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Developing innovative methods for measuring body temperature 

in preterm infants to enhance prediction of late-onset sepsis 
 

 

 

 

Abstract 

Background and aim: Significant progress has been made in employing machine learning 

algorithms to predict late-onset sepsis (LOS). Despite the availability of body temperature 

measurements, it is underutilized due to external influences like incubator temperature. This 

study aimed to develop new methods to measure body temperature. 

Methods: In this retrospective cohort study, preterm infants (GA < 32 weeks) from the 

Wilhelmina Children’s Hospital (WKZ) were included. Patients were divided into LOS or 

control groups based on blood culture results. Body and incubator temperatures were 

extracted around the time a positive blood culture collection, and equivalent timestamps for 

controls. Two methods were evaluated at five time points: at blood culture collection (t=0), 

two hours after (t=2), and twenty-four (t=-24), four (t=-4), and two (t=-2) hours before. 

Firstly, the absolute median difference over the past 30 minutes was assessed for each time 

point. The second method focused on the disparity between body and incubator temperatures. 

Differences between group were tested using the Wilcoxon singed-rank test. 

Results: After matching, two groups of 362 patients were analysed. The MAD showed 

significant differences at t=0 and t=2. The body-incubator temperature difference showed 

significant results at t=-2, t=0 and t=2.  

Conclusion: Both methods demonstrated differences in body temperature measures between 

LOS and control groups at various time points, indicating their potential for integrating body 

temperature into machine learning algorithms. 
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1. Introduction 

Neonatal sepsis is still a significant contributor to the global neonatal mortality rate 

(Fleischmann et al., 2021). It has been estimated that there is a global incidence rate for 

neonatal sepsis of approximately 2.200 per 100.000 births, with mortality rates between 11% 

and 19% (Fleischmann-Struzek et al., 2018). Sepsis is a systemic, life-threatening condition 

as a result of a dysregulated response to an infection, which can lead to multiple organ 

dysfunction (Popescu et al., 2020). In premature infants, a distinction is made between two 

types of sepsis: early-onset sepsis (EOS) and late-onset sepsis (LOS). EOS typically occurs 

within the first 72 hours after birth, whereas LOS manifests after 72 hours (Köstlin-Gille et 

al., 2021). An infection that leads to EOS is most commonly due to transmission during birth 

(Fedaa Noah et al., 2022). LOS is mainly caused by nosocomial infection but can also be 

caused by infections through community environments, such as contact from healthcare 

workers or caregivers (Coggins & Glaser, 2022). Current research will focus on LOS. 

Besides the high mortality rates, LOS can have severe long-term consequences, even 

with adequate treatment (Sewell et al., 2021). Research has shown that neonatal infections are 

associated with poor growth and increased risk of neurodevelopmental problems (Cai et al., 

2019; Strunk et al., 2014). Those neurodevelopmental problems can consequently lead to 

neurocognitive impairment of motor, cognitive, language, and behavioural skills (Pek et al., 

2020). In addition to its physical implications, LOS can lead to prolonged hospitalization, 

thereby increasing hospitalization costs (Kaye et al., 2014). Given the high mortality rates and 

the possible implications after adequate treatment, a timely LOS diagnosis is of utmost 

importance (Dong & Speer, 2015). 

 However, diagnosing LOS is a lengthy and challenging process due to several factors. 

The symptoms are often nonspecific and can mimic other conditions such as inflammatory 

syndromes (Bethou & Bhat, 2022; Nyenga et al., 2021). Early clinical signs include 
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worsening respiratory distress, feeding intolerance and temperature instability (Walker et al., 

2019). The golden standard for a diagnosis, a positive blood culture, can take up to two days 

to confirm and may suffer from contamination (Guido et al., 2016; Wagstaff et al., 2019). Due 

to the high fatality risk of LOS, antibiotics may be started without confirmed positive blood 

cultures, or even after negative results. This can lead to longer hospital stay, increased 

mortality and antimicrobial resistance (Grant et al., 2018; Korang et al., 2021; Thomas et al., 

2024). Given the importance of diagnosing LOS and the limitations of current methods, it 

could be feasible to explore alternative techniques. Machine learning algorithms could offer a 

way to assist healthcare providers with diagnosing by making predictions on available data 

(Garstman et al., 2023; Sahu et al., 2022). Research has shown that hidden patterns in vital 

sign data can show the status of an upcoming disease hours before becoming clinically 

apparent (Kumar et al., 2020; Wiens & Shenoy, 2018). By using the available data and 

identifying potential underlying patterns, it may become possible to predict LOS earlier than 

the conventional methods (Meeus et al., 2024). 

