
Theoretical Physics

Identifying PDEs in Interacting Particle
Systems using Data-Driven Techniques

Master Thesis

Hanne Leeuwis

Dr. Joost de Graaf First supervisor

Institute for Theoretical Physics - Utrecht University

Dr. Deb Panja Second supervisor

Department of Information and Computing Sciences - Utrecht University

Jeroen Roberts Daily supervisor

Institute for Theoretical Physics - Utrecht University

July 10, 2022

i

Acknowledgement

I would like to thank my supervisor Joost de Graaf for all of the feedback and support he has
given me throughout the year. I learned a lot of new things from him, and I could not be
happier with the topic of the thesis. Special thanks to my daily supervisor Jeroen Roberts
for all of the fruitful discussions we had, and for guiding me through the fascinating world
of interacting particle systems. I also would like to thank my second supervisor and complex
systems profile coordinator Deb Panja for approving the Machine Learning Theory course as
part of the minor. The theoretical background proved to be very useful in understanding and
developing the data-driven methods.

Finally, I would like to thank all of the students who were present in the master room throughout
the year. The discussions we had were really fun, and I think I even have learned some things
about string theory.

Abstract

Partial differential equations (PDEs) are powerful tools to describe large-scale dynamics of
microscopic systems. However, deriving a PDE from first principles becomes significantly
more involved when systems increase in complexity. In this thesis research, we will consider
a data-driven approach to determine (new) PDEs for interacting particle models on a
lattice, using the sparse regression based algorithm develop by Brunton et al [1]. We
will focus on the average behaviour of the Eden process (this describes growth processes
seen in bacteria) and the contact process (CP), which also incorporates death. When
the Eden process is combined with the symmetric simple exclusion process (SSEP), i.e.,
diffusive spreading and hard-core exclusion, the motion obeys the Fisher equation, which
is a PDE that models the spread of growing populations. The CP is more complex as it
possesses a phase transition with criticality. As of yet, the emergent dynamics have not
been captured in the form of a coarse-grained PDE, which makes it an interesting case to
study from both a biological and mathematical perspective. At the critical point of the
CP, we find that the emergent behaviour can be captured by the Fisher equation with an
interface broadening term, which explains the observed length scales at the boundary of
the population. Our results highlight the strength of data-driven methods for discovering
PDEs in complex particle systems. Applying these techniques to experimental results for
bacterial colonies presents new opportunities to study their collective behaviour, which
will be the focus of future research.

Title page image: The left picture is a space-time plot of discrete particle data obtained from
the contact process at the critical point. With our data-driven techniques we found a PDE
that describes the average behaviour of this particle system. On the right we have plotted the
contributions of this PDE as a function of space and time. With these methods we are thus
able to learn macroscopic dynamics by examining microscopic actions.

ii

CONTENTS iii

Contents

1 Introduction 1

2 Methods 4
2.1 Introduction to Learning Partial Differential Equations 4
2.2 Linear Regression and Least Squares . 5
2.3 Ridge Regression . 8
2.4 Sparse Regression with STRidge and TrainSTRidge 10
2.5 TrainSTRidge Adaptions . 12

2.5.1 Physics Based Threshold for TrainSTRidge Tolerance Increment 13
2.5.2 Normalising the TrainSTRidge Error Evaluation 14

2.6 Filtering Noise with 2D Fourier Transformations 15
2.7 Computing Derivatives with the Savitzky-Golay Filter 17
2.8 Finding Consistent and Reliable Partial Differential Equations 20

3 Validation of TrainSTRidge and Testing Data-Driven Techniques 21
3.1 The Fisher Equation obtained from Smooth Data 21
3.2 The Diffusion Equation obtained from Random Walkers 28
3.3 The Advection-Diffusion Equation obtained from Biased Random Walkers . . . 36

4 Learning Partial Differential Equations in Interacting Particle Systems 40
4.1 The Fisher Equation obtained from the Eden Model combined with the Sym-

metric Simple Exclusion Process . 40
4.2 Travelling Waves of the Eden Model . 47
4.3 The Contact Process . 50

4.3.1 Travelling Waves of the Contact Process above Criticality 51
4.3.2 Effective PDE from the Contact Process at the Critical Point 53

5 Discussion 58

6 Conclusion 60

1 INTRODUCTION 1

1 Introduction

Partial differential equations (PDEs) can provide a continuum description of the microscopic
dynamics of particle systems. This is useful, because solving a PDE allows us to predict future
states of a particle system as a whole, which in general is less expensive than computing all
of the interactions and movements of the individual particles. A well known example of a
continuum description of particle dynamics can be found in Brownian motion. This describes
how suspended (colloidal) particles move randomly due to interactions with the surrounding
medium [2]. This gives rise to a random walk, which in the continuum limit can be modelled by
the diffusion equation [3]. This is for example extremely useful in simulating colloid dynamics,
as it considerably speeds up the computational speed compared to molecular dynamics [4].

In this thesis, we will focus on PDEs of particle systems that are defined on a lattice. Of these
systems there are many examples where it is possible to derive a PDE from first principles,
such as the advection-diffusion equation from biased random walk [5], Burgers equation from
the asymmetric simple exclusion process [6], and the Fisher equation from a combination of
the Eden model and the symmetric exclusion process [7]. These systems are characterised and
modelled via a simple (stochastic) rule set, such as moving to the left or right with a chosen
probability in the case of a random walker. With these rules, it is then possible to write down a
Master equation, which can then be converted to a PDE by taking a continuum limit [8] or with
a path integral representation [9]. This is a straightforward calculation in the case of a random
walk, but it becomes more difficult if we introduce rules that lead to complex, nonequilibrium
and/or emergent dynamics, such as in active matter [10]. In these systems, combinations of
microscopic rules can give rise to new emergent behaviour, which makes it hard to deduce a
PDE from first principles [11]. That is, combining rules can effectively lead to new rules, which
makes it hard to deduce a PDE from first principles.

The above consideration gives rise to the question how we can find PDEs of complex systems
without relying on a Master equation or other first principles. One alternative and pragmatic
approach would be to infer the macroscopic dynamics from data that follows from the particle
rules. This idea is not new. In fact, in past and recent years there has been a lot of development
of data-driven techniques to find PDEs from data, specifically in the field of hydrodynamics.
See Ref. [12] for an in-depth review of past and recent developments of data-driven methods
in fluid mechanics. The advantage of a data-driven method is that we do not have to think
how the microscopic interactions give rise to complex and emergent behaviour, because we can
directly measure the large-scale effect in terms of a PDE contribution.

One example of an utilisation of a data-driven technique on a particle system can be seen in
Ref. [13]. Here, they successfully found a hydrodynamic description of active matter dynamics.
To achieve this, they apply filtering techniques to coarse-grain discrete particle movements,
which they then feed to a PDE searching algorithm developed by Brunton et al. [1]. This
algorithm employs sparse regression, where sparseness is enforced by giving PDEs with many
terms a large error. This is a promising technique, because it enables the capture of complex
particle behaviour in terms of an interpretable PDE. In addition, as a simple test, Brunton et
al. found the diffusion equation from Brownian motion [14].

From the final example we thus see that it is possible to find PDEs in particle systems. In this
thesis, we want to develop a precise methodology for applying this to interacting lattice particle
systems. To do this, we will examine two well-studied stochastic particle systems of increasing
complexity. These systems are simple enough to generate trustworthy data, so this allows us to
focus on finding the limits and pitfalls of the data-driven methods. To maximise the efficiency
and reliability of the methods, we will look into finding the optimal filtering techniques, how

1 INTRODUCTION 2

we can approximate derivatives from noisy data, and how we can check whether the coefficients
of PDEs are correct by using various initial conditions and multiple randomly generated data
sets.

The first model that we will consider is a combination of the symmetric simple exclusion process
(SSEP) and the Eden process, which are both lattice particle systems. We will focus on the
1D case. The SSEP is similar to the random walk, but it also includes hard-core exclusion [15],
i.e., particles cannot occupy the same site. The Eden process is a simple stochastic growth
model, where particles can give birth to neighbouring lattice sites [16]. This model has been
used to explain pattern formation seen in bacteria [17, 18]. Hence, combined with the SSEP,
the system can be interpreted as a model for moving and growing bacteria. In literature, it is
well known that in the continuum limit the Eden-SSEP density evolves according to the Fisher
equation [7], which is a PDE that models the spread of growing populations [19]. However,
there has not been a (numerical) study of the finite-size limit towards the continuum. We
performed these calculations with the data-driven techniques and we found that the continuum
limit of the dynamics is indeed given by the Fisher equation.

The second model is an extension of the Eden model, as it also incorporates death in addition
to growth. This model is called the contact process (CP) and it has seen extensive study
from mathematicians, because it undergoes a second order phase transition due to competition
between birth and death [20]. A lot of study has gone into determining the critical exponents
at the critical point [21] and the survival probabilities [22], but to the best of our knowledge,
no coarse-grained PDE has been proposed that describes the deterministic dynamics of the
average density. A search of the literature only revealed a stochastic Fisher equation both in
the long range CP [23], and in the directed percolation model, which is a similar model that is
within the same university class as the CP [24]. We focused on the critical point to examine
the capability of the algorithm to detect emergent behaviour from complex systems. We found
that the resulting PDE is indeed an extension of the Fisher equation, where the extra term
explains the interface broadening we observed. This match is not exact, so there is still room
for future investigations, such as testing the link between the stochastic PDE and the average
dynamics.

In addition to the above physical systems, we also found some weaknesses of the sparse regres-
sion algorithm and we improved upon it during our study. Specifically, in the appendix from
Ref. [14] a problem was reported regarding the biased random walk. Under certain choices of
learning parameters, the output of the algorithm only contained diffusion and no advection.
We overcame this issue by (numerically) estimating where the bias towards sparse PDEs should
be halted in favour of the accuracy. In addition, we proposed a new error evaluation, which
makes a more interpretable and reliable tradeoff between sparsity and accuracy of the PDE.
Both strategies are proposed independently by the authors of the algorithm, so they could serve
as new building blocks for further improvements of the methods.

With the data-driven methods we could successfully find (new) effective PDEs in interacting
particle systems of increasing complexity. We focused on systems with growth processes (with
and without diffusion), but these methods could be applied to other interacting particle systems
as well, such as the asymmetric simple exclusion process. In addition, our research on the limits
of finding PDEs with a finite number of particles, and finite lattice spacings could prove useful
for experimentalists, who also need to deal with limited resources. Given the focus on the
Fisher equation, a logical step would thus to apply our methods on experimental data obtained
from growing bacterial colonies [25, 26].

Finally, let us give an outline of the thesis. We will start with describing the basics of the data-
driven methods in section 2. In section 3 we will validate and test the techniques on smooth data

1 INTRODUCTION 3

obtained from the Fisher equation, and noisy data obtained from the non-interacting (biased)
random walk on a lattice. In section 4, we will apply our techniques on the aforementioned
interacting particle systems. We end this thesis with a discussion and conclusion in sections 5
and 6, respectively.

2 METHODS 4

2 Methods

In this section we provide an outline of the data-driven techniques that we are going to apply to
the interacting particle systems. We start by explaining how we can use a learning algorithm to
determine PDEs from data. We will also explain the algorithm developed by Brunton et al. [14].
We did find that there were a number of issues regarding the reliability of the algorithm, so we
will also introduce a number of improvements. After that we will focus on filters that will aid
us to combat the noise we are bound to obtain from the particle data. We end with a number
of remarks regarding the validity of found PDEs, and how we can make sure that we obtain
the most reliable results.

2.1 Introduction to Learning Partial Differential Equations

Let us start by formulating what it means to learn a PDE from data. In general, a PDE is of
the form

ut(x, t) = N(u, ξj, x, t), (1)

where ut denotes the derivative of the solution data u with respect to time t. In general, we will
also use subscript notation to denote spatial derivatives. For example, ux is the first derivative
with respect to position and uxxx is the third. For now, we will assume that our data u is
differentiable. We will discuss the exact form of u in the next section.

In general, N(u, ξj, x, t) is a function that may depend on the solution u, its derivatives with
respect to space and the coefficients ξj in front of these terms. For example, it can have the
following form:

N(u, ξi, x, t) = ξ0 + ξ1u+ ξ2u
2 + ξ3uux + ξ4uxx + ξ5u

3uxxxx + (2)

The goal of learning a PDE is to find N(u, ξi, x, t) such that it matches utx, t for every x and
t. The problem is of course that we do not know beforehand what N(u, ξi, x, t) should contain.
The first step is thus to insert terms in N(u, ξi, x, t) that we would expect to be there. In
general we will choose a basis set / ansatz, containing specific combinations of terms. In the
next section we will discuss the precise form of this basis.

Now, each term in the basis set is fixed. Hence, the only variables that we can alter are the
coefficients ξj in front of the terms. Of course, in physics we often assume that PDEs are sparse,
in the sense that the relevant physics of the system can be described using only a small number
of terms. If this assumption is true, then many coefficients in Eq. (2) will be zero. The goal is
thus to find the coefficients of the correct terms, and set the coefficients of the wrong terms to
zero.

A well known example of a sparse PDE is the diffusion equation

ut = Duxx, (3)

where D is the diffusion constant. If we were to start with an ansatz such as Eq. (2), then the
aim of a learning algorithm is to set all coefficients to zero, except for coefficient in front of the
diffusion term uxx. We have sketched this problem in Fig. 1 with a Gaussian initial condition
and D = 1. We will specify in the next section how we obtained this data. On the left-hand
side we have plotted ut for all x and t. On the right-hand side we plot terms from our ansatz.
We see that the field of ut resembles that of ξ3uxx. By eye we can estimate that ξ3 ≈ 1 and all
other coefficients are zero. In the following sections we will explain how we can do that using
a computer.

2 METHODS 5

Figure 1: Sketch of how to find a PDE given a data field u. This sketch is similar to Eq.(2).
For this example we solved the diffusion equation for D = 1 and plotted a number of terms
depending on u as a function of x and t. The coefficients are denoted by ξj. Note how much
the field of uxx resembles that of ut.

For this, we will use the STRidge algorithm developed by Brunton et al. [14], which stands
for sequential threshold ridge regression. This is a linear regression algorithm with a (ridge)
stabiliser that imposes sparsity of the PDE by throwing away small coefficients using thresholds.
To understand what this all means, let us first explain what linear regression is and how to
couple it to the above problem.

2.2 Linear Regression and Least Squares

The basic idea behind linear regression is to fit straight lines onto data. For example, we could
have data of ice cream sales versus the temperature. To see if there is a linear correlation we
can try to fit a straight line of the form h = aT + b through our data points. Here T is the
temperature and a, b ∈ R are the coefficients that need to be found. See Fig. 2 for a sketch.
This is an example in 2D, but we can pose a general hypothesis in any dimension d. This
function h : Rd → R is given by

hξ(~z) = ~z · ~ξ, (4)

where ~z belongs to the domain of predictor variables χ ⊂ Rd and ~ξ ∈ Rd are the coefficients [27,
p. 123]. Here, we assume that ~z contains independent variables. This is an important point,
and we will come back to this later.

The task of linear regression is to find the coefficients that minimise the empirical risk, which
is defined by

L(hξ) =
1

m

m∑

i=1

`(hξ, ~zi, yi), (5)

where m is the size of the data, yi ∈ R is the label (e.g., ice cream sales) and `(hξ, ~zi, yi) is the
loss function, which is a measure how well the straight line fits the data. The form of ` which
we will use, is the square-loss function and it is simply given by

`(hξ, xi, yi) = (yi − hξ(~zi))2. (6)

2 METHODS 6

Figure 2: Sketch of a linear regression problem, where scatter plot ice cream sales data as a
function of the temperature T . The goal of linear regression is to fit a linear function through
the data points. The data is linear as well, hence a logical hypothesis function would be a
straight line: h = aT + b, where a, b are the coefficients that best fit the given data.

The closer the hypothesis hξ is to the real value yi, the smaller the loss function and thus
the empirical risk will be. The empirical risk with this loss function is also called the mean
squared error.

Before we continue with the algorithm that actually minimises the mean squared error, let us
first see how we can cast equation (1) to a linear regression problem. The idea was to match
a combination of functions of u to ut given some set of coefficients ci that we wanted to learn.
Hence, we can identify ut as y, and the set of functions of u in the N(u, ci, x, t) as ~z.

For convenience we will redifine ~z as ~Θ(U,Q), which we will call our library. Here, U is a
vector of the data set, containing u(x, t) for every x and t:

U =
(
u(x0, t0) u(x1, t0) ... u(xn, t0) u(x0, t1) ... u(xn, tm)

)
, (7)

where xi ∈ R, tj ∈ R+ for i ∈ [n] and j ∈ [m]. The number of available data points for x and t
are n and m, respectively. The library can also have terms like U2, which has the same form
as equation (7), but u(xi, tj) is replaced by u2(xi, tj). Furthermore, the library ~Θ(U,Q) can
contain Q, which is a vector that may carry additional information, e.g. functions that do not
depend on u, such as tan(x). If we again assume that the terms in N(u, ci, x, t) only depend

on powers of u and its derivatives, then ~Θ(U,Q) will have the form

~Θ(U,Q) =
(
I U U2 UUx Uxx Q2U3Uxxxx ...

)
, (8)

where there will be d terms in total and thus d related coefficients ξj ∈ ~ξ. Note that in
combination with (7) this object is actually a matrix, where each column Θj contains all of the
data of a particular PDE term.

With this we can write the hypothesis and the mean squared error compactly as

hξ(~Θ(U,Q)) = ~Θ(U,Q) · ~ξ, (9)

L(hξ) = ‖Ut − hξ(~Θ(U,Q))‖22, (10)

2 METHODS 7

1 u u2 u3 u4 u5 ux uux
-0.02 0.76 -5.84 16.71 -19.53 7.56 -4·10−14 7·10−13

u2ux u3ux u4ux u5ux uxx uuxx u2uxx u3uxx
-6·10−12 2·10−12 -3·10−11 2·10−11 1.05 1.95 10.89 -16.90

Table 1: The first 16 terms and (rounded) coefficients of the PDE found by least squares given
the data set of the diffusion equation.

where ‖·‖2 denotes the 2-norm. Note that the sum in this specific 2-norm is over all the data
points, i.e., over all values of x and t. We also left out the factor of 1

nm
, because it is irrelevant

for the steps to come. So L is now just the squared error.

