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ABSTRACT
Depression is a prevalent mental health disorder affecting both patients and society. The ability
to identify at-risk individuals early, accurately, and without human intervention can be considered
an important task as it enables timely and appropriate intervention and treatment. In recent
years, numerous models have shown to be successful in detecting depression based on audiovisual
cues. However, the growing use of machine learning (ML) systems for this task has raised concerns
about potential biases within these systems.

This thesis explores gender fairness in multimodal depression detection using the D-Vlog data-
set, which comprises vlogs derived from social media (YouTube). This study addresses the gender
bias observed in previous models, particularly the performance disparity between genders. While
previous studies have effectively used textual data to detect depression from social media, no
research has yet applied this approach to the D-Vlog dataset. This study integrates the tex-
tual modality, experiments with various fusion strategies, and evaluates multiple bias mitigation
techniques, aiming to improve both the fairness and performance of depression detection models
developed using the D-Vlog dataset.

The methodology involves extracting the textual modality from the vlogs in the form of tran-
scripts, followed by preprocessing steps to obtain both word and sentence embeddings and to
prevent potential data leakage. A modality-based approach analyses the impact of the textual
modality on performance and fairness, where uni- and multimodal models are trained using differ-
ent modalities and fusion approaches. After applying various bias mitigation methods, the study
assesses their effects on fairness and performance.

Experimental results reveal that incorporating the textual modality boosts the performance of
both uni- and multimodal depression detection models, though a trade-off between performance
and fairness is observed. Moreover, it was found that the choice of modality and specific feature
embeddings may introduce additional gender bias into the model. In line with previous studies,
the bias mitigation techniques did not consistently reduce the existing gender bias.

Despite the promising results, the study faces several limitations. The D-Vlog’s collection and
annotation process presents challenges such as self-disclosure bias, sampling bias, and label noise.
Additionally, the model may be subject to conversational topic bias due to the collection process,
despite the preprocessing steps taken to mitigate this effect.

This research provides a comprehensive assessment of the impact of incorporating the textual
modality and various fusion approaches on the performance, bias, and fairness of depression detec-
tion models trained on the D-Vlog dataset. Furthermore, the research enhances the reproducibility
of the experiments by open-sourcing the repository containing the re-implemented code for the
D-Vlog model, addressing a gap left by previous studies that did not release their code.

Future research directions include the integration of existing video-language models or models
specifically trained on multiple modalities, performing a cross-corpus validation using a clinically
labelled dataset, and conducting a more in-depth analysis of textual features.

Keywords: Depression detection, multimodal AI, fairness, bias mitigation, D-Vlog, NLP

ii UU Master Thesis



NEDERLANDSE ABSTRACT
Depressie is een veelvoorkomende psychische aandoending die zowel patiënten als de samenleving
treft. Het vroegtijdig, nauwkeurig, en zonder menselijke tussenkomst identificeren van risicoper-
sonen kan als een cruciale taak worden beschouwd, omdat dit een tijdige en passende interventie
en behandeling mogelijk maakt. In de afgelopen jaren hebben meerdere modellen aangetoond
succesvol te zijn in het detecteren van depressie op basis van audiovisuele signalen. Echter, de
toenemende inzet van zulke machine learning (ML) systemen voor dit soort taken heeft tegelijker-
tijd zorgen doen toenemen over mogelijke vooroordelen of aannames (bias) die in het model zelf
zitten.

Deze scriptie onderzoekt gendergelijkheid in multimodale depressie detectie modellen die gebruik
maken van de D-Vlog dataset, wat een dataset omvat van vlogs afkomstig van sociale media (You-
Tube). Deze studie richt zich specifiek op de gender vooroordelen (bias) die in eerdere modellen
zijn waargenomen, en dan met name de presentatieverschillen tussen mannen en vrouwen. Hoewel
eerdere onderzoeken effectief gebruik hebben gemaakt van tekstuele gegevens om depressie uit so-
ciale media te detecteren, heeft nog geen onderzoek deze aanpak toegepast op de D-Vlog dataset.
Deze studie integreert de tekstuele modaliteit, experimenteert met verschillende fusie strategieën
en evalueert meerdere bias mitigatie technieken, met als doel om zowel de eerlijkheid als de ac-
curatesse van de depressie detectie modellen, ontwikkeld met behulp van de D-Vlog dataset, te
verbeteren.

De methodologie omvat het extraheren van de tekstuele modaliteit uit de vlogs in de vorm
van transcripties, gevolgd door bepaalde stappen om uiteindelijk een representatie voor zowel
de individuele woorden alsmede de zinnen over te houden. Een modaliteitsgebaseerde aanpak
analyseert de invloed van de tekstuele modaliteit op de accuratesse en eerlijkheid, waarbij uni- en
multimodale modellen worden getraind met behulp van verschillende modaliteiten en verschillende
fusie strategieën. Verder zijn verschillende bias mitigatie methodes toegepast waarna het effect
van iedere methode beoordeelt is op effectiviteit.

Experimentele resultaten tonen aan dat het integreren van de tekstuele modaliteit de prestaties
van zowel uni- als multimodale depressie detectie modellen verbetert, hoewel er een afweging tussen
prestaties en eerlijkheid wordt waargenomen. Bovendien bleek dat de keuze van modaliteit en
representatievorm van de gebruikte gegevens extra bias in het model kunnen introduceren. In lijn
met eerdere studies verminderden de methodes om de vooroordelen te verminderen niet consistent
deze bias.

Ondanks de veelbelovende resultaten kent het onderzoek een aantal beperkingen. Het verzamel-
en annotatieproces van de D-vlog brengt uitdagingen met zich mee zoals een vertekening doordat
iedere persoon in de dataset zichzelf heeft gediagnosticeerd. Daarnaast kan het model onderhevig
zijn aan een vertekening door een verschil in gespreksonderwerpen als gevolg van het verzamel-
proces, ondanks de voorbewerkingsstappen die zijn genomen om dit effect te verminderen.

Dit onderzoek biedt een uitgebreide beoordeling van de invloed van de integratie van de tek-
stuele modaliteit en verschillende fusie strategieën op de prestaties, bias en eerlijkheid van de-
pressie detectie modellen getraind op de D-Vlog dataset. Bovendien verbetert het onderzoek de
reproduceerbaarheid van de experimenten door het openbaar maken van de repository met de
gëımplementeerde code voor het D-Vlog model.

Toekomstige onderzoeksrichtingen omvatten de integratie van bestaande video-taalmodellen of
modellen die specifiek zijn getraind op meerdere modaliteiten, het uitvoeren van een cross-corpus
validatie met behulp van een klinisch gelabelde dataset en het uitvoeren van een meer diepgaande
analyse van tekstuele kenmerken.
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1 Introduction

1.1 Context

Depressive disorders are considered to be one of the most prevalent mental health disorders world-
wide affecting both patients and society (Üstün et al., 2004). The World Health Organization
(WHO) reported that approximately 280 million people in the world were depressed in 20231 and
projected that by 2030, depression will be the most common mental disorder (Mathers & Loncar,
2006). In some situations, depression can even lead to suicide. A report by Hawton et al. (2013),
points out that depression is the most common psychiatric disorder linked to suicide.

Taking into account the impact of the COVID-19 outbreak which increased the global preval-
ence of depression by 25%, the ability to identify at-risk individuals accurately and automatically
would be of great value since this enables the application of preventive measures in the early stages
(Bueno-Notivol et al., 2021; Dang et al., 2022). Therefore, the early and accurate detection of
depression can be considered an important task since this allows for a timely and appropriate
intervention and treatment. However, depression diagnosis remains a complicated task since this
not only depends on the educational background, cognitive ability, and honesty of the subject but
also on the motivation and experience of the clinicians tasked with identifying whether the subject
is depressed (L. He et al., 2022). Furthermore, Craft and Landers (1998) state that traditional
treatments for depression are time-consuming, costly, and sometimes even ineffective.

In recent years numerous models have been successfully introduced to the field of mental health
care where the models were able to automatically and accurately detect mental health conditions
based on audiovisual cues using a data-driven approach (L. He et al., 2022; Min et al., 2023;
Y. Park et al., 2021; Rodrigues Makiuchi et al., 2019; Yoon et al., 2022). Not only models but
also datasets have been released over the years which further contribute to the development of
automatic depression detection (Gratch et al., 2014; Ringeval et al., 2019; Yoon et al., 2022).
These developments hold great promise since they enable the development of systems capable of
performing automatic screening with the purpose of early detection of mental health conditions
which allows for proper and timely intervention.

1.2 Problem Definition

As mentioned above, the early and accurate detection of depression can be considered an important
task since this allows for early and appropriate intervention and treatment. However, as Machine
Learning (ML) systems are successfully applied in different contexts of the medical domain, among
which is the detection of depression, concerns have been raised about the possible bias that could
be contained inside of these system’s data and algorithms (Shen et al., 2022; Timmons et al.,
2023).

In their paper, Yoon et al. (2022) presented a multimodal depression dataset called D-Vlog,
which consists of vlogs derived from social media and demonstrated that it is possible to detect
whether a person is depressed based on acoustic and visual features using a Transformer-based
multimodal deep learning model. However, the researchers reported a class imbalance in the
dataset regarding gender, where the dataset had twice as many females as males. Subsequently,
the researchers reported a big performance difference between genders where, counter-intuitively,
the model performed better for the minority male class. This is surprising since learning algorithms
typically over-classify the majority group when a class imbalance exists, leading to more frequent
misclassification of the minority group (Johnson & Khoshgoftaar, 2019).

Furthermore, a study by Cheong, Kuzucu et al. (2023) specifically analysed the D-Vlog dataset
for gender bias and confirmed the findings of Yoon et al. (2022). They also applied various bias

1https://www.who.int/news-room/fact-sheets/detail/depression
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mitigation methods but found them inadequate in addressing the existing gender bias. They iden-
tified two main potential factors for this counter-intuitive phenomenon: either an incorrect data
pre-processing approach or inherent gender differences in depression manifestation and diagnosis,
suggesting that the choice of representation and modality could play a significant role.

At this time, none of the studies developing depression detection models using the D-Vlog
dataset (Gimeno-Gómez et al., 2024; Sun et al., 2024; Yoon et al., 2022; Zhou et al., 2022, 2023)
incorporate the textual modality even though earlier research successfully leveraged this modality
for the task of depression detection. Therefore, we will introduce and add the textual modality as
an additional component to the model.

Additionally, Cheong, Kuzucu et al. (2023) explored only three bias mitigation methods, while
there are many more available that might effectively address the existing gender bias by targeting
its root causes. Furthermore, Cheong, Kuzucu et al. (2023) only reported fairness measures for
the bimodal model which means that no attempt was made to understand the impact of the
unimodal models on the occurrence of gender bias in the model. Reporting fairness measures for
the unimodal models could provide better insights into which modality contributes more to the
bias in the system.

1.3 Aim

The first aim of this thesis is to add a textual modality to the existing model which will be
done through the introduction of the transcripts from the D-Vlog dataset. Given that language
use between depressed and non-depressed individuals of different genders may vary (de Jesús
Titla-Tlatelpa et al., 2021; Jans-Beken, 2021), exploring the impact of this new modality on the
diagnostic model regarding performance, bias, and fairness is beneficial. When adding the textual
modality, both pre-trained word and sentence embeddings will be utilised. We will evaluate and
compare these text-based models, as bias can also stem from the training data of these embeddings
(Sogancioglu et al., 2023). Additionally, since the D-Vlog dataset already employs acoustic and
visual embeddings, we will assess the performance of various fusion approaches that combine audio,
video, and text modalities.

The second aim of this thesis is to address and potentially reduce the gender bias that is inside
of the trained models. Potential sources of gender bias in the models will be investigated through
both uni- and multimodal setups. This examination may reveal gender differences in depression
manifestation and inform the selection of appropriate bias mitigation strategies.

Lastly, depending on the identified sources of bias, we will evaluate different sets of bias mit-
igation methods in the developed models to address and potentially reduce gender bias.

The main contributions of this thesis are as follows

• Comprehensive assessment of the impact of adding the textual modality on the overall per-
formance, bias, and fairness of uni- and multimodal depression detection models.

• Exploration of various fusion approaches that combine audio, video, and text modalities,
providing insights into which combinations yield the best results.

• Evaluation of various bias mitigation methods applied to the best performing unimodal
textual model.

• Open-sourcing the repository2 containing all my experiments as well as the code of the
reconstructed and re-implemented D-Vlog model, thereby enhancing the credibility and re-
producibility of this research.

1.4 Research Questions

Based on the problem definition and aim of the thesis, two research questions were formulated.
Both research questions were subsequently split up into multiple subquestions. Both research

2https://github.com/StanMey/Master thesis DVlog
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questions, and their respective subquestions, are shown below.

RQ 1: Does the inclusion of the textual modality contribute to the performance of the multimodal
depression detection model trained on the D-Vlog dataset in terms of the F1-score?

RQ 1A: Which SOTA pre-trained word embeddings and sentence embeddings perform best in
terms of F1-score for unimodal depression prediction on the D-Vlog dataset?

RQ 1B: Which fusion approach to the audio, video and text modalities gives the best per-
formance regarding the F1-score?

RQ 1C: What is the impact of the fusion approaches of subquestion 1B on the fairness of
the model in terms of equal accuracy, equal opportunity, and predictive equality?

RQ 1D: Is there a trade-off between fairness and performance for uni- and multimodal models
with different fusion schemes?

RQ 2: To what extent can the application of bias mitigation techniques help reduce existing gender
bias in the best model that has been obtained during subquestion 1B?

RQ 2A: What are the potential sources of gender bias (e.g., data imbalance, feature repres-
entation, modality) in the models trained on the D-Vlog dataset?

RQ 2B: What bias mitigation approach is most effective in mitigating existing gender bias
contained in the best model that has been obtained during subquestion 1B?

1.5 Readers Guide

Section 2.1 gives a general introduction to the field of fair machine learning. Building on this,
section 2.2 outlines the fairness measures, providing a foundation for understanding how bias can
be quantified. The performance measures used for evaluating a model are outlined in section 2.3.
Section 2.4 specifies the three main bias mitigation strategies, while also providing a detailed
account of the specific methods applied in this thesis. Finally, section 2.5 explains the internal
workings of the models and the general approaches used for processing text whereas section 2.6
explains how bias can seep into both textual and multimodal models.

Chapter 3 reviews the existing research relevant to this thesis. Section 3.1 examines related studies
on gender differences in depression detection. Section 3.2 then discusses previous approaches and
models for multimodal depression detection, providing a detailed review of the D-Vlog paper and
prior studies conducted specifically on the D-Vlog dataset. Lastly, section 3.3 addresses earlier
research on fairness and bias in depression detection.

Chapter 4 describes the steps taken to answer each of the research questions. In section 4.2, the
first research question is addressed, focusing on the impact of incorporating the textual modality
into the existing model. Finally, in section 4.3, the potential bias mitigation strategies are explored
and the approach to analysing gender bias is explained.

Chapter 5 covers both the statistics and the dataset split of the D-Vlog dataset in section 5.1 as
well as all implementation details regarding the execution of the experiments in section 5.2.

In chapter 6 a selection of the results of all experiments conducted during this study are presented.
This chapter starts by mentioning the results of the replication study in section 6.1. From sec-
tion 6.2, the results of the uni- and multimodal experiments and the bias mitigation experiments
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are shown.

Chapter 6 starts with answering the subquestions in subsection 7.1.1 after which both research
questions are answered in subsection 7.1.2. Section section 7.2 contains the discussion whereas
suggestions with regard to future research are discussed in section 7.3. Lastly, section 7.4 gives an
overview of the ethical issues and concerns that may or have arisen during this study.
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2 Background

This chapter starts by introducing the field of fair machine learning in section 2.1. Section 2.2
outlines the fairness measures utilised or mentioned throughout this thesis, providing a foundation
for understanding how bias can be quantified. Section 2.3 describes the performance measures
used for evaluating the effectiveness of a model. Section 2.4 discusses various bias mitigation
approaches, specifically detailing methods that are applied in this thesis. Finally, section 2.5
explains the models and approaches used for processing text and gives examples of how bias can
infiltrate these models.

2.1 Fair Machine Learning

ML algorithms have become ubiquitous in our modern society where they influence decisions
made in various domains from hiring and finance to healthcare. ML algorithms can uncover pat-
terns in historical evidence and learn from these examples to provide a more reliable basis for
decision-making since these decisions are data-driven instead of being based on intuition or ex-
pertise (Barocas et al., 2023). However, learning from examples also carries serious risks since
these examples may reflect historical prejudices against certain groups, cultural stereotypes, and
existing demographic inequalities. Furthermore, since the algorithm will have to generalise to find
these patterns they can become vulnerable to hidden or neglected biases in the data or algorithms
rendering their decisions unfair and biased (Barocas et al., 2023; Mehrabi et al., 2021).

Mehrabi et al. (2021) identify two main types of bias: algorithmic bias and dataset bias. Dataset
bias primarily arises from the characteristics and composition of the data (Mehrabi et al., 2021).
This bias might result in biased outcomes when a ML algorithm is being trained. Mehrabi et al.
(2021) give different subtypes of dataset bias such as measurement bias (bias from how features
are chosen, utilised or measured), and representation bias (bias from how the population has been
sampled).

Mitchell et al. (2021) decomposed dataset bias into statistical bias and societal bias. Statistical
bias comes from measurement errors and non-representative sampling, whereas societal bias comes
from the inherent bias that exists in the world due to past injustices and social structures.

Algorithmic bias is a result of biases introduced during the training process of the model. This
type of bias is not directly present in the training data itself but is added by the model during the
training process. For example, the algorithmic design choice made by the user (e.g. using certain
architectures, optimisation functions, regularisations) can contribute to a biased outcome of the
algorithm (Mehrabi et al., 2021).

Mehrabi et al. (2021) describe fairness as “the absence of any prejudice or favouritism towards an
individual or a group based on their intrinsic or acquired traits in the context of decision-making”
(p. 11). However, they also state that no universal definition exists giving the impact of the out-
looks and preferences of different cultures as one of the reasons for the differences regarding the
definition of fairness.

The field of fair ML concerns itself with uncovering and rectifying biases found in both data and
algorithms in order to achieve fairness in ML systems (Mehrabi et al., 2021). Multiple fairness
definitions and metrics have been put forth that can be used to assess whether ML systems are
fair (Mehrabi et al., 2021). Some of these definitions and metrics will be discussed further in
section 2.4. These fairness definitions and metrics can be broadly categorized into “individual”
and “group” fairness based on the definition of the bias involved (Sogancioglu et al., 2023). Lastly,
choosing an appropriate fairness measure for a given task is one of the most critical decisions when
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designing a fair ML model or system since a less relevant measure can have damaging consequences
when it is used in a real-world setting (Sogancioglu et al., 2024).

2.2 Fairness Measures

As described in section 2.1, a recent survey paper by Mehrabi et al. (2021) investigated and put
forth different sources of biases that can affect AI applications as well as multiple fairness definitions
and metrics. In the sections below, some of the commonly used “group” fairness measures are
introduced and discussed. Furthermore, for the sake of brevity, the examples for the measures
below will assume two demographic groups even though these measures do generalise to more
complex cases. Lastly, individual fairness is beyond the scope of the thesis since we are mainly
interested in whether both gender groups are treated equally and thus will not be covered.

2.2.1 Demographic Parity

Demographic parity, which is also known as statistical parity, requires a decision to be independent
of the protected attribute. This constraint is formally defined as

Pr[Ŷ = 1|A = 0] = Pr[Ŷ = 1|A = 1], (1)

where Pr[Ŷ = 1|A = 0] corresponds to the (conditional) probability, Ŷ stands for the predicted
outcome and A stands for the protected attribute.

As can be seen from the equation, this measure is purely based on the predicted outcome
while the true outcome Y is ignored. It is designed to ensure that an acceptance rate is the same
regardless of the protected attribute (Barocas et al., 2023). Furthermore, the equations imply
that the predicted probability has to be equal for both groups to ensure fairness. Partly for this
reason, Hardt et al. (2016) considers this constraint to be flawed since statistical parity can be
satisfied as long as the percentages of acceptance match. They argue that this behaviour can arise
both naturally or with an unfair procedure. Moreover, they state that demographic parity would
not allow the ideal predictor Ŷ = Y under certain circumstances.

