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Key Points:7

• We project the impact of climate change-induced river discharge perturbations on8

Salt Intrusion in the Rhine-Meuse Delta.9

• Future discharge is reconstructed from forcing conditions using a machine learn-10

ing approach and converted to Salt Intrusion Length with an idealized hydrolog-11

ical model.12

• Future Salt Intrusion events are projected to be more frequent by the end of the13

century under SSP5-8.5, while the frequency remains constant under SSP2-4.5.14
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Abstract15

This research projects future salt intrusion in the Rhine-Meuse Delta (RMD) based on16

forcing in the CMIP6 simulations. This is achieved using a Convolutional Neural Net-17

work (CNN) to reconstruct river discharge from meteorological forcing conditions, and18

calculating salt intrusion statistics with an idealized model (IMSIDE). The CNN is trained19

on the ERA5 reanalysis product and observational discharge data and subsequently ap-20

plied to forcing data from the ScenarioMIP product under Shared Socioeconomic Path-21

ways SSP2-4.5 and SSP5-8.5. The resulting discharge projections are used as forcing of22

IMSIDE to provide estimates of future salt intrusion lengths (SIL) in the RMD. Results23

indicate an increase in both frequency and intensity of salt intrusion events under the24

higher emission scenario SSP5-8.5. No significant changes in SIL are projected under the25

moderate emission scenario SSP2-4.5. The presence of biases in CMIP6 projections as26

well as CNN underprediction of discharge in the dry season effect discharge projections27

and the resulting SIL statistics.28

Plain Language Summary29

The Rhine-Meuse Delta in the Netherlands is vulnerable to saltwater moving inland, which30

can affect agriculture, industry, and ecosystems. In this research, an AI model is used31

to predict river discharge based on future climate conditions. Estimations are made on32

how far and how often saltwater will travel inland by the end of this century, based on33

the long-term change in river discharge. We find that the frequency of saltwater intru-34

sion will increase under a high emission scenario, while no change is shown for a mod-35

erate emission scenario.36

1 Introduction37

The Rhine-Meuse Delta (RMD) is densely populated and highly susceptible to increas-38

ing saline water intrusion (van Den Brink et al., 2019). Along the delta many agricul-39

tural, industrial and biological aspects depend heavily on the availability of fresh water40

in this region(Klijn et al., 2012). It has long been understood that a changing climate41

will increase risk of extreme salt intrusion. (Jacobs et al., 2000) The main drivers of this42

increasing risk are Sea Level Rise (SLR) and decreasing river discharge, both of which43

cause saline water to penetrate further upstream and with greater frequency (Savenije,44

2012). A recent study on other the Po river shows that decreased freshwater discharge45

under prolonged droughts is the dominant effect there, while SLR has a less significant46

impact (Bellafiore et al., 2021). Furthermore, an empirical relation between Salt Intru-47

sion Length (SIL) and river discharge has been used for practical water management pur-48

poses (Monismith et al., 2002). Conversely SLR has been identified as the main feature49

of increased salt intrusion in two Portuguese estuaries (Pereira et al., 2022). Both fac-50

tors have been found to be vital in the case of the Rhine-Meuse Delta considered in this51

study (van Den Brink et al., 2019). This study is aimed towards quantifying the effect52

of long-term discharge change on salt intrusion in particular. Under any climate change53

scenario, river discharge in the Rhine-Meuse basin has been shown to increase in win-54

ter but strongly decrease in summer, especially under SSP5-8.5 (Buitink et al., 2023).55

The focus of this study will be on the effect of future discharge on SIL statistics, where56

a Convolutional Neural Network (CNN) is used to obtain discharge projections.57

The data-driven machine learning approach of discharge reconstruction is promising due58

to its effectiveness with non-linear systems (Tran et al., 2015). This approach also ben-59

efits from favourable runtime, in this study about a minute for 85 years of daily steps.60

In the context of hydrological extremes, it has outperformed traditional methods for dis-61

charge prediction tasks (Hauswirth et al., 2021). However, applying it to the RMD’s com-62

plex river network has been challenging due to its multi-branch nature and human man-63
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agement (Wullems et al., 2023). In order to use machine learning exclusively to its strengths,64

the task of SIL projections is split into two distinct steps.65

The first step is to reconstruct river discharge from forcing conditions, where the CNN66

is used for fast and accurate assessments. To accurately assess the future frequency and67

intensity of such events and obtain meaningful statistics, river discharge has to be stud-68

ied at a high temporal resolution. As of today most Global Circulation Models (GCM’s)69

do not include river discharge on a daily resolution, with a notable exception being CESM-70

LE2 which has daily discharge for SSP3 (Lee et al., 2024). Furthermore discharge is a71

grid-based quantity in GCM’s, which can induce a mismatch between the model output72

and the practical river-based water management issues. This mismatch is especially present73

when the scale of the projections (100 km for CMIP6) is substantially larger than the74

scale of individual river catchments. Several approaches have been explored to tackle this75

like applying a hydrological model to the raw GCM forcing (Buitink et al., 2023) or us-76

ing Regional Climate Models with have a finer resolution (Dadson et al., 2011). Discharge77

obtained through this methodology can be incorporated in the output of GCM’s to in-78

crease their practical applicability in this respect.79

The second step concerns obtaining the salt intrusion projections using the CNN-predicted80

discharge series. Here an idealized hydrological model is used which explicitly takes the81

complex river network of the Delta into account (Biemond et al., 2022). This model solves82

the salinity balance of the network structure of the RMD using a balance between down-83

stream salt transport due to the river flow and upstream salt transport due to exchange84

flow, tidal flow and horizontal tide-induced mixing. It also solves for the interaction be-85

