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ABSTRACT 

BACKGROUND: High-dose methotrexate (HDMTX) is widely used as an established treatment for 

various haematological malignancies. However, prolonged exposure can lead to significant toxicity.  

Recent research showed the possibility to accurately estimate the creatinine clearance with the CT-based 

estimate of RenAl FuncTion (CRAFT) equation using automated body composition analysis of clinically 

obtained CT scans and automated deep learning algorithms.  

Based on existing pharmacokinetic models for HDMTX, this study investigated the added value of 

incorporating the CRAFT, radiomics parameters and biometric and laboratory values for better 

predicting the pharmacokinetics of HDMTX. 

METHODS: The PREDICT-MTX study is a retrospective single centre pharmacokinetics study that 

included patients treated with HDMTX (≥ 500 mg/m2) with a clinical acquired CT-scan covering the L3 

segment. A population pharmacokinetics model was constructed using non-linear mixed effect 

modelling (NONMEM) to estimate population and individual pharmacokinetic parameters. Radiomics 

parameters, biometric and laboratory values were evaluated as covariates.  

RESULTS: The MTX concentration–time course was best described by a three-compartment model. 

Significant covariates that retained in the final model were serum creatinine concentration and CRAFT 

on methotrexate clearance (CLmtx) and white blood count and 90th percentile radiation attenuation of 

long spine muscles on volume of distribution in the central compartment (V1). 

CONCLUSION: This is the first proof-of-concept study that uses deep learning body-composition 

analysis of clinically acquired CT-scans to better describe the pharmacokinetics of HDMTX. We 

constructed a three-compartment population pharmacokinetic model that characterised the CLmtx and 

V1 of MTX in adult patients with various malignancies treated with HDMTX.  
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INTRODUCTION 

High-dose methotrexate (HDMTX) is widely used as an established treatment for various haematological 

malignancies including acute lymphoblastic leukaemia (ALL) and non-Hodgkin lymphoma (NHL). A 

prospective randomised phase III trial reported a significant increase in five-year disease-free survival 

rate in adult patients with ALL treated with HDMTX compared to those treated with intermediate-dose 

MTX without any increase in severe adverse events.1 While HDMTX plays a prominent role in the 

treatment of haematological malignancies, HDTMX is still accompanied by substantial toxicity such as 

hepato- and nephrotoxicity.2 Current population pharmacokinetic models describe the 

pharmacokinetics of HDMTX in attempt to better predict HDMTX-induced toxicity, however, evaluation 

of relevant covariates, such as body composition, is essential to further reduce toxicity while maintaining 

proper efficacy.3 

MTX is a folic acid antagonist, belonging to the group of antimetabolites, that has inhibitory effect on 

DNA synthesis which in high doses leads to apoptosis of tumour cells while lower doses of MTX 

expresses anti-inflammatory and immunosuppressive effects.4,5 MTX is actively transported intracellular, 

in human leukocytes amongst others, and primarily metabolised in polyglutamated MTX that 

subsequently leads to inhibition of dihydrofolate reductase which is responsible for the synthesis of 

purines and thymidine.6,7 MTX generally distributes throughout the body and binds to albumin in 

plasma, while MTX also diffuses gradually into third-space fluids e.g. ascites, resulting in an extended 

half-life. MTX is primarily eliminated through renal excretion, of which largely is unchanged.7  

Dosages above 500 mg/m2 administered through prolonged intravenous infusion are referred to as 

HDTMX and followed by leucovorin rescue therapy, a folate analogue, to diminish the toxic effect on 

normal dividing cells while preserving the antitumour effect of HDTMX.8,9 The infusion duration of 

HDMTX may vary between 1-4 hours and 24 hours with leucovorin rescue therapy administered at 24 

and 36 hours after start of infusion, respectively.9,10 Management of HDMTX-induced toxicity and 

leucovorin rescue therapy is guided through therapeutic drug monitoring until the serum MTX 

concentration reaches below 0.2 μmol/L.11 Be that as it may, prolonged exposure to high concentrations 

of MTX can still lead to significant toxicity, mostly due to impaired renal function.12,13 In addition, 

HDMTX-induced toxicity can result in a delay of further chemotherapy treatments potentially resulting 

in suboptimal anticancer outcomes. 

