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Abstract 

The cultivation of mangoes (Mangifera indica L.) is gaining importance in Europe, especially in 

Southern regions, due to favourable climatic conditions. With the ongoing climate change, there is a 

potential for further improvement in these conditions, making southern Europe possibly more suitable 

for mango cultivation in the future. This study aims to assess the potential future impacts of climate 

change on mango cultivation suitability in southern Europe, focusing on Spain, Italy, Greece, south of 

France, Croatia, Montenegro & Albania.  

Using Environmental Niche Modelling (ENM), this research integrates correlative and mechanistic 

approaches to evaluate current and future suitability scenarios. Key environmental variables, such as 

temperature, degree days, air humidity, cloud cover and soil factors, were analysed using Generalized 

Linear Models (GLM), Boosted Regression Trees (BRT), and Maximum Entropy Modelling (Maxent) 

with presence-only, randomly generated pseudo-absence observation data. 

The performance of the algorithms was evaluated using metrics such as the Area Under the Receiver 

Operating Characteristic Curve (AUC) and the True Skill Statistic (TSS). All algorithms demonstrated 

high accuracy, with AUC values exceeding 0.8, but the difference in TSS values between calibration 

and validation suggests diminished model performance in new scenarios, highlighting the potential 

impact of overfitting due to limited observation points, emphasizing the need for cautious interpretation 

of the results. To ensure robustness and reduce uncertainty, an ensemble approach was adopted, 

averaging the results from GLM, BRT, and Maxent models. 

Results from the mechanistic approach, which incorporates expert knowledge on physiological and 

morphological data, show a broader potential expansion of suitable areas compared to the correlative 

approach, which relies on observed relationships between species occurrence and environmental 

conditions. The mechanistic approach suggests that inland areas, particularly in Spain, might become 

more suitable due to projected increases in temperature. In contrast, the correlative approach indicates 

more conservative estimates of suitable areas, highlighting the importance of air humidity and specific 

microclimatic conditions. An combination of results reveal that while current suitable areas are 

concentrated along coastal regions of Spain and Italy, future projections extend these areas further inland 

and into new regions within Greece and Portugal. 

The overall results indicate a significant expansion of suitable areas for mango cultivation under future 

climate scenarios. Both SSP1-2.6, which assumes lower greenhouse gas emissions, and SSP5-8.5, with 

higher emissions, project growth of suitable areas. However, water stress remains a limiting factor in 

both scenarios, particularly under SSP5-8.5. A spatial comparison reveal that while current suitable 

areas are concentrated along coastal regions of Spain and Italy, future projections extend these areas 

further inland and into new regions within Greece and Portugal. The analysis also highlights the critical 

role of irrigation and the need for adaptive agricultural practices, including efficient water management 

and strategic planning, to mitigate the adverse effects of climate change on mango production, as water 

scarcity remains a major constraint despite favourable temperature trends.  

This research contributes to the growing body of knowledge on the impacts of (future) climate change 

on mango suitability in southern Europe and offers valuable insights for farmers, policymakers, and 

stakeholders in the agricultural sector. By anticipating changes in suitable cultivation areas, strategies 

can be developed to sustain and potentially expand mango production in Europe. 
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1. Introduction 
 

The popularity of the mango (Mangifera indica L.) is on the rise globally, and notably within Europe. 

Presently, the mango stands as the sixth most consumed fruit worldwide, with a harvested area of 5.97 

million hectares and a global production of 57 million metric tons per year, which is an increase of 35% 

from a decade ago (FAO, 2021). The major production region is Asia, accounting for 74.4% of the 

world's output. However, Europe, particularly Spain, has seen a rise in cultivating mangoes in the last 

15 years, yielding 40,000 tons of mangoes in 2021 (FAO, 2021). This rise is attributed to favourable 

climatic conditions, characterized by warm sunny summers and frost in winters, which seem 

increasingly suitable due to ongoing climate change (del Pino et al., 2020). However, the rise of extreme 

drought in recent years has led to a 70% decrease in Spanish mango production in 2023, and water 

scarcity in the affected regions has resulted in reduced yields due to smaller mangoes (Trops, 2023). 

The impact and potential consequences of climate change on mango production in Spain, both now and 

in the future, remain unclear.   

Climate change is ongoing and the effects are expected to be impacting land use systems across Europe 

(Aydinalp & Cresser, 2008). The impact varies by region, but generally more extreme weather events 

are the trend (Huber & Gulledge, 2011). It is likely to affect the suitability for cultivating mangoes in 

southern Europe as it is expected that the global temperature and rain falls less and more irregular 

(Legave, 2013). 

Nevertheless, there is no unanimity on the exact changes per region when different scenarios are 

considered: from small to big changes. Using forecasts, it is possible to model how weather and 

environmental conditions may change based on assumptions of current developments. Effects on the 

potential growth areas of species can be evaluated by relating known occurrences to the change of 

climate data (Ramírez-Gil et al., 2019). This approach has been termed environmental niche modelling 

(ENM) and represents a powerful tool for characterising current and potential environmental and 

geographic distributions of species (Sillero et al., 2021; Peterson et al., 2018). The increasing interest in 

mangoes, both in consumption and European production, combined with climate change, presents 

uncertainties for farmers and exporters in the mango sector. Anticipating these changes by forecasting 

the environmentally suitable area of crops would help to reduce or mitigate negative impact and adapt 

ecological and economic strategies (Arenas-Castro & Gonçalves, 2021). An analysis is required to 

understand how the mango cultivation area in the Southern Europe might change due to climate change. 

Mango is not a strictly tropical tree, as it also grows in areas with a subtropical and even mediterranean 

climate, such as in the Southern Europe. The overall climate conditions for mango production seem to 

be improving due to an increase of average temperature, which rises the number of degree-days, a 

decrease of cloud cover, and a longer dry period prior to flowering as a result of climate change (Legave, 

2013; Geetha et al., 2016). Besides these positive changes, mango cultivation is affected by many other 

climatic factors that may change towards a negative influence, including maximum and minimum 

temperature, air humidity and rainfall (Cavalcante, 2022; Kumar et al., 2008; Parmar et al., 2012; 

Ramteke et al., 2022; Todorov & Bogsan, 2016; Van Zile, 2022; Zuazo et al., 2021). Additionally, 

topographical variables such as soil depth, soil texture, soil erodibility, elevation and slope steepness, 

while very slowly affected by climate change, also determine the potential growth area of mango trees 

(Elsheikh et al., 2013; Salunkhe et al., 2023; Todorov & Bogsan, 2016; Bally, 2006).  

Currently, in southern Europe, water is being added artificially to mango orchards due to insufficient 

rainfall during certain periods (Zuazo et al., 2021). While already, one of the main challenges in semi-

arid regions is the inconsistency of rainfall, combined with high temperatures, resulting in significant 

water shortages. Water consumption by human populations, agriculture, and ecosystems, cause conflicts 

over water usage, reduced agricultural productivity, and adverse effects on natural habitats (Schlosser 
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et al., 2014). This condition, where the demand for water exceeds the available amount, is known as 

water stress. Climate change is expected to exacerbate this problem, with an increase in the frequency, 

magnitude, and impact of droughts and rising temperatures. Due to these developments, there will not 

be enough precipitation in the future, causing the necessity for irrigation to persist and the environmental 

variable of precipitation to be excluded from this study. 

Currently, mangoes are only commercially grown on a small extent in Italy (mostly Sicilia), Greece 

(Crete), Corsica and Spain (Andalucia) while there may be suitable production areas in other southern 

European regions within Italy, Spain, Portugal, France, Croatia, Albania, Montenegro and Greece. Thus, 

this study tries to analyse the impact of climate change on the suitability for mango cultivation in 

Southern Europe, and compare this with the current crop extent, to see how climate change may expand 

or contract the existing cultivation area.  

 

1.2 Research Objective 
This study aims to clarify the future uncertainties surrounding mango production in Southern Europe. 

This objective will be achieved by utilizing an Environmental Niche Model. 

 

The following research question has been set up to reach the objective of this research: 

 

Will climate change cause an expansion or contraction of the suitable area for mango production in 

southern Europe? 

 

The following guiding questions have been established in order to find an answer to the main research 

question: 

 

- Q1: Which environmental variables positively (or negatively) contribute to the suitable area of             

mango cultivation? 

- Q2: How are some of these environmental conditions changing as a result of climate change? 

- Q3: Which areas in southern Europe are currently suitable for growing mangoes? 

- Q4: Under different climate scenarios, how would suitable areas for mango growth in southern 

Europe expand or contract in the future? 

-Q5: To what extent is water stress a factor in an environmentally suitable area for mangoes? 

 

First, it is essential to determine the key environmental variables that influence mango growth and 

identify the conditions under which mango trees are present. Subsequently, this study will compare how 

changes in climate, as expected according to different IPCC scenario’s, will impact the suitability for 

mango growth in different parts of Europe. These environmental variables will then be integrated with 

suitability for mango growth in an Environmental Niche Model (ENM) using various machine learning 

algorithms and expert knowledge. Estimates will be done by statistical analysis on how much the 

suitable extent of mango areas will expand or contract under the different scenario's, compared to the 

currently suitable mango cultivation areas. Next, the outcomes will subsequently be visualized using 

maps for various scenarios and show which areas in the southern Europe become suitable and unsuitable 

for growing mangoes in the future. The final step is to include the water component and check if suitable 

mango areas are situated in regions without water stress. 
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1.3 Relevance  
In terms of tropical fruits, mango is the most interesting to investigate in terms of cultivation in Europe 

for a few reasons. The production of this fruit in Europe is the most upcoming compared to other tropical 

fruits such as avocados and bananas (FAO, 2021; Perez, 2023). Mangos are often compared to avocados 

since their production areas are similar. However, mangoes have a higher potential than avocados 

because they require less water (Frankowska et al., 2019), which is already scarce in southern Europe. 

There is uncertainty about the potential for mango production in Europe's future. Commercial 

organizations, such as Trops, that produce mangoes warn of their dependency on water, fearing that 

future supplies may be insufficient to sustain their production (Trops, 2023). The results of this study 

will help mango farmers and governments of southern European countries with their management and 

choices of starting or sustaining a mango farm, by clarifying the future impact for mangoes as a result 

of the environmental changes. Incorporating both current and future climate change projections is crucial 

for sustainable agriculture (Akpoti et al., 2019) and it is imperative to inform these stakeholders about 

the inevitable impacts of climate change, allowing them to adequately prepare by reducing or mitigating 

the impact and adapt their ecological and economic strategies.  

In addition, the global shipping of mangoes carries numerous environmental drawbacks. While 

container ship transport is relatively efficient compared to other means, it still poses a considerable 

environmental burden due to emissions of NOx, SO2, CO, and CO2. Furthermore, mangoes are often 

transported in refrigerated containers and occasionally by air, which has an even higher carbon footprint. 

The transportation emission  accounts for 32% to their overall carbon footprint. Shortening the distance 

between production and consumption can reduce up to 3.2 kg CO2 per ton of mangoes (Mersereau, 

2023).  However, any increase in water usage for cultivation must also be considered. Additionally, 

shortening the distance from farmer to the consumer, resulting in a more local transportation cycle, can 

lower transport costs. This reduction can either lead to decreased consumer prices or increased profit 

margins for farmers. Besides, a more localized supply chain ensures that a larger portion of funds 

remains within the European Union (Huang, 2004). 

The food and agriculture organisation of the United Nations (FAO) has developed a data portal for 

suitable growing areas of agricultural crops in Europe. However, it lacks information on the mango that 

stakeholders in mango field need. This study will fill this information gap.  
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1.4 Research Structure 
The study is divided into several steps, as illustrated in Figure 1.  

- Chapter 2: The first step is done by 

conducting a preliminary literature review of 

relevant concepts and theories from scientific 

literature on environmental niche modelling 

(ENM) in relation to crop suitability area 

assessments and climate change scenarios. 

This provides information about existing 

studies on this topic and which climate 

scenarios, ENM algorithms, methods, and 

environmental variables are valuable to 

incorporate for mangoes.  

- Chapter 3: From there, the study area and 

parameters of environmental variables are 

determined, together with suitable datasets 

that can serve as input for the ENM which are 

identified and obtained from research 

organisations. This data is described and 

prepared as input for the ENM model by 

addressing errors and ensuring uniform size 

and spatial scale. The data is then processed 

in the model using various algorithms and 

expert knowledge, after which the results of 

these models are compared and validated for 

accuracy. 

 

- Chapter 4: The results can then be analysed and presented. This can be done through a  visual and 

statistical comparison between future climate scenarios and the current situation. Additionally, the water 

component is added. 

- Chapter 5 & 6: In these chapters the results are interpreted, placed within context of existing knowledge 

and outlined significance to the broader scientific community. Besides, the limitations and suggestions 

for future research are discussed. The final step involves drawing a conclusion that answers the main 

question ‘Will climate change cause an expansion of contraction of the suitable area for mango 

production in southern Europe?’ 

 

 

 

 

 

 

 

 

 

Figure 1: Flowchart research structure 
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2. Theoretical background 
 

This chapter provides a theoretical background of the previously described context and problem 

statement by comparing and analysing various relevant scientific literature. The concept of ENM is first 

presented, followed by an outline of several techniques, an explanation of climate change models, and 

an examination of mango growth characteristics.   

2.1 Definition of Environmental niche modelling (ENM) 

Land suitability analysis plays a crucial role informing decision-making and sustainable land 

management across various sectors. It helps optimize land use, minimize environmental impacts, and to 

ensure the efficient allocation of resources (Malczewski, 2004). Land suitability analysis, such as 

Environmental niche modelling (ENM), in agriculture is a process that assesses the suitability of specific 

parcels of land for various agricultural purposes (Akpoti et al., 2020).  

ENM falls under the overarching concept of Species Distribution Modelling (SDM). Both methods 

primarily aim to understand and predict species' habitats based on specific factors, however, SDM 

captures the entirety of an organism's ecological needs such as predation, competition and symbiosis, 

while ENM emphasizes environmental constraints more explicitly (Sillero et al., 2021).  

In order to describe, comprehend, and/or forecast the distribution of species, ENMs use statistical 

techniques or theoretically developed response surfaces to link physiological or chorological data to 

environmental variables (Sillero et al., 2021). The mathematical output of ENMs can be an equation 

relating the expected distribution of the species (the dependent variable) to a set of environmental 

predictors (the independent variables). This mathematical model can be spatialised into a cartographic 

model, i.e. a map representing habitat suitability or the probability of the species occurrence (Sillero et 

al., 2021). 

Environmental niche modelling (ENM) is a suitable approach for the aim of this research as it can predict 

how suitable a new area is for cultivation of the a particular fruit based on occurrence data and 

environmental variables.  It is in line with the research objective by not integrating biotic factors. 

2.2 ENM in crop suitability studies 
There are numerous general studies, such as Halder & Hasan (2020) and Legave et al. (2023), that 

describe the general negative global effects of climate change on mango cultivation areas, instead of the 

specific statistical use of Environmental Niche Modelling (ENM).  

In recent years, the use of ENM to explore these patterns and processes of species distribution has 

significantly increased (Melo-Merino et al., 2020) especially in crop suitability analysis (Akpoti et al., 

2022;  et al., 2023; Ramirez-Cabral et al., 2016). One such study predicts the impact of climate change 

on suitable areas for a similar fruit, avocado, in the Americas (Ramírez-Gil et al. 2019). Eitzinger et al. 

(2013) conducted a study about the suitability area of mangoes in relation to climate change in Haiti & 

Akhter et al., (2017) used the same MaxEnt algorithm to check for future potential of mango distribution 

in Bangladesh.  

Taken the large amount of similar studies on the impact of climate change on crops using ENM, it can 

be said that the ENM method seems appropriate to apply for this study. Yet these studies make many 

different choices regarding spatial resolution, temporal extent, ENM method, number of variables and 

climate change scenarios (Table 1). The outcome of these choices can serve as a basis for this study. 