2.2.2 Disparate impact

Disparate impact is calculated by comparing the ratio of positive outcomes for both the majority
and minority groups and is formally defined as

DI =
Pr[Ŷ = 1|A = 0]

Pr[Ŷ = 1|A = 1]
. (2)

2.2.3 Equalised Odds

Equalised odds state that both demographic groups should have equal rates for all values of Y
and is formally defined as

Pr[Ŷ = 1|A = 0, Y = y] = Pr[Ŷ = 1|A = 1, Y = y], y ∈ {0, 1}, (3)

where Ŷ stands for the predicted outcome, A stands for the protected attribute and Y stands for
the true outcome.

This definition states that a predictor Ŷ satisfies equalised odds with respect to protected
attribute A and outcome Y, if Ŷ and A are independent conditional on Y (Hardt et al., 2016).
This means that for the outcome of y = 1 the constraint requires that the predictions have equal
True Positive Rates (TPRs) for both values of A. Likewise, for y = 0 the constraint requires
equalised False Positive Rates (FPRs) (Hardt et al., 2016). Equalised odds enforces the accuracy
to be equally high in all demographics by punishing models that perform well only on the majority
class and also allows the ideal predictor Ŷ = Y (Hardt et al., 2016).
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2.2.4 Equal Opportunity

Equal opportunity states that both demographic groups should have equal TPRs and is formally
defined as

Pr[Ŷ = 1|A = 0, Y = 1] = Pr[Ŷ = 1|A = 1, Y = 1]. (4)

This definition is considered a relaxation or weaker notion of equalized odds where the non-
discrimination is only required to be within the “advantaged” outcome group (y = 1) (Hardt
et al., 2016).

2.2.5 Predictive Equality

Predictive equality means that the accuracy of decisions, measured by the False Positive Rate
(FPR), is consistent across both demographic groups (Corbett-Davies et al., 2017). This metric
is formally defined as

Pr[Ŷ = 1|A = 0, Y = 0] = Pr[Ŷ = 1|A = 1, Y = 0]. (5)

2.2.6 Equal Accuracy

Equal accuracy states that both demographic groups should have equal rates of accuracy and is
defined as

Accuracy(Ŷ |A = 0) = Accuracy(Ŷ |A = 1), (6)

where the accuracy refers to the accuracy of the model for each demographic group (Cheong,
Spitale & Gunes, 2023).

2.3 Performance Measures

Performance measures play a crucial role in assessing the effectiveness of predictive models. To
evaluate the performance of a developed model, both the predictions of the model and the ground
truths are used. Using the predictions and ground truths, the following key metrics can be derived
from the confusion matrix.

• True Positive (TP): denotes the number of correctly classified positive samples where the
predicted label and the ground truth are an exact match.

• False Positive (FP): denotes the number of samples incorrectly classified as positive.
• False Negative (FN): denotes the number of samples incorrectly classified as negative.

From these basic metrics, it is also possible to calculate important rates such as the False Positive
Rate (FPR) which denote the ratio of false positives to the actual negatives and is defined as

FPR =
FP

FP + TN
. (7)

Another important rate is the True Positive Rate (TPR) which denote the ratio of true positives
to the actual positives and is defined as

TPR =
TP

TP + FN
. (8)

Moving beyond the key metrics and rates, the precision, recall and F1-score can offer extra insights
into the model’s performance.
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2.3.1 Precision

Precision is a metric that indicates the proportion of instances correctly identified by the model.
It reflects the model’s capability to avoid misclassifying negative samples as positive (Hicks et al.,
2022). The precision metric is defined as

Precision =
TP

TP + FP
. (9)

2.3.2 Recall

The recall metric, also known as sensitivity, denotes the rate of correctly classified positive samples.
It reflects the model’s capability to find all the positive samples (Hicks et al., 2022). According to
Hicks et al. (2022), this metric holds significant importance in medical studies as it is crucial to
minimise the number of missed positive instances, leading to a high recall rate. The recall metrics
is defined as

Recall =
TP

TP + FN
. (10)

2.3.3 F1-score

The F1-score is the harmonic mean of the precision and recall metrics. This means that it penalises
either metric whenever its values become extreme (Hicks et al., 2022). The F1 score is defined as

F1score = 2 × Precision×Recall

Precision + Recall
. (11)

2.3.4 Aggregating Performance Measures

The metrics described above can be aggregated using averaging techniques such as micro, macro, or
weighted averaging. These averaging techniques prove useful for computing a more comprehensive
review of the model since they can take into account the class and/or label distribution of the
data on which it has been evaluated.

With micro-averaging the metrics are calculated globally by counting all true positives, false
positives, and false negatives after which the final metrics are computed. Macro-averaging works
exactly the other way around by calculating the metrics for each class after which the unweighted
mean is calculated thereby accounting for class imbalance. However, this approach does not
take label imbalance into account. Lastly, weighted averaging can be used to account for label
imbalance. This approach entails calculating the metrics for each label after which the average is
computed using the support.

2.4 Bias Mitigation

As described in section 2.1, dataset and algorithmic bias are the two main types of bias identified.
To mitigate or to reduce the degree of the bias and to achieve ML fairness, researchers often have
to apply specially designed bias mitigation methods. A reason for the need for specially designed
bias mitigation methods comes from the fact that the naive approach of simply removing all
discriminatory attributes, an approach known as fairness through unawareness, has been shown to
not be sufficient to mitigate existing bias because of confounding variables (Pedreshi et al., 2008).
Researchers can use three types of bias mitigation methods: pre-processing, in-processing, and
post-processing (Cheong, Kuzucu et al., 2023; Hort et al., 2022). Each type of bias mitigation
method and some of the specific bias mitigation methods used in this thesis are explained in more
detail in the subsequent subsections.
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2.4.1 Pre-processing

Pre-processing methods try to mitigate the bias at the data-level to prevent the bias from reaching
the ML models. These methods typically involve collecting or resampling the training data to
create a balanced or fair dataset (Cheong, Kuzucu et al., 2023). The data gets pre-processed early
in the pipeline before training the model which means that the data is getting changed. However,
this does not give direct control over the final outcome of the model.

Data Balancing

The data balancing strategy used by Yan et al. (2020) aims to create a balanced dataset by
resampling the minority group. By randomly selecting samples from the minority group they
obtained an augmented dataset which is balanced across all sensitive groups (Yan et al., 2020).

MixFeat

The MixFeat data augmentation method is different than the straightforward data balancing
approach described above where instead of randomly oversampling samples, new synthetic samples
are created by combining and mixing up existing samples with the same sensitive attribute to
obtain balanced samples (Cheong, Spitale & Gunes, 2023). Given the dataset of size N where A,
F , and V represent their respective modality cues, Cheong, Spitale and Gunes (2023) generate
the synthetic samples as follows

Ak = λA ·Ai + (a− λA) ·Aj

Fk = λF · Fi + (a− λF ) · Fj

Vk = λV · Vi + (a− λV ) · Vj

(12)

where i, j ∈ 1, ...N, i ̸= j and λA, λF , λV ∼ Beta (0, 1).
The MixFeat approach builds upon the mixup approach by H. Zhang et al. (2018) in which

they extend the training distribution by constructing linear interpolations of the feature vectors
and their associated targets. However, as shown in Equation 12, the MixFeat method generates
synthetic samples by only interpolating the feature vectors while leaving the associated target
intact.

2.4.2 In-processing

In-processing methods are applied during the training process of the model and try to change
or train the model in such a way that any bias that is in the model gets minimised through
imposing some constraint (Hort et al., 2022). This approach requires both access to the model
and the training data. An example of an in-processing approach is adversarial learning (B. H.
Zhang et al., 2018). This type of learning trains two models at the same time: a predictor and a
discriminator. While the predictor tries to accurately predict the target variable, the discriminator
tries to predict the sensitive feature. The objective of this type of learning is to maximise the
ability of the predictor to correctly predict the target variable while minimising the ability of the
discriminator (B. H. Zhang et al., 2018). The researchers showed that by using this approach,
the model learns to depend less on the sensitive attribute while almost satisfying the equal odds
constraint (B. H. Zhang et al., 2018).

Loss Reweighing

Loss reweighing is a popular in-processing bias mitigation method where each object in the dataset
gets assigned a different weight which the classifier takes into account during the calculation of the
loss (Kamiran & Calders, 2012). The weight of each object in the dataset is based on how much
that object has been deprived or favoured. It assigns a heavier weight to misclassified instances of
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minority classes, thereby penalising these errors more heavily which should ultimately compensate
for the bias in the dataset (Kamiran & Calders, 2012).

2.4.3 Post-processing

Post-processing methods are applied once the training of the classifier has been completed (Hort
et al., 2022). These methods typically modify the predicted labels of the model, thereby directly
controlling the outcome distribution, to mitigate the bias and are used when there is no access to
the data and/or the model itself (Cheong, Kuzucu et al., 2023). Examples of these methods are
Reject Option Classification (ROC) (Kamiran et al., 2012) and Equalised Odds post-processing
(Hardt et al., 2016).

Equalised Odds Post-processing

The equalised odds method uses labelled training data, which also must include the values of the
sensitive attribute, to construct a fair classifier which ensures that the equalised odds constraint
described in subsection 2.2.3 gets satisfied (Hardt et al., 2016). This approach puts an additional
model at the end of the existing pipeline which means that the original data and model do not
get altered in any way.

2.5 Natural Language Processing

As one of the aims of this thesis is to incorporate the textual modality through the introduction
of transcripts. This section will discuss the processing of natural language which, in turn, allows
models to use this information to make downstream predictions.

In subsection 2.5.1, simple word embeddings will be discussed. Subsequently, in subsec-
tion 2.5.2, the attention mechanism will be explained. Following this, subsection 2.5.3 will go
deeper into how the attention mechanism relates to the transformer architecture and will discuss
pre-trained textual models and architectures.

2.5.1 Word Embeddings

Machine Learning (ML) and Deep Learning (DL) algorithms generally are not able to accept text
directly. For this reason, the texts that serve as input to these algorithms must be transformed into
a numerical vector representation so that the algorithm can process the information accordingly.
These vector representations are called embeddings and can be learned.

The motivation for learning these embeddings is that by mapping them to a fixed-length encod-
ing the meaning of words can be conserved which makes for an embedding that is representative
and more informative. Word2vec (Mikolov, Chen et al., 2013) and GloVe (Pennington et al., 2014)
are two examples of methods that can be used for learning high-quality word embeddings. These
two types of word embeddings are static embeddings, which means that the model learns one
static embedding for each word in the given vocabulary (Jurafsky & Martin, 2022).

These word embedding models are designed based on the idea that words that are used in a
similar context have a similar meaning which entails that an embedding for a word can be learned
by looking at their neighbouring words within a certain context. Through this approach, these
types of models can learn word meaning from texts and are able to capture syntactic and semantic
word similarities which can positively contribute to the performance of a model on a downstream
task.

2.5.2 Attention

One of the problems encountered when using word embeddings is the fact that word embeddings
are static. This means that each word has its unique embedding regardless of the context in
which it is used. For this reason, one of the issues that arise when using word embeddings is the
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problem of lexical ambiguity which Yepes (2017) describes as “the presence of two or more possible
meanings within a single term or phrase” (p.137). One approach to mitigate this difficulty is by
taking into account the context in which the word occurs while generating the embedding.

Sequence Modeling

A sentence can be thought of as a sequence of variable length that unfolds in time (Jurafsky &
Martin, 2022). To model such a sequence, with the ultimate aim of determining the true meaning
of a word in the sequence, the model should be able to handle both long-distance dependencies
and variable-length sequences (Jurafsky & Martin, 2022). recurrent neural networks (RNNs), and
their variants like gated recurrent units (GRUs) and long short-term memory (LSTM), can model
the temporal nature of language through the usage of a hidden state and recurrent connections.
The hidden state is a vector which represents information about all the preceding words handled
thus far, making it possible to save some context and pass it on to the future time steps (Jurafsky
& Martin, 2022).

Encoder-Decoder Networks

Encoder-decoder networks were originally introduced by Sutskever et al. (2014) and Cho et al.
(2014). The architecture of such a model consists of both an encoder and decoder where the
encoder learns to map a variable-length sequence to a fixed-length, contextualised representation
after which the decoder learns to map the context vector back to a variable-length sequence
(Jurafsky & Martin, 2022). Both the encoder and decoder of this model can either be a normal
NN, an RNN (Cho et al., 2014), or an LSTM (Sutskever et al., 2014).

The Attention Mechanism

As described by Bahdanau et al. (2014), the issue with the encoder-decoder approach as mentioned
above, is that the network needs to compress all the essential information of the input sequence
into a fixed-length vector since this context vector is the only source of information for the decoder.
Therefore, the final state is acting as a bottleneck making it difficult to handle longer sentences
(Jurafsky & Martin, 2022). A solution to this problem, proposed by (Bahdanau et al., 2014) is a
technique called “attention” and it works as an extension to the encoder-decoder network.

The attention mechanism allows the decoder to access the information from all the hidden states
of the encoder instead of just the last one (Jurafsky & Martin, 2022). During the decoding process,
the decoder decides which parts of the source sequence to pay attention to by giving a score to
each of the hidden states of the encoder and taking a weighted sum of these vectors (Bahdanau
et al., 2014). Ultimately, Bahdanau et al. (2014) shows that this approach has a positive impact
on the ability of the model to yield good results on longer sentences.

2.5.3 Transformers

The transformer architecture was first proposed in the paper by Vaswani et al. (2017) where
the recurrent layers that are commonly used in encoder-decoder architecture are replaced with
multi-headed attention layers and the idea of positional encoders is introduced.

Overall Structure

The original transformer structure consists of an encoder-decoder structure where both the encoder
and decoder can have multiple layers (Vaswani et al., 2017). The model architecture of the original
transformer is shown in Figure 1. Each layer of the encoder has two sub-layers consisting of one
self-attention layer and one fully connected feed-forward network layer. Each layer of the decoder
has two self-attention layers and one fully connected feed-forward network layer where one of the
self-attention layers has masking (Vaswani et al., 2017). Lastly, between each sub-layer, there is a
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residual connection (K. He et al., 2016) which helps the model to learn and access information from
lower layers followed by a normalisation operation which improves training performance (Jurafsky
& Martin, 2022; Vaswani et al., 2017).

Figure 1: The architecture of the original Transformer model.
Retrieved from (Vaswani et al., 2017).

In order to perform the self-attention operation, the paper from Vaswani et al. (2017) introduces
three weight matrices called the Query, Key, and Value (Q, K, and V respectively in Equation 13)
which are learned during training. During the self-attention operation, these weights are used
to project each input vector into a representation of its role as a key, query, or value (Jurafsky
& Martin, 2022). This type of attention is called the Scaled Dot-Product Attention, where the
output gets computed as a weighted sum of the values, with the weight assigned to each value
determined by a compatibility function between the query and its corresponding key (Vaswani et
al., 2017). Lastly, in practice, this self-attention function can be computed for an entire sequence
of tokens using the following formula

Attention(Q,K, V ) = softmax(
QKT

√
dh

)V (13)

where Q, K, and V are the beforementioned Query, Key, and Value matrices and
√
dh is the

square root of the input dimensionality of the queries and keys. Instead of performing a single
self-attention operation, the researchers found it to be beneficial to perform the self-attention
operation multiple times (Jurafsky & Martin, 2022; Vaswani et al., 2017). With multi-head self-
attention, each sub-layer (or head) performs the self-attention function in parallel with its own
set of parameters after which these heads are concatenated (Vaswani et al., 2017). This means
that each head can learn different aspects of the relations among its inputs. (Jurafsky & Martin,
2022).

Positional Encoding

Since the transformer architecture does not use recurrence, information about either the relative
or absolute positions of the tokens in the sequence has to be injected into the tokens beforehand
(Vaswani et al., 2017). This can be done by adding positional encoding vectors to the input
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embeddings at both the encoder and decoder stacks. In the original paper, Vaswani et al. (2017)
uses sine and cosine functions as positional embeddings. The absence of recurrence and the
addition of the positional encodings make the transformer architecture parallelizable (Jurafsky &
Martin, 2022).

Cross-attention

Cross-attention is, except for the inputs, the same as the normal self-attention mechanism. The
cross-attention mechanism was introduced in the paper by Vaswani et al. (2017) where the mechan-
ism is able to combine the information from the output sequence of the encoder and the processed
input sequence from the decoder. This information is combined by taking the Queries from the
decoder sequence and the Keys and Values from the encoder after which the multi-head attention
operation is applied Vaswani et al. (2017).

Importantly, cross-attention is not limited to sequences from a single modality. It can also be
utilized to integrate and mix information from different modalities such as text, images, and audio
thereby enhancing the model’s ability to understand and generate better outputs. For example,
Li et al. (2021) successfully applies cross-modal learning with cross-attention to use multimodal
information from documents for the task of learning document representations. Additionally,
Hasan et al. (2021) use cross-attention to exchange information between language, acoustic, vision,
and humour-centric features in order to understand humour.

Pre-trained Language Models

The general approach when training language models is to pre-train a model on a large unlabelled
dataset or corpus using different pre-training tasks in an unsupervised way followed by a smaller
fine-tuning way where labelled data is used (Devlin et al., 2018). The pre-training phase is often
expensive in terms of resources needed and time. However, this also means that the fine-tuning
phase is relatively inexpensive and only needs a small annotated dataset to get good results
(Delobelle et al., 2020).

As mentioned before, the original transformer structure consists of an encoder-decoder struc-
ture. However, in practice, there are also encoder-only or decoder-only architectures where the
main difference is that the encoder-only architectures are used to learn embeddings whereas
decoder-only architectures are mainly used to generate new texts.

One of the better-known encoder-only transformer-based models is the BERT model introduced
by Devlin et al. (2018). BERT was pre-trained using two self-supervised tasks where the first task
revolves around predicting some randomly masked tokens from the input tokens and the second
task is the next sentence prediction task. Moreover, BERT uses a special classification token
([CLS]) which contains a representation of the sentence (Devlin et al., 2018). Another well-known
encoder-only transformer-based model is called RoBERTa (Y. Liu et al., 2019) in which the pre-
training approach of BERT was adjusted and optimised. Lastly, the aforementioned issue of lexical
ambiguity can be overcome by using BERT and similar models since these models can produce
contextual embeddings (Jurafsky & Martin, 2022).

One of the better known decoder-only transformer-based models is the GPT-family (Brown
et al., 2020; Radford et al., 2018). These models are pre-trained and finetuned on specific tasks
such as question-answering, summarization, and translation where the model ultimately is trained
by predicting the next word in the sequence (Brown et al., 2020).

Sentence Embeddings

Where word embeddings transform individual words into representations that capture their mean-
ing, sentence embeddings turn entire sentences or paragraphs into a fixed-length vector that cap-
tures the meaning of the entire sequence (Reimers & Gurevych, 2019). Two common methods of
retrieving sentence embeddings are to either use the output of the first token of a BERT model
(the [CLS] token) or to average the embeddings for an entire sequence (Jurafsky & Martin, 2022).
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Additionally, Reimers and Gurevych (2019) proposed an approach to generating sentence embed-
dings where they used a pre-trained BERT model together with a siamese network structure to
train the sentence embeddings on a dataset of sentence pairs.

2.6 Bias in Word Embeddings and Multimodal Models

One of the aims of this thesis is to investigate potential sources of bias in models. This section will
discuss how models can learn these biases. Section 2.6.1 describes the occurrence of bias from the
textual modality, while subsection 2.6.2 addresses the occurrence of bias in multimodal models.

2.6.1 Bias in Word Embeddings

Word embeddings and language models are not only able to learn word meaning from text, but
they are also capable of learning implicit biases and stereotypes that are contained within the
training data which is called semantic bias (Hovy & Prabhumoye, 2021; Jurafsky & Martin,
2022). These embeddings can also amplify the inherent bias from the training data which, for
example, could lead to gendered terms becoming even more gendered in the embedding space (Jia
et al., 2020). Moreover, the bias contained in the embeddings could seep down to downstream
models and negatively impact the model’s performance by favouring a certain group (Sogancioglu
et al., 2023). As a result, both allocational harm and representational harm can occur when using
biased embeddings (Blodgett et al., 2020). In their paper, Hovy and Prabhumoye (2021) provides
an overview of how bias can be introduced during the various stages of a standard NLP system
by giving examples from past research papers and sharing advice on how to counteract it.