Both two- and three-compartment population pharmacokinetic models have been described for 

HDTMX.14–16 Renal function including GFR, estimated creatinine clearance and serum creatinine 

concentration (SCR) were considered an independent indicator of MTX clearance (CLmtx). Other variables 

that may affect volume of distribution are bodyweight (BW), body surface area (BSA), height, age, alanine 

aminotransferase (ALAT), and dosage regimen.16 

Serum MTX concentration and duration of exposure depend on the dose administered, the volume of 

distribution and the renal clearance.7 Despite dose reduction based on conventional estimated 

glomerular filtration rate (eGFR) equations, serum MTX concentrations are still elevated resulting in the 

manifestation of MTX-induced toxicity.17 Renal function formulas such as the Cockcroft-Gault equation 

may not provide accurate estimate of creatinine clearance as it assumes a standardized muscle mass.18 

Recent research showed the possibility to accurately estimate the true creatinine clearance of patients 

based on clinically obtained CT scans using automated deep learning algorithms.19 The CT-based 

estimate of RenAl FuncTion (CRAFT) equation was developed based on radiomics parameters derived 

from cross-sectional muscle area at L3 level which is strong associated with total body muscle volume.20 

Automated body composition analysis may also lead to better estimation of the volume of distribution, 

since it directly quantifies muscle and fat compartments. Current renal function formulas are more 

sensitive to patients with atypical body composition, whereas the CRAFT directly estimates the muscle 
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mass and corrects for it, resulting in a more accurate estimation of creatinine clearance.19,21 The CRAFT 

equation also include age, weight, and stature and was validated in healthy kidney donors as well as 

patients. With help of these algorithms, we expect to better describe the pharmacokinetics of HDMTX 

based on a more accurate estimation of creatinine clearance and volume of distribution in order to 

reduce the toxicity of MTX and maximise its therapeutic effect. 

Regarding the toxicity, HDMTX-induced hepatotoxicity presents as acute elevations in serum 

transaminases concentration up to 20-fold and mainly manifest in patients treated with HDMTX which 

are favourably transient and return to baseline concentration within fourteen days.12 However, there are 

multiple case reports of patients with MTX-induced hepatic fibrosis which later on developed 

hepatocellular carcinoma with HDMTX treatment as the common denominator in their early years.22–24 

HDMTX-induced nephrotoxicity was found in 1.8% of patients with osteosarcomas treated with HDMTX 

with a mortality rate of 4.4%.13 MTX can precipitate in the renal tubules and form crystals which directly 

induce tubular injury.25 Furthermore, MTX can cause constriction of the afferent arterioles leading to a 

decreased GFR resulting in a delayed excretion and decreased clearance of MTX and other drugs which 

may in turn lead to increased risk of other systemic toxicity.13 Risk factors associated with HDMTX-

induced nephrotoxicity are the male sex, low serum albumin concentration and multi-drug interaction.26 

HDMTX-induced nephrotoxicity can be minimized by hydration, alkalinisation of urine and as a last 

resort, treatment with glucarpidase, a recombinant bacterial enzyme that converts MTX to an inactive 

metabolite leading to faster elimination.27,28 

Multiple studies showed a correlation between the pharmacokinetics and pharmacodynamics of HDMTX 

regarding toxicity.14,29,30 A pharmacodynamics study of HDMTX in paediatric patients found a 43% 

increase in risk of nephrotoxicity after an observed increase serum MTX concentration of 1 μmol/L after 

24 hours compared to those without an increase in serum MTX concentration. 29 Moreover, in a cohort 

of adult patients with ALL, non-Hodgkin lymphomas, and osteosarcomas, a significant positive 

correlation was found between the dose-corrected serum MTX concentration and the incidence of acute 

renal insufficiency.14 Furthermore, another study demonstrated a significant positive correlation between 

the individual cumulative area under the curve of MTX and the mucositis score in patients with 

osteosarcomas.30 Building a pharmacokinetic model with radiomics parameters derived from deep 

learning-based analysis of CT-scans allows for better estimation of individual pharmacokinetics of MTX 

for precise dosing strategies to reduce further toxicity.  

