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Abstract  

When teaching the derivative, geometric meaning-making is usually supported by the visual context of 

graphs and tangent lines. However, this way of meaning-making is somewhat indirect, easily forgotten, 

and not always meaningful in certain contexts. To address the challenge of fostering meaning-making 

of the derivative, our research focuses on how nomograms can enhance this. We developed a dynamic 

digital learning environment that introduces nomograms as an additional geometry context to provide 

meaning-making to the instantaneous rate of change as an enlargement factor concerning a local 

focus. Our pilot study, involving twenty-five 10th-grade pre-university students, provides insights into 

their thought processes and shows the challenges of this approach, suggesting several ways to improve 

the design for the next design cycle.  

Keywords: nomograms, dynamic digital environment, calculus education.  
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Introduction  
“Math is too difficult”, is probably the most expressed sentiment in a Mathematics class. Secondary 

school students often perceive mathematics as complex and intricate, particularly in the formal 

manipulation of relationships, such as in Calculus. Conceptual thinking around relationships and 

functions is also a significant hurdle for many students. 

However, it is important to recognize that the formal handling of relations, particularly in Calculus, 

grows increasingly important as students progress through upper-secondary education. Calculus serves 

as a defining feature of modern mathematics, showcasing its strength and adaptability in reducing 

complex problems into manageable rules and procedures. Its applications span a wide range of 

knowledge domains, including mathematics, physics, engineering, social sciences, and biology (Berry 

& Nyman, 2003; Kleiner, 2001).  

One of the central concepts within Calculus is the derivative. However, certain difficulties arise in 

understanding this concept due to teaching methods that prioritize algorithmic approaches. This 

emphasis on algorithms often leads to significant challenges and errors for students when they encounter 

tasks that require a deeper understanding of the meaning behind derivatives (Fuentealba et al., 2018). In 

the Netherlands, the derivative is usually introduced geometrically as the slope of the tangent to the 

curve. While this provides a meaningful visualization of the concept, we believe that this perspective 

does not provide the most appropriate picture for understanding the derivative as an instantaneous rate 

of change.  

 

 

 

 

 

 

 

 

Figure 1 Relationship between volume and pressure in a gas barrel 

In a closed gas barrel with a pressure regulating valve, the volume can be described by the function 

𝑉(𝑝) =
𝑐

𝑝
. The derivative 𝑉′(𝑝) =  −

𝑐

𝑝2 expresses the sensitivity of the volume as a function of pressure. 

For example, when the pressure is low, the effect on the volume of an increase is large and negative. 

This can be observed in the graph of 𝑉 because the slope is steep and negative for small values of 𝑝. 

However, the sense of rate is not easily associated with the steepness of the graph (Thompson, 1994). 

We hypothesize that the sense of rate can potentially be more naturally understood in terms of 

enlargement.  

An alternative representation, known as a nomogram, will be proposed as a solution to this context. 

Nomograms, also called arrow graphs (Bos, 2024) or parallel axes representations, have been previously 

investigated by Nachmias and Arcavi (1990). In our current research, we use the term ‘nomogram’ to 

describe a function as a family of arrows from input values to corresponding output values (Figure 2). 
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Nachmias and Arcavi emphasize that linear functions correspond to nomograms in which the arrows 

intersect at a focal point, extending the arrows into lines if necessary. This point of intersection is called 

the focus. When the rate of change is equal to 1, the arrows are parallel, and the focus point is ‘at 

infinity’.  

 

   

As a result, the rate of change of a linear function can be interpreted geometrically as a factor of 

enlargement in the nomogram. An interval on the input axis is enlarged to an interval on the output axis 

concerning the focus (Figure 3a). The rate of change corresponds exactly to the enlargement factor 

between these intervals. The main goal of our study is to investigate whether teaching this new geometric 

interpretation of the rate of change, in addition to the usual interpretation as slope, supports students' 

understanding of the rate of change.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 a 𝑓(𝑥) = 𝑥2  b 𝑔(𝑥) = 3𝑥 − 1 with a focus.  c ℎ(𝑥) = 𝑥 + 3 with a focus on infinity. 

Figure 3 a The rate of change of 𝑓(𝑥) = 2𝑥 − 3 equals the enlargement factor 
𝛥𝑦

𝛥𝑥
= 2 of the 

interval [0,1] to [−3, −1] with respect to the focus 𝐹 in the nomogram. b The circle as an 

emerging enveloping curve for the function 𝑔(𝑥) =
4

𝑥
 in the nomogram. 
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Considering the nomogram of a nonlinear function, a certain enveloping curve appears in the nomogram 

(Figure 3b). These curves in general turn out to be beautifully related to the derivative, as will be shown 

in a moment. 

 

A function is differentiable only if it is locally linear. In the graph, this means that the function 𝑓 around 

a point (𝑎, 𝑓(𝑎)) can be approximated by a line called the tangent. In the nomogram, it means that on 

an increasingly small interval around 𝑎 on the input axis, the arrows approximately pass through one 

point. The smaller this interval, the sharper and more precise this point becomes visual in the nomogram 

(Figure 4). The corresponding limit point of the intersection of the arrows is called the local focus. The 

value of the derivative can be interpreted as the enlargement factor concerning this local focus. 