According to Blodgett et al. (2020) allocational harms happen when a system unfairly allocates
resources (e.g. loans) or opportunities (e.g. jobs) to different groups. A study from Bolukbasi et
al. (2016) showed how word embeddings trained on news articles also exhibit gender stereotypes.
For example, the researchers found that the embeddings suggest the analogy of ‘father’ is to
‘doctor’ as ‘mother’ is to ‘nurse’ when they checked for relational similarities. This behaviour could
result in allocational harm since, for example, using biased word embeddings may contribute to
resume screening tools which could favour certain demographics or genders while disadvantaging
others based on the language that is being used. Moreover, Tan and Celis (2019) found that
SOTA contextual models such as BERT also encode implicit racial and social biases learned from
imbalanced corpora.

Blodgett et al. (2020) state that representational harms happen when a system portrays certain
social groups negatively or unfavourably, belittles them or neglects to acknowledge their presence
entirely. A study by Caliskan et al. (2017) showed, by looking at semantic similarity using GloVe
word embeddings, that European American names are more likely to be closer to pleasant than to
unpleasant as opposed to African American names. Therefore, in this case, representational harm
could occur since using these embeddings could exacerbate bias against people with an African
American name. Moreover, (Garg et al., 2018) specifically used the representational modelling
power of embeddings and a textual corpus of 100 years of US census texts to show to what extent
embeddings can capture societal shifts, historical trends and stereotypes.

2.6.2 Bias in Multimodal Models

The occurrence of bias is not limited to models trained on textual embeddings. Bias also exists in
multimodal models trained using a multimodal approach where visual and language information
are fused. For instance, Yin et al. (2021) showed evidence of geographic bias in two SOTA Vision-
and-Language models by introducing a new commonsense reasoning evaluation benchmark. They
found a significant difference in performance on images containing Western and non-Western
cultural and geo-specific rituals suggesting that the commonsense learned by these models cannot
generalise well across different regions. F. Liu et al. (2021) also encounter the problem of geographic
bias after running benchmarks on a series of pre-trained visiolinguistic models and, as a response,
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define a protocol for data collection resulting in the release of a multicultural and multilingual
dataset. Ross et al. (2021) experimented on visually grounded word embeddings and found equal
or larger social biases for grounded embeddings compared to ungrounded embeddings. Lastly,
Cheong, Spitale and Gunes (2023) concluded from their experiments that using a multimodal
approach for the task of depression detection seemed to balance out the bias of each modality
resulting in more fairness. This finding is in line with the research done by Booth et al. (2021) where
they used a multimodal approach for the task of hireability assessment from video interviews.
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3 Related Work
This chapter begins with section 3.1, which shows some related work concerning gender differences
in the detection of depression. Section 3.2 then discusses previous approaches and models for
multimodal depression detection, which includes a detailed review of the D-Vlog paper and prior
studies conducted on the D-Vlog dataset specifically. Lastly, section 3.3 addresses earlier research
on fairness and bias in depression detection.

3.1 Gender Differences in Mental Health

Depression diagnosis remains a complicated and time-consuming task with the chance of misid-
entification and the fact that not all depressive individuals directly show depressive symptoms
(L. He et al., 2022). In the past, there has been done some research regarding the differences
in behavioural signals between depressed and non-depressed individuals. This research has sub-
sequently led to developers choosing specific features when developing ML systems for the task
of depression detection (Pampouchidou et al., 2016). First, some studies that found differences
between depression and non-depression in terms of specific characteristics are described below.
After that, some studies looking at specific differences in characteristics between men and women
when it comes to depression are described.

3.1.1 Differences in Behavioural Signals Between Depressed and Non-
depressed Individuals

Regarding audio, Min et al. (2023) extracted specific audio features such as Loudness, Spectral
Flux, etc from their dataset based on prior works which studied and showed the relationship
between the specific audio feature and depression. Moreover, they quantified the statistical dif-
ferences in these features between the depression and non-depression groups. Lastly, they showed
that their model used Loudness as one of the key indicators for detecting depression. Alghowinem
et al. (2012) found that the use of MFCC, energy and intensity features led to better depression
recognition rates.

Alghowinem et al. (2013) analysed head pose and movement for detecting depression using
clinical interviews. They found that significant behavioural clues for diagnosing depression could
be found in head movements, with slower head movements, less change of head direction and longer
looking to the right or down as some of the specific behavioural clues to recognise a depressed
person. Lastly, they concluded that depressed subjects expressed less positive emotions during
the interviews (Alghowinem et al., 2013). The conclusion that depressed subjects expressed less
positive emotions has also been supported by other studies (Min et al., 2023; Rottenberg et al.,
2005). Moreover, the study by Alghowinem et al. (2012) also found that the accurate recognition of
both depressed and non-depressed individuals was enhanced when positive emotions were expressed
in spontaneous speech.

Regarding language use, the study done by Newell et al. (2018) showed both the increased use of
self-references (such as ‘I’ and ‘we’) and the use of more negative emotion words to be fundamental
markers of depression. Moreover, the study by Smirnova et al. (2018) identified distinct language
patterns in individuals with mild depression compared to a healthy control group. The markers
included longer written responses, more single-clause sentences, more language flow interruptions,
and more responses being shifted into the past.

3.1.2 Gender Differences in Behaviours of Depressive Signals

With regards to gender-based depression detection, Stratou et al. (2013) showed that using
a gender-dependent approach, in which they used gender-based classification for depression to
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identify differences in performance when the two genders are separated, outperformed a gender
agnostic approach (Stratou et al., 2013). The latter finding has also been concluded by the paper
from Pampouchidou et al. (2016).

In their study, Stratou et al. (2013) also tried to identify an interpretable and intuitive set of
predictive indicators for the task of both Depression and post-traumatic stress disorder (PTSD)
detection. During their initial analysis, they reported that depressed men tend to display more
frowning compared to non-depressed men and that women only display more frowning when they
are non-depressed (Stratou et al., 2013). Related to this, the study from (Alghowinem et al., 2013)
did not find gender differences in head movements for diagnosing depression.

In their study, Alghowinem et al. (2012) also investigated the influence of gender with regards to
best audio features and found that Loudness was one of the best features for depression recognition
in males while Log energy and shimmer features were better for females.

Lastly, regarding gender differences in language use, de Jesús Titla-Tlatelpa et al. (2021) ana-
lysed social media texts to identify linguistic markers of depression, leveraging word context to
enhance detection. They found gender-specific classifiers to be more effective than age-specific
classifiers suggesting that differences in how men and women express depression are more pro-
nounced.

3.2 Multimodal Depression Detection

Since some research has been done in the past which have shown differences in behavioural signals
between depressed and non-depressed individuals, it would make sense to use multiple modalities
at the same time when trying to detect whether a person is depressed or not. Especially since
multiple studies have found the benefits of combining multiple data types, or modalities regarding
model performance as opposed to solely relying on one data type or modality (Alhanai et al.,
2018; Cheong, Spitale & Gunes, 2023; Flores et al., 2022; Min et al., 2023). Furthermore, the
literature reviews of Khoo et al. (2024) and Muzammel et al. (2021) both observed an increase in
neural architectures and the usage of model-level fusion demonstrating the capability of handling
high-dimensional data while modeling both internal and cross-modality relationships.

First, we describe how textual modality is applied in previous studies since this is the focus
of one of the research questions. Thereafter, some studies using a multimodal approach will be
referenced. Lastly, the D-Vlog paper will be explained.

3.2.1 Textual Modality

The usage of the textual modality has consistently held importance within the task of depression
detection (Squires et al., 2023). Ever since De Choudhury et al. (2013) used Twitter data to
measure and leverage behavioural cues (including language) to predict the risk of depression, a
lot of other studies have been using the textual modality, next to other modalities, for the task of
detecting depression as shown in Table 3.1. Regarding the choice of which textual features to use,
Squires et al. (2023) showed in their survey that most earlier works relied on hand-crafted features
while the more recent work increasingly rely on learned features such as word embeddings.

Some examples of hand-crafted features can be seen in the study by (Yang et al., 2016) where
the researchers analysed the transcripts for certain personal characteristics which were later in the
decision process fused with the audio and visual features. Alternatively, both Yang, Sahli et al.
(2017) and Samareh et al. (2018) extract and compute basic statistics for words or sentences from
the transcription files which include the number of words, the ratio of the number of laughs or
sighs, number of filler words, etc. Using these kinds of features can enhance the intelligibility of
depression detection models, which is a requirement for interpretable models.

Instead of designing specially hand-crafted features, with the increased prevalence of deep
learning algorithms today, word embeddings are used by these algorithms to represent features
numerically. Some examples of these embeddings that were specifically used in studies involving
depression detection are both contextual and non-contextual word embeddings such as word2vec
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(Marriwala & Chaudhary, 2023), BERT (Flores et al., 2022; J. Park & Moon, 2022; Rodrigues
Makiuchi et al., 2019), and ELMo (Shen et al., 2022). Moreover, some studies also used embedding
approaches that are capable of representing a sentence or even a whole document. Examples
include Paragraph Vectors (Yang, Jiang et al., 2017; Yang, Sahli et al., 2017), sentence embeddings
(Ray et al., 2019), and Doc2Vec (Alhanai et al., 2018).

3.2.2 Multimodal Approaches

The studies shown in Table 3.1 all perform the task of depression recognition using features
extracted from different modalities such as text, video and audio. It can also be seen that almost
all of these approaches use the audio modality and that the combination of the textual and audio
modality is often used. Lastly, the table shows that most of the studies train and evaluate their
models using the DAIC-WOZ dataset.

A crucial stage in multimodal recognition approaches involves the fusion of modalities which is
the strategy for how the different modalities, or even the distinct features within the same modality,
are combined. Four categories of fusion strategies are reported in the literature (Muzammel et al.,
2021) and for this reason, the studies are separated by the type of fusion approach used.

Feature-level Fusion

Feature-level fusion, or early-fusion, concerns approaches which concatenate the extracted features
into a single high-dimensional feature vector at an early stage (Muzammel et al., 2021). For
example, in the study from Min et al. (2023) the researchers extracted audio and visual features
from depression vlogs after which the XGBoost algorithm was trained using the concatenated
features.

Decision-level Fusion

With decision-level fusion, or late-fusion, an integration step is performed after the decisions
have been made on each modality by applying an algebraic combination rule over all the earlier
predicted class labels (Muzammel et al., 2021). Samareh et al. (2018) implemented decision-level
fusion by adopting an input-specific classifier for each of the visual, audio and text modalities after
which the decisions were used to compute the modality-wise confidence score where the modality
prediction with the highest confidence score was chosen as the final prediction. A different study
by Ye et al. (2021) also adopted input-specific classifiers for the text and audio modalities where
the decisions of both models were combined through a neural network to make the prediction.

Hybrid Fusion

The hybrid fusion approach performs both early- and late-fusion in the same model (Muzammel
et al., 2021). An example of this approach is the study by Yang, Sahli et al. (2017) where, as the
early-fusion step, the global-text features were computed and concatenated for one of the text-
based models. The late-fusion consisted of fusing the predictions of the two separate audio-visual
DL models with the two text-based models to ultimately use multimodal regression for the final
depression prediction.

Model-level Fusion

Model-level fusion aims to learn joint representations that take into consideration the possible
correlation and relationships between the representations of all the modalities involved (Khoo
et al., 2024). These approaches often use different architectures for each modality after which
the learned representations are concatenated followed by another neural architecture (Muzammel
et al., 2021).

The studies from Alhanai et al. (2018), Marriwala and Chaudhary (2023) and J. Park and Moon
(2022) all used an input-specific architecture for each of the audio and textual modality to learn a
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Modality

Researcher Dataset Architecture
Feature
Import-
ance T

ex
t

V
id
eo

A
ud
io

Gimeno-Gómez et al., 2024
DAIC-WOZ, D-
Vlog, E-DAIC

Transformer ✓ ✓ ✓

Min et al., 2023 self-collected XGBoost ✓ ✓ ✓

Fang et al., 2023 DAIC-WOZ
BiLSTM, LSTM,
attention fusion
network

✓ ✓ ✓

Yadav and Sharma, 2023 DAIC-WOZ BiGRU ✓

Marriwala and Chaudhary, 2023 DAIC-WOZ CNN, BiLSTM ✓ ✓

Zhou et al., 2023 D-Vlog CAM-BiLSTM ✓ ✓

Zhou et al., 2022
D-Vlog, EATD-
Corpus

TAMFN ✓ ✓

Yoon et al., 2022 D-Vlog
Transformer, cross-
attention

✓ ✓

J. Park and Moon, 2022 DAIC-WOZ
BERT-CNN, CNN-
BiLSTM

✓ ✓

Flores et al., 2022 DAIC-WOZ
BiLSTM, self-
attention

✓ ✓ ✓ ✓

Shen et al., 2022
DAIC-WOZ,
EATD-Corpus

GRU, LSTM ✓ ✓

Ye et al., 2021 self-collected Transformer, DNN ✓ ✓

Toto et al., 2021 DAIC-WOZ
BiLSTM, self-
attention

✓ ✓ ✓

Niu et al., 2020
AVEC2013,
AVEC2014

2D & 3D CNN,
LSTM, attention

✓ ✓

Kaya et al., 2019 E-DAIC GRU, KELM ✓ ✓ ✓

Ray et al., 2019 DAIC-WOZ BiLSTM, attention ✓ ✓ ✓ ✓

Rodrigues Makiuchi et al., 2019 E-DAIC
GCNN-LSTM,
CNN-LSTM

✓ ✓ ✓

Alhanai et al., 2018 DAIC-WOZ LSTM ✓ ✓

Samareh et al., 2018
DAIC-WOZ
(AVEC2017)

Random Forest ✓ ✓ ✓ ✓

Yang, Jiang et al., 2017
DAIC-WOZ
(AVEC2017)

DNN, Deep CNN ✓ ✓ ✓

Yang, Sahli et al., 2017 DAIC-WOZ
DCNN-DNN, Ran-
dom Forest, Para-
graph Vector

✓ ✓ ✓ ✓

Yang et al., 2016 DAIC-WOZ Decision Tree ✓ ✓ ✓ ✓

Alghowinem et al., 2016 self-collected SVM ✓ ✓

Dibeklioğlu et al., 2015 self-collected Logistic Regression ✓ ✓ ✓

Table 3.1: An overview of recent research papers with regards to
multimodal depression detection.

representation after which these learned representations were concatenated and fed into a neural
network to make the final prediction. Rodrigues Makiuchi et al. (2019) used a similar approach
with the difference that the representations did not come from the end of modality-specific models
but instead used the embeddings obtained from the first dense layer of each modality-specific
model.

To further support the neural architecture at the end of the model by learning the relationships
between the representations of all the modalities involved, some studies have used the attention
mechanism to aid during the fusion process. Fang et al. (2023) proposes the attentional fusion
network (AttFN) which fuses the features of the audio, video and text modalities by training a
separate attention weight vector using the concatenated representations and the softmax function
which evaluates the importance of each modality and multiplies this attention vector with the
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vertically stacked representations of each modality. Shen et al. (2022) used a similar approach
by training a separate attention weight vector with the difference that their attention scores
were calculated for the concatenated representations. Zhou et al. (2022) use a different approach
where three different feature embeddings (acoustic, visual, and early fusion) are extracted from
the acoustic and visual input features. Hereafter, the time-aware attention multimodal fusion
(TAMF) module fuses these features by learning the temporal importance of each combination of
embeddings using a mixed attention vector which guides the embeddings during the fusion process.

The studies mentioned above use the attention method during the fusion approach. However, the
study by Toto et al. (2021) uses the self-attention mechanism to learn task-specific representations
from both the audio and text modalities where the attention layers are placed directly after the
hidden layer of the BiLSTMs. Hereafter, the embeddings are fused using concatenation after
which the classification occurs. The study by Flores et al. (2022) expands on this study by adding
the video modality to the existing architecture which extracts facial features. The results of their
experiments showed their model outperforming the original model. Yoon et al. (2022) also uses
self-attention through the usage of an unimodal transformer model to learn significant cues within
a specific modality as well as using cross-attention to learn about important relationships across
the representations of the modalities. This architecture, dataset, and the performances of other
studies using this dataset are described in more detail in subsection 3.2.3.

3.2.3 D-Vlog

The D-Vlog architecture, as proposed by Yoon et al. (2022), also makes use of model-level fusion
where they use unimodal Transformer encoders for each modality to generate representations
after which the cross-attention method is used to learn the relationships between both latent
representations. Moreover, as shown in Table 3.1, many recent works involved using the DAIC-
WOZ dataset which was captured in a clinical setting through interviews. Having access to the
D-Vlog, which includes the behaviour of depressed individuals in their daily lives, enables us to
use this dataset to train better models which may prove useful to accurately screen for depressed
individuals on social media.

Since this thesis builds upon both the dataset and model designed and developed by Yoon
et al. (2022), this section aims to give both a condensed summary of said paper as well as an
overview of performances of past models trained on the D-Vlog dataset.

Dataset

The original D-Vlog dataset (Yoon et al., 2022) includes a collection of English YouTube videos
posted between the 1st of January 2020 and the 31st of January 2021. The dataset consists of 555
depression and 406 non-depression vlogs where the depression vlogs were collected using ‘depression
daily vlog’, ‘depression journey’, ‘depression vlog’, ‘depression episode vlog’, ‘depression video
diary’, ‘my depression diary’, and ‘my depression story’ as the search keywords (Yoon et al.,
2022). Likewise, the non-depression vlogs were collected using search keywords such as ‘daily
vlog’, ‘get ready with me (grwm) vlog’, ‘haul vlog’, etc. Hereafter, each vlog was annotated by
one of four college students who were recruited and trained on the annotation criteria. Each
annotator had to identify whether the video had a ‘vlog’ format and whether the speaker had
depression or not using certain criteria. The exact data statistics of the D-Vlog dataset for this
thesis are discussed further in section 5.1.

Input Features

In the original model of the D-Vlog paper, a multimodal model is being used which uses both
acoustic and visual features (Yoon et al., 2022).

The acoustic features were extracted using the open-source OpenSmile toolkit (Eyben et al.,
2010). Using this toolkit, the researchers extracted 25 low-level acoustic descriptors (LLDs) from
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the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) (Eyben et al., 2015) by
segmenting each vlog into segments of one second and averaging the values of all LLDs per segment
(Yoon et al., 2022).

For the visual features, the researchers extracted 68 facial landmarks (i.e., the x and y coordin-
ates) from each frame in the vlog using the dlib (King, 2009) open-source software (Yoon et al.,
2022). Facial landmark detection involves the identification of key facial features through shape
prediction techniques on a given face. These landmarks were used directly, without any kind of
transformation, as input features to the model.

To anonymize each speaker and avoid leakage of privacy, Yoon et al. (2022) only provides the
non-intuitive extracted input features.

Architecture

To leverage multimodal inputs of video, Yoon et al. (2022) use two unimodal Transformer encoders
that generate unimodal representations from the acoustic and visual input features after which
the multimodal Transformer encoder takes both representations, combines them and gives back
the final representation. This final representation is then used to predict whether the individual
in the vlog is depressed. An overview of the whole architecture is shown in Figure 2.

Figure 2: An overview of the architecture of the multimodal model
used by Yoon et al. (2022). Retrieved from (Yoon et al., 2022).

To not be limited to either visual or acoustic modalities, Yoon et al. (2022) uses an unimodal
Transformer encoder to generate representations for each modality. Each unimodal Transformer
uses the original Transformer encoder as described by Vaswani et al. (2017) and can focus on
significant cues within each modality.