Based on existing pharmacokinetic models for HDMTX, this study investigated the added value of 

incorporating the CRAFT, radiomics parameters derived from clinically acquired CT-scans and biometric 

and laboratory values for better predicting the pharmacokinetics of HDMTX. To the extent of our 

knowledge, this is the first proof-of-concept study where deep learning body-composition analysis of 

clinically acquired CT-scans was used to better understand the pharmacokinetics of HDMTX. A 

population pharmacokinetic model was developed using non-linear mixed effect modelling (NONMEM) 

based on a retrospective cohort of patients that were treated with HDMTX between 2017 and 2022 in 

University Medical Center Utrecht (UMCU). 
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METHODS 

Study design, patient population, and data extraction 

The PREDICT-MTX study is a retrospective single centre pharmacokinetics study conducted in the UMCU. 

In order to be eligible for this study, individuals had to be (1) at least 18 years or older, (2) treated with 

HDMTX ≥ 500 mg/m2 in the first cycle as part of standard of care treatment, and (3) have a clinical 

acquired CT-scan available covering the L3 segment. Participants were excluded if the time between CT-

scan and administered HDMTX were >3 months apart. Pseudonymised CT-scans were retrieved from 

the Research Image Archive of the UMCU. Pseudonymised biometric data and laboratory values from 

two weeks prior HDMTX infusion were retrieved from the Utrecht Patient Oriented Database (UPOD). All 

patients meeting the criteria for eligibility with concentration-versus-time data were used in the analysis. 

HDMTX administration and sampling 

Patients received intravenous HDMTX dosages varied from 500 mg/m2 to 5400 mg/m2 with an infusion 

duration of 1-, 2-, 4- or 24 hours according to standard of care treatment protocols. The majority of 

samples were collected at 24, 48 and 72 hours after start of infusion. Therapeutic drug monitoring was 

performed until the observed serum MTX concentration was below  0.2 μmol/L. Serum MTX 

concentrations were quantified using the ARK™ Methotrexate Assay, a highly specific homogeneous 

enzyme immunoassay by the Central Diagnostic Laboratory at the UMCU in collaboration with the 

Division Laboratory and Pharmacy. Serum MTX concentrations after glucarpidase administration were 

measured at another institution with liquid chromatography-tandem mass spectrometry and was 

therefore not taken in the pharmacokinetic analysis as the immunoassay used in UMCU could not 

distinguish between serum MTX concentration and inactive metabolite.31 Serum MTX concentrations 

below the limit of quantification were included and divided by two for NONMEM.32 

CT scan segmentations and radiomics parameters 

Deep learning algorithm for body-composition analysis was developed by Quantib Body Composition 

and described in previous literature.19,33 Automated segmentations of muscle and fat compartments 

were performed at L3 level and radiomics parameters were calculated based on the Hounsfield Units 

(HU) distribution of these compartments. The muscles were segmented into psoas, long spine and 

abdominal wall muscles and further segmented using a threshold of >- 15 HU for muscles.19,34 Fat 

compartments were segmented into subcutaneous and visceral fat. Segmentations were then manually 

checked for inaccuracies. 

Pharmacokinetic modelling, covariate analysis and statistical analyses 

Population pharmacokinetic modelling based on first-order conditional estimation method was 

performed in NONMEM v7.5.1 and assisted by Pirana v23.1.1 to estimate population and individual 

pharmacokinetic parameters. Two- and three-compartment PK models were evaluated with 

interindividual variability (IIV) in CLmtx and volume of distribution in the central compartment (V1). 