Furthermore, the local focus points form the previously mentioned envelope curve. In addition to the 

previously mentioned purpose, our goal is to investigate how the instantaneous rate of change and 

derivative can be taught using nomograms.  

Figure 4 Arrows within an increasingly small interval intersect at an approximate local focus point 

 

This paper presents the findings of the first cycle of design-based research. It will first present a brief 

outline of the literature related to derivative learning, as well as connecting multiple representations and 

learning with dynamic digital tools as a basis for inquiry-based learning. Next, the intervention will be 

shown, which consists of two modules each lasting approximately one hour. Finally, the results of the 

implementation in a 10th-degree pre-university class will be presented and it will be discussed how the 

intervention can be improved, based on an analysis of the results and conclusions. Through this research, 

the aim is to answer the research question: how can interactive tasks in GeoGebra, in which nomograms 

play a central role, promote the meaning-making of the derivative?  

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

Theoretical framework 
The theoretical framework includes notions from offering various representations to the object-process 

layer model of Zandieh (2000) and insights into dynamic digital geometry environments. These theories 

form the basis for the design principles that will be applied in developing the intervention for this 

research.   

 

Various representations 

Offering various representations of a specific concept is a crucial element in the teaching and learning 

of mathematics (Vergnaud, 1987). Each of the representations brings different aspects of the concept to 

the foreground (Nachmias & Arcavi, 1990). By comprehending different representations and having the 

ability to translate between them, diverse relationships and processes can be made explicit, facilitating 

reflection on the concept and potentially fostering further mathematical learning (Kaput, 1987). Also, 

according to Hiebert and Carpenter (1992), a “mathematical idea or procedure or fact is understood if it 

is part of an internal network. [...] The degree of understanding is determined by the number and strength 

of the connections”. The better students can make connections between different representations, the 

better they will understand the concept, in this case, the derivative. 

 

The concept of derivative can be represented in several ways. Firstly, it can be understood graphically 

as the slope of the tangent to a curve at a given point. Secondly, it can be described verbally as the 

instantaneous rate of change. Thirdly, physically, it can be thought of as speed or velocity. Finally, it can 

be represented symbolically as the limit of the difference quotient (Zandieh, 2000). Because of the 

unique perspective provided by the nomogram, we will extend Zandieh’s table for this study, as shown 

in the table below. In doing so, we also used the already extended version of Roundy et al. (2015). 

 

 

 

Table 1a 

An extended theoretical framework for the concept of the derivative 

 

                                                  Contexts 

Graph Nomogram 

 Graphical Verbal Graphical Verbal 

Process-object layer Slope in graph Rate of change Enlargement 

Ratio 

 

Average rate 

of change 

 

Enlargement 

factor w.r.t. 

focus  

Limit 

 

Instantaneous 

rate of change 

 

Enlargement 

factor w.r.t. local 

focus 

 

Function 

 

Rate of change 

at any 

point/time 

 

Enveloping 

curve of local 

foci 
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Table 1b 

An extended theoretical framework for the concept of the derivative 

                Contexts 

Paradigmatic Physical Symbolic 

Process-object layer Velocity Difference quotient 

Ratio The change in distance to the change in 

time: average velocity. 

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ 
 

Limit The average velocity over shorter and 

shorter intervals of time: instantaneous 

velocity. 

𝑓′(𝑥0) =  lim
ℎ→0

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ
 

Function A function that is associated with each 

moment in time an instantaneous velocity. 𝑓′(𝑥) =  lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

 

 

Dynamic digital geometry environments 

Once students learn to calculate the derivative by applying rules, they often develop a preference for 

this method, eliminating the geometric interpretation, if it existed at all. Students’ preference for 

computational techniques seems to stem from a daily teaching practice that rapidly shifts from 

conceptual introduction to computational procedures (Thompson, 1994).  

 

However, for a deeper understanding of derivation, it is desirable to reduce this computational emphasis 

in students. A dynamic digital geometry environment can help in this regard. Indeed, using interactive 

tools enables students to engage in higher-level mathematical problems (Nachmias & Arcavi, 1990). 

One reason is that time-consuming tasks, such as graphing and calculations, need to be performed less 

frequently. This allows students to focus on higher-level mathematical thinking, which involves being 

able to think in terms of different representations and intertwine them (Dickson, 1985). This is consistent 

with and important according to the theory of various representations mentioned earlier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Through interactive learning environments, students receive immediate feedback 

 

Another reason to use a dynamic digital interactive learning environment is that it provides the 

opportunity for inquiry-based learning (IBL). IBL is a teaching method in which students are encouraged 

to participate actively in the learning process. Students participate in activities and thought processes 
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used by scientists to generate new knowledge (Maaß & Artigue, 2013).  Interactive dragging tasks are a 

valuable tool within this approach, where students discover and explore concepts through learning-by-

doing (Arzarello et al., 2002).  

