight
loss or gain
(more than 3
kg in the last
month), SNAQ
2.

Moderate prob-
lem with emo-
tional function-
ing: negative
emotions, such
as fear, anger,
sadness, etc.

Patient requires
verbal supervi-
sion for walking,
without physical
contact.

Moderate fa-
tigue; the
patient gets
easily tired from
light activities
or needs a long
time to recover
after an activity.

1 Severe problem Severe uninten-
tional weight
loss or gain
(more than 6
kg in the last 6
months), SNAQ
≥ 3.

Severe problem
with emotional
functioning:
intense negative
emotions, such
as fear, anger,
sadness, etc.

Patient needs
continuous or
intermittent
support of one
person to help
with balance
and coordina-
tion.

Severe fatigue;
the patient is
capable of very
little.

0 Complete problem Severe uninten-
tional weight
loss or gain
(more than 6
kg in the last
6 months) and
admitted to
ICU.

Flat affect, ap-
athy, unstable,
inappropriate
emotions.

Patient cannot
walk or needs
help from two or
more people; or,
patient walks on
a treadmill.

Very severe fa-
tigue; unable to
do anything and
mostly lays in
bed.

Table 1: Annotation Guidelines for ICF classifier training data: Weight Maintenance (MBW),
Mood (STM), Mobility (FAC), Energy (ENR)
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Level ADM

4 No problem with respi-
ration, and/or respiratory
rate is normal (EWS: 9-20).

3 Shortness of breath in
exercise (saturation ≥90),
and/or respiratory rate is
slightly increased (EWS:
21-30).

2 Shortness of breath in rest
(saturation ≥90), and/or
respiratory rate is fairly in-
creased (EWS: 31-35).

1 Needs oxygen at rest or
during exercise (saturation
<90), and/or respiratory
rate >35.

0 Mechanical ventilation is
needed.

Table 2: Annotation Guidelines for ICF classifier training data: Respiratory Functioning (ADM)
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