There have already been numerous studies that looked into the possible applications of 

machine learning algorithms for predicting LOS (O’Sullivan et al., 2023; Sahu et al., 2022). 

The results of these studies demonstrate that machine learning models can make a significant 

contribution to the prediction of LOS. Some models also exhibited a strong performance in 

early prediction (Cabrera-Quiros et al., 2021; Song et al., 2020). By utilizing vital markers 

such as heart rate, blood pressure and oxygen saturation, it was possible to make a prediction 

5 to 48 hours before the onset of clinical symptoms. More recently, a study from van den Berg 

et al. (2023) aimed to develop a model that is also applicable within the clinical field, with the 

aim of making it useful for clinicians. This shows that significant progress is being made in 

the field of prediction modelling for LOS, but some areas remain underexplored. A major 
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opportunity may lie in expanding the use of low-resolution vital data, which is often readily 

available (Chen et al., 2010). 

Body temperature is one of these vital markers that is often not incorporated into 

machine learning models (Verstraete et al., 2015). An important reason for this is that body 

temperature is often perceived as too nonspecific as a clinical sign (Bekhof et al., 2013). This 

can be attributed to various reasons. Firstly, temperature exhibits significant variability within 

and between patients, making it difficult to establish a clear trend (Ahmad et al., 2016; Frazer 

et al., 2019). Another significant issue with body temperature, is that the temperature of 

neonatal infants can be significantly influenced by external factors (Kumar et al., 2020). 

Especially the incubator temperature may pose challenges in obtaining accurate 

measurements of the actual body temperature (Shah & Padbury, 2014). When changes in body 

temperature are observed, the incubator temperature can be manipulated to prevent extremely 

high or low body temperatures of the infant, and stabilize the body temperature (Bekhof et al., 

2013). Therefore, it becomes difficult to discern whether the baby’s temperature is intrinsic or 

a result of the incubator’s temperature regulation (Bekhof et al., 2013). 

Despite the disadvantages associated with measuring body temperature, the inclusion 

could provide valuable information. First of all, temperature is one of the clinical signs that 

may indicate the onset of neonatal sepsis (Sullivan & Fairchild, 2022). Due to systemic 

inflammation, sepsis is often associated with alterations in body temperature, such as fever or 

hypothermia (Rumbus & Garami, 2018). Additionally, temperature is a vital sign that is 

relatively easy to measure. Often, body temperature is one of the first parameters that is 

measured in the neonatal intensive care units (NICU) (Smith, 2014). Another benefit of using 

body temperature is that the measurement process itself is often not highly invasive for a 

neonatal infant, especially the data that is routinely collected via sensors, such as in the diaper 

or axillary (Lei et al., 2021). Given these benefits associated with using body temperature, it 
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becomes clear that developing a reliable measure of body temperature without the effects of 

the incubator can be highly valuable. 

Recent advancement in the measurement of body temperature have shifted towards 

different and novel methodologies. One approach focuses on the variability in body 

temperature rather than fixed thresholds, suggesting it could be a better indicator for 

infections (Coiffard et al., 2023; Drewry et al., 2013). However, there is no clear consensus in 

the literature on the direction of this relationship. While some studies suggest an increased 

temperature variability in LOS patients compared to controls (Bekhof et al., 2013; Bhavani et 

al., 2019), others propose that LOS may reduce temperature variability (Buchan et al., 2012; 

Papaioannou et al., 2019). Therefore, it might be valuable to re-examine the direction of this 

effect. Another approach involves the use of central-peripheral temperature differences as a 

clinical marker for LOS. This method monitors the difference between the central and 

peripheral body temperature, where differences exceeding two degrees Celsius over a 

continuous period of four hours might be a significant indicator for LOS (Leante-Castellanos 

et al., 2017; Patil et al., 2023; Ussat et al., 2015). This study also demonstrates that if this 

difference maintains for four hours, it remains resistant to changes in incubator temperature 

(Leante-Castellanos et al., 2017).  

