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Abstract

This thesis introduces a novel method for extracting book titles from Optical Character Recog-
nition scanned historical newspaper archives using Named Entity Recognition (NER), a task
not extensively explored in existing literature. By identifying books highlighted by reviewers
and journalists, we can gain insights into the evolving cultural and literary tastes of society.

Utilizing a dataset from the Leeuwarder Courant, the study applies various NER models, includ-
ing BiLSTM-CRF and transformer-based models. The transformer-based models outperformed
others, achieving an F1 score of 84.3% on the test dataset, demonstrating the effectiveness of
these models in extracting text representing book titles from newspaper archives.

In addition to assessing performance on a NER level, an evaluation was conducted to measure
how well the best NER model could identify the actual discussed books. This was achieved
by matching the extracted book title text to the titles in the Nederlandse Bibliografie Totaal
(NBT ), a comprehensive compilation of all books published by Dutch publishers. Despite high
NER performance, the matching process yielded a suboptimal F1 score of 59.4%. This gap
was primarily due to the training data not being specifically labeled for NER purposes, making
its repurposing as a NER dataset inadequate. Consequently, the model often missed subtitles,
resulting in incomplete title extraction.

Further analysis showed that even with perfect NER predictions, matching titles to the NBT
achieved an F1 score of only 65.5%. This finding highlights the need for additional information
besides the main title, such as subtitles, authors, and potentially publishers, to improve the
accuracy of title matching to the NBT.
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Chapter 1

Introduction

Book reviews in newspapers not only reflect the reading preferences of their time, but also offer
a window into the shifting intellectual landscapes that characterize different eras. By analyzing
which books were highlighted by reviewers and journalists, we can gain insights into the evolving
cultural and literary tastes of society.

Notably, to date, no published research specifically targets the extraction of book titles from Op-
tical Character Recognition (OCR)-scanned historical newspapers. Previous studies, including
those by Do et al. (2012) and Sarimehmetoğlu and Erdem (2023), have focused on extracting
book titles from visual sources, such as book cover images and video content. These methods,
while innovative, rely on visual attributes and are fundamentally different from our text-based
approach.

The method currently employed by the thesis supervisor to identify book titles in historical
newspaper texts is predominantly rule-based (Van Eijnatten, 2024). This approach involves
selecting segments of 600 characters, identified by a set of rules as those most likely to contain
a book title, and comparing them against a database of known book titles to ascertain matches.
This method suffers from several drawbacks: it yields suboptimal accuracy, it requires exten-
sive manual verification, and specific rules are tailored for a particular newspaper, making it
potentially hard to generalize to other newspapers. These limitations compromise the efficacy
of cultural analysis over time and restrict our understanding of historical intellectual trends.

Despite its drawbacks, the current method has successfully produced a substantial dataset, serv-
ing as a valuable foundation for developing an improved model. In response to these challenges
and leveraging the existing dataset, this study proposes a novel approach utilizing advancements
in Natural Language Processing (NLP). By harnessing NLP models, we aim to develop a more
robust and autonomous system capable of accurately extracting book titles from a vast corpus
of newspaper text.

Eisenstein (2019) describes NLP as a set of methods for making human language accessible to
computers. Key applications of NLP include language translation, sentiment analysis, speech
recognition, text summarization, and named entity recognition. Named Entity Recognition
(NER) is the process of identifying named entities in text. Commonly used entities are people,
locations, and organizations (Jurafsky & Martin, 2023).

This thesis explores the innovative idea of categorizing book titles as a specialized form of
named entity, a concept that, until now, has not been investigated in the context of historical
newspapers. Which leads us to the research question of this thesis: To what extent can Named
Entity Recognition be utilized to autonomously extract book titles from OCR-scanned historical
newspapers, thereby facilitating deeper cultural and literary analyses?
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The remainder of this thesis is organized as follows:

• Chapter 2: Concepts and Literature - This chapter introduces the essential concepts
required to comprehend the thesis. It includes a review of relevant literature, comparing
various NER methods based on existing research.

• Chapter 3: Data - This chapter details the processes involved in creating the datasets
used in the study, along with a brief data analysis.

• Chapter 4: Methodology - This chapter describes the methodology employed to deter-
mine the most effective NER model for extracting book titles from historical newspapers.

• Chapter 5: Results - This chapter presents the findings obtained from the applied
methodology.

• Chapter 6: Discussion - This chapter interprets the results, offering insights into why
they turned out as they did, discussing their implications, and comparing them with
claims from the existing literature.

• Chapter 7: Conclusion - The final chapter addresses the research question, summarizes
the key findings, and proposes directions for future research.
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Chapter 2

Concepts and Literature

This chapter outlines the key concepts and literature required to comprehend the thesis. We
begin with an exploration of Named Entity Recognition (NER) within the field of Natural
Language Processing (NLP), discussing its challenges, tagging schemes, and evaluation metrics.
Next, we examine various NER approaches, including rule-based, unsupervised, and supervised
methods, with a particular emphasis on supervised learning. The chapter further highlights
the evolution from traditional machine learning to transformer-based Large Language Models.
Finally, we delve into the methods of text representation in NER models, focusing on word
embeddings.

2.1 Named Entity Recognition

As introduced in Chapter 1, titled “Introduction”, NER is a fundamental task in NLP that
involves identifying and classifying entities in text into predefined categories, in most cases:
names of people, organizations, and locations. According to Jurafsky & Martin (2023), a named
entity is defined as any item that can be distinctly identified by a proper name.

Bird et al. (2009) emphasized two major challenges in NER. The first challenge was the ambigu-
ity of many named entity terms. The authors illustrated this issue with the examples ”May” and
”North”, which could be part of named entities for dates and geographical locations. However,
these terms often refer to a person’s name. The second challenge concerned multi-word named
entities, which necessitated determining the boundaries of an entity, specifically identifying its
beginning and end.

Later in this chapter, we discuss a concept that tackles the ambiguity challenge in Section 2.6,
titled “Text Representation”. In Section 2.5, titled “Models for Named Entity Recognition”,
we explore models capable of identifying the beginning and end of multi-word named entities,
thereby addressing the second challenge.

2.2 Tagging Schemes

To perform NER in a structured way, tagging schemes are used to label and categorize named
entities in text. These schemes determine how each token is marked to indicate its role within a
named entity. Bird et al. (2009) described tokens as sequences of characters, which can include
words, subwords, or multiple words. NER operates as a token classification task, with each
token assigned a specific label.

The BIO tagging scheme, developed by Ramshaw & Marcus (1995), is the standard method for
token classification. It uses “B” for the beginning of a named entity, “I” for tokens inside the
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entity, and “O” for tokens outside any entity. Other schemes include the simpler IO and the
more complex BIOES, which adds tags for entity endings and single-token entities.