tween the different branches of the RMD network. Based on the balance between up-86

stream and downstream fluxes the Salt Intrusion Length (SIL) is determined, here quan-87

tified as the distance between 2−psu isohaline and the estuary mouth X2 (Monismith88

et al., 2002). In studies with a broader scope the X2 has been calculated using an ide-89

alized sub-tidal model solving cross-sectionally averaged equations for hydrodynamics90

and the salt budget (Lee et al., 2024; Chen, 2015).91

In this study, the effect of change in discharge on future salt intrusion time series is quan-92

tified using a CNN combined with a hydrological model. The CNN is trained on mete-93

orological forcing data from the ERA5 reanalysis product combined with observational94

discharge data from Rijkswaterstaat (RWS). The trained model is applied to CMIP6 forc-95

ing projections to obtain discharge projections for the Rhine and Meuse rivers, as these96

make up the essential input for IMSIDE runs. Projections for future salt intrusion are97

then obtained from the river discharge results using IMSIDE for salt intrusion in the RMD.98

To investigate the systems sensitivity to climate change signal, forcing outputs are used99

for both SSP2-4.5 and SSP5-8.5 and the resulting statistics of SIL is evaluated.100

2 Methods101

A machine learning model is designed to reconstruct current river discharge from me-102

teorological forcing conditions, using which projections for future salt intrusion events103

are obtained. First an outline is given of the relevant study area and the precise stations104

for which the reconstruction of discharge is performed (Section 2.1). The setup of the105

CNN is outlined in along with the training and evaluation method using ERA5 reanal-106

ysis data (Section 2.2). Next the CNN is applied to CMIP6 model data to obtain future107

discharge projections, along with a skill evaluation on the historical period (Section 2.3).108

Finally, the obtained river discharges are fed into IMSIDE to obtain future projections109

of salt intrusion in the Rhine-Meuse Delta (Section 2.4).110
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Figure 1. Schematic overview of the Rhine-Meuse Delta and the distribution of river dis-

charge between its constituents. (M. Dörrbecker , 2019)

2.1 Study Area111

The RMD consists of a complex network of rivers, weirs and channels. It originates mainly112

from the Rhine river, flowing into the Netherlands in the east of the country. The Rhine113

branches off into the Waal and Lek while the Meuse which reach the estuarine region of114

the RMD separately. The Meuse enters the country in the southern most province near115

Maastricht and flows parallel to the Waal up to the delta region. The Delta culminates116

in the Rotterdam urban area where it connects to the North Sea through the Nieuwe Wa-117

terweg as well as the Haringvliet sluice. The northern part of the RMD consists of two118

main waterways, the Nieuwe Maas and Oude Maas. Intrusion of saline water is driven119

here by estuarine circulation as well as tidal mixing processes (de Nijs & Pietrzak, 2012).120

River discharge is predicted for downstream stations Tiel and Megen using meteorolog-121

ical data of the entire basin of the Rhine and Meuse respectively. These stations are cho-122

sen to ensure compatibility with IMSIDE. The Meuse originates in France and flows through123

Belgium and into the Netherlands where it connects to the RMD. The Rhine has many124

sources, the most important of which is located in the Alps of Switzerland and from there125

flows mainly through the German Rhineland. To accurately assess the river discharge126

near the Dutch border the entire Rhine Basin must be taken into account, including ma-127

jor tributaries like the Aare, Main and Neckar (Uehlinger et al., 2009).128
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Table 1. Variables used in training the CNN to reconstruct discharge from forcing conditions.

This overview applies to the training process only, as CMIP6 forcing is used in the remainder of

this study.

Variable Unit Source Resolution Frequency

Precipitation (P) mm ERA5 1 degree daily
Temperature (T) K ERA5 1 degree daily

Volumetric Soil Water (VSW) m3/m3 ERA5 1 degree daily
Discharge (Q) m3s−1 RWS point daily

2.2 CNN Setup And Validation129

A Convolutional Neural Network (CNN) is used to downscale meteorological forcing con-130

ditions to river discharge output.The CNN uses time series of spatial maps of key vari-131

able as its features while the labels are observational discharge data measured at the Tiel132

and Megen station of the Rhine and Meuse river, respectively. For the CNN to parse 3D133

(t, x, y) data in each of its layers, Conv3D layers are used as they have been shown to134

be able to capture spatiotemporal trends to a high degree (Sun et al., 2021; Tran et al.,135

2015). The network’s weights are trained using the ERA5 reanalysis dataset as features136

(Hersbach et al., 2020), while labels are discharge measurements obtained from Rijkswa-137

terstaat (RWS) (Rijkswaterstaat, 2024). The data is split into a training (2001-2012),138

validation (2013-2015) and test (2016-2020) to be able to evaluate model performance139

on the ERA5 set. After hyperparameter tuning is done by considering the performance140

on the validation test, the final model’s weights are saved to be used on CMIP6 projec-141

tions. The test set is used for a final evaluation of the model skill only. To quantify model142

predictive strength the Kling-Gupta Efficiency (KGE) (Knoben et al., 2019) is calculated.143

Given the size of the RM basin, river discharge at downstream station will exhibit a de-144

layed response to forcing conditions in the upstream areas. The amount of time delay145

in the response is quantified by calculating the correlation between river discharge and146

the precipitation in the full basin. For the Rhine the time delay is set to 40 days while147

the Meuse uses a 20 day response time based on this correlation (Supplemental Infor-148

mation). A mask with values −1 is applied to all cells within the grid that are not close149

to any branch of the relevant river basin, so that the CNN will not take these areas into150

account and therefor converge its weights more rapidly.151

More details on the CNN setup and validation can be found in the Supplemental Infor-152

mation.153

2.3 Applying CNN To CMIP6154

The CNN trained on ERA5 reanalysis data is saved and now applied to CMIP6 climate155

projections in order to obtain future time series of discharge at the Tiel and Megen sta-156

tion. Projections for future forcing conditions are obtained from the ScenarioMIP prod-157

uct of the CMIP6 dataset. Members included in this research are selected by the avail-158

ability of the relevant forcing conditions at the required temporal and spatial resolution.159