Interoccasion variability was not determined since all patients were treated in the first cycle. The model 

of Ibarra et al. was used as starting point for the base model and included BW as a covariate on all 

parameters centred for a 70 kg individual and using an exponent of 1.0 for V1 and 0.75 for 

compartmental clearance and clearance parameters by means of a power model.14  

After estimation of V1 and CLmtx from the base model, Least Absolute Shrinkage and Selection Operator 

(LASSO) regression was used to select relevant radiomics parameters that correlated with V1. From the 

208 radiomics parameters obtained from L3 on the CT-scans, 114 parameters were considered as 

potential predictors to be used in the LASSO regression based on expected relevance. 
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Remaining radiomics parameters alongside biometric data and laboratory values were evaluated as 

covariates on the base model. Potential biometric and laboratory covariates included sex, age, stature, 

BW, BMI, BSA, SCR, albumin, Cockcroft Gault, CKD-EPI 2009 and 2021, CRAFT, haemoglobin, haematocrit, 

white blood count (WBC), platelet count, ALAT, aspartate aminotransferase (ASAT) and total bilirubin. 

Renal function formulas were normalised and adjusted for BSA if necessary and the CRAFT was converted 

to mL/min. The covariates were evaluated using the stepwise covariate model building procedure via 

Perl speaks NONMEM. Based on forward selection, covariates were included if a decrease of 3.84 in the 

OFV (P <0.05) was observed.  

The final model was evaluated by change in the objective function (OFV), inspection of goodness-of-fit 

plots for precision and visual predictive checks for both bias and precision. Bootstrapping was done 

(n=1000) to calculate the 95 percent confidence interval of the final parameter estimates. Data handling 

and statistical analyses were carried out in R (R Foundation for Statistical Computing, Vienna, Austria) 

and RStudio v1.446. Mean along with standard deviation was used for normal distributed data and 

median with interquartile range for non-normal distributed data. P-value of <0.05 was considered 

statistically significant. 
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RESULTS 

Clinical characteristics 

A total of 57 patients with 140 available serum MTX concentrations were included in the analysis. One 

patient received glucarpidase 48 hours after HDMTX infusion. Twenty-one patients were female (36.8%) 

and 36 were male (63.2%) with a median age of 60.5 years (46.1-70.1). Forty-seven patients were 

diagnosed with non-Hodgkin lymphoma, nine patients with acute lymphoblastic leukaemia and one with 

chronic lymphocytic leukaemia. The baseline characteristics including biometric, general radiological and 

laboratory values of patients are summarised in table 1. 

Table 1. Baseline characteristics including biometric, radiological and laboratory values of 

patients treated with high-dose methotrexate (HDMTX). Values are expressed as n(%), mean 

± standard deviation or median (interquartile range). 

 All participants (n = 57) 

Diagnosis  

    Acute lymphoblastic leukaemia 9 (15.8%) 

    Non-Hodgkin lymphoma 47 (82.4%) 

    Other 1 (1.8%) 

Biometric parameters  

    Female, n (%) 21 (36.8%) 

    Age, years 60.5 (46.1 - 70.1) 

    Stature, cm 176.0 (168.0 - 184.0) 

    Weight, kg 79.1 ± 13.3 

    BMI, kg/m2 25.9 (22.8 - 28.4) 

    BSA, m2 1.9 (1.8 - 2.1) 

Radiomics parameters  

    Psoas volume > ‑15 HU, cm2 17.8 ± 6.0 

    Psoas mean RA >  ‑15 HU, HU 45.9 ± 7.2 

    Long spine volume >  ‑15 HU, cm2 44.0 ± 12.1 

    Long spine mean RA > ‑15 HU, HU 40.0 ± 12.9 

    Abdominal wall volume > ‑15 HU, cm2 64.8 ± 17.3 

    Abdominal wall mean RA > ‑15 HU, HU 33.3 ± 8.7 

Laboratory values  

    Creatinine, µmol/L 61.0 (52.0 - 75.0) 