2.3 Evaluation Metrics

To evaluate the performance of a NER system, evaluation primarily relies on classification
metrics. These metrics are best understood through the concepts of True Positives (TP), False
Positives (FP), True Negatives (TN), and False Negatives (FN). True Positives represent, in the
context of book titles, instances where the model accurately identifies a token as belonging to a
book title entity class. False Positives are instances where the model erroneously labels a token
as belonging to the book title entity class. Conversely, True Negatives refer to instances where
the model correctly identifies a token as not belonging to the book title entity class. Lastly,
False Negatives occur when the model fails to recognize a token as part of the book title entity
class when it actually is.

2.3.1 Accuracy

The simplest evaluation metric is the accuracy score (Equation 2.1). Accuracy measures the pro-
portion of correct predictions (both true positives and true negatives) among the total number
of cases examined.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

When dealing with datasets where certain classes are significantly underrepresented compared
to others (known as imbalanced datasets), relying on accuracy as an evaluation metric fails
to accurately reflect the true performance of models (Grandini, Bagli, & Visani, 2020). For
instance, in our dataset, only 1.4% of all tokens represent book titles (Section 3.5, titled “Data
Analysis”). A model could achieve an accuracy of 98.6% by simply predicting ”no book” for
every token. Despite this seemingly high accuracy score, the model’s actual performance in
identifying book titles would be inadequate, as it would fail to detect any of the book titles
present in the data.

2.3.2 Precision and Recall

In contrast, precision (Equation 2.2) and recall (Equation 2.3) are more informative metrics for
evaluating model performance in this imbalanced context. Precision measures the proportion
of correctly identified book titles out of all tokens predicted as book titles (Grus, 2019). This
helps us understand the accuracy of the positive predictions made by the model. Recall, on the
other hand, measures the proportion of actual book title tokens that were correctly identified
by the model, indicating the model’s ability to capture true positives (Grus, 2019).

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

2.3.3 F1 Score

The F1 score, shown in Equation 2.4, is a more sophisticated metric that combines both precision
and recall. It is the harmonic mean of these two measures, offering a balanced single score (Grus,
2019).
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F1 Score = 2 ∗ Precision ∗Recall

Precision+Recall
(2.4)

2.4 Approaches to Named Entity Recognition

To determine the most suitable NER approach for extracting book titles, this section explores
the high-level conceptual approaches of NER. Jehangir et al. (2023) categorized NER ap-
proaches into three primary categories: rule-based, unsupervised learning, and supervised learn-
ing.

2.4.1 Rule-based

Jehangir et al. (2023) described the rule-based approach as one where a predefined set of rules
is used by the system to identify and classify entities within a text. An example of this approach
is the method currently used by the thesis supervisor to extract book titles from newspaper
archives. Furthermore, Jehangir et al. (2023) identified three major drawbacks of rule-based
approaches: poor generalizability due to their domain-specific nature, the need for advanced
programming skills, and significant human effort to develop these rules. The domain-specific
nature of these rules means that rules effective for one newspaper may not apply to another,
necessitating custom sets of rules for different sources.

2.4.2 Unsupervised

Unsupervised machine learning is typically used for data without labels, employing methods
such as association and clustering (Jehangir et al., 2023). Given that this thesis has access to
a large, labeled dataset, unsupervised methods were not further explored.

2.4.3 Supervised

Supervised machine learning involves training models using labeled data, where each input has
a corresponding expected output (Géron, 2017). Given the limitations of rule-based methods
and the availability of a substantial labeled dataset, this thesis further focused solely on the
supervised approach. A deeper exploration of supervised models for NER is presented in Section
2.5, titled “Models for Named Entity Recognition”.

2.5 Models for Named Entity Recognition

To identify the most effective supervised NER model for extracting book titles, this section ex-
amines several widely-used supervised machine learning models, comparing traditional machine
learning approaches with modern deep learning techniques.

In their survey on NER in historical documents, Ehrmann et al. (2023) distinguished between
two types of supervised machine learning approaches: traditional machine learning and deep
learning. They referred to the traditional machine learning approach as ”pre-neural machine
learning”, which primarily utilizes algorithms that do not involve neural network architectures.
Meanwhile, Jurafsky & Martin (2023) defined deep learning as the application of modern,
multilayered neural networks to model complex patterns and relationships in data.

2.5.1 Traditional Machine Learning

Ehrmann et al. (2023) identified the Conditional Random Field (CRF) classifier as the most
prevalent traditional machine learning model for NER. Meanwhile, in a separate survey focused
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on NER, Jehangir et al. (2023) explored additional traditional machine learning models, in-
cluding Decision Trees, Naive Bayes, Hidden Markov Models, Maximum Entropy models, and
Support Vector Machines. Ehrmann et al. (2023) concluded that the performance of tradi-
tional machine learning approaches in NER is generally significantly lower than that of deep
learning approaches. Supporting this, Wang et al. (2016) demonstrated superior performance
of deep learning in their study, where a Recurrent Neural Network significantly outperformed a
traditional CRF model. They also highlighted how traditional models rely heavily on manual
feature engineering, which can be very time-consuming when creating a custom NER system.

2.5.2 Deep Learning

Collobert et al. (2008) pioneered the use of deep learning for NER with a Convolutional Neural
Network (CNN). Géron (2017) explained that CNNs are utilized in NLP to process text by
applying convolutional layers. These layers employ multiple filters that slide over the input text
data sequentially. Each filter is designed to capture specific local patterns or features within the
text, such as suffixes, prefixes, and combinations of words that are indicative of named entities
(Keraghel et al. 2024). This enables the CNN to extract meaningful features from the text,
and by aggregating these local features, CNNs can effectively extract named entities from large
and complex texts.

Recurrent Neural Networks (RNNs) represent another deep learning model for NER. In contrast
to CNNs, RNNs are specifically designed to handle sequential data (Keraghel et al., 2024).
Sequential data refers to data where the order of elements matters, such as a sequence of words
from a text. Jurafsky & Martin (2023) provided a comprehensive explanation of the RNN’s
functionality. RNNs process a sequence of words by iterating through the words one at a time
while maintaining an “internal memory” (hidden state) that captures information about the
sequence seen so far. They also note a key limitation of RNNs: the vanishing gradient problem.
As the length of the data sequence increases in RNN, the issue of vanishing gradients often
arises. This occurs when the gradients, which represent how much and in what direction the
weights of the neural network should be adjusted during training, become excessively small.
This extremely small gradient effectively prevents the weights from changing, thereby stalling
the network’s learning process. To address this issue, the Long Short-Term Memory (LSTM)
network (Hochreiter & Schmidhuber, 1997) was developed. The LSTM uses gating mechanisms
to tackle the vanishing gradient problem. These gates decide which information is important to
keep or discard in its “internal memory”, avoiding the exponential shrinking that is characteristic
of the vanishing gradient problem.

Yang and Xu (2020) highlighted that the BiLSTM-CRF model, an adapted LSTM network,
was considered the state-of-the-art for NER as of 2020. The BiLSTM-CRF network modifies
the traditional LSTM architecture by processing data both forwards and backwards, a method
known as bidirectional (Jurafsky & Martin, 2023). The outputs from the BiLSTM are then fed
into a Conditional Random Field (CRF), which serves as the final output layer.