These advancements in temperature measurement are promising. However, limited 

research has been conducted exclusively on the interaction between body temperature and 

incubator temperature. A novel approach could involve investigating the difference between 

body temperature and incubator temperature. The incubator temperature is crucial for 

maintaining the body temperature of the neonate within a stable range, which is essential for 

their well-being (Ringer, 2013). To ensure this stability, the incubator temperature is adjusted 

dynamically to prevent the neonates from experiencing extreme temperatures (Bekhof et al., 

2013). While this can pose difficulties because the infant’s body temperature responds to the 
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environmental temperature, making reliable measurements challenging, it could also reveal 

underlying patters (Hannouch et al., 2020). When there is a significant difference between the 

infant’s body temperature and the set temperature of the incubator, the incubator temperature 

is adjusted (Jost et al., 2017). For instance, if the infant’s body temperature rises considerably, 

the incubator temperature is lowered to help regulate and lower the infant’s body temperature. 

This could create a temporary large difference between the two temperature measurements, 

which may occur more frequently in LOS patients, as fluctuations in body temperature are a  

common symptom of LOS (Cabrera-Quiros et al., 2021). Observing these temporary 

differences between the two measures could reveal underlying patterns that may serve as a 

clinical marker for LOS. 

In conclusion, integrating body temperature into a machine learning algorithm could 

be valuable, but is currently not widely practiced due to challenges associated with the 

measurement of body temperature. Attempts for precise measurement have shown to be 

promising but have some limitations regarding the influence of the incubator temperature. 

Despite the drawbacks associated with temperature measurement, its inclusion would 

nevertheless be a valuable addition to a prediction model. Given these gaps in knowledge, 

interests and emerging developments, current research sets out to find novel measurements for 

body temperature. The results of this study can hopefully contribute to a better understanding 

of the use of body temperature for an early prediction of LOS. Thereby reducing the mortality 

rates and preventing unnecessary antibiotic use. 

2. Methods 

2.1 Study design and patients 

The patient data was collected from a large cohort of preterm babies from the NICU in 

the Wilhelmina Children’s Hospital (WKZ) between April 2008 and May 2019. Participants 

included in the cohort were infants with a gestational age ≤ 32 weeks, who were admitted to 
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the hospital within 48 hours after birth and had a complete medical record from admission 

until at least 30 days after birth or until discharge. Infants presenting severe congenital 

syndromes or those who died within the initial 96 hours after birth were excluded from the 

study sample. A total of 2686 infants met the inclusion criteria and entered the study. Given 

the nature of the data, current research employs a retrospective study design.  

 Baseline demographics were collected, such as gender, gestational age, date of death 

and the birth date-time. In addition, data on the results of the blood cultures was collected, 

including the result and corresponding timestamp. The timestamp of the blood culture 

corresponds to the moment the blood culture was collected. For temperature, various metrics 

have been collected. Firstly, the body temperature has been documented using diverse 

methodologies, including rectal, skin and axillary measurements. Furthermore, the set 

temperature and the temperature within the incubator have been systematically monitored. For 

both body temperature and incubator temperature, data is recorded at most at one-minute 

intervals for each individual patient. The current study utilizes skin temperature 

measurements and the measured temperature within the incubator. These variables were 

chosen based on the comprehensiveness of the data and clinical expertise. While body 

temperature data is consistently measured by the same device, infants may change incubators 

over time.  

 

2.2 Patient selection 

The patients that remained in the data were split into a LOS or a control group. 