To combine the representations generated by the unimodal Transformers, Yoon et al. (2022)
employs a multimodal Transformer encoder which uses a cross-attention module to learn about the
relationships between both modalities. The cross-attention approach was inspired by the paper
from Hasan et al. (2021) in which humour was recognised from multimodal features using both
modality-specific encoders for attending to each modality after which the cross-attention setup
was used to understand the latent information between both representations. The cross-attention
module still uses the Query, Key, and Value as described in subsection 2.5.3. However, instead
of computing the self-attention scores on a single input sequence, with cross-attention the Query
and Key/Value vectors are computed using a combination of input sequences from both unimodal
representations as can be seen in Figure 3.

Lastly, The D-Vlog model employs a depression detection layer which uses the multimodal
representation derived from the earlier steps as input to make the final depression prediction
(Yoon et al., 2022).

Related Work on D-Vlog

Despite being introduced only recently in 2022, the D-Vlog dataset has already inspired the devel-
opment of both uni- and multimodal models within the research community. These models along
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Figure 3: An illustration of the implementation of the cross-attention
module in the multimodal transformer. Adapted from (Yoon et al.,

2022).

with the reported performance measures are shown in Table 3.2. However, since previous studies
reported their results with varying decimal precision, we standardised our reporting in the table
based on the study (Gimeno-Gómez et al., 2024) with the fewest decimal places. Consequently,
some of our results may be rounded up or down to maintain consistency.

The table shows that the recently published approach by Sun et al. (2024) significantly out-
performs the earlier papers while only using the acoustic features. In their approach, they utilise
a graph convolutional network (GCN) to obtain embeddings from the audio features while also
explicitly introducing emotional features through a self-attention mechanism where ultimately
both obtained embeddings are successfully combined by using another GCN (Sun et al., 2024).
However, it must be taken into account that Sun et al. (2024) deviates from the other papers
shown in Table 3.2 with regards to their evaluation approach. They evaluated their model using
ten-fold cross-validation and use a 8:1:1 split ratio with regard to the training, validation, and
testing subsets. Moreover, the researchers do not specify whether these folds share no YouTube
channel with each other which could introduce some data leaking.
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Performance measures (weighted)

Researcher Architecture Modality
Original
split Pre

cisi
on

Reca
ll

F1-
sco

re

Sun et al., 2024 GRU, GCN A ✗ 0.92* 0.98* 0.95*
Gimeno-Gómez et
al., 2024

Transformer V, A ✗ 0.74 0.84 0.78

Zhou et al., 2023 CAM-BiLSTM V, A ✓ 0.67 0.61 0.67
Zhou et al., 2022 TAMFN V, A ✓ 0.66 0.67 0.66

Yoon et al., 2022
Transformer, cross-
attention

V, A ✓ 0.65 0.66 0.64

Table 3.2: Depression detection results of related work on the D-Vlog
dataset. To ensure consistency between all studies, all results are

standardised to two decimal places, rounding some of the results in the
process. Performance metrics that use a different experimental

protocol are marked with an asterisk (*).

3.3 Fairness and Bias in Mental Health Analysis

Even though past research into the application of AI for the investigation and understanding of
mental health, and especially detecting depression, has shown promising results, research in bias
and fairness for mental health using ML has been limited (Cheong, Kuzucu et al., 2023; Cheong,
Spitale & Gunes, 2023). However, these issues have received more attention in the last few years
resulting in more papers. For example, recently a paper by Timmons et al. (2023) was published
in which a call to action is presented to guide the development of fair-aware AI in psychological
science.

Some of the papers found during the literature review analysed gender bias by only comparing
the difference of the model using the performance metrics between both subgroups without using
any kind of fairness measures (Min et al., 2023; Rejaibi et al., 2022; Yoon et al., 2022). Through
their study, Rejaibi et al. (2022) found that gender does affect the performance of the model when
they trained and validated the model for a specific gender. The quick overview of the papers found
during the literature review regarding bias and fairness can be seen at Table 3.3.

3.3.1 Fairness and Bias Regarding the D-Vlog Dataset

Cheong, Kuzucu et al. (2023) not only applied different bias mitigation methods to the D-Vlog
dataset, and the Depresjon and Psykose datasets, but also used different, carefully selected, fairness
measures to analyse the degree to which the existing bias can be mitigated. They found that
dataset bias was present in the D-Vlog dataset while the baseline model was deemed acceptably
fair regarding algorithmic bias. Lastly, for the D-Vlog dataset, the researchers found that none
of the applied bias mitigation methods (Data Augmentation, Loss Re-weighing, and ROC) were
consistently effective at mitigating bias across the chosen fairness measures and all seem to worsen
the bias present. Both the loss of information due to the data preprocessing method used and
the difference in depression manifestation and diagnosis between men and women were mentioned
by the researchers as possible factors for the behaviour described above (Cheong, Kuzucu et al.,
2023). The paper by Bailey and Plumbley (2021) examined the DAIC-WOZ dataset and found
that the dataset contained gender bias, which could negatively affect the accuracy of ml models
trained on audio features. Moreover, they showed that features such as the mel-spectrogram can
hold information that can serve as a proxy so that the gender bias in the dataset can be utilised.

By using the pre-processing data re-distribution approach of data subsampling, the researchers
were able to remove the gender bias from the data. Lastly, their results suggest that using raw
audio may be more robust to gender bias as opposed to using mel-spectogram features (Bailey &
Plumbley, 2021). The latter is especially interesting since the D-Vlog uses the mel-spectogram as
one of its features for the audio modality (Yoon et al., 2022).
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Researcher Dataset Modality Fairness measures
Fairness Bias mitigation

Gender
Race Pre In Post

Min et al., 2023 self-collected V, A F1 ✓

Cheong, Kuzucu et
al., 2023

D-Vlog, Depresjon,
Psykose

V, A
F1, SP, EOpp, EOdd,
EAcc

✓ ✓ ✓ ✓

Cheong, Spitale
and Gunes, 2023

AFAR-BSFT V, A F1, DI, EAcc ✓ ✓ ✓*

Yoon et al., 2022 D-Vlog V, A F1 ✓

Zanna et al., 2022 TILES HE F1, DI, EOdd ✓ ✓ ✓*
Mosteiro et al.,
2022

self-collected HE
F1, SP, DI, EOpp,
EOdd, EAcc

✓ ✓ ✓

Rejaibi et al., 2022 DAIC-WOZ A F1 ✓ ✓

Dang et al., 2022
LONGSCAN,
FUUS, NHANES,
UK Biobank

HE F1, EOpp ✓ ✓ ✓*

Bailey and Plumb-
ley, 2021

DAIC-WOZ A F1, SP, EOdd ✓ ✓

Y. Park et al., 2021 self-collected HE F1, DI, EOpp ✓ ✓ ✓

Aguirre et al., 2021
CLPsych, MULTI-
TASK

T F1, EOpp, EOdd ✓ ✓ ✓

Cong et al., 2018 RSDD T F1 ✓*

Table 3.3: An overview of the selected papers from the literature
review regarding fairness and bias for the task of mental health

analysis with the focus on depression detection. An asterisk (✓*) at a
certain bias mitigation method means that the method is novel.

Abbreviations. F1: F1-score. SP: Statistical Parity. DI: Disparate
Impact. EOpp: Equal Opportunity. EOdd: Equal Odds. EAcc: Equal

Accuracy. V: video. A: audio. T: text. HE: Health Data.

3.3.2 Bias Mitigation Approaches

A wide range of bias mitigation methods have been proposed and applied in recent years to
impose fairness to ML models. Cheong, Spitale and Gunes (2023) proposed MixFeat, a simple
preprocessing data augmentation strategy where new synthetic samples are created by mixing up
features from existing samples with the same sensitive attribute. Their results showed that the
proposed method was able to consistently improve the fairness of the model across both the uni-
and multi-modal models. Additionally, the results indicated that using higher-level features (such
as gaze, speech duration and sentiment of the speech) could be beneficial concerning performance
and fairness when a smaller dataset is involved. Y. Park et al. (2021) conducted experiments on
health data collected in a clinical setting regarding postpartum depression by analysing changes
in fairness metrics when applying three different bias mitigation methods (reweighting, prejudice
removal, and the removal of the sensitive label). They found that both the reweighting and
prejudice removal mitigation methods were more effective in reducing the bias compared to the
removal of the sensitive label mitigation method. Mosteiro et al. (2022) evaluated and mitigated
gender bias in a model that predicts the future administrations of benzodiazepine based on clinical
psychiatric data. The researchers applied both reweighing and prejudice remover methods to
improve the fairness measures and found that reweighing was more effective than prejudice remover
in reducing bias without compromising performance.

Zanna et al. (2022) used electrocardiogram (ECG) data collected in the wild and implemented
a multi-task learning bias mitigation method to predict anxiety. Their results show that their
method was able to reduce the bias in the base model at the expense of some accuracy. Aguirre
et al. (2021) investigated the demographic fairness of depression classifiers trained on Twitter
data based on self-reported diagnoses. Their analysis showed that the chosen datasets were not
demographically representative and the resulting classifiers performed worse on people of colour
in general. Lastly, the researchers proposed some recommendations to mitigate this bias (such as
balancing or increasing the data size) and called for future new datasets to be constructed in a way
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so that the population, especially underrepresented minorities, gets better represented (Aguirre
et al., 2021). The study by Dang et al. (2022) also stresses the importance of prioritising adequate
data collection as a means to improve fairness. In this study, the researchers used four public
datasets covering different countries and populations to systematically investigate algorithmic bias
in ML models. The researchers apply three pre-processing and two post-processing methods, one
of the post-processing methods being a new proposed method. Their experimental results show
that these bias mitigation techniques can improve fairness without sacrificing too much accuracy
and that their proposed method tends to mitigate bias while preserving predictive performance.
Lastly, as mentioned before, they stress the importance of the data collection process and they
state that the choice for the combination of classifier type and bias mitigation algorithm depends
on the use case at hand.

UU Master Thesis 25



4 Methodology
This section starts with an overview of the methodology followed for the literature review. Here-
after, the sections dissect the proposed method and are divided into subsections per the research
questions.

In section 4.2, the first research question is discussed where we specifically investigate the
impact of adding the textual modality to the existing model. Lastly, in section 4.3, we delve
deeper into the possible bias mitigation approaches that will be applied as well as explain how we
approach the gender bias analysis.

4.1 Literature Review

The literary review for this thesis was done using a snowballing procedure (Wohlin, 2014) using
the initial papers brought forth by both the first and daily supervisors as the start set. A keyword
search was also used to retrieve relevant papers using Google Scholar.

For the literature review regarding past research on multimodal depression detection, the fol-
lowing keywords were used: “depression detection” AND “multimodal” AND “machine learning”.
Moreover, the review paper by (Squires et al., 2023) was used to gain insights into the domain of
depression detection using AI. For this review, only papers were taken into consideration if they
made use of either audio, visual, or textual features. Papers that used physiological biomarkers
such as electroencephalography (EEG) or brain scans were excluded from this review.

A literature review has also been done on past works regarding bias and fairness for mental
health. For this review, the following keywords were used: “depression detection” AND “bias
mitigation” OR “fairness”. Additionally, both the papers from Cheong, Kuzucu et al. (2023) and
Cheong, Spitale and Gunes (2023) were used as initial papers for the snowballing procedure.

4.2 Comparison of Uni- and Multimodal Models

In this section, we aim to investigate the impact of incorporating the textual modality into a uni-
and multimodal depression detection model, utilising the D-Vlog dataset. The research question
that drives this analysis goes

“Does the inclusion of the textual modality contribute to the performance of the mul-
timodal depression detection model trained on the D-Vlog dataset in terms of the F1-
score?”.

To address this question, together with its subquestions that have been described in section 1.4,
we will introduce the textual modality to both uni- and multimodal models after which the per-
formance and fairness of both all the models will be evaluated. The methodology outlined in this
section includes the data extraction and preprocessing steps, the feature extraction techniques for
each modality, the model architectures, the selection process for the experiments, and the eval-
uation metrics. Additionally, Figure 10 gives the process workflow used to answer the research
question above. Lastly, A visual overview of the complete feature extraction pipeline is presen-
ted in Figure 4. This figure illustrates all feature extraction models and demonstrates how each
modality is utilised to extract the respective features.

4.2.1 Text-based Models for Depression Detection

Transcript Extraction

To add the textual modality, the transcripts of the vlogs have to be retrieved. As described in
their paper Yoon et al. (2022), have made their dataset publicly available upon reasonable request.
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However, only the de-identified anonymized data were provided consisting of the visual and audio
modalities.

Upon request, Yoon et al. (2022) also provided the corresponding ID for each YouTube video
from their dataset. Using these IDs and the youtube-transcript-api1 library, the timestamped
transcripts of 796 videos were retrieved. However, the main drawback of this approach is that
YouTube allows people to turn off captions resulting in missing transcripts from videos that do
exist. Moreover, some of these vlogs are not available anymore since YouTube allows people to
take their videos offline.

Where the problem of vlogs being taken offline is difficult to overcome, the main drawback
of the approach described above can be overcome by using a publicly available SOTA Automatic
Speech Recognition (ASR) such as Whisper (Radford et al., 2023), to transcribe the speech using
the audio signals. Furthermore, some of these ASR systems also support the prediction of word
timestamps. This would mean that the original setup of Yoon et al. (2022), in which the audio
and visual sequences are extracted and averaged per second, can be reproduced with the textual
modality.

Whisper models are originally trained to predict approximate timestamps on speech segments
rather than predicting word timestamps. For this reason, both WhisperX (Bain et al., 2023)
and whisper-timestamped (Louradour, 2023) were considered since both models were specifically
trained on predicting word-level timestamps. Ultimately, whisper-timestamped (Louradour, 2023)
was chosen since it addresses some of the drawbacks of WhisperX, with more efficient usage of
memory being one of the most important advantages for this study since the model had to run
locally with limited hardware. The whisper-timestamped library uses Dynamic Time Warping
(DTW) (Giorgino, 2009) under the hood to predict word timestamps using Whisper models.

Using the IDs of the vlogs and the pytube2 library, 827 vlogs were retrieved and downloaded.
Hereafter, the whisper-timestamped (Louradour, 2023) library was used to transcribe the audio
in order to extract the word timestamps. A shortened and simplified example of a retrieved
transcript is shown in section A.1. The statistics for the filtered dataset, meaning all vlogs that
were downloaded, are discussed in more detail in section 5.1.

Textual Models

The review from Squires et al. (2023), showed that earlier work used both hand-crafted and high-
level feature learning-based textual features for the task of depression detection. In this thesis, the
latter will be used in the form of pre-trained word and sentence embeddings using a feature-based
approach (Devlin et al., 2018). Both word and sentence embeddings were used to extract features
from the textual data. The four embedding models that were used are described in more detail
below.

• word2vec* (Mikolov, Sutskever et al., 2013) are non-contextual embeddings trained on part
of the Google News dataset. The model contains 300-dimensional vectors for 3 million words
and phrases.3

• BioWordVec* (Y. Zhang et al., 2019) are non-contextual embeddings that are trained using
the fastText subword embedding model (Bojanowski et al., 2017) on the PubMed corpus.
The model contains 200-dimensional vectors.4

• all-mpnet-base-v25 is a sentence embedding model which is fine-tuned on a concatenation
of multiple datasets containing over 1 billion sentence pairs dataset with its intended use be-
ing a sentence and short paragraph encoder. The model maps sentences to a 768-dimensional
vector space.

• all-MiniLM-L12-v26 is a sentence embedding model where a pre-trained distilled model

1https://pypi.org/project/youtube-transcript-api/
2https://pytube.io/
3https://code.google.com/archive/p/word2vec/
4https://github.com/ncbi-nlp/BioWordVec
5https://huggingface.co/sentence-transformers/all-mpnet-base-v2
6https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
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(Wang et al., 2020) is fine-tuned on a concatenated dataset containing over 1 billion sentence
pairs. This model maps sentences to a 384-dimensional vector space.

Two of the pre-trained word embedding models mentioned above (marked by *) were also used in
the paper by Sogancioglu et al. (2023) where they were specifically evaluated on fairness. Using
these specific embedding models again will let us compare the results and conclusions of their
paper with our results with regard to performance and fairness.

Textual Feature Preparation

In the original D-Vlog paper (Yoon et al., 2022), the extracted features from both modalities were
segmented into seconds. Inspired by Yoon et al. (2022), we adopted the same seconds-based feature
segmentation approach in our study for the word embedding models where the extracted textual
features are segmented into 1-second intervals. First, the word embedding for each word in the
text is retrieved from the model and linked to the start time of the word itself. Subsequently, the
average value is computed for all words occurring within the same second to serve as the feature
representation of that specific second. This seconds-based segmentation and averaging process
allows us to leverage the temporal information from the features and to adopt the approach by
Yoon et al. (2022).

However, one of the issues we encountered was that not all segments have words associated
with them. Therefore, in our study, we investigated two experimental variants for handling these
empty segments to address this completeness issue. Firstly, we implemented a zero-vector filling
approach, where segments with no associated words were filled with zero-vectors. Secondly, we
used an approach where empty segments were replaced by taking the average of the values of
neighbouring segments that did contain words.

The approach with regard to the feature extraction for the sentence embedding models was
more straightforward. The whisper-timestamped model (Louradour, 2023) not only predicts word
timestamps but also segments the texts into sentences. The sentence embeddings are retrieved by
using the pre-trained models which encode each sentence into a feature representation. Moreover,
an experiment was run using spaCy’s sentencizer7 to evaluate the effectiveness of their sentence
segmentation method compared to the original segmentation approach used during the transcript
extraction process as described in subsection 4.2.1. The spaCy sentencizer was used to segment the
whole text of a certain vlog into sentences after which the beforementioned sentence embeddings
were used once more to retrieve the feature representations.

Lastly, certain data preprocessing steps were performed to prevent potential data leakage caused
by explicit mentions of depression in textual data and the possible overfitting of the models on
depression-related signals (Burdisso et al., 2024; Wolohan et al., 2018). We utilised a depression
lexicon consisting of keywords which were derived from Cha et al. (2022) and Sogancioglu et al.
(2023). Both studies developed a set of keywords indicative of depression-related sentiments and
symptoms which mental health experts verified. Both sets were combined and were then used to
specifically filter out segments containing explicit mentions of depression to avoid data leakage. In
the seconds-based feature segmentation approach, we identified and only removed the keywords
using the aforementioned synonym list before the averages of each segment were computed. In
the sentence embedding approach, we screened and excluded entire sentences containing explicit
mentions of depression using the synonym list. This preprocessing step is essential to mitigate any
data leakage and ensure the reliability of the depression detection model when used in a real-world
situation since individuals experiencing depression may not always explicitly state their condition.
We trained the unimodal models both with and without this preprocessing step to gain insight
into the impact of applying this preprocessing step. However, for the multimodal models, this
preprocessing step will always be performed. A small sample of the depression lexicon with the

7https://spacy.io/api/sentencizer
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keywords is given in section A.4. The full lexicon can be found in the paper by Cha et al. (2022)
and in the repository8 of the study of Sogancioglu et al. (2023).

Figure 4: An overview of the feature extraction pipeline regarding the
textual modality and the emotion-enriched embeddings.

4.2.2 Models using non-verbal cues

As described in subsection 3.2.3, Yoon et al. (2022) uses specific acoustic and visual features. How-
ever, section 3.1 shows studies using different feature representations which have also been shown
to detect whether a person is depressed. For this reason, in addition to the feature representations
detailed in Yoon et al. (2022), we also looked into some alternative feature representations which
will be explained in more detail below.

Emotion-enriched Embeddings

In their paper, Wagner et al. (2023) explores the application of Transformer-based models in
Speech Emotion recognition (SER) tasks, especially focusing on improving the recognition of
valence (positive or negative emotional tone). They fine-tuned multiple models on the task of
arousal, dominance, and valence (VAD) prediction using speech acoustics as input and released
their best-performing Model for Dimensional Speech Emotion Recognition (MDSER)9.

In our approach, we leverage both the hidden states and outputs from the pre-trained model
as input features for the downstream task of depression detection. The hidden states and outputs
from the pre-trained MDSER are returned on sentence level meaning that the model takes in
acoustic sequences after which we retrieve the hidden states and the outputs for a particular
sequence making these features sentence-based. As input sequence to the pre-trained MDSER, we
use the timestamps of the sentences as predicted by the whisper-timestamped model described in
subsection 4.2.1.