Apart from the vanishing gradient problem, traditional RNNs also suffer from what is known
as the bottleneck problem (Jurafsky & Martin, 2023). In RNNs, each item from a sequential
input updates the hidden state, which is expected to encapsulate the entire sequence by the
final item. However, for longer sequences, early inputs can be ”forgotten” due to the limited
capacity of the hidden state. The attention mechanism addresses this by allowing the model to
access information from all hidden states, enabling it to focus on different parts of the sequence
and retain important details.

Building on the attention mechanism, self-attention was developed to further enhance perfor-
mance. Unlike the traditional attention mechanisms that still relied on sequential processing,
self-attention allows each token to interact directly with every other token, enabling parallel
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processing and better capturing long-range dependencies. This innovation led to the trans-
former architecture, introduced by Google in the paper ”Attention is All You Need” (Vaswani
et al., 2017).

While Yang and Xu (2020) identified the BiLSTM-CRF as state-of-the-art, Labusch et al.
(2019) had already shown how BERT (Devlin et al., 2018), an early transformer model, out-
performed the BiLSTM-CRF in NER tasks on historical OCR-scanned German text. Ehrmann
et al. (2023) and Sun et al. (2021) also noted that transformer-based networks are now sur-
passing BiLSTM models, including in the biomedical domain, which, like this study, deals with
specialized custom named entities.

2.5.3 Large Language Models

After analyzing the most popular models on Hugging Face, a collaborative platform for machine
learning models and datasets, we found that Large Language Models (LLMs) are the preferred
method for NER. Chockalingam et al. (n.d.) defined LLMs as “deep learning algorithms that
can recognize, extract, summarize, predict, and generate text based on knowledge gained during
training on very large datasets”. They further explained how LLMs differ from all other language
models that can perform NLP tasks. LLMs are considered large because of two reasons: they
are trained on large amounts of data, and they comprise a huge number of trainable parameters.

Initially, LLMs were predominantly based on RNNs. However, the transformer architecture has
become the preferred choice (Chockalingam et al., n.d.) due to its built-in attention mechanisms,
which effectively capture long-range dependencies and allow for parallel computations. This
results in faster training times, the ability to handle larger datasets, and the capability to train
models with more parameters, leading to superior performance in NLP tasks (Amaratunga,
2023).

2.5.4 Transformer-based Large Language Models

There are numerous transformer-based LLMs, each differing from one another primarily in their
architecture and training methods (Amaratunga, 2023). To understand these differences, we
first need to explore the transformer’s training process, as outlined by Jurafsky & Martin (2023).
The training of transformer models occurs in two main phases: pretraining and fine-tuning.

During the pre-training phase, transformer models use self-supervised learning rather than
the supervised training methods discussed in Section 2.5, titled “Models for Named Entity
Recognition”. In self-supervised learning, the model learns to predict parts of its input data
without relying on explicitly human-labeled data. Two common pre-training tasks are Masked
Language Modeling (MLM) and Next Sentence Prediction (NSP). In MLM, a percentage of the
input tokens are masked, and the model is trained to predict these masked tokens. In NSP, the
model is given pairs of sentences and must determine if the second sentence follows the first in
the original document.

After pre-training, the transformer model is fine-tuned on human-labeled data for specific tasks,
such as NER. The purpose of pre-training is to teach the model the meanings of words and their
relationships within the language, enabling easier learning of the specific task during fine-tuning.

According to Ravichandiran (2021), one of the most popular transformer models that revo-
lutionized the field of NLP is BERT, short for Bidirectional Encoder Representations from
Transformers (Devlin et al., 2018). BERTs training process relies on both MLM and NSP
during pre-training. Its architecture is based on the original transformer model introduced by
Vaswani et al. (2017).
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Liu et al. (2019) identified that BERT was significantly undertrained and introduced an im-
proved version called RoBERTa (Robustly optimized BERT approach). Major enhancements
in RoBERTa include training on a much larger dataset and eliminating the NSP task from the
pre-training process.

2.6 Text Representation

To understand text processing in NER models, it is essential to explore how text is transformed
into a machine-readable format. Text representation bridges human language and machine
learning by converting text into numerical formats that models can interpret and utilize.

Patil et al. (2023) illustrated how early techniques, such as One Hot Encoding, Bag of Words,
Term Frequency, and Inverse Document Frequency, focused on word frequency. These meth-
ods struggled with high-dimensional vector representations in large vocabularies, leading to
inefficiencies in training machine learning models. This limitation was addressed by advanced
representations, called word embeddings.

Word embeddings are derived using neural networks trained in a self-supervised manner, such
as predicting the next word. This method uses a continuous vector space to represent words
as low-dimensional arrays of real numbers. These word embeddings capture both the semantic
and syntactic aspects of words by considering their context. This allows them to identify
relationships, such as synonyms, antonyms, and analogies (Patil et al., 2023). Notable examples
of word embeddings include Word2Vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014),
and FastText (Bojanowski et al., 2017).

The previously mentioned word embeddings are categorized as static word embeddings. Static
word embeddings map each word to a single fixed vector representation, meaning they cannot
account for the different meanings a word might have in various contexts. This limitation
is addressed by dynamic word embeddings, which produce context-dependent representations,
allowing the same word to have different vector representations depending on the context.

BERT (Devlin et al., 2019) uses WordPiece tokenization, developed by Google, which breaks
words into subwords to handle rare or complex words and manage out-of-vocabulary words.
These subwords are converted into numerical representations via a lookup table. BERT’s pre-
training involves creating its own embedding layer, transforming numerical input into dynamic
word embeddings. The exact implementation of WordPiece tokenization remains undisclosed
by Google (WordPiece Tokenization - Hugging Face NLP Course, n.d.).
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Chapter 3

Data

This chapter outlines the data used in this study, detailing its collection, preparation, and
transformation into a usable NER format. Additionally, we analyze the dataset’s composition
and evaluate the quality of the OCR.

3.1 Data Collection

The dataset provided was derived from the Leeuwarder Courant (henceforth: LC ), a Dutch
newspaper with a digital archive dating back to 1752. For this study, only the issues of the
LC from 1962 to 1995 were provided. Due to its national prominence, the LC offers a valuable
resource for studying book reviews. The newspapers were digitized using OCR, which tends to
be less accurate for older issues (Section 3.5, titled “Data Analysis”). An example of erroneous
OCR output from the LC is visualized in Figure 3.2, while an accurate OCR output from the
LC is shown in Figure 3.3.

In the provided dataset (Van Eijnatten, 2024), the book titles were extracted by the thesis
supervisor using a rule-based process involving three main steps:

1. A classical algorithm identified consistent tokens within each book review, extracting
a 600-character segment (title pericope) likely containing the book title. This segment
was compared to the Nederlandse Bibliografie Totaal (henceforth: NBT ) database, which
compiles all books, periodicals, and newspapers published by a Dutch publisher. Matches
were identified based on the intersection of words between the title pericope and the NBT
titles.