 

 



 
9 

Table 1: Characteristics of different scientific studies that use ENM 

 

2.3 Correlative and mechanistic models 
As shown in table 1, there are many different methods within ENM to differentiate the crop suitability 

of an area with regard to climate change. Sillero et al. (2021) suggest that ENMs can be divided into 2 

main categories, namely: mechanistic and correlative models: 

- Mechanistic models typically incorporate physiological, morphological, and behavioural data 

and have more explanatory purposes, while correlative models use geographical occurrence data 

and have a more predictive purpose (Sillero et al., 2021; Elith et al., 2006;). Mechanistical 

models are grounded in a comprehensive understanding of the biological processes and 

mechanisms that dictate a species' distribution. They explicitly integrate the physiological 

limitations of a species to its environmental constraints (Melo-Merino et al., 2020). 

 

- Correlative models are rooted in the observed relationship between species occurrence 

(presence/absence) and the environmental conditions of those locations. They correlate the 

current distribution of a species with environmental factors to project its distribution in different 

regions or under altered circumstances (Evans et al., 2015). 

 

As a result, there is no hard dividing line between mechanistic models and correlative models but rather 

a spectrum of purely based regression on presences (correlative) and models that include some kind of 

expert knowledge on the relations between environmental factors and the crop, such as Climex 

(Ramirez-Cabral et al., 2016) and EcoCrop (Appelt et al., 2023).  

In current literature, correlative models are the most commonly applied but the approach has been 

criticized for their inability to consider the full range of processes shaping species ranges and the 

uncertainty in predicting events in the near future (Evans et al., 2015). Compared to correlative models, 

mechanistic models may excel in these certain aspects but come with their own set of disadvantages 

such as the need for extensive and sometimes unavailable detailed data, validation challenges and 

generalizability of results to other regions (Evans et al., 2015). Ideally, the choice for a modelling 

algorithm should be driven by the research question rather than being solely dictated by the available 

data (Sillero et al., 2021). Because the outcomes of the methods can differ greatly and the research 

objective does not lend itself specifically to one method, both methods are used. 

Name 

researchers 

Subject Study area Temporal 

extent 

(year) 

Spatial 

resolutio

n 

ENM 

method 

Nmbr.

Of 

variabl

es 

Climate 

model 

CC 

scenario 

Nmbr 

of suit. 

classes 

Ramirez-

Cabral et al., 

(2016) 

Common 

bean 

World Current, 

2050  

2100 

111 km² CLIMEX 17 2 GCM’s  A2, A1B 

 

4 

Akpoti et al., 

(2022) 

Rice West-Africa 2030  

2050  

2070  
2080 

1km² BRT, GLM, 

MaxEnt, RF 

24 Avg. of 

32 GCM 

RCP2.6, 

RCP4.5, 

RCP6.0, 
RCP8,5 

3 

Ramírez-Gil 

et al. (2019) 

Avocado Americas Current 
2050 

4km² MaxEnt  11 Avg. Of 
22 GCM 

RCP4.5 
RCP8.5 

Scale 0-
100 

Appelt et al., 

(2023) 

Coconut, 
Oil palms 

& rubber 

Southeast 
Asia 

1981-2010 
2041-2070 

10km² 
10m² 

231m² 

EcoCrop 2 5 GCM’s SSPS2.6 
SSPS8.5 

 

Scale 0-
100 

Akhter et al., 

(2017) 

Mango Bangladesh Current 

2050 2070 

1km² MaxEnt  19 1 GCM RCP4,5 

RCP8.5 

4 

Eitzinger et 

al. (2013) 

Mango & 

Coffee 

Haiti 2013 2020 

2030 2050 

1km² MaxEnt  19 Avg. Of 

19 GCM 

SRES-A2 5 
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2.3.1 Mechanistic approach (Expert knowledge approach) 

In this approach, environmental variable parameters established by experts are plotted over a spatial 

area, where crop-specific thresholds differentiate regions as suitable or unsuitable for cultivation. In this 

method, occurrence data is not considered; instead, thresholds for various variables define the areas 

suitable for mango cultivation. This study describes this niche-based mechanistic model as the 'expert 

knowledge approach’. 

2.3.2 Correlative approach (Algorithmic approach) 

Correlative models use the algorithmic approach to describe the relationship between a response variable 

(e.g., the presence or absence of mango farms) and explanatory variables (e.g., environmental 

conditions) based on observational data to predict the distribution of mango farms. Correlative methods 

can be divided into three main categories based on the type of data about species' occurrences they rely 

on: presence-absence, pseudo-absence, and presence-only methods (Sillero et al., 2021). 

In this context, 'presence' indicates that a species was observed at a specific location when the data was 

collected, while 'absence' means that the species was not observed at that location during data collection. 

However, it's important to note that the absence of a species in recorded data doesn't always mean the 

species is completely absent from the area as detection issues, seasonal behaviour or sampling efforts 

can result in undetected presences (Graham et al., 2004).  

Some ENM methods only require data on where a species was observed ('presence' records), while 

presence-absence methods additionally require data on where a species was not observed ('absence' 

records). When 'absence' records are not available but are necessary for modelling, 'pseudo-absence' 

records can be generated. These can be created by selecting random locations within the dataset where 

the species was not recorded, by choosing locations in areas that don't match the expected habitat for 

the species, or by randomly selecting locations in the study area while excluding places where the 

species was observed (Graham et al., 2004). This pseudo-absence method is most suitable for this 

research as only presence records of mango farms are available, and creating absence records improves 

the reliability of results. The chosen ‘pseudo-absence’ modelling algorithms are shortly described 

below. 

In this study, three modelling methods were used, Maxent, GLM, and BRT, as they are the main ENM 

methods. It is prudent to employ multiple algorithms for a more dependable result as Akpoti et al. (2022) 

concludes that algorithms yield highly divergent results. 

Maxent 

Since its introduction in 2006 by Phillips et al. (2006), the Maximum Entropy Modelling (Maxent) 

software has become highly popular as a modelling tool. Maxent has proven to be highly accurate in 

making predictions, even when working with small amounts of only presence data (Sillero et al., 2021; 

Phillips et al., 2006). Ørsted & Ørsted (2019) assert that MaxEnt demonstrates superior accuracy 

compared to other species distribution models. The Maximum Entropy (MaxEnt) approach estimates 

probability density, treating presence data as samples drawn from a distribution across a study region.  

GLM 

Generalized linear models have been extensively applied in ecological research and a great number 

of published studies have used this method for predictive species distribution. Generalized linear models 

are mathematical extensions of linear regression models (Guisan et al., 2002). GLM assume that there 

is a relationship between the mean of the response variable (the occurrence data for ENMs) and the 

linear combination of the explanatory variables (the environmental predictors for ENMs).  
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BRT 

Boosted Regression Trees (BRT), also known as stochastic gradient boosting, is an algorithm that can 

be ran based on pseudo-absence data, just like MaxEnt and GLM. But unlike GLM and MaxEnt, this is 

a tree-based model rather than a regression-based model, which adds to the reliability of this study by 

using different approaches. BRT uses a form of forward stage-wise regression to construct a sum of 

regression trees. Each stage consists of a gradient-descent step, in which a regression tree is fitted to the 

derivatives of the loss function (Phillips et al., 2009).  

2.4 Climate change models 

As previously stated, the effects of climate change (CC) are anticipated to influence ranges of 

various crops (Arenas-Castro & Gonçalves, 2021). This is particularly relevant for mango 

production areas in Europe as it is predicted that climate change would impact this region a lot 

(European Commission, 2020). 

2.4.1 Climate change scenarios 

Climate change projections are subdivided into various scenarios, ranging from extreme high negative 

human impact to low negative human impact. Within ENM studies, various classifications of scenarios 

are made, including Shared Socioeconomic Pathways (SSPs) (Table 1). 

A method, with an increasing degree of practical use, to split up climate change scenario’s is that of the 

SSP narratives describing alternative socio-economic developments as summed up below (Riahi et al., 

2017). SSP scenarios are fundamentally determined by quantitative descriptions of key scenario drivers, 

such as population, economic growth, and urbanization. However, it is important to note that SSPs are 

solely socio-economic scenarios. They are linked with RCPs, which are climate scenarios describing 

greenhouse gas concentration trajectories based on varying levels of policy ambition, as SSPs were 

developed based on the framework provided by RCPs. Lower RCPs represents stringent mitigation 

scenarios, where greenhouse gas emissions are significantly reduced to keep global temperature rise low 

while in contrast higher RCPs represent the opposite (Meinshausen et al., 2011). The SSP1.26 means 

SSP1 in combination with RCP2.6. Appelt et al. (2023) chooses to incorporate the two most extreme 

SSP scenarios in their research while in many other studies predictions from different SSP scenarios are 

employed. The scenarios are described below with a display of projections (Figure 2). 

SSP1: Sustainability – Taking the green road, (Low challenges to mitigation and adaptation) 

SSP2: Middle of the road, (Medium challenges to mitigation and adaptation) 

SSP3: Regional Rivalry, (High challenges to mitigation and adaptation) 

SSP4: Inequality – A road divided, (Low challenges to mitigation, high challenges to adaptation) 

SSP5: Fossil-fueled development, (High challenges to mitigation, low challenges to adaptation)  

Figure 2: Comparison of SSP Scenario projections (Harrisson, 2021) 
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2.5 Current growing regions of mango trees 
The prevailing climate determines the growing areas of mangoes, which is spread across the world. In 

2021, a global production of 57 million tons of mangoes was harvested. The majority of this production, 

specifically 25 million tons, took place in India (Mango Production by Country, n.d.). As previously 

mentioned, Spain accounts for a minor share in mango production with 40,000 ton (FAO, 2021), which 

is so little that the country doesn't appear on the world map of mango production per country (Figure 3). 

When zooming in on climate zones and latitudes, it can be concluded that mangoes primarily occur in 

tropical and subtropical climates. However, the mango tree can also thrive in Mediterranean climates 

with the provision of irrigated water.  

 

Figure 3: Mango production per country in 2021 in millions (Mango Production by Country, n.d.) 

 
 

2.6 Environmental variables 
There are various environmental variables crucial for the growth of mango trees and its fruits, which 

can be categorized into climate variables and topographic variables (Miller, 2010). Climate variables 

describe the weather conditions such as temperature, and can change due to changes in the climate. On 

the other hand, topographic variables are static relative to the rates of change in climate variables and 

consist of variables specific to a topographic location, such as elevation, slope and soil (Miller, 2010). 

 

The climate variables in this study will mostly be based on the study by Eitzinger et al. (2009) & Akther 

et al. (2017) which studied annual trends, seasonality and extreme or limiting climate factors. However, 

those studies use the mean, max and min of the hottest, coldest, driest and wettest quarter/month which 

is not done in this study because the growing period of mangoes within southern Europe is already 

known and thus environmental values for specific months within the growing process are included. 

 

For the growth process to progress optimally, several variables are crucial based on previous studies 

(Table 4). Certain choices regarding crucial parameters thresholds of variables for mango growth in the 

expert knowledge approach are clarified either because various sources provide conflicting information 

or because these parameters significantly influence the final outcome. According to Van Zile (2022), 

Cavalante (2022) and Bally (2006) other environmental variables like air humidity, hours of sun & 

elevation also play a crucial role in the suitable area for growing mango trees but don’t need extra 

explanation as these variables are less conflicted in multiple sources.   
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2.6.1 Climate variables 
 

Temperature 

Mangoes are originally tropical fruits and thus thrive best under stable, high-temperature conditions. 

However, the fruit is adaptable, with temperature not being the sole critical factor for its growth. 

Intriguingly, a cooler winter, with temperatures between 10-15.7°C, promotes flowering, encourages 

earlier fruiting in younger trees, and supports lower annual growth rates in densely populated plants 

(Zuazo et al., 2021; Núñez-Elisea & Davenport, 1994). Based on the findings of Geetha et al. (2016), 

Carella et al. (2021) & Makhmale et al. (2016), considering varieties similar to those of Osteen, specific 

temperature guidelines for different growth periods are: 

 

First month of flowering (April): Av. Min. temp. of 15°C and an av. Max. temp. of 30°C 

Second month of flowering (May): 17.5°C and 30°C, respectively 

Third month of flowering (June): 21°C and 30°C, respectively 

Rest of growing period (July – September): 23°C and 30°C, respectively 

 

It's also important to note that temperatures rising above 48°C can inhibit mango growth and even kill 

the tree. Besides, it's vital that temperatures do not drop below 0°C, as this can harm the flowers 

(Todorov & Bogsan, 2016).  

 

Degree days 

It is common to indicate the number of degree days of different growth periods of a mango. Growing 

Degree Days (GDDs) represent the accumulated warmth required for a specific organism, like a plant, 

to progress through its life cycle of fruit growth, for which the formula is given (Kanzaria et al.,2015): 

 

GDD = (daily max temp + daily min temp/2)−base temp 

 

However, the number of Degree-Days of mangoes varies by growth stage and growth area. For example, 

Mosqueda-Vázquez et al. (1992) found that 2293 degree-days were needed for fruit maturity to be 

reached with a base temperature of 12 °C degrees, while Ramteke et al. (2022) concludes that 1660 

degree-days were required for fruit maturity to be reached in the case of comparable mango varieties, 

with a base temperature of 10 °C degrees. Moore (2010) concludes between 1600-1800 degree-days for 

fruit maturity to be reached, with a base temperature of 12 °C degrees. The base temperatures are the 

minimum temperatures per growing month as indicated under the variable temperature. Thus, there is 

no correspondence between studies of base temperature and amount of degree-days. A combination of 

studies yielded 1660 degree-days with a base temperature of 12 °C degrees taken for this study. 

 

2.6.2 Topographic variables 

Soil 

The soil plays an important role in mango cultivation and can be segmented into different categories of 

characteristics, each influencing mango growth in a different degree. Because of the extent of this study, 

the soil characteristics of saturation, well-drainage, nutrient availability, nutrient retention, oxygen soil, 

drainage class, carbon organic matter were not included as this can mostly by fixed by artificial 

agriculture. The soil characteristics that can’t be easily changed and are thus taken into account in this 

study are: 

 

- Soil texture: Mango trees are commercially cultivated in loamy sandy soils, which are deemed highly 

suitable (fine surface texture), while sandy loam and sandy clay loam are moderately suitable (medium 

surface texture). Conversely, lowland soils prone to soaking, as well as stony and sandy terrains, should 

be avoided (coarse surface texture)(Todorov & Bogsan, 2016; Salunkhe et al., 2023).  
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- Soil depth: Furthermore, it is essential that the soil is deep enough so that the roots can grow deep and 

thus get enough nutrients from their surroundings. Elsheikh et al (2013) suggests that the depth of 

suitable soil should be at least 75 cm, with preference to more depth to impermeable layers because 

mango trees have deeply rooted roots.  

- Soil erosion: Accelerated soil erosion is a major environmental issue, leading to significant losses of 

soil organic carbon. Mango trees degrade the structure of the soil, reduce its water retention capability, 

decrease soil nutrients, and reduce soil depth, all of which diminish the soil's productivity if the soil is 

susceptible to erosion (Salunkhe et al., 2023). Thus, areas with very weak to weak erodibility soils are 

not suitable for growing mango trees. 

2.6.3 Water component 

One of the main challenges in semi-arid regions is the inconsistency of rainfall, combined with high 

temperatures, resulting in significant water shortages. Currently, in southern Europe, water is already 

being irrigated to mango orchards due to insufficient rainfall during certain periods (Zuazo et al., 2021).  

Water consumption by human populations, agriculture, and ecosystems, cause conflicts over water 

usage, reduced agricultural productivity, and adverse effects on natural habitats (Schlosser et al., 2014). 

This condition, where the demand for water exceeds the available amount, is known as water stress.  