Let us proceed with how to find the best coefficients ξ̂. Formally we need to find

ξ̂ = arg min
~ξ

L(hξ) = arg min
~ξ

‖Ut − ~Θ(U,Q) · ~ξ‖22, (11)

One algorithm that can find ξ̂ is the method of least squares [27, p. 124]. The main idea of this
method is to simply take the derivative of equation (10) with respect to one of the coefficients
ξj and set it to zero to find the minimum:

0 =
∂

∂ξj
L(hξ) =

∂

∂ξj
‖Ut − ~Θ(U,Q) · ~ξ‖22

=
∂

∂ξj

∑

x,t′

(
ut(x, t

′)− ~Θ(x, t′) · ~ξ
)2

=
∑

x,t′

(
ut(x, t)− ~Θ(x, t′) · ~ξ

)
Θj(x, t

′),

where ~Θ(x, t) = ~Θ(u(x, t), q(x, t)). This needs to be done for every coefficient, so in total there
will be d equations that need to be solved and we can write this as

∑

x,t′

(
ut(x, t

′)− ~Θ(x, t′) · ξ̂
)
~Θ(x, t′) = ~0. (12)

This is thus a linear algebra problem and we can solve for ξ̂ by rewriting the above equation as

ξ̂ =

(∑

x,t′

~Θ(x, t′)~ΘT (x, t′)

)−1∑

x,t′

ut(x, t
′)~Θ(x, t′). (13)

Let us now give an example with the diffusion equation. We will use the same data set that
generated the plots in figure 1. To obtain this density, we use a finite difference PDE solver
in python, called Fipy [28]. In addition, we need to construct a library ~Θ(U,Q). We will
now define our basis set. It contains terms of the form up(uxk)q, where p ∈ {0, 1, 2, 3, 4, 5},
k ∈ {1, 2, 3, 4, 5}, and q ∈ {0, 1}. Note that with terms such as ux2 , we actually mean uxx. The
reason why we choose this basis set is because it is relatively simple and contains many terms
that are present in basic PDEs, such the advection-diffusion equation, the Fisher equation,
Burger’s equation etc.

For the implementation of least squares we have used the linalg.lstsq function from the
NumPy module.1 In general, this computation is fast. On an Intel(R) Celeron(R) N4020 CPU

1The linalg submodule uses BLAS software that may use multiple processor cores for the linear algebra
computations. If this is undesirable, make sure to restrict the number of cores being used.

2 METHODS 8

@ 1.10Ghz, it takes less than 0.01 seconds to complete. We also normalise each column Θj of
~Θ(U,Q) by dividing it by the respective 2-norm ‖Θj‖2.2

The results can be seen in Tab. 1. For the sake of clarity, we rounded the coefficients to
the second decimal place, except for the extremely small numbers. Clearly this PDE does not
represent the diffusion equation, but the result does minimise the squared error: L(hξ̂) ≈ 0.0074.
However, from this error we do not get a good intuition whether the result is good or not. To
obtain a more reliable and interpretative notion of the error we normalise it by dividing the
error by the total squared error, which is simply given by

Ltot = ‖Ut −Ut‖22, (14)

where Ut denotes the mean of Ut. If the normalised error is close to 1, then the algorithm
has not done a better job than a linear fit based on the average of the observed data. For the
diffusion equation we find that L/Ltot = 8.5 · 10−6, so the result is much better than a linear
fit of the mean; despite being wrong. This is a clear example of overfitting. The result works
really well for this data set, but if we were to compute the error with data from another initial
condition, then we expect that the error would be bigger if the same coefficients are used.

Nevertheless, we do see that some coefficients are very small. In principle we could try to set
these to zero. If this action does not increase the error, then that would be a good indication
that those terms are not relevant. This is one of the key ideas behind the STRidge algorithm,
which we will come back to later. For now we note that standard linear regression can cause
overfitting, and that we somehow need to reduce the number of terms. One remedy for this
problem is to use ridge regression.

2.3 Ridge Regression

Remember that we assumed that ~Θ(U,Q) contains independent variables such that each ξj is

unbiased. But this assumption is of course wrong: most terms in ~Θ(U,Q) depend on U and its
derivatives, so we have highly correlated data. This correlation will cause the method of least
squared to be more imprecise, i.e., the estimated coefficients will be further away from the true
coefficients [29]. In addition, changing the data slightly can drastically change the coefficients,
meaning that the algorithm is unstable.

To deal with these problems, we can add a regulator term λ‖~ξ‖22 with λ > 0 to equation (11).

The idea is to incorporate the bias of ~ξ explicitly into the minimisation problem, which can
help guide us to obtain better estimates compared to the coefficients from the least-square
method [29]. This type of regression is called ridge regression and the minimisation problem is
given by [27, p. 172]

ξ̂ = arg min
~ξ

(
‖Ut − ~Θ(U,Q) · ~ξ‖22 + λ‖~ξ‖22

)
. (15)

Similarly to least squares, we can solve this by taking the gradient of the above equation and
setting it to zero. From this it follows that ξ̂ is given by

ξ̂ =

(
λI +

∑

x,t

~Θ(x, t)~ΘT (x, t)

)−1∑

x,t

ut(x, t)~Θ(x, t), (16)

2We found that this makes results from least squares more consistent between Python version 2 and 3. For
the example we use Python 3.

2 METHODS 9

Figure 3: (a) We plot the normalised squared error L/Ltot of PDEs as a function of the ridge
regression parameter λ. This includes λ = 0 on the left of the slanted lines, i.e., ordinary linear
regression. We see that there is a global minimum for λ = 0 and a local minimum around
λ = 10−5. (b) Here we plot (as a function of λ) the complexity, i.e., the number of terms in
the PDE, after a cutoff of 0.1 has been applied to the found coefficients. We see that there is
a small PDE at λ = 10−4, which corresponds to the diffusion equation.

where I is a d× d identity matrix.

The presence of λ has several consequences. First of all, it causes the result to be more stable [27,

p. 172]. This means that slight changes of the input ~Θ(U,Q) do not cause big changes in the
resulting coefficients ξ̂. The effect is that the algorithm is less prone to overfitting. The
downside however is that with increasing λ, the squared error increases. Thus we need to make
a trade-off: we cannot choose λ too small, otherwise we again have overfitting. However, we
also do not want λ to be too big, due to the result becoming less reliable. In general there
should be an optimum value of λ, i.e., a λ that yields the smallest error, but in practice it is
useful to consider a number of values for λ, specifically in the range 0 < λ < 1 [30].

In Fig. 3a we have plotted the normalised error of found PDEs from the diffusion equation
data set for different values of λ. We have also included the result for λ = 0, i.e., standard
linear regression. From this picture we see that for λ > 0 there is a minimum sitting around
λ ∈ {10−5, 10−4}, after which the error keeps increasing. Note that standard linear regression
has the smallest error. To obtain an intuition whether the results overfit or not, we have plotted
in Fig. 3b the complexity of the resulting PDEs after applying a cutoff of 0.1 on the coefficients.
With complexity we mean the number of terms in the PDE after the cutoff. From this we see
that the complexity decreases with increasing λ, with a minimum at λ = 10−4. So for this value
we have a relatively low normalised error and we are also not overfitting.

If we examine the resulting PDE at λ = 10−4 after the cutoff has been applied, we find the
diffusion equation: ut ≈ 0.97uxx. This is good news, but we do have to be careful: a low
coefficient does not necessarily mean that the contribution is small. If for example the diffusion
constant was set to D = 0.01, then we would have thrown out the diffusion term, based on the
cutoff of 0.1. To find out if it is permissible to remove terms from a PDE, we can compute
the squared error with this new PDE, and check if the error has improved or not. If it does,
then that is promising. But if it does not, then that is a signal not to remove it. Keeping this
thought in mind, we will now examine the STRidge algorithm.

2 METHODS 10

2.4 Sparse Regression with STRidge and TrainSTRidge

In the previous sections we have discussed all of the ingredients needed to understand the
STRidge (Sequential Threshold Ridge regression) algorithm. This is also called a sparse re-
gression algorithm, because it promotes sparsity, i.e., the resulting PDEs tend to become sim-
ple/sparse. The input of STRidge is a choice of the ridge parameter λ, a threshold/tolerance
ξtol and a training data set.3 The output is a set of coefficients, where some coefficients are set
to zero due to the threshold. Before the algorithm is called, there are a few preliminary steps
we need to perform on the given data. These steps are part of the TrainStridge algorithm,
which we will first explain. After that we will clarify how STRidge obtains the coefficients.

The first step is to randomly split the data of ~Θ(U,Q) and Ut with a given ratio into a training
and testing set. The standard split ratio is 80% training and 20% testing, which we will adopt
as well.4 The training set is used to estimate the coefficients with STRidge. With the results
of the training set, we calculate the following error on the testing set:

Lsparse = ‖Ut,test − ~Θtest(U,Q) · ~ξtrain‖2 + `0‖~ξtrain‖0, (17)

where ‖·‖0 denotes the 0-norm, so ‖~ξtrain‖0 is simply the number of non-zero terms in ~ξtrain.

The first term in equation (17) evaluates the accuracy of the trained coefficients ~ξtrain, whilst
the second term penalises solutions with a high number of non-zero coefficients. Hence, this
penalty promotes sparse solutions. The authors of the algorithm from Ref. [14] have chosen to

use `0 = 10−3κ(~Θ), with κ the condition number, based on empirical use of the algorithm, and
to deal with ill posed problems. There is no other motivation given why the condition number
should be used in the penalty. In fact, we found that the condition number has a major
flaw, which we will address in the next section. Despite this weak point, we were still able
to successfully obtain PDEs with this `0, so the reader may assume that we use the condition
number penalty throughout this thesis, unless stated otherwise.

After splitting the data, we obtain a first estimate of the coefficients using ordinary least squares
with λ = 0. Applying the coefficients to equation (17) provides us with a baseline error, which
we can use for comparison with errors calculated with new coefficients.

The next step is to start a loop for a given number of steps, where we begin with an initial
tolerance dtol. In the loop we iteratively compute the coefficients with STRidge. After each call,
the error from Eq. (17) is computed, and is tested against the set of coefficients that has the

lowest error Lbest, called ~ξbest. Initially, ~ξbest is the set of coefficients from the baseline error. If
the new coefficients ~ξtrain satisfy Lsparse ≤ Lbest, then the best error and coefficients are updated
accordingly. In addition, the tolerance is increased:

ξtol = ξtol + dtol.

In general, a higher tolerance will yield a more sparse PDE, such that ‖~ξtrain‖0 becomes lower,
which decreases Lsparse as well. However, if Lsparse > Lbest, then the constructors of the algorithm
assume that highly contributing terms to the PDE are set to zero, because the tolerance is too

3In the original code there is a mistake, where they use the entire data set for error evaluation instead of the
training set. This issue is fixed as of March 23, 2022.

4Be aware that the code to randomly split the data is aided with a python for-loop, which becomes
inefficient for large data set (> 106 data points). We advice to change this method with, e.g., sets, to avoid
wasting time.

2 METHODS 11

big. In that case, they decrease the tolerance in the following manner:

(1) ξtol = max(0, ξtol − 2dtol),

(2) dtol =
2dtol

Niter − iter
,

(3) ξtol = ξtol + dtol,

where iter is the latest step of the loop. In short, they simply take two steps back, decrease
the step size and try again. The effect of this is that ξtol converges below the coefficient that
the algorithm refuses to cut away. After the Niter steps are done, the output of TrainStridge
is simply ~ξbest.

We will now explain the specifics of the STRidge algorithm implementation. The first step of
this algorithm is to normalise each column of ~Θtest(U,Q) to unit variance as before. In this case
there is another reason for doing this, which we will clarify shortly. After the normalisation,
ridge regression with the chosen λ is applied to determine the first set of coefficients. We then
apply a hard threshold: each coefficient that satisfies ξj < ξtol will be set to zero.

Now, remember the problem we outlined in the previous section: a small coefficient does not
necessarily mean that the contribution to the PDE is small. By applying a normalisation on
each column of ~Θtest(U,Q), we basically treat every term on equal footing; the calculated
coefficients ξj scale according to ‖Θj,test‖2. This means that we actually apply a threshold on
the total contribution to the PDE and not on the coefficient itself. This allows us to find PDEs
that have a combination of small and large coefficients in front of the actual terms.

After the coefficients are set to zero, we again compute the coefficients with ridge regression, but
now with only the remaining non-zero terms from the previous round. This iterative procedure
is repeated for a given number of steps. Finally, after the recursive call is complete and the
sparsity pattern is found, ordinary least squares is performed to obtain the final estimates of
the coefficients. The output of STRidge is then simply the final coefficients multiplied by their
respective normalisations.

We found that the algorithm is relatively fast, because it mainly uses least squares. For example,
if we use 100 TrainSTRidge iterations, with random walker data of size 500×600, TrainsTRidge
finishes on average in 70 seconds with an Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60Ghz.

For more information about the details of both algorithms see the appendix of Ref. [14]. In
the next part we will discuss a number of weak points we found in the algorithm, and how we
changed and adapted the methods to overcome these issues.

2 METHODS 12

2.5 TrainSTRidge Adaptions

In this section we will propose and outline alternative methods that improve the reliability
of the TrainSTRidge algorithm regarding its capacity to find a balance between sparse and
accurate PDEs. Before we move on to the adaptions, let us first state what the problem is.
To validate the sparse regression algorithm on lattice particle systems, we analysed the 1D
non interacting biased random walk, which models particle movement with a bias towards a
certain direction (see section 3.3 for more information). It is well known in literature that the
continuum limit of this PDE is the advection-diffusion equation, which is a linear combination
of diffusion (uxx) and advection (ux). In our studies of this system, we found that the output

PDE of TrainSTRidge depended on the size of the basis set ~Θ. With a small basis set, we
found the expected advection-diffusion equation. However, when we added more terms in the
basis set, the output PDE only contained the advection term. We found that this is due to the
error penalty scaling `0 = 0.001κ(~Θ).

10 20 30

Number of terms in the basis set

-1

0

1

2

3

` 0
[1
0x
]

Figure 4: We plot the error penalty scaling `0 = 0.001κ(~Θ) as a function of the number of terms

in the basis set ~Θ. This includes terms such as up(uxq)
k, with q ∈ {1, 2, 3, 4, 5}, k ∈ {0, 1}, and

we increases p from 0 to 5 with steps of 1. To compute ~Θ we have used a filtered density field
obtained from a biased random walk particle system. We see that `0 grows exponentially in
the number of terms we add to the basis set. Hence, the ability to promote sparsity of a PDE
with TrainSTRidge heavily depends on the size of the basis set.

In Fig. 4 we plot `0 as a function of the size of the basis set. We see that `0 increases
exponentially if we add more terms to ~Θ. Hence, if we have a large basis set, the error penalty
term in Eq. (17) becomes much larger than for a smaller basis set, which increases the bias of
the algorithm towards sparse PDEs. As a side note, we suspect that this problem is similar to
the reported issues regarding the biased random walk of a Brownian particle in the appendix
of Ref. [14] from Brunton et al. Here, they found that applying TrainSTRidge with the nor-

malisation of ~Θ, resulted in the diffusion equation instead of the advection-diffusion equation,
i.e., the bias towards sparse PDEs was too high. Turning the normalisation off did result in the
correct PDE, as it circumvents the bias in the error. However, we think that the normalisation
is an important aspect of the algorithm as it ensures detection of relevant contributions with
(relatively) small coefficients. As such, we wish to combat the bias in the error due to `0, while
still using a normalisation. To achieve this, we are actually going to make use of the physical
information obtained by normalising PDE contributions.

2 METHODS 13

2.5.1 Physics Based Threshold for TrainSTRidge Tolerance Increment

In Fig. 5a we are bar plotting the relative PDE contributions ‖ξjΘj‖2/‖~ξbase ·~Θ‖2 obtained after

computing the coefficients ~ξbase of the standard basis set with least squares and λ = 10−3. Here,
the data is generated from a biased random walk on a lattice. We see that each contribution
is between 0 and 1, implying there is no large overfitting with large contributions (� 1) that
cancel each other out. This is due to ridge regression with λ = 10−3. If we would have used a
lower λ, we would obtain much larger contributions.

ux uux uxx u2ux
uuxx u3ux u5ux u2 u5uxxxx u

5uxxx
0.0

0.2

0.4

0.6

0.8

‖ξ
j
Θ
j
‖ 2
/‖
~ ξ r

eg
·~ Θ
‖ 2

ux
0.0

0.2

0.4

0.6

0.8

1.0

‖ξ
j
Θ
j
‖ 2
/‖
~ ξ b

es
t
·~ Θ
‖ 2

0.0 0.2 0.4 0.6 0.8 1.0

‖ξjΘj‖2/‖~ξreg · ~Θ‖2

0

2

4

6

8

N
ξ

Tolerance threshold

(a)

(b) (c)

Figure 5: (a) Bar plot of relative PDE contributions ‖ξjΘj‖2/‖~ξreg · ~Θ‖2 of terms ~ξreg computed
with standard ridge regression for λ = 10−3 on biased random walker data. This system is a
non-interacting particle systems, which has both diffusive (uxx) and advective (ux) properties,
see section 3.3 for more information. We plot the ten biggest contributions, sorted from high
to low. The x-axis shows the corresponding term of the bar. The highest term corresponds
to advection and is much larger than all the other contributions. (b) Similar plot to (a), but
now for resulting terms from the TrainSTRidge algorithm with learn parameter dtol = 1, 100
TrainSTRidge iterations and λ = 10−3. We see that only the advection term is found. Hence,
we want to make sure that TrainSTRidge does not cut away the diffusion term by introducing
a tolerance threshold. (c) We make a histogram of the PDE contributions found with ridge
regression. We use 201 bins in the range [0, 1], where Nξ is the count per bin. The tolerance
threshold is computed by finding the first gap in the histogram, i.e., the first bin of height zero.

In addition, we see that ux has the highest contribution, while uxx has a much lower contri-
bution. From this we can deduce that the dynamics of the biased random walk is dominated
by advection. We thus see that we can already learn a lot about the system by ridge regression

2 METHODS 14

alone. This also gives us intuition why the only surviving term of TrainSTRidge with a large
basis set is the advection equation. This can be seen in (b), where we bar plot the contribution
of the output terms of TrainSTRidge.

Despite that uxx has a low contribution, it is still the third highest, i.e., there are many
more terms that have a lower contribution. These terms are so small that they cannot be
distinguished from each other. In Fig. 5c we quantify this observation by making a histogram
of the contributions, i.e., we count between 0 and 1 the number of contribution that are within
a certain interval. For this we used 201 bins. We see that the majority of terms have a relatively
low contribution, which results in a large solid peak. The terms that belong to this ‘noise’ peak
are indistinguishable from each other, and we can assume that they do not contain important
information about the dynamics. As such, if we were to remove any of these terms from the
basis set, we would still be able to fit the data, provided that the underlying physics is important
enough to give distinguishable contributions. That is, we do not want to blindly throw away
terms that are located to the right of this peak, as we would potentially lose important physical
aspects of the dynamics. Hence, we should be alarmed if STRidge sets a coefficient to zero of
a term that has a higher contribution than this peak.