 

According to Uygun (2020), interactive geometry environments allow students to manipulate geometric 

figures and find the correct answers through trial-and-error, moving, dragging, animating, and adjusting 

objects. The first benefit of interactive dragging tasks is that they can provide students with immediate 

feedback (Figure 5), which helps reinforce their understanding and correct any misconceptions. This 

promotes deeper understanding and long-term knowledge retention. Moreover, by moving objects, such 

as the intersection with the y-axis of a linear graph, students can gain deeper insights than would be 

possible with a static image of a linear graph (example).  

 

Finally, abstract concepts can be offered more intuitively in this way. Leung (2008) states that “dragging 

is considered a dynamic and powerful tool for acquiring mathematical knowledge through continuous, 

real-time transformations in which the properties of geometric objects can be maintained or 

approximately maintained”. 

 

Design principles 

During the design process of the digital intervention for this research, we focused on two design 

principles using the above theory. The first design principle is the use of various representations side by 

side, for clarification and to make connections between each other. We consider this essential for 

students’ knowledge acquisition about the nomogram. Firstly, because students are already familiar with 

the representation of the function prescription in combination with the graph. By matching the 

representation of the nomogram to this, we hoped to make the explanation of this more effective. 

Secondly, the use of different representations is important for understanding the derivative. According 

to the above the better students can make connections between different representations, the better they 

will understand the concept, in this case, the derivative.  

 

This connection between different representations also plays an important role in our second design 

principle, which is to follow the process-object layers of Zandieh’s (2000) model. This model, which 

we discussed in the theoretical framework, provides a clear structure between the different ‘layers’ of 

the derivative, starting with the average rate of change and ending with the rate of change at any 

point/time. Since the understanding of a previous layer is helpful for the understanding of the next layer, 

we explicitly kept these layers in our design to offer a structural build-up in knowledge about the 

derivative in the nomogram. 

 

 

 

 

 

 

 

 

 

 

 

https://www.geogebra.org/m/rc4dknsy#material/tjd3sxpc
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Method 
Since the intended learning process about the derivative using nomograms could not be done in a 

regular educational setting because nomograms are not in regular Mathematics textbooks, we had to 

create a learning environment to enable this learning process. Therefore, we conducted a design-based 

study.  

Context  

The designed learning environment was piloted in a grade 10 class, with 25 students in a social science 

pre-university stream. These students attend school at the Jacobus Fruytier in Apeldoorn, where for 

mathematics the method Getal en Ruimte is used. This is important for the study’s results, as this method 

is particularly focused on a more traditional way of teaching, which is in line with the educational 

approach at Jacobus Fruytier. However, the intervention will be inquiry-based, so it is important to take 

this into consideration. The students were taught by one of the researchers and during the pilot they were 

allowed to collaborate.  

Hypothetical learning trajectory  

For this research, two modules were designed in GeoGebra. The first module begins by activating prior 

knowledge about linear functions and graphs and then focuses on nomograms of linear functions. The 

second module builds on this foundation by interpreting the derivative within nomograms of linear and 

nonlinear functions. The designed tasks in these modules are partly inspired by the designed tasks of 

Wei et al. (2024). 

 

In the remainder of this section, we describe part of the hypothetical learning trajectory. This includes 

only tasks that emerged as important in this research or whose results provided interesting insights. For 

each task, the task description will be given along with an image of the applet that students use in 

answering the question. The purpose and rationale of the task and design are also outlined. During the 

design of the modules, Zandieh’s (2000) process-object-layer model was explicitly used and employed. 

Where this emerges and when a transition is made in the model will also be described. 

 

Task 1.4A.  

Description task. Drag the red point and find out the relationship between the purple values in the 

nomogram and the gradient of the graph. Write down your findings below. 

 

 

 

 

 

 

 

 

 

 

Figure 6 Applet task 1.4A 

 

Purpose and rationale of task and design. The goal of task 1.4 is for students to discover that the 

enlargement factor in the nomogram corresponds to the gradient of the linear function, already knowing 

that it corresponds to the slope in the graph. The enlargement factor is visualized in two different ways 

in the nomogram, which will be explored in two separate subtasks. 

In the first subtask, the nomogram, the graph, and the corresponding linear function will be displayed. 

Within the nomogram, an interval of size 1 on the input axis is highlighted in pink along with its 

corresponding image and size on the output axis. By dragging the red point in the nomogram, students 

https://www.geogebra.org/m/rc4dknsy
https://www.geogebra.org/m/qkctydtk
https://www.geogebra.org/m/rc4dknsy#material/urdvu4tk
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can adjust the parameters of the linear function. At the same time, they can observe that the size of the 

enlarged interval corresponds to the gradient in the equation, which represents the slope of the graph. 

 

Process-object layer nomogram. In subtask 1.4A, students explore the first layer of linear functions, 

namely the focus and enlargement factor in combination with the gradient. 

 

Task 1.4B. 

Description task. Drag the red point and find out the relationship between the orange and blue distances 

and the gradient. Write down your findings below. Use a calculator if necessary. 