    Cockcroft Gault, mL/min 125.7 ± 42.6 

    CKD-EPI (2009), mL/mina, b 111.0 ± 27.6 

    CKD-EPI (2021), mL/minb 113.9 ± 26.3 

    CRAFT, mL/min 126.6 ± 42.7 

    Albumin, g/L 35.6 ± 4.8 

    Hb, mmol/L 7.3 (6.1 - 8.5) 

    Ht, L/L 0.35 ± 0.07 

    WBC, ⋅ 109/L 7.8 (3.0 - 12.8) 

    PC, ⋅ 109/L 230.0 (151.0 - 309.0) 

    ALAT, U/L 29.0 (18.0 - 48.0) 

    ASAT, U/L 20.0 (17.0 - 26.0) 

    Total bilirubin, µmol/L 9.0 (7.0 - 12.0) 

ALAT: alanine transaminase; ASAT: aspartate transaminase; BMI: body mass index; BSA: body 

surface area (Du Bois Method); CKD-EPI: Chronic Kidney Disease Epidemiology Collaboration; 

CRAFT: CT-based estimate of RenAl FuncTion; Hb: haemoglobin; Ht: haematocrit; HU: Hounsfield 

units; PC: platelet count; RA: radiation attenuation; WBC: white blood count.  
a: Caucasian race used as default; b: normalised and adjusted for BSA. 
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Model building, radiomics parameter selection and covariate analysis 

Following the evaluation of two- and three compartment models, the MTX concentration–time course 

was best described by a three-compartment model (ΔOFV = -41). Based on the three-compartment 

model, the V1 was estimated with IIV and used for the LASSO regression.  

The LASSO for variable selection resulted in six radiomics parameters after tenfold-cross-validation 

which included visceral fat, abdominal wall muscles (> -15 HU), long spine muscles (> -15 HU), 90th 

percentile radiation attenuation (RA) of long spine muscles (> -15 HU), skewness HU of long spine 

muscles and skewness of the psoas muscle (> -15 HU). The corresponding coefficients are shown in 

Supplemental Table 1. These six radiomics parameters and CRAFT were included in the covariate analysis 

on V1 using the stepwise covariate model building procedure. 

According to the univariate analysis, the following covariates were considered to be significantly 

correlated to CLmtx: SCR, CRAFT, Cockcroft Gault estimated creatinine clearance, eGFR (CKD-EPI 2009 and 

2021), WBC and age. The significant covariates related to V1 were SCR, CRAFT, Cockcroft Gault estimated 

creatinine clearance, eGFR (CKD-EPI 2009 and 2021), WBC, age, visceral fat, abdominal wall muscles (> 

-15 HU), 90th percentile RA of long spine muscles (> -15 HU) and long spine muscles (> -15 HU). The 

OFV of the significant covariates are shown in Table 2. 

Table 2. Covariates correlated to the methotrexate clearance (CLmtx) and volume of 

distribution in the central compartment (V1) in the base model. Values are expressed as 

difference in OFV. 

Covariates CLmtx V1 

 ΔOFV P-value ΔOFV P-value 

SCR -41.00 <0.001 -18.49 <0.001 

CRAFT -25.25 <0.001 -15.37 <0.001 

Cockcroft Gault -30.64 <0.001 -17.99 <0.001 

CKD-EPI 2009 -25.84 <0.001 -14.82 <0.001 

CKD-EPI 2021 -24.34 <0.001 -13.60 <0.001 

WBC -6.01 <0.05 -29.71 <0.001 

Age -5.41 < 0.05 -19.10 <0.001 

Visceral fat    -7.86 <0.05 

Abdominal wall muscles > -15 HU   -12.13 <0.001 

90th percentile RA of long spine muscles > -15 HU   -14.25 <0.001 

Long spine muscles > -15 HU   -13.07 <0.001 

CLmtx: MTX clearance; CKD-EPI: Chronic Kidney Disease Epidemiology Collaboration; CRAFT: CT-

based estimate of renal function; HU: Hounsfield units; OFV: objective function; RA: radiation 

attenuation; SRC: serum creatinine concentration; V1: volume of distribution in the central 

compartment; WBC: white blood count. p < 0.05 is considered statistically significant and  < 0.001 as 

statistically highly significant. 