Specifically this means a 1 degree spatial resolution as well as a temporal resolution of160

one day. The other critical selection criteria is the availability of ScenarioMIP runs for161

different Shared Socioeconomic Pathways (SSP) (O’Neill et al., 2016). Finally, the mem-162

bers must include the variable mrsos (alongside precipitation and near-surface temper-163

ature, which are present in every set), which is defined as the soil moisture up to a depth164

of 10cm. This variable is analogous to the V SW variable in the ERA5 reanalysis set,165

which represents the volumetric soil wetness up to a depth of 7cm. To convert the CMIP6166

mrsos data to fit the V SW variable on which the CNN is trained, it is assumed that167
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the soil moisture within the upper layer is evenly distributed, as in (Qiao et al., 2022).168

We find that this parameter is crucial for the CNN performance in terms of discharge169

reconstruction. (Supplemental Information)170

Selected members based on these criteria are CESM (Danabasoglu et al., 2020), NorESM171

(Seland et al., 2020), CMCC (Lovato et al., 2022), EC-Earth (Döscher et al., 2021) and172

MRI (Yukimoto et al., 2019). Data is obtained for both SSP2-4.5 and SSP5-8.5 as part173

of the ScenarioMIP output. The raw data is linearly interpolated to fit the exact 1x1 de-174

gree grid used by the CNN, to make sure that the input is consistent with that of the175

ERA5 training set. Furthermore the precipitation and volumetric soil content data is trans-176

formed to match the unit of the ERA5 dataset on which the CNN is trained. The CMIP6177

data is normalized using normalisation which is fitted to ERA5 data during model train-178

ing, to ensure consistent predictions.179

Application of the CNN to the CMIP6 model output yields time series of river discharge180

for the entirety of the CMIP6 model runs, which consists of the period 2015-2099. The181

process of training the CNN, saving the fitted normalisation settings and obtaining river182

discharge from CMIP6 is done separately for the Rhine and Meuse basin. An estimate183

of model performance is obtained by comparing the CNN-predicted discharge of the his-184

torical part of the data to the observational discharge measured at the corresponding sta-185

tions.186

2.4 Projecting Future SIL187

The future discharge projections are obtained for the station Tiel and Megen for the Rhine188

and Meuse river respectively. These two time series are used as input for IMSIDE to pro-189

duce time series of SIL (X2) in the Rhine-Meuse basin.190

IMSIDE is an idealized hydrological model which resolves the salt balance using width-191

averaged river flow and salinity. The model takes into account the contributions from192

mean discharge, density-driven flow and the M2 tidal mode in a channel network. The193

transport quantities of salt are calculated using an advection-diffusion equation based194

on these physical processes. (Supplemental Information) To obtain SIL statistics this equa-195

tion is solved using a decomposition in depth-averaged and depth-dependent flow veloc-196

ity and salinity. IMSIDE takes into account the network of rivers, weirs and canals of197

the Rhine-Meuse Delta. In particular the interaction at each junction of the network is198

calculated by solving the salt and discharge balances at the intersection (Biemond et al.,199

2023). The model output used in this study are time series of SIL at the Nieuwe Maas200

and Oude Maas channels.201

Alongside the Tiel and Megen discharge IMSIDE also requires a time series of discharge202

at three additional points: Lek, Hollandsche IJssel and Haringvliet. For the purposes of203

this research these are all set to zero. This is based on the assumption that in the sum-204

mer months crucial for SI, these discharges will be small compared to the Tiel and Megen205

discharge (Huismans et al., 2017). Additionally, the excess water volume brought into206

the system through Hollandse IJssel and Lek will be largely compensated by the addi-207

tional outflow at Haringvliet.208

Time series of SIL are obtained through IMSIDE for the Nieuwe Maas and Oude Maas209

waterways, for the 5 CMIP members and scenario’s SSP2-4.5 and SSP5-8.5. The result-210

ing PDF’s are compared to examine the system’s response to climate change, its sensi-211

tivity to the differences in emission scenario’s, as well as the ensemble spread. SIL statis-212

tics are quantified by analysing the PDF of X2 in the most relevant season for salt in-213

trusion, which are the months August, September and October (Klijn et al., 2012). This214

is also reflected in Figure 3 where the lowest observed discharge is found to be in these215

months. The X2 PDF is calculated for a baseline period 2015-2045 as well as a future216
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Figure 2. CNN discharge predictions compared to RWS observational record for the test

period 2016-2020. The KGE is shown separately for the Tiel and Megen stations, correspond-

ing to the Rhine and the Meuse rivers. The training period runs from 2001-2012 which is the

set on which the CNN is trained. The validation period is 2013-2015, which the model has not

trained on but which is used for hyperparameter and architecture tuning. The test period is from

2016-2020, which the model has not seen before the final evaluation.

horizon 2070-2100, in order to analyse the trend in SIL statistics. Particular attention217

is given to the high end of the spectrum, which is indicative of extreme salt intrusion events.218

3 Results219

3.1 CNN220

The CNN is found to capture the temporal behaviour of discharge well using the vari-221

ables P , T and V SW as input. Additional variables were included as CNN features but222

were found to either not contribute to model skill or not be available in CMIP6 output223

at the required spatial and/or temporal resolution. For the test period (2016 - 2020) of224

the ERA5 data the model predicts river discharge for the Tiel and Megen stations with225

a high degree of accuracy. The trends in discharge and in particular the low extremes226

are captured moderately well. (Supplemental Information) The KGE on the test set is227