 

 

 

 

 

 

 

 

 

Figure 7 Applet task 1.4B 

 

Purpose and rationale of task and design. In the second subtask, only the nomogram is shown along 

with the corresponding linear function. The orange and blue values are absolute distances of the focus 

from respectively the input axis and the output axis. Students again drag the focus. During this task, 

students are expected to realize that dividing the blue value by the orange value is an alternative method 

of calculating the enlargement factor, and is therefore equal to the gradient in the function. 

 

Process-object layer nomogram. Students investigate the first layer, just as in the previous subtask. 

 

Task 2.5.  

Description task. Below you see the nomogram of 𝑦 = 𝑥2. In the following applet, you can take a 

smaller and smaller interval around 2 on the input axis. Each time 11 arrows are shown. The pink arrow 

belongs to the input value 2. The arrows get closer together on the input axis as you continue to reduce 

the length of the interval from which the arrows start. What do you notice about the light grey lines as 

the interval on the input axis is reduced? 

 

 

 

 

 

 

 

 

Figure 8 Applet task 2.5 

 

Purpose and rationale of task and design. The goal for students is to gain an understanding of how local 

linearity is represented in the nomogram. Students can observe that as the interval from which the arrows 

of the nomogram are shown is reduced, the light grey lines through the arrows intersect at an 

approximate single point. Students can reduce the interval by using a dragger. By reducing the interval, 

they are engaging in local linearity in the context of the nomogram. 

 

Process-object layer nomogram. In this task, students go through a transition from the first layer to the 

second layer. Namely, they are familiar with a linear nomogram and that it has a focal point. Using this 

https://www.geogebra.org/m/rc4dknsy#material/urdvu4tk
https://www.geogebra.org/m/qkctydtk#material/zqbuhky8
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knowledge, they can discover in this task that a nonlinear nomogram locally also has a focus point if it 

is locally linear.  

        

Task 2.6A.  

Description task. Below is the nomogram and graph of the height in meters of a falling object expressed 

in time as: height = 18 −
1

2
(time)2. Now the enlargement factor of height concerning the time at a 

given time is the object’s velocity at that time. So an enlargement factor of 5 at time = 3 means that after 

3 seconds the object falls at a speed of 5 m/s. When you drag the red points in the applet, you see that a 

pink interval varies with them. So you can determine the size of this interval by dragging the red points. 

The purple interval, which also varies is the distance that the object falls during the pink interval’s time. 

For example, if you put the red points corresponding to the interval [0,5], you can read that the object 

falls 12.5 meters in the first five seconds. The average fall velocity is thus 12.5 meters ÷ 5 seconds = 2.5 

m/s. Calculate the average speed on the interval [1,3]. Then verify your answer with the applet. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Applet task 2.6 

 

Purpose and rationale of task and design. In this task, the goal is to establish a closer relationship 

between two different representations, where in this task the data from both representations are needed 

to perform the correct calculation. Students can reduce the interval on the input axis by dragging the two 

red input values, between which the distance between these values is given just like the enlargement of 

the interval on the output axis. The point in the coordinate system corresponding to the blue arrow in 

the nomogram is blue and the yellow arrow to the yellow point, respectively.  

 

Process-object layer nomogram. This task clarifies once again the transition between the first layer and 

the second layer, but now in combination with the differential quotient. The transition from the first 

layer to the second layer when considering the differential quotient is to take the limit. This step is also 

followed in task 2.6 because, in the subsequent subtasks, the average speed must be calculated on an 

increasingly smaller interval to determine finally the speed at a point. In the first subtask, they operate 

in the first layer.  

 

Task 2.6B.  

Description task. Determine the average speed on a smaller interval: [1.5,2.5]. 

 

Purpose and rationale of task and design. In this task, the goal is to establish a closer relationship 

between two different representations, where the data from both representations are needed to perform 

the correct calculation. In this subtask, the students have to calculate the average speed on a smaller 

interval. The purpose for students is to get a better feel for how to take the limit and know what it means 

to take the limit on an increasingly smaller interval. 

 

Process-object layer nomogram. From the beginning of the task to the end, the transition from the first 

to the second layer will be made. In this second subtask, students are still working in the first layer, but 

are already working toward the third layer. 

 

https://www.geogebra.org/m/qkctydtk#material/pyxtf7ua
https://www.geogebra.org/m/qkctydtk#material/pyxtf7ua
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Task 2.6C.  

Description task. If you were to keep repeating this [determine the average speed on an interval] for a 

smaller and smaller interval, the average speed on the interval will become increasingly accurate to the 

speed at time is 2. This is exactly in words what the following means: enlargement factor =  𝑙𝑖𝑚
∆𝑥→0

(
∆𝑦

∆𝑥
). 

∆𝑥 indicates how large you choose the interval. Then reduce this interval until you can determine the 

enlargement factor in the point. lim
∆x→0

means that you choose the interval smaller and smaller until the 

length of the interval is almost zero. Estimate as accurately as possible the speed at time = 2. 

 

Purpose and rationale of task and design. To give more words to the limit, the explicit example explains 

what the limit means. Combined with the previous tasks, the goal is for students to get a better feel for 

taking the limit and know what it means to take the limit on an increasingly smaller interval. 

 

Process-object layer nomogram. In this final subtask, students operate in the second layer because they 

are working on the instantaneous rate of change in the nomogram.  