Patients were assigned to the LOS group when a positive blood culture was obtained between 

72 hours and 30 days after birth. Positive blood cultures before 72 hours are classified as EOS 

and thus are excluded from the experiment. Patients with a negative, absent or positive blood 

culture but outside the specified time frame were assigned to the control group. Since it is 
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possible for a patient to get multiple blood cultures taken when hospitalized it has been 

decided that the first positive blood culture with complete data was used for classification. To 

ensure a valid comparison between the two groups during the analysis, a matching procedure 

was utilized. This implies that each patient in the LOS group is matched with one patient in 

the control group based on specific characteristics. In the current study, the patients were 

matched based on gestational age (±2 days) and gender. These variables were chosen because 

literature shows that both body and incubator temperature can differ due to both gestational 

age and gender (Lyu et al., 2015; Ralphe et al., 2021). The matched control patient is 

randomly picked from all the control patients with the same gestational age and gender. So in 

this study, for instance, a LOS patient with a positive blood culture at 100 hours after birth 

would be matched with the data of a control patient also at 100 hours after birth, with the 

same values for gestational age and gender. This matching procedure guarantees a certain 

degree of similarity between the two groups. 

 

2.3 Descriptive statistics analysis 

For an overall description of the patients, the data was explored for both patient 

groups. The descriptive statistics was presented for both the raw data prior to matching and 

the matched data. The analysis of the raw data was done for all initial included patients. The 

data regarding both demographic and temperature variables are presented. In instances where 

the data follows a normal distribution, means and standard deviations are provided. For non-

normal distributions, the median and interquartile ranges are indicated. The normality of the 

data is assessed using the Shapiro-Wilk test. The differences in means for continuous 

variables for the raw data were tested using a student’s t-test for normal distributions and a 

Mann-Whitney U test for non-normality. Categorical variables were assessed with the chi-

square test. For the matched data a student’s t-test was used for normally distributed 
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continuous variables and a Mann-Whitney U test for non-normal distributions. For categorical 

variables a McNemar’s test was used. P-values with alpha less than .05 were considered 

statistically significant. 

 

2.4 Measurements 

To assess novel measurements to measure body temperature, two distinct methods are 

employed. The first method examines the variability of body temperature over time, whereas 

the other method investigates the difference between body temperature and incubator 

temperature over time. Both methods are compared between the LOS group and the control 

group on five different time points. The first time point that is extracted is the timestamp 

when a blood culture was taken (t = 0). To be able to determine if this measure could be useful 

at an earlier stage the differences are also examined twenty-four, four and two hours before 

the blood culture result (t = -24, t = -4, t=-2). To test if the potential effect persists after the 

positive blood culture, an additional time point is considered two hours after the blood culture 

(t = 2).  

 

2.4.1 Variability measurement 

Increasing evidence suggests that the focus of making use of temperature should not 

solely be on values above or below certain boundaries. The variability in the patterns of 

temperature may be even more specific for an infection (Coiffard et al., 2023; Drewry et al., 

2013). The method used in current research to encompass this variability is the Median 

Absolute Deviation (MAD). This method examines the difference between each data point 

and the median temperature over a specific time period. The advantage of MAD is that it is a 

robust method that is resistant to the effects of large outliers. For each data point, the MAD 

will be calculated over the previous 30 minutes to assess the variability of that time period.  
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2.4.2 Body-incubator temperature difference measurement 

The secondary method is primarily aimed at disentangling the body temperature from 

the temperature of the incubator. The basic concept is that the body temperature is compared 

to the incubator temperature for each available data point. One would expect that the 

difference in those temperatures remain relatively stable over time in the absence of an 

infection. When an infant’s temperature begins to change due to an infection, the magnitude 

of this difference would change. For example, in the case of increasing body temperature, the 

incubator temperature would drop, resulting in an increase in the difference between both 

temperatures compared to previous measures.  

For this body-incubator difference method, a few preprocessing steps have been 

performed. Body temperature exhibits a high degree of variability and may also contain 

outliers due to factors such as sensors detaching from the body. Since this method focuses 

more on underlying patterns rather than on the actual variability of body temperature, it was 

decided to apply a smoothing algorithm. By doing this, the analysis is less influenced by 

major outliers or significant variability in the data. Smoothing is done for both the body 

temperature as the incubator temperature by using a moving average algorithm. For the 

smoothing, a window of 30 minutes was set. After smoothing both time-series, the 

temperature difference has been calculated for each possible time point by subtracting the 

incubator temperature from the body temperature. To determine if this disparity is an actual 

deviation, it is compared with the average difference observed over the previous hour. Since 

this value can become positive and negative, the absolute value was taken to prevent the 

values from cancelling each other out. 
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2.5 Data processing 