The average water consumption of a mango tree varies by growth period but is generally between 2 and 

3 mm rainfall per day (De Souza et al., 2016; Duran et al., 2019; de Azevedo et al., 2003), which is 

considerably more than what consistently falls in southern Europe. Because mango farms in southern 

Europe are already supplied with water by artificial irrigation, precipitation is not a determining 

environmental factor and because suitable precipitation will only decrease in the future, the necessity 

for artificial irrigation will persist. This leads to the exclusion of precipitation as environmental variable 

in the modelling phase, but the degree of water stress in the region is included afterwards allowing the 

water component to be incorporated into the overall analysis.  
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3. Method 

3.1 Study area  
Currently, mainland Spain, particularly the region of Andalucia, is the area with the largest commercial 

cultivation of mangoes (Zuazo et al., 2019). This is due to the prevailing climate in this region, which 

is characterized as a Mediterranean climate based on the European Köppen Climate Classification 

(Wikipedia contributors, 2023). However, mango cultivation is emerging in other Southern European 

countries. For instance, Italy and Greece are currently experimenting with mango cultivation in Sicily 

and Crete (Jonico, 2021). But also other regions around the Mediterranean Sea possess a similar 

Mediterranean climate as the area of Andalucia. With potential climate changes, it might become 

feasible in the future to cultivate mangoes in other areas with the similar climate zone or perhaps even 

other climate zone. Therefore, as an initial study area, all of Southern European countries with a 

Mediterranean climate were included because it is expected that, due to climate change, areas suitable 

for mango production within these boundaries might be changing. This means that the countries 

Portugal, Spain, Italy, Greece, (southern) France, Croatia, Montenegro and Albania are included as study 

area (Figure 4). France's dividing line is determined by the expectation that no suitable future 

temperature for mango growth will be present above this altitude. Cyprus is excluded because 

information of topographical variables and some climate variables are missing for this area. 

                     Figure 4: Study area of this research  

   

3.2 Workflow 
Within the method, a number of key steps are taken to achieve the desired result (Figure 5): 

• Data collection & description of occurrence locations of mango farms and environmental 

predictor variables  

• Data preprocessing such as aligning spatial resolution, checking multicollinearity and checking 

Spatial autocorrelation (SAC) 

• Combine presence/absence layer and predictor layer in algorithmic and expert knowledge 

approach 

• Evaluate and combine model algorithms parameters 

• Create variables maps of different (future) scenarios 

• Combining variables in total suitability maps of different future scenarios 

• Do a statistical and spatial comparison of the results 
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3.3 Two different approaches 
The scientific literature describes several approaches that appear suitable for this study. To achieve 

reliable results, it has been decided to compare two approaches: one more mechanistic in nature and the 

other correlative in nature (See Chapter 2.3 for an extensive explanation). Uncertainty associated with 

all types of ENM’s has  prompted  calls  for  a comparison  of modelling approaches. Calls  for  more  

comparison  have  been  echoed  by agricultural  impact  modellers,  who  are  concerned  about  bias 

introduced by model-specific representations of key physiological processes (Estes et al., 2013). 

Correlative models have been criticized for their lack of mechanistic  representation  of   abiotic  or  

biotic  interactions while for mechanistic models the necessary physiological information is rarely 

available or trustworthy (Estes et al., 2013). Different correlative algorithms have been selected for 

application because comparisons between algorithms using the same input data can yield highly 

divergent results (Akpoti et al., 2022). The following algorithms were chosen for their excellence in 

handling pseudo-absence data (Table 2): 

Table 2: justification algorithms correlative and mechanistic approach 

Approach Justification of choice 

MaxEnt 

algorithm 

- Highly accurate predictions with small amounts of data (Sillero et al., 2021; Phillips et al., 2006) 

- Superior accuracy and precision compared to other SDM (Ørsted & Ørsted, 2019) 

- Most commonly used in ENM 

GLM 

algorithm 

- Straightforward and logical results that can serve as baseline (Guisan et al., 2002) 

- Widely used in ENM 

BRT 

algorithm 

- Tree based model and thus different than MaxEnt and GLM which serves as a good comparison 

- Most accurate model for climate-based forecasts in SDM (Schatz et al., 2019) 

Expert 

knowlegde 

approach 

- Good by forecasting fundamental niche 

- Check whether current mango cultivation areas are logically located 

- Suitable for comparison with correlative approach 

- Can use more environmental variables 

 

Correlative models use the algorithmic approach to describe the relationship between a response variable 

(e.g., the presence or absence of mango farms) and explanatory variables (e.g., environmental 

conditions) based on observational data. These models predict the distribution of mangoes by assuming 

that observed presence locations are fully suitable and that pseudo-absence locations are not suitable, 

scaling the suitability of other locations between these extremes (Sillero et al., 2021; Elith et al., 2006). 

 

On the other hand, mechanistic models incorporate expert knowledge on physiological and 

morphological data to provide a more detailed understanding of the environmental constraints on species 

distribution (Melo-Merino et al., 2020). Thus in comparison to correlative models the mechanistic 

 Figure 5: Flowchart of key steps in method 
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models integrate expert knowledge to define the physiological limits and requirements of a species in 

relation to environmental variables by settings predefined thresholds for various environmental 

variables. By summing the times an area is deemed suitable according to each variable, the overall 

suitability for mango cultivation can be determined. 

 

3.4 Data collection and description 
To model the predictive distribution of mangoes (dependent variable), ENMs (Ecological Niche 

Models) require two types of input data. The first type is occurrence data, which represents the species 

found within the sampled area. The second type of data essential for ENMs is environmental data 

(independent variables). 

3.4.1 Occurrence data 

Mangoes are already being commercially cultivated in southern Europe in the regions Andalucia, 

Murcia, Sicilia, Calabria, Basilicata & Crete. Most of the production occurs in areas near the coast 

around Malaga and Almeria (Figure 6). 

At present, this information is only broadly available by region, and detailed data on specific mango-

producing areas is scarce. Information from local web pages with manual research on Google Maps and 

contact with mango export companies is combined to pinpoint mango production areas on a high spatial 

resolution (Appendix B, Table 15), which was the most reliable and feasible method for collecting 

occurrence data As a result, it is only known where mango farms are present and knowledge of locations 

where they do not grow is unclear. Thus, the data only consists of presence data and no absence data is 

available, which is taken into account while conducting the ENM algorithms. The location of mango 

farms are shown in figure 6 with a distinction between locations not included as a result of spatial 

autocorrelation (SAC). 

         Figure 6: Locations of mango farms in study area 
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3.4.2 Environmental predictor variables of mangoes 

In the theoretical background, a justification is provided for the chosen environmental variables and  its 

parameters. Table 3 presents an overview of these variables, along with the corresponding parameters, 

references, data sources, selected climate models, temporal resolution, and spatial resolution.  

All datasets have complete geographical coverage as they span across the whole of Europe. When 

combining the datasets a 30 arc-second spatial resolution, commonly referred to as '1-km' resolution, 

was chosen because most variables were available at this scale or could be converted to this resolution. 

Some suitability thresholds of environmental variables change at this resolution, making this accuracy 

essential for mapping out small suitable areas for mango cultivation.  

Within the variables, several key decisions were made that are crucial in creating a suitable area. Based 

on preliminary analysis of two different time periods, it has been determined that a growing season from 

April up to and including September, rather than March up to and including August, is more suitable for 

mangoes in terms of temperature and degree-days across southern Europe. Therefore, the decision was 

made to base the suitability analysis for mango cultivation on data from April through September, as 

these months are most conducive to mango growth.  

Additionally, for the expert knowledge approach, the hours of sun were determined by the average 

monthly cloud cover during the growing period from April through September . The average day length 

in southern Europe is 13,8 hours, which implies that the maximum cloud cover is 5,8 hours per day if 

the hours of sun should  be above 8 hours (Calculated from; Times for sunrise and sunset in Spain, 

(n.d.)). If this is proportionally recalculated to a 24-hour period, assuming an equal distribution of cloud 

cover between day and night, the maximum cloud cover is 10 hours (42%).  Slope steepness was 

excluded because, despite its significance for mango growth, it was too complex and imprecise to 

convert to a 1-km resolution. 

3.4.3 Climate change models 

Ten suitable GCMs (Global Climate Change models) were satisfactory for predicting the climate factor 

temperature in the Mediterranean based on a conducted performance-based CMIP6 model assessment 

for each region of Europe by Palmer et al., (2022). Out of the ten suitable GCMs, four of them were 

shown, downscaled, and calibrated by WorldClim v2.1 as baseline climate data (Table 4*). These four 

GCMs were selected for inclusion in this study due to the ease of data extraction and the reliability and 

completeness of the data provided by WorldClim. The current and future water availability is based on 

the data of the organisation Aqueduct, which predicts the impacts of climate change based on an average 

of five GCMs (Table 4**). As for air humidity and cloud cover, there is only one GCM completely 

available for the time period and horizontal resolution of this study, being HadGEM3-GC31-LL. 

The values were averages over three future periods including 2030: 2021-2040, 2050: 2041-2060, and 

2070; 2061-2080. 

As narratives, the SSPs 1 and SSP 5 were chosen to be included because future socio-economic 

development is uncertain and outcomes between these scenarios differ significantly. These SSP 

narratives are paired with the extreme low-emission RCP 2.6 and high-emission RCP 8.5 scenarios, 

forming the combinations SSP1.26 and SSP5.85. By selecting these two extremes, this study allows for 

the assessment of the impacts of both low and high-end climate outcomes on mango cultivation, 

providing a robust analysis of potential future conditions. 
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Table 3:  Environmental parameter variables information 

*= CMCC-ESM2, GISS-E2-1-G, HadGEM3-GC31-LL, MRI-ESM2-0 

** = GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL 

*** = Used after running approaches 
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 3.5 Data Preprocessing 
Once the data is collected and checked 

for correctness, it must be prepared for 

processing in a model (Figure 7). To 

examine whether the Environmental 

Niche Model can predict the suitable 

areas correctly when using presence-only 

data two types of input data are needed 

for the model: occurrence data of mango 

farms and relevant environmental 

predictor variables. This raw data 

requires several adjustments before it can 

be incorporated into the model. These 

steps are explained in the following 

paragraphs. 

 

 

3.5.1 Preprocessing of occurrence data  

SAC 

Spatial autocorrelation problems (SAC) can be defined as the fact that things being close-by are more 

related to each other than things that are further away (Tobler, 1970). SAC is able to amplify the 

significance of correlations between environmental and occurrence data when non-spatial models are 

used (Mauricio Bini et al., 2009). In order to avoid developing inaccurate models that lead to false 

conclusions about how environmental variables affect species distribution, SAC should be reduced. 

Checking for SAC is done by assessing the value of Moran’s I from the auto covariate spatial regression  

with the ‘Spatial autocorrelation’ tool in ArcGIS Pro based on degree days as a variable (Dormann et 

al., 2007).  

 

The analysis yielded a Moran's Index suggesting that the spatial distribution of the dataset is not 

significantly different from random (Appendix C.1, Figure 29). However, the Average Nearest 

Neighbour analysis revealed a different aspect of spatial structure, indicating a tendency towards 

clustering of the points (Appendix C.1, Figure 30). 

 

To reduce the clustering in the presence points and thereby minimize the spatial autocorrelation in the 

explanatory variables used in the modelling, occurrence points within a 10-kilometer radius were 

removed. The nearest neighbour analysis after this adjustment yielded a significant result suggesting a 

tendency towards a random distribution of points (Appendix C.1, Figure 31). Consequently, the cluster 

of points in southern Spain was greatly reduced, making this area less dominant in the model (Figure 6). 

This adjustment left 17 presence points. 

 

Creating pseudo-absence 

Barbet-Massin et al., (2012) suggest the use of randomly selected pseudo-absences across space, as this 

approach consistently yields the highest accuracy for each algorithm. Moreover, they conclude that the 

recommended number of pseudo-absences and presence points varies per algorithm. In cases with few 

presence points, in this case only 17, it is advised to generate fewer pseudo-absences for BRT, while for 

GLM and MaxEnt, a higher number of pseudo-absences is recommended (Barbet-Massin et al., 2012). 

However, it is also stated that this varies by model and doesn’t have such a big impact the result (Čengić 

et al., 2020; Lobo & Tognelli., 2011).  

 

Figure 7: Flowchart of data preprocessing  
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The ratio between presences and (pseudo)absences determines the optimal threshold above which 

predicted probabilities can be considered as suitable for a modelled species, which can be estimated 

making use of various quality indicators. Various models were created with pseudo-absence numbers of 

170 (x10), 1700 (x100), and 10,000. It was found that for GLM and BRT, 170 pseudo-absence points 

provide the most accurate result, while for MaxEnt, 1700 pseudo-absences points are optimal (Appendix 

D.2, Table 16). To improve the distribution across space, a minimum distance of 500 meters was 

maintained between points. Additionally, two random distributions of pseudo-absences were used to 

train the models, thereby reducing uncertainty and improving the robustness of the model. 

 

3.5.2 Preprocessing of environmental variable data 

Excluding precipitation 

The preliminary analysis of climate and topographic variables reveals that precipitation in areas where 

current mango farms are located do not align with the minimum precipitation required for mango growth 

of generally 2 and 3 mm per day (De Souza et al., 2016; Duran et al., 2019; de Azevedo et al., 

2003)(Figure 8). Since precipitation is not expected to significantly increase in future climate 

projections, mango will continue to be an irrigated-fed crop (Maselli et al., 2020). Therefore, 

precipitation is not a variable to include when predicting suitable mango cultivation areas with 

environmental variables.  

 

Figure 8 : (un)suitable mango cultivation area’s based on precipitation during fruit setting stage 

 

 

Multicollinearity   

To avoid that multicollinearity, inter-correlations between predictor variables (Daoud, 2019), affects the 

accuracy of estimating variable contributions, pairwise correlations with the Pearsons coefficient area 

assessed (Table 4). Correlations exhibiting a Pearson coefficient of 0.75 or higher are classified as high 

to very high, leading to the exclusion of environmental variables exceeding this threshold, while 

prioritizing the retention of the most pivotal variables for model input. From an initial set of 14 variables, 

5 were selected for incorporation into the algorithmic approach, based on their lack of significant 

intercorrelation. The decision to prefer "degree days" over other temperature variables was informed by 

its integrative measure of temperature variables, thereby indirectly encapsulating these individual 

temperature variables within the algorithmic approach. Air humidity and cloud cover were deemed more 

critical than minimum and maximum temperature readings, given that temperature is already 

represented within the model.  Although soil erosion did not significantly correlate with other variables, 

the ratio of categorical variable with the quantity of presence points yielded unreliable results as not all 

categories could be included as a result of the low presence points. Consequently, this least important 

soil variable was omitted in the algorithm approach. 
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The remaining five variables were evaluated for variance inflation factor (VIF). No VIF values of 5 or 

higher, which indicate high correlation (Senthilnathan, 2019), were observed, validating their inclusion 

as predictor variables in the model (Table 5). 

 

 Table 5: VIF coefficients of left over variables 

Environmental predictor variables VIF 

Air humidity growing season 2.5 

Cloud cover growing season 3.0 

Soil depth  1.0 

Soil texture 1.0 

Degree days growing season 1.9 

 

Aligning spatial resolution 

Creating a consistent spatial resolution across different variable layers is a critical step to compare the 

suitability of area’s and to serve as eligible input for the ENM. This process involves resampling to 

ensure that all layers have the same cell size, which is essential for accurate comparison and a 

combination of data layers (Long & Lawrence, 2016). The chosen spatial resolution of 1 km is taken as 

this aligns with the research objective where the difference of some environmental parameters is visible 

on a 1 km scale. All variables are available at this scale with the exception of air humidity (12,5 km) 

and cloud cover(12,5 km), thus air humidity and cloud cover were scaled to a spatial resolution of 1 km 

in ArcGIS Pro by overlaying them with temperature layers and resampling by bilinear interpolation 

technique. 

 

Preparing for modelling software 

To make sure that all input data can be used for modelling in Rstudio, the generated presence/absence 

layer and their subsets for evaluation are exported to CSV files and all environmental predictor variables 

are exported to ascii files. The biomod2 package is used as an ensemble platform for the environmental 

niche models, where algorithms such as GLM and BRT can be selected as options. The MaxEnt software 

of Phillips (2006) is used as a platform for MaxEnt as environmental niche model. 