 

Task 2.9A.  

Description task. Below you see the nomogram of 𝑦 = 𝑥2. The green lines are two (continuous) arrows 

of the nomogram. Drag the red point. What do you notice about the light green points? 

 

  

 

 

 

 

 

 

 

Figure 10 Applet tasks 2.9A and 2.9B 

 

Purpose and rationale of task and design. The enveloping curve of the nomogram can be supportive in 

calculating the enlargement factor. Only the horizontal location of the focus is needed. The purpose of 

this task is to point this out to students. The first subtask is intended to draw attention to the enveloping 

curve. 

 

Process-object layer nomogram. In task 2.9, students act at both the second and third layer levels. In 

this subtask, students can identify the enveloping curve (third layer) using local foci (second layer). 

Therefore, this subtask marks a transition from the level of the second layer to the third layer. 

 

Task 2.9B.  

Description task. What is the light green point anyway? 

 

Purpose and rationale of task and design. The enveloping curve of the nomogram can be rather helpful 

in calculating the enlargement factor. In fact, only the horizontal location of the focus is needed. The 

purpose of this task is to point this out to students. Indeed, the intersection of the line through the arrow 

of an input value with the enveloping curve is the local focus relative to that input value. Students can 

observe this in the second task of this assignment and this is explained next. 

 

Process-object layer nomogram. In task 2.9, students act at both the second and third layer levels. In 

this subtask, the level returns to that of the second layer, in which a controlling question is asked, from 

which the teacher might note whether students actually understand how the enveloping curve is 

constructed. 

 

 

 

https://www.geogebra.org/m/qkctydtk#material/pyxtf7ua
https://www.geogebra.org/m/qkctydtk#material/ntt6qa9d
https://www.geogebra.org/m/qkctydtk#material/ntt6qa9d
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Task 2.9C.  

Description task. For each input value, there is an enlargement factor. This is precisely the enlargement 

factor of the distance between the axes to the focus, belonging to that input value. When we connect all 

the foci (light green points), which we get by dragging the red point, we get a curve on which all the 

foci lie. Using this curve, we can thus determine the enlargement factor of an input value. What is the 

approximate enlargement factor associated with input value 2? Describe how you got your answer. 

 

 

 

 

 

 

Figure 11 Applet task 2.9C 

 

Purpose and rationale of task and design. In the last subtask, students are asked to determine the 

enlargement factor for input value = 2. Students can drag on the red dot for this purpose, to move it to 

input value =2. They can then determine (approximate) the enlargement factor in two ways, namely by 

using either the horizontal distances from the focus to the axes or the vertical distances on the axes.   

 

Process-object layer nomogram. In this subtask, the enveloping curve is used to determine the 

enlargement factor in a point. However, this focuses more on the local focus associated with this point 

than the entire enveloping curve, making this subtask better suited to the level of the second layer, rather 

than that of the third layer.  

 

Data collection and analysis 

To analyze the results of this study, students’ answers in the online learning environment were collected 

and scored. The answers were scored from 0 (not according to HLT) to 5 (completely according to HLT). 

To be able to make Table 2, we merged scores 4 and 5 as ‘according to HLT.’ This is justified because 

the answers of score 4 always contained the correct answer, although, for example, a unit may be missing 

or the answer may not be fully formulated. The remaining answers were merged as ‘not according to 

HLT. 

In addition, some students were interviewed individually during the pilot, and after the pilot, a group 

interview with five randomly selected students was conducted. These interviews were word-for-word 

transcribed and will be cited as quotes in the results. 

 

 

 

 

 

 

 

https://www.geogebra.org/m/qkctydtk#material/ntt6qa9d
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Results, analysis, and local conclusions  
The designed modules have produced compelling lessons and results, which we will discuss in this 

section. We first present a table that shows the extent to which the actual learning trajectory (ALT) is 

consistent with the hypothetical learning trajectory (HLT). Next, we will analyze these results. Only 

results from tasks relevant to the purpose of this study, namely whether teaching the geometric 

interpretation of rate of change as the magnification factor, in addition to the usual interpretation as 

slope, supports students’ understanding, will be discussed. When discussing the results in the remainder 

of this section, local conclusions and suggestions for redesign will also be mentioned to make reading 

more continuous for the reader. Overall conclusions and discussion will be addressed in the next section.  

 

Table 2 

 

ALT  compared with HLT conjectures for the tasks 

 

 

 

 

 

 

 

Note: an x signifies how well the conjecture accompanying that task matched the observed learning          

(- refers to up to 1/3 of student answers are in the ‘according to HLT’ category, and + to at least 2/3 of 

student answers are in the ‘according to HLT’ category).  

Task 1.4B.  