2. To address false negatives from faulty OCR, the title pericopes were processed using a
Large Language Model, specifically ChatGPT 4. The results were again matched with
the NBT titles, improving the identification rate.

3. Manual correction ensured the accuracy of the dataset, involving verifying the identified
titles and checking for false positives and negatives. This thorough and time-consuming
process resulted in a precise dataset of book titles extracted from the LC.

3.2 Locating Book Titles in Newspaper Text

A significant challenge in this study was converting the provided dataset into a format suitable
for NER. The original dataset contained book reviews along with a list of book titles derived
from the NBT database. However, these book titles rarely appeared directly in the review texts,
presenting a major obstacle. Ideally, manual annotation of the data directly in an NER format
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would have been the best solution, but due to limited time, this was not feasible. Consequently,
we developed an implementation to locate the given NBT titles within the text of the book
reviews. However, due to the complexity of the task, this implementation is imperfect and often
only partially locates full book titles.

The first step involved preprocessing the text. Both the newspaper content and the book titles
were cleaned to remove extra spaces and converted to lowercase for consistency. Following this,
the algorithm attempted direct matching. Initially, it searched for the exact given title within
the newspaper text. If the exact title was not found, the algorithm checked for partial matches.
It split the title at various delimiters, such as colons, semicolons, equals signs, and commas to
extract the main title, in the hope that this main title was present in the text.

For titles that did not match through direct methods, a fuzzy matching technique was employed.
The algorithm split the title and the newspaper text into tokens and then formed segments from
the text with the same number of tokens as the title. Each segment was compared to the title
using a similarity score. The segment with the highest similarity score was selected as the best
match.

To ensure the accuracy of this fuzzy matching approach, these matched titles were manually
verified. The matched text sometimes missed one or two words from the title in the newspaper
text, but these instances were retained to maintain data quantity. However, matches that
missed too many words of the main title or were almost unrecognizable due to faulty OCR were
marked and later excluded from the dataset. Some examples obtained from the fuzzy matching
approach are shown in Table 3.1.

Table 3.1: Examples of fuzzy matching results for book titles in newspaper content.

Main book title Fuzzy matched text in newspaper content
het weerlicht op de kimmen het weerlicht op de kimmen;
kosmos vogelveldgids van europa ders: “vogelveldgids van europa”.
beter blote jan dan dode jan, en andere uitspraken
van louis paul boon

beter blote jan dode jan en andere “ltsp,eng ran
louis paul boon.”

knotsgekke uitvindingen van de 19e eeuw knotsgekke uitvindingen van de 19de eeuw.

3.3 Formatting Data for Named Entity Recognition

After obtaining the locations of book titles in the newspaper text, the next step was to format
the data for NER using a tagging scheme (Section 2.2, titled “Tagging Schemes”). Archana
et al. (2023) examined methods for handling imbalanced data in NER and demonstrated the
effectiveness of the IO format in addressing this issue. Given that this study also faces sub-
stantial data imbalance (Section 3.5, ”Data Analysis”), the IO tagging format was chosen to be
utilized.

To implement this, the subsequent step involved tokenizing the newspaper text by splitting
it into individual words, resulting in an array of words. Additionally, an array of labels was
generated based on the location of book titles within the text. Each word in the array was
assigned a label: ”I” (Inside) if the word was part of a book reference, or ”O” (Outside) if it
was not. For example, in the sentence ”Recent heb ik het boek De paarden van oranje gelezen”,
the words would be tokenized and labeled as follows: [”Recent”, ”heb”, ”ik”, ”het”, ”boek”,
”De”, ”paarden”, ”van”, ”oranje”, ”gelezen”] would have the corresponding labels [”O”, ”O”,
”O”, ”O”, ”O”, ”I”, ”I”, ”I”, ”I”, ”O”].

15



3.4 Labels from Other Newspapers

In addition to the book titles provided from the LC newspaper, I manually labeled book ti-
tles from other newspapers to evaluate the developed NER system’s generalizability to other
newspapers. This involved detecting articles containing book reviews from the newspapers Het
Parool and Trouw. Due to time constraints, only the articles that were most clearly book reviews
were selected, resulting in 115 book reviews from Trouw and 193 from Het Parool. An article
was clearly a book review if it contained the characters ”blz”, ”ISBN”, and ”ƒ” (the symbol for
the Dutch guilder). The labeling process was streamlined using a Label Studio environment,
an open-source data labeling tool, to facilitate NER labeling.

A significant difference between the Trouw and Het Parool datasets compared to the LC dataset
is that the Trouw and Het Parool datasets are specifically labeled in a NER format. Instead
of matching the given titles to their most likely positions in the book reviews, this approach
labels each occurrence of the title directly in the text. Consequently, in these Trouw and Het
Parool datasets, the title always includes the full book title along with the subtitle. In contrast,
the LC data often required discarding the subtitle to accurately identify the title’s position.
Additionally, if a title appears multiple times in Het Parool or Trouw, it is labeled each time it
is mentioned, unlike in the LC dataset, where difficulties in determining the book title positions
prevented this.

3.5 Data Analysis

In this section, we conduct a quantitative analysis of our datasets and attempt to quantify the
OCR quality.

3.5.1 Leeuwarder Courant

As explained in Section 3.2, titled “Locating Book Titles in Newspaper Text”, we manually
selected 729 fuzzy matches of book titles as insufficient. If a book title within a review was
marked as insufficient, the entire review was excluded. This step is crucial to avoid a dataset
where some tokens that represent book titles in the review text were incorrectly annotated as
non-book titles, which would have misled the model and potentially decreased its performance.
Consequently, 594 book reviews were removed from the initial dataset.

From the LC data, we compiled a total of 12,535 book reviews, encompassing 23,529 book titles.
This dataset contains a total of 7,643,958 tokens, with 110,018 of these tokens being book titles.
As a result, book titles represent only 1.4% of the total tokens, indicating a significant class
imbalance.

3.5.2 Het Parool & Trouw

In Section 3.4, titled “Labels from Other Newspapers”, we discussed the creation of two sec-
ondary datasets, which includes 115 book reviews from Trouw and 193 from Het Parool. The
Het Parool dataset consists of 119,597 tokens in total, with 2,931 of these tokens representing
book titles, while the Trouw dataset consists of 101,640 tokens in total, with 1,333 of these
tokens representing book titles. Similar to the LC dataset, these secondary datasets exhibit a
significant class imbalance, with book titles accounting for 2.5% of the total tokens in the Het
Parool dataset and 1.3% in the Trouw dataset.
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3.5.3 Optical Character Recognition Quality

To further assess the quality of our dataset, we attempted to quantify the OCR accuracy. This
was done by splitting each review into individual words and determining the percentage of words
that are present in dictionaries. For Dutch words, we used the dictionary from opentaal.org,
which contains a total of 164,105 words. Additionally, since some German books are reviewed,
we included a German dictionary from openthesaurus.de, containing 164,913 words. Figure 3.1
shows the results of the percentage of words found in the dictionaries over time. This analysis
provides an indication of the OCR accuracy, but it is important to note that the dictionaries do
not include every Dutch and German word or their derivatives. These were the most complete
open-source dictionaries available for download.