 

3.6 Suitability thresholds 
After combining the algorithms and getting maps with probability and suitability scores, the threshold 

value for the suitable area of mango farms is determined. A distinction is made between four groups as 

is done in other relevant studies, such as Ramirez-Cabral et al. (2016) & Akhter et al. (2017) (Table 9). 

3.6.1 Expert knowledge approach 

For an area to be considered highly suitable, all variables must be suitable. For an area to be merely 

suitable, it may fail to meet the criteria for one of the following variables: temperature in April, 

temperature in May, temperature in June, Elevation, or Soil erosion, as these are deemed the least 

                                         Table 4: Pearson correlation coefficients (>0,75 in red; green variables as input for algorithmic approach) 

 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. Air humidity growing season 1 0,74345 0,25357 -0,13863 -0,19395 -0,06535 -0,63767 -0,53958 -0,53885 -0,51772 -0,62746 -0,68671 -0,787 -0,42451

2. Cloud cover growing season 0,74345 1 0,38702 -0,12913 -0,15771 -0,07926 -0,7451 -0,61004 -0,654 -0,66465 -0,75018 -0,78889 -0,77708 -0,57369

3. Elevation 0,25357 0,38702 1 -0,1601 -0,20559 0,0141 -0,81562 -0,77949 -0,86964 -0,8734 -0,79525 -0,75181 -0,57986 -0,83649

4. Soil depth -0,13863 -0,12913 -0,1601 1 0,05174 0,06253 0,17564 0,09058 0,15945 0,18975 0,1928 0,16349 0,15464 0,10505

5. Soil erosion -0,19395 -0,15771 -0,20559 0,05174 1 -0,23894 0,20878 0,16711 0,20533 0,21559 0,20689 0,1997 0,17926 0,17078

6. Soil texture -0,06535 -0,07926 0,0141 0,06253 -0,23894 1 0,08024 0,05934 0,049 0,05065 0,07388 0,09909 0,14 0,00689

7. Degree days growing season -0,63767 -0,7451 -0,81562 0,17564 0,20878 0,08024 1 0,87914 0,95338 0,96458 0,98115 0,99194 0,89989 0,87056

8. Av. Temp. Before growing season -0,53958 -0,61004 -0,77949 0,09058 0,16711 0,05934 0,87914 1 0,94598 0,86259 0,84261 0,86831 0,75827 0,94803

9. Av. Temp. April -0,53885 -0,654 -0,86964 0,15945 0,20533 0,049 0,95338 0,94598 1 0,97468 0,95032 0,92438 0,81765 0,92881

10. Av. Temp. Fruit growth stage -0,51772 -0,66465 -0,8734 0,18975 0,21559 0,05065 0,96458 0,86259 0,97468 1 0,98087 0,93326 0,83035 0,87119

11. Av. Temp. June -0,62746 -0,75018 -0,79525 0,1928 0,20689 0,07388 0,98115 0,84261 0,95032 0,98087 1 0,96942 0,90349 0,83617

12. Av. Temp. May -0,68671 -0,78889 -0,75181 0,16349 0,1997 0,09909 0,99194 0,86831 0,92438 0,93326 0,96942 1 0,92778 0,84278

13. Annual Maximum Temp. -0,787 -0,77708 -0,57986 0,15464 0,17926 0,14 0,89989 0,75827 0,81765 0,83035 0,90349 0,92778 1 0,66202

14. Annual Mininimum Temp. -0,42451 -0,57369 -0,83649 0,10505 0,17078 0,00689 0,87056 0,94803 0,92881 0,87119 0,83617 0,84278 0,66202 1
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important (Table 10). Thus, even if these variables are not fully satisfactory, a mango farm may still be 

feasible.  

3.6.2 Algorithmic approach 

As output, the combination of models provide a average probability score ranging from 0 to 100, with 

higher values indicating a greater likelihood of species presence in the area. These values should be 

interpreted as a relative measure of suitability within the study area, rather than an absolute probability 

of presence. To identify suitable areas for mango farms, the 10th percentile training presence (TPTP) 

threshold method was utilized. The 10 Percentile Training Presence employs the suitability threshold 

associated with the presence record situated at the 10th percentile of presence records, meaning it uses 

the suitability score below which 10% of presence records' suitability’s fall (Morrow, 2019).  

Anticipating that mango farmers may have initiated mango farms in areas not yet fully suitable with a 

future perspective in mind, the threshold was adjusted to the 25th percentile training presences. This 

adjustment implies that among 17 farmers, 4 are situated in 'unsuitable' locations—a rise from 2 

compared to 10% of presence records, due to the forward-looking vision of farmers and somewhat 

outdated data of between 2000 and 2017. Seventy-five percent of the mango farms fall within areas 

categorized as suitable, resulting in a sensitivity of 75% with this approach. 

3.7 Evaluation of algorithms 
ENMs are capable of delineating regions either as within or outside the species distribution range (Liu 

et al., 2009). Prior to interpreting the results produced by ENMs, it is imperative to rigorously evaluate 

the model's robustness. Pearce and Ferrier (2000) contend that the critical metric for assessing the 

efficacy of ENMs, particularly in binary outputs, is the model's capacity for discrimination. This 

involves gauging the model's proficiency in differentiating between locales with confirmed species 

presence and those with verified absence, utilizing an evaluation dataset.  

To assess the efficacy of various models, two evaluation methods have been used: the Area Under the 

Receiver Operating Characteristic Curve (AUC) and the True Skill Statistic (TSS), both of which are 

extensively applied in Environmental Niche Modelling for assessing overall accuracy (ENM) (Liu et 

al., 2011; Jiménez-Valverde, 2012). The previously favoured kappa statistic over TSS was not adopted 

as a performance evaluation method due to its inherent dependency on prevalence, a characteristic which 

is argued to introduce statistical artifacts into estimates of predictive accuracy (Allouche et al., 2006). 

Additional evaluation metrics that ascertain the model's reliability and accuracy, such as specificity and 

sensitivity, are summarized in table 6. 

The performance of the GLM and BRT models was tested in two ways, via the output of the Biomod2 

package and the presenceabsence package. The biomod2 package did not provide complete metrics for 

model performance and these were supplemented with values from the presenceabsence package which 

also included a possibility to change the established thresholds for a ratio of sensitivity and specificity 

on which to base the (un)suitable area. 

Beyond these indices, ENMs can also be evaluated through an analysis of how alterations in input 

variable values impact the model's output. This is achieved via Uncertainty Analysis (UA), a method 

for quantifying the uncertainty in ENM outputs as a function of input variability (Uusitalo et al., 2015). 

A sensitivity analysis is done by varying input parameters while observing the resulting changes in the 

model's output behaviour to assess the robustness and sensitivity of the model to different inputs 

(Convertino et al., 2014). 
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Table 6:   Explanation of evaluation metrics (Allouche et al., 2006; Liu et al., 2009; Pearce and Ferrier, 2000) 

Sensitivity Percentage of  records that was correctly predicted to be suitable from all records that were 

known to be suitable 

Specificity Percentage of records that was correctly predicted to be unsuitable from all records that were 

known to be unsuitable 

TSS The ability to accurately predict both presence and absence points is measured by the sum of 

sensitivity and specificity, which is then rescaled between -1 and 1. 

ROC Receiver Operating Characteristic (ROC) curves are constructed by using all possible thresholds 

to classify the scores into confusion matrices, obtaining sensitivity and specificity for each 

matrix, and then plotting sensitivity against the corresponding proportion of false positives (equal 

to 1 − specificity) 

AUC The area under the ROC curve.  Measures the probability that the model will assign a higher 

score to a randomly chosen presence location over an absence location 

 

The development of a model involves the utilization of both training data and test data by segmenting 

the available data into these two categories. Training data facilitates the model's learning of the 

relationship between species presence and environmental factors, whereas test data gauges the model's 

predictive accuracy (Fielding & Bell, 1997). Test data, being separate from what is presented during the 

model's training phase, aids in evaluating the model's capability to extrapolate its learned patterns to 

unfamiliar areas and/or environmental conditions. This validation ensures the model’s reliability and its 

applicability to real-world scenarios. Conversely, fine-tuning the model based on training data, a process 

known as calibration, enhances its accuracy (Trucano et al., 2006). 

By ensembling 10 runs for each algorithm, a reliable accuracy is achieved through averaging these 

results, thereby reducing uncertainty. This approach ensures that areas identified as highly probable in 

all models maintain this status in the consolidated outcome. Consequently, a decision was made to 

evenly combine the three models as spatial patterns vary within these models, including the strengths of 

all algorithms. Akpoti et al. (2022) assert that the integration of different algorithms can yield a 

dependable result, validating this methodological choice for achieving comprehensive and accurate 

predictions.  

 

3.8 Variable importance of expert knowledge approach 
Some variables are more important than others as a result of a bigger impact on the growing area of 

mango trees. The algorithmic approach determines the variable importance by calculations of 

significance and improvement of the model while in the expert knowledge approach variable importance 

is based on scientific literature and the outcome of the algorithmic approach. Since the variable 

importance for the algorithmic approach is derived from the algorithms' outputs, it is detailed in the 

results chapter. 

 

The two mostly used variables in similar studies, and thus regarded as the most important variables, are 

temperature and water availability. Water is manually irrigated to mangoes and is thus not considered 

an environmental factor. Given the many variables related to temperature and its status as the most 

important explanatory variable, it contributes to 60% of the total. Degree-days, an aggregate of 

temperature variables, is considered the most reliable variable and thus carries the most weight. 
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The remaining variables consist of soil quality, elevation, cloud cover, and air humidity. Based on the 

variable importance ratio from the algorithmic approach, air humidity is slightly higher weighted than 

cloud cover. Among soil variables, the importance seems to be ranked as Soil depth = soil texture > soil 

erosion. Elevation is the least important because it is an indirect variable that also depends on 

temperature. 

Despite some variables correlating, they can still indicate different suitable growth areas for mango 

trees. For instance, temperatures in April and May correlate, but it's possible for a location to be suitable 

for mango growth in April and not in May. Hence, all variables were included in the expert approach, 

unlike the algorithmic approach (Table 7). 

To test the sensitivity of the model to different variable inputs, an equal weight distribution was 

established (Table 7). By comparing the effects of using equal weights versus weights based on expert 

knowledge, it can be assessed how sensitive the model is to variations in the weighting of different 

variables. Differences in results between these two approaches can reveal the impact of weighting 

choices on the model's outcomes. Using two different weighting schemes tests the model's robustness 

and highlights the influence of variable importance on the suitability analysis. 

Table 7: Weight of variables for expert knowledge approach 

Variable Equal 

weights 

Own 

weights 

Min. temp. 7,14 6 

Max. temp 7,14 6 

Temp. Before growing season (Jan-March) 7,14 9 

Temp. April 7,14 5 

Temp. May 7,14 5 

Temp. June 7,14 5 

Temp. Fruit growth stage (July-Sep) 7,14 7 

Degree days growing season (April - Sep) 7,14 15 

Air humidity growing season (April - Sep) 7,14 12 

Cloud cover growing season (April - Sep) 7,14 10 

Elevation 7,14 2 

Soil erosion 7,14 4 

Soil texture 7,14 7 

Soil depth 7,14 7 

Total 100 100 
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4. Results 
In this results chapter, the evaluation metrics of the algorithms are interpreted, followed by output of 

variable importance of the algorithmic approach  and a depiction of variable response plots for each 

algorithm. Following this, the expansion of the mango growing area was quantified, and the current 

suitable mango growing areas in southern Europe were visualized on a map, addressing guiding question 

3 "Which areas in the southern Europe are currently suitable for growing mangoes?". This is 

supplemented with a spatial representation of change for both approaches and scenarios. Thus, guiding 

question 4 "Under different climate scenarios, how would suitable areas for mango growth in southern 

Europe expand or contract in the future?" was addressed. Following this, the water component was 

added to the analysis, thereby addressing guiding question 5: " To what extent is water stress a factor in 

an environmentally suitable area for mangoes?". The Lambert Azimuthal Equal Area projection was 

chosen as the projected coordinate system because it accurately represents the size of areas in Europe. 

 

4.1 Evaluation of algorithms 
The various evaluation metrics are employed to calibrate and validate the model, ensuring optimal 

settings are established (Appendix D.1). This process included testing for differences between the 

number of pseudo-absences, percentage of data split and other algorithm settings (Appendix D.2, Table 

16). A 50/50 split between training and test data resulted in failure due to an inadequate number of 

presence points; thus, calibrations were made using 70/30 and 90/10 ratios. The algorithms did not 

assign different weights to the response data (e.g., presence or absence of mango farms) based on their 

importance. The Generalized Linear Model (GLM) was set to perform 20 runs, while Boosted 

Regression Trees (BRT) and Maximum Entropy (MaxEnt) were limited to 10 runs, as these algorithms 

demand more computational power. The top 10 GLM runs, based on the True Skill Statistic (TSS) value, 

were selected to determine the predicted area for mango growth, in conjunction with the 10 runs from 

BRT and MaxEnt (Table 8). 

According to Swets (1988), AUC values greater than 0.8 indicate high model accuracy. This criterion 

has been met by all algorithms, with AUC values minimally above 0.84 for test data. True Skill Statistic 

(TSS) values greater than 0.5 indicate good model performance, distinguishing between presence and 

absence locations (Sambou et al., 2024), while values above 0.65 signify very good performance. 

Consequently, all models demonstrate excellent calibration. The combination of algorithms on which 

the final result is based has a very good performance at the taken threshold of 0.75, based on the 25the 

percentile threshold rule. 

Within the biomodpackage, no distinction can be made between the sensitivity and specifiticy of 

calibration and validation and so the total values for this were taken. Because the areas observed as 

unsuitable should mostly be classified as unsuitable, to test the performance a higher threshold than the 

optimal threshold is taken so that the specificity score is higher and no large areas in Europe are 

classified as suitable.  

A lower validation TSS value for the GLM algorithm suggests diminished performance in new 

scenarios, such as those involving changing climates. This discrepancy can result from various factors, 

including an imbalance between Specificity and Sensitivity, leading to more false positives than false 

negatives, or generally low values for both metrics. This phenomenon is common in models with limited 

presence points and has been mitigated by reducing the number of (pseudo) absence points. While this 

difference is manageable, it should be considered when interpreting results.  On the other hand, the high 

scores for specificity, combined with the less good scores off sensitivity the, suggest that the model may 

be overfitted as a result of low observationpoints. 
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Table 8: overview of evaluation metrics per algorithm 

* Calculated with the presenceabsencepackage in R 

** Except for the total of GLM runs 

*** Calculated with caretpackage in R 

4.2. Variable importance of algorithmic approach 
The relative variable importance scores from various algorithms have been normalized to sum up to 100 

for simpler interpretation (Grömping, 2009). In the context of algorithms variable importance refers to 

the measure of the relative contribution or influence of individual predictor variables on the model's 

predictive performance. The weighting of variables for the expert knowledge approach was determined 

in advance and is described in the methods chapter. 

 

Degree days is the variable which contributes most significantly by determining the distribution of 

mangoes, rendering temperature, according to the models, the most crucial variable (Table 9). Notably, 

within both BRT and MaxEnt algorithms, the importance of degree days is almost entirely explanatory 

for the location of mango farms, especially in BRT where it accounts for 94% of the total. In the GLM 

algorithm, while degree days remain the most significant variable, its relative importance is less 

dominant compared to the other algorithms. Air humidity, the second most important variable, is 

considerably less determinative for the distribution of mangoes and, similar to other variables, will have 

a lesser impact on predicting suitable mango areas in the future compared to degree days. It is observed 

that topographical variables such as soil texture and soil depth possess a very low explanatory power.  