Observations. Students were challenged to discover the relationship between the distances in the 

nomogram and the gradient. However, only seven of the twenty-five students managed to identify this 

relationship correctly. The remaining students stuck to superficial observations, such as “there is a 

relationship”, or came to incorrect conclusions, such as “as the gradient gets lower, the numbers also get 

lower”, and “the lower the gradient, the greater the distances of the blue and orange values [distances in 

the nomogram]”. We believe that students may be not accustomed to inquiry tasks, because they are 

taught traditionally, and lack the experience to delve into the problem situation. We recognize this also 

in the answers to task 1.5. The task there was to say something about the gradient based on the location 

and displacement of the focus. Most students formulate a partially correct answer: “The gradient changes 

with horizontal displacement and remains the same with vertical displacement”. Only two of the twenty-

five indicated more precisely, what changes the gradient then goes through: “As you move [with the 

focus] closer to the nomogram, the gradient increases”. 

 

Suggestions for redesign. To ensure that student observations are less superficial, the teacher can help 

by applying discuss-the-screen in class after each student has completed the specific task (Drijvers et. 

al., 2010). This leads to a classroom discussion of what is happening in the task, on a classroom screen. 

The superficial observations will be mentioned first, but the teacher can subsequently direct to more in-

depth observations. Suggestions from students can then be easily tried out, upon which quick and 

dynamic feedback can be given. It can be immediately found out whether the student's suggestion is true 

in its ‘generality’. It can also then be addressed as to why the observation “As the focus in the nomogram 

approaches the input axis from the left, the gradient increases”, is true. If so, the moment of discuss-the-

screen not only enriches the mathematical content of the task or problem but also gives the learner tools 

on how to tackle such an ‘open’ task. 

+    x    x  

± x      x   

−  x x  x x   x 

Task 1.4A 1.4B 1.5 2.3A 2.3B 2.5 2.6A 2.6B 2.6C 

+ x x x     

±    x    

−     x x x 

Task 2.7A 2.7B 2.8A 2.8B 2.9A 2.9B 2.9C 

https://www.geogebra.org/m/rc4dknsy#material/bxptdvac


15 

 

Task 2.3A.  

Observations. Contrasting the answers from task 2.3A, where students had to identify which of the two 

graphs shown was linear, the results from task 2.3B show limited similarity to the HLT. In this task, 

students had to explain why a specific nomogram shown was or was not linear. Most students indicated 

that the nomogram was linear, which is correct. However, the reasoning of most students was “because 

the arrows are straight” or “they are straight lines”. This suggests a misconception or a misunderstanding 

from another representation. The correct reasoning is: “The nomogram is linear because all the 

(continuous) arrows intersect in one point”. 

 

Suggestions for redesign. An intervention to debunk the just mentioned misconception can be by the 

method of spot-and-show (Drijvers et. al., 2010). In this form of orchestration, students’ reasoning is 

brought to the forefront, which is exactly what is needed in this situation. Students must become aware 

of their answers and the reasoning behind them. Asking students in class about their answers and then 

having their classmates reflect and respond to them allows any misconceptions to be addressed. This is 

important for the continuing progress of the module. 

 

Task 2.5.  

Observations. As mentioned earlier, the modules follow Zandieh’s (2000) process-object-layer model. 

This is exemplified in task 2.5, which focuses on discovering a local focus at a fixed input value by 

reducing the interval of departing arrows around this input value. Despite this setup, many students 

struggle to recognize this relationship. Instead, when asked what stands out as the interval on the input 

axis is reduced, they formulate answers such as: “The arrows get closer to the pink line [arrow belonging 

to input value] and to each other” or “The lines get straighter and straighter.”  

 

Figure 12a Current design task 2.5 

 

 

 

Figure 12b Proposed redesign task 2.5 

 

https://www.geogebra.org/m/qkctydtk#material/wtbszzgu
https://www.geogebra.org/m/qkctydtk#material/zqbuhky8
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Suggestions for redesign. This task was intended to be a discovery learning experience. In the theory 

that follows completing this task, local linearity is discussed from linearity onward. To bring the results 

of this assignment more in line with the HLT, we believe it is mainly important for students to have tools 

to deal with an open and discovering task. The intervention for this has been mentioned above, namely 

through discuss-the-screen, where a classroom conversation takes place about what is happening on the 

classroom screen and students can exchange their ideas and reflect on each other’s ideas. The teacher 

then could guide this conversation and possibly take it to the next level. Furthermore, we would not 

want to intervene in this assignment, precisely because it is a discovery task, it should remain open-

ended. Something that might be helpful here, though, is an adjustment in the visual design of this task. 

In the current situation, the interval on which the arrows are shown changes, which gives two very 

different pictures (Figure 12a). A possible improvement would be to show continuously the whole 

nomogram and just change which arrows are highlighted (Figure 12b). This way, students realize that 

considering a smaller interval does not change the function.  

 

Task 2.6.  

Observations. Task 2.5 is followed by a theoretical section on local focus in a nonlinear nomogram. 

Then task 2.6 serves as a reproduction task to this theory. In this task, given a given distance-time 

relationship, students are expected to estimate the speed at a specific time using average speeds at an 

ever-decreasing interval around that time. Both the formula, graph, and nomogram are shown here. The 

task is structured in several steps, with subtasks A and B as preparatory steps for subtask C. In the first 

subtask, many answers do not match the HLT because a concrete calculation to support the answer is 

missing. The transition from subtask B to C precisely marks the transition to the next layer, according 

to Zandieh’s model (2000). The results suggest that this transition is not understood by most students.  