 

SCR on CLmtx had the greatest OFV drop (ΔOFV = -41) and was therefore kept in the model. Likewise, 

WBC on V1 had a significant decrease in OFV (ΔOFV = -30) and was also included in the model. Based 

on further forward selection on the base model including SCR on CLmtx, the covariates CRAFT on CLmtx 

and 90th percentile RA of long spine muscles on V1 were selected for the final model. Thus, significant 

covariates that retained in the final model  (ΔOFV = -75) were SCR and CRAFT on CLmtx and WBC and 

90th percentile RA long spine muscles on V1. The final model parameter estimations are summarised in 

table 3 with parameter estimates well within the 95 percent confidence interval of the bootstrap 

estimates, which demonstrated minimal bias though with broad confidence interval ranges. 
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Notably, while other renal function equations were more significant correlated in the univariate analysis, 

during model building, the effect of CRAFT on CLmtx in the final model was the greatest compared to 

other renal function equations after including SCR on CLmtx (CRAFT with ΔOFV = -7 and CKD-EPI 2021 

with ΔOFV = -4). From the four radiomics parameters that were significant in the covariate analysis, only 

one parameter retained in the final model. From all the laboratory values considered in the covariate 

analysis, only WBC was found to be significant on V1. Other covariates such as BW, BSA, height, age and 

ALAT did not correlate. 

Table 3. Parameter estimates of the final population pharmacokinetic model of HDMTX.  

Parameter Value 95% confidence interval 

CLpop (L/h) 6.61 4.25 – 15.90 

   SCR on CLmtx -0.701 -0.949 – -0.325 

   CRAFT on CLmtx 0.241 0.023 – 0.529 

V1 (L) 15 4.04 – 46.76 

   90th percentile RA long spine muscles > -15 HU on V1 2.07 0.572 – 6.098 

   WBC on V1 0.347 0.116 – 1.178 

Q2 (L/h) 0.316 0.163 – 2.083 

V2 (L) 2.49 1.450 – 11.861 

Q3 (L/h) 0.0552 0.026 – 0.417 

V3 (L) 5.78 1.20 – 64.48 

IIV CL (%) 24.8 18.2 – 29.5 

IIV V1 (%) 0.07 0.069 – 0.072 

Residual variability 0.0661 0.0422 – 0.0859 

CLpop: population estimate of clearance; CLmtx: methotrexate clearance; HDMTX: high-dose 

methotrexate; IIV: inter-individual variability; Q2 and Q3: intercompartmental clearances; RA: 

radiation attenuation; SRC: serum creatinine concentration; V1: volume of distribution in the central 

compartment; V2, and V3: volume of distribution in the peripheral compartments; WBC: white blood 

count. 

 

The equation of the final model for CL and V1 was described as follows: 

 

𝐶𝐿𝑖 = 6.61 ∙ (
SCR𝑖

61
)

−0.701

∙ (
CRAFT𝑖

126
)

0.241

 

and 

𝑉1𝑖 =  15 ∙ (
𝑊𝐵𝐶𝑖

6.8
)

0.347

∙ (
−90th percentile RA long spine muscles𝑖

20
)

2.07

 

 

𝐶𝐿𝑖  stands for the individual predicted CLmtx, SCR𝑖 represents the individual SCR in µmol/L and CRAFT𝑖 

is the computed creatinine clearance in mL/min. The 𝑉1𝑖 is the individual predicted V1, the 𝑊𝐵𝐶𝑖 stands 

for the WBC in ⋅ 109/L and the 90th percentile RA long spine muscles𝑖 represents the radiomic parameter 

in HU. In the final model, SCR was centred on 61 µmol/L, CRAFT on 126 mL/min, WBC on 6.8 ⋅ 109/L and 

90th percentile RA long spines muscles on 20 HU.  