 
               Table 9: Relative importance of environmental variables in algorithmic approach (normalized to sum 100%) 

  

 
GLM                     Best of GLM BRT MaxEnt Combi of all 

algorithms** 

Number of runs 20 10 10 10 x 

% of test data 10 10 30 20 x 

number of PA 170 170 170 1700 x 
 

Calibration Validation Calibration Validation Calibration Validation Calibration Validation     Totaldataset 

Sensitivity 1 x 0,85* 0,76* 1*** 0,75*** 0,71* 

Specificity 0,97 x 0,95* 0,93* 0,71*** 1*** 0,97* 

TSS 0,95 0,58 0,93 0,76 0,92 0,69 0,75*** 0,71*** 0,68* 

AUC 0,98 0,86 0,97 0,95 0,98 0,87 0,97*** 0,94*** 0,97* 

Taken Threshold 0,58 0,50 0,50 0,6 0,6 0,75* 

     GLM BRT MaxEnt Average 

Degree days 40,9 94,0 75,7 69,6 

Air humidity 24,7 2,0 18,7 14,5 

Cloud cover 20,9 1,0 0,9 7,4 

Soil texture 11,1 3,0 3,6 6,9 

Soil depth 2,4 0,0 1,0 1,6 
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4.3 Response curves 
The environmental predictor response curves of the probability occurrence of mangofarms are different 

per algorithm (Figure 9). In each box the curves of the ten model runs for BRT and MaxEnt, and twenty 

model runs for GLM, are shown for each variable. The visuals of the response plots look different for 

MaxEnt as this is done in the MaxEnt software (Phillips, 2006) and GLM and BRT response plots are 

created in biomod2 using ‘bm_PlotResponseCurves’ function.  

For GLM and BRT, the response curves illustrate the variation in the predicted probability of presence 

as each environmental variable changes, while all other variables are held constant at their average 

values. This analysis reveals the model's sensitivity to specific variables without considering the 

interactions between them. Conversely, the response plots from MaxEnt models account for the 

dependency of predicted suitability not only on the selected variable but also on the correlations between 

the selected variable and others. The y-axis denotes the probability of occurrence (0 being not suitable, 

1 being highly suitable), and the x-axis displays the range of environmental variable values, for example, 

cloud cover ranging from 0 to 70. 

The response plots indicate considerable variability in variable values and predicted probabilities across 

different algorithms. A commonality among the three algorithms is a significant increase in the predicted 

probability for degree days, starting at approximately 1500, followed by a slight unexpected decrease 

observed in the MaxEnt plots which is uncertain as shown by the blue area. This consistent pattern of 

degree-days reinforces the result, as this variable also has the highest relative importance. 

Overall, MaxEnt aligns most closely with the anticipated pattern between environmental variables and 

suitable areas for mango farms based on expert knowledge. Furthermore, low cloud cover, relative air 

humidity around 70%, and soil depth greater than 70 cm are associated with higher predicted 

probabilities for mango farms. Notably, soil with a medium/fine texture (3) is more suitable for mango 

farms than fine texture (5). Categories 0 and 9, representing cells without information, were included to 

avoid excluding a large area within southern Europe. 

In the BRT algorithm, variables other than degree days show little differentiation in predicted 

probabilities for mango farms across high and low values, aligning with expectations derived from the 

variable importance ratios. A slight increase in predicted probability is observed with low cloud cover 

and high air humidity, as well as with fine soil texture. 

The GLM algorithm exhibits greater variability in predicted probabilities across variables. The patterns 

of response curves of degree days and cloud cover match the expected pattern of the expert knowledge 

and patterns of other algorithms, however, the air humidity response curves are opposite to the MaxEnt 

output, namely high air humidity is suitable for mango growth. Response curves with a difference within 

the algorithm indicate a less robust estimation of their true contribution, and these variables therefore 

provide less insight. In GLM and BRT, categories are assigned values ranging from 1 to 7, and it may 

appear as though these values continuously transition between categories. However, this is not the case 

as the specific value associated with each category number must be considered. 
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4.4 Suitability thresholds 
In the expert knowledge approach for an area to be considered highly suitable, all variables must be 

suitable. An area is designated in the algorithmic approach  as suitable if its predicted probability 

exceeds 75, as per the threshold method utilized (Table 10).  

Table 10: Suitability scales based on probability of occurrences 

Suitability 

category 

Exp. Knowledge approach 

(value of suitability) 

Algorithmic approach (value of 

occurrence probability) 
Highly unsuitable 0-79 0-37 

Unsuitable 80-94 38-74 

Suitable 95-99 75-84 

Highly suitable   100 85-100 

 

 

Figure 9: Response curves of algorithms 

 

BRT GLM MaxEnt 
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4.5 Trend comparison of suitable areas & approaches 
 

Figure 10 illustrates the total suitability across different years and scenarios within the two approaches 

based on a suitability threshold above 0.95 for the expert knowledge approach and a probability 

exceeding 755 out of 1000 for the algorithmic approach. A breakdown of various suitability levels is 

provided in Table 9.  

 

In the current situation of the expert knowledge approach 3.74% (75,613 km² out of 2,016,812 km²) of 

southern Europe is deemed suitable for mango farms, while only 0.8% (15,278 km² out of 2,018,320 

km²) of southern Europe is deemed suitable for mango farms in the algorithmic approach. There is a 

significant increase of future suitable area for mango farms in southern Europe (Figure 10). Notably, the 

total suitable area in the SSP1 scenario for the expert knowledge approach increases more sharply than 

in the SSP5 scenario. This difference is largely attributable to the substantial drop in suitable air 

humidity in the inland of Spain and Italy in SSP5, rendering these areas unsuitable for mango cultivation, 

a trend less pronounced in SSP1 (Figures 19 & 20). An interesting observation is a higher percentage of 

highly suitable areas in the SSP5 scenario, which contrasts with the ratio of total suitability (Appendix 

D.1). In the SSP5 scenario, there are more highly suitable areas but fewer moderately suitable areas 

compared to the SSP1 scenario. 

 

The algorithm approach identifies fewer suitable areas in the current scenario, and although it shows a 

relatively larger increase compared to the expert knowledge approach, it predicts fewer suitable areas 

for mango growth in future scenarios (Figure 10). Notably, the SSP1 scenario in 2070 has more suitable 

areas than the SSP5 scenario for both the expert knowledge approach and the algorithm approach. The 

ratio between the approaches in 2030 for both the SSP1 and SSP5 scenarios appears similar. The trend, 

however, differs between the approaches. While the area of both scenarios in the expert knowledge 

approach increases significantly, it does not in the algorithm approach and even decreases from 2050 to 

2070.  

A significant increase in the algorithmic approach SSP5 scenario in 2050 seems attributable to Northern 

Greece being suitable in terms of air humidity, which is not the case in 2070 SSP5 and SSP1 and 2050 

SSP1 scenarios (Figures 19 & 20). This pattern can largely be explained by the GLM algorithm 

identifying this area as highly suitable. 

 

Figure 10: Change of suitability per scenario over different years  
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An unexpected pattern at the algorithmic approach is the decrease in suitable area in both scenario’s in 

2070 compared to 2050, with the SSP5 scenario even having fewer suitable areas in 2070 than the SSP1 

scenario (Figure 10). The stronger rise can be attributed to the high importance of temperature, which 

on average increases more in the SSP5 scenario. The decline in 2070 seems to be due to a drop in air 

humidity in inland areas of Spain and Italy, causing these values to fall below the suitability threshold 

determined by the algorithms (Figure 19 & 20). This also explains why the SSP1 scenario has more 

suitable areas in 2070, as air humidity in inland areas decreases less in this scenario.  

4.6 Spatial comparison of suitable area 

4.6.1 Current situation 

Due to the different methodologies used by both approaches regarding probability scores and suitability 

scores, the maps may display different colour patterns and categories. However, they can still be 

compared by stating that a probability of >75% and a suitability score of >0.95 are considered suitable. 

It is observed that in the current situation for both approaches, suitable land for mango cultivation is 

already available, particularly in the south of Spain, along the coastal areas of Sicily, and the toe regions 

of Italy (Figures 11 & 12). Additionally, many Greek islands are highly suitable for mango growth. The 

expert knowledge approach classifies the southern inland of Spain as suitable, while the algorithmic 

approach does not and generally classifies fewer areas as suitable. For detailed maps per scenario and 

future years, refer to Appendix E.2 & E.3. 

Figure 11: Current suitability for mango cultivation (based on expert knowledge approach) 

Figure 12: Current suitability for mango cultivation (based on algorithmic approach) 
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4.6.2 Current vs 2050 

Expert knowledge approach  

The current suitable areas expand by 2030 into central Spain, and more Greek islands become suitable 

for mango cultivation. There is little distinction between the SSP1 and SSP5 scenarios in 2030 (Table 

11). Generally, a spatial pattern of higher suitability in coastal regions is evident. This trend continues 

in both scenarios by 2050, with mostly an expansion of current suitable areas along the coastlines (Figure 

13). By examining the green areas, one can observe which areas remain suitable, with many of the same 

areas remaining suitable in both scenarios, with a few exceptions. The blue colour indicates the 

expansion of suitable areas, and here a significant difference is visible. Although many areas in both 

scenarios are suitable (dark blue), the SSP1 scenario indicates many new suitable areas in the 

southeastern inland of Spain, while the SSP5 scenario deems a valley area below the Pyrenees and 

scattered areas in Greece as suitable. 

 

           Figure 13: Change of suitability between current situation & 2050 (based on exp. knowledge approach) 

 
   Table 11: Change of suitability between current situation & 2050 in numbers (based on exp. knowledge approach) 

 

Suitability category  km² % of total  

Not suitable 1.716.785 85,12 

Currently suitable 2.705 0,13 

Suitability retained SSP5 7.852 0,39 

Suitability retained SSP1 8.062 0,40 

Suitability retained both 56.275 2,79 

Novel suitability SSP5 49.696 2,46 

Novel suitability SSP1 76.100 3,77 

Novel suitability both 99.341 4,93 

Total 2.016.816 100 
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Algorithmic approach 

Similar to the expert knowledge approach, the algorithmic approach also indicates a gradual expansion 

of suitable mango areas in 2050, continuing the steady trend observed in 2030 (Appendix E.3). In the 

current situation, only a few areas are suitable, and most of these areas remain suitable, with exceptions 

including the area around Malaga, the coastline of the toe of Italy, and the southernmost islands of 

Greece (Figure 14). Although there is little difference in suitable areas between the scenarios in 2030, 

this difference becomes apparent in 2050 (Table 12). The SSP5 scenario classifies the coastline in the 

middle of Italy, Northern Greece, and further inland areas of Spain as suitable compared to the SSP1 

scenario. This is largely due to the higher rise of temperature in the SSP5 scenario. 

         Figure 14: Change of suitability between current situation & 2050 (based on algorithmic approach) 
 

Table 12: Change of suitability between current situation & 2050 in numbers (based on algorithmic approach) 

 

Suitability category  km² % of total  

Not suitable 1.860.865 92,23 

Currently suitable 2.285 0,11 

Suitability retained SSP5 694 0,03 

Suitability retained SSP1 233 0,01 

Suitability retained both 11.625 0,58 

Novel suitability SSP5 83.698 4,15 

Novel suitability SSP1 0 0,00 

Novel suitability both 58.248 2,89 

Total 2.017.648 100 
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4.6.3 2050 vs 2070 

Expert knowledge approach 

From 2050 onwards, a different trend emerges compared to the steady trend observed from the current 

situation to 2030 and 2050. In the predicted scenarios of 2070, the suitable area for mango cultivation 

generally expands, but the suitable regions change significantly in both scenarios (Figures 15, 16 & 

Table 13). Central Spain becomes less suitable due to low air humidity in both scenarios, more 

pronounced in the SSP5 scenario. As a result, inland areas are more suitable in the SSP1 scenario. 

 

    Figure 15: Change of suitability for mango cultivation between 2050 & 2070 SSP1 scenario (based on exp. knowledge approach) 

 

 

Table 13: Change of suitability for mango cultivation between 2050 & 2070 in numbers scenario (based on exp. knowledge 

approach) 

 

Suitability category (Exp. knowledge approach) SSP1 (%) SSP5 (%) 

Not suitable 77,7 82,7 

2050 suitable 10,4 6,7 

2070 suitable 3,4 4,9 

Both suitable 8,5 5,6 

Total 100,0 100,0 
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Figure 16: Change of suitability for mango cultivation between 2050 & 2070 SSP5 scenario (based on exp. knowledge approach) 

 
 

Algorithmic approach 

In 2070, the number of areas with suitability drastically decreases in the SSP5 scenario compared to 

2050 (Table 14), leaving only a narrow coastal strip in the south and west of Spain, the west of Portugal, 

the south of France, and the southern coastal areas of Italy and the western coastal regions of Greece as 

suitable (Figure 18). There are a few areas that remain suitable, mostly along the coast, and the islands 

of Ibiza, Mallorca, and Menorca are highly suitable for mango cultivation in the SSP5 scenario. In the 

SSP1 scenario, these suitable areas extend more inland, likely due to more suitable air humidity in this 

scenario (Figure 17). The difference between the SSP5 and SSP1 scenarios widens as time continues, 

suggesting that the future suitable area for mango cultivation will likely fall somewhere between these 

two projections.  

Table 14: Change of suitability for mango cultivation between 2050 & 2070 in numbers (based on algorithmic approach) 

Suitability category (Algorithmic approach) SSP1 (%) SSP5 (%) 

Not suitable 95,5 92,2 

2050 suitable 1,7 5,7 

2070 suitable 1,0 0,8 

Both suitable 1,8 1,4 

Total 100,0 100,0 
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Figure 18: Change of suitability for mango cultivation between 2050 & 2070 SSP1 scenario (based on algorithmic approach) 
 

 

Figure 17: Change of suitability for mango cultivation between 2050 & 2070 SSP1 scenario (based on algorithmic approach) 

 



 
37 

4.7 Impact of Air humidity 
As previously highlighted, the change in air humidity results in an unexpected future trend regarding 

suitable areas for mango cultivation. In 2070, many inland areas classify themselves as unsuitable 

because the air humidity becomes too low, particularly in the SSP5 scenario and a little in the SSP1 

scenario (Figure 20). This trend is already visible in the expert knowledge approach SSP5 as of 2050, 

where the suitability of air humidity decreases in inland areas (Figure 19). While in the algorithmic 

approach, the air humidity in many inland areas becomes unsuitable as of 2070. This difference may be 

attributed by giving less weight to air humidity variables and using less strict thresholds. 

 

Figure 19: Suitability of variable air humidity in 2050 (based on expert knowledge approach) 

Figure 20: Suitability of variable air humidity in 2070 (based on expert knowledge approach) 
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4.8 Uncertainty analysis 
The uncertainty of the output from the expert knowledge approach is challenging to assess, but efforts 

have been made to mitigate this uncertainty by incorporating a wide array of variables into the model. 

Especially regarding the key variable of temperature, various growth phases and averages of multiple 

years were considered to ensure the most reliable outcome. In the algorithm approach, many variables 

were found to be highly correlated, leading to their exclusion from the model calculation. To reduce the 

high uncertainty associated with this, three different algorithms were run ten times each and their results 

were aggregated. This approach also helps to minimize the impact of outliers on the final result. 

 

The spatial uncertainty of the final results is illustrated by the standard deviation for each algorithm 

separately in the current scenario (Figures 21, 22 & Appendix E.4). A general pattern emerges showing 

that the variability of probabilities increases as the probability increases. Thus areas deemed more 

suitable are also less certain of this suitability compared to the unsuitability of unsuitable areas. The 

variability of the probability of occurrences is by far the highest in the GLM model, indicating that this 

model has the most significant internal differences across the 10 runs (Figure 21). A standard deviation 

above 300, with a maximum of 1000, is considered high, which is often observed in GLM. MaxEnt and 

BRT exhibit less variability in the probability of occurrences and therefore have a more stable, less 

uncertain result (Appendix E.4). When combining the algorithms, the valley region in the south of Spain 

and the islands of Greece, there is not only a high probability of occurrences but also high variability 

(Figure 22). This is also true, albeit to a lesser extent, for the eastern coastal area of Spain and the coastal 

areas of Sicily. 