Figure 3.1 indicates that the OCR performance is generally better for the Trouw data compared
to LC. This may be attributed to the method used to distinguish book review articles from other
articles in the newspapers Het Parool and Trouw, which relies on the presence of the key terms
“blz”, “ISBN”, and “ƒ” in the text. Articles with OCR errors in these key terms were ignored,
resulting in the exclusion of some poorly OCR’d articles.

Figure 3.1: Percentage of tokens from the book review articles present in Dutch or German
dictionaries over time for the newspapers Het Parool, Trouw, and Leeuwarder Courant.
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Figure 3.2: Example of inaccurate OCR from the Leeuwarder Courant (30-06-1958) showing
the original text (left) and the erroneous OCR output (right).

Figure 3.3: Example of accurate OCR from the Leeuwarder Courant (04-08-1982) showing
the original text (left) and the accurate OCR output (right).
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Chapter 4

Methodology

This chapter outlines the experiments conducted to identify the best NER model for extracting
book titles from book review articles, as well as the methodologies used to evaluate model
performance. Initially, the models employed in these experiments are described in detail.

4.1 Models

In this section, we introduce the NER models utilized in this study and outline the rationale
behind their selection, starting with the simplest model and progressing to the most complex.
Additionally, we discuss the loss function used in the training process.

4.1.1 Baseline and SpaCy

To develop a NER system for extracting book titles from historical newspapers, we established
a baseline model as a performance benchmark. This ensures that improvements from more
complex models are meaningful.

For our baseline, we utilized SpaCy, an open-source NLP library, specifically its “nl core news lg”
model. This pre-trained model is trained on Dutch text, including news articles, and is capa-
ble of identifying a range of entities within Dutch texts. For our purposes, we focused on the
”work of art” entity, which includes titles of books, songs, and other artistic works. While the
baseline model may not achieve the highest performance compared to more specialized models,
its ease of use and accessibility make it a valuable initial tool.

Additionally, we leveraged SpaCy’s capability to fine-tune the pre-trained model on our custom
training data. This adaptability could enhance the recognition of our specific entity. However,
SpaCy’s streamlined training process has limitations, restricting the ability to customize various
training aspects, which may limit performance improvements. SpaCy’s NER model architecture
is based on a Convolutional Neural Network (CNN), as detailed in its official documentation.

4.1.2 BiLSTM-CRF

Despite the recognition of transformer-based models as the state-of-the-art in NER, their per-
formance in contexts with substantial class imbalance remains underexplored. Therefore, this
study also incorporated the previous state-of-the-art, the BiLSTM-CRF model, for a compara-
tive analysis.

Training the BiLSTM-CRF model requires converting text into numeric representations, as
detailed in Section 2.6, titled “Text Representation”. This study exclusively used pre-trained
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Dutch word embeddings for this transformation. Various embeddings were evaluated based on
the proportion of unknown tokens in the training data. GloVe embeddings (Pennington et al.,
2014) classified 24% of tokens as unknown, while FastText embeddings (Bojanowski et al., 2017)
marked only 2% as unknown. Consequently, FastText was chosen for this study.

4.1.3 Transformer-based Large Language Models

In addition to the BiLSTM-CRF, this research employed the current state-of-the-art: transformer-
based models. Liu et al. (2021) demonstrated that domain-specific fine-tuning of transformer
models enhances performance if the model has been previously fine-tuned on another NER
task. Hugging Face hosts numerous fine-tuned NER transformer models. For this study, sev-
eral popular Dutch models from Hugging Face, already fine-tuned on NER tasks, were further
fine-tuned on our dataset using the default hyperparameters as specified in the Hugging Face
token classification tutorial (Token Classification, n.d.).

• WikiNEuRal (Tedeschi et al., 2021): A multilingual BERT model fine-tuned on NER
tasks across nine languages, including Dutch and German.

• xlm-roberta-large-finetuned-conll03-english : An XLM-RoBERTa model (Conneau
et al., 2019) pre-trained on 2.5 terabytes of data in 100 languages, including Dutch, and
fine-tuned on the CoNLL-2003 NER dataset (Sang et al., 2003).

• robbert-v2-dutch-ner (Delobelle et al., 2020): A RoBERTa-based model fine-tuned
specifically for Dutch NER tasks.

• BERTje (De Vries et al., 2019): A BERT-based model pre-trained on Dutch data,
including contemporary and historical fiction, and the Multifaceted Dutch News Corpus
(Ordelman et al., 2007). After pre-training, it was fine-tuned on the CoNLL-2002 dataset
(Sang, 2002).

4.1.4 Loss Function

The loss function is essential for training neural networks, measuring how well the model’s
predictions align with actual target values. During training, the neural network adjusts its
weights to minimize the loss function. Initially, the transformer-based models and the BiLSTM-
CRF model struggled to learn effectively due to significant class imbalance in the training data
(Section 3.5, titled “Data Analysis”). The default Cross-Entropy loss function led to models
predicting that all tokens were ”no book.”

Nemoto et al. (2024) addressed this issue by developing a loss function capable of handling
class imbalance. They introduced the Majority or Minority (MoM) loss function, which out-
performed other commonly used loss functions for NER tasks with class imbalance in their
comparative analysis. Therefore, the MoM loss function was used for training all transformer-
based models and the BiLSTM-CRF model. However, the “user-friendly” SpaCy model did not
easily accommodate a custom loss function.

4.2 Experimental Setup

This section outlines the experiments conducted to tune the BiLSTM-CRF model, select the
best model from various transformer models, and finally compare these two models with the
baseline and the trained Spacy model with the goal to determine the overall superior NER
model. Detailed descriptions of the models used in each experiment can be found in Section
4.1, titled “Models”.
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The datasets used for these experiments are further detailed in Chapter 3, titled “Data”. The
LC dataset was divided into training (70%), validation (15%), and test (15%) sets. This division
was performed at the review level, ensuring that a review cannot be present in more than one
split, thereby preventing any overlap between the training, validation, and test sets. This
approach allows for a realistic evaluation of the model’s performance. The training set was used
to train the NER models, the validation set was utilized to determine the hyperparameters
and for model selection, and the test set provided an unbiased evaluation of the final model’s
performance. The Het Parool and Trouw datasets were retained as single units to function as
secondary test sets, intended to evaluate the generalizability of the NER models across different
newspapers.

For each experiment involving a training procedure, the maximum batch size was employed to
optimize computational efficiency. Training was conducted on a GPU to ensure that the models
were trained within a feasible timeframe. Details of the computational resources used in these
experiments are provided in Appendix A.