To compute values for both measures at the different time points, the data is processed 

in the following manner. For each LOS patient, a subset of the data was extracted to reduce 

the amount of data to be processed. This subset included data collected 48 hours before to two 

hours after a positive blood culture for a LOS patient and will be used to extract the five time 

points of interest. For the control group, the data was extracted and aligned with the timeline 

of the matched patient in the LOS group. When dealing with body temperature data, it is 

conceivable that a sensor may become detached, leading to anomalies in the dataset. To 

prevent the substantial impact of these anomalies on the data, large outliers were transformed. 

Based on clinical expertise, it was decided to replace all body temperature data points below 

35 degrees with the preceding data point.  

The next step in the data processing was extracting the incubator data for the patients 

in both groups. Given that the NICU at the WKZ utilizes various incubators and infants may 

transition between them over time, all the incubator temperature data from different 

incubators was merged to construct a comprehensive time series. The incubator temperature 

that is collected from the large time series aligns with the already disclosed body temperature. 

So, for each time point in the body temperature time series, the corresponding incubator 

temperature is joined. In cases where there is no corresponding incubator temperature for a 

specific body temperature measurement, the data point is replaced by the previous complete 

measurement. The resulting dataset is a combination of all the time series for both the LOS 

and control patients. 

Based on this complete dataset, values are calculated for both methods as described in 

section 2.4. For example for the MAD, a score is computed for each patient at every data 

point over the preceding half hour, resulting in an additional column indicating the MAD 

score for each measurement. The same procedure is applied to the body-incubator temperature 
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difference. After computing the values for all data points and patients, the dataset is filtered to 

include only the five specified time points of interest (t=-24, t=-4 etc.). Consequently, each 

patient ends up with a single measurement for each of these time points for both methods after 

data processing. Ultimately, each patient has 10 rows of data, one for each of the five time 

points for both methods. 

 

2.6 Statistical analysis 

To determine the statistical difference between the LOS and the control group on both 

measures, the means of the groups are compared at the five different time points. The 

difference between the two groups is assessed using a paired t-test for each time point if the 

data is normally distributed, otherwise a Wilcoxon signed-rank test will be used. The paired 

variant of a t-test was chosen because a matching procedure was employed, assuming that the 

LOS and control patients are thus equivalent. Since each method is tested on five different 

time points, a total of ten tests are conducted. The statistical analysis has been adjusted 

accordingly to the matching procedure. A significance level of 𝛂 = .05 was used to determine 

whether the difference in means was statistically significant. The matching, preprocessing and 

analysing of the data was performed in in Python 3.11.4 using the packages Pandas 1.5.3, 

NumPy1.24.3, SciPy 1.10.1, statsmodels 0.14.0. 

3. Results 

3.1 Baseline characteristics 

Based on a positive blood culture, 395 of the infants in the study were classified as a 

LOS patient. The remaining 2291 patients were assigned to the control groups. During the 

matching procedure, 33 patients were excluded from the LOS group since there was no 

complete incubator data for the time period around the positive blood culture. The 

missingness of data for these patients may be due to the fact that the incubator data was 
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integrated from multiple datasets, but could also be due to the blood culture collection itself. 

For all the LOS patients with complete data, a match with one of the control patients was 

found. This results in a sample of 724 patients (362 LOS and 362 control). The comparison of 

the baseline characteristics is done for both the data prior to and after the matching procedure. 

The results of the baseline characteristics before the matching procedure are shown in 

Table 1. The baseline data before the matching procedure consists of the raw data for each 

patient. A Mann-Whitney U test was performed to assess the differences between both groups 

on gestational age, body temperature and incubator temperature. A chi-squared test was used 

to examine the difference in gender. The median gestational age differed significantly between 

the two groups (U = 297710.0, p < .001). The median gestational age for the LOS patients 

was 28.2 weeks; for the control patients, this was 30.2 weeks. The percentage of female 

babies in the LOS and control group was respectively 48.6% and 46.6%, so both groups did 

not differ statistically on gender X2 (1, N = 2686) = 0.60, p = .438. The body temperature for 

LOS patients (Mdn = 36.22) did not differ significantly from the body temperature of the 

control patients (Mdn = 36.24), U = 433847, p = .204. When looking at the incubator 

temperature, the results show that the median temperature for the LOS group was 31.22 

degrees Celsius and 31.57 degrees Celsius in the control group indicating that the incubator 

temperature is significantly higher in the control group (U = 364388, p < .001).  