To combat the bias towards sparse PDEs, we thus introduce a tolerance threshold: if we are at
a TrainSTRidge tolerance for which a (normalised) contribution in STRidge is cut away that
is above the noise peak, we permanently set `0 to zero, compute the new error of the current
and best coefficients with equation (17), and continue to find the optimal tolerance and PDE
according to Lsparse ≤ Lbest. This ensures that no important physical contributions are cut
away, since only the accuracy of the sparse PDE will determine the optimal threshold. We
compute this tolerance threshold before the start of the TrainSTRidge algorithm, and it is
simply set to the contribution of the first histogram bin from left to right with zero counts.

Using this method, we managed to find the advection-diffusion equation, regardless of the size
of the basis set. If the reader is interested in an example result of this method, he/she can
jump to Fig. 22 in section 3.3.

2.5.2 Normalising the TrainSTRidge Error Evaluation

Using the above method, we circumvent the issue regarding the penalty term scaling in the
error from equation (17). However, there is no guarantee that this method is alway applicable,
since it assumes that we can regularise a large basis set with ridge regression, which may not
always be the case. Hence, we will propose a replacement of the TrainSTRidge error in Eq.
(17). It is based on the observation that we need to have a fair competition between accuracy
and sparsity without bias. As such, the accuracy and penalty must be on equal footing, i.e.,
it is necessary that they are roughly of the same order of magnitude. The simplest way to
perform this, is by setting `0 = 1 and normalising the accuracy:

Ltrain = ‖Ut,test − ~Θtest(U,Q) · ~ξtrain‖22, (18)

Lbase = ‖Ut,test − ~Θtest(U,Q) · ~ξbase‖22, (19)

Lsparse =
Ltrain

Lbase

+ ‖~ξtrain‖0, (20)

where ~ξbase is the set of coefficients computed on the enitre basis set. That is, we normalise the
accuracy term with the baseline error.

In general, the basis set will (usually) overfit the data, and that decreasing the number of
terms will give a slightly worse overfit. In that case, Ltrain/Lbase will become slightly bigger

2 METHODS 15

than 1, while ‖~ξtrain‖0 will decrease by 1 or more. This results in Lsparse < Lbest. Only if a
relevant contribution of a sparse PDE is cut away, we will have that Ltrain/Lbase � 1, such
that Lsparse > Lbest. In addition to this error evaluation, we will always increase ξtol without
changing dtol, even if Lsparse > Lbest. This guarantees that we do not get stuck in a local minima.
Of course, we only update Lbest if Lsparse < Lbest.

We have tested this error evaluation on each of the available data sets that were provided
by Brunton et al. on the PDE-FIND Github page of Ref. [14], and similar to the original
TrainSTRidge algorithm, we found the corresponding PDE of each data set. We will primarily
use this error evaluation for the interacting particle systems in section 4.

2.6 Filtering Noise with 2D Fourier Transformations

In the previous sections we have examined the machine learning aspects of the data-driven
methods. In this part we are going to consider how to handle the noise we will inherit from
the particle data that we will generate. See Fig. 6a for an example of noisy particle data. In
general, it is hard to approximate a derivative of noisy data with for example finite differences
(FD). The reason for this is that with FD, we calculate the slope by simply considering the
change of the function (around a fixed point) over the lattice spacing. If the data is noisy, then
there is an offset at each point. Hence, the slope around each point will be mostly based on
this noise offset, which means that the derivative will be spiky. We thus need to smoothen the
data before we take any derivatives.

We shall do this by using a filter based on a 2D (discrete) Fourier transformation (DFT) of
the data u(x, t), which we perform with a fast Fourier transformation (FFT) [31]. By going
into Fourier space, we can separate the noise signal from the underlying signal by looking at
the amplitudes. Provided there is relatively little noise, the noise frequencies will have a lower
amplitude than the dominant signal. Hence, we can simply set the amplitudes of the noise
frequencies to zero via a threshold.

In Fig. 6a we plot an example of a noisy signal obtained by ensemble averaging lattice particle
occupations of the Eden-SSEP model (see section 4.1). With the FFT we can compute the 2D
Fourier transformation of this signal. In (b-c) we scatter plot a of the amplitudes of the obtained
frequencies as a function of the temporal and spatial frequencies, where we have projected the
spatial and temporal frequencies on top of each other, respectively. We see that there is a clear
separation between the underlying signal and the noise frequencies. Hence, we can estimate
the height of the amplitude cutoff Acut that we want to apply to set the frequencies below this
threshold to zero. In Fig. 6d we zoom into the noisy density plot from (a), where we now also
plot the filtered signal. We see that the filter successfully removes the noise signal. However,
at t = 0 there is a slight discrepancy between the filtered signal and the original signal. This
is a side-effect of the filtering process, due to the fact that we also remove information that
is hidden in the layers of noise. Increasing Acut would enhance this effect. Hence, we need to
be careful to not include biased filtered data into the outlined regression algorithms. This is
simply done by cutting away the temporal boundary regions.

2 METHODS 16

Figure 6: (a) A noisy signal of the Eden-SSEP particle system that we need to filter. Here
we plot the density of the particles u(x, t) as a function of space x for different instances in
time t. The relevant spatial and temporal dimensions are left out for the sake of clarity. More
information about this system can be found in section 4.1. (b) We show a side-view scatter
plot of the 2D DFT of the noisy signal from (a), where we plot the amplitude on the y-axis as
a function of the temporal frequencies for each spatial frequency. (c) is similar to (b), but with
the spatial frequency on the x-axis. The black dashed line represents the amplitude cutoff Acut,
which we have set to 10−4. We set every amplitude below this threshold to zero. The inverse
of the thresholded Fourier transform can be seen in (d), where we compare the noisy signal
to the filtered signal. The axis and colour schemes are the same as in (a), and we have also
zoomed in to see the differences more clearly. The filtered signal is smooth and matches the
general form of the noisy signal very well, except at t = 0, where there is a miss-match at the
extremum. Hence, for TrainStridge we will avoid temporal regions where the filter introduces
a bias.

2 METHODS 17

2.7 Computing Derivatives with the Savitzky-Golay Filter

Once the worst noise has been filtered out, we want to compute the derivatives that we want
to insert into our basis set. In the paper from Brunton et al. [14], they considered polynomial
differentiation (PD) to be the most reliable method to estimate derivatives from noisy data [32].
The idea behind PD is that at each datapoint p, a polynomial of degree d is fitted around this
point for p−n/2 ≤ j ≤ p+n/2, where n is the width of the fit. The derivative of that polynomial
at p is then taken as the approximate derivative of the numerical data. The downside of this
method is that the result may highly depend on the choices of d and n. Furthermore, the
approximations at the boundary can be inaccurate, so they remove n points at the boundaries.
Hence, a lot of relevant information can be lost if a high width is required to obtain accurate
estimates.

We are going to use periodic boundary conditions for the interacting particle systems. So in this
case there is no need to toss away points at the boundary, because we can use the periodicity
to fit a polynomial through the boundary. Hence, we will use a polynomial fitting tool that can
implement periodic boundary conditions. For this we will use the Savitzky-Golay (SG) filter
that is available on Scipy version 1.8.1, which has a periodic boundary condition option. This
filter uses simple least square fits with polynomials to smoothen and differentiate data [33].
Similar to PD, the input requires a degree d and a width n.5 For future examples we will
denote the width in terms of the spatial size xw = n∆x, with ∆x the lattice spacing.

Figure 7: (a) We plot a travelling sine wave u(x, t) with added white noise of σ = 0.5 as a
function of space x. We use periodic boundary conditions, we filter the signal with the 2D
amplitude filter, and then apply a SG-filter to estimate the curve with a polynomial. (b) We
compute the first derivative ux(x, t) using multiple techniques and we plot as a function of
space. Finite differences (FD) yields a noisy derivative, despite the filter. The polynomial
differentiation (PD) scheme from Ref. [14] is able to get a good estimate of the derivative,
at the cost of having to throw away data points at the boundary. The Savitzky-Golay (SG)
filter produces the same output, but the option to use periodic boundary conditions also gives
accurate estimates at the boundary. Hence, the SG filter is the most useful differentiation
scheme of the three tested methods.

To show how the SG-filter works, we apply it on a travelling sine wave with gaussian noise and
periodic boundary conditions. In Fig. 7a we plot the sine function, the filtered signal (from the

5Be aware that in general (including the Scipy version), the width n should be an odd integer number.

2 METHODS 18

2D FFT filter), and the SG-fit onto the filtered signal as a function of space. Note that the SG-
filter smoothens the filtered signal even further, while also accurately fitting the boundaries.
In (b) we plot the first spatial derivative of the filtered signal using different differentiation
methods, namely SG, PD and FD. We see that FD yields spiky derivatives, despite the 2D
FFT filter. PD and SG have similar outputs, but SG also has an accurate estimate at the
boundaries, while PD tosses the data away. Hence, for the tested differentiation schemes, the
SG-filter is the most promising tool.

Now, if the SG-filter can also smoothen the data, why would we go through the trouble of
filtering the data with the 2D FFT filter? There are various arguments to implement the FFT
filter. First of all, the 2D FFT filter also smoothens the temporal direction in combination
with the spatial direction. This will make sure that the filtered signal is a smoothened field,
instead of individual slices that could be discontinuously connected to each other, if we were to
use 1D filters only. In addition, we found that higher order SG derivatives are more accurate
after application of the 2D FFT filter.

Figure 8: (a) We plot the 2D FFT filtered signal of the density from Fig. 6a as a function of
space x, and with Acut = 10−4. On the filtered signal we fit a polynomial using the SG-filter
with width xw = 1.01. We see that the fitted polynomial matches the filtered signal very well.
(b-c-d) Estimate of the first, second and third derivative of the density as a function of space
x, using the SG filter on the noise signal (red), and on the filtered signal (black). The noise
becomes more amplified as for the SG-fit on the noise signal as the derivatives become higher.
The SG derivatives on the filtered signal stay smooth. We thus see that the combination of
filtering and SG fitting is crucial to obtain smooth higher order derivatives.

2 METHODS 19

In Fig. 8a we plot the 2D FFT filtered signal and the SG-fit onto the filtered signal as a
function of space for the same density as in Fig. 6a. In (b-c-d) we plot the first, second and
third derivative of the 2D FFT filtered, and the noisy signal, both using the SG-filter with the
same parametric input. We see no apparent difference in the first derivative. For the second
derivative we see that the SG fit on the noise signal becomes more unwieldy than the fit using
the 2D FFT filter. For the third derivative the SG fit on the noise signal is spiky and noisy,
while the other fit stays relatively smooth. Hence, we see that combining the 2D FFT filter
with the SG-filter is essential to compute higher order derivatives for the basis set.

Figure 9: (a) We plot the 2D FFT filtered density u(x, t) obtained from the Eden-SSEP system
as a function of space x at a certain time step. On top of the signal we fit a SG polynomial
with width xw = 1.01 (black) and xw = 3.01 (green). The black line matches the filtered signal,
whilst the green line does not. (b) We plot the first derivative ux(x, t) as a function of space
x, using the SG-filter with the same widths as above. We see that the extremes of the large
width are smaller than those of the small width. Hence, choosing a width that is larger than
the typical length scale of u(x, t) leads to estimates that do not fit high frequency modes, which
yields inaccurate derivatives.

Finally, we would like to address one final point regarding the SG-filter. Similar to PD,
there is a dependency on the accuracy of the fit based on the input parameters. A small width
could lead to noisy derivatives, but if the width is too large, the polynomial will not be able to
capture all of the local gradients of the signal. In Fig. 9a we plot a 2D FFT filtered signal of a
density with many gradients. We apply a SG-filter on this signal with xw = 1.01 and xw = 3.01,
both with degree 5. The small width fit sits on top of the filtered signal, while the large width
cannot capture local gradients. In (b) we show the consequence of this offset by plotting the
first derivative of the signal. We see that the large width fit has less steep estimates of the
gradient than the small width. Hence, if we are going to use multiple initial conditions with
varying gradients, we should be careful to select a SG-width that does not bias the derivative
of each of those signals.

2 METHODS 20

2.8 Finding Consistent and Reliable Partial Differential Equations

In the previous part we have considered all the tools needed to find PDEs from a single (noisy)
data set u(x, t). In this section we will outline a few important aspects regarding the reliability
of found PDEs.

The first important step of a data-driven method is of course to collect representative data
u(x, t). With representative we mean that u(x, t) should be within the physical regime of
interest, i.e., a space and time domain with enough temporal and spatial gradient changes
within the system. This will make it easier to distinguish relevant contributions with least
squares and find the PDE.

In addition, it is useful to consider multiple initial conditions, because we are then able to
cross check results. If a PDE has coefficients that are not consistent across multiple initial
conditions, e.g., there are sign swaps or differences that are much larger than the computed
standard deviations, then that would be a sign that the PDE is incorrect and/or not general.
Usually, we will consider around 4 initial conditions with various gradients. More is always
possible, but we found that a small number is already enough to check the consistency of a
PDE.

This brings us to the next point: to compare coefficients and other properties of the PDEs, we
need to introduce some form of statistics. This is important, because it allows us to compare
our results from the interacting particle systems to existing literature. For this we will make
use of the stochastic nature of the particle rules: a different random-number-generator (rng)
seed will result in different fluctuations around the signal. Hence, we can generate u(x, t) with
multiple rng seeds, apply least squares and/or TrainSTRidge, and obtain multiple coefficients
and squared errors that we can average. This process is not possible for smooth data obtained
from solving a PDE. In that case, we will apply least squares on found sparse PDEs for a different
number of time- and space-slices of the sparse library Θ(x, t). For example, if we initially have
data for x ∈ {x0, x1, x2, x3, ...} then the next step we will use Θ(x, t) with x ∈ {x0, x2, x4, ...}
and the one after that we will use x ∈ {x0, x3, ...} etc. For each slice we compute the coefficients
and in the end we will calculate the average ξ and standard deviation σ over all the slices.

The above described measures allow us to ascertain whether a PDE is correct/valid and gen-
eral. In the next section we are going to combine these considerations with the TrainSTRidge

algorithm and show if we can reliably find PDEs on smooth data, and data from non-interacting
particle systems.

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 21

3 Validation of TrainSTRidge and Testing Data-Driven

Techniques

The aim of this section is to validate the data-driven methods we have outlined in the first part
of this thesis. To this end, we are going to apply the techniques on relatively simple systems.
This allows us to ascertain whether we can also employ them for more complex systems. We
will start with smooth data generated by the Fisher equation. After that we will consider
non-interacting particle systems, namely the random walk and the biased random walk (on a
lattice). This should give us valuable insight into whether we can also tackle interacting particle
systems.

3.1 The Fisher Equation obtained from Smooth Data

The first example we will consider is the Fisher equation. We know that the continuum limit
of the Eden-SSEP particle system dynamics gives the Fisher equation. As we will see below,
this PDE is a simple extension of the diffusion equation. Hence, it is a natural choice to first
test the data-driven methods on.

The Fisher/Fisher-KPP equation was independently proposed by R. Fisher [19] and Kol-
mogorov et al. [34] in 1937. Fisher aimed to model the spread of advantageous genes of a
population that is uniformly distributed in a linear habitat. He supposed there should be a
local spread, i.e. diffusion, and a wave ut = −vux of increasing gene frequency u as new
generations are born. For this end, he proposed the following equation

ut = Duxx + ru(1− u), (21)

where u can be interpreted as a density of a certain population. The first term on the right-
hand side is ordinary diffusion, with D the diffusion constant. The factor ru in the right-hand
side can be considered as a growth term and 1− u slows down this growth as u→ 1.

Figure 10: We sketch a travelling wave solution of the Fisher equation. On the y-axis we have
the population density u(x, t), which is between 0 (empty) and 1 (full). We plot this as a
function of space x. The wave has a leading order width L = 2

√
D/r and is travelling with

a speed v = 2
√
Dr. The travelling wave motion represents a population growing in density at

the boundary of its domain. This is due to its growth rate r, and its diffusive properties with
diffusion constant D.

Let us now explain the behaviour of the Fisher equation solutions. First of all, there are two
steady states: one at u = 0 (unstable) and the other at u = 1 (stable) [35]. This means that

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 22

D 0.01 1.0 5.0
r 100 1.0 0.2
x/L [0, 50] [0, 0.5] [0, 0.1]

∆x/L 2 · 10−2 5 · 10−4 10−4

t/τ [0, 10] [0, 0.01] [0, 2 · 10−5]
∆t/τ 10−3 10−7 2 · 10−10

∆treg/τ 10−2 10−5 2 · 10−8

Initial conditions 0.1 exp(100(x− 0.5)2) exp(100(x− 0.5)2) exp(100(x− 0.5)2)
0.1 cos2(2πx) cos2(2πx) cos2(2πx)

exp(50x2) 0.5 cos2(4πx) 0.5 cos2(4πx)
0.1 0.1 0.1

Table 2: Initial conditions and parameters for obtaining solutions of the Fisher equation. We
make the parameters for space and time dimensionless by dividing by L and τ , respectively.

u → 1 as t → ∞. The factor r > 0 in front of these terms is the growth rate, which has an
inverse time dimension T−1. As such, the relevant time scale of this system is τ = r−1. The
larger the value of r, the faster u goes to 1.

Furthermore, the Fisher equation has a travelling wave solution, where the length scale L =
2
√
D/r can be interpreted as the width of the wavefront and v = L/τ = 2

√
Dr as the leading

order speed, see Fig. 10 for a sketch. The travelling wave is one of the main features of the
Fisher equation and has been found in several areas of physics, biology and chemistry. For
example, the wave solution of the Fisher-KPP matches the frontier of branching Brownian
motion [36]. In addition, the validity of the Fisher equation has been tested experimentally
to the growth of bacterial colonies [37]. From both examples we see the relationship between
growth and diffusion, and travelling waves of population densities.

There are also other instances of the Fisher Equation used in physics. This includes flame
propagation after an exothermic reaction [38], and also the spread of a neutron population in
a nuclear reactor [39]. See Ref. [35] for a complete overview of the physics of wavefronts in a
more general setting.