4.2.1 Limitations

In this study, we did not compare the developed models to the existing rule-based approach
detailed in Section 3.1, “Data Collection”. The primary reason was that the rule-based ap-
proach involved numerous manual actions within its algorithm, making it unfair to compare
our autonomous models to this manually intensive method. Moreover, the performance mea-
surements of the rule-based approach were recorded in a limited manner, preventing an accurate
determination of an F1 score. Therefore, this study did not focus on determining whether the
autonomous algorithm outperformed the manual intensive approach, but rather on evaluating
the effectiveness of an autonomous approach in performing this task.

A second limitation of this study was that it relied solely on the provided OCR-scanned text
and did not involve performing OCR on images independently.

4.2.2 Tuning the BiLSTM-CRF

The first experiment involved a hyperparameter search to determine the optimal number of
memory units in the BiLSTM-CRF model. Three variations of the model, each with 50, 100,
or 200 memory units, were trained for 20 epochs with a batch size of 64. The F1 score on the
validation set was recorded at each epoch, enabling the determination of the optimal number
of training epochs through a callback mechanism. The final BiLSTM-CRF model selected was
the one with the best overall performance on the validation set.

4.2.3 Comparing the Transformer-based Large Language Models

The second experiment evaluated multiple transformer-based LLMs to identify the best per-
former. Each LLM was trained for 20 epochs with batch sizes as shown in Table 4.1. As with
the BiLSTM-CRF model, the F1 score on the validation set was recorded at each epoch to
determine the optimal number of epochs through a callback mechanism. The LLM with the
highest overall F1 score on the validation set was chosen as the final transformer-based LLM
for this study.

4.2.4 SpaCy

No experimentation was needed to optimize the SpaCy approaches. The pre-trained SpaCy
model (baseline) required no hyperparameter tuning. For the fine-tuned SpaCy model on our
training data, default settings were used.
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Table 4.1: Batch sizes used during training for each transformer-based large language model.

Model Batch size

WikiNEuRal 16

xlm-roberta-large-finetuned-conll03-english 2

robbert-v2-dutch-ner 16

BERTje 16

4.2.5 Final Comparison

The final experiment was conducted after selecting the best transformer-based LLM and the
best BiLSTM-CRF model, both determined using the validation set from the LC data. In
this experiment, all final NER models were compared: the SpaCy model (baseline), the fine-
tuned SpaCy model, the best transformer-based LLM, and the optimized BiLSTM-CRF model.
These comparisons were made using the LC validation set, LC test set, Het Parool dataset,
and Trouw dataset. The evaluation methods for model performance are detailed in Section 4.3,
titled “Performance Evaluation”.

4.3 Performance Evaluation

This section outlines the methods used to evaluate the model’s performance, assessed through
two primary approaches: token classification performance and the accuracy of book identifi-
cation. For the experiments aimed at identifying the best performing NER model, only token
classification performance was considered. After selecting the best NER model, the performance
of the identified books was evaluated.

4.3.1 Token Classification Performance

The token classification evaluation measured how accurately tokens were identified as either ”I”
(indicating a book title) or ”O” (indicating no book title). This assessment utilized the metrics
recall, precision, and F1 score, which are detailed in Section 2.3, titled “Evaluation Metrics”.

4.3.2 Book Identification Performance

Beyond token-level performance, this study primarily focuses on the accurate identification of
books mentioned within book review articles. This evaluation involved matching the extracted
tokens to the most similar book title in the NBT database. Using the LC dataset, which
contains the exact titles from the NBT for each book review, recall, precision, and F1 scores
were calculated by comparing the set of identified book titles with the set of actual book titles.

Matching to the NBT has several advantages, as it reveals a wealth of additional information
about the actual book, such as the ISBN number and genre, thereby enriching the dataset and
providing more context for further analysis

In addition to the LC data, Philippa Linardatos, a fellow student working on a similar study,
utilized the NER datasets from the newspapers Het Parool and Trouw to manually identify the
reviewed book titles from the NBT. This effort extends the datasets beyond the NER format
to match the original format of the LC dataset, allowing for performance evaluation of book
identification in other newspapers. A limitation of this approach is that the newspapers Het
Parool and Trouw review several non-Dutch books not included in the NBT, which were ignored
as this study is restricted to the NBT.
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The matching of extracted book title tokens to titles in the NBT was performed by calculat-
ing the Levenshtein distance between the NER output and the titles in the NBT. The NBT
title with the highest similarity score was selected. Given the computational expense of this
process, considering the NBT from 1930 until 1995 contains 1,954,801 books, we restricted our
analysis to a subset of books published within three years before the book review’s publication.
This approach is justified as 98% of the books in the training data were published within this
timeframe.

23



Chapter 5

Results

In this chapter, the results of the experiments are presented. The training history of all models
that required a training procedure is depicted in Appendix B, showing the F1 score on the
validation data and the loss on the training data over epochs.

5.1 BiLSTM-CRF

The results from the hyperparameter tuning to determine the number of memory units for the
BiLSTM-CRF are shown in Table 5.1. The table highlights three different configurations of
memory units: 50, 100, and 200. As the number of memory units increases, the total number
of parameters (model size) also increases from 141,010 to 804,010.

The F1 score on the LC validation data shows a consistent improvement with the increase in
memory units, going from 66.9% for 50 units to 68.8% for 200 units. However, the training
time also varies with the number of memory units, with 100 units yielding the shortest training
time of 278 minutes, whereas 50 and 200 units require 310 and 318 minutes, respectively. This
varying training time is influenced by other computations and computer programs running
simultaneously during the training of the models, which could explain why the smallest model
is not the fastest.

Table 5.1: Results from hyperparameter tuning to determine the number of memory units for
the BiLSTM-CRF model, including total number of parameters, F1 score on Leeuwarder

Courant validation dataset, and training time.

Number of
Memory Units

Total Number
of Parameters
(model size)

Leeuwarder Courant
Validation F1 score (%)

Training Time
(minutes)

50 141,010 66.9 310

100 322,010 68.0 278

200 804,010 68.8 318

5.2 Transformer-based Large Language Models

The results from training several transformer-based LLMs are presented in Table 5.2. Among
the models tested, the xlm-roberta-large-finetuned-conll03-english model achieved the highest F1
score on the LC validation dataset, with a score of 83.9%. However, this model also required the
longest training time at 624 minutes, which is substantially longer compared to the other models.
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This extended training duration is attributable to the model’s larger number of parameters
that needed to be adjusted during training. Additionally, hardware limitations, particularly the
GPU’s limited VRAM (Appendix A), restricted the maximum batch size for training this larger
model to 2 (Table 4.1), whereas the other models were trained with a batch size of 16. This
smaller batch size further contributed to the increased training time.

Table 5.2: Results from training several transformer-based large language models, including
total number of parameters, F1 score on Leeuwarder Courant validation dataset, and training

time.