0.88 and 0.90 for the Tiel and Megen stations respectively, indicating good model per-228

formance.229

When running the CNN without inclusion of the V SW variable, which would allow for230

a more broad selection of GCM’s, the model performance drops off significantly. The per-231

formance is minimally effected by the change of spatial resolution from 0.25 to 1 degree,232

an adaptation which was made to fit with CMIP6 output. (Supplemental Information)233

In terms of computational performance, the CNN takes 40 minutes to reach the desired234

level of skill over 80 epochs over training.235

3.2 CMIP6 reconstructed discharge projections236

Applying the CNN to CMIP forcing conditions yields a discharge time series for the en-237

tire duration of the ScenarioMIP runs, which is from 2015 to 2100. Part of the histor-238

ical section of this (2015-2021) is used to evaluate the CNN’s performance on the CMIP239

members, as opposed to its performance on ERA5 which was evaluated in the previous240

section. For this time frame the discharge statistics are shown as a function of the Day241

of Year (DOY) in Figure 3. Ensemble mean projections for the winter months are found242
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Figure 3. Seasonal discharge at the (a) Tiel and (b) Megen stations predicted by the CNN

applied to the forcing output of various CMIP6 ensemble members (SSP2-4.5). The discharge

values represent the average value per Day of Year (DOY) for the historical period 2015-2021.

The black line shows the average measured discharge at the respective stations for the same

period of time.

to correspond well to observation, but we find slight underestimation for Tiel in sum-243

mer months. For Megen, order of magnitudes in river discharge are well reconstructed244

by the CNN model, but timing of peak is shifted by 50 days in ensemble average. Large245

biases can be seen here as the inter-member spread is substantially high. Due to the re-246

semblance of the discharge bias to the bias in the forcing conditions of corresponding model247

runs (Supplemental Information, Figure S6), these biases are assumed to be inherent to248

the members themselves rather than being caused by biases in the CNN.249

River discharge is projected for the entire CMIP6 time horizon 2015-2100 for the SSP2-250

4.5 and SSP5-8.5 scenarios and all the ensemble members included in this study. The251

trend in yearly 7-day minimum discharge is shown in Figure 4, where the relative dif-252

ference for each year is calculated with respect to the baseline of the years 2015-2045.253

For the Tiel station there is no significant change in 7-day minimum discharge for the254

2100 horizon in the SSP2-4.5 scenario projections, while a decrease of 5% is observed in255

the SSP5-8.5 scenario projections. The Megen station shows a stronger decrease in this256

metric as well as a large dependence on the emission scenario, with reductions of 8% and257

27% for the SSP2-4.5 and SSP5-8.5 scenarios respectively. Again the inter-model spread258

is substantial and it can furthermore be noted that the ensemble members show future259

trends with a different sign. In particular, the projections based on CMCC and MRI forc-260

ing show an upward discharge trend while the projections based on the remaining three261

members exhibit a negative trend. This is in line with the member’s future trend in mean262

precipitation for the RM basin, as shown in the Supplemental Information, Figure S7.263

Application of the CNN to a single CMIP6 member takes 70 seconds for discharge pro-264

jection of the total 2015-2100 window. Before being able to apply the CNN, data is pre-265

processed from a single time series to an input vector containing consecutive series of length266

T for each day, which takes an additional 90 seconds for each run.267

3.3 Future Salt Intrusion Extremes268

The time series of river discharge as obtained in the previous section are now fed into269

the IMSIDE model to calculate the SIL which is quantified by the 2-psu isohaline X2.270

Figure 5 shows the PDF of SIL for the Nieuwe Maas for the 2015-2045 and 2070-2100271

windows (a, c) as well as the difference in PDF as a function of SIL (b, d). The top and272
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Figure 4. Deviation in yearly 7-day minimum discharge as compared to the 2015− 2045 mean

member-specific baseline. Individual calculation for CNN predictions of each of the CMIP6 en-

semble members for the Tiel (a-b) and Megen (c-d) stations, SSP2-4.5 and SSP5-8.5. Ensemble

averages are shown in thick lines.

bottom sub-figures correspond to the SSP2-4.5 and SSP5-8.5 runs respectively. This fig-273

ure is based on IMSIDE runs where SLR is not considered.274

The PDF’s for the SSP2-4.5 is shown to remain relatively constant between both time275

windows, where little change is seen in either frequency or intensity of SI events. In par-276

ticular when comparing the 2070-2100 statistics to the 2015-2045 baseline, the proba-277

bility of SIL of more than 30 km increases by 1% only. For the SSP5-8.5 runs, the change278

is found to be significantly larger at 15% probability shift between 2070-2100 and the279

2015-2045 baseline.280

A shift of moderate salt intrusion events to extreme salt intrusion events is found for SSP5-281

8.5. The frequency of such events is projected to increase, while the intensity of the high-282

est extremes shows little to no shift. The former can be explained by the decrease of dis-283

charge shown in the previous section (Figure 4). As discharge decreases salt intrusion284

events will sustain for a longer period of time (Biemond et al., 2022), causing a PDF shift285

towards larger X2 as shown. The absence of a shift in the highest extremes is notable,286

and could be due to the increased frequency of freshwater pulses under a high emission287

scenario, which put a limit to the duration of salt intrusion events and therefore restrict288

their maximum intensity.289

In terms of ensemble spread, it is clear that there is a large difference in SIL statistics290

between the different members (Figure 5). This is likely due to the large biases in forc-291

ing conditions present in these products. The significant positive PDF shift for the 30+292

km SIL domain is however present for all ensemble members indicating a more robust293

outcome.294
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Figure 5. Comparison between periods 2015-2045 and 2070-2100 using PDF of Ensemble

Average of Salt Intrusion Length in the Nieuwe Maas, for SSP2-4.5 (a-b) and SSP5-8.5 (c-d).