To solve the PDE, we will use Fipy. We will consider three regimes: dominant growth, balanced,
and dominant diffusion. For this we will consider the following parameters: D ∈ {0.01, 1.0, 5.0}
with v = 2.0, so r ∈ {100, 1.0, 0.2}. With these different regimes we want to test if we
can still find the correct PDE, despite the large differences in the order of magnitude of the
different coefficients. We expect that this is not a problem, considering the normalisation in
TrainSTRidge.

For each of the different parameter sets we have 4 different initial conditions, consisting of
cosines, gaussians and straight lines, see Tab. 2 for the exact functional forms. In the table
we also show the parameters used for generating the data with Fipy. In general the solutions
were stable, provided we used small time step sizes. In addition, we found that a higher
diffusion requires smaller time step size. This makes sense, because the diffusion equation
ordinarily needs to be solved with ∆t ≤ ∆x2/(2D).6 In Fig. 11 we show two examples of stable
solutions of the PDE. Both solutions are within the physical regime of interest, i.e., we probe
distinguishable growth and diffusive behaviour that allows us to capture the Fisher equation.

6To compute the derivatives for the basis set, we will use a higher temporal resolution than we used for
obtaining the solutions, such that we use 1000 temporal data points. This does not pose a problem regarding
the stability of the derivatives, as the spatial and temporal derivatives are computed independently from each
other.

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 23

Figure 11: We plot the population density u(x, t) obeying the Fisher equation with D = 0.01
and r = 100 as a function of dimensionless space x/L for different instances in time. Here,
L = 2

√
D/r and τ = r−1 are the space and time scales of the system. (a) Travelling wave

solution of the Fisher equation. Diffusion and growth will give rise to a travelling wave at
constant speed, which can be interpreted as population migration. (b) Cosine initial condition
converges to the steady state of u(x, t) = 1, where the population has reached carrying capacity.

Figure 12: (a) We plot the normalised squared error L/Ltot of found PDEs with the basis set as
a function of the ridge parameter λ, which includes λ = 0 on the left as denoted by the dashed
lines. We do this for each initial condition with D = 1. We see that λ = 0 is the minimum for
each case. (b) We bar plot the count of which λ has the lowest, second-lowest and third-lowest
error among all parameter sets and initial conditions. The x-axis shows the corresponding λ.
We see that λ = 0 has been counted 12 out of 12 times. Hence, λ = 0 is the optimal ridge
parameter.

To obtain a first impression of the data, we will first use ridge regression on the standard
basis set to find the optimal ridge parameter λ. In Fig. 12a we plot for each initial condition
with D = 1, the normalised squared error L/Ltot as a function of λ. We see that λ = 0 has the
lowest error for each initial condition. In addition, this error is much smaller than 1, suggesting
that we can find an excellent PDE fit onto the data. In (b) we show a bar plot of the number of
counts across all initial conditions and parametric sets, which λ has the first, second and third
lowest error. We see that λ = 0 is counted the most (12 out of 12), hence we will use that ridge
parameter for further investigation with TrainSTRidge.

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 24

Figure 13: We scatter the error versus the complexity for the PDEs we found with
TrainSTRidge for λ = 0. This is done for different values of the input thresholds dtol to
find the optimal level of complexity. (a) Pareto front of the data set with D = 1. Here we plot
the normalised squared error L/Ltot of the found PDEs on the y-axis, versus the complexity
on the x-axis. This is done for different initial conditions as depicted in different colours. The
different shapes correspond to PDEs resulting from TrainSTRidge with different dtol. The ar-
rows denote the PDEs that are in the elbow of the pareto front curve, i.e., the PDEs that have
the best trade-off between accuracy and complexity. The PDEs with an attached number are
highlighted in the table, where the cell colours in the table match the initial condition colours.
(b) and (c) show the same type of plot for the data sets corresponding to D = 5 and D = 0.01,
respectively. In the table we colour the terms blue, if they are part of the Fisher equation. If
that is not the case, we colour them red. The coefficients are rounded to the second decimal
place. The pareto selected PDEs denoted by the arrows (closely) match the Fisher equation
with the correct coefficients.

For TrainSTRidge we start with four different thresholds dtol ∈ {0.01, 0.1, 1, 10}, and we will
use 25 increments. This allows us to ascertain what the optimal threshold is. For STRidge we
used 10 sweeps of setting the coefficients to zero. In Fig. 13(a-b-c), we scatter plot for each
initial condition the errors versus the complexity of the found PDEs for D = 1, D = 5, and
D = 0.01, respectively. The arrows highlight the Pareto front, i.e., the PDEs that have the best
tradeoff between accuracy and sparsity. In the accompanying table we show the found PDEs
and their coefficients. We see that the Fisher equation has the best tradeoff in each parameter
set, except for D = 0.01, where we also find the Fisher equation with an additional u3 term.
We also see that the coefficients of the Fisher equation match with the input parameters.

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 25

Figure 14: Consistency plot of the coefficients of found PDEs across different initial conditions
and parameter sets. For each subfigure, we plot the average coefficient 〈ξ〉 of terms of a
particular PDE as a function of the initial condition. The average is taken over output PDEs
resulting from 10 different space and time slices of the library data Θ(x, t). In the first column,
i.e., subfigure (a)-(c)-(e) we show the results for PDE 1: ut = ξ0u+ξ1u

2+ξ2uxx. For (b)-(d)-(f)
we show results for PDE 2: ut = ξ0u + ξ1u

2 + ξ2u
3 + ξ3uxx. Rows (a)-(b), (c)-(d) and (e)-(f)

correspond to the results for D = 1, D = 5, and D = 0.01, respectively. The orange and/or
the green line in (b) and (d) are not consistent across the initial conditions, hence PDE 2 does
not match the data correctly.

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 26

Figure 15: (a-b-c) For D = 1, D = 5, and D = 0.01, respectively, we bar plot the absolute
difference between the true coefficient ξt and the measured coefficient 〈ξ〉 for each term of the
Fisher equation. The x-axis denotes the term corresponding to the bar. We also compare the
differences with the standard deviations σ and 2σ, which are depicted by the horizontal bars.
In the accompanying table we show the values of the true and measured coefficients, where we
have rounded to the most significant digit of the standard deviation. Each measured coefficient
is within one or two standard deviations of the true value, hence there is an excellent agreement
between the input and output values.

This is promising, but we want to make sure that the Fisher equation is indeed the best
description of the data, given the chosen basis set. For that we will compare the coefficients
across different initial conditions. We will do the same with the Fisher equation with the cubic
term added to it. In order to obtain statistics that allow for comparison, we adopt the method
outlined in section 2.8, i.e., we will slice the data, and obtain coefficients for each slice by
applying least squares on the PDE (not the the basis set). This allows us to obtain the average
coefficients 〈ξj〉 and standard deviation σj.

In Fig. 14(a-c-e) we plot for the Fisher equation and each parametric set, the average coefficients
as a function of the initial condition. We have left out ξuxx for the fourth initial condition, since
it is a straight line without any gradients, i.e., uxx = 0. We see that all of the coefficients are
straight lines, i.e., they are constant. In addition, they seem to be consistent with the input
values. We will examine the consistency down below. First we also have a look at the other
PDE we found. In Fig. 14(b-d-f) we show the results for the Fisher equation with u3. We see
that all of the Fisher terms are consistent in each initial condition. In addition, for the cubic
term is consistent in (f), i.e. for D = 0.01, for which we found this PDE. However, it is not
consistent in the other parameter sets. In (b-e) we see that 〈ξu3〉 swaps sign across different
initial conditions. This is a clear indication that this term is unphysical. Based on this result,
we can state that the Fisher equation is indeed the best PDE that describes the dynamics of
data generated by the Fisher equation.

To see how well least squares can fit the coefficients, we compare the found values with the
actual coefficients ξt. In Fig. 15 we plot |ξ − ξt| for each term in the Fisher equation and
compare it to the standard deviation σ. For ξ and σ we vary over the coefficients from the
slicing of the data, and all initial conditions. We see that for each parameter set and Fisher
term, we manage to compute the coefficients up to the third decimal place and better. In
addition, each result is within σ or 2σ of the true coefficient. Hence, we can find the correct
coefficients with excellent accuracy, and within an acceptable error margin.

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 27

In conclusion, with our data-driven methods we can successfully select the best fit of smooth
data obtained from solving the Fisher equation. In addition, we find that TrainSTRidge has
no trouble in finding linear and non-linear terms, which should be useful when we are going to
consider interacting particle systems with growth processes. In the next section we are going
to apply our data-driven methods to non-interacting particle systems.

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 28

3.2 The Diffusion Equation obtained from Random Walkers

In the previous section we have tested the data-driven methods on smooth and clean data
obtained by solving the Fisher equation. In this section, we will test this algorithm on data
generated by non-interacting random walkers on a lattice. This will prepare us to tackle more
complex particle systems with interactions.

In literature it is well known that the continuum limit of the random walk dynamics leads to
the diffusion equation [5]. In addition, in the limit N →∞, where N is the number of particles,
the relation will be exact. However, we cannot simulate an infinite number of particles, only
a finite number. Hence, we are going to investigate how many particles we need to find the
diffusion equation and its coefficients. That is, we want to find out how large N must be in
order to get a good approximation of the limit N → ∞. This is an important question, as
it will give us insight into whether we can obtain accurate predictions for particle systems in
general, and interacting particle systems in particular.

In order to answer this question, we need to undertake some preliminary steps. We will start
with a short explanation of what a random walker is, and how we can obtain data from a
random walk that we can use to find PDEs. After that we give a demonstration of what the
effect of the number of particles is on the level of noise, and how effective the 2D FFT filter
from section 2.6 is to remove that noise. We then demonstrate how we can utilise the stochastic
nature of the random walk to generate many data sets that we can use for consistency checks,
as described in section 2.8. From these results we will then be able to conclude that with a
high enough, but finite number of particles, we can obtain a very good approximation of the
diffusion equation in the high N limit.

Figure 16: Sketch of a time evolution of non-interacting random walkers. Each row represents
a new time step where a single particle is chosen uniformly at random to undertake an action.
This can either be a movement to the left with probability p or to the right with probability
1− p. For a symmetric random walk, p = 0.5, i.e., there is an equal chance to move to the left
as to the right.

Let us begin by saying what a non-interacting (biased) random walk particle system precisely
is. As the name suggests, it is a model for particles that move randomly on a lattice, see Fig.
16 for a sketch. This lattice consists of M sites and each site is seperated with a lattice spacing
∆x. We will be looking at the 1D case, so L = M∆x is the length of the box. We will also
use periodic boundary conditions, i.e., the rightmost site is connected to the leftmost site. In

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 29

addition, there are N particles on the entire lattice. The particles are non-interacting, hence
they can overlap, i.e., multiple particles can occupy a single site. Now, given a distribution of
particles, we simulate the random walk by selecting a particle uniformly at random, and then
let it move to the right or left with probability p or 1−p, respectively. This step has a time unit
∆x2/(2DN), where D is the diffusion rate, and is repeated until a given time T . For each time
step and lattice site, we compute the particle density u(x, t), which is the ensemble average of
the occupation number, i.e., the number of particles at a site divided by N . The dynamics of
the density can then be described via the advection-diffusion equation

ut = Duxx + vux, (22)

where v = 2D(2p − 1)/∆x is the speed of the body of walkers. In this section we will use
p = 0.5, so v = 0. If the reader is interested in how to derive this equation from the model, see
Ref. [40].

Initial distribution

1 2 3 4

t

0.000

0.120

0.240

0.360

0.480

0.598

−2 0 2
x

0.0

0.2

0.4

0.6

0.8

u
(x
)

−2 0 2
x

0.0

0.2

0.4

0.6

0.8

u
(x
,t
)

(a) (b)

Figure 17: (a) Initial distributions u(x) as a function of the lattice space x, which are used
to draw particles for an initial condition. The functions to create the distributions are given
by (1) exp(−x2/2σ2) with σ = 0.5, (2) cos(2nπx/L) with n = 2 and L the size of the grid,
(3) cos(2nπx/L) + cos(nπx/L) with n = 2 and (4) cos(2nπx/L) + cos(nπx/L) + cos(nπx/2L)
with n = 4. Each function is shifted and normalised such that the minimum is at u = 0 and
the integral under the curve is 1. (b) Time evolution example of the average random walker
density u(x, t) as a function of space x. We used the gaussian initial condition and the number
of particles is N = 105. The gaussian peak shrinks and broadens, just like one would expect
from diffusion.

Now that we know the dynamics, we want to generate data that we can test. Since we are
dealing with a finite number of particles, the density u cannot be smooth, hence we cannot
simply start with a smooth functional form f(x) as an initial condition. Instead, f(x) will be
our initial distribution from which we randomly draw N particles. In Fig. 17a we show the
distributions u(x) that we are using to generate our initial conditions, which we label from 1
to 4. We create u(x) by simply shifting f(x) by −min(f(x)), such that the minimum (which
can be either positive or negative) gets shifted to zero. This prevents the density from being
negative. After that we rescale the shifted function such that

∫
fshift(x)dx = 1. To obtain an

initial particle density u(x, 0), we compute the cumulative distribution function (CDF) of the

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 30

initial distribution. Then, for each particle, we sample a position from the CDF, where we then
place that particle. If this procedure is done, we divide the number of particles at each site by
N to obtain u(x, 0).

Figure 18: (a) We plot a single time instance of a generated random walker particle density
u(x, t) as a function of space x for various number of particles N . We see that for N = 103,
the number of particles is too low to have a good density approximation, i.e., the signal is
very noisy. For higher N we get better approximations and substantially less noise. (b) We
have filtered the signals from (a) using the 2D FFT amplitude cutoff filter with suitably chosen
thresholds. The filtered signal of N = 103 is still noisy, but the high frequency fluctuations
are gone. For N = 105 and higher we get very smooth signals. Hence, for high N we expect
that TrainSTRidge will have no trouble finding the diffusion equation. For N = 103 this will
be more challenging, but not impossible considering that the general form of the signal is still
visible. (c-d) We fourier transform the N = 103 and N = 104 signal from (a) and scatter the
amplitudes as a function of the temporal frequencies. Note that this is a 2D plot, where the
spatial frequency axis goes into the screen. The black dashed line, sitting just above the noise
level, is the amplitude cutoff we have chosen for (b). We see that for N = 103, there is no
clear distinction between the noise and the signal. So we need to remove information about
the signal, which we expect will lead to inaccuracies in determining the diffusion constant. For
N = 105, the amplitudes of the noise are lower, revealing a distinguisable signal. So for this N
we expect accurate predictions of the diffusion coefficient.

Once we have the initial condition, we can start generating data for the symmetric random
walk. For the purposes of obtaining representative results with TrainSTRidge, we will generate
50 different data sets for all initial conditions, each with a different rng seed. We will do this

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 31

for four different numbers of particles: N ∈ {103, 104, 105, 106}. All other input parameters will
be the same, such that we will have fair comparisons. These are D = 0.5, p = 0.5, ∆x = 0.02,
L = 6, ∆t = 0.002 and T = 0.6.7

In Fig. 17b we show an example of the time evolution of a generated density u(x, t), starting
from a gaussian initial condition with N = 105. We see that the top of the gaussian shrinks,
whilst the tail becomes broader. This is a sign of diffusion, which suggests that we indeed can
obtain the diffusion equation within the chosen physical regime. We also see that the density
is noisy, hence it will be important to filter the signal to obtain smooth derivatives.

In Fig. 18 we demonstrate the efficiency of the Fourier filter from section 2.6 on the random
walker data for different values of N . In (a) we plot the density as a function of space for a
single time. We see that N = 103 is very noisy and that increasing Ndrastically decreases the
fluctuations around the signal. Hence, higher N gives smoother densities after applying the
filter, as is shown in (b).

For the filtering proces we choose an amplitude cutoff that is right above the noise level. In (c-d)
we show an example of this by plotting the amplitude of the fourier signal versus its temporal
frequencies for N = 103 and N = 105. For N = 103, we must choose a cutoff of Acut = 10−3 to
get rid of most of the noise. However, since a big part the signal is buried under the noise, we
will also remove some information of the underlying signal as well. For N = 105 the noise level
is lower, revealing a clean signal. Thus, with Acut = 10−4 we obtain a smooth density upon
inversing the fourier transformation after applying the cutoff. For N = 104 and N = 106 we
have chosen Acut = 3 · 10−4 and Acut = 3 · 10−5, respectively. With this filter we expect that
data for N = 105 and N = 106 will give accurate predictions of the diffusion equation. N = 104

seems to yield a decent approximation of the density, but we think that the small frequencies
will increase the deviations from the diffusion constant. Finally, for N = 103 we expect very
high fluctuations in the diffusion constant. We do think that in this case, TrainSTRidge can
still find a match with the diffusion equation, because the general form is visible by eye, and
because we will apply the SG-filter to obtain the derivatives.

For the SG-filter we will choose different polynomial widths per initial condition, because some
of them have steeper slopes. From initial condition 1 to 4, these are xw ∈ {1.22, 2.02, 2.02, 1.41}
in units of space. For each of them we use a polynomial degree of 5. For the temporal direction
we use the entire time range with degree 3, because diffusion only gives rise to slowly decaying
or growing densities per spatial point, for which we do not need high order polynomials.8 9

We will also remove the first and final temporal data by tcut = 0.02 to get rid of undesirable
boundary effects of the Fourier filter and SG-filter.

With the derivative settings in place, we can construct the library ~Θ for each data set. We will
choose the standard basis set, consisting of combinations of polynomial powers and derivative
degrees up to five. For TrainSTRidge we use 100 iterations with initial tolerance dtol = 1. For
STRidge itself we will have 36 iterations. We will now give an example of the TrainSTRidge

output for N = 105. The results for the other N are similar.

7Note that this time step is the time difference between taken samples, not the intrinsic time step of the
simulation.

8Lowering the degree even further and decreasing the width is also an option. However, we found that this
gives highly fluctuating time derivatives for low N , which we want to avoid.