The visual predictive check in figure 1 present the final three-compartment model prediction of serum 

MTX concentration. Majority of the observed serum MTX concentration fell between the 5th and 95th 

percentiles of the predicted serum MTX concentration with marginal bias. The goodness-of-fit plots of 

the final model with minimal bias are shown in supplemental figure 1. 
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Figure 1. The visual predictive check of the final model with log-transformed serum MTX concentration in 

mg/L on the Y-axis and time after dose in hours on the X-axis. The observed serum MTX concentrations are 

shown as dots, the dashed lines present the 5th and 95th percentiles of the predicted serum MTX concentrations. 

The solid black line presents the median serum MTX predicted concentrations with the prediction intervals in grey. 
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DISCUSSION 

This is the first study that uses deep learning body-composition analysis of clinically acquired CT-scans 

to better describe the pharmacokinetics of HDMTX. A population pharmacokinetic model for HDMTX 

was developed and was best characterized by a three-compartment model. SCR and CRAFT were 

independent predictors of CLmtx while WBC and 90th percentile RA long spine muscles were independent 

predictors of V1. Although multiple renal function equations were significant correlated in the univariate 

analysis, the CRAFT in the final model was eventually the better predictor of CLmtx. The use of radiomics 

parameters derived from clinically acquired CT-scans and CRAFT equation in this model provide a more 

accurate description of the pharmacokinetics of HDMTX compared to previous published 

pharmacokinetic models and thus may help further in the prevention of HDMTX-induced toxicity. 

The effect of SCR on CLmtx as independent predictor was described in both two- and three compartment 

models and was consistent with previous literature.35,36 In similar fashion, the influence of renal function 

formulas on CLmtx also corresponded with multiple pharmacokinetics reports whereupon the Cockcroft 

Gault equation was frequently used.15,37 The prominent finding in this report revealed the CRAFT to be 

a better predictor of CLmtx compared to other equations. The findings in Pieters et al. revealed the CRAFT 

equation to be significantly more accurate than the Cockcroft Gault equation in the estimation of 

creatinine clearance in healthy kidney donors.19 The univariate analysis in this study found the Cockcroft 

Gault estimated creatinine clearance as potential covariate on CLmtx, however, after SCR was added to 

the base model, it was no longer correlated with CLmtx. Instead, the CRAFT was a better predictor of CLmtx 

and was therefore included in the final model. Only 90th percentile RA long spine muscles from the six 

radiomics parameters was selected as independent predictor for V1. In Pieters et al., this was also the 

same radiomics parameter that was selected after the LASSO. The same radiomics parameter was 

subsequently used as a main variable in the CRAFT equation. 19 

BW, a relevant covariate, was not correlated with either CLmtx or V1 which was inconsistent with previous 

reports.16 BW not correlating as covariate may partially be due to the initial parameters used as starting 

point for the base model that were scaled by BW in Ibarra et al.  An unexpected covariate with effect on 

V1 was WBC which has not been previously reported. Increased WBC could suggest ongoing 

inflammation in which inflammatory response can lead to increased vascular permeability which can be 

accompanied by leakage of plasma, and thus possibly MTX, into the tissues. While no relationship has 

ever been described between WBC and V1, there was a relationship reported between ALAT and V1 in 

another study.15 Considering that MTXs bind to proteins such as albumin in plasma, increased ALAT 

could suggest liver dysfunction which can lead to reduced serum album concentration and therefore 

may affect the binding of methotrexate in both the central and peripheral compartments. However, the 

effect of ALAT on V1 in this study was not found. In this regard, liver enzymes measured in this report 

were only mildly elevated. Given that the magnitude of liver enzyme elevations indicate liver dysfunction, 

evident liver injury is mainly present when ALAT is significantly increased.38 In this study, this was not the 

case with also serum albumin concentration being within the normal range. 