For the former, the difference in SIL statistics between the two periods is relatively small in this

case as the PDF’s are close to overlapping. In SSP5-8.5, a clear change can be seen between the

former and latter period where extreme salt intrusion events are more frequent and more intense.

4 Conclusion295

A CNN is trained on ERA5 reanalysis data to reconstruct discharge from meteorolog-296

ical forcing conditions of the CMIP6 projections, and subsequently fed to IMSIDE to ob-297

tain future SIL statistics. The CNN model demonstrates strong performance in recon-298

structing river discharge from meteorological conditions, with KGE scores of 0.83 and299

0.91 for the Rhine and Meuse rivers respectively during the test period. Application of300

the CNN to CMIP6 climate projections shows a 8% decrease in Rhine 7-day minimum301

discharge under the high emission scenario SSP5-8.5, while this parameter remains rel-302

atively constant under SSP2-4.5. The results from IMSIDE runs indicate an increase in303

extreme salt intrusion events in the RMD by the end of the century under the SSP5-8.5304

scenario, with a projected increase of 30+ km events of 15% in the Nieuwe Maas. The305

moderate emission scenario SSP2-4.5 shows little to no changes which suggests a strong306

sensitivity of SIL to the emission pathway.307

5 Discussion308

This study utilizes a CNN to reconstruct discharge from meteorological forcing, as an309

alternative to a traditional hydrological model. While performance on the ERA5 train-310

ing set is comparable to these physics-based models, its performance falls off when ap-311

plied to a distinct data set (CMIP6). To illustrate this, a comparison between the CNN312

performance and the hydrological model wflow sbm (van Verseveld et al., 2022) is shown313

in Figure 6. For both models the predicted discharge and uncertainty range for the 2016-314

2020 test period is shown alongside the observational record. It should be noted that the315

predictions are based on the KNMI’23 climate scenario’s (van der Wiel et al., 2024), which316

utilize a different subset of CMIP6 members than the subset used in this study. The un-317
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Figure 6. Comparison of the discharge reconstruction for 2015-2021 between the wflow sbm

model and the CNN used in this study, with uncertainty range σ. The Lobith station is assessed

here rather than the Tiel station, as the former is used in the Deltares report considered for this

comparison.

corrected time series are shown here only, as recommended for such comparative pur-318

poses (Buitink et al., 2023). Even though this is a limited time frame, wflow sbm is shown319

to reconstruct discharge more accurately and with less uncertainty. While this is the ex-320

pected result as the hydrological model is significantly more sophisticated, there are a321

number of improvements which could be made to the CNN to improve its performance322

on CMIP6 data.323

Before considering the possible improvements to the methodology, it is important to as-324

sess the implications of these anomalies for the projected discharge and SIL results. The325

underestimation in summer discharge (Figure 3) has invariably influenced the subsequent326

CMIP6 projections, in particular when it comes to the 7-day minimum discharge dis-327

played in Figure 4. Indeed, similar projections using the wflow sbm model obtain a sig-328

nificantly larger decrease in this metric under SSP5-8.5, at 15−30% for the Rhine com-329

pared to the 5% found here. Assuming that the former is a more accurate assessment330

of the situation due to the more accurate model and more extensive methodology, we331

can conclude that the projected SIL statistics shown in this study are possibly a signif-332

icant underestimation. Alternatively the absolute underestimation of summer discharge333

might not considerably affect the relative shift in SIL statistics presented. Furthermore,334

machine learning models are known to have difficulty with extreme outliers in the data.335

Outliers in discharge data are the cause of extreme salt intrusion events (van Den Brink336

et al., 2019), so this limitation might be of large influence on the SIL statistics presented337

here. For further research it is recommended to analyse the performance of the model338

on the outliers of the observational period in particular.339

The presence of significant biases in forcing projections of individual ensemble members340

inevitably leads to similar biases in the CNN discharge output. As mentioned the dri-341

est season is where the largest errors between CNN prediction and observation occur.342

As the forcing itself exhibits similar biases in most models for this season (Supplemen-343

tal Information), this error could likely be mitigated with proper bias correction of the344

input variables. It is therefore recommended to apply bias correction to the raw forc-345

ing data in further research on this approach. The aforementioned issue of a limited avail-346
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able time window further can complicate this process, as the bias correction would have347

to be based on this window 2015-2021 which is relatively small when accounting for cli-348

matological and hydrological variability.349

While the CNN can relatively accurately predict river discharge based on ERA5 reanal-350

ysis data, the translation to CMIP6 application poses a number of challenges. In only351

using a couple of key variables as input, a lot of secondary physical effects are disregarded352

in this analysis. The contribution of these secondary effects might be consistent within353

the ERA5 reanalysis framework and for the relatively short-term period 2001-2020, but354

this need not be the case for CMIP6 projections up to 2100. The current analysis could355

be improved by increasing the training and test period, as reanalysis data is available356

from the ERA5 dataset starting in 1990. There are also a number of additional variables357

which may improve model skill, like wind speed, which are included in both the ERA5358

reanalysis product as well as the ScenarioMIP projections for the relevant temporal and359

spatial resolution, and therefore could be added to the CNN setup.360

Taking a broader look at the salt intrusion phenomenon, sea level rise is found to be a361

dominant effect on SIL in studies on the RMD (van Den Brink et al., 2019) but it is not362

within the scope of this study. Tentative simulations have however been carried out where363

the effect of SLR included, by increasing the depth of each channel in IMSIDE with a364

fixed amount. (Supplemental Information) The results indicate that SLR has a signif-365

icantly stronger effect on SIL than the discharge reduction considered in the main re-366

sults of this study. It should be noted however that it is difficult to compare the two ef-367

fects in this manner. The effect of discharge is quantified by an extensive process start-368

ing from projected forcing conditions from different members where many uncertainties369

influence the SIL statistics. The straightforward approach of adding depth to each chan-370

nel contains less of such uncertainties, while at the same time being less precise as the371