Figure 21: Variability of suitability score for mango cultivation area’s (algorithm approach GLM) 

Figure 22: Variability of suitability score for mango cultivation area’s (Average of algorithms)  
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4.9 Sensitivity analysis 
The effects of using equal weights for all variables versus using the weights based on expert knowledge 

is tested to see if changing the weights led to big differences in the results, showing how sensitive the 

model is to different variables (Figure 23). Some differences were found, especially in areas where 

mango cultivation was highly suitable. In these areas, the equal weights method tended to show lower 

suitability compared to self-set weights, while areas deemed unsuitable in self-set weights showed 

higher suitability with equal weights. But overall the differences were small and in most places 

insignificant.  

 

Figure 23: Suitability score difference as a result of different weights (based on exp. knowledge approach) 

 

In the algorithm approach, the model itself determines the weights for variables, so we can't directly test 

sensitivity by changing the weights. Figure 24 shows the importance of each environmental variable by 

running models with only one variable at a time and excluding each variable once, to see how the model 

performance changes (Figure 24). It is evident that without the degree days, the performance of the 

model is significantly weakened, indicating that it is highly dependent on and sensitive to changes in 

this variable. 
 

Additionally, in Appendix D.2, show changes in input parameters and environmental variables affect 

the model's predictions, based on evaluation metrics. There were differences in how well the model 

performed with different settings & input parameters, indicating that the model is sensitive to changes 

in parameters. However, we chose the models with the best evaluation metrics and combined them, 

which helps to mitigate concerns about differences between models. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Performance change by excluding variables 
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4.10 Adding the water component 
The combined result of the expert knowledge and algorithm approach is overlaid on the water stress per 

region. In the current scenario, nearly all areas directly along the Mediterranean Sea are experiencing 

extreme water stress (Figure 25). The suitable areas*, in both approaches, are almost entirely in these 

regions, meaning mango farms in these areas will demand water from an already scarce environment, 

as is already happening (McGeer, 2023). The only area where water stress is low and the environmental 

factors are conducive to mango farming is near Barcelona (Figure 25). 

Figure 25: Suitability area’s for mango cultivation & waterstresslevel (Current)  

Looking ahead, water scarcity is expected to become a bigger issue in both future scenarios (Figure 26 

& 27). Regions like southern Spain, Italy, and Greece will face increasing water scarcity levels while 

places like southern France, northern Italy, and Croatia will see less water scarcity. Some of these 

regions could be good for growing mangoes, both because of the environment and the potential for 

irrigation. 

 

Figure 26: Suitability area’s for mango cultivation & waterstresslevel (2070 SSP1) 
 

*Expert knowledge approach: occurrence probability of >75% | Algorithmic approach: Combined value of suitability >0.95  
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Water stress level in suitable areas 

 

 

 

 

 

 

Figure 27: Suitability area’s for mango cultivation & waterstresslevel (2070 SSP5) 

 

 

A comparison between the relationship of water stress levels and suitable area’s for mango farms in both 

current and 2070 scenario’s is given in figure 28. Despite the expected increase in water stress, we see 

more suitable mango areas with acceptable water stress levels as a result of expanding mango cultivation 

into regions with lower water stress levels. However, still many areas with good environmental 

conditions for growing mangoes have limitations on irrigation due to high water stress levels. 
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5. Discussion 
In this discussion chapter, we begin by interpreting the findings, drawing comparisons to existing 

scientific literature where applicable and highlighting any unexpected outcomes. Following this, the 

research limitations are examined, leading to recommendations for further investigation. 

 

5.1 Interpretation of Results 
 

5.1.1 Future expansion of mango cultivation in southern Europe 

This study conclusively predicts an expansion of suitable regions for mango cultivation in southern 

Europe across all future scenarios, corroborating findings from research such as that by Santos et al. 

(2017), Osorio-Marín et al. (2024), and Paź-Dyderska et al. (2021) concerning the influence of climate 

change on the optimal conditions for fruit and nut cultivation in Europe. Santos et al. (2017) report that 

fruit-bearing trees in Portugal are anticipated to benefit from enlarged growth regions due to elevated 

temperatures predicted in future scenarios. Likewise, Osorio-Marín et al. (2024) and Paź-Dyderska et 

al. (2021) conclude an anticipated northward expansion of the growth zones for various fruits and nuts. 

In contrast, Arenas-Castro et al. (2020) observe a decline in the suitability of olive production in southern 

Spain, which is projected to be highly suitable for mango cultivation in the future. Thus, there may be a 

strategic advantage in pivoting to mango cultivation in regions traditionally known for olive production.  

 

There is an inconsistency observed in the suitability percentages of area’s between the SSP1 and SSP5 

scenarios. In both approaches, in no one scenario does there seem to be a pattern between the different 

timeframes. This is in contrast with findings by Osorio-Marín et al. (2024), who report a general increase 

in fruit production in Europe under the SSP5 scenario compared to SSP1. The deviation noted in this 

research could stem from factors such as the inclusion of air humidity, enhanced spatial resolution, or 

alternate thresholds for determining suitable areas. 

 

Despite the overall rising suitability of most environmental variables for mango cultivation, precipitation 

does not follow this trend. This combined with high water stress levels due to low water availability in 

environmentally suitable mango cultivation areas, skews the view that southern Europe is suitable for 

mango cultivation. This research echoes the concerns raised by Osorio-Marín et al. (2024) regarding 

water stress, noting that even as the land areas deemed suitable for cultivation— also accounting for 

water stress levels—increases, areas that do not already experience water stress may eventually 

experience it due to the increased intensity of mango farming. 

 

5.1.2 Two Different Approaches 

Uncertainty inherent in all types of Ecological Niche Models (ENMs) has led agricultural impact 

modelers to advocate for comparisons between modelling approaches (Estes et al., 2013). Due to the 

occasional absence of reliable, necessary physiological information in the expert knowledge approach, 

and the lack of occurrence data in the algorithmic approach, it was decided to include both approaches 

and derive a general conclusion from them as neither is inherently superior to the other. Consequently, 

the two approaches yield different results, potentially due to the reason of a broader range of 

environmental variables in the expert knowledge approach, incorporating a more comprehensive 

spectrum of environmental factors compared to the algorithmic approach. Two other reasons are of a 

variance of weighting & different thresholds for determining suitable area’s between the two 

approaches. 
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5.2 Limitations & future recommendations 
The limitations inherent in this research recognize that each constraint presents a unique opportunity for 

future investigation. By openly discussing these limitations, a balanced view of the findings is provided, 

suggesting practical avenues for subsequent studies to build upon. Additionally, recommendations are 

offered that are designed to address these limitations and advance the field. 

 

There are several issues related to the use of ENM models that also pertain to this research (Elith & 

Leathwick, 2009). This research has focused its scope on environmental factors; however, non-

environmental factors that may impact occurrence data, such as agricultural techniques, economic 

activities, and legislation, have not been considered, though these factors do play a role in the real-world 

suitability for mango cultivation. Another non-environmental factor influencing mango cultivation is 

water addition, as irrigation can pose challenges in areas with high water stress levels. A suggestion for 

future research is to explore how water management can be specifically addressed in these areas and to 

what extent the introduction of mango cultivation impacts water stress levels. Additionally, a 

recommendation for future research is to include the aforementioned non-environmental factors as 

variables that explain mango occurrence. 

 

Elith & Leathwick (2009) also propose that species may adapt to conditions in the future, either through 

natural mutations or those induced by humans, which impacts the reliability this ENM approach. 

Besides, several mango varieties can differ from each other in terms of optimal growing conditions. So 

the choice of variety can also have an impact on the growing area and harvesting period. In a 

differentiation of  environmental variable parameters, the choice is made to include the parameters 

corresponding to those of the Osteen mango, where possible, as 'Osteen' are more suited for high summer 

Mediterranean climates (Liguori et al, 2020). But environmental variables may change in the future such 

that a different variety might be more suitable. Future research could thus consider the possibility of 

these mutations and include a variety of mango breeds to test each area for its optimal future growth 

area. 

A major limitation of this research was the small sample size due to the limited number of mango farms 

currently in Europe. Since other regions with more mango farms have very different environmental 

parameters, these areas cannot be mapped onto southern Europe, as no area would be classified as 

suitable. This small sample size increases the risk of overfitting and may not adequately capture the full 

range of variability in environmental conditions. The negative impacts of this small sample size have 

been mitigated by the cross-validation technique of bootstrapping and incorporating ensemble 

modelling. In future research, a smaller area could be selected, or it may be necessary to wait until more 

mango farms are established in Europe. The reliability of occurrence data points is also questionable 

since mango farms have been located via various online sources. Future research might utilize less 

biased datasets from the FAO, which do not yet exist, containing locations of mango farms in southern 

Europe. 

 

The tuning of model parameters is complex, and the results of this research are not beyond criticism. 

Although many different settings have been tested for performance, these have a significant impact 

(Čengić et al., 2020), and future research could involve more varied settings and perhaps different 

algorithms to achieve an ensemble result. In addition, despite logical reasoning, applying the 25the 

percentile rule for threshold is fairly subjective which makes the total classified areas more unreliable 

This doesn’t detract from the trends found. Subsequent studies can examine the ideal threshold for 

improved model performance. Additionally, comparing different approaches was not within the scope 

of this research, but this could be more prominently addressed in future research. 
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6. Conclusion 
This study aimed to assess the impact of climate change on the expansion or contraction of suitable 

area’s for the mango (Mangifera indica L.) cultivation in the southern Europe, a fruit which is gaining 

global popularity. The Environmental Niche Model (ENM) applied in this research has elucidated the 

complex interplay between various environmental variables and mango cultivation, offering a nuanced 

understanding of future cultivation prospects in southern Europe. This has been addressed using two 

approaches, the correlative approach carried out through the use of three algorithms, and a more 

mechanistic approach conducted with expert-based knowledge. Since the outcomes of the methods can 

greatly vary and the research objective does not specifically lend itself to one method, it is decided to 

apply and compare both approaches. The results of these approaches not only identify current suitable 

areas for mango cultivation but also projects changes in these areas under future climate scenarios. This 

indicates a potential expansion of suitable cultivation areas suggesting that climate change could offer 

new opportunities for mango cultivation in southern Europe. 

 

However, the study also cautions against overly optimistic interpretations of these findings. Although 

temperatures will become more suitable in the future as a result of climate change, changes in air 

humidity and precipitation pose future challenges, with increasing variability and potential decreases in 

some areas affecting the sustainability of mango cultivation. Water stress, particularly in regions that 

are becoming warmer and potentially drier, poses a significant challenge to expanding mango 

cultivation. The sustainability of mango farming in new areas will depend critically on irrigation 

practices and the efficient use of water resources. This includes the development of water-efficient 

cultivation techniques, the selection of climate-resilient mango varieties, and the consideration of new 

agricultural practices suited to the changing climatic conditions in southern Europe. 

Apart from the pressure that mango farming has on water supplies in southern Europe under current and 

future climatic conditions, other environmental variables are generally becoming more suitable for 

mango cultivation. The increase in degree days, which emerged as the most significant variable, and the 

reduction in cloud cover foster an expansion in suitable regions for mango cultivation, especially in 

coastal areas as the rise in air humidity will classify inland areas as unsuitable in future scenario’s. It 

should be noted that while other topographical factors such as soil characteristics remain constant, they 

delineate specific limited areas as unsuitable for mango farming. 

There is no equivalent change of suitable area’s observed between the two scenarios, encompassing both 

the expert knowledge approach and the algorithms approach. The expert knowledge approach concludes 

that under the optimistic SSP1 scenario, more areas will become suitable for mango cultivation in the 

future compared to the pessimistic SSP5 scenario. Conversely, the algorithm approach identifies more 

areas as suitable under the SSP5 scenario, except in the distant future of 2070, due to an increase in air 

humidity.  

The varying impacts of different climate change scenarios per approach highlights the complexity of 

predicting agricultural suitability in the context of climate change, underscoring the importance of 

integrating diverse methodologies to capture the multifaceted impacts on regional agriculture and limit 

the uncertainty. This is mitigated by running various algorithms multiple times and comparing these 

results with the expert knowledge approach. 

In conclusion, while climate change may expand the horizons for mango cultivation in southern Europe, 

realizing this potential will require careful planning, innovative water-efficient cultivation practices, and 

a nuanced understanding of the interplay between local climate change and agricultural suitability. This 

study underscores the need for adaptive strategies to harness the opportunities presented by climate 

change while mitigating its potential adverse effects. The findings of this study contribute valuable 

insights to this endeavour, offering a foundation for future research and policy-making aimed at ensuring 

the sustainable expansion of mango cultivation in the southern Europe. 



 
45 

7. References 
 

Akhter, S., McDonald, M. A., van Breugel, P., Sohel, S., Kjaer, E. D., & Mariott, R. (2017). Habitat distribution modelling to identify areas 

of high conservation value under climate change for Mangifera sylvatica Roxb. of Bangladesh. Land Use Policy, 60, 223-232. 

 

Akpoti, K., Groen, T., Dossou-Yovo, E., Kabo-bah, A. T., & Zwart, S. J. (2022). Climate change-induced reduction in agricultural land 

suitability of West-Africa's inland valley landscapes. Agricultural Systems, 200, 103429. 

 

Akpoti, K., Kabo-bah, A. T., & Zwart, S. J. (2019). Agricultural land suitability analysis: State-of-the-art and outlooks for integration of 

climate change analysis. Agricultural Systems, 173, 172-208. 

 

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill 

statistic (TSS). Journal of Applied Ecology, 43(6), 1223-1232. 

 

Appelt, J. L., Saphangthong, T., Malek, Ž., Verburg, P. H., & van Vliet, J. (2023). Climate change impacts on tree crop suitability in 

Southeast Asia. Regional Environmental Change, 23(3), 117. 

 

Arenas-Castro, S., Gonçalves, J., Moreno, M., & Villar, R. (2020). Projected climate changes are expected to decrease the suitability and 

production of olive varieties in southern Spain. Science of the Total Environment, 709, 136161. 

 

Arenas-Castro, S., & Gonçalves, J. (2021). SDM-CropProj–A model-assisted framework to forecast crop environmental suitability and fruit 

production. MethodsX, 8, 101394. 

 

Bally, I. S. (2006). Mangifera indica (mango). Species Profiles for Pacific Island Agroforestry, 1, 1-25. 

 

Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: How, where 

and how many? Methods in Ecology and Evolution, 3(2), 327-338. 

 

Canarius. (n.d.). Greece. Canarius Blog. Retrieved from https://www.canarius.com/blog/tag/greece/ 

 

Carella, A., Gianguzzi, G., Scalisi, A., Farina, V., Inglese, P., & Bianco, R. L. (2021). Fruit growth stage transitions in two mango cultivars 

grown in a Mediterranean environment. Plants, 10(7), 1332. 

 

Cavalcante, Í. H. L. (2022). Mango flowering: Factors involved in the natural environment and associated management techniques for 

commercial crops. 

 

Čengić, M., Rost, J., Remenska, D., Janse, J. H., Huijbregts, M. A., & Schipper, A. M. (2020). On the importance of predictor choice, 

modelling technique, and number of pseudo-absences for bioclimatic envelope model performance. Ecology and Evolution, 10(21), 12307-

12317. 

 

Convertino, M., Muñoz-Carpena, R., Chu-Agor, M. L., Kiker, G. A., & Linkov, I. (2014). Untangling drivers of species distributions: Global 

sensitivity and uncertainty analyses of MaxEnt. Environmental Modelling & Software, 51, 296-309. 

 

Daoud, J. I. (2017). Multicollinearity and regression analysis. Journal of Physics: Conference Series, 949(1), 012009. 

 

de Azevedo, P. V., da Silva, B. B., & da Silva, V. P. (2003). Water requirements of irrigated mango orchards in northeast Brazil. Agricultural 

Water Management, 58(3), 241-254. 

 

De Castro, M., Gallardo, C., Jylha, K., & Tuomenvirta, H. (2007). The use of a climate-type classification for assessing climate change 

effects in Europe from an ensemble of nine regional climate models. Climatic Change, 81(Suppl 1), 329-341. 