The input features are constructed by combining the hidden states and outputs from the pre-
trained model in multiple ways. Firstly, the raw hidden states are extracted and used. Secondly,
the hidden states are concatenated with the final outputs (the VAD predictions) to create a fused
representation of both. Lastly, inspired by Sogancioglu et al. (2023), a normalisation technique
was applied where the VAD predictions are Z-scored based on the training subset before they are
concatenated with the hidden states.

4.2.3 Uni- and Multimodal Models

One of the aims of this thesis is to introduce the textual modality in order to study the effect of the
textual features on the performance and the gender bias of both the uni- and multimodal models.
In subsection 4.2.1 we already discussed that the textual modality gets incorporated through

8https://github.com/gizemsogancioglu/gender-bias-mental-health/blob/main/data/depression synonyms.json
9https://github.com/audeering/w2v2-how-to
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seconds-based word embeddings and sentence-based embeddings. This section will explain how
these textual embeddings are fused with the other features in the uni- and multimodal models and
explain how the modalities are chosen for the experiments.

Uni- and Bimodal Models

In their approach, Yoon et al. (2022) train both unimodal models and bimodal models. This
means that for these models, the architectures that were proposed and used by Yoon et al. (2022)
can and will be used for our experiments.

For the unimodal models, this means that the generated output of the unimodal transformer
encoder will be used directly as the representation with which the depression detection layer will
perform the classification operation.

In the case of the bimodal models, we again utilise the original approach detailed by Yoon
et al. (2022), which uses cross-attention to generate a multimodal representation that is used by
the depression detection layer for classification. A visual overview of the architecture is shown in
Figure 2. In their paper, Yoon et al. (2022) mention that they compared their proposed fusion
method against three commonly used multimodal fusion operations (Add, Concat, and Multiply).
Since we are adding the textual modality, which is novel, we will again consider and implement the
Concat (Kim et al., 2013) fusion approach as this fusion method has been referenced in previous
work (Alhanai et al., 2018; Marriwala & Chaudhary, 2023; J. Park & Moon, 2022).

Synchronisation of Multimodal Features for Fusion

Sentence-based features typically span multiple seconds, whereas both the original audio and video
embeddings use fixed seconds-based representations. These modalities need to be synchronised to
combine these different feature modalities such that the cross-attention mechanism can be used.

To synchronise these modalities, we extracted the start and end timestamps for each sentence.
These timestamps allowed us to calculate the averages of the seconds-based features for each
sentence. Specifically, we aligned the timestamps of the sentences with the corresponding seconds-
based features and computed the mean values of the features within those segments. This approach
ensured that all modalities were represented on the same timescale and that the fusion between
these modalities could be applied effectively. A visual example of this synchronisation process is
shown at Figure 5.

Figure 5: Illustrative example of the synchronisation process where the
audio gets aligned with the sentence embeddings.
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Trimodal Models

For the trimodal models, which will incorporate the textual, visual, and audio modalities, we
will continue to experiment using the Concat fusion operation due to its ease of implementation
and shown effectiveness in fusing the feature information of three modalities (Rodrigues Makiuchi
et al., 2019).

However, the depression detection approach using cross-attention by Yoon et al. (2022) is
specifically designed to be used for a model fusing two modalities. It therefore will not be directly
feasible for a trimodal approach. Even though the feature fusion approaches put forth by Fang
et al. (2023) and Shen et al. (2022), where they successfully train a separate modal attention
layer which can effectively fuse the features from the input modalities, can be used for a trimodal
model. We chose to stay close to the cross-attention module put forth by Hasan et al. (2021)
and use their proposed module as inspiration. To fuse the latent information from the three input
modalities, we put forth and experiment with two new module architectures which alter and re-use
the original cross-attention module in such a way that it is able to handle three modalities. Both
module architectures are discussed more elaborately below.

Figure 6: An illustration of the crisscross-attention module
architecture.

Crisscross-attention Module The first architecture is called the crisscross-attention module
and extends the original cross-attention module by adding an additional cross-attention block
to the architecture. As shown in Figure 6, the multimodal transformer encoder takes as inputs
the unimodal acoustic, visual, and textual representations (Ua, Uv, and Ut) and distributes them
among the three cross-attention modules where each cross-attention module gets its Query, Key,
and Value from a distinct modality. Moreover, following the approach by Yoon et al. (2022), the
residual connection uses the representation from the modality that delivers the Query to the cross-
attention module. After the residual connections and layer normalisation, we obtain three cross
representations (Ũa, Ũv, and Ũt). To fuse the cross-modal information, we follow the approach
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from Yoon et al. (2022), where the cross representations are concatenated and a straightforward
Transformer encoder is used.

Figure 7: An illustration of the layered cross-attention module
architecture.

Layered Cross-attention Module The second architecture is called the layered cross-attention
module, where we fuse the three modalities by applying the original Multimodal Transformer En-
coder proposed by Yoon et al. (2022), which includes the original cross-attention module, twice
in succession. As shown in Figure 7, the multimodal transformer encoder first takes the unim-
odal acoustic and visual representations (Ua, Uv) as inputs and combines them using the original
Multimodal Transformer Encoder to get the first multimodal representation Y . Hereafter, we use
a single feed forward layer to map the dimensionality of Y back to the original size so it can
be used during the next step. The last multimodal transformer encoder takes the multimodal
representation Y and the textual representation (Ut) as inputs and fuses them as described above
to generate the final multimodal representation Z.

Feature Selection and Model Evaluation Strategy

In order to properly assess the aforementioned research question, we used a systematic approach
to select and evaluate features across the audio, visual, and text modalities for each of the uni-
and multimodal models. This systematic approach consists of the following steps.

Data and Feature Extraction To prepare the data for model training, preprocessing and
feature extraction was performed for each feature and their respective experimental variants for
each modality. A quick overview of each modality’s features are given below.

• Audio Modality: acoustic features as described in subsection 3.2.3, MDSER features.
• Visual Modality: visual features as described in subsection 3.2.3.
• Text Modality: seconds-based embeddings (word2vec, BioWordVec), sentence-based em-

beddings (mpnet, miniLM).
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Unimodal Model Training and Evaluation For the unimodal models, each modality’s fea-
ture representations and their experimental variants were used to train the models. Afterwards,
the performances of these models were assessed based on the weighted F1-scores.

Selection of Optimal Features The feature configuration that achieved the highest weighted
F1-score in the unimodal setup described above was selected for each modality. This step ensured
that only the most effective features were considered for the multimodal models. However, we
only consider the unimodal models that used features where the keywords were removed during
this step. This ensures the reliability of the models trained hereafter, since it focuses on data from
subjects that do not explicitly disclose depression, thus better reflecting real-world scenarios.

Multimodal Model Construction and Training The selected features from each modality,
derived from the previous step, were then combined to form the input for the multimodal models.
Through this integration, we aim for the models to leverage the complementary information the
different modalities provide. Lastly, during this step, the various fusion techniques described in
subsection 4.2.3 were explored.

4.2.4 Evaluation of the Classifiers

To evaluate and assess the impact of adding different modalities and fusion approaches, all uni-
and multimodal classifiers will be evaluated using both performance and fairness metrics.

Evaluation of Classifier Performance

To measure the overall performance of the trained classifiers, several performance measures can
be calculated. For this thesis, we will use the weighted average precision, recall and F1-score
as performance measures since this enables us to compare the results with the original D-Vlog
paper (Yoon et al., 2022). Moreover, during the model evaluation, weighted F1-scores are also
specifically calculated for the different gender categories to provide a more detailed understanding
of the effectiveness and fairness of the model when handling gender-specific data.

Evaluation of Classifier Fairness

To measure the fairness of the trained classifiers, we will use a combination of the approach from
Cheong, Kuzucu et al. (2023) in which they use statistical parity, equal opportunity, equalised
odds, and equal accuracy to evaluate their results and the study from Sogancioglu et al. (2024) in
which equal opportunity, predictive equality, and equal accuracy are used to evaluate the fairness
of their predictive models.

Both the statistical parity and equal odds measures will not be used. The statistical parity
measure will be excluded since this measure is not relevant in the case of mental healthcare.
Alternatively, the equalised odds measure has been excluded since we already include the predictive
equality measure which, along with equal opportunity, makes up this measure. Ultimately, in this
study, we will use equal opportunity (EqOpp), equal accuracy (EAcc), and predictive equality
(PredEq) to evaluate the fairness and bias of the trained classifiers. The definitions of these
measures are provided in section 2.2.

To quantify each measure of fairness, the formulas are transformed to ratios as described in the
paper by Cheong, Kuzucu et al. (2023). For example, the formula for equal opportunity (EqOpp),
as shown in Equation 4, gets altered to

EqOpp =
Pr[Ŷ = 1|Y = 1, S = s0]

Pr[Ŷ = 1|Y = 1, S = s1]
, (14)

where S represents the demographic groups and s0 and s1 correspond to the unprivileged and
privileged demographic groups respectively. Furthermore, since Yoon et al. (2022) uses a weighted
F1-score as their performance measure, we formulate the equal accuracy (EAcc) accordingly.
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EAcc =
F1s0
F1s1

(15)

A score of 1 for a measure is regarded as the ideal score which entails that both measures are
equal for both groups and the predictor can be deemed fair. Lastly, we adopt the approach of
disparate impact proposed by Zanna et al. (2022), where they assume the acceptable lower and
higher bound for the score to be 0.8 and 1.2 respectively.

Evaluation of Modality and Fusion Impact

To determine the impact of adding the textual modality and identify the best fusion approach,
we compare the best-performing textual unimodal model with the best bi- and trimodal models
regarding both their performance and fairness on the test set. The significance of these differences
will be assessed by conducting two-tailed paired t-tests, using a significance level of p < 0.05 which
is in line with the study from Sogancioglu et al. (2024).

4.3 Bias Mitigation and Fairness

In this section, we explore both the possible sources of the gender bias and explore strategies to
address and reduce said bias in our depression detection models. This exploration is driven by the
research question

“To what extent can the application of bias mitigation techniques help reduce existing
gender bias in the best model that has been obtained during subquestion 1B”?

To address this question, together with the subsequent subquestions described in section 1.4, we
will begin by evaluating the gender bias present in the best-performing model identified during the
process of answering the first research question. Subsequently, we apply a series of bias mitigation
techniques aimed at reducing this bias. The methodology outlined in this section will explain
how the potential gender bias sources are analysed. Moreover, it will explain what kind of bias
mitigation methods are to be applied and why. Additionally, Figure 11 gives the process workflow
used to answer the research question above.

4.3.1 Analysing Potential Sources of Gender Bias

In their paper (Bailey & Plumbley, 2021) study gender bias by comparing the differences in
performance after training the models with and without their bias mitigation approach. Cheong,
Kuzucu et al. (2023) have a somewhat similar approach where they compare the differences in
performance and fairness metrics in a gender-based approach. Lastly, Min et al. (2023) and
Yoon et al. (2022) train and validate the model with a specific gender, where Yoon et al. (2022)
additionally train the model with both genders and test with a specific gender. Based on the
papers described before, our approach to analysing the potential sources of gender bias will be a
combination of modality-based analysis and gender-based analysis.

For the modality-based analysis, multiple uni- and multimodal models will be trained using
samples from both genders. These models will then be evaluated with samples specific to each
gender. This approach will provide insights into whether certain features used by the model
inherently favour one gender over another. By applying this approach to both uni- and multimodal
models, we also gain insight into the impact of each modality on gender bias and whether certain
fusion methods are more suitable for mitigating said bias. Lastly, both Cheong, Kuzucu et al.
(2023) and Yoon et al. (2022) conduct a modality-based analysis exclusively on bimodal models.
We will extend this analysis by also incorporating the performance and fairness metrics of the
unimodal models and contribute to these studies by including the textual modality.

For the gender-based, we will train some of the models using a specific gender after which we
evaluate the same model using the same gender. This will give us further insights into whether
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certain features perform better for certain genders. This is especially informative since past studies
surrounding gender-based classification for depression have reported improved performance when
using a gender-dependent approach (Pampouchidou et al., 2016; Samareh et al., 2018; Stratou
et al., 2013).

By analysing the potential sources of gender bias using this methodology, we aim to gain a
better understanding of the factors contributing to the gender bias that emerged in the models
while answering the initial research question.

4.3.2 Bias Mitigation Methods

In this thesis, we will not only analyse the potential sources of the bias but also try to mitigate
this bias through the application of bias mitigation methods. As described in section 2.4, there
are three types of bias mitigation methods (pre, in, and post). We will take pre-, in-, and post-
processing methods into account while also taking into consideration the study by Sogancioglu
et al. (2024), in which they found that clinicians did not find it to be acceptable to sacrifice the
overall prediction performance to equalise the performance measures across gender groups which
is behaviour that can be ascribed to post-processing methods.

In their paper, (Cheong, Kuzucu et al., 2023) already applied three different bias mitigation
techniques (Data augmentation, Loss Re-weighting, and ROC) and found that none of these
methods were consistently effective at mitigating the bias. However, since we use a model trained
on the textual modality during the bias mitigation process, these models can again be considered.

Moreover, Cheong, Kuzucu et al. (2023) not only applied bias mitigation methods, but also
identified two potential factors for the appearance of gender bias one of which was the way how
the data pre-processing has been handled. Based on this assumption, we will also experiment
using different durations as an approach towards bias mitigation. This experiment will be done
on the cross-attention model trained using the original features as described in subsection 3.2.3,
as well as the best-performing textual unimodal model.

Ultimately, MixFeat and oversampling were selected as the pre-processing methods. loss re-
weighing was selected as the in-processing method, and equal odds was selected as the post-
processing method as these were considered to be the most promising methods. These methods
are all explained in section 2.4. While the application of the oversampling, loss reweighing and
equal odds methods are used straightforwardly, for the MixFeat method five different variants are
used which is explained in detail below.

MixFeat Bias Mitigation Variants

For the MixFeat (Cheong, Spitale & Gunes, 2023) bias mitigation method, we used five different
variants, two of which rely solely on synthetic samples for performing the depression detection
task. These variants are described below.

• Group upsampling: Here we upsample the minority sensitive group and use them in
combination with the original instances.

• Subgroup upsampling: Here we upsample the minority (sensitive) group-minority label
subgroup and use them in combination with the original instances.

• Mixgender upsampling: Here we upsample the minority group using a mixgendered
approach which means that each new sample consists of a combination of a male and female
sample and use them in combination with the original instances.

• Synthetic sampling: Here we sample from the ‘depression’ class, after which we only use
these synthetic samples during training.

• Synthetic mixgendered sampling: Here we sample from the ‘depression’ class using the
mixgendered approach, after which we only use these synthetic samples during training.

The synthetic experiments can be considered important as they evaluate the potential of using
MixFeat to generate synthetic data for federated learning applications. If models trained on
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synthetic data perform well, this approach could enhance the privacy of individuals with depression
because these synthetic features are much more difficult to trace back to a specific individual. As
a result, individual privacy can be safeguarded which could facilitate easier data sharing (Rieke
et al., 2020).

Application of Bias Mitigation Methods

The bias mitigation methods described above were applied both at sentence-level and session-level,
utilising different model architectures for each.

Sentence-level For the sentence-level bias mitigation approach, we used the straightforward
D-Vlog unimodal model architecture described in subsection 4.2.3 to process all sentences from a
subject and to perform the depression detection. This approach does mean that for the MixFeat
methods, sentences from two samples are combined which may not hold any temporal connection.

Session-level For the session-level approach, we, inspired by Min et al. (2023), employed a
support vector machine (SVM) where the keyword filtered sentence-based mpnet representations
within a single session were averaged into a single representation. The pre-processing bias mit-
igation methods were then applied to these single representations. This approach provides both
insights into the effectiveness of the textual modality on a simpler model as well as into how well
the pre-processing methods worked on a simpler model. The session-level analysis was particularly
important for understanding the impact of the variants of the MixFeat method on the sentence-
level approach since MixFeat combines sentences from two samples without temporal connection
using this approach, which could potentially affect the model performance differently.
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5 Experimental Setup
This chapter begins with section 5.1, which explains the D-Vlog dataset and the new subset,
including the rationale behind the explicit need for a new subset. Additionally, this section provides
data statistics and an exploratory language analysis. In subsection 5.2.2, all implementation
details regarding the execution of the experiments are described. Lastly, section 5.3 covers the
bias mitigation methods employed in both the session- and sentence-level experiments

5.1 The D-Vlog Dataset

As described in subsection 4.2.1, we were only able to retrieve 827 of the transcripts for all the
videos of the original D-Vlog dataset. Specifically, 96, 11, and 27 videos were missing from the
training, validation, and test subsets respectively. This issue was similarly encountered by Gimeno-
Gómez et al. (2024) where they managed to retrieve only 861 vlogs and subsequently used the
original dataset split, excluding the unavailable videos. However, in our study, we aim to model
the original imbalance present in the dataset rather than assume that the deleted videos do not
affect the integrity of this imbalance. For this reason, a separate dataset (v2) was made consisting
of all the vlogs for which the videos were available. The differences between the original D-Vlog
dataset (v1) and the filtered dataset (v2) are discussed in more detail below.

5.1.1 Dataset Split

In their approach, Yoon et al. (2022) applied a standard train, validation, and test split of 7:1:2
but did not explicitly state whether any stratification was applied. However, Yoon et al. (2022)
did specify for their collected dataset which sample belonged to which subset. This means that
the experiments regarding the replication study could be done using the original dataset (v1) with
the original folds.

For our experiments, a separate dataset split (v2) was made for the dataset consisting of the
samples for which their videos could be downloaded. For this dataset, we adhered to the same
dataset split ratio and ensured that no folds share a YouTube channel but did stratify the splits
based on gender and the depression label. This approach ensured some alignment with the original
paper while still allowing us to evaluate the model’s performance under comparable conditions.
The dataset splits described above, together with the size of each fold, are shown in Table 5.1.

Dataset Gender Train Val Test

v1 (Yoon et al., 2022)
Male 216 40 66

Female 431 62 146
Both 647 102 212

v2 (Ours)
Male 199 29 57

Female 379 55 108
Both 578 84 165

Table 5.1: The number of samples in the train, validation, and test
folds in both datasets used in our approach.

5.1.2 Data Statistics

The descriptive statistics of both the original and the new dataset, grouped by label and gender, are
presented in Table 5.2. The original dataset consists of 555 depression and 406 non-depression vlogs
whereas the filtered dataset consists of 449 depression and 378 non-depression vlogs. Moreover,
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the table shows that the status quo of the original D-Vlog dataset has been maintained in the new
dataset since the new dataset also has twice as many females than males in the depression vlogs.
This behaviour is also copied for the non-depression vlogs.

Dataset Label Gender # samples Avg. Duration

v1 (Yoon et al., 2022)
Depression

Male 182 583.74s
Female 373 667.63s

Non-depression
Male 140 438.77s
Female 266 587.76s

v2 (ours)
Depression

Male 147 569.49s
Female 302 650, 87s

Non-depression
Male 138 433.17s
Female 240 592.76s

Table 5.2: Descriptive statistics of the filtered D-Vlog dataset.

Lastly, Figure 8 illustrates the difference in vlog durations between the original and the filtered
(v2) datasets regarding the depressed and non-depressed labels. The plot shows that the difference
in distributions between the two datasets is barely discernible.
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Figure 8: The difference in distributions of vlog duration between the
original and v2 D-Vlog dataset.

5.1.3 Exploratory Language Analysis

One of the aims of this thesis is to introduce the textual modality using the transcripts of the
vlogs. As a first step, an exploratory analysis of the extracted transcripts was conducted. This
preliminary analysis was motivated by the question of whether distinctive linguistic features are
prevalent among different label-gender combinations. By computing the most frequently occurring
words and n-grams within each subgroup, we can identify potential differences in their utterances.

During preprocessing, all newlines, trailing whitespaces, punctuation, and numbers were re-
moved. The transcripts were converted to lowercase, stopwords were eliminated, and the words
were lemmatized.