SLR is only induced with a single fixed value rather than a gradual increase of sea level.372

Combining these considerations with the extrapolation issues of the CNN to CMIP6 dis-373

cussed previously, we do not draw conclusions on the comparative importance of SLR374

and discharge reduction on RMD salt intrusion from this study.375

The machine learning approach presented here benefits greatly from a very cheap com-376

putational cost as well as a flexible application framework. The discharge reconstruc-377

tion component of the current analysis can be readily extrapolated to any river in the378

world where an observational record of discharge is available. By going through the pro-379

cess of training on ERA5 data and applying to CMIP6 data, time series of future river380

discharge can be obtained in quick fashion. In particular such river discharge data could381

serve as an alternative to the discharge currently provided in model projections, as the382

station-specific discharge could be more relevant for practical water management appli-383

cations than the cell-based discharge commonly found in raw model output. Furthermore384

it is recommended to apply the CNN to ensemble runs of individual models in order to385

gain understanding of the internal variability of the GCM’s themselves.386
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Open Research387

Historical discharge data used for training the model is obtained from Rijkswaterstaat.388

(Rijkswaterstaat, 2024) Reanalysis data from ERA5 is used to construct the input vec-389

tor. (Hersbach et al., 2020) CMIP data is obtained from ScenarioMIP output. The IM-390

SIDE model is publicly available. (Biemond et al., 2022)391
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Supplemental Information516

A) CNN Setup and Tuning517

General Approach518

As we are considering the discharge statistics, the CNN must predict the daily discharge519

value in m3s−1 at the Tiel and Megen stations for the Rhine and Meuse rivers respec-520

tively. The model will make its prediction based on time series of spatial maps of me-521

teorological variables. It is clear that it will not be enough to use spatial or temporal av-522

erages of these variables. Large anomalies in precipitation in the Alps will not be felt523

in terms of station discharge instantaneously, but its effects will be delayed for weeks.524

Similarly, the precipitation just a few kilometers upstream of Tiel will be relevant for the525

discharge value of the same or the next day. However, this same precipitation value will526

not be relevant for the discharge of weeks to come. Clearly, the spatiotemporal compo-527

nent of our data is crucial and must not be negated by taking averages over either time528

or space.529

The time-series of each variable and its locations must be preserved in order for the model530

to obtain the required skill.531

Variables and Resolution532

Tuning of the CNN in the scope of this research concerns primarily the spatial resolu-533

tion of the input vector, as well as the input variables included in the model. The model534

was initially trained on 0.25 degree resolution as this is the available resolution from the535

ERA5 product. ERA5 also has finer output such as ERA5-LAND, but the 0.25 degree536

was chosen as a starting point based on weighing the added value of a finer resolution537

to the associated increase in computational cost. The model was eventually adjusted to538

require a 1 degree resolution, as this matches the output resolution of the ScenarioMIP539

product. The selection of input variables is complicated especially due to the need to have540

matching variables in the future projections on which the trained CNN is applied. The541

KNMI’23 Climate Scenario’s are a great fit for this research since they provide climate542

projections on a daily scale based on scenario’s selected specifically for the Netherlands,543

as well as the inclusion of the entire RM basin in its output (van der Wiel et al., 2024).544

Crucially though these projections do not include a variable representing the soil mois-545

ture content.546

To decide if this is a bottleneck for CNN performance, and how it compares to the in-547

creased performance of better resolution (which KNMI’23 would provide), many vali-548

dation runs of the CNN were done using different variables and spatial resolution. Fig-549

ure S1 shows the comparative performance in the validation set (2013-2015) for 4 such550

setups, where the resolution is either 0.25 or 1 degrees and where the soil moisture con-551

tent V SW is included or excluded. It is concluded that the inclusion of the V SW vari-552

able improves model performance significantly, regardless of the spatial resolution of the553

input features. Improving the spatial resolution brings a relatively small performance554

benefit in comparison. Furthermore, the choice for a machine learning solution for the555

discharge reconstruction lies in part in the computational benefits that such a solution556

provides. The spatial resolution largely determines the computation time for machine557

learning models (Tran et al., 2015), and choosing the 0.25 degree route would hamper558

the learning time significantly. Based on these considerations we decided to use the 1559

degree model in combination with the CMIP6 climate projections, with inclusion of the560

V SW variable.561

Input Vector562

The CNN works on input samples which each consist of a time series of maps for each563

of the considered meteorological variables. We can think of these samples as being videos564
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Figure S1. Mean absolute error (MAE) of discharge for the validation set (2013-2015) as a

function of training epoch. The CNN setup is varied between spatial resolution of 0.25 and 1

degree as well as whether the soil moisture variable V SW is included.

of the basin area over the entirety of the lead time. Each sample is therefor a 4D array565

of the following shape: (x, y, t,D). Here x and y are the amount of grid cells in longi-566

tudinal and latitudinal direction, respectively. t represents the amount of time steps in567

a single sample, which is equal to the amount of days the input video lasts. D represents568

the amount of different input variables considered. For most of the model runs, the first569

three of these will be kept constant. The dimensionality D will be varied a lot to inves-570

tigate the relative predictive value of each input variable in detail. When feeding the in-571

put to our CNN model, the input vector is extended to a 5D array to include the amount572

of training samples, denoted by N . Such that the input vector becomes (N, x, y, t,D).573