 

Suggestions for redesign. To ensure that students write down a calculation on the first subtask, a small 

suggestion for redesign is to state explicitly in the task: “Write down your calculation”. The low score 

of task 2.6C compared to the HLT may have several causes, two of which we would like to name. First, 

it may be due to the formulation of the question. It reads as follows: “Estimate as accurately as possible 

the speed at time = 2”. During observation and guidance, we noticed that many students were unsure of 

their answers because of the words “as accurately as possible”. This misled them and they thought they 

had to do something difficult because it had to be as accurate as possible. A possible adjustment in 

formulation to remedy this could be: “Estimate speed at time = 2”. Another cause could be the transition 

from linearity to local linearity. The result then confirms that students are not yet ready for this step. To 

guide students in this, a reproduction task could be added after the theory, which students first make on 

their own but can then check against answers. The purpose of this task is then to apply the theory in a 

similar situation as in the theory to let the theory sink in. This could make the abstract theory more 

concrete for students, allowing them to then work with this theory independently.   

 

Task 2.7.  

Observations. Task 2.7 shows only the representation of the nomogram and omits the graph. Students 

are now asked not to estimate the velocity at a point, but to determine the enlargement factor 

corresponding to a point. As shown in Table 1, this task was performed in accordance with the HLT by 

most students. It may be because the applet in which the nomogram and values are shown is completely 

consistent with the applet shown in the theory. As a result, the enlargement factor could easily be 

determined by dividing an orange value by a blue value, a trick that could literally be applied in task 

2.7.  

 

Suggestions for redesign. Because the color formatting in this task is the same as the color formatting in 

the explanation of calculating the enlargement factor, we could not find out whether this trick actually 

caused the many correct answers. This points us to the next problem with this task: there is no way for 

the teacher (or in this case, the researcher) to determine whether a student truly understands the concept 

and understands why something works or is correct, or whether the student is just applying a trick. 

Therefore, conceptual learning must be made more visible. We will return to this later in the overall 

conclusion. 

 

https://www.geogebra.org/m/qkctydtk#material/pyxtf7ua
https://www.geogebra.org/m/qkctydtk#material/u4tnjxn9
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Task 2.8.  

Observations. Task 2.8 goes beyond mere reproduction and application. The task focuses on identifying 

the acceleration of a falling object, both in the graph (2.8A) and the nomogram (2.8B). For task 2.8A, 

almost all answers are correct. However, the answers to task 2.8B vary more, from: “The line goes up” 

and “More lines in the nomogram” to the almost correct “Between the arrows is more and more 

distance”.  

 

Suggestions for redesign. A notable aspect of these answers is a certain ‘formula shyness’, where 

students struggle with finding the appropriate words or sentence structures to phrase their answers 

accurately. This struggle arises from their unfamiliarity with how to construct sentences on the topic or 

from not knowing the suitable vocabulary to use. A class discussion may be an appropriate intervention 

to address this problem. This conversation need not necessarily be about this particular task, but it should 

be about a situation or problem with a nomogram. During the conversation, silences may fall when 

students cannot find words to express what they want to say. However, these silences create a need for 

words, allowing a valuable learning process to take place. In this process, the teacher can play an 

important role by providing words or sentence structures that can be used. 

 

Task 2.9.  

Observations. Finally, task 2.9 acts as a concluding assignment, taking the material of the module to a 

higher level, namely the final layer in Zandieh’s (2000) model. This task was added to the module 

because of its ultimate outcome (!): the derivative in a point can be determined in the nomogram by just 

the horizontal position of the intersection of the corresponding arrow with the emerging enveloping 

curve. However, the results suggest that this was an overstated goal of the researchers for the modules 

of this study. None of the students formulated a correct answer, except for a few cases in the first 

subtasks.  

 

Suggestions for redesign. The conclusion, which will also be discussed more fully in the overall 

conclusion, is that progressing to the last layer of derivation is still a step too far within the time frame 

of the modules. The layer before that, the ‘local layer’, requires more practice first, as evidenced by 

superficial answers to subtasks such as: “It [the arrows] are getting more and more” and “[the light green 

dots] are making an arc”. While these observations are correct, they are superficial. This degree of 

superficiality is also evident in the answers to questions 2.9B and 2.9C. 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.geogebra.org/m/qkctydtk#material/ntt6qa9d
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Conclusion and discussion 
This first cycle has brought with it conclusions that can be valuable for the further continuation of the 

research on methods of teaching the derivative using nomograms. Local conclusions have already been 

given in the results section. Global conclusions will be addressed in this section. We present three final 

conclusions, with supporting results.  

 

Firstly, we conclude that during the students’ learning process, more attention should be given to 

instrumental orchestration. During the design process, we focused mainly on the visual design of the 

modules, which resulted in a lack of adequate guidance in developing knowledge about the derivative 

in the nomogram for learners. This is supported by the aforementioned local conclusions, which show 

that applying specific forms of orchestration can solve or reduce certain problems. This will also be 

highlighted in the remainder of this section.  