The initial exploration revealed no interesting or noticeable differences between subgroups when
words and n-grams were computed straightforwardly. However, it did reveal one video where after
approximately 11 minutes the person switches to a different language resulting in the ASR model
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to predict ‘jobless’ for almost each speech utterance after this moment. As a result, the extracted
text for this video was excluded from the analysis.

Consequently, we refined the analysis by filtering out words and n-grams used by the other
subgroups before computing the counts for each subgroup. This ensured that the unique utter-
ances from each subgroup became visible. The resulting analysis, presented in Table 5.3, shows
the differences between the depressed and non-depressed subgroups for unigrams and bigrams.
The table indicates that the depressive subgroup tends to use more words related to symptoms
or consequences of depression. This exploratory method was also applied to the label-gender
combinations, with the results presented in section A.3.

Depression Normal
n-gram word(s) count n-gram word(s) count

1

psychiatrist 82

1

clemson 118
antidepressant 77 stereotype 78
selfesteem 42 tammy 58
worthless 33 component 57
counseling 33 phd 57
ptsd 33 concealer 44
counseler 28 spanish 43
biscuit 33 ethnicity 40

2

im depressed 55

2

student dialogue 162
depression know 42 year third 159
know depression 36 new student 140
depressive episode 32 active voice 77
dealing depression 30 true dialogue 72
suffering depression 28 think dialogue 47

Table 5.3: The distinctive linguistic features prevalent in both the
depressed and the non-depressed subgroup.

5.2 Implementation Details

To study the impact of adding the textual modality to the existing D-vlog architecture, we util-
ised the Depression Detection architecture proposed by Yoon et al. (2022). As described in
subsection 3.2.3, this architecture consists of two unimodal Transformer encoders after which
a multimodal Transformer encoder is used to incorporate the learned representations. While the
proposed architecture proposed by Yoon et al. (2022) is compelling, no public architecture im-
plementation was available at the time of this thesis. For this reason, the architecture proposed
by Yoon et al. (2022) was re-implemented based on the descriptions and illustrations provided by
Yoon et al. (2022) and Cheong, Kuzucu et al. (2023).

To improve the reproducibility of our implementation, we used the confection library1, which
offers a configuration system capable of parsing config files. This means that each experiment is
saved as a separate config file, improving the transparency and reproducibility of each experiment.

5.2.1 Replication Study

Contrary to the implementation by Yoon et al. (2022), we used PyTorch (Paszke et al., 2019)
to implement the model primarily due to our past experiences with its architecture and tooling.
As mentioned, the architecture was re-implemented where sensible choices were made for certain
components for which no specific information was provided in the reference literature. One such
choice was the addition of an additional embedding layer between the convolution layers and the

1https://github.com/explosion/confection
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positional encoder to map both unimodal representations (defined as du by Yoon et al. (2022)) to
the same dimensionality as proposed by Zerveas et al. (2021).

All models were trained using a desktop containing an Intel Core I9-9900K processor and
GTX1660 OC 6G graphics card. Moreover, for the replication study, the models were trained
following the experimental settings as described by Yoon et al. (2022). This means we used the
Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.002. Furthermore, the batch
size, epochs, sequence length (t), dropout and the unimodal representation dimensionality (du)
are set to 32, 50, 596, 0.1, and 256. Lastly, For each of the experiments, the models are trained
and evaluated using different seeds (0, 1, 42, 1123, 3407) following the studies by Cheong, Kuzucu
et al. (2023) and Picard (2021). This means that the reported results are the averaged results. For
the replication study, we specifically experimented with the number of heads in the cross-attention
module (8 and 16) as these are not mentioned in the paper. Moreover, both the Concat method
and cross-attention module are used as fusion methods as Yoon et al. (2022) also communicate
the performances for these methods in their paper.

5.2.2 Uni- and Multimodal Experiments

The setups of the models for the uni- and multimodal experiments largely follow the same setup
as described in subsection 5.2.1. This means that all the models use the same hyperparameters
whenever applicable and all the models are trained and evaluated with the same 5 seeds mentioned
before.

During the replication study shown in Table 6.1, we discovered that using 16 heads in the
cross-attention module yielded better performance on average compared to using 8 heads on the
v2 dataset. Therefore, for the subsequent experiments involving multimodal models, each cross-
attention module was configured with 16 heads. However, the unimodal transformer encoder is
implemented with 8 heads, aligning with the original implementation by Vaswani et al. (2017).

As discussed earlier in subsection 4.2.1, we employed both seconds-based and sentence-based
approaches for incorporating textual features. For the experiments which involved seconds-based
features, we followed the approach by Yoon et al. (2022). We used the mean duration of the vlogs,
which is 596 seconds, as the sequence length. In line with this, we used the mean number of
sentences per vlog, which is 104, for the sentence-based experiments.

Lastly, when sentence-based features or the MDSER features were used as one of the modal-
ities in the experiments, synchronisation was performed on the other features that were involved.
Consequently, no experiments were performed using the combination of seconds-based word em-
beddings and MDSER features. This is because synchronising the word embeddings effectively
turns them into sentence representations, and the unimodal experiments in section 6.2 demonstrate
that these are inferior in terms of downstream performance with respect to sentence embeddings.

5.3 Bias Mitigation Setup

For both the session-level and sentence-level experiments, the specific features used for running the
experiments were the best performing sentence-based keyword-filtered features from the unimodal
experiments shown in Table 6.2 which were the mpnet features.

5.3.1 Session-level Experiments

For the session-level experiments, the SVM model from scikit-learn2 was employed where all sen-
tences within a session were averaged into a single representation as described in subsection 4.3.2.
For the model optimisation, hyperparameters were tuned using a grid search approach. The hyper-
parameters considered were C (regularisation parameter), Gamma (kernel coefficient), and Kernel
(specifies the kernel type) using the parameter grid from Table 5.4. For all hyperparameters not
specified in this table, the default values were used, including a polynomial kernel function with a

2https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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degree of 3. The best estimator, with its corresponding hyperparameters, was selected based on
the performance of the validation subset.

Hyperparameter Values
C 0.1, 1, 10, 100
Gamma 1, 0.1, 0.01, 0.001
Kernel linear, rbf, poly, sigmoid

Table 5.4: The parameter grid for the session-level experiments. The
‘best’ parameters found are highlighted in bold.

With these ‘best’ parameters identified, all bias mitigation approaches were applied to the training
dataset. All models were trained using their respective augmented datasets on the five different
seeds used for running all the experiments after which the the averages of the performance and
fairness were computed and collected.

5.3.2 Sentence-level Experiments

For the sentence-level experiments, the unimodal model described in subsection 4.2.3 was used for
all the experiments. There were three different bias mitigation variations for the sentence-level
experiments.

Increasing Sequence Length For the original v1 bimodal model, we experimented with se-
quence lengths (n) of 596, 750, and 900. For the sentence-based unimodal model, which typically
has a maximum sequence length of 104, we additionally trained the model with sequence lengths
(n) of 140 and 180.

Gender-specific Training For this variation, the unimodal textual model was trained using
samples from only male or female subjects. Afterwards, the model was evaluated using the same
gender on which it was trained.

Bias Mitigation Methods The final variation involved applying the bias mitigation methods
described in subsection 4.3.2 to the training data . The implementation of the oversampling and
reweighing methods was straightforward.

For the Equalized Odds method, we used the EqOddsPostprocessing3 method from the aif360
library (Bellamy et al., 2018). In this approach, the post-processing model is trained using the
training set. Once trained, the model is applied to the test set during the evaluation process.

For the MixFeat method, we used an alpha value of 1.0 when drawing samples from the beta
distribution. This choice was based on the default value used in the mixup implementation4, as
the MixFeat paper (Cheong, Spitale & Gunes, 2023) did not specify an alpha value.

3https://aif360.readthedocs.io/en/stable/modules/generated/aif360.algorithms.postprocessing.
EqOddsPostprocessing.html

4https://github.com/facebookresearch/mixup-cifar10
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6 Results
In this section, we present a selection of the results from the extensive number of experiments
conducted during this study. Given the sizeable number of experiments performed, we have chosen
to present a selection of results to highlight specific experiments that most effectively illustrate the
core findings and support answering the research questions. A complete overview of the training
performance of all uni- and multimodal models, including performance metrics on the validation
and test subsets, is provided in the appendix in section A.5.

Throughout this section, we will implicitly refer back to the research (sub)questions outlined
in section 1.4. This approach helps maintain a clear connection between our experimental results
and the primary objective of this study.

6.1 Replication Study

As mentioned in subsection 5.2.1, no public architecture implementation of the D-Vlog architecture
was available at the time of this thesis. For this reason, we developed our own implementation
from scratch following the descriptions and illustrations from Yoon et al. (2022) and Cheong,
Kuzucu et al. (2023). To ensure the validity and accuracy of our implementation, we conducted a
replication study of which the results are shown in Table 6.1.

Based on the initial results of the averages on the v1 dataset, we have chosen to include the
standard deviation for the overall F1-scores to provide a clearer understanding of the performance
consistency of the models as Table 6.1 shows the re-implemented v1 bimodal models using cross-
attention having lower performance than reported in the original paper. However, it was observed
that for certain seeds, the model’s performance on the v1 dataset matched the F1-scores reported in
the original paper. For instance, the weighted F1-score for the bimodal model using 8 heads in the
cross-attention (cross8) with seed 0 is approximately 0.65, demonstrating that our implementation
can achieve comparable results under specific conditions.

Moreover, for the v1 dataset, Table 6.1 shows that the unimodal models still exhibit a perform-
ance difference between genders, with a better performance towards males, although this disparity
is less pronounced than the disparity reported in the original paper. This gender performance gap
persists across all bimodal variants, albeit with a smaller difference. This is further evidenced by
the EqOpp metric falling within the acceptable range for two of the three bimodal models.

For the v2 dataset, the results show that the performance differences between the genders
become even smaller and, in some cases, reverse, with females now having better performance.
This trend continues with the bimodal models. However, all bimodal models now fall outside the
acceptable range regarding the PredEq metric which indicates that the female class has a higher
FPR rate than the male class. Lastly, the F1-score for the bimodal model using 16 heads in the
cross-attention (cross16) outperforms the model using 8 heads which means that all subsequent
experiments involving the cross-attention module are configured with 16 heads, as mentioned in
subsection 5.2.2.
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F1-score F1-score Fairness
Dataset Modality Fusion Overall std Male Female EAcc EqOpp PredEq

v1 (Yoon et al., 2022)

audio - 0.586 - - - - - -
visual - 0.564 - - - - - -

both
concat 0.611 - - - - - -
cross 0.635 - 0.754 0.545 - - -

v1

audio - 0.602 0.058 0.674 0.568 1.19 1.32 1.06
visual - 0.608 0.040 0.684 0.572 1.19 1.25 0.82

both
concat 0.613 0.037 0.650 0.594 1.09 1.24 1.22
cross8 0.598 0.074 0.657 0.572 1.15 1.15 0.80
cross16 0.534 0.077 0.572 0.516 1.11 1.14 1.12

v2

audio - 0.581 0.164 0.567 0.584 1.00 0.99 0.81
visual - 0.608 0.033 0.599 0.612 0.98 0.95 0.90

both
concat 0.613 0.023 0.627 0.604 1.05 0.96 0.77
cross8 0.536 0.130 0.527 0.536 1.00 0.86 0.69
cross16 0.544 0.107 0.545 0.543 1.02 0.95 0.75

Table 6.1: A comparison of the performance results on the v1 and v2
datasets from the replication study with the original results as

communicated by Yoon et al. (2022). Values where the standard
deviation exceeds 10% of the overall F1-score are underlined. Fairness
values outside the acceptable range of 0.8-1.2 are highlighted in bold.
Abbreviations: equal accuracy (EAcc), equal opportunity (EqOpp),

predictive equality (PredEq).

6.2 Unimodal Results

To investigate the impact of incorporating the textual modalities and to specifically gain insights
into which word or sentence embeddings perform best for unimodal depression detection and
are suitable for use in the multimodal approach, we trained multiple models using both word
embeddings and sentence embeddings. A selection of these results is shown in Table 6.2 where
both approaches are combined.

For the seconds-based approach, the results in Table 6.2 indicate that the zero-vector filling
approach is more effective for the word2vec features that still included depression-related keywords,
whereas the average-filling approach proves more effective once these keywords were removed.
Additionally, the performance of the BioWordVec-based features was much lower than that of the
word2vec-based features. This outcome is expected, as the BioWordVec embeddings are trained
on a medical corpus (Y. Zhang et al., 2019), whereas the subjects typically do not use medical
terms in their vlogs.

For the sentence-based approach, the results indicate that the mpnet sentence embeddings
outperform the minilm sentence embeddings and that the mpnet sentence embeddings perform
as well as the word2vec word embeddings on the downstream task. Moreover, the segmentation
method from spaCy shows a slight advantage over the original approach.

Overall, Table 6.2 shows that, in almost every instance, filtering out depression-related keywords
increases the gender performance gap, resulting in better performance for females. This suggests
that these models, at least to some extent, focus on these explicit mentions of depression for the
male group. Moreover, the removal of explicit mentions of depression also causes the PredEq
metric to shift into the unacceptable range regarding fairness.

As part of the experiments, we also explored the use of emotion-enriched embeddings from acoustic
signals. Using outputs from MDSER, three different setups were trained and evaluated. Table 6.3
shows that all three setups perform on par with each other, both on performance and fairness,
but that the setup using a concatenation of the hidden layers and the VAD predictions as features
performed slightly better than the other setups. More importantly, these experiments also demon-
strated that these emotion-enriched features are more informative than the acoustic signals used
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F1-score Fairness
Feature type with keyw Both Male Female EAcc EqOpp PredEq
w2v avg yes 0.912 0.930 0.902 1.03 0.97 0.43
w2v zero yes 0.945 0.947 0.944 1.00 0.98 0.93
w2v* avg no 0.929 0.909 0.939 0.97 0.93 1.05
w2v zero no 0.913 0.863 0.939 0.92 0.92 1.90
w2v sent no 0.878 0.831 0.903 0.92 0.91 1.26
biow avg yes 0.866 0.842 0.878 0.96 0.91 0.94
biow avg no 0.859 0.807 0.886 0.91 0.89 1.24
mpnet sent yes 0.950 0.936 0.957 0.98 0.95 1.01
mpnet* sent no 0.928 0.888 0.950 0.93 0.90 1.33
mpnet spacy no 0.931 0.891 0.952 0.94 0.97 1.87
minilm sent no 0.892 0.848 0.915 0.93 0.94 1.42

Table 6.2: The performance and fairness results of the textual
unimodal model experiments. For the w2v and biow features ‘type’

refers to the approach used when handling empty segments. The
best-performing unimodal textual model that does not use the

keywords is marked with an asterisk (*). Fairness values outside the
acceptable range of 0.8-1.2 are highlighted in bold. Abbreviations:

equal accuracy (EAcc), equal opportunity (EqOpp), predictive
equality (PredEq).

by Yoon et al. (2022). Lastly, regarding gender-specific performance, one of the models trained
on the emotion-enriched embeddings had a higher performance for the male group than for the
female group. This result, together with the results from the unimodal models in the replication
study and the textual modality experiments, highlights that the choice in feature embedding can
have varying impacts on the performance of a certain group.

F1-score Fairness
Features Both Male Female EAcc EqOpp PredEq
audio 0.581 0.567 0.584 1.00 0.99 0.81
hidden 0.634 0.611 0.645 0.95 1.00 1.13
hidden + VAD* 0.636 0.624 0.642 0.98 1.04 1.16
hidden + z-score VAD 0.624 0.627 0.621 1.01 1.11 1.11

Table 6.3: Results from the experiments using features extracted using
MDSER. The unimodal audio-based model trained on the v2 dataset
from Table 6.1 has also been included in this table. Fairness values

outside the acceptable range of 0.8-1.2 are highlighted in bold.
Abbreviations: equal accuracy (EAcc), equal opportunity (EqOpp),

predictive equality (PredEq).

6.3 Multimodal Results

To investigate which fusion approach provides the best performance and to gain insight into the
impact of these fusion approaches on the fairness of the models, multiple experiments were con-
ducted. Models were trained using the best-performing unimodal features discussed in section 6.2
and the original features, described in subsection 3.2.3, with various fusion approaches. First, the
results of the bimodal models will be reviewed after which the trimodal results will be discussed.
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6.3.1 Bimodal Experiments

For the bimodal experiments, the models were run for both the seconds-based and sentence-based
approaches using the Concat and cross-attention fusion methods. In Table 6.4, the results for all
bimodal feature-fusion combinations is shown.

For the seconds-based approach, the table shows that the cross-attention fusion method yielded
better performance when visual features were used as the second modality than the Concat fusion
method. Conversely, the Concat fusion method performed better when audio features were used as
the second modality. Moreover, when visual features were the second modality, the Concat fusion
method made the model fairer across all fairness metrics, albeit with some sacrifice in performance.

For the sentence-based approach, models using the Concat fusion method performed better
compared to those using cross-attention fusion. Moreover, the sentence-based approach caused the
PredEq metric to shift into the unacceptable range for all models, resulting in better performance
for females.

F1-score Fairness
M1 M2 Fusion Both Male Female EAcc EqOpp PredEq

w2v
visual

cross 0.922 0.888 0.940 0.95 0.91 1.27
concat 0.917 0.912 0.920 0.99 0.96 0.90

audio
cross 0.907 0.881 0.921 0.98 0.92 1.25

concat 0.922 0.895 0.937 0.95 0.92 1.14

mpnet

visual
cross 0.918 0.873 0.942 0.93 0.93 1.56

concat 0.932 0.895 0.952 0.94 0.91 1.24

audio
cross 0.931 0.891 0.952 0.94 0.94 1.62

concat* 0.937 0.888 0.963 0.92 0.91 1.77

hiddenVAD
cross 0.922 0.877 0.946 0.93 0.90 1.34

concat 0.933 0.891 0.955 0.93 0.91 1.39

Table 6.4: Results from the bimodal model experiments using the top
performing features from the unimodal experiments. The w2v stands

for the time-based approach whereas mpnet stands for the
sentence-based approach. The best-performing bimodal model is

marked with an asterisk (*) after the fusion method. Fairness values
outside the acceptable range of 0.8-1.2 are highlighted in bold.

Abbreviations: equal accuracy (EAcc), equal opportunity (EqOpp),
predictive equality (PredEq), M1: the features of the first modality,

M2: the features of the second modality.

6.3.2 Trimodal Experiments

For the trimodal experiments, the three fusion methods described in Figure 4.2.3 were applied to
both seconds-based and sentence-based approaches. In Table 6.5, a selection of models is shown
where the two best-performing models for each feature-fusion combination are displayed. Overall,
the Concat fusion approach was found to be the most effective for both approaches. However,
for the seconds-based approach, the proposed crisscross attention fusion achieved the same overall
performance as the Concat fusion. Lastly, the results show that the fusion with hiddenVAD as
one of the additional modalities made the models far more unfair regarding the PredEq metric
compared to the other feature-fusion approaches.
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F1-score Fairness
M1 M2 + M3 Fusion Both Male Female EAcc EqOpp PredEq

w2v visual, audio
criss* 0.926 0.905 0.937 0.97 0.95 1.27

concat* 0.926 0.895 0.943 0.95 0.92 1.22

mpnet
visual, hiddenVAD

criss 0.911 0.855 0.941 0.91 0.87 1.58
concat 0.925 0.891 0.942 0.95 0.94 1.43

audio, visual
layered 0.919 0.887 0.936 0.95 0.95 1.24
concat* 0.926 0.888 0.946 0.94 0.91 1.28

Table 6.5: Results from the trimodal model experiments using the top
performing features from the unimodal experiments and the proposed
fusion methods. The best-performing trimodal model is marked with
an asterisk (*) after the fusion method. Fairness values outside the
acceptable range of 0.8-1.2 are highlighted in bold. Abbreviations:

equal accuracy (EAcc), equal opportunity (EqOpp), predictive
equality (PredEq), M1: the features of the first modality, M2 + M3:

the features of the second and third modalities.