Preprocessing574

ERA5 data is obtained in hourly frequency. The data is resampled to daily averages for575

T and V SW and a daily sum for P . The considered latitude range is (46, 53) while the576

longitude range is (3, 12). This corresponds to a somewhat extensive square around the577

relevant (upstream of Tiel and Megen) sections of the Rhine/Meuse basin. Even in this578

area there are of course many grid cells that are far from the actual Rhine river or even579

any river branches. The meteorological data for these grid cells is not relevant to the dis-580

charge prediction. Given a long enough time to train, the machine learning approach will581

eliminate this problem by itself, as the model will pick up on the irrelevance of the data582

in these grid cells to the output variable and adjusted the corresponding weights accord-583

ingly. However this might unnecessarily increase the duration of the learning process,584

especially since there will be a lot of auto-correlation present between relevant and ir-585

relevant grid cells. Therefore the model’s life is made a bit easier by applying a mask over586

the irrelevant areas.587

Next, the daily data is transformed to an input vector in the following way. For each day588

in the considered period, the data of the relevant time window is aggregated into a sin-589

gle array. This array represents all the input data of the single sample. This is repeated590

for each day contained in the time period to produce the input vector. Each sample can591

be viewed as a series of videos of the considered variables over time.592
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Layers Input Output Kernel size Activation

Conv3D 3 16 (1, 2, 2) ReLU

Conv3D 16 16 (5, 1, 1) ReLU

Conv3D 16 16 (1, 2, 2) ReLU

Conv3D 16 16 (5, 1, 1) ReLU

Flatten 16 x - -

Dense X 128 - ReLU

Dense 128 64 - ReLU

Dense 64 32 - ReLU

Dense 32 16 - ReLU

Dense 16 1 - ReLU

Table 2. Complete architecture of the CNN. After the last Conv3D layer the channels are flat-

tened to obtain an output of dimension 1 and length X (the X depends of the input vector).

The data is normalized for each variable separately before being fed into the ML model.593

CNN architecture594

The input vector obtained through preprocessing serves as the input for the CNN model.595

The output (labels) are now the river discharge values. The model uses 3D convolutional596

layers, which apply convolutional operators in the spatial and temporal dimension. As597

demonstrated in (Tran et al., 2015), splitting up the 3D filters into distinct spatial and598

temporal components provides significantly gains in accuracy as well as computation speed.599

Therefore the convolutional is first applied in spatial dimension only and consequently600

applied in temporal dimension only. This is represented in the architecture overview (Ta-601

ble 2 as the (1, 2, 2) and (5, 1, 1) kernel size, respectively. The spatial kernel is small602

as the total grid representing the Rhine basin is 9x9 grid points only. This is also the603

reason why MaxPooling layers are not included in the model. The temporal size of the604

input vector is larger at 40 days for the Rhine basin, allowing for a larger kernel in this605

dimension. Following two sets of convolutional hidden layers a flattening layer is applied,606

and finally the CNN has 5 dense layers before producing the discharge prediction. Each607

layer utilizes the ReLU activation function as the608

Determination of Time Delay609

To determine the length of the input vector in terms of the amount of lead days, the cor-610

relation between precipitation and measured river discharge is calculated as a function611

of the lead time. The purpose of this calculation is to determine how far in advance the612

basin-wide meteorological factors start to influence the river discharge at the relevant613

downstream measurement station. For example, an extreme precipitation event in the614

Alps will only be reflected in the river discharge in the Netherlands after multiple weeks615

at least. The size of the time delay is a trade-off: a larger window will ensure that these616

delayed responses are captured which can be crucial for the Rhine basin especially. A617

smaller window is also advantageous as a smaller input vector will decrease computa-618

tional cost. It can furthermore be detrimental to the convergence time of the CNN if the619

time delay is too large and the input vector therefore contains more relatively insignif-620

–18–



manuscript submitted to -

Figure S2. Correlation coefficient of ERA5 basin-wide precipitation and measured river dis-

charge at the (a) Tiel and (b) Megen stations, as a function of lead time. Amount of days of the

x-axis represents the amount of days that the precipitation statistics predate the river discharge

data.

icant features. The results of this analysis are shown in Figure S2 for the Tiel and Megen621

stations. Based on the aforementioned arguments, the lead times were set at 40 days for622

Tiel and 20 days for Megen.623

624

B) Additional Figures625

Oude Maas SIL statistics626

The PDF of the SIL X2 for the baseline period 2015-2045 as well as the future horizon627

2070-2100 are presented in Figure S3, for SSP2-4.5 and SSP5-8.5 runs. As in the Nieuwe628

Maas SIL statistics presented in the main text, there is little to no change in the PDF629

for the SSP2-4.5 runs. Again a significant positive signal is found for the SI events in the630

SSP5-8.5 scenario, where the 30+ km events increase by 15%.631

SIL statistics including SLR632

IMSIDE provides a means to estimate the effect of SLR on the SIL statistics by increas-633

ing the depth of each of the river channels by a fixed amount. Using SLR projections634

from NASA based on the AR6 climate scenarios (Garner et al., 2022), estimations for635

SLR by 2085 were found to be 0.49m and 0.61m for SSP2-4.5 and SSP5-8.5 respectively636