 

De Souza, P. P. J. O., Rodrigues, C. J., De Sousa, L. A. M., Lima, T. R., Rocha, P. E. J., & Ortega, F. S. (2016). Water requirements estimate 

for the reproductive period of mango orchards in the northeast of the state of Pará, Brazil. Revista Brasileira de Fruticultura, 38(3), e-311.  

 

del Pino, M., Bienvenido, C., Boyero, J. R., & Vela, J. M. (2020). Biology, ecology and integrated pest management of the white mango 

scale, Aulacaspis tubercularis Newstead, a new pest in southern Spain-a review. Crop Protection, 133, 105160. 

 

Domínguez, M., Romera, R., Sánchez, E., Fita, L., Fernández, J., Jiménez-Guerrero, P., ... & Gaertner, M. Á. (2013). Present-climate 

precipitation and temperature extremes over Spain from a set of high-resolution RCMs. Climate Research, 58(2), 149-164. 

 

Dormann, C. F., McPherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., ... & Wilson, R. (2007). Methods to account for spatial 

autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609-628. 

 

Durán Zuazo, V. H., Rodríguez Pleguezuelo, C. R., Gálvez Ruiz, B., Gutiérrez Gordillo, S., & García-Tejero, I. F. (2019). Water use and 

fruit yield of mango (Mangifera indica L.) grown in a subtropical Mediterranean climate. International Journal of Fruit Science, 19(2), 136-

150. 

 

Eden, J. M., Widmann, M., Maraun, D., & Vrac, M. (2014). Comparison of GCM- and RCM-simulated precipitation following stochastic 

postprocessing. Journal of Geophysical Research: Atmospheres, 119(19), 11-040. 



 
46 

 

Eitzinger, A., Läderach, P., Carmona, S., Navarro, C., & Collet, L. (2013). Prediction of the impact of climate change on coffee and mango 

growing areas in Haiti. Centro Internacional de Agricultura Tropical (CIAT): Cali, Colombia, 44. 

 

Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., 

... & others. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. 

 

Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual 

Review of Ecology, Evolution, and Systematics, 40, 677-697. 

 

Elsheikh, R., Shariff, A. R. B. M., Amiri, F., Ahmad, N. B., Balasundram, S. K., & Soom, M. A. M. (2013). Agriculture Land Suitability 

Evaluator (ALSE): A decision and planning support tool for tropical and subtropical crops. Computers and Electronics in Agriculture, 93, 

98-110. 

 

Evans, T. G., Diamond, S. E., & Kelly, M. W. (2015). Mechanistic species distribution modelling as a link between physiology and 

conservation. Conservation Physiology, 3(1), cov056. 

 

European Commission. (2020). Climate change impacts and adaptation in Europe: JRC PESETA IV final report. Publications Office of the 

European Union. https://doi.org/10.2760/171121 

 

FAO, F. (2021). Food and agriculture organization of the United Nations. Rome. Retrieved from http://faostat.fao.org/ 

 

Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. 

Environmental Conservation, 24(1), 38-49. 

 

Flocas, H. A., Hatzaki, M., Tolika, K., Anagnostopoulou, C., Kostopoulou, E., Giannakopoulos, C., ... & Tegoulias, I. (2011). Ability of 

RCM/GCM couples to represent the relationship of large-scale circulation to climate extremes over the Mediterranean region. Climate 

Research, 46(3), 197-209. 

 

Frankowska, A., Jeswani, H. K., & Azapagic, A. (2019). Life cycle environmental impacts of fruits consumption in the UK. Journal of 

Environmental Management, 248, 109111. 

 

Geetha, G. A., Shivashankara, K. S., & Reddy, Y. T. N. (2016). Varietal variations in temperature response for hermaphrodite flower 

production and fruit set in mango (Mangifera indica L.). South African Journal of Botany, 106, 196-203. 

 

Graham, C. H., Ferrier, S., Huettman, F., Moritz, C., & Peterson, A. T. (2004). New developments in museum-based informatics and 

applications in biodiversity analysis. Trends in Ecology & Evolution, 19(9), 497-503. 

 

Guisan, A., Edwards Jr, T. C., & Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: 

Setting the scene. Ecological Modelling, 157(2-3), 89-100. 

 

Halder, S., & Hasan, M. A. (2020). Climate change and mango production. Chem. Sci. Rev. Lett, 9. 

 

Harrisson, T. (2021, October 11). CMIP6: The next generation of climate models explained. Carbon Brief. Retrieved from 

https://www.carbonbrief.org/ 

 

Huang, S. (2004). Global trade patterns in fruits and vegetables. USDA-ERS Agriculture and Trade Report No. WRS-04-06. 

 

Huber, D. G., & Gulledge, J. (2011). Extreme weather and climate change: Understanding the link, managing the risk. Arlington: Pew Center 

on Global Climate Change. 

 

Issarakraisila, M., Considine, J. A., & Turner, D. W. (1996). Vegetative and reproductive growth aspects of mango growing in a 

Mediterranean climate in Western Australia. In V International Mango Symposium 455 (pp. 56-63). 

 

Jonico, S. (2021, August). Exotic crops in Southern Italy with the first mangoes to be harvested soon. Fresh Plaza. Retrieved September 12, 

2023, from https://www.freshplaza.com/europe/article/9342358/exotic-crops-in-southern-italy-with-the-first-mangoes-to-be-harvested-soon/ 

 

Kanzaria, D. R., Chovatia, R. S., Varu, D. K., Polara, N. D., Chitroda, R. L., Patel, H. N., & Patel, D. V. (2015). Influence of growing degree 

days (GDD) on flowering and fruit set of some commercial mango varieties under varying climatic conditions. Asian Journal of Horticulture, 

10(1), 130-133. 

 

Korth, M. (2016). BioTropic - ORGANICS FOR ONE WORLD - Fresh organic mangoes from sunny Andalusia. Retrieved from 

https://www.biotropic.com/index.php/en/home-de-de-2/317-frische-bio-mangos-aus-dem-sonnigen-andalusien-gb 

 

Kumar, D., Pandey, V., & Nath, V. (2008). Effect of drip irrigation regimes on growth, yield and quality of mango hybrid Arka Anmol. 

Indian Journal of Horticulture, 65(4), 409-412. 

 

Legave, J. M., Normand, F., & Lauri, P. E. (2013). Climate change and its probable effects on mango production and cultivation. In X 

International Mango Symposium 1075 (pp. 21-31). 

 



 
47 

Lepore, D., Bucchignani, E., Montesarchio, M., Allocca, V., Cusano, D., & De Vita, P. (2023). A comparison of RCMs and meteorological 

time series (1950–1996) of southern Italy as a fine calibration for hydrogeological scenarios. EGUsphere, 2023, 1-31. 

 

Liguori, G., Gentile, C., Sortino, G., Inglese, P., & Farina, V. (2020). Food quality, sensory attributes and nutraceutical value of fresh “Osteen” 

mango fruit grown under mediterranean subtropical climate compared to imported fruit. Agriculture, 10(4), 103. 

 

Liu, C., White, M., & Newell, G. (2009). Measuring the accuracy of species distribution models: A review. In Proceedings 18th World 

IMACs/MODSIM Congress. Cairns, Australia, pages 4241-4247. 

 

Lobo, J. M., & Tognelli, M. F. (2011). Exploring the effects of quantity and location of pseudo-absences and sampling biases on the 

performance of distribution models with limited point occurrence data. Journal for Nature Conservation, 19(1), 1-7. 

 

Malczewski, J. (2004). GIS-based land-use suitability analysis: A critical overview. Progress in Planning, 62(1), 3-65. 

 

Mango Production by Country 2023. (n.d.). Retrieved from https://worldpopulationreview.com/country-rankings/mango-production-by-

country 

 

Maselli, F., Battista, P., Chiesi, M., Rapi, B., Angeli, L., Fibbi, L., ... & Gozzini, B. (2020). Use of Sentinel-2 MSI data to monitor crop 

irrigation in Mediterranean areas. International Journal of Applied Earth Observation and Geoinformation, 93, 102216. 

 

Mauricio Bini, L., Diniz-Filho, J. A. F., Rangel, T. F., Akre, T. S., Albaladejo, R. G., Albuquerque, F. S., ... & Hawkins, B. A. (2009). 

Coefficient shifts in geographical ecology: An empirical evaluation of spatial and non-spatial regression. Ecography, 32(2), 193-204. 

 

Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L., Lamarque, J. F., ... & van Vuuren, D. P. (2011). The RCP 

greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213-241. 

 

Melo-Merino, S. M., Reyes-Bonilla, H., & Lira-Noriega, A. (2020). Ecological niche models and species distribution models in marine 

environments: A literature review and spatial analysis of evidence. Ecological Modelling, 415, 108837. 

 

Mersereau, T. (2023, July 15). What is the carbon footprint of mangoes? A Life-Cycle Analysis | Impactful Ninja. Retrieved from 

https://impactful.ninja/what-is-the-carbon-footprint-of-mangoes/ 

 

Miller, J. (2010). Species distribution modeling. Geography Compass, 4(6), 490-509. 

 

Mosqueda-Vázquez, R., Rosa, F., & Ireta-Ojeda, A. (1992, July). Degree-days and base temperatures required for inflorescence and fruit 

development in mango 'Manila'. In IV International Mango Symposium 341 (pp. 232-239). 

 

Moore, C. (2010). Developing a crop forecasting system for the Australian Mango Industry. 
 

Ørsted, I. V., & Ørsted, M. (2019). Species distribution models of the Spotted Wing Drosophila (Drosophila suzukii, Diptera: Drosophilidae) 

in its native and invasive range reveal an ecological niche shift. Journal of Applied Ecology, 56(2), 423-435. 

 

Palmer, T. E., McSweeney, C. F., Booth, B. B., Priestley, M. D., Davini, P., Brunner, L., ... & Menary, M. B. (2022). Performance based 

sub-selection of CMIP6 models for impact assessments in Europe. Earth System Dynamics Discussions, 2022, 1-45. 

 

Parmar, V. R., Shrivastava, P. K., & Patel, B. N. (2012). Study on weather parameters affecting the mango flowering in south Gujarat. J. 

Agrometeorol, 14, 351-353. 

 

Paul, R. K. (2006). Multicollinearity: Causes, effects and remedies. IASRI, New Delhi, 1(1), 58-65. 

 

Pearce, J., & Ferrier, S. (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecological 

Modelling, 133(3), 225-245. 

 

Perez, G. (2023, April 20). Aguacate y mango, dos subtropicales en auge. Tierra. Retrieved October 10, 2023, from 

https://www.plataformatierra.es/innovacion/aguacate-y-mango-dos-subtropicales-en-auge/ 

 

Peterson, A. T., Cobos, M. E., & Jiménez-García, D. (2018). Major challenges for correlational ecological niche model projections to future 

climate conditions. Annals of the New York Academy of Sciences, 1429(1), 66-77. 

 

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological 

Modelling, 190(3-4), 231-259. 

 

Ramirez-Cabral, N. Y. Z., Kumar, L., & Taylor, S. (2016). Crop niche modeling projects major shifts in common bean growing areas. 

Agricultural and Forest Meteorology, 218, 102-113. 

 

Ramírez-Gil, J. G., Cobos, M. E., Jiménez-García, D., Morales-Osorio, J. G., & Peterson, A. T. (2019). Current and potential future 

distributions of Hass avocados in the face of climate change across the Americas. Crop and Pasture Science, 70(8), 694-708. 

 

Ramteke, V., Sanadya, A., Kumar, N., & Kerketta, A. K. (2022). Thermal requirement for phenophases of mango varieties in the subhumid 

tropics of east-central India. Indian Journal of Horticulture, 79(4), 425-430. 



 
48 

 

Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O’neill, B. C., Fujimori, S., ... & Tavoni, M. (2017). The Shared Socioeconomic 

Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153-168. 

 

Salunkhe, S., Nandgude, S., Tiwari, M., Bhange, H., & Chavan, S. B. (2023). Land Suitability Planning for Sustainable Mango Production in 

Vulnerable Region Using Geospatial Multi-Criteria Decision Model. Sustainability, 15(3), 2619. 

 

Schatz, A. M., Kramer, A. M., & Drake, J. M. (2017). Accuracy of climate-based forecasts of pathogen spread. Royal Society Open Science, 

4(3), 160975. 

 

Senthilnathan, S. (2019). Usefulness of correlation analysis. SSRN 3416918. 

 

Sillero, N., Arenas-Castro, S., Enriquez-Urzelai, U., Vale, C. G., Sousa-Guedes, D., Martínez-Freiría, F., ... & Barbosa, A. M. (2021). Want 

to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecological Modelling, 456, 109671. 

 

Srinivasulu, A., Srinivasulu, B., & Srinivasulu, C. (2021). Ecological niche modelling for the conservation of endemic threatened squamates 

(lizards and snakes) in the Western Ghats. Global Ecology and Conservation, 28, e01700. 

 

Stefanidis, S., Dafis, S., & Stathis, D. (2020). Evaluation of regional climate models (RCMs) performance in simulating seasonal 

precipitation over Mountainous Central Pindus (Greece). Water, 12(10), 2750. 

 

Tamura, M., Kumano, N., Yotsukuri, M., & Yokoki, H. (2019). Global assessment of the effectiveness of adaptation in coastal areas based 

on RCP/SSP scenarios. Climatic Change, 152, 363-377. 

 

Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies: 

Review and evaluation of different methods. Journal of Hydrology, 456, 12-29. 

 

Tharanathan, R. N., Yashoda, H. M., & Prabha, T. N. (2006). Mango (Mangifera indica L.), “The king of fruits”—An overview. Food 

Reviews International, 22(2), 95-123. 

 

Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(sup1), 234-240. 

 

Todorov, S. D., & Bogsan, C. S. B. (2016). Tropical fruits from cultivation to consumption and health benefits: Guava and mango. 

 

TRIDGE. (n.d.). What are the main producing regions of mangoes in Spain? Tridge. Retrieved from https://www.tridge.com/market-

guides/posts/where-are-major-producing-regions-i3zl1ureqo 

 

Trops. (2023, July 14). Raming Spaanse mango-oogst slechts 30%. AGF. Retrieved September 25, 2023, from 

https://www.agf.nl/article/9545971/raming-spaanse-mango-oogst-slechts-30/ 

 

Uusitalo, L., Lehikoinen, A., Helle, I., & Myrberg, K. (2015). An overview of methods to evaluate uncertainty of deterministic models in 

decision support. Environmental Modelling & Software, 63, 24-31. 