6.3.3 Comparative Analysis of Best Uni-, Bi-, and Trimodal Models

Given the sizeable number of experiments performed, we evaluated the best-performing unimodal,
bimodal, and trimodal models to determine whether there are any significant differences between
the multimodal approaches and the unimodal textual model. Since the sentence-based approach
yielded the best-performing models overall, we focused on the best-performing sentence-based
model from each experiment.

In Table 6.6, the comparison is shown between these three models. However, no significant
difference was found between the performances and fairness metrics of the unimodal and the
other models. Since the multimodal models did not prove to be significantly better on any of
the metrics, the unimodal model using mpnet sentence features was chosen to use in the bias
mitigation experiments. Lastly, one notable result from this table is that the outcomes for the
male gender appear to be very stable.

F1-score Fairness
Model Both Male Female EAcc EqOpp PredEq
unimodal 0.928 0.888 0.950 0.93 0.90 1.33
bimodal 0.937 0.888 0.963 0.92 0.91 1.77
trimodal 0.926 0.888 0.946 0.94 0.91 1.28

Table 6.6: Comparative results of the best uni-, bi-, and trimodal
models. Abbreviations: equal accuracy (EAcc), equal opportunity

(EqOpp), predictive equality (PredEq).

6.4 Bias Mitigation Results

As described in subsection 4.3.2, we applied a series of bias mitigation methods to evaluate whether
the existing gender bias can be reduced. The results of these experiments are shown in this section.

6.4.1 Sequence Length Experiments

As described in subsection 5.3.2, we experimented with increasing the sequence length of the input
the model takes in. The results of these experiments are shown in Table 6.7. The results indicate
that for the original bimodal cross-attention model trained using the original dataset (bimodal v1),
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the EqOpp metric worsens as performance increases while the PredEq metric improves. Conversely,
for the textual unimodal model, although there is a slight increase in performance, the fairness
metrics remain largely unchanged.

Fairness
Model n F1-score EAcc EqOpp PredEq

bimodal v1
596 0.534 1.11 1.14 1.12
750 0.577 1.10 1.16 1.12
900 0.599 1.15 1.25 1.05

unimodal mpnet
104 0.928 0.93 0.90 1.33
140 0.931 0.94 0.91 1.34
180 0.937 0.95 0.94 1.36

Table 6.7: Results from the experiments where the sequence length (n)
of the input for the models gets increased. Fairness values outside the

acceptable range of 0.8-1.2 are highlighted in bold. Abbreviations:
equal accuracy (EAcc), equal opportunity (EqOpp), predictive

equality (PredEq).

6.4.2 Gender-specific Analysis

Inspired by Yoon et al. (2022), a gender-specific analysis was conducted using some of the newly
introduced features in this research to investigate how gender affects the detection of depression for
these features. The results in Table 6.8 indicate that for the models using the emotion-enriched
features (hiddenVAD), the male class benefits more when both classes are represented in the
training dataset, while the female class only shows a slight improvement when gender-specific
training gets applied. Regarding the textual features, gender-specific training slightly improves
the results for the sentence-based features (mpnet), whereas this trend is inverted for the seconds-
based word embedding features (w2v).

F1-score
Train Test hiddenVAD w2v mpnet
Male Male 0.595 0.902 0.895

Female Female 0.645 0.935 0.954

Both
Male 0.624 0.909 0.888

Female 0.642 0.939 0.950

Table 6.8: Results of gender-specific training for the emotion-enriched
(hiddenVAD), sentence-based (mpnet), and seconds-based (w2v)

features.

6.4.3 Bias Mitigation Methods

For the experiments regarding the application of various bias mitigation methods, the methods
were applied both at the session-level and sentence-level, utilising different models and feature
approaches for each.

For the session-level experiments, all pre-processing and post-processing bias mitigation meth-
ods were applied to the averaged representation of each session. The results of these experiments
are shown in Table 6.9. The results show that the textual modality remains effective even when a
simpler model is used. However, the results also show the performance of each model decreasing
with the application of the bias mitigation methods, with the subgroup and synthetic mixgendered
methods showing drastic performance drops. Notably, the table shows that for these two specific
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bias mitigation methods, the PredEq metric flips, indicating a higher FPR for the male class. The
EAcc metric remains consistent, suggesting that the existing performance gap persists.

For the Equal Odds post-processing method, Table 6.9 shows an improvement in fairness
regarding the PredEq metric while also displaying a performance that is only slightly lower than
that of the original model without bias mitigation which aligns with previous research (Sogancioglu
et al., 2024).

Fairness
Bias mitigation Method F1-score EAcc EqOpp PredEq
None – 0.921 0.96 0.88 0.72
Pre: oversampling - 0.917 0.95 0.90 0.94

Pre: mixfeat

Group 0.916 0.94 0.86 0.72
Mixg 0.914 0.94 0.82 0.50
Subgroup 0.886 0.95 0.98 1.27
Synth 0.920 0.96 0.92 0.94
Synth mixg 0.823 0.96 1.00 1.13

Post: Equal Odds - 0.915 0.94 0.88 0.97

Table 6.9: Results from the session-level experiments using the
pre-processing bias mitigation methods. Fairness values outside the
acceptable range of 0.8-1.2 are highlighted in bold. Abbreviations:

Mixg: mixgendered. Synth: synthetic. equal accuracy (EAcc), equal
opportunity (EqOpp), predictive equality (PredEq).

For the sentence-level experiments, the results in Table 6.10 show that, even though sentences from
two samples may be combined without maintaining any temporal connection, the performance does
not decrease that much and even improves for some methods. Specifically, the subgroup variant
maintains performance levels whereas the reweighing method results in higher performance.

Overall, the EAcc metrics remain largely unchanged compared to the original method, as do the
EqOpp metrics. However, the PredEq metrics increase for each mitigation method, indicating that
the FPR of the male group increases more compared to the FPR for the female group. Regarding
the synthetic variants, both experiments demonstrate the potential of using the MixFeat approach
to generate synthetic data, as both models do not necessarily underperform in performance with
respect to the other models. Lastly, Table 6.10 shows that the Equal Odds post-processing method
was not able to fully mitigate the bias regarding the PredEq metric.
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Fairness
Bias mitigation Method F1-score EAcc EqOpp PredEq
None - 0.928 0.93 0.90 1.33
Pre:oversampling - 0.925 0.92 0.91 1.81

Pre:mixfeat

Group 0.927 0.92 0.90 1.55
Mixg 0.927 0.92 0.92 1.84
Subgroup 0.928 0.93 0.91 1.45
Synth 0.911 0.91 0.91 1.77
Synth mixg 0.923 0.93 0.95 1.84

In:reweighing - 0.934 0.93 0.90 1.59
Post:Equal Odds - 0.926 0.93 0.90 1.49

Table 6.10: Results from the sentence-level experiments using the bias
mitigation methods. Fairness values outside the acceptable range of
0.8-1.2 are highlighted in bold. Scores that are significantly better

than the model trained on the original data (p < 0.05), are highlighted
in green; otherwise in red. Abbreviations: Mixg: mixgendered, Synth:

synthetic, equal accuracy (EAcc), equal opportunity (EqOpp),
predictive equality (PredEq).
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7 Discussion and Conclusion

7.1 Conclusions

In this section, each of the sub-questions gets answered based on the findings from the experiments.
The section will conclude in subsection 7.1.2 where the main research questions of this thesis will
be addressed.

7.1.1 Sub-questions

For RQ 1A, we extracted the transcripts using a publicly available ASR Whisper model trained
to predict approximate timestamps on speech segments. Subsequently, both pre-trained word
and sentence embeddings were utilised, and a myriad of experiments were conducted based on
seconds-based and sentence-based approaches. Additionally, a preprocessing step was implemented
to prevent potential data leakage by removing explicit mentions of depression synonyms. All
unimodal models were trained using the architecture proposed by Yoon et al. (2022). The results
indicated that mpnet sentence embeddings, specifically those using spaCy’s sentencizer, performed
best in terms of F1-score for the unimodal model, having only a slight advantage over the model
utilising word2vec word embeddings.

To determine the best fusion approach for combining audio, video, and text modalities for RQ
1B, multiple multimodal models using various fusion methods were trained. Experiments were
conducted using the Concat, cross-attention module, and two novel fusion approaches (crisscross
attention and layered cross-attention). Additionally, a synchronisation method was used to align
seconds-based features with sentence-based features. Initially, unimodal models were trained using
each modality’s feature representation and their experimental variants. The features achieving
the highest weighted F1-score for each modality were then combined to form the input for the
multimodal models. While the unimodal models already performed very well in terms of F1-score.
The results indicated that the bimodal model using mpnet sentence embeddings combined with
aligned audio features, and employing the Concat fusion method, performed best in terms of F1-
score. This increase in performance for the multimodal approach over an unimodal approach is
consistent with prior work (Cheong, Spitale & Gunes, 2023; Flores et al., 2022; Yoon et al., 2022).

To answer RQ 1C, the performance and fairness metrics were used from the experiments
conducted to answer the previous subquestions. With regard to the equal accuracy and equal
opportunity metrics, the impact of the fusion approaches can be considered limited. However, for
the predictive equality metric, certain fusion methods do affect the fairness of the model and may
even worsen it. For instance, the cross-attention fusion approach often causes predictive equality
to fall outside the acceptable range, whereas the predictions of the unimodal models using the
same separate features were considered fair for this metric.

For RQ 1D, the trade-off between fairness and performance for uni- and multimodal models
was assessed. The results indicated a clear trade-off for the unimodal models. Models trained
using the acoustic and visual features were considered fair but lacked with regard to performance,
whereas most models using textual features were more accurate but introduced some unfairness,
with the model using seconds-based word2vec embeddings being the exception on this point. This
trade-off persisted in the multimodal models, where some models were able to slightly increase
the performance but also increased unfairness while using features that were considered fair in the
unimodal context.

For RQ 2A, the trained models were screened for potential sources of gender bias. During this
step, both modality-based and gender-based analyses were performed. Our findings indicate that
it is not necessarily the unbalanced dataset that introduces gender bias into the model but rather
the choice in modality, the specific feature embeddings and subsequent preprocessing steps that
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were used. For instance, before the filtering preprocessing steps, most predictions using textual
features were fair based on the chosen metrics. After the filtering, these predictions turned unfair
where the female group had a much higher accuracy compared to the male group. This finding
shows how embeddings may impact the model downstream and subsequently introduce bias by
favouring a certain class or group which is consistent with prior work (Sogancioglu et al., 2023).
Moreover, the results showed that when these features were used in a multimodal setup, they
increased unfairness even though the other features used in an unimodal context were considered
fair. Lastly, the results indicated that certain fusion approaches had a larger impact on the increase
of bias than others.

Lastly, for RQ 2B, different bias mitigation variations were experimented upon. Originally,
as stated by the research question, the best model was to be selected from the answer to RQ
1B. However, ultimately, the best unimodal textual model was chosen for the sake of experimental
brevity and because there were no significant differences in scores found between the best unimodal
and multimodal models. Increasing the sequence length, as proposed by Cheong, Kuzucu et al.
(2023), does not fix the gender bias from the models since we only observed a slight increase
in the performance of both the bimodal v1 model and the textual unimodal model while the
fairness metrics remained largely unchanged. With regards to the application of the bias mitigation
methods, our results are consistent with the conclusions made by Cheong, Kuzucu et al. (2023).
where we do not observe a consistent improvement in performance or fairness, with the PredEq
metric even consistently worsening for all mitigation methods.

7.1.2 Main Research Questions

As stated in section 1.4, this thesis aims to both introduce the textual modality as an additional
feature space as well as gaining insight into the bias situation of the models. For this purpose,
two research questions were devised which will be answered below.

Does the inclusion of the textual modality contribute to the performance of the mul-
timodal depression detection model trained on the D-Vlog dataset in terms of the
F1-score?

The inclusion of the textual modality contributes positively to the performance of both the uni-
and multimodal depression detection models trained on the D-Vlog dataset. The results of the
experiments demonstrated that unimodal models using the textual modality outperformed all other
unimodal models that used either visual, acoustic, or emotion-enriched features. Furthermore,
the experiments revealed that incorporating the textual modality in fusion with other modalities
could potentially further enhance the performance of the depression detection models in terms of
performance.

To what extent can the application of bias mitigation techniques help reduce existing
gender bias in the best model that has been obtained while answering the previous
research question?

Our experimental results showed that the choice of modality and specific feature embeddings
may introduce additional gender bias into the model. Subsequently, the results showed that the
application of the chosen bias mitigation techniques and their respective experimental variants did
not result in a consistent reduction of the existing gender bias in the best unimodal textual model.
While these findings indicate that the current bias mitigation techniques were not effective for the
unimodal textual model trained on the D-Vlog dataset, this does not imply that these techniques
cannot be useful. They may still prove beneficial when applied to different model architectures,
fusion approaches or feature representations.

7.2 Discussion

In this section, we will discuss several challenges and limitations encountered during the research.
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7.2.1 Absence of Available Code

One of the significant limitations of this study is the absence of available source code from the
original paper (Yoon et al., 2022) as well as from a subsequent study (Cheong, Kuzucu et al., 2023)
where a replication study was performed. The lack of a public architecture implementation posed
certain challenges in ensuring our code remained faithful to the initial research. As a result of this
limitation, the original model was reconstructed and re-implemented based on the descriptions,
illustrations and parameters provided in the literature. This process of reconstructing the model
could introduce some discrepancies in our implementation and results, as there is a possibility that
the variations we (un)consciously introduce in our implementation may affect our final results.

This limitation underlines the importance of open-source code in research for reproducibility
and validation purposes. As a response to this and to contribute to the transparency and repro-
ducibility of research in this domain, we make the code open-source by making the repository
publicly accessible1.

7.2.2 Dataset Constraints in Comparative Analysis

As previously mentioned in section 5.1, we were unable to retrieve all the transcripts for the
videos in the original D-Vlog dataset. Consequently, we created a separate dataset consisting of
all vlogs that were available while taking the original class imbalance into account. Despite our
results demonstrating that we outperform models from the other studies trained on the original
v1 dataset using the original experimental protocol, a direct comparison is not feasible since we
used a different data split. Therefore, while our findings are promising, they should be interpreted
with caution considering the differences in dataset composition.

7.2.3 Training with Uniform Hyperparameters

At this time, all uni-, bi-, and multimodal models were trained using the same hyperparameters
wherever applicable. The only variation in hyperparameters was the number of heads in the
cross-attention, which was specifically experimented upon for replication purposes. Consequently,
this approach could imply that some models may have been trained with suboptimal parameters.
Suboptimal training can impact the performance and fairness of the models, which means that
the results for some models will not fully capture their true potential regarding performance and
fairness (Nguyen et al., 2023).

7.2.4 Data in the Wild vs Clinical Data

The D-Vlog dataset consists of self-identified depressed individuals. A benefit of collecting such a
dataset is that it easily scales since the data is more readily available and less intensive to procure.
However, it also has the potential to introduce problematic self-disclosure bias and label noise
making the collected samples less representative (Aguirre et al., 2021). The subjects in the vlogs
may selectively share only certain symptoms or experiences, omitting aspects of their condition.
Moreover, the reliance on self-identification could lead to inaccuracies and inconsistencies in how
depression is labelled and interpreted. Both these issues can affect the generalisability of the model
and potentially the performance if the model is used in the real world.

7.2.5 Variety of the Collected Data

The D-Vlog dataset was collected using specific search keywords to collect both depression and non-
depression vlogs in which both self-identified depressed and non-depressed individuals talk about
topics that relate to them. This approach can lead to spurious correlations that models might
exploit to achieve higher precision (Hovy & Prabhumoye, 2021). For example, non-depressed vlogs
might contain a wider variety of topics and tones, while depressed vlogs may focus more narrowly

1https://github.com/StanMey/Master thesis DVlog
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on specific themes related to depression. This can cause the models to overfit on depression-related
signals (Wolohan et al., 2018).

As can be seen in Table 5.3, the depressive subgroup already tends to use more words related
to symptoms or consequences of depression. Consequently, the model might learn to associate
certain topics, keywords, or emotional tones with depression, and develop some conversational
topic bias rather than identifying underlying depressive symptoms (Wolohan et al., 2018).

As described in subsection 4.2.1, we did perform additional data preprocessing steps to prevent
potential data leakage caused by explicit mentions of depression symptoms in the textual data.
However, we do still have specific depression vlogs in which people speak openly about being
depressed. In contrast, in real life they may not be so open about this which means that we might
still end up with a model having some conversational topic bias (Wolohan et al., 2018).

7.3 Future Research

This section discusses several possibilities for future research.

7.3.1 Additional Features and Architectures

This thesis investigated the impact of adding the textual modality and various fusion approaches,
including two novel experimental fusion methods, on the overall performance and fairness of uni-
and multimodal depression detection models. We utilised the original acoustic and video embed-
dings and introduced emotion-enriched embeddings to enhance our models.

Given that there are gender differences in depression manifestation and diagnosis (Cheong,
Kuzucu et al., 2023), future research could explore the addition of features that model depres-
sion in more meaningful ways. For instance, Sun et al. (2024) and Cheong, Spitale and Gunes
(2023) successfully extracted features using sentiment analysis and applied them to the depression
detection task, indicating the potential value of such features in this context.

Additionally, integrating existing pre-trained, grounded video-language models or models trained
using Contrastive Language-Image Pre-Training (CLIP) (Radford et al., 2021) could be highly be-
neficial. These multimodal models often leverage vast datasets to understand the interplay between
multiple modalities, which might allow them to capture subtle cues and correlations that regular
unimodal models might miss ultimately resulting in a more comprehensive understanding and
better performance.

Lastly, with regards to alternative architectures, it would be beneficial to use a GCN model
on the D-Vlog dataset while leveraging the textual modality. Previous research by Sun et al.
(2024) showed their model outperforming other approaches while only using the acoustic features
from the D-Vlog. Using such a model can also benefit interpretability and feature importance
analysis, which will be discussed in section 7.3. Burdisso et al. (2024) used the GCN model
for a qualitative analysis on the DAIC-WOZ dataset, demonstrating the model’s interpretability
property by displaying the segments the model focused on when predicting whether a person was
depressed.

7.3.2 Cross-corpus Analysis

In the original D-Vlog paper by Yoon et al. (2022), the researchers performed a cross-corpus
validation using the clinically labelled DAIC-WOZ dataset alongside their proposed model and
dataset. This analysis aimed to assess how the D-Vlog dataset could contribute to depression
research and focused on the acoustic and visual features of both datasets.

Given the addition of the textual modality in this study, a valuable future research step would
be to replicate this cross-corpus validation using the textual modality as an additional modality.
This would involve evaluating whether the findings reported by Yoon et al. (2022) still hold when
incorporating the textual modality, providing a more comprehensive understanding of how the
D-Vlog dataset and model could contribute to depression research.
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7.3.3 Hyperparameter Search

As described in subsection 7.2.3, at this time, all uni-, bi-, and multimodal models were trained
using the same hyperparameters wherever applicable. This approach could have led to some models
being trained with suboptimal parameters, potentially impacting their fairness and performance.
For this reason, applying hyperparameter tuning to some of the models could benefit both the
performance and fairness of these models since past research has demonstrated the effectiveness
of parameter tuning with regards to enhancing the fairness of models without sacrificing accuracy
(Nguyen et al., 2023; Tizpaz-Niari et al., 2022).

7.3.4 Feature Importance Analysis

In this thesis, we primarily examined the impact of adding various combinations of features using
specific fusion methods on the overall performance and fairness of uni- and multimodal depression
detection models. However, a more in-depth analysis of (textual) feature importance would provide
valuable insights into the contribution of each feature and modality.

Moreover, by specifically doing this analysis using the textual modality, we can conduct a topic
analysis to uncover any potential biases in conversational topics within the dataset. This, in turn,
can inform us about the presence and nature of any conversational topic biases.

One potential approach, inspired by Min et al. (2023), is to utilise explainable models in
conjunction with interpretable features. While this approach may not be suitable for word and
sentence embeddings directly, an alternative could involve training a depression detection model
using separate sentences as input. This method would allow us to rank sentences for each sample,
helping to identify which sentences are more critical for the model’s predictions. Moreover, analys-
ing these rankings could reveal important linguistic patterns and cues associated with depression.