 

Secondly, we conclude that some tasks should be redesigned, particularly to make conceptual learning 

more visible. This would promote conceptual discussions among students and between students and 

teachers and facilitate our analysis as researchers. For example, based on this reason, task 2.7 should be 

redesigned. Here some students gave correct calculations and answers, but due to the design of the task, 

they had no opportunity to show why their answer was correct, thereby indicating that they understood 

what they were doing. Similar occurrences happen more often, including, for example, task 1.4A, where 

all students see that a value in the nomogram matches the value for the gradient in the formula, but 

otherwise do not have the opportunity to explain whether they know why these values match. Making 

conceptual learning more visible can be accomplished in several ways, for example, by adding phrases 

to the task such as, “Explain in words how you arrived at your answer”. Conceptual learning can also 

be made visible by having the format of the task differ from the format of the theory. This can be 

achieved, for instance, in task 2.7, by avoiding the use of different colors in the nomogram. This prevents 

students from simply applying the trick of dividing ‘orange by blue’ and instead requires them to 

demonstrate a deeper understanding of calculating the enlargement factor concerning the local foci. A 

final example of making conceptual learning more visible is choosing one or two tasks in both modules 

that are explained to the class by a student. This is known as the Sherpa-at-work orchestration (Drijvers 

et.al., 2010). Having a student explain the task forces them to explain exactly what the answer is. To do 

this, we would choose a student who has given the correct answer to see if he or she actually understands 

the answer and can explain why it is correct. If the student cannot do this, it provides insight for the 

teacher, researcher, and the student themselves. A class moment can then lead to a class discussion that 

will allow this student, and probably others, to gain understanding. In summary, it can be concluded that 

both modifications in the design of the learning environment and the orchestration of the classroom 

situation contribute to better visibility of conceptual learning.  

 

Thirdly, our research shows that learning to work with nomograms and understanding their relationships 

with functions and graphs is challenging. This challenge includes several aspects that we will outline. 

Firstly, it appears that some of the theoretical frameworks in the module were too long or inaccessible. 

This is evidenced by responses collected during interviews during and after making the modules: “A lot 

of [theory] you didn't know before and then you think: what am I reading now. And then you don't really 

understand anything”. So, first of all, the complexity of learning appears to lie not only in the complexity 

of the concepts and tasks themselves, but also in the unfamiliarity with those concepts. Moreover, our 

research shows that in the current modules, too little time was spent on processing and internalizing the 

concepts within the modules. This is considered a shortcoming of the modules, manifested in the answers 

the students gave, for example, in the last task of the module. This task was intended to anticipate the 

next and final step in Zandieh’s (2000) model. However, many students did not understand this 

transition, which the researchers believe is due in part to insufficient processing of the previous, required 

concepts. Specifically, students have difficulty understanding and articulating fundamental differences, 

such as those between the focus and local focus, and between the enlargement factor concerning the 

focus and the enlargement factor concerning the local focus in the nomogram. This is evidenced by 

student responses in interviews, which reveal that students largely fail to understand and articulate these 

conceptual differences. Finally, we found that classroom interaction between teacher and student is 
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necessary for guiding the process of learning to work with nomograms. This was discussed earlier in the 

results section that describing the ways the teacher’s role can be used to address certain challenges that 

emerged during specific tasks or situations. Students also indicated that they valued explanations from 

the teacher to clarify abstract theories: “I now appreciate explanations from a real teacher more”. 

Although this was the first time students were building knowledge through an inquiry approach, and it 

is a logical consequence that they struggled with it, we argue that classroom moments should not be 

used only as traditional moments of explanation, but rather as guided moments, in ways described in the 

results section. During these moments, students are encouraged to formulate their answers to questions, 

while the teacher guides class discussion to clarify misconceptions, discuss strategies for approaching 

open-ended tasks, or share insights. These classroom moments can help students develop their inquiry 

skills. These skills then enable students to develop more and deeper knowledge. In conclusion, the 

difficulty of working with nomograms lies not in using the nomograms themselves, but in developing 

the necessary knowledge through the current module. 

 

 

 

 

In summary, and to answer the research question posed above we can say that further development of 

the modules is needed. This development should not only emphasize visual aspects but also prioritize 

effective guidance and orchestration of the learning process, with the aim to optimize the development 

of students’ knowledge and skills. Consequently, we cannot consider the research completed yet and are 

not ready to give up investigating the role of nomograms in teaching derivation, stimulated by the 

success of Wei et al. (2024) in using nomograms to foster functional thinking.  

Several factors, independent of the module itself, may explain the limited success to date. Firstly, unlike 

working with graphs, which students are prepared for from an early age, nomograms are new to students 

and the learning curve in two hours is very steep, as mentioned earlier. Secondly, this research was 

conducted in a class from the social science stream. However, the nomogram could be more effective 

for students in the natural science stream, as they generally have more affinity for geometry. Therefore, 

the next step in the design study will be to test an expanded version of the modules, applying the 

suggestions for improvement previously raised while discussing the results of the first cycle with 

students in a natural science stream. 

 

 

 

 

 

 

 

 

 

 

How can interactive tasks in GeoGebra, in which nomograms play a central 

role, promote the meaning-making of the derivative? 
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