9This argument is not applicable to the spatial direction, because at each time step, we have steep gradients
due to the initial conditions. To approximate these gradients, we need higher order polynomials

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 32

λ

0

10−6

10−5

10−4

10−3

10−2

10−1

Initial condition

1 2 3 4

0 10 20

〈Complexity〉

-2

-1

〈L
/L

to
t〉

[1
0x
]

0.01 0.02 0.03

〈L/Ltot〉

-2

-1

σ
j
/〈
ξ j
〉[
10

x
]

PDE Number
1 (×39)
2 (×4)
3 (×46)

4 (×2)
5 (×47)
6 (×49)

I Right-hand side PDE Count
1 ξ1uxx 39
2 ξ1u

3+ξ2uxx+ξ3uuxx+ξ4uuxxxx 4
3 ξ1uxx 46
4 ξ11+ξ2u

2+ξ3uxx+ξ4uuxxxx 2
5 ξ1uxx 47
6 ξ1uxx 49

I 〈ξuxx〉
1 0.489±0.005
3 0.509±0.005
5 0.501±0.006
6 0.491±0.007

(a) (b)

(c) (d)

Figure 19: We applied TrainSTRidge to the 50 generated random walker data sets for all initial
conditions, each with a different rng seed. We average the results from the different seeds, which
we express via 〈·〉. In this figure we highlight our findings for N = 105. (a) We scatter the
average normalised squared error 〈L/Ltot〉 versus the average complexity of the PDEs we found
for different ridge parameters λ. We see that the error is relatively constant for each λ, whilst
the complexity is minimised by λ ≥ 10−3. Hence, we will investigate the PDEs found with
λ = 10−3. (b) We show for all initial conditions a pareto of the significant PDEs, i.e., PDEs
that have been counted more than once in the rng seed set. In this context, the average 〈·〉 is
taken over the PDEs of the same form. The PDEs and their count can be seen in table (c).
For each of these PDEs, we scatter the mean error on the coefficients σj/〈ξj〉 as a function
〈L/Ltot〉, where σj is the standard deviation around the average coefficient 〈ξj〉. We see that
the diffusion equation has been found the most often in each initial condition. The other two
PDEs have a higher complexity, a lower count and are not significantly present in the other
initial conditions. In addition, PDE 2 has a much higher coefficient error than PDE 1. It is
interesting to see that PDE 4 has the best pareto tradeoff, but this is likely caused by the low
count. From all of this we can conclude that the random walker data is indeed best described
by diffusion. (d) We show the average coefficients that are measured for each initial condition.
We see a good agreement with the input coefficient D = 0.5, with only a difference that is
slightly larger than the standard deviation for some of the initial conditions.

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 33

First, we want to find the optimal ridge parameter λ, i.e., the parameter that has the best
tradeoff between a low complexity and low squared error. The general procedure of finding this
λ is now slightly different compared to the clean example we examined in the previous section.
In that case we had only a single instance of the data u(x, t) that we examined. Now, we will
apply TrainSTRidge to 50 different data sets (per initial condition and N). Hence, we want to
make use of the statistics we obtain from all of the resulting PDEs, instead of looking at each
data set individually. We will do this by computing specific quantities for each found PDE,
e.g., the normalised squared error L/Ltot, and averaging them over the entire rng data set. We
will denote this average by 〈·〉.
In Fig. 19a we scatter plot for different values of λ, the average normalised squared error
〈L/Ltot〉 of the found PDEs versus their average complexity. This we do for each initial condi-
tion. Unlike the previous cases, λ = 0 is not successful in minimising the complexity. We see
that the complexity decreases for increasing λ. After λ = 10−3, the complexity does not change
significantly anymore, as it is sitting slightly above 1. In addition, we see that per initial condi-
tion, the squared error only increases a little bit for increasing λ. Hence, the data for λ ≥ 10−3

seems to hold the most promising PDEs. From this we can also conclude that regularisation of
the regression process becomes more important if we have noisy data, compared to clean data.

We will now look into the significant PDEs that were found for λ = 10−3. With significant we
mean a particular form of the PDE that has been counted more than once in the entire rng seed
data set (per initial condition). Hence, we obtain different numerical values for each coefficient
ξj of the significant PDE. Over these values we take the average to obtain 〈ξj〉 and the standard
deviation σj. From these we can compute the fraction σj/〈ξj〉, which can be interpreted as the
error on a coefficient. Since a PDE can have multiple terms, we will take the mean over the
coefficients to obtain σj/〈ξj〉. This quantity is low if the coefficients from different rng seed sets
are consistent with each other, so we can use this error in a pareto tradeoff plot.10

In Fig. 19b we scatter plot per initial condition, the mean error of the coefficients σj/〈ξj〉 versus
〈L/Ltot〉. In table (c) we show the forms and rng seed counts of the pertinent PDEs in (b). We
see that for initial condition 1, PDE 1, which is the diffusion equation, has a coefficient error
ten times smaller than PDE 2, while the squared error is only twice as big. Hence, in that
initial condition, the diffusion equation is the clear winner. In addition, we find the diffusion
equation in the other initial conditions, all with an overwhelming rng seed count. We also
see that for initial condition 2, there is a candidate with the lowest squared error and lowest
coefficient error. However, its scatter point sits not far away from the diffusion equation point
and it also includes the diffusion term. Furthermore, it has only been counted twice, which does
not make it statistically relevant. For the other initial conditions, only the diffusion equation
was significant. Hence, we see that TrainSTRidge has no trouble finding the diffusion equation
from random walker data.

We will now turn our attention to the computed diffusion constants. In table (d) we show the
average diffusion constant 〈ξuxx〉 and standard deviation for each initial condition. As expected,
the diffusion coefficient sits around D = 0.5, with values that are only a few standard deviations
away from each other. The differences are not within one standard deviation, suggesting there
might be some other errors in our procedure that are not captured by the random deviations
due to N , e.g., due to the approximations with the SG-filter. Nevertheless, the results affirm
that our expectation that N = 105 yields good approximations to the diffusion equation.

10Note that this error only makes sense if the PDE is significant, since PDEs with only a single count will
have σj = 0. This would imply that these PDEs have the lowest error, which is of course nonsense.

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 34

Initial condition

1 2 3 4

3 4 5 6

N [10x]

0.2

0.3

0.4

0.5

〈D
〉

D = 0.5

3 4 5 6

N [10x]

-3

-2
σ
[1
0x
]

1/
√
N

(a) (b)

Figure 20: (a) We plot the average diffusion constant 〈D〉 and its standard deviation σ found
with TrainSTRidge for λ = 10−1 as a function of N . The different lines correspond to results
from different initial conditions. For N = 103, the measured diffusion constant is considerably
lower than the input diffusion of D = 0.5. Nevertheless, it is still impressive that TrainSTRidge
managed to find the heat equation at all for this N . For N = 104, the coefficients are much
closer to the input and for N = 105 and N = 106 we get a very good match. Note that in
some cases, the coefficients are not one standard deviation away from the input, especially
for lower N . To estimate how well the standard deviations capture the variations due to the
fluctuations of the number of particles, we plot in (b) the standard deviation as a function
of N and compare it to the gaussian deviation 1/

√
N . We see that the variations per initial

conditions are of the same order of magnitude as 1/
√
N , and sometimes even larger. Hence,

for N = 103, there is certainly a bias of the average coefficients, meaning that the density
approximation is not very accurate, as expected from the high level of noise we saw in figure
18. For N = 105 and N = 106, the density approximation is excellent, meaning that a high
enough, but finite number of particles is sufficient to approximate the limit N →∞.

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 35

As we said before, the pareto results are similar for each N , with the only difference being a
shift in the value of 〈L/Ltot〉 and the optimal ridge parameter λ. We found that with λ = 10−1,
each N , including N = 103, pointed to the diffusion equation as the optimal PDE for the entire
data set. In Fig. 20a we plot per initial condition the average diffusion constant as a function
of N , including the standard deviations. For N = 105 and N = 106 the coefficients sit nicely
around the expected value of D = 0.5, implying that for N ≥ 105 we can obtain very good
approximation for the limit N →∞.

For N = 103 and N = 104 we see that the coefficients are below D = 0.5. This means that
effectively, the filtered signal did not decay as fast as it would for a higher number of particles.
This is supported by our observations that for later times, the height of the filtered peaks
stopped decreasing. One explanation for this is that the apparent spread of the density due to
diffusion is obscured by the noise. That is, the signals are too noisy to differentiate decay from
high frequency fluctuations. This is not surprising given the fact that a large part of the signal
had to be cut away, because the fourier amplitudes were not distinguishable from noise (see
Fig. 18c. Another explanation could be an introduced bias of the coefficients due the SG-filter.
But since we used the same SG parameters for every N , we think that changing the polynomial
width or degrees will not affect the average diffusion constant for N = 103 by a lot.

One matter that we can easily check with the given data is the accuracy of the standard
deviation σ. That is, we want to compare σ with the expectation from statistical fluctuations
to check for systematic errors in our method or the underlying data. We shall do this by
comparing σ to the gaussian deviation 1/

√
N . In Fig. 20b we plot σ as a function of N in a

log-log plot. We see that for N = 103, the deviations are comparable to 1/
√
N . For N ≥ 104, σ

is even higher than the gaussian deviation. This is not surprising given the fact that there are
many other variables that can affect the deviation, e.g., the SG-filter widths that may perform
differently for different rng seed densities. In any case, this does give us confidence that the
variations with the rng seeds gives us faithfull results from a statistical point of view. Hence,
increasing the number of data sets on which we can test diffusion, will not alter the existing
results by much.

To summarise our results for the symmetric random walk, let us start by saying that for each
N , there is a detectable diffusive process that we can easily examine using our data-driven
methods if we utilise the random nature of the particle system. In addition, we find that a high
enough, but finite number of particles is enough to get accurate approximations of a continuum
description. Hence, for the interacting particle systems we will make sure that we will use a
high number of particles.

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 36

3.3 The Advection-Diffusion Equation obtained from Biased Ran-
dom Walkers

In the previous subsection we found that with N = 105, we are able to find the diffusion
equation. We will now test if we can also obtain the advection-diffusion equation if we consider
biased random walkers. In our studies of this system, we found that TrainSTRidge is unable to
keep the diffusion term: it throws away all of the terms, except for the advection term ux. We
have addressed this problem in section 2.5, where we note that the use of the condition number
in the error leads to an amplified bias towards sparse PDEs. In that section we also propose an
alternative method, which circumvents the problem by simply setting the loss function to zero
after a certain tolerance threshold. With our new method we are able to find both advection
and diffusion.

We will use the same parameters as before, except for the probability to move to the right:
D = 0.5, ∆x = 0.02, L = 6, ∆t = 0.002, T = 0.6 and p = 0.6. From this we can also compute
the expected theoretical value of the speed: v = 2D(2p− 1)/∆x = 10.

Figure 21: (a) Snapshots of a generated biased random walker density u(x, t), with N = 105,
D = 0.5, p = 0.6 and ∆x = 0.02. The dark colored lines show the original noisy signal
and the light colored lines are the filtered signals. We see that the entire density translates
to the right over time due to the bias. In addition, the peak widens as it shrinks. Hence,
there is a clear advection and diffusion process going on. Furthermore, the filtered signal is
smooth, making it well suitable for TrainSTRidge. (b) We plot the amplitudes of the fourier
transformation of the noisy signal in (a) as a function of the temporal frequency. The top
decaying red lines correspond to the underlying signal, while the points below the cutoff are
mostly noisy frequencies. Thus the filter successfully keeps the signal and removes the noise.

Our initial functions to create the initial distributions will be f(x) = exp(−x2/2σ2) with (1)
σ = 0.5 and (2) σ = 0.2. The other function will be f(x) = cos(ωx) + cos(ωx/2) + sin(2ωx)
with (3) ω = 2π/L and (4) ω = 4π/L.11 In total we will generate 100 densities with a different
rng seed (per initial condition). In Fig. 21a we show an example of a biased random walk

11We have different initial conditions compared to the p = 0.5 case, because we wanted to make sure that the
first spatial derivative differs from the third derivative. This is not the case for cos(2πx/L).

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 37

density as a function of space x for different times t. Just as in Fig. 17b, the gaussian initial
condition shrinks and broadens. What is different, is of course the advection of the population
to the right. We also see that below T = 0.6, the density has almost returned to its initial
position. Since the box has length L = 6, we see that the speed of the travelling population
is indeed around the expected value of v = 10. We have also filtered the signal. Similar to
the random walker case, we use a amplitude cutoff Acut = 10−4 for the filter. In Fig. 21b we
show the fourier signal of the density. We again see a clear signal rising above the noise level,
hence we also expect that the derivatives will be smooth and accurate representations of all the
gradients.

For the SG-filter, we will use the following spatial and temporal polynomial widths from initial
condition 1 to 4: xw ∈ [1.5, 0.62, 2.02, 1.22] and tw ∈ [0.15, 0.082, 0.17, 0.102].12 For all cases we
will use a polynomial degree of 5. We found these widths by visually checking how smooth the
first derivatives were after applying the Fourier and SG filter.

0.0 0.2 0.4 0.6 0.8 1.0

‖ξjΘj‖2/‖~ξbest · ~Θ‖2

0

5

10

15

N
ξ

Found terms
Removed terms

ux uxx
0.00

0.25

0.50

0.75

1.00

‖ξ
j
Θ
j
‖ 2
/‖
~ ξ b

es
t
·~ Θ
‖ 2

(a) (b)

Figure 22: We applied TrainSTRidge with the tolerance threshold method on the biased random
walker data set with N = 105, D = 0.5, p = 0.6 and ∆x = 0.02 (see section 2.5.1 for more
details). (a) We plot a PDE contribution histogram of the removed (red) and found (blue)

coefficients ξj, where ‖ξjΘj‖2/‖~ξbest ·~Θ‖2 is the relative contribution that we count on the y-axis
as denoted by Nξ. For this we used 201 bins in the range [0, 1]. The dashed line is the tolerance
threshold we have computed. We see that two terms are not cut away, which correspond to
advection and diffusion. This can be seen in (b), where we make a bar plot of the surviving
terms with the relative contribution on the y-axis and the corresponding terms on the x-axis.
Hence, with our new method we can reliably find the optimal tolerance and thus the optimal
PDE.

To compute the tolerance threshold, we used 201 bins between 0 and 1 for the regression
contribution histogram (see figure 5 for an example). In Fig. 22 we show the results of the
TrainSTRidge algorithm using the tolerance threshold method. In (a) we plot a contribution
histogram of removed and kept terms, where we count the number of terms that have a partic-
ular relative contribution ‖ξjΘj‖2/‖~ξbest · ~Θ‖2. The dashed line corresponds to the computed
tolerance threshold. We see that the bulk of the removed terms are below this threshold, while
the found terms are above it. Interestingly enough, there is also a single removed instance
above this threshold. This means that there was no accuracy penalty to remove that particular
term, even though it had a relatively high contribution in the overfit. But more importantly,

12The reason why we change the temporal width per initial condition is because at a fixed spatial point, the
density goes up and down as a function of time due to the travelling population.

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 38

note that we have two leftover terms. In (b) we show what these surviving contributions are.
As expected, they correspond to advection and diffusion.

Using this new method, we can apply TrainSTRidge to the entirety of the biased random
walker data. Similar to the random walker, we use the basis set library. We again perform 36
STRidge and 100 TrainSTRidge iterations with initial tolerance dtol = 1.

We first find the optimal ridge parameter in a similar vein to figure 19. We found this to be
λ = 10−3. In Fig. 23a we scatter plot the coefficient error σj/〈ξj〉 versus the complexity of the
significant PDEs. In (b) we show the corresponding PDEs, including the number of times that
particular PDE was counted in the entire rng data set (per initial condition). We find that
there is a very clear pareto front in the bottom left corner, with complexity 2 and a coefficient
error around 10−2. This is below any other PDE in the scatter plot. Furthermore, they each
correspond to a different initial condition and have been counted the majority of times. As
expected, these PDEs are the advection-diffusion equation, which means that our new method
works very well for the biased random walk.

In table 23c we show the corresponding coefficients of the advection and diffusion term. We see
that for each initial condition, the speed sits perfectly around the theoretical value of v = 10
and is within the standard deviation. The same is true for the diffusion constant D = 0.5.
Hence, with N ≥ 105, we can also make accurate approximations of the advection-diffusion
equation.

In addition, it is very interesting to see that the predictions for the diffusion rate are more
consistent for the biased random walk system than for the symmetric walkers case. We think
that the reason for this is because the temporal signals of the biased random walkers are easier
to fit through with a polynomial compared to symmetric walkers. Thus, polynomial fitting
tools to approximate the derivatives shine in the presence of many gradients in the spatial and
temporal direction. For future research, it would thus be interesting to see if we can get more
consistent measurements of the diffusion constant for lower N by using the biased random
walkers instead of the random walkers. In this way, we can really make sure whether the bias
of the diffusion coefficients in the random walker system is due to the noise of the signal, or
because the SG-filter is a suboptimal choice for a diffusion only process.

3 VALIDATION OF TRAINSTRIDGE AND TESTING DATA-DRIVEN
TECHNIQUES 39

Initial condition

1 2 3 4

PDE number
1 (×72)
2 (×6)
3 (×3)
4 (×2)
5 (×77)
6 (×3)
7 (×2)
8 (×66)

9 (×2)
10 (×2)
11 (×38)
12 (×4)
13 (×4)
14 (×3)
15 (×2)
16 (×2)

2 4 6 8 10

Complexity

-2

-1

0

σ
j
/〈
ξ j
〉[
10

x
]

I Init. 〈ξux〉 〈ξuxx〉
1 1 -9.998±0.009 0.500±0.007
5 2 -9.99±0.01 0.499±0.006
8 3 -10.00±0.01 0.497±0.008
11 4 -10.00±0.02 0.51±0.01

(a) (b)

(c)

Figure 23: Biased random walker results for N = 105, p = 0.6 and ∆x = 0.02 of the
TrainSTRidge algorithm with the tolerance threshold method for the error evaluation. We
generated 100 data sets with different rng seeds for each of the four initial conditions. Similar
to the random walker case, we found an optimal of ridge parameter λ = 10−3, which we used
to investigate the found PDEs. (a) We scatter the error of the coefficients σj/〈ξj〉 versus the
complexity. The average 〈·〉 is taken over the PDEs with a unique form and σj is the standard
deviation of the average coefficient 〈ξj〉. We see a very clear pareto front of four PDEs in the
bottom left corner at complexity 2, each from a different initial conditon. When we look at the
legend in (b), we see that they have been found in many rng seed instances, while maintaining
a very low coefficient error compared to the PDEs with a low count. Hence, it is no surprise
that they correspond to the advection-diffusion equation, which can be seen in table (c). Thus,
our new method for finding the optimal threshold in TrainSTRidge gives us more reliable re-
sults than the standard procecure. In the table we also see that each of the coefficients are
statistically consistent with each other and expected coefficients D = 0.5 and v = 10.

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 40

4 Learning Partial Differential Equations in Interacting

Particle Systems

In this section we are going to apply our data-driven methods on interacting particle systems.
We will start with the Eden-SSEP model, for which we will obtain the expected Fisher equation.
Then we will examine travelling waves of the pure Eden model. We will compare the Eden
results with the CP above criticality, and finally we will examine the CP at the critical point,
for which we will obtain an effective PDE.