Furthermore, to analyse the importance of combined modalities, we could implement a depres-
sion detection model using the fusion approaches proposed by Fang et al. (2023) or Shen et al.
(2022). These approaches involve training a separate attention weight vector, which should re-
flect the internal relationships and importance of each modality. By examining these attention
weights, we can gain a better understanding of how different modalities contribute to the model’s
decision-making process.

Lastly, another potential approach regarding explaining the importance of the individual mod-
alities to the eventual prediction is to follow the approach by Gimeno-Gómez et al. (2024). The
authors used the Integrated Gradients (Sundararajan et al., 2017) attribution method which can
give attribution scores per modality over a select window.

7.4 Ethical Considerations

This section discusses some of the key ethical issues and concerns that may or have arisen during
this project. This section will address issues such as the protection of participant privacy, ensuring
data security, any issues with the dataset that is being used, and the potential implications of the
usage of the model.

Ethics and Privacy Quick Scan Prior to this thesis, the Ethics and Privacy Quick Scan
(Utrecht University, n.d.) from the Research Institute of Information and Computing Sciences of
the Utrecht University was conducted where it classified this research as low-risk with no fuller
ethics review or privacy assessment required.

Privacy and Anonymity of Subjects The first consideration centres around the privacy of
the persons in the vlogs. The authors of the original D-Vlog dataset (Yoon et al., 2022) have
provided de-identified anonymized data consisting of the extracted acoustic and visual features.
However, since one of the aims of this thesis is to add the textual modality to the model the
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provided dataset proved to be inadequate. To retrieve the captions of the vlogs, the authors
supplied identifies for each vlog, which were used to extract the textual content.

To retrieve these captions, it was necessary to download the corresponding vlogs, a process not
condoned by YouTube’s terms of service and to which participants did not explicitly consent. To
address these privacy concerns, strict measures were implemented: the videos were downloaded
solely for caption extraction purposes, and the extraction process was conducted locally to prevent
any kind of data transmission to third parties. Subsequently, the videos were promptly deleted
from the researcher’s machine to minimise any potential privacy risks.

However, despite these precautions, the risk remains that the usage of captions could facilitate
the identification process of the individuals in the vlogs. For the DAIC-WOZ interviews, where
the researchers transcribed interviews from the audio stream, the captions were de-identified by
removing identifying information (Gratch et al., 2014) to mitigate this risk. For our dataset, the
captions were transformed into word and sentence embeddings which enables us to preserve the
individual’s privacy and anonymity while still enabling a researcher to do meaningful analysis.

By employing the safeguards described above, we try to balance the necessity of retrieving the
textual data which was needed for performing the research with the need to protect the privacy
and anonymity of the vlog participants.

Usage of Binary Labels The next consideration regards the usage of binary labels for gender.
Since the D-Vlog dataset has been labelled using the sex categories of male and female, we will
continue to use these labels as binary categories. Nevertheless, we acknowledge that many indi-
viduals do not fit into these binary categories and that they often experience higher mental health
disorders at a higher rate compared to their heterosexual counterparts (McDonald, 2018).

Interpretation and Application of a Depression Detection Model The accuracy of the
implemented depression detection scores in this study warrants cautious interpretation, particu-
larly within the context of early-stage depression detection. As stated by Min et al. (2023), the
trade-off between false positives and negatives comes with significant implications since false posit-
ives may lead to unnecessary interventions while false negatives may result in missed opportunities
for early intervention.

Furthermore, it is important to clarify the purpose of the depression detection model with
regards to the application. The primary goal of this model would be to assist the practitioner with
the early-stage detection of depression instead of replacing this clinical judgement. This distinction
is crucial, especially in light of the regulatory framework of the AI act (European Parliament, 2023;
Meaker, 2023), which emphasises addressing and mitigating possible risks specifically created
through the use of AI systems.

Environmental Impact This ethical concern relates to the environmental impact of developing
and training ML models. These processes are often resource-intensive, require substantial amounts
of electricity and hardware, and contribute to a large carbon footprint (Dhar, 2020; Lacoste et al.,
2019). To lessen this impact, pre-trained models are utilised whenever possible to reduce resource
consumption. Furthermore, we chose to train all models using GPU instead of CPU as this was
the more efficient hardware for this task and the model.
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Acronyms
AI Artificial Intelligence. 23, 26
ASR Automatic Speech Recognition. 27, 38, 50
AttFN attentional fusion network. 19

CLIP Contrastive Language-Image Pre-Training. 53
CPU central processing unit. 55

DL Deep Learning. 10, 18
DTW Dynamic Time Warping. 27

EAcc equal accuracy. 33, 34, 43–49
ECG electrocardiogram. 24
EEG electroencephalography. 26
eGeMAPS extended Geneva Minimalistic Acoustic Parameter Set. 21
EqOpp equal opportunity. 33, 42–49

FN False Negative. 7
FP False Positive. 7
FPR False Positive Rate. 6, 7, 42, 48

GCN graph convolutional network. 22, 53
GPU graphics processing unit. 55
GRU gated recurrent unit. 11
grwm get ready with me. 20

LLD low-level acoustic descriptor. 20, 21
LSTM long short-term memory. 11

MDSER Model for Dimensional Speech Emotion Recognition. ix, 29, 32, 40, 43, 44
MFCC Mel-frequency ceptral coefficients. 16
ML Machine Learning. 1, 5, 6, 8–10, 16, 23–25, 55

NLP Natural Language Processing. 14
NN Neural Network. 11

PredEq predictive equality. 33, 42–49, 51
PTSD post-traumatic stress disorder. 17

RNN recurrent neural network. 11
ROC Reject Option Classification. 10, 23, 35
RQ 1A Which SOTA pre-trained word embeddings and sentence embeddings perform best in

terms of F1-score for unimodal depression prediction on the D-Vlog dataset?. 3, 50
RQ 1B Which fusion approach to the audio, video and text modalities gives the best performance

regarding the F1-score?. 3, 50, 51
RQ 1C What is the impact of the fusion approaches of subquestion 1B on the fairness of the

model in terms of equal accuracy, equal opportunity, and predictive equality?. 3, 50
RQ 1D Is there a trade-off between fairness and performance for uni- and multimodal models

with different fusion schemes?. 3, 50
RQ 2A What are the potential sources of gender bias (e.g., data imbalance, feature representa-

tion, modality) in the models trained on the D-Vlog dataset?. 50
RQ 2B What bias mitigation approach is most effective in mitigating existing gender bias con-

tained in the best model that has been obtained during subquestion 1B?. 51
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Acronyms Acronyms

SER Speech Emotion recognition. 29
SOTA state-of-the-art. 3, 14, 27, 56
SVM support vector machine. 36, 40

TAMF time-aware attention multimodal fusion. 20
TP True Positive. 7
TPR True Positive Rate. 6, 7

VAD arousal, dominance, and valence. 29, 43

WHO World Health Organization. 1
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Üstün, T. B., Ayuso-Mateos, J. L., Chatterji, S., Mathers, C., & Murray, C. J. L. (2004). Global
burden of depressive disorders in the year 2000. The British Journal of Psychiatry, 184 (5),
386–392. https://doi.org/10.1192/bjp.184.5.386

Utrecht University. (n.d.). Ethics and privacy. Retrieved June 26, 2024, from https://www.uu.nl/
en/research/institute-of-information-and-computing-sciences/ethics-and-privacy

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,  L., & Po-
losukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30.

Wagner, J., Triantafyllopoulos, A., Wierstorf, H., Schmitt, M., Burkhardt, F., Eyben, F., &
Schuller, B. W. (2023). Dawn of the transformer era in speech emotion recognition: Clos-
ing the valence gap. IEEE Transactions on Pattern Analysis and Machine Intelligence,
1–13.

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., & Zhou, M. (2020). Minilm: Deep self-attention
distillation for task-agnostic compression of pre-trained transformers.

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in
software engineering. Proceedings of the 18th international conference on evaluation and
assessment in software engineering, 1–10.

Wolohan, J., Hiraga, M., Mukherjee, A., Sayyed, Z. A., & Millard, M. (2018, August). Detect-
ing linguistic traces of depression in topic-restricted text: Attending to self-stigmatized
depression with NLP. In M. Sinha & T. Dasgupta (Eds.), Proceedings of the first interna-
tional workshop on language cognition and computational models (pp. 11–21). Association
for Computational Linguistics. https://aclanthology.org/W18-4102

Yadav, U., & Sharma, A. K. (2023). A novel automated depression detection technique using text
transcript. International Journal of Imaging Systems and Technology, 33 (1), 108–122.

Yan, S., Huang, D., & Soleymani, M. (2020). Mitigating biases in multimodal personality assess-
ment. https://doi.org/10.1145/3382507.3418889

Yang, L., Jiang, D., He, L., Pei, E., Oveneke, M. C., & Sahli, H. (2016). Decision tree based
depression classification from audio video and language information. Proceedings of the
6th international workshop on audio/visual emotion challenge, 89–96.

Yang, L., Jiang, D., Xia, X., Pei, E., Oveneke, M. C., & Sahli, H. (2017). Multimodal measurement
of depression using deep learning models. Proceedings of the 7th Annual Workshop on
Audio/Visual Emotion Challenge, 53–59.

Yang, L., Sahli, H., Xia, X., Pei, E., Oveneke, M. C., & Jiang, D. (2017). Hybrid depression
classification and estimation from audio video and text information. Proceedings of the
7th annual workshop on audio/visual emotion challenge, 45–51.

Ye, J., Yu, Y., Wang, Q., Li, W., Liang, H., Zheng, Y., & Fu, G. (2021). Multi-modal depression
detection based on emotional audio and evaluation text. Journal of Affective Disorders,
295, 904–913.

64 UU Master Thesis

https://doi.org/10.1177/17456916221134490
https://doi.org/10.1145/3510003.3510202
https://doi.org/10.1192/bjp.184.5.386
https://www.uu.nl/en/research/institute-of-information-and-computing-sciences/ethics-and-privacy
https://www.uu.nl/en/research/institute-of-information-and-computing-sciences/ethics-and-privacy
https://aclanthology.org/W18-4102
https://doi.org/10.1145/3382507.3418889


BIBLIOGRAPHY BIBLIOGRAPHY

Yepes, A. J. (2017). Word embeddings and recurrent neural networks based on long-short term
memory nodes in supervised biomedical word sense disambiguation. Journal of biomedical
informatics, 73, 137–147.

Yin, D., Li, L. H., Hu, Z., Peng, N., & Chang, K.-W. (2021, November). Broaden the vision: Geo-
diverse visual commonsense reasoning. In M.-F. Moens, X. Huang, L. Specia & S. W.-t.
Yih (Eds.), Proceedings of the 2021 conference on empirical methods in natural language
processing (pp. 2115–2129). Association for Computational Linguistics. https://doi.org/
10.18653/v1/2021.emnlp-main.162

Yoon, J., Kang, C., Kim, S., & Han, J. (2022). D-vlog: Multimodal vlog dataset for depression
detection. Proceedings of the AAAI Conference on Artificial Intelligence, 36 (11), 12226–
12234.

Zanna, K., Sridhar, K., Yu, H., & Sano, A. (2022). Bias reducing multitask learning on men-
tal health prediction. 2022 10th International Conference on Affective Computing and
Intelligent Interaction (ACII), 1–8.

Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., & Eickhoff, C. (2021). A transformer-
based framework for multivariate time series representation learning. Proceedings of the
27th ACM SIGKDD conference on knowledge discovery & data mining, 2114–2124.

Zhang, B. H., Lemoine, B., & Mitchell, M. (2018). Mitigating unwanted biases with adversarial
learning. Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society,
335–340. https://doi.org/10.1145/3278721.3278779

Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). Mixup: Beyond empirical risk
minimization. International Conference on Learning Representations. https://openreview.
net/forum?id=r1Ddp1-Rb

Zhang, Y., Chen, Q., Yang, Z., Lin, H., & Lu, Z. (2019). Biowordvec, improving biomedical word
embeddings with subword information and mesh. Scientific data, 6 (1), 52.

Zhou, L., Liu, Z., Shangguan, Z., Yuan, X., Li, Y., & Hu, B. (2022). Tamfn: Time-aware attention
multimodal fusion network for depression detection. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 31, 669–679.

Zhou, L., Liu, Z., Yuan, X., Shangguan, Z., Li, Y., & Hu, B. (2023). Caiinet: Neural network based
on contextual attention and information interaction mechanism for depression detection.
Digital Signal Processing, 137, 103986. https://doi.org/https://doi.org/10.1016/j.dsp.
2023.103986

UU Master Thesis 65

https://doi.org/10.18653/v1/2021.emnlp-main.162
https://doi.org/10.18653/v1/2021.emnlp-main.162
https://doi.org/10.1145/3278721.3278779
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb
https://doi.org/https://doi.org/10.1016/j.dsp.2023.103986
https://doi.org/https://doi.org/10.1016/j.dsp.2023.103986


A Appendix

A.1 Extracted Transcript Example

1 {

2 "text": " So I wanted to come on here and sit down with you guys...",

3 "segments": [

4 {

5 "start": 0.6,

6 "end": 6.02,

7 "text": " So I wanted to come on here and...",

8 "tokens": [

9 50364, 407, 286, 1415, 281, 808, 322, 510, 293, 1394, 760,...

10 ],

11 "temperature": 0.0,

12 "no_speech_prob": 0.03191100433468819,

13 "confidence": 0.868,

14 "words": [

15 {

16 "text": "So",

17 "start": 0.6,

18 "end": 0.76,

19 "confidence": 0.725

20 },

21 {

22 "text": "I",

23 "start": 0.76,

24 "end": 0.84,

25 "confidence": 0.853

26 },

27 {

28 "text": "wanted",

29 "start": 0.84,

30 "end": 1.04,

31 "confidence": 0.938

32 },

33 ...

34 ]}]

35 }

Figure 9: A shortened and simplified example of a retrieved transcript
using whisper-timestamped.
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APPENDIX A. APPENDIX A.2. RESEARCH QUESTIONS PROCESS WORKFLOW

A.2 Process Workflows for Answering Research Questions

A.2.1 Process Workflow First Research Question

Figure 10: The research process workflow used for answering the first
research question. The Preprocessing Pipeline refers to the feature

extraction pipeline shown in Figure 4.

A.2.2 Process Workflow Second Research Question

Figure 11: The research process workflow used for answering the
second research question.
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A.3. LABEL-GENDER LINGUISTIC FEATURES APPENDIX A. APPENDIX

A.3 The Label-gender Combination Linguistic Features Table

Depression Normal
female male female male

n-gram word(s) count word(s) count word(s) count word(s) count

1

biscuit 23 neardeath 18 thesis 39 tammy 58
psychiatric 16 gagging 11 sephora 34 assassin 21
legitimately 15 cranium 9 weaving 33 shadowing 18
decis 15 cratum 9 binder 29 creed 17
ian 13 kava 9 cosmetology 22 timber 16
waving 11 hazing 8 scent 21 paralysis 15
hotline 11 ordinary 8 rite 21 surgeon 15
smacker 11 gon 7 bracelet 20 hearthstone 14
postpartum 10 wim 7 planner 20 spawn 13
azda 10 hof 7 sloth 20 uganda 12

2

penn teller 16 neardeath experience 18 double crochet 35 treasure hunt 34
im angry 13 ice bath 14 peer pressure 26 string pattern 26
depressed people 12 glory sun 14 chain one 23 jerk bait 25
keep thinking 10 glory glory 12 cosmetology school 21 assassin creed 17
chronic pain 10 santa highest 9 rite aid 21 mr gate 16
leave room 10 low testosterone 9 passive voice 18 adult adhd 14
going cry 10 moving la 8 going chain 16 sleep paralysis 13
lip smacker 10 vera juice 8 pink one 16 governing body 12
decis decis 10 beat as 7 nursing school 15 student number 11
pain crisis 10 rock bottom 7 love color 15 gender role 10

Table A.1: The distinctive lemmatised linguistic features prevalent for
all of the label-gender combinations.
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APPENDIX A. APPENDIX A.4. SAMPLE OF DEPRESSION SYNONYMS LEXICON

A.4 Sample of Depression Synonyms Lexicon

anxiety, insomnia, suicidal, dysfunction, fatigue, imbalance, nervousness, sad, lonely, unhappy, no
focus, disturbed, isolation, lack of interest, low interaction, sleep problems, loss of meaning in life,
stressed, uneasiness, instability, moody, emotional, low self-esteem, have no emotional support,
depressed, depression, suicide, broken, killme, worthless, selfharm, pain
affect unhappy, affects lack, anhedonia, anhedonias, apathetic, apathetic behavior, apathetic beha-
viour, apathy, cannot see a future, decreased interest, decreased mood, demoralisation, demoraliz-
ation, depressed, depressed mood, depressed state, depressing, depression, depressions, depression
moods, depression psychic, depression symptom, depressive state, depressive symptom, depressive
symptoms, despair, diminished pleasure, emotional depression, emotional indifference, emotion-
ally apathetic, emotionally cold, emotionally detached, emotionally distant, emotionally subdued,
feeling blue, feeling despair, feeling depressed, feeling down, feeling empty, feeling helpless, feeling
hopeless, feeling isolated, feeling lost, feeling low, feeling of despair, feeling of hopelessness, lost
feeling, low mood, melancholia, melancholic, melancholy, mental depression, miserable, mood de-
pressed, mood depression, mood depressions, morose mood, morosity, negative about the future, no
hope for the future, nothing matters, powerlessness, sad, sad mood, sadness, stuporous, symptoms
of depression, torpid, unhappiness, unhappy, worthless, worthlessness, anxiety depressed, anxious
depressed, anxious depressed mood, anxious sad, anxiousdepressed, appeared depressed, appeared
sad, appears depressed, appears sad, appetite anhedonia, appetite hopelessness, appropriately sad,
battling depression, became sad, became very depressed, become depressed, become increasingly
depressed, becomes depressed, becoming depressed, becoming more depressed, being sad, blues-
depression, bpii current episode depressed, catatonia depressed mood, characterlogical depression
however, chronically depressed, comorbid depression, concentration anhedonia, consistently de-
pressed mood, constricted sad, current depressive episode, current epidose depressed, current
episode depressed, dailydepression, dark thoughts, decreased motivation, deperssion, depession,
deppression, deppressive, depreesion, deprerssion, depresed...
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A.5. COMPLETE TRAINING PERFORMANCE OVERVIEW APPENDIX A. APPENDIX

A.5 Complete Training Performance Overview of All Uni-
and Multimodal Models

A.5.1 Replication Study Training Results

Val performance Test performance
Dataset Modality Fusion Precision Recall F1 (avg) F1 (std) Precision Recall F1 (avg) F1 (std)

v1

audio - 0.620 0.606 0.591 0.074 0.626 0.610 0.602 0.058
visual - 0.630 0.614 0.613 0.017 0.626 0.608 0.608 0.040

both
concat 0.634 0.625 0.620 0.015 0.623 0.619 0.613 0.037
cross8 0.623 0.614 0.586 0.082 0.627 0.622 0.598 0.074
cross16 0.558 0.606 0.553 0.108 0.542 0.587 0.534 0.077

v2

audio - 0.573 0.614 0.576 0.166 0.578 0.618 0.581 0.164
visual - 0.670 0.662 0.660 0.020 0.629 0.613 0.608 0.033

both
concat 0.708 0.698 0.697 0.021 0.624 0.615 0.613 0.023
cross8 0.731 0.669 0.655 0.082 0.622 0.576 0.536 0.130
cross16 0.741 0.664 0.648 0.052 0.642 0.582 0.544 0.107

Table A.2: Overview of the performance of the models trained for the
replication study on the validation and test split. Values where the

standard deviation exceeds 10% of the averaged F1-score are
highlighted in bold.

A.5.2 Unimodal Training Results

Val performance Test performance
Method Precision Recall F1 Precision Recall F1
hidden 0.743 0.738 0.734 0.636 0.636 0.634
hidden + VAD 0.727 0.726 0.724 0.639 0.638 0.636
hidden + z-score VAD 0.739 0.731 0.725 0.629 0.628 0.624

Table A.3: Overview of the performance