Hugging Face
Transformer model

Total Number
of Parameters
(model size)

Leeuwarder Courant
Validation F1 score (%)

Training Time
(minutes)

WikiNEuRal 177,264,386 80.3 108

xlm-roberta-
largefinetuned-
conll03-english

558,842,882 83.9 624

robbert-v2-dutch-ner 116,173,058 78.7 110

BERTje 108,548,354 78.5 111

5.3 Final Comparison

This section compares the final models from previous experiments based on their token classifi-
cation performance. Additionally, for the best model, an analysis was conducted to determine
how many books were correctly identified by matching predictions to the NBT.

5.3.1 Token Classification

Table 5.3 presents the final token classification results on the LC validation set and LC test set
from four models: the baseline model, the trained SpaCy model, the best BiLSTM-CRF model,
and the best transformer-based LLM. Table 5.4 shows the results from these same models on
the Trouw and Het Parool datasets.

In the LC validation set, the baseline model performed poorly, whereas the other models demon-
strated much better performance, indicating that training on our own dataset enhances results.
The BiLSTM-CRF model achieved an F1 score of 68.8%, precision of 73.8%, and recall of
64.4%, outperforming the trained SpaCy model. The transformer-based model, xlm-roberta-
large-finetuned-conll03-english, exhibited the highest performance with an F1 score of 83.9%,
precision of 82.9%, and recall of 85.0%, demonstrating its superior effectiveness on this dataset.

In the LC test set, performance trends were similar to the validation set, with all models
outperforming the baseline. The xlm-roberta-large-finetuned-conll03-english model again showed
the highest performance.

In both the Het Parool and the Trouw datasets, the baseline model performed better compared
to the other LC sets, but still lagged behind the more complex models. The transformer-based
model continued to lead, achieving an F1 score of 54.2%, precision of 80.6%, and recall of 40.8%
on the Het Parool dataset, and an F1 score of 60.4%, precision of 74.8% and recall of 50.6% on
the Trouw dataset. All models showed notably high precision relative to recall. This suggests
that when a model identifies a token as a book title, it is usually correct (high precision), but
several book title tokens are missed (lower recall). This pattern indicates that the models are
conservative in their predictions, opting to classify a token as a book title only when they

25



are confident. This conservative approach reduces false positives, but results in several true
positives being missed.

Table 5.3: Final token classification results from the best model in each category, including
F1 score, precision, and recall on the Leeuwarder Courant validation set and Leeuwarder

Courant test set.

Leeuwarder Courant
validation

Leeuwarder Courant
test

Named Entity
Recognition model

F1
(%)

Precision
(%)

Recall
(%)

F1
(%)

Precision
(%)

Recall
(%)

Baseline (SpaCy) 9.6 12.8 7.7 9.1 12.5 7.2

Trained Spacy 64.9 74.7 57.3 63.9 74.3 56.0

BiLSTM-CRF (200
memory units)

68.8 73.8 64.4 69.0 74.8 64.0

xlm-roberta-large-
finetuned-conll03-
english

83.9 82.9 85.0 84.3 83.4 85.2

Table 5.4: Final token classification results from the best model in each category, including
F1 score, precision, and recall on the Trouw dataset and the Het Parool dataset.

Het Parool Trouw

Named Entity
Recognition model

F1
(%)

Precision
(%)

Recall
(%)

F1
(%)

Precision
(%)

Recall
(%)

Baseline (SpaCy) 25.7 36.6 19.9 10.0 17.1 7.1

Trained Spacy 27.6 70.0 17.2 40.7 74.4 28.1

BiLSTM-CRF (200
memory units)

34.7 79.6 22.2 34.3 71.8 22.5

xlm-roberta-large-
finetuned-conll03-
english

54.2 80.6 40.8 60.4 74.8 50.6

5.3.2 Book Identification

The transformer-based LLM, xlm-roberta-large-finetuned-conll03-english, demonstrated supe-
rior NER performance on the LC validation, LC test, Het Parool, and Trouw datasets. Con-
sequently, this model was selected for further assessment. In addition to its token classification
performance, the model’s accuracy in identifying books mentioned in book review articles was
evaluated. Table 5.5 presents the metric scores, and Table 5.6 displays the true positives, false
positives, and false negatives in absolute numbers.

The model demonstrated similar performance in book identification across all three newspaper
datasets. Notably, the Trouw dataset achieved a higher precision score of 68.8%, compared to
65.9% for the LC test set. These findings indicate that the model generalizes reasonably well
to newspapers it was not trained on.
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Table 5.5: Performance of the xlm-roberta-large-finetuned-conll03-english model in
identifying books mentioned in book review articles. The model’s F1 score, recall, and precision

on the Leeuwarder Courant test, Het Parool, and Trouw datasets.

Dataset F1 (%) Recall (%) Precision (%)

Leeuwarder Courant test 59.4 54.1 65.9

Trouw 58.8 51.4 68.8

Het Parool 54.2 48.2 61.9

Table 5.6: Performance of the xlm-roberta-large-finetuned-conll03-english model in
identifying books mentioned in book review articles. The model’s true positives, false positives,

and false negatives on the Leeuwarder Courant test, Het Parool, and Trouw datasets.

Dataset True Positives False Positives False Negatives

Leeuwarder Courant test 1880 974 1598

Trouw 55 25 52

Het Parool 26 16 28
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Chapter 6

Discussion

This chapter examines the potential impact of faulty Optical Character Recognition (OCR) on
extracting book titles from historical texts. We analyze the predictions of a transformer-based
model, noting its strength in NER, but its difficulty in accurately matching titles to the NBT.
Finally, we compare our results with existing literature to contextualize our findings.

6.1 Impact of Faulty Optical Character Recognition

A qualitative analysis of the provided book reviews reveals the inherent imperfections of OCR.
Although a quantitative method to assess OCR accuracy is outlined in Section 3.5, titled “Data
Analysis”, pinpointing an exact accuracy rate remains challenging. The quantitative analysis
offers only an approximation, indicating that while OCR accuracy is improving over time, it is
still not flawless.

A relevant study conducted by Hamdi et al. (2019) investigated the impact of faulty OCR on
NER tasks using an LSTM-CRF model. They introduced OCR noise to determine its effect on
performance. Their findings demonstrated that increasing the Word Error Rate (WER) from
1% to 7% and the Character Error Rate (CER) from 8% to 20% in OCR outputs resulted in a
substantial drop in the F1 score from 90% to 60%. WER quantifies the percentage of incorrectly
recognized words, while CER measures the percentage of incorrectly recognized characters.
Their study conclusively showed how faulty OCR can drastically affect NER performance.

Unfortunately, since we cannot determine the exact OCR accuracy, we cannot precisely measure
the impact of faulty OCR on extracting book titles from historical newspapers. However, it is
likely that our results were impacted by the OCR.

6.2 Manual Analysis of Named Entity Recognition Predictions

This section further analyzes the best performing transformer-based LLM, emphasizing its
strengths and weaknesses based on a manual review of its predictions on the test datasets
to explain the observed F1, recall, and precision metrics. Several predictions used for this
analysis are visualized in Appendix C.