Table 1 

Baseline characteristics raw data 

Raw data LOS  Control P-value 

 Total (n=395)  Total (n=2291)  

Demographics     

Gestational age (weeks) 28.2 (26.2 – 30.2)  30.2 (28.2 – 31.3) <.001* 

Sex (female), n (%) 192 (48.6)  1062 (46.4) .439 

     

Temperature     

Body temperature 36.93 (35.93 – 36.45)  36.25 (35.91 – 36.49) .204 

Incubator temperature 31.22 (30.44 – 31.86)  31.57 (30.76 – 32.30) <.001* 
* indicates p<.05 
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The baseline characteristics for the patients remaining in the data after the matching 

procedure are presented in Table 2. These statistics are calculated over all five time points that 

are utilized in the final analysis. A Mann-Whitney U test showed that the LOS group and the 

control group did not differ significantly on gestational age after the matching procedure (U = 

65286, p = .933). A McNemar test was conducted to examine differences in gender 

distribution between the two groups. The test revealed no significant difference between the 

two groups X2(1, n = 724) = 0.003, p = .958. Since these variables were used to match 

patients, this provides an indication that the matching procedure has yielded the desired 

outcome. When analysing the temperature variables, the results show that the mean difference 

in body temperature between the LOS group (Mdn = 36.92) and the control group (M = 

36.90) was not significant (U=67941, p=.390). The results of the incubator temperature show 

that the medians of the LOS group (Mdn = 31.92)  and the control group (Mdn = 31.99) did 

not differ significantly (U = 66246, p = .790). 

Table 2 

Baseline characteristics matched data 

Matched data LOS  Control P-value 

 Total (n=362)  Total (n=362)  

Demographics     

Gestational age (weeks) 28.2 (26.3 – 30.2)  28.3 (26.3 – 30.2) .933 

Sex (female), n (%) 182 (50.3)  182 (50.3) .958 

     

Temperature     

Body temperature 36.92 (36.72 – 37.15)  36.90 (36.70 – 37.14) .390 

Incubator temperature 31.92 (30.79 – 32.99)  31.99 (30.82 – 32.83) .790 

 

3.2 Statistical analyses 

The data for both methods were not normally distributed at any of the time points; 

therefore, the difference were tested using a Wilcoxon signed-rank test. The outcomes of all 

the tests can be found in Table 3. When examining the differences between the two groups in 

terms of the median absolute difference (MAD), the results show a significant effect for two 
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time points: t = 0 (W=23133, p=<.001) and t=2 (W=26909, p=.019). Indicating that on the 

time point of a positive blood culture and two hour after this time point the two groups differ 

significantly on the MAD-score. No significant results were found for t=-24(W=28417, 

p=.100) , t=-4 (W=29835, p=.580) and t=-2 (W=27943, p=.086). When examining the effect 

of the difference between body temperature and incubator temperature, it can be observed that 

a significant effect has been found for t=-2 (W=26662, p=.002), t=0 (W=21439, p=<.001) and 

t=2 (W=24419, p<.001). This indicates that the groups significantly differ on this measure on 

the moment of a positive blood culture and 2 hours before and after. No significant effect was 

found for time point t=-24 (W=30486, p=.235) and t=-4 (W=31105, p=.381). Additionally to 

this, the results also show that the differences in means of both groups for both metrics 

increase around the time of the blood culture. In both measures, the largest difference was 

found at the time a positive blood culture was confirmed.   