4.1 The Fisher Equation obtained from the Eden Model combined
with the Symmetric Simple Exclusion Process

In the previous sections we have examined with our data-driven methods both the Fisher
equation and the noninteracting random walk on a lattice. In this section we will add our first
layer of complexity to the random walk, namely exclusion and particle growth. The random
walk with exclusion is called the symmetric simple exclusion process (SSEP). A sketch can
be seen in Fig. 24a. The movement of the particles are exactly the same as described in the
previous section: particles move to the left or right with diffusion rate D. The big difference
is that in this case, particles cannot overlap and a diffusive move to an already occupied site
will be denied. We will combine the SSEP with the Eden model, which is a simple stochastic
growth model, see Fig. 24b for an overview of the rules. In this model, particles can give birth
to neighbouring sites with a rate r. But if a site is already occupied, no new particles can grow
on it. See Ref. [41] for an overview of both models.

Similar to the Fisher equation the Eden-SSEP model can be considered as a model for moving
and growing populations, such as bacteria. As we said in the introduction, it is well known
that the continuum limit of the model yields the Fisher equation [7]. Intuitively, this is due
to the fact that in the continuum limit, the random walk steps turn into diffusion, such that
the occupation number of neighbouring sites become uncorrelated. This way, we can assume a
mean field approximation, which we can use to derive the terms ru(1− u).

Let us now consider the Fisher equation from the perspective of an interacting particle system.
The equation is given by:

ut = Duxx + ru− ru2. (23)

The first term is the diffusion term due to the random walk. The second term is the linear
growth due to particle duplication. The last term is the (nonlinear) logistic term, which stems
from the fact that exclusion leads to less growth in occupied regions compared to low density
regimes. In addition, the logistic growth term only emerges in the continuum limit and is not
satisfied microscopically. Hence, this system is a good initial test case for the capability of our
data driven methods to find PDEs in complex systems. Since we have already found the Fisher
equation from smooth data and tested the capability of our methods to tackle noisy data with
the random walker, we expect that we will be successful in finding the Fisher equation.

Now, to derive this PDE, we need to assume that ∆x → 0. With our data-driven approach,
we are essentially doing the same thing: we choose a small lattice spacing to approximate the
gradients as derivatives. However, we cannot take an arbitrarily small lattice spacing, as that
would give rise to very long simulations. We can only approximate the continuum limit by
taking a small, but finite ∆x. Hence, in this section we will also look into how small the lattice
spacing must become in order to obtain a valid effective continuum description of the dynamics
of the particle system.

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 41

Figure 24: (a) Sketch of the Symmetric Simple Exclusion Process (SSEP), which models particle
movement on a lattice, where x and t indicate the spatial and temporal direction, respectively.
At each time step, particles move to the right and left based on the diffusion rate (black arrows).
If the path is blocked by another particle, the particle stays put (red arrow). (b) Sketch of
the Eden process rule set, where new particles appear based on a growth rate. At each time
step, a particle is selected (black circle) to grow another particle in a neighbouring cell (black
plus). If a particle already occupies a site, no new particles can grow on it (red plus). In this
section we will combine the SSEP and Eden process, which can be interpreted as a model of
a bacterial colony. Because this system contains diffusion and growth, we expect that for a
small enough lattice spacing, the movement of the average population density is described by
the Fisher equation.

Before we move on to the results, we must first reconsider how to obtain data that we
can use for our data-driven methods. In the noninteracting random walk section, we simply
stacked many particles on top of each other and then divided the occupation number by the
total number of particles to obtain an average density. In this case, we cannot do this, because

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 42

exclusion prevents sites to be occupied by more than one particle. This means that we cannot
obtain a smooth density from a single simulation, because it would only contain zeros (empty
sites) and ones (occupied sites). In addition, the number of particles is not conserved, because
there is growth. Hence, we will use a slightly different approach compared to the random walker
section. First we will draw an initial configuration from an occupation probability function:
at each site there will be a given probability that it will become occupied or not. With this
initial condition we then run the simulation from which we can obtain temporal data. We will
repeat this process N times in a single script that makes use of one RNG seed. This allows us
to ensemble average all lattice occupations to obtain a density field u(x, t).

Figure 25: (a) We have generated data u(x, t) of the SSEP+Eden system for a balanced growth
to diffusion ratio, with input D = 1 and r = 1. We plot u(x, t) as a function of space x with a
lattice spacing of ∆x = 0.01. As time increases, the densities spread out, indicating diffusion.
In addition, the centre does not decrease as much as one would expect for a pure diffusive
process, hence there is a non-negligible but visible growth. We thus expect a good agreement
with the Fisher equation. (b) Similar plot, but now for a dominant growth of r = 10. The
density goes to 1 as time increases, meaning that the lattice gets full. This would thus be an
interesting case to investigate the difference of the input and output coefficient of the growth
and diffusion rate.

In Fig. 25a we plot for ∆x = 0.01, N = 5000, r = 1 and D = 1 the density u(x, t) as a
function of space x at different time steps. We see that the peak in the middle spreads out,
indicating diffusion, but the growth process is hard to distinguish by eye. This process is better
visible in Fig. 25b, where we show a similar plot for r = 10. Here, the density grows to the
steady state of u(x) = 1, which we have also seen for the Fisher equation in section 3.1.

We will now analyse what the effect of ∆x is on the growth process and how this compares to
a solution of the Fisher equation. In Fig. 26a we compare the average density for r = 10 and
D = 1 at a fixed time for different lattice spacings. In addition, we plot a solution uf of the
Fisher equation with the same coefficients and initial condition. We choose ∆x = 0.01, but
other lattice spacings yield similar curves. We see that the Eden-SSEP density with ∆x = 0.01
lies slightly below the Fisher solution, but there is no exact match. Nevertheless, the behaviour
is similar, so this supports our expectation that the TrainSTRidge algorithm has no problem
finding the Fisher equation. We also see that increasing the lattice spacing makes the gap
between the density and the solution bigger. Hence, the effective growth rate is decreased
when the lattice spacing becomes bigger.

A useful way to quantify growth is by computing the total number of particles as a function
of time. We can compare this for varying lattice spacings to quantify the error introduced by

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 43

−5.0 −2.5 0.0 2.5 5.0

x/L

0.4

0.6

0.8

1.0

u
(x
,t

)

0 2 4

t/τ

0.0

0.1

0.2

0.3

0.4

∫
(u

fp
−
u

)∆
x

Eden+SSEP FiPy Fisher ∆x

0.01 0.02 0.05 0.1

(a) (b)

Figure 26: (a) We compare the density u(x, t) of the SSEP+Eden system as a function of space
x/L for different values of the lattice spacing ∆x at time t/τ = 4.0. The initial condition is a
gaussian and the input growth and diffusion rate are r = 10 and D = 1, respectively. We also
plot a single instance of the density for a solution of the Fisher equation, which we generated
with Fipy for ∆x = 0.01 and other input values similar to the SSEP+Eden system. We see
that as ∆x decreases, the SSEP+Eden density comes closer and closer to the Fisher solution.
(b) We quantify the distinction seen in (a) by plotting the difference of the space integrals∫

(ufp − u)∆x as a function of time t/τ using Simpson’s rule. Here, u is the density of the
SSEP+Eden system and ufp is the solution of the Fisher equation generated by FiPy with the
same lattice spacing as u. Over time, the difference between the Fisher solution increases, and
decreases again as the solutions reach the steady state of u(x, t) = 1. The difference are bigger
for a larger ∆x. This tells us that for high enough input growth rates, the finite size of the
lattice spacing influences the effective birth rate of the particle system. Decreasing the lattice
spacing diminishes this effect.

the discrete lattice. Hence, we will compute
∫

(uf − u)dx for each time step.13 In Fig. 26b we
plot the integral differences as a function of time. We see that over time, the differences first
increase and then decrease as the densities reach a steady state. In addition, we observe that
the difference is larger for bigger ∆x. This confirms our observation that the effective growth
rate depends on the lattice spacing.

We also did a similar comparison with the r = 1 Fisher solution and r = 1 Eden-SSEP data
for ∆x = 0.01, but we did not observe any significant difference. This suggests that the
Fisher equation assumptions also depend on the growth rate. That is, for a fixed diffusion
rate, a higher growth rate requires a smaller lattice spacing to assume independence of the
microscopic actions of the particles. We can understand this a bit better by considering the
limits r → 0 and r → ∞. If r → 0, then we only have diffusion, which works for every ∆x
after rescaling. So adding a little bit of growth will not affect the correlations of the lattice
occupations. But if we let r →∞, then the process is dominated by growth. In this case, the
effective growth rate will depend on ∆x (provided we do not scale it).

Let us now specify the settings for the simulations and the TrainSTRidge algorithm. We will

13We use Simpson’s rule to estimate the integrals, which works well for both noisy and smooth data.

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 44

focus on r = 1 and r = 10 with both D = 1. We used four initial conditions with L = 6, T = 0.5,
∆x = 0.01 and ∆t = 10−3: (1) exp(−x2/σ2) with σ = 0.9, (2) cos(ωx) with ω = 2πn/L and
n = 2, (3) cos(ωx) + cos(ωx/2) with n = 2 and (4) cos(ωx) + cos(ωx/2) + cos(ωx/4) with
n = 4. The latter two initial conditions are shifted so that the minimum probability is zero.
We also divide the shifted function by the maximum so that the highest probability is 1. To
obtain the densities we simulated 5000 runs and we repeated this for 100 different rng seeds.
We Fourier filter the density with an amplitude cutoff Acut = 10−4. The spatial SG-width for
each initial condition is xw = 1.01, except for the fourth one, which is xw = 0.75. In addition,
for each initial condition we use tw = 0.101 and px = pt = 5. We will cut away the first and
last temporal regime of the data by tcut = 0.05.

The initial library ~Θ will be the standard ansatz that we also used for the previous sections.
For TrainSTRidge, we used the new error evaluation we outlined in section (-). In addition,
we used 200 TrainSTRidge iterations, starting from dtol = 1, and 36 STRidge iterations.

2 4 6 8

〈L/Lbase〉

-2

-1

0

σ
j
/〈
ξ j
〉[
10

x
]

r

1 10
I Right-hand side PDE
1 ξ1u+ ξ2u

2 + ξ3uxx
2 ξ1u+ ξ2u

3 + ξ3uxx
3 ξ1u+ ξ2uxx
4 ξ1u+ ξ2uxx + ξ3uux + ξ4uuxxxx
5 ξ1u+ ξ2u

2 + ξ3u
3 + ξ4uxx

6 ξ1u+ ξ2u
2 + ξ3u

3 + ξ4u
5 + ξ5uxx

D r 〈ξu〉 〈ξu2〉 〈ξuxx〉
1 1 1.01±0.02 -1.02±0.04 0.999±0.006
1 10 9.85±0.06 -9.85±0.06 0.99±0.02

(a) (b)

(c)

Figure 27: We have generated data u(x, t) for the SSEP+Eden system for different seeds
and initial conditions. Following the validation scheme using TrainSTRidge with the error
evaluation adaption, we found multiple promising PDEs describing the dynamics of u(x, t) for
r = 1 and r = 10, which can be seen in table (b). For each of these PDEs, we applied
regression on each data set to estimate multiple average quantities, which we denote by 〈·〉. (a)
We scatter the mean error of the coefficients σ/〈ξ〉 versus the average squared error normalised
by the baseline error 〈L/Lbase〉. For both r = 1 and r = 10, the Fisher equation has the
lowest σj/〈ξj〉, whilst maintaining a relatively low squared error. We can thus conclude that
the SSEP+Eden system is best described by the Fisher equation. (c) We show the average
coefficients 〈ξj〉 of the Fisher equation. The coefficients of r = 1 has an excellent agreement
with the input values. For r = 10, the effective output growth is slightly below the input,
implying that the birth has been slowed down. This is to be expected, since we only have a
finite lattice spacing ∆x. Furthermore, we see that 〈ξu〉 = −〈ξu2〉, meaning that the PDE of
the same form as the the Fisher equation.

With the above settings we applied the same general procedure we performed in the random
walker section. In Fig. 27 we show the final results of the promising PDEs that we selected
with pareto analysis. To obtain these results, we applied least squares on the selected PDE
forms for each rng set and initial condition, which allowed us to calculate the averages 〈·〉.

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 45

In (a) we scatter plot the error of the coefficients σj/〈ξj〉 versus the relative squared error
〈L/Lbase〉 of each of the found PDEs. Here, Lbase is the squared error computed by applying

least squares with the full library ~Θ onto the data. We see that there are two blue scatter points
in the lower left corner, one for r = 1 and the other for r = 10. In table (b) we see that they
correspond to the Fisher equation form. The other PDEs have a similar form, but have less
consistent coefficients and have a higher squared error. Hence, with our data-driven methods
we find that the Fisher equation is the most accurate and consistent continuum description of
the Eden-SSEP model.

In table (c) we show the average coefficients for the Fisher terms. We see that for input r = 1
and D = 1, the output coefficients are within one standard deviation from the predicted values.
This result supports the theoretical derivation that the average dynamics of the Eden-SSEP
model is described by the Fisher equation. For r = 10, we find that the output growth rate
is slightly lower than the input, which confirms our expectation that the output depends on a
combination of the lattice spacing and the growth rate. Nevertheless, we see that 〈ξu〉 = −〈ξu2〉,
implying that the effective PDE is still the Fisher equation. This is promising, because it means
that even with limited data (we only used 600 lattice sites), we can obtain accurate continuum
descriptions of complex particle systems.

Figure 28: (a) We plot the average coefficient 〈ξj〉 for r = 10 of the growth terms inside the
Fisher equation as a function of the initial condition. Here, 〈·〉 denotes the average taken over
all seeds per initial condition. The blue line is the coefficient of u and the red line is minus the
coefficient of u2. We see that for each initial condition, the blue and red lines are well within
each other’s standard deviations, implying that growth and counter-growth are consistent for
each initial condition. This means that the Fisher equation is a very good approximation to
these systems. We also see that the growth rate itself varies per initial condition. Hence, there
is a local dependency that causes the effective growth to be lowered by a small amount. (b)
We plot the same type of graph as in (a), but now for the measured diffusion rate. For each
initial condition, we see that the measured diffusion rate is slightly lower than the input rate.
This is likely caused by an interplay of the exclusion process, high birth rate and a finite lattice
spacing.

Finally, let us examine to what extent the large-scale particle system dynamics depend on ∆x
and r by looking at the average coefficients per initial condition. Unsurprisingly, we find that for
r = 1, the coefficients of the Fisher equation for each initial condition were within each other’s
standard deviation. This is not the case for r = 10, where the output coefficients do depend
on the initial condition. In Fig. 28a we plot the average output growth rates as a function of
the initial condition. We see that per initial condition, 〈ξu〉 is within one standard deviation

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 46

from −〈ξu2〉. But we also see that the differences of the growth rates between initial conditions
are larger than the deviations. In Fig. 28b we plot the average diffusion rate as a function of
the initial condition. Here we observe similar behaviour as in (a), i.e., the coefficients are lower
than the input and have a local dependency. This means that there is a systematic error on the
coefficients that is not captured by the variations we took. This implies that in this case, the
effective growth and diffusion depends on the local structure of the system. This makes sense,
because we found that the lattice spacing is not small enough to assume independency of the
actions of the individual particles. That is, varying the initial configurations will give rise to
different correlations, which will ultimately affect the long term behaviour.

Because this particle system is complex, it is hard to predict for which input diffusion and growth
rate, the lattice spacing is ‘small enough’ to get the same output coefficients. Ultimately, it
is a combination of all the microscopic details. For mild input coefficients, such as D = 1
and r = 1, it is sufficient to have ∆x = 0.01. But if the growth-diffusion ratio increases, a
smaller lattice spacing is required to get the exact same results as the mean field approximation.
Nevertheless, it is reassuring that despite the possible local dependencies, we can still obtain a
continuum description of the same functional form with (roughly) the same coefficients. This
shows that the data-driven methods can successfully find the same type of large-scale dynamics
of complex particle systems, while also being able to distinguish physical parameters. This
should be especially useful in the contact process, because this system is even more complex
than the Eden model with diffusion.

Before we move on to the CP, we first want to test if we can still obtain a continuum description
if we only consider growth without diffusion. That is, we want to find out if we can find an
effective PDE due to growth processes only. This is useful to know, because the CP also does
not have a diffusion step in the model. So if there is a PDE that describes the dynamics
of the CP, then it will be an emergent or effective PDE. Testing the capability of the data-
driven methods to find effective descriptions for the Eden model is thus a useful way to prepare
ourselves for the more difficult CP.

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 47

4.2 Travelling Waves of the Eden Model

In the previous section we verified that the Eden model combined with the SSEP gives rise
to dynamics that obey the Fisher equation. To obtain the PDE, we had to explicitly add a
diffusion process to the Eden model. In this section we will check if we can still obtain an
effective PDE if we only have growth and no diffusion. Hence, this section should be seen as a
set up for the CP, where there is also no diffusion.

Let us start by reasoning what sort of dynamics can occur if we have only growth processes.
Suppose we have a population drawn from a gaussian distribution. In general, the centre of
the population will have more particles than in the tail. In addition, there will be a number
of empty sites between the particles at the boundary and the particles in the centre. In this
system we can identify two processes. The first process is filling up the empty sites inside the
population. The second process is the advancement of the populations at the boundaries. In
general, the first process is faster than the second one, because there is simply a bigger chance
that a particle grows inside the population than at the boundary. Hence, if we want to find an
effective PDE we should either focus on the first or the second process; trying to capture both
types of dynamics with a single PDE (probably) will not work.

Now, the aim is to find an effective PDE, that is, we want to find a continuum description
that is dependent on the (local) spatial gradients. For the first process, this will be difficult,
because the process will be dominated by linear growth and exclusion, which are ODE terms.
However, for the second process we expect that in the long time regime, the population will
spread out at a constant speed, similar to advection. See Fig. 29a for a sketch of the situation.
Moreover, this process is symmetric, because a population can grow to the left and right at the
same time. Based on these heuristic arguments, we expect the following effective PDE:

ut = v|ux|, (24)

where v = r∆x/2 is the speed of the population. The factor of a halve is there because particles
grow to the left and right with rate r/2. The absolute value causes the density to increase on
both sides of the population, such that the symmetry of the process is satisfied.