 

Van Zile, J. (2022, August 26). How to grow mango trees. The Spruce. Retrieved from https://www.thespruce.com/grow-mango-seeds-

1902625 

 

Varieties of Mango - Spanish Mango. (n.d.). Retrieved from https://www.spanishmango.com/en/varieties-of-mango 

 

Zuazo, V. H. D., García-Tejero, I. F., Rodríguez, B. C., Tarifa, D. F., Ruiz, B. G., & Sacristán, P. C. (2021). Deficit irrigation strategies for 

subtropical mango farming. A review. Agronomy for Sustainable Development, 41(1), 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
49 

8. Appendix 
 

A. Contents supplementary ZIP file 
1. R-Code for GLM & BRT algorithmic approach + testing performance 

2. Documentation BIOMOD2-package 

3. ArcGisprojects, including: 

a. Correlationvariables + current suitability maps 

b. Mangofarmlocations 

c. Calculations examples of expert knowledge approach 

d. Endresultmaps of Expert knowledge approach 

e. Endresultmaps of Algorithms approach 

f. Visualisation of airhumidy & cloudcover + study area 

g. Waterstress + merging of the two approaches 

4. Pseudoabsencepoints + predicted probabilities 

5. MaxEnt_results 

6. GLM/BRT results 

7. Modelruns of GLM/BRT 

8. Inputdata of environmental variables + occurencepoints 
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B. Data collection 
Table 15: presence-points of mango cultivation farms 

 

Name Adres Province/region/country Source 

Finca los Pepones 29718 Los Pepones, Málaga, Spanje Malaga/Andalucia/Spain Link 

Cortijo Robledo 23680 Alcalá la Real, Jaén, Spanje Granada/Andalucia/Spain Link 

Cortijo Rando 36°47'17.9"N 4°08'07.7"W 

 

Malaga/Andalucia/Spain Link 

La Mayora 29750 Algarrobo, Málaga, Spanje Malaga/Andalucia/Spain Link 

La Finca Experimental El 

Zahorí 

Diseminado Bco Itrabo Pol 26, 

235B,18690, Granada, Spanje 

Granada/Andalucia/Spain Link 

PaPaMango Contrada Giancola, 98076 Sant'Agata di 

Militello ME, Italië 

Sicilia/Italy Link 

Mangolime Via Savochelli, 13, 95016 Mascali CT, 

Italië 

Sicilia/Italy Link 

Zuccarella Giovanni 

 

Via Parisi, 16, 75020 Scanzano Jonico MT, 

Italië 

Metapontino/Italy Link 

Canalotto Farm Via Errante, Contrada Canalotto, 58, 91022 

Castelvetrano TP, Italië 

Palermo/Italy Link 

Finca Refijo Calle Valle del Tera, 70 (Polígono Los 

Zamoranos) 29700 Vélez-Málaga, (Málaga) 

Malaga/Andalucia/ Spain Link 

Rancho Oriental Leon Guallart, 57 31500 Tudel a (Navarra) Algarrobo/Andalucia/Spai

n 

Link 

Dehesa de Cútar S.L. Calle Juan Gris, 20. 29700 Vélez-

Málaga (Málaga) 

Malaga/Andalucia/ Spain Link 

El Peñoncillo, Torrox, ES S.L Explanada de la Estación, 29. Vélez-

Málaga (Málaga) 

Malaga/Andalucia/ Spain Link 

Loma del Gato, Almuñecar, 

ES 

S.L.U. C/ Alcalde Caridad, 17 18698 Otívar 

(Granada) 

Granada/Andalucia/Spain Link 

Hacienda Altos de 

Cantarriján, Almuñecar, ES 

SL Ctra. Suspiro (del), km. 47 18699 Lentegí 

(Granada) 

Almunecasr/Andalucia/Sp

ain 

Link 

Huertas Salobreña, 

Salobreña, ES 

Huertas Salobreña · Salobreña, Spain 

 

Huertas Salobreña · 

Salobreña, Spain 

 

Link 

Finca Montealegre, 

Competa, ES 

SL C/ Huelva, 11 29793 Torrox Costa 

(Málaga) 

Torrox/Andalucia/Spain Link 

Finca Aguasvivas, Artana, 

ES 

Arcadi García Sanz 19 Planta 1ºA 12540 

Vila-real (Castellón) 

Artana/Valencia/Spain Link 

Rancho del Tio Esteban, 

Vélez-Málaga, ES 

S.L. Ctra. Algarrobo, km 2,5. 29750 

Algarrobo (Málaga) 

Malaga/Andalucia/ Spain Link 

Alhambra Tropical, Motril, 

ES 

Luja s/n Gualchos-Puntalón 18600 Motril 

(Granada) 

Motril/ Andalucia/ Spain Link 

La Reala, Motril, ES SCA Ctra. Almería km 16. 18600 Motril 

(Granada) 

Motril/ Andalucia/ Spain Link 

Mango Hellas Theriso 731 00, Griekenland Crete/Greece Link 

Palazzolo produzio biologica  Terrasini in Via Mimose en Azalea n. 7 Palazzolo/Italy Link 

Talia 90041 Balestrate, Palermo, Italie Palermo/Italy Link 

PapaMango  Palermo/Italie Link 

Domaines De La Taste Pianiccia, 20270 Tallone, France Tallone/France Link 

MangoLime See google maps link Palermo/Italy Link 

Mennuli&Alivifarm See google maps link Palermo/Italy Link 

https://www.crowdfarming.com/blog/en/european-tropical-agriculture/
https://www.google.com/maps/place/Cortijo+Robledo/@37.7699279,-5.4859549,172613m/data=!3m1!1e3!4m10!1m2!2m1!1sLa+Reala+farm!3m6!1s0xd6de79a5db7d451:0x1058b9bc7501c424!8m2!3d37.5257959!4d-3.8930345!15sCg1MYSBSZWFsYSBmYXJtkgEEZmFybeABAA!16s%2Fg%2F11gnhz4878?entry=ttu
https://salsaagricola.es/en/productive-farms/cortijo-rando/
https://www.frutas-biobena.com/es/nuestras-frutas-bio/1-mango-bio/
https://jast.modares.ac.ir/article-23-12099-en.pdf
https://www.papamango.it/il-mango/produzione-mango.html
https://www.mangolime.it/
https://www.agf.nl/article/9342359/exotische-gewassen-uit-zuid-italie/
https://www.canalottofarm.com/
https://www.crowdfarming.com/en/farmer/finca-refijo/up/adopt-a-mango-tree-finca-refijo/overharvest
https://www.crowdfarming.com/en/farmer/finca-refijo/up/adopt-a-mango-tree-finca-refijo/overharvest
https://www.crowdfarming.com/en/farmer/finca-refijo/up/adopt-a-mango-tree-finca-refijo/overharvest
https://www.crowdfarming.com/en/farmer/finca-refijo/up/adopt-a-mango-tree-finca-refijo/overharvest
https://www.crowdfarming.com/en/farmer/finca-refijo/up/adopt-a-mango-tree-finca-refijo/overharvest
https://www.crowdfarming.com/en/farmer/finca-refijo/up/adopt-a-mango-tree-finca-refijo/overharvest
https://www.crowdfarming.com/en/farmer/finca-refijo/up/adopt-a-mango-tree-finca-refijo/overharvest
https://www.crowdfarming.com/en/farmer/finca-refijo/up/adopt-a-mango-tree-finca-refijo/overharvest
https://www.crowdfarming.com/en/farmer/finca-refijo/up/adopt-a-mango-tree-finca-refijo/overharvest
https://www.crowdfarming.com/en/farmer/finca-refijo/up/adopt-a-mango-tree-finca-refijo/overharvest
https://www.crowdfarming.com/en/farmer/finca-refijo/up/adopt-a-mango-tree-finca-refijo/overharvest
https://www.crowdfarming.com/en/farmer/finca-refijo/up/adopt-a-mango-tree-finca-refijo/overharvest
https://www.avocado-hellas.gr/english/production-%ce%bc%ce%ac%ce%b3%ce%ba%ce%bf-%ce%bc%ce%ac%ce%bd%ce%b3%ce%ba%ce%bf-mango/
http://www.ortodinonnonino.it/
https://vivaiotalia.it/
https://www.google.com/search?q=manghi+farms+sicilia&sca_esv=589766361&rlz=1C1GCEA_enNL860NL860&tbm=lcl&sxsrf=AM9HkKkh3rktD3Bex15-5-W0Bv2tUrDbSw%3A1702301992955&ei=KBF3ZeL4OYiAi-gPmOuFiAU&ved=0ahUKEwjirNyMwYeDAxUIwAIHHZh1AVEQ4dUDCAk&uact=5&oq=manghi+farms+sicilia&gs_lp=Eg1nd3Mtd2l6LWxvY2FsIhRtYW5naGkgZmFybXMgc2ljaWxpYTIHECMYsAIYJ0juIFC6DFixGnADeACQAQCYAacBoAGOBqoBAzQuNLgBA8gBAPgBAcICBBAjGCfCAggQABiABBiiBMICCBAAGAgYBxgeiAYB&sclient=gws-wiz-local#rlfi=hd:;si:;mv:[[38.110559313374196,13.987739979882834],[37.801957685437614,13.587425648828148
https://www.crowdfarming.com/en/farmer/domaines-de-la-taste/up/adopt-a-clementine-tree-domaines-de-la-taste/overharvest
https://www.google.com/search?q=manghi+farms+sicilia&sca_esv=589766361&rlz=1C1GCEA_enNL860NL860&tbm=lcl&sxsrf=AM9HkKkh3rktD3Bex15-5-W0Bv2tUrDbSw%3A1702301992955&ei=KBF3ZeL4OYiAi-gPmOuFiAU&ved=0ahUKEwjirNyMwYeDAxUIwAIHHZh1AVEQ4dUDCAk&uact=5&oq=manghi+farms+sicilia&gs_lp=Eg1nd3Mtd2l6LWxvY2FsIhRtYW5naGkgZmFybXMgc2ljaWxpYTIHECMYsAIYJ0juIFC6DFixGnADeACQAQCYAacBoAGOBqoBAzQuNLgBA8gBAPgBAcICBBAjGCfCAggQABiABBiiBMICCBAAGAgYBxgeiAYB&sclient=gws-wiz-local#rlfi=hd:;si:;mv:[[38.110559313374196,13.987739979882834],[37.801957685437614,13.587425648828148
https://www.google.com/search?q=manghi+farms+sicilia&sca_esv=589766361&rlz=1C1GCEA_enNL860NL860&tbm=lcl&sxsrf=AM9HkKkh3rktD3Bex15-5-W0Bv2tUrDbSw%3A1702301992955&ei=KBF3ZeL4OYiAi-gPmOuFiAU&ved=0ahUKEwjirNyMwYeDAxUIwAIHHZh1AVEQ4dUDCAk&uact=5&oq=manghi+farms+sicilia&gs_lp=Eg1nd3Mtd2l6LWxvY2FsIhRtYW5naGkgZmFybXMgc2ljaWxpYTIHECMYsAIYJ0juIFC6DFixGnADeACQAQCYAacBoAGOBqoBAzQuNLgBA8gBAPgBAcICBBAjGCfCAggQABiABBiiBMICCBAAGAgYBxgeiAYB&sclient=gws-wiz-local#rlfi=hd:;si:;mv:[[38.110559313374196,13.987739979882834],[37.801957685437614,13.587425648828148
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C. Data preprocessing 

C.1 Spatial autocorrelation output 
 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 29: Spatial autocorrelation function Arcgis Pro output (all occurrence points with feature degree days) 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 30: Output ‘Average Nearest Neighbor function’ Acrgis Pro study area without preprocessing 
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Figure 31: Output ‘Average Nearest Neighbor function’  after excluding of points within 10 kilometers 

D. Evaluation metrics of different algorithm settings 

D.1 Algorithm settings 
GLM: 2 Pseudo-absence random distribution layers, variable importance = 4, type = simple, test = AIC, interaction 

level = 1 

The 'simple' type was chosen due to basic relationships, while more complex types such as quadratic and 

polynomial would introduce unnecessary complexity. AIC, as a test, seeks a balance between complexity and fit. 

The interaction level is set to 1 to capture average interactions between variables. 

GBM (BRT): 2 Pseudo-absence random distribution layers, Bernoulli distribution, variable importance = 4, 

number of trees = 2000, shrinkage = 0.001, bag.fraction = 0.5, interaction.depth = 1, n.minobsinnode = 5 

The Bernoulli distribution was selected because the response variable is binary, and the model outcomes range 

between 0 and 1 (suitable or unsuitable). No weights were assigned to observations as there are no observations 

of greater importance. The number of trees, in combination with interaction depth, was set to prevent overfitting 

by using a reasonable number of trees but a low value for interaction complexity. The shrinkage was kept at default 

in proportion to the number of trees. 

MaxEnt: 1 Pseudo-absence random distribution layer, Cloglog, Test percentage 20%, bootstrap, regularization 

multiplier = 1, maximum number of iterations = 2000, convergence threshold = 0,00001 

Cloglog output  is used because we want a probability scale. For studies based on presence-only data where 

minimizing overprediction is crucial, cloglog output is the most suitable. A test percentage of 20% was chosen to 

ensure good model calibration fit. Bootstrapping is optimal for datasets with few occurrence points, as Maxent 

will be allowed to test the model with occurrences that may have been used to train it. The regularization multiplier 

was left at default. The number of trees was set higher than the default value as this improves the accuracy of the 

model with low occurrences, while the convergence threshold was lowered, requiring more computational power 

but improving the model. 
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D.2 Evaluation metric values 
The values below are based on thresholds determined by the model itself and so the 25th percentile threshold has not yet been 

included in the determination of these performance factors. These numbers came from the output of the biomod2 package itself. 

Table 16: Evaluation metrics of different parameters of runs 

 

 

 

 

 

 

 

 

 

 

 

 

E. Comparison of suitable area’s 

E.1 Statistical comparison 
Table 17: Suitable area for mango cultivation in SSP5 scenario (based on expert knowledge approach) 

SSP5 scenario Current 2030 2050 2070 

Highly unsuitable 92,3% 78,2% 74,6% 57,3% 

Unsuitable 4,0% 14,0% 14,8% 30,3% 

Suitable 2,4% 5,7% 2,5% 3,7% 

Highly suitable 1,3% 2,1% 8,0% 8,7% 

Sum Suitable 3,7% 7,8% 10,6% 12,3% 

 

Table 18: Suitable area for mango cultivation in SSP1 scenario (based on expert knowledge approach) 

SSP1 scenario Current 2030 2050 2070 

Highly unsuitable 92,3% 80,5% 69,4% 59,0% 

Unsuitable 4,0% 12,2% 18,7% 22,1% 

Suitable 2,4% 6,1% 5,5% 11,4% 

Highly suitable 1,3% 1,3% 6,4% 7,5% 

Sum Suitable 3,7% 7,3% 11,9% 18,9% 
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Table 19: Change of suitable area for mango cultivation per scenario (based on expert knowledge approach) 

    SSP1 

     

SSP5 

      

  Total suitable 

area for mango 

cultivation 

(km²) 

Difference compared 

to current* (%) 

Total suitable area 

for mango 

cultivation (km²) 

Difference compared 

to current* (%) 

Current 75.600  x 75.600 x  

2030 149.000 197% 157.000 208% 

2050 240.300 318% 213.700 283% 

2070 382.100 505% 249.000 329% 

 

Table 20: Suitable area for mango cultivation in SSP5 scenario (based on algorithmic approach) 

SSP5 scenario Current 2030 2050 2070 

Highly unsuitable 95,8% 76,7% 56,3% 44,2% 

Unsuitable 3,4% 20,5% 36,7% 53,7% 

Suitable 0,5% 2,0% 4,5% 1,6% 

Highly suitable 0,3% 0,8% 2,6% 0,6% 

Sum Suitable 0,8% 2,8% 7,1% 2,1% 

 

Table 21: Suitable area for mango cultivation for SSP1 scenario (based on algorithmic approach) 

SSP1 scenario Current 2030 2050 2070 

Highly unsuitable 95,8% 80,9% 67,2% 64,6% 

Unsuitable 3,4% 17,1% 29,2% 32,6% 

Suitable 0,5% 1,5% 2,4% 2,1% 

Highly suitable 0,3% 0,5% 1,1% 0,7% 

Sum Suitable 0,8% 2,0% 3,5% 2,8% 

 

Table 22: Change of suitable area for mango cultivation per scenario (based on algorithmic approach) 

    SSP1 

     

 SSP5 

      

  Total suitable area 

for mango 

cultivation (km²) 

 Compared to current 

(%) 

 Total suitable area for 

mango cultivation 

(km²) 

Compared to current 

(%) 

Current 15.278  x  15.278 x  

2030 40.384 264%  57.289 375% 

2050 70.785 463%  142.664 934% 

2070 55.766 365%  42.719 280% 
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E.2. Spatial comparison (Expert knowledge approach) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E.2 Spatial comparison of suitability maps (expert knowledge approach) 
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E.3 Spatial comparison of suitability maps (Algorithmic approach) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E.3 Spatial comparison of suitability maps (Algorithmic approach) 
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E.4  Variability of suitability score  (Algorithmic approach) 

Figure 32: Variability of suitability score for mango cultivation area’s (algorithm approach MaxEnt)  

Figure 33: Variability of suitability score for mango cultivation area’s (algorithm approach BRT)  
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