Table 3 

Analysis output for each time point 

 Time point Median 

LOS 

Median 

Control 

W-value P-value 

Median absolute difference       

 t=-24 0.030 0.035 28417 .100 

 t = -4 0.029 0.030 29835 .580 

 t = -2 0.035 0.030 27943 .086 

 t = 0 0.045 0.031 23133 <.001* 

 t = 2 0.039 0.025 26909 .019* 

Body-incubator difference      

 t=-24 0.111 0.113 30486 .235 

 t = -4 0.122 0.103 31105 .381 

 t = -2 0.151 0.121 26662 .002* 

 t = 0 0.196 0.101 21439 <.001* 

 t = 2 0.162 0.107 24419 <.001* 
Note: t indicates time before or after blood culture in hours. * indicates p<.05 

Figure 1 presents the medians for both groups across both measures at each of the time 

points. The left figure shows the progression of the medians for both groups over the different 

time points for the body-incubator temperature difference. In this figure, it is evident that the 
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differences in the medians become increasingly larger as the time of the blood culture 

collection approaches (t=0). After the blood culture is taken, the difference remains 

approximately constant (t=2). The right figure shows the same progression but for the MAD 

score of the two groups. Notably, the pattern for the MAD-score is different. It begins with a 

slight difference, followed by a convergence of the medians, and subsequently, the medians 

differ significantly in the last two time points.  

Figure 1 

Line plots indicating the medians over time points 

Note: ns indicates p >.05, * indicates p <.05 

 

4. Discussion 

The present study aimed to develop a measure that could reduce the influence of 

external factors, specifically the temperature of the incubator, on body temperature 

measurements. This is important because body temperature is often neglected in prediction 

models due to the amount of noise. By measuring body temperature in different ways, it might 

be possible to achieve even more accurate predictions. To explore such metrics, this study 

developed two methods. The initial approach focussed on assessing the temporal variability of 

body temperature, quantified by the MAD. The second method concentrated on the difference 
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between body temperature and incubator temperature. Both methodologies were examined 

and tested across various time points.  

In the literature, there was a discrepancy regarding the direction of the effect of body 

temperature variability. While some studies claimed that LOS leads to reduced variability, 

others demonstrated that LOS results in increased variability in body temperature (Bhavani et 

al., 2019; Papaioannou et al., 2019). The results found in current research align with the latter. 

The results indicated that there was a significant difference between the LOS group and the 

control group for the MAD scores on the last two time point (t=0, t=2). For those time points, 

the median of the patients in the LOS group was higher than for the patients in the control 

group. This indicates that patients with LOS demonstrate significantly greater variability in 

their body temperature compared to the control patients. The time points twenty-four, four and 

two hours before the blood culture did not show a significant difference between the two 

groups. Although the significant results can be a promising indication, a critical remark should 

also be made. It might be challenging to explain the underlying reason for the differences at 

t=0 and t=2. On one hand, this could stem from actual variability due to the infection. On the 

other hand, it might also result from the effect of the blood culture collection process itself. 

Taking the blood culture and opening the incubator could have an effect on the body 

temperature of the neonates with LOS. 

The underlying concept for the second measure, body-incubator temperature 

difference, was based on the idea that there should be a balance maintained between both 

temperatures. When this balance is disrupted by a rising or falling body temperature, the 

incubator temperature is adjusted to restore the difference. The results of the body-incubator 

temperature difference showed that there was a significant difference between the LOS group 

and the control group for time points t=-2, t=0 and t=2. For these time points, the average of 

the body-incubator temperature difference was greater within the LOS patients than in the 
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control group. These results thus support the notion that in sepsis patients, there is a shift in 

the balance between body temperature and incubator temperature at the moment a blood 

culture is taken and at specific time points around this moment. This could be due to changes 

in both body temperature and incubator temperature. Despite the significant results it remains 

challenging to demonstrate the clinical relevance. At the time a blood culture is taken, there 

already is clinical suspicion of LOS. Thus, while the significant results may be innovative, it 

may yet not be suitable for a timely prediction of LOS. To contribute meaningfully, it is 

essential that the difference between the two groups are evident twenty-four or more hours 

before suspicion of LOS.      

Based on the current literature research, this is one of the first studies to specifically 

examine the individual role of incubator temperature on body temperature. The present study 

may offer novel and valuable insights into the feasibility of obtaining an accurate 

measurement of body temperature with less interference from the incubator temperature. The 

discovery of significant results may imply the presence of an underlying pattern that varies 

between the two groups. These patterns may eventually aid in accurately predicting the 

likelihood of LOS in neonates, facilitating early interventions and improved patient outcomes. 