Now, if we simply start from a single particle as an initial condition, then the moving front
of the boundary will be discontinuous from which we cannot compute a derivative (with our
methods). Hence, to find this PDE we need appropriate initial conditions that will result in
smooth travelling waves at the boundary of the population. In addition, we would like to vary
the initial slope of the starting configurations, to see whether it has any effect on the average
behaviour. For this end, we will use tanh(ax), because we can easily vary the slope a and we
can easily manipulate it to obtain a symmetric initial condition: if we have x ∈ [−L/2, L/2],
then the initial condition is simply

u(x) =

{
1−tanh(a(x−x0))

2
if x ≥ 0

1+tanh(a(x+x0))
2

if x < 0
, (25)

where x0 is the first position where tanh(ax) > 0.999.

With this initial condition we can generate data. We will use a ∈ {3, 5, 7, 9} (so four initial
conditions), ∆x = 0.01, L = 8, N = 5000, and r ∈ {0.1, 0.5, 1, 5, 10, 20}. The run times T are
chosen such that the tail of the travelling wave with a = 3 reaches the boundary. The time
interval is ∆t = T/Nt, where Nt = 500 is the number of temporal data points. We repeat the
runs 10 times with different rng seeds.

In Fig. 29b we plot for a = 3 and r = 1 an example of the average density as a function of space
for different times. We see that the boundaries of the populations shift away from the centre,

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 48

Figure 29: (a) Sketch of the Eden process at the boundary of the population. In this situation,
growth can only occur to the right for the rightmost particle. (b) We plot the average density
u(x, t) generated by the Eden process with birth rate r = 1 as a function of space x. The initial
condition is a centred population with slopes of a tangent hyperbolic function and ∆x = 0.01.
We see that in the first time regime, the tail of the initial population has fully grown. After
that we get travelling wave behaviour corresponding to the scenario we have sketched in (a).
Also note that the gradients are smooth, meaning that we can compute reliable derivatives for
the library ~Θ. Finally, we see that the travel wave behaviour is symmetric, i.e., the population
expands to the left and to the right. Hence we expect symmetric terms like |ux| to be important
additions to the library.

with continuous spatial gradients. In addition, we see that between t/τ = 0 and t/τ = 50 the
boundaries have shifted considerably more than for later times. This difference can be explained
by the two growth processes we described earlier. In the short time regime, the lattice between
particles fills up, while there is only growth at the boundary in the latter time regime. Hence
to measure Eq. 24, we will remove the initial time regime of the data. More concretely, we
wait until the rightmost point of the boundary at t/τ = 0 (so the rightmost position xr where
u(x, 0) < 0.01) has reached the steady state density (so the first time tr where u(xr, t) > 0.99).
So we only use temporal data after tr. This makes sure that the physics is dominated by the
long time regime behaviour of the Eden process.

With this data, we can apply our data-driven methods to analyse the average behaviour. In
the library ~Θ we included the basis set terms with powers and derivatives up to 2. In addition,
we will add |ux|, |uxx|, (ux)

2, and (uxx)
2. For the spatial derivatve we estimate the SG-width

based on the length scale of the travelling wave front. That is, for every time tj, xw is the
length between the first positions where u(x, tj) > 0.99 and u(x, tj) < 0.01 for x > 0. This
improved the accuracy of the derivatives for latter times. With these settings, we found that
applying TrainSTRidge for a relative low threshold in general yields a sparse PDE of the from
ut = ξ0u − ξ1u2 + ξ2|ux|. Increasing the threshold removes the logistic terms, which results in
ut = v|ux|. In Fig. 30a we compare ut and v|ux| as a function of space and different times. We
see that |ux| captures the behaviour of ut, including the widening of the peak. In Fig. 30b we
plot the measured speeds divided by the lattice spacing as a function of r. We find that there
is an excellent match with the predicted value of v = r∆x/2. Hence, with our data-driven

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 49

methods we can successfully find effective PDEs for growth processes without diffusion, which
should be especially useful for the CP.

Figure 30: (a) We plot the time derivative ut(x, t) as a function of x for different instances of
time t/τ . Here, u(x, t) is a density generated by the Eden process with r = 1 and ∆x = 0.01.
We also plot the absolute advection term v|ux|, where we measured the speed v using regression.
We see that there is a good match between the two curves. (b) We plot the measured speed
of the travelling waves divided by the lattice spacing v/∆x as a function of the growth rate r.
The measurement is done for ten different seeds and four initial conditions, which we averaged
over. We see an excellent agreement with the theoretical value of v = r/2. Both graphs gives
us confidence that the PDE ut = v|ux| we found with TrainSTRidge is indeed an excellent
description for the travelling wave behaviour of the Eden process.

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 50

4.3 The Contact Process

In the previous sections we have examined the Eden model (with and without the SSEP) to
find (effective) PDEs of particle systems inhabiting growth processes. In this section we are
going to add our final layer of complexity to the model, namely particle death. The particle
model that has both growth and death is called the contact process (CP) and it has a phase
transition based on the growth rate, as discussed earlier. In Fig. 31 we sketch the rules of the
CP. These are for the most part the same as for the Eden model. To incorporate decay, we
simply add the rule that occupied sites become vacant with a death rate δ. We set this rate
to δ = 1, which we will also use as a time scale of the model. With this rate, the critical birth
rate is rc ≈ 3.297848. Every initial configuration below this critical point will go extinct with
probability 1. Above criticality, there is a positive probability that an initial configuration will
survive. In that case, the behaviour is similar to the Eden model in the sense that the system
will keep on growing. At the critical point, the number of particles grow polynomially with a
critical exponent, but it also has been proven that each initial configuration goes extinct with
probability 1 as t→∞ [22]. A more in depth overview of the CP can be found in Ref. [42].

We thus see that adding a simple rule to the Eden model has a huge impact on the overall
behaviour of the system. In the Eden model the complexity arises from the interaction of
particle growth and exclusion. But by adding particle death, there is also an interplay between
growth and decay that causes the system to have different macroscopic properties depending
on the ratio of the rates. In this section (and in the next one), we will be examining how this
complex interplay exactly affects the average behaviour of the CP. That is, we want to find
out if we can describe the average dynamics of the CP in the form of a PDE. This allows us
to ascertain if there are emergent properties of the CP that we can capture with a PDE, i.e.,
whether there is a unique interplay between growth and death that leads to certain types of
terms in the PDE that could help explain the observed dynamics.

For this we will analyse two regimes of the CP, namely above the critical point and at the
critical point. We will first examine the CP above criticality, as it serves as a connective bridge
between the semi-complex behaviour of the Eden model and the more complex behaviour of
the CP at criticality, of which the latter will be the focus in the final part of this section.

Figure 31: Sketch of the CP, which is a stochastic lattice particle system. Particles can grow
on neighbouring sites with rate r (black plus) and they can perish with rate δ (black cross).
There is also exclusion, so particles cannot grow on occupied sites (red plus).

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 51

4.3.1 Travelling Waves of the Contact Process above Criticality

Above the critical point, the CP is dominated by growth. Similar to the Eden process, there
is a nonzero steady state density. However, due to the decay of particles, this density is not 1,
but below it. So if the process has reached this density, we expect that at the boundaries, the
long term behaviour of the average dynamics will be similar to the Eden model. The reason for
this is as follows. Let us consider a situation similar to Fig 29a, where the lattice is filled up,
except at the boundaries. In this case, the lattice occupation in the centre of the population
will decrease a bit due to decay, but on average, this occupation will be stable. Hence, the only
new changes occur at the boundary of the population. Here, the population expands similar
to the Eden model, but since the right- and leftmost particles also have a probability to die,
this expansion is slowed down. So on average, we expect that the same behaviour occurs, but
with a net speed that is lower than the Eden speed. It will thus be interesting to see how the
propagation speed depends on the growth rate, especially in the neighbourhood of the critical
point.

t/δ

0

12

24

36

48

60

−4 −2 0 2 4
x

0.00

0.25

0.50

0.75

1.00

u
(x
,t
)

5.0 10.0 15.0 20.0rc
r

0.4

0.6

0.8

v c
p
/v

ed
en

(a) (b)

Figure 32: (a) We plot the average density u(x, t) as a function of space x for different times.
We use N = 1000, ∆x = 0.01 and r = 10 (so above the critical point). The CP shows
similar behaviour as the Eden process: the population spreads out at the boundaries. The
main difference is that the steady state density is that the steady state density is below 1, due
to the death process. Similar to the Eden process, we found that after the initial population at
the boundary has reached its steady state, the dynamics can be described by ut = v|ux|. (b)
We plot vcp/veden as a function of the growth rate r. Here, vcp is the average measured speed of
the CP populations, which we generated with 10 different rng seeds. We computed this speed
via a least squares fit on ut = v|ux|. veden = r∆x/2 is the expected speed in the case that the
death rate is zero. We see that near the critical point rc, the speed of the population decreases
compared to veden. As the growth rate increases, the speed gets closer veden. Hence, for r →∞,
we expect that vcp → veden, since the growth will dominate over the death process. As r → rc,
we expect that vcp/veden will decease even further, but it is hard to make predictions about the
actual value, since ut = v|ux| might not be a good description of the dynamics at that point.

For the data-driven approach, we will generate data using the same initial conditions and
settings as in section 4.2. The only difference is the growth rates: r ∈ {rc + 0.5, 4, 5, 6, 10, 20}.
In Fig. 32 we plot an example density of the CP above criticality as a function of space for

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 52

different times. We see that after t/δ = 0, the density at the centre of the population quickly
shrinks to a steady state. At the boundary, the density expands to the left and right, which is
the same behaviour we saw in the Eden model.

To analyse the long term travelling wave behaviour (and not the initial time regime), we apply
the same procedure as in the Eden section, i.e., we wait for the tail of the population to grow
to the steady state density before we start applying our data-driven method.14 We found that
this process is slower than the decay of the centre to the steady state, so we do not need to
wait for the latter process to occur before we can start the measurement.

Similar to the Eden model, we found that in the measured time domain, the continuum de-
scription could be described by ut = v|ux|. In Fig. 32b we plot the average measured speeds
vcp (divided by the theoretical Eden speed veden = r∆x/2) as a function of the growth rate.
We see that near the critical point, vcp is considerably smaller than veden. As r increases, vcp
grows relatively closer to veden. This makes sense, because the death contribution becomes
insignificant when r → ∞, such that vcp → veden. Hence, we see that above the critical point,
the average behaviour of the CP is comparable with the Eden model.

Now, when r → rc, it becomes slightly harder to predict what the actual speed will be. However,
we do know that the steady state will be zero as t→∞. Hence, there will never be a travelling
wave of the exact same behaviour as above the critical point.

14To obtain numerical values for the steady state, we measured (in advance) the average density at the centre
of the population for times where the density stopped changing. We did this for each of the growth rates

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 53

4.3.2 Effective PDE from the Contact Process at the Critical Point

At the critical point of the CP, it is hard to deduce what the complex interactions between
death and growth will bring about for macroscopic behaviour. Let us show why. In Fig. 33
we show two examples of the lattice occupation starting from a configuration drawn from the
tangent hyperbolic initial condition with a = 9. We simulated the runs for t/δ = 500 and used
∆x = 0.01. In (a) the system goes extinct before the simulation has ended, while in (b), some
trees keep on growing (and spreading) until the end of the simulation. We thus see that it is
very hard to predict what the outcome will be based on the rules alone; there is a stochastic
element to the survivability of the CP system. But if we are going to ensemble average the
occupations, then the stochasticity should be averaged out, which will lead to a better tractable
problem and gives us important information about macroscopic properties. Of course, due to
the many particle deaths, the resulting density will be more noisy than a density obtained from
the Eden model. Hence, we will use N = 105 runs to make sure we obtain (relatively) smooth
data that captures many aspects of the CP at the critical point.

Figure 33: (a-b) We plot the 1D lattice occupation of the CP at criticality as a function of
space x and time t. We simulate the system for t/δ = 500 with ∆x = 0.01, starting from the
initial configuration drawn from Eq. 25 with a = 9. Black sites are occupied, while white sites
are vacant. In (a) we see that the system dies out before the simulation has ended. In (b)
the system survives at the end of the simulation, with different branches spreading out. This
behaviour highlights the complexity and stochastic nature of the model.

Before we move on to the collected data, let us emphasise that the resulting average behaviour
will represent the dynamics of all the populations combined instead of a continuous description
of a single population. After all, configurations may go extinct and they can have branches
with large patches of vacant sites between them. As such, the average dynamics will be an
effective continuous density that does not describe individual populations. Hence, the density
is perhaps better interpreted as a probability that a particle will occupy a site on a certain
position at a certain time. This also means that any PDE that we obtain with our methods
should be considered as an effective continuum description instead of a stochastic model that
can replicate the dynamics of a single simulation, such as a stochastic PDE. With that out of
the way, let us now discuss the data generation.

Similar to the previous two sections, we will consider initial conditions that are distributed
around the centre of the lattice, such as a gaussian function or the function from Eq. 25. This

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 54

allows us to examine the boundary behaviour and compare it to the CP above the critical
point.15 These will be (1) exp(x2/σ2) with σ = 0.5, (2) the tangent hyperbolic from Eq. 25
with a = 5 and (3) a = 9 for x ∈ [−L/2, L/2]. We will choose L = 6, ∆x = 0.01, T/δ = 500,
∆t/δ = 1 and we repeat the data generation 25 times with different rng seeds.

t/δ

0 99 199 299 399 499

−2 0 2
x

0.0

0.2

0.4

0.6

0.8

1.0

u
(x
,t
)

−2 0 2
x

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

Figure 34: (a-b) We plot the average density u(x, t) of the CP with r = rc as a function
of space x for different times. The initial condition is (a) a gaussian and (b) a manipulated
tanh(ax) (see Eq. 25). We used N = 105 and ∆x = 0.01. We see that in the first time
regime, the density of the peaks shrink considerably and attain a similar shape. After that the
densities slowly spread out, with increasing length scales at the boundaries of the population.
This indicates that the dynamics are dependent on the gradients, which suggest the possibility
of an (effective) PDE that can capture the change in gradients with a spatial derivative term.

In Fig. 34a we plot an example of the average density as a function of space for different
times with the gaussian initial condition. In (b) we plot it for the tangent hyperbolic. We
see that in both plots, the peak of the average density shrinks much faster in the first time
regime, compared to latter times. This is to be expected, because many particles will die before
there the density settles to a more ‘equilibrated’ state that reflects the death to growth ratio
better than the initial configuration. We also found that this decay is too fast to be captured
accurately for the chosen time step. Hence, for TrainSTRidge we will exclude the first 50 time
steps of the data.16 We also see that the density spreads out at the boundaries as time goes
on. To be more specific, the gradients becomes less and less steep, such that the length scale
of the interface increases.

This suggests that it is useful to include interface broadening terms in the ansatz PDE, such as
u2x or uu2x. Hence, our library ~Θ will consist of the following terms: uq(uxp)k, with q, k ∈ {0, 1, 2}
and p ∈ {1, 2}. We will not consider higher order terms, because terms such as u3 and u4 will
introduce a lot of biased overfits and we do not expect these terms to be that relevant based on
what we have seen from the Eden model and the Fisher equation. Of course, since the system
is critical, it could even be that the exponents are fractional. So in principle, we could add

15We also looked into functions such as cosines, but we found slightly different average behaviour, which we
did not want to focus on.

16We examined the first time regime with high temporal resolution as well, but we did not find any sparse
PDEs, only overfits.

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 55

an expansion of different fractional powers based on the critical exponents of the CP. But this
complicates the library quite a bit and we first want to study the system with a relatively simple
ansatz which should at least give us directions as to what terms in the PDE are important.17

Initial condition

1 2 3

PDE Number

1 2 3 4

0.05 0.10 0.15

〈L/Lnorm〉

-2

-1

σ
j
/〈
ξ j
〉[
10

x
]

5 10 15

〈L/Lbase〉

-2

-1

I Right-hand side PDE
1 ξ1u+ ξ2u

2 + ξ3uxx
2 ξ1u+ ξ2u

2 + ξ3uxx + ξ4|ux|
3 ξ1u+ ξ2u

2 + ξ3uxx + ξ4u
2
x

4 ξ1u+ ξ2u
2 + ξ3uxx + ξ4u

2
x + ξ5u

2
xx + ξ6uu

2
xx

I.C. 〈ξu〉 〈ξu2〉 〈ξuxx〉 〈ξu2
x
〉

1 (2.70 ± 0.03)·10−3 (-1.25 ± 0.01)·10−2 (3.87 ± 0.02)·10−4 (2.34 ± 0.03)·10−3

2 (3.05 ± 0.03)·10−3 (-1.39 ± 0.01)·10−2 (3.74 ± 0.03)·10−4 (2.14 ± 0.03)·10−3

3 (2.69 ± 0.03)·10−3 (-1.26 ± 0.01)·10−2 (3.81 ± 0.03)·10−4 (2.22 ± 0.03)·10−3

(d)

(c)

(a) (b)

Figure 35: (a-b) We plot the error of the coefficients σj/〈ξj〉 of found PDEs (see table (c)) as
a function of (a) 〈L/Ltot〉 and (b) 〈L/Lbase〉, where L is the squared error of the PDE, Ltot

is error normalisation based on the mean of the time derivative and Lbase is the squared error
of the initial ansatz PDE. We see that PDE 3 has the best pareto tradeoff between the errors.
This PDE is the Fisher equation with (ux)

2 added to it, which explains the observed length
scales. This shows that at the critical point of the CP, there is emergent behaviour that can
be captured by an effective PDE. In table (d) we compare the average coefficients between the
initial conditions. The coefficients are close to each other, but there is a small offset that is
larger than the standard deviations. This is not surprising, since this PDE only works after
a certain time has passed. Hence, each initial condition might be in a slightly different state
depending on the time from which we start measuring.

To compute the derivatives, we applied the 2D Fourier filter with Acut = 10−5. Nevertheless,
we found that the temporal data was still noisy. Hence, for the temporal derivative we chose
degree 2 for the SG-filter with width tw = 51. For the spatial data we used degree 6 and we
estimated the width based on the length scale of the interface, similar to what we did with the
Eden model. With this data, we first applied TrainSTRidge with the error evaluation method
from section 2.5.2. We used 200 TrainSTRidge and 36 STRidge iterations with dtol = 10−3.
The reason why we set dtol to a small number is because it would otherwise cut away all terms

17To add to this, we found out that we could overfit the PDE with this full (but relatively small) library.
Hence, adding more terms would not make a difference at first glance.