To begin with, it stands out how the model accurately classifies tokens as book titles, resulting
in very few false positives, which aligns with its high precision score.

Additionally, the model consistently identifies book titles without duplicating them when they
appear multiple times in the text. It marks only one instance of each title, reflecting the
structure of the training data in which each book title was annotated just once (Section 3.2,
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”Locating Book Titles in Newspaper Text”). Consequently, the annotated positions do not
always match where the model marks that same title in the text. This discrepancy contributes
to the model’s lower recall score. For the purpose of this research, it ultimately has no impact
if a book is mentioned multiple times in the text, as we only need to identify it once. However,
this characteristic does impact the measured NER performance.

Moreover, the tokens predicted as book titles often exclude the full title, frequently omitting
subtitles. This is again logical, as subtitles had to be frequently omitted to accurately locate
the book title in the text (Section 3.2, titled “Locating Book Titles in Newspaper Text”). This
observation contributes to the lower recall score for the test examples that did include the
subtitle.

Finally, there is a substantial difference in the model’s performance when applied to the LC
test dataset compared to the Het Parool and Trouw datasets. This discrepancy arises because
the LC data was initially not annotated directly in a NER format, whereas the Het Parool and
Trouw datasets were. In the Het Parool and Trouw datasets, each occurrence of a book title
was annotated, leading to multiple annotations for the same title. In contrast, the LC data
only provides a single annotation per title. As a result, the model was trained to predict only
a single instance of each title, which causes a much lower recall score for the Het Parool and
Trouw datasets compared to the LC dataset. Despite this, the precision score remains high for
both datasets, likely because the single instance predicted by the model tends to be accurate.

To address these shortcomings, a potential solution is to annotate the training data directly in
a NER format, rather than inferring the most likely positions of book titles from the NBT. This
approach ensures the highest quality of labels by correctly annotating the entire title, including
subtitles, and consistently marking each occurrence of a title within the text.

6.3 Challenges in Book Identification through NBT Matching

Despite achieving a high performance at the NER level, the results of matching to the NBT
to evaluate the model’s ability to identify books mentioned in texts were not as satisfactory as
anticipated. An analysis was conducted to understand the cause of the suboptimal performance,
using the actual labels to assess whether perfect NER predictions would improve matching to
the NBT. However, this analysis revealed that even with perfect NER predictions, the match
to the NBT only yielded an F1 score of 65.5%. This is because the main title of a book alone
is insufficient for accurate matching to the NBT. Including additional information, such as the
subtitle, author, and possibly the publisher would likely enhance the matching quality. Here
again, arises the issue that the training data was not initially labeled in an NER format.

6.4 Transformer-based NER Models Confirmed as State-of-the-
art

The results of this study support the findings of Labusch et al. (2019), Ehrmann et al. (2023),
and Sun et al. (2021), which assert that transformer-based NER models are state-of-the-art.
Despite a notable gap in the literature regarding the performance of these models in contexts
with substantial class imbalances, this study demonstrates that transformer-based NER models
maintain their state-of-the-art status even under such challenging conditions. This study further
confirms why transformers are preferred over RNNs in the context of LLMs, beyond their
superior performance. While the BiLSTM-CRF model, with 141,010 parameters, required 310
minutes to train, the transformer model, with 177,264,386 parameters, completed training in
just 108 minutes. Consequently, transformers enable the development of even larger models and
facilitate training on more extensive datasets in less time, making the LLMs even larger.
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Chapter 7

Conclusion & Future Work

This thesis aimed to answer the question: “To what extent can Named Entity Recognition
be utilized to autonomously extract book titles from OCR-scanned historical newspapers, thereby
facilitating deeper cultural and literary analyses?”. The findings reveal that a transformer-based
large language model can accurately and autonomously extract text representing book titles
from book reviews within historical newspapers. The results demonstrate that transformer-
based models outperform both the BiLSTM-CRF model and SpaCy models, showcasing their
superior performance in Named Entity Recognition (NER) tasks for this specific application.
Specifically, the transformer model achieved an F1 score of 84.3% on the test dataset.

In addition to assessing performance on a NER level, an evaluation was conducted to measure
how well the best NER model could identify the actual discussed books. This was achieved
by matching the extracted book title text to the titles in the Nederlandse Bibliografie Totaal
(NBT ), a comprehensive compilation of all books published by Dutch publishers. However,
although accurate NER performance, these results showed suboptimal performance with an F1
score of 59.4%. This discrepancy was primarily due to the training data not being explicitly
labeled for NER applications, and efforts to repurpose it as an NER dataset proved insufficient.
Consequently, the model frequently missed subtitles, leading to incomplete title extraction.
Further analysis indicated that even with perfect NER predictions, the match to the NBT
yielded an F1 score of only 65.5%. This low score underscores the necessity for additional
information beyond the main title, such as subtitles, authors, and possibly publishers, to achieve
accurate title matching to the NBT.

For future work, it is strongly recommended to annotate a dataset directly for NER to enhance
both NER performance and its matching with the NBT. Ideally, this dataset should be format-
ted for Nested Named Entity Recognition (nested NER), a method that identifies hierarchical
entities within the text. This approach enables the extraction of sub-entities within larger enti-
ties. In the context of book titles, nested NER would distinguish the main title, subtitle, author,
and publisher as separate entities within a single bibliographic entry. Moreover, the labeling
process for NER can be simplified by using the tool Label Studio, which offers an intuitive
interface for annotating data efficiently.

Additionally, it would be valuable to explore various methods for post-processing faulty OCR
to potentially improve overall performance. By refining the OCR text before applying NER,
the accuracy of extracted book titles could be significantly increased, thereby enhancing the
quality of cultural and literary analyses.
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Appendix A

Hardware specifications

Details of the hardware used for the experiments.

Processor: AMD Ryzen 7 3700X 8-Core
RAM: 32 GB
GPU: NVIDIA GeForce RTX 3060 12GB
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Appendix B

Training history

Plots of the training history of the models.

B.1 SpaCy

Figure B.1: Training history of SpaCy model.
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B.2 BiLSTM-CRF

Figure B.2: Training history of BiLSTM-CRF model (50 memory units).

Figure B.3: Training history of BiLSTM-CRF model (100 memory units).

36



Figure B.4: Training history of BiLSTM-CRF model (200 memory units).

B.3 Transformer-based Large Language Models

Figure B.5: Training history of BERTje.
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Figure B.6: Training history of robbert-v2-dutch-ner.

Figure B.7: Training history of wikineural-multilingual-ner.
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Figure B.8: Training history of xlm-roberta-large-finetuned-conll03-english.
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Appendix C

Prediction examples on unseen data

Examples of predictions made by the final model (xlm-roberta-large-finetuned-conll03-english)
on unseen data.

C.1 Leeuwarder Courant
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C.2 Het Parool
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C.3 Trouw
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