(Maassluis station). The effect of SLR on SIL statistics is considered by including sep-637

arate IMSIDE runs where this SLR is taken into account by increasing the depth of each638

river channel with the stated amounts. It should be noted that the discharge input is639

kept the same as the previous runs such that these results represent the combined ef-640

fect of SLR and discharge reduction.641

Here the X2 PDF obtained from IMSIDE runs where the effect of SLR is included are642

shown. SLR is induced by increasing the depth setting of each channel in the RMD in643

the IMSIDE geological model. The SLR is prescribed as a constant rather than a time644

series as the latter is not supported in IMSIDE. To evaluate the SIL statistics, the 2070-645

2100 statistics from the SLR runs are compared to the 2015-2045 statistics from the base-646

line (no SLR) runs. All runs use the CNN-projected discharge as primary forcing input.647
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Figure S3. Comparison between time windows 2015 − 2045 and 2070 − 2100 using PDF of

Ensemble Average of SIL in the Oude Maas, for SSP2-4.5 (a-b) and SSP5-8.5 (c-d). (ASO only)

For the former, the difference in SIL statistics between the two periods is relatively small in this

case as the PDF’s are close to overlapping. In SSP5-8.5, a clear change can be seen between the

former and latter period where extreme salt intrusion events are more frequent and more intense.

The SLR values are obtained from the AR6 based NASA SLR tool (Garner et al., 2022),648

linearly interpolated to the year 2085 for the Maassluis site.649

The results of these simulations are shown in Figures S4 and S5 for the Nieuwe Maas650

and the Oude Maas respectively. When compared to the runs without SLR in the main651

text, the PDF shift is significantly more present here. The PDF shift in the SSP5-8.5652

scenario is 36% and 42% for the Nieuwe Maas and Oude Maas, compared to the 13%653

and 15% increase in the runs without SLR. Additionally, the SLR runs show an increase654

of 17% and 24% for the SSP2-4.5 scenario, where a significantly increase was absent in655

the runs without SLR.656

CMIP6 Climate Variable Time Series657

In the CNN-predicted discharge based on the CMIP6 data, large biases are observed with658

respect to the corresponding historical discharge measured at the downstream stations.659

These biases in discharge are assumed to be a direct result of biases in the forcing of the660

individual CMIP6 members. To illustrate this, Figure ?? shows the DOY means of each661

variable for the historical period 2015-2021 with a comparison to the ERA5 means for662

the same period. Indeed, the biases observed in the precipitation and volumetric soil mois-663

ture especially reflect well the biases seen in the river discharge predictions by the CNN664

(Figure 3).665

In addition to the comparison in the historical period, it is also imperative to consider666

the temporal trends in forcing conditions for each of the CMIP6 ensemble members. For667

this purpose a baseline is calculated for each member and variable separately based on668

the first 20 year of the time series. The relative difference of yearly mean forcing values669
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Figure S4. Same as Figure 5 where the effect of SLR is taken into account in the IMSIDE

runs. (ASO only)

Figure S5. Same as Figure 5 where the effect of SLR is taken into account in the IMSIDE

runs. (ASO only)
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Figure S6. Climate variable means per Day of Year (DOY) for the historical period 2015-

2021, with a comparison to the DOY mean in the reanalysis set ERA5. This plot is meant to

illustrate the biases present in the individual CMIP6 members, and serves as comparison to the

discharge biases shown in Figure 3. The averages are calculated over the entire region of the

Rhine-Meuse Basin.

is then compared to this baseline to illustrate the temporal evolution, shown in Figure670

S7. The trends in this analysis are to be compared to the trends seen in the CNN-predicted671

time series of yearly 7-day minimum discharge for the corresponding CMIP6 ensemble672

members (Figure 4).673

C) IMSIDE Model674

A comprehensive overview of the IMSIDE model used for SIL prediction is given her.675

For more detailed analysis, please refer to publications on this model, (Biemond et al.,676

2022, 2023, 2024).677

IMSIDE utilizes the salt conservation equation as follows:678
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∂

∂z
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∂s
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In this equation, s is the salinity, b is the width of the estuary, u is the (horizontal) flow679

velocity, w is the vertical velocity, and Kh, Kv are the parameterized horizontal and ver-680

tical eddy diffusivity. x and z represent the horizontal (along-channel) and vertical di-681

mensions while t is the time.682

Since salt intrusion in estuaries is highly dependent on depth-varying density and con-683

centration differences, the model is depth-resolving rather than depth-averaged. To achieve684

this, both flow velocity and salinity are split into a depth-averaged and a depth-dependent685

component as follows:686

u = ū+ u′, s = s̄+ s′ (2)

Combining Equations 1 and 2 yields the depth-averaged salt balance as follows:687

∂s̄

∂t
+

1
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∂
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(būs̄) +

1

b

∂

∂x
(b ¯u′s′)− 1

b

∂

∂x
(bKh

∂s

∂x
) (3)

Here the dominant terms of the flux balance between downstream and upstream directed688

processes are transparently represented. The second term represents the downstream fresh-689

water discharge pushing the saline water back in the seaward direction. The third term690
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Figure S7. Deviation in the three considered variables P , T and V SW as compared to the

2015 − 2045 baselines. Individual calculation for each of the CMIP6 ensemble members for SSP2-

4.5 and SSP5-8.5. The averages are calculated over the entire region of the Rhine-Meuse Basin.

captures the upstream processes, which include the effect of the density-driven estuar-691

ine circulation as well as a contribution induced by the river current. The final term rep-692

resents the horizontal diffusive flux, which can be an upstream or a downstream contri-693

bution based mainly on the phase coupling of flow velocity and salinity. The temporal694

evolution of the depth-averaged salinity is obtained by solving for the first term. To ob-695

tain evolution of the depth-dependent salinity s′, Equation 3 is subtracted from 1 (not696

shown). A Galerkin method is used to deal with vertical variations.697
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