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 56

in the first iteration. This is because the normalised contributions are relatively in the choosen
regime. With these settings we found a various number of PDEs. We selected the four most
common and promising PDEs using the pareto error analysis. These can be seen in Tab. 35c.
They consist of the Fisher equation (with different coefficients for u and u2) and extensions
of the Fisher equation, with terms such as |ux| and (ux)

2. This is peculiar, because the CP
does not have an (intrinsic) diffusion step. Hence, the diffusion is an emergent property of the
system. But before we draw any further conclusions, let us first examine which of the found
PDEs is the best candidate.

We applied least squares on each PDEs for each data set and initial condition so that we can
compare the average errors. In Fig. 35a we scatter plot for each PDE (and initial condition)
the mean error on the coefficients as a function of the normalised squared error. We see that
the Fisher equation has the smallest standard deviations but the largest squared error. To
estimate how well the PDE compares to the PDE computed with the entire basis set, we plot
in (b) the same data, but now as a function of the squared error divided by the baseline error.
We see that this error is around 10 and higher, which is relatively big. Of course, this is to be
expected, because we do not observe a travelling wave solution with a constant length scale,
which would be the case if the CP data would obey the Fisher equation. All the other PDEs
are extensions of the Fisher equation, of which the one with (ux)

2 has the best pareto tradeoff.
It has a squared error that is around three times as big as the baseline error. In addition,
this term explains the observed interface broadening: it pushes the density at the centre of the
interface more upwards than at the edges, causing the boundaries to become more and more
elongated in combination with diffusion.

We also see that this PDE competes with the one containing |ux|. This makes sense, because
|ux| is similar to (ux)

2. At first glance, it is perhaps strange that there is a preference for (ux)
2,

given that we could describe the CP above criticality with |ux|. However, the argument that
the population grows somewhat like the Eden process does not hold at the critical point, so we
should not interpret |ux| as a propagation term with a certain speed. In that regard, we can
conclude that at r = rc, we obtain vcp = 0 in Fig. 32, because the preference for (ux)

2 suggests
that there is a different process going on than propagation.

Finally, let us examine how consistent and reliable the resulting PDE is. In Tab. 35d we show
the average coefficients for each initial condition. We see that each coefficient lies close to
each other, but with a difference that is slightly bigger than a few standard deviations. This
suggests that there is a systematic error that causes the (average) configurations to behave
slightly differently. One reason for this might be the extinction events, which may be dependent
on the initial condition.

To test how well this PDE can describe the average dynamics of the CP, we numerically solve
the PDE with Fipy and compare it to the CP density. To initialise the solution, we use the
same lattice and time step. To obtain an initial condition, we filter and smoothen the CP
density at the time where we started measuring the PDEs (so at t/δ = 50). In Fig. 36 we plot
for the same initial conditions as in Fig. 34 the solution / CP density as a function of space for
different times. We see an excellent match between the two curves for both initial conditions.
Only at the end we see a small discrepancy: the solution curves around the CP lines, which
suggests that the PDE is a very good approximation, but not an exact match. We also solved
and compared the PDE at t/δ = 0. We found that the solution reacted much slower than the
CP density. Hence, the effectiveness of the PDE does depend on the time regime of the CP.
This could also explain why there is a difference in the coefficients per initial conditions. If at
t/δ = 50 the configuration is farther away from the initial transient, then this could result in
slightly different behaviour and coefficients.

4 LEARNING PARTIAL DIFFERENTIAL EQUATIONS IN INTERACTING
PARTICLE SYSTEMS 57

t/δ

50 199 349 499

CP PDE

−2 0 2
x

0.0

0.1

0.2

0.3

u
(x
,t
)

−2 0 2
x

0.0

0.1

0.2

0.3

(a) (b)

Figure 36: (a-b) We plot the average CP density u(x, t) as a function of space x for different
times and compare this to the solution of the found PDE (dashed lines). The initial conditions
are the same as in Fig. 34, but we start from t/δ = 50, which is also the time from which
we started measuring the PDE. The initial condition for solving the PDE is a filtered and
smoothed density of the CP. We see that there is a good match, with a slight offset for latter
times. Hence, this PDE is a good effective description of the dynamics.

In the next section we are going to discuss these results, including those from the other
interacting particle systems.

5 DISCUSSION 58

5 Discussion

In this thesis, we have found various PDEs for interacting particle systems, each one describing
how growth (and/or diffusion) can lead to large-scale movement of particles. We will first
discuss if these PDEs are to be expected and how they relate to other literature.

The first interacting particle system that we examined is the Eden model (particle growth
into vacant neighbouring sites) combined with the symmetric simple exclusion process / SSEP
(particle displacement with exclusion). For this system, we numerically verified that for suitable
choices of input parameters, the dynamics of the system is described by the Fisher equation.
Specifically, we found an excellent match with the literature for growth rate r = 1, diffusion rate
D = 1 and lattice spacing ∆x = 0.01. Changing the growth rate to r = 10 resulted in the Fisher
equation as well, but the Fisher coefficients for different initial conditions were statistically
inconsistent with each other, and the expected value. We can reconcile this result with the
literature based on the assumptions required to derive the Fisher equation. A small enough
lattice spacing is needed to obtain the PDE, and we indeed found that increasing/decreasing
the lattice spacing improved/declined the accuracy of the Fisher equation. We thus see that a
finite-size lattice spacing limit towards the continuum can still lead to accurate measurements
of the PDE. This information could be useful for experimentalists, who also try to infer PDEs
from finite data.

We have also studied the pure Eden model. We found that we could describe the dynamics at
the edges of the growing colony as a travelling wave ut = v|ux|, where the speed is linear in r.
Similar to the Eden-SSEP system, we found that there is a direct link with the microscopic and
macroscopic parameters of the system. This allows for accurate measurements of important
physical parameters, such as the speed of the travelling wave, the growth rate, and the diffusion
constant (provided there is diffusion) from data. Of course, the Fisher equation also has a
travelling wave solution, where the speed is proportional to

√
rD. For future testing, we

could thus look into fitting ut = v|ux| on the Eden-SSEP model, because it is not clear if
the Fisher equation also holds in the regime where D � 1 and r � 1, which are needed to
generate travelling wave behaviour. If successful, the data-driven methods would be a promising
contender for measuring travelling wave behaviour in experimental systems, such as growing
bacterial colonies [25].

The next particle system we considered is the basic contact process (CP), which is an extension
of the Eden model: particles also have a probability to perish. The onset of death gives rise
to critical behaviour, which means that the CP is one of the simplest particle systems that
has a phase transition [42]. The elegant simplicity of this model gave rise to many studies on
the critical behaviour, but there are still some open questions: no coarse-grained PDE of the
basic CP at criticality has been proposed in the literature, only a stochastic PDE for directed
percolation (DP), which is similar and in the same universality class as the CP. This sPDE is
the stochastic Fisher equation [24], i.e., the Fisher equation with an added white noise term.
As such, it is not unexpected that we also found an extension for the Fisher equation for
the coarse-grained density. At first glance, one might expect that the white noise would be
averaged out, such that we only obtain the Fisher equation. However, the white noise could
lead to nontrivial correlations for future time steps, which would introduce a bias in the average
dynamics.

At this moment it is not entirely clear how the stochasticity relates to (ux)
2. In addition, we

know that the found PDE does not work on every time scale. Lastly, it has has coefficients
that are dependent on the initial conditions. As such, the relation may be coincidental, where
(ux)

2 is simply an effective term that helps approximate the length-scale broadening of the

5 DISCUSSION 59

interface. We have not looked into implementing stochasticity into the current methods, but
one alternative way to test the sPDE is to solve and fit it onto the data by tuning the input
coefficients.

It is also not yet entirely clear why (ux)
2 is preferred over |ux|, which we observed for the CP

above the critical point. We found that far above the critical point, the CP is similar to the
Eden model: the amount of death is negligible to the birth such that in the long time regime,
there is a travelling wave obeying ut = v|ux|. It would thus be interesting to see if this transition
into (ux)

2 near the critical point happens smoothly or is something discontinuous. It is a priori
not given that the travelling-wave behaviour is the same at the critical point as above it, so
arguing |ux| over (ux)

2 is not much different than choosing |ux|3 or any other term. As such,
it would also be interesting to consider if the data is better described by |ux|k, with k taking
different integer numbers or even critical exponents. This is left for future studies.

This brings us to the final point. Ultimately there should be some connection between the criti-
cal exponents and the PDE. The reason for this is that the solution contains information about
the average number of particles, which shows power-law scaling with a critical exponent [43].
Hence, to verify this PDE, we could try to estimate this critical exponent from the solution,
and compare it to the literature. The connection could also be explicit with critical exponents
or fractional derivatives, which might allow us to deal with the inherent scale invariance of the
system at the critical point. However, it is presently not clear how to extend the basis set to
manage this level of coefficient and exponent freedom, without succumbing to overfitting. We
found that the data-driven methods work best with a simple ansatz based on prior knowledge of
similar systems, and symmetries of the system itself. In general, adding an increasing number
of terms to the basis set does not lead to better sparse descriptions.

6 CONCLUSION 60

6 Conclusion

In summary, we have utilised data-driven techniques to find PDEs. For this we made use
of the algorithm developed by Brunton et al. [14]. The goal of this study is to develop a
strategy for applying this algorithm to interacting lattice particle systems. The first step
towards reaching this goal was to validate the algorithm on smooth data obtained from solving
the Fisher equation, and noisy data from non-interacting particle systems, such as the random
walk. These studies provided us with the insight that we need to use various initial conditions,
filters and a statistical analysis on multiple coarse-grained data sets to reliably obtain new
PDEs. In general, we found that randomly generating at least 25 data sets on 4 or more initial
conditions was enough to get relevant statistics. In addition, coarse-graining the data with 104

or more simulations containing around 100 or more particles yields relatively smooth data that
can easily be filtered.

We have also proposed and used a number of improvements to the algorithm developed by
Brunton et al. [14]. The most important change is that we have altered the error evaluation in
the algorithm, such that it is more independent of the basis set / starting PDE, which allows us
to reliably obtain PDEs that are both sparse and accurate. These additions are general and do
not rely on the fact that the underlying system is a 1D lattice model for particles. Furthermore,
our filtering techniques to remove the noise and estimate the derivatives are easy to use and
have interpretable tuning parameters. Hence, the methods discussed in this thesis could serve
as useful tools for future utilisation of the algorithm in experimental and numerical studies
alike.

Building upon our experience with non-interacting particle systems and the Fisher equation,
we considered an interacting particle system that is a combination of two models: the Eden
model (which has particle growth on vacant neighbouring sites), and the symmetrical simple
exclusion process (SSEP), which models particle displacement with hard-core exclusion. For
suitable choices of the input parameters, we obtained the theoretically predicted Fisher equation
ut = Duxx + ru(1−u) within the standard deviation (< 2%). This numerical result is new and
shows the potential for the application of data-driven techniques onto (strongly) interacting
particle systems.

Next, we turned to the pure Eden model and we obtained travelling waves that could be
described via ut = v|ux|, but not by the Fisher equation. The right-hand side is a symmetric
advection term, i.e., the waves move to the right and to the left. We found that the coefficients
were within 1% of the expected values. From this we can conclude that we can obtain effective
PDEs for interacting particle systems that do not contain diffusion.

Finally, we examined a version of the Eden model that incorporates death, namely the contact
process (CP). Based on the ratio between growth and death, the CP can be in different phases,
including a critical phase. We found that far above the critical point, the CP is similar to the
Eden model: there are travelling waves, where vcp → veden as the growth rate becomes bigger.
At the critical point of the CP, we found a new effective PDE for the average dynamics that
is similar to the Fisher equation: ut = Duxx + au − bu2 + c(ux)

2. The emergent diffusion and
Fisher terms are to be expected from the stochastic Fisher equation of the CP, which has a
white noise term. The appearance of the (ux)

2 term is explained by the observed interface
broadening of the average density. However, we did find that there is a dependency on the time
regime and initial condition. This implies that there are correlations in the dynamics that are
hard to capture with a sparse coarse-grained PDE. This is not unexpected given the stochastic
nature of the critical behaviour. Hence, for future studies we could try to fit a solution of the
stochastic Fisher equation onto the average density.

6 CONCLUSION 61

From our combined results, we can conclude that when there is sufficient data to cross check
PDEs and ensemble average the densities, we can reliably obtain effective PDEs in interacting
particle systems. As an outlook, this work could be applied on (experimental) data obtained
for complex systems related to the ones studied here, for which it is relatively easy to (automat-
ically) generate enough data. This could include systems inhabiting growth and/or death, such
as bacterial colonies or infection models, but also systems that combine (biased) movement
with exclusion, such as traffic models or active matter systems.

REFERENCES 62

References

[1] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Proceedings of the National Academy of
Sciences 113, 3932 (2016).

[2] G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930).

[3] G. H. Weiss, American Scientist 71, 65 (1983).

[4] J. C. Chen and A. S. Kim, Advances in Colloid and Interface Science 112, 159 (2004).

[5] E. A. Codling, M. J. Plank, and S. Benhamou, Journal of The Royal Society Interface 5,
813 (2008).

[6] J. Gärtner, Stochastic Processes and their Applications 27, 233 (1987).

[7] J. L. Lebowitz, E. Presutti, and H. Spohn, Journal of Statistical Physics 51, 841 (1988).

[8] G. Haag, Modelling with the Master Equation (Springer Cham, Gewerbestrasse 11, 6330
Cham, Switzerland, 2017), 1st ed.

[9] M. F. Weber and E. Frey, Reports on Progress in Physics 80, 046601 (2017).

[10] A. Zöttl and H. Stark, Journal of Physics: Condensed Matter 28, 253001 (2016).

[11] S. Funtowicz and J. R. Ravetz, Futures 26, 568 (1994), special Issue Complexity: Fad or
Future?

[12] S. L. Brunton, B. R. Noack, and P. Koumoutsakos, Annual Review of Fluid Mechanics 52,
477 (2020).

[13] R. Supekar, B. Song, A. Hastewell, G. P. T. Choi, A. Mietke, and J. Dunkel, Learn-
ing hydrodynamic equations for active matter from particle simulations and experiments
(2021).

[14] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, Science Advances 3 (2017).

[15] B. Derrida, J. L. Lebowitz, and E. R. Speer, Journal of Statistical Physics 107, 599 (2002).

[16] M. Eden, Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability,
vol. 4 (Univ. California Press, Berkeley, 1961).

[17] T. Vicsek, M. Cserző, and V. K. Horváth, Physica A: Statistical Mechanics and its Appli-
cations 167, 315 (1990).

[18] G. C. Barker and M. J. Grimson, Journal of Physics A: Mathematical and General 27,
653 (1994).

[19] R. A. Fisher, Annals of Eugenics 7, 355 (1937).

[20] D. Griffeath, Stochastic Processes and their Applications 11, 151 (1981).

[21] J. R. G. de Mendonça, Journal of Physics A: Mathematical and General 32, L467 (1999).

[22] C. Bezuidenhout and G. Grimmett, The Annals of Probability 18, 1462 (1990).

[23] C. Müller and R. Tribe, Probability Theory and Related Fields 102, 519 (1995).

[24] Š. Birnšteinová, M. Hnatič, T. Lučivjanský, L. Mižǐsin, and V. Škultéty, Theoretical and
Mathematical Physics 200, 1335 (2019).

[25] M. Matsushita, F. Hiramatsu, N. Kobayashi, T. Ozawa, Y. Yamazaki, and T. Matsuyama,
Biofilms 1, 305 (2004).

REFERENCES 63

[26] M. Deforet, C. Carmona-Fontaine, K. S. Korolev, and J. B. Xavier, Evolution at the edge
of expanding populations (2017).

[27] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to
Algorithms (Cambridge University Press, New York, USA, 2014).

[28] J. E. Guyer, D. Wheeler, and J. A. Warren, Computing in Science & Engineering 11, 6
(2009).

[29] A. E. Hoerl and R. W. Kennard, Technometrics 12, 55 (1970).

[30] D. W. Marquardt and R. D. Snee, The American Statistician 29, 3 (1975).

[31] H. J. Nussbaumer, The Fast Fourier Transform (Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1981), pp. 80–111.

[32] I. Knowles, Electronic Journal of Differential Equations 21, 235 (2014).

[33] A. Savitzky and M. J. E. Golay, Analytical Chemistry 36, 1627 (1964).

[34] V. M. T. e. V. M. Tikhomirov (auth.), Selected Works of A. N. Kolmogorov: Volume I:
Mathematics and Mechanics, vol. 1 of Mathematics and Its Applications (Soviet Series)
25 (Springer Dordrecht, 1991), 1st ed.

[35] D. Panja, Physics Reports 393, 87 (2004).

[36] S. P. Lalley and T. Sellke, The Annals of Probability 15, 1052 (1987).

[37] V. M. Kenkre and M. N. Kuperman, Phys. Rev. E 67, 051921 (2003).

[38] Y. Zeldovich, Combustion and Flame 39, 219 (1980).

[39] J. Canosa, Journal of Mathematical Physics vol. 10 iss. 10 10 (1969).

[40] M. R. Roussel, Random Walk, Department of Chemistry and Biochemistry, University of
Lethbridge (2009).

[41] T. M. Liggett, The Annals of Probability 25, 1 (1997).

[42] T. M. Liggett, Interacting Particle Systems (Springer, Berlin, Heidelberg, 2005), 1st ed.

[43] S. L. Malte Henkel, Haye Hinrichsen, Non-Equilibrium Phase Transitions: Volume 1: Ab-
sorbing Phase Transitions, Theoretical and Mathematical Physics (Springer, 2009), 1st
ed.

	Introduction
	Methods
	Introduction to Learning Partial Differential Equations
	Linear Regression and Least Squares
	Ridge Regression
	Sparse Regression with STRidge and TrainSTRidge
	TrainSTRidge Adaptions
	Physics Based Threshold for TrainSTRidge Tolerance Increment
	Normalising the TrainSTRidge Error Evaluation

	Filtering Noise with 2D Fourier Transformations
	Computing Derivatives with the Savitzky-Golay Filter
	Finding Consistent and Reliable Partial Differential Equations

	Validation of TrainSTRidge and Testing Data-Driven Techniques
	The Fisher Equation obtained from Smooth Data
	The Diffusion Equation obtained from Random Walkers
	The Advection-Diffusion Equation obtained from Biased Random Walkers

	Learning Partial Differential Equations in Interacting Particle Systems
	The Fisher Equation obtained from the Eden Model combined with the Symmetric Simple Exclusion Process
	Travelling Waves of the Eden Model
	The Contact Process
	Travelling Waves of the Contact Process above Criticality
	Effective PDE from the Contact Process at the Critical Point

	Discussion
	Conclusion