Given the novelty of this method, making comparisons with other study outcomes can be 

challenging. One study that partially accounted for the effect of incubator temperature is the 

research conducted by Leante-Castellanos et al. (2017). This study primarily investigated the 

central-peripheral temperature difference, but also looked into the resistance of this measure 

to changes in the incubator temperature. Despite the primary focus being on other aspects, the 

study did reveal comparable patterns between body temperature and incubator temperature.  

Even though significant results were found, some limitations should also be addressed. 

Firstly, the current study only examined the average difference of the two measures between 

the two groups. The potential contribution of both measures to the accurate prediction of LOS 
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has not been investigated. The finding of a significant difference at various time points for the 

two measures does not necessarily imply predictive value. To derive actual clinical value from 

the measures examined in the current study, it is crucial to evaluate their performance within a 

machine learning algorithm. If the results indicate that one or both measures are strong 

predictors of LOS, it would be feasible to extend the existing algorithms. Building on this, it 

is challenging to assess the clinical relevance of both measures based on the current results. 

For clinical relevance, it is important to observe differences in patterns before there is a 

suspicion of LOS. The current results only show differences up to two hours before the 

collection of a blood culture. A valuable extension of this study would be to investigate 

whether underlying differences can be detected at an earlier stage.  

A third limitation of the study is that each LOS patient is only matched to one control 

patient. A consequence of this matching procedure, a considerable amount of data from the 

control group is discarded. Although the matching procedure reduces the influence of 

confounding variables such as gestational age and gender, the patients who are not included 

may still contain important information. Additionally, this one-to-one matching procedure 

could pose a problem regarding the classification of sepsis patients. The current study 

classified a patient as a LOS patient only when the result of the blood culture was positive. 

This means that culture-negative patients who could still have had LOS were placed in the 

control group. This could have resulted in a culture-positive LOS patient being matched with 

a culture-negative sepsis patient from the control group. Since culture-negative sepsis patients 

are quite common and would likely exhibit the same underlying pattern in the data, this could 

introduce some bias in the results (Jiang et al., 2020). 

Despite the limitations of the study, it still might provide a foundation for future 

research. The results obtained in the current study may offer a novel perspective on the 

utilization of body temperature in LOS prediction. In future research, it is crucial to test the 
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performance of the measures from this study in predictive algorithms. This will help validate 

their utility and accuracy in forecasting LOS. Furthermore, it could be valuable in future 

research to include culture-negative septic patients in the LOS group. This, combined with a 

matching procedure where each LOS patient can be matched to multiple control patients, 

could provide an even better understanding of the underlying temperature patterns for both 

groups. 

5. Conclusion 

LOS is a significant cause of mortality within the NICU. Due to nonspecific clinical 

symptoms and the lack of a rapid and reliable test for LOS, early and sometimes unnecessary 

prescription of antibiotics is still common. There is a need for a new and stable method to 

predict LOS. In recent years, there have been promising results achieved using machine 

learning models based on vital data. Despite the advancements in this field, body temperature 

is not frequently utilized, possibly due to the effects of the incubator temperature. However, 

given the fact that body temperature is often one of the first data that is measured and is 

usually non-invasive for a baby, it could be of great value to still be able to incorporate body 

temperature in such machine learning models. 

In this study, two novel methods were developed for a better body temperature 

measurement in preterm infants. Significant differences were found for both the variability in 

body temperature and the difference in body-incubator temperature for multiple time points. 

Both methods might be promising to get a better and more reliable measure for body 

temperature. However, it is important that further research is conducted based on the 

limitations discussed. Based on that, it can be assessed whether this approach is indeed a 

robust measure for distinguishing LOS based on body temperature. When this is the case, it 

can be incorporated into existing algorithms that might contribute to better predictions for 

early LOS detection. With those improved predictions, it would be possible to take steps 
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toward a reduction in the mortality rates in neonates with LOS and prevent unnecessary use of 

antibiotics. 
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