The pharmacokinetics of HDMTX in this report was best described by a three-compartment model which 

is in accordance with earlier findings.36,39 However, the majority of published articles on pharmacokinetic 

models of MTX describe a two-compartment model.16 The elimination of MTX consist of three stages 

with the first half-life corresponding to the distribution phase, the second half-life being determined by 

the renal clearance and the third half-life determining the severity of toxicity.40,41 A three compartment 

model is able to more accurately describe the pharmacokinetics of a drug demonstrating three phases 

of elimination. 

A limitation of this study was the relatively small sample size used in the analysis. Estimating the 

variability of pharmacokinetic parameters and extrapolating these findings to a broader population can 
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be challenging and should be done with caution. Regardless, numerous pharmacokinetics studies have 

used small cohorts.42–44 Furthermore, time between HDMTX administration and CT scan was up till three 

months for inclusion. Changes may have happened to the body-composition of patients during that 

time period, in particular when diagnosed with (haematological) malignancies and treated with 

chemotherapy. This may lead to less accurate radiomics data when compared to the moment of HDMTX 

administration. However, radiomics parameters of clinically acquired CT scan give a more detailed 

representation of a patient’s body composition compared to standard biometric data. Lastly, external 

model validation was not assessed during this study and is required before implementation in any 

standard of care treatment. 

In future research, an external model validation should be performed to evaluate this model and to 

assess the predictive accuracy of this pharmacokinetic model for future application in clinical practice. 

Finally, the CRAFT and the radiomics parameter from clinically acquired CT scans has proven to be valued 

additions to the pharmacokinetic model as it helps to better describe the pharmacokinetics of HDMTX. 

Therefore, it is appropriate to further investigate the added value of the CRAFT and radiomics parameters 

in various pharmacokinetic models of drugs with increased toxicity that depend on the volume of 

distribution or renal clearance. Following this, the relationship between the exposure and toxicity of 

HDMTX can be further investigated with the incorporated CRAFT and radiomics to build a 

pharmacokinetic-pharmacodynamic model using NONMEM. 

In conclusion, we constructed a three-compartment population pharmacokinetic model that 

characterised the CLmtx and V1 of MTX in adult patients with various malignancies treated with HDMTX. 

The SCR, CRAFT, WBC and 90th percentile RA long spine muscles were seen as relevant covariates in the 

final model. The next step is to externally validate this model and prospectively implement it in future 

routine clinical care and to further benefit from clinically acquired CT scans to describe the 

pharmacokinetics of other various drugs. 
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SUPPLEMENTARY METERIAL 

Supplemental Table 1. Coefficient of the radiomics parameters that were remained using 

LASSO.  

Parameters Coefficient 

Intercept 10.43384 

Visceral fat, cm2   0.00005914734 

Skewness > -15 HU Psoas muscles, HU 0.1787959 

Abdominal wall muscles > -15 HU, cm2   0.01118747 

Skewness HU Long spine muscles, HU 0.09584292 

90th percentile RA long spine muscles > -15 HU, HU -0.2141822 

Long spine muscles > -15 HU, cm2   0.001742469 

HU: Hounsfield Unit; RA: radiation attenuation 

 

 

Supplemental figure 1. The goodness-of-fit plots of the final model. Shown are (A) the observed vs predicted 

serum MTX concentration of individuals, (B) the observed vs the population predicted serum MTX concentration, 

(C) the distribution of conditional weighted residuals vs population predicted serum MTX concentration and (D) 

the distribution of conditional weighted residuals vs time after dose in hours. The observed and predicted serum 

MTX concentrations are shown in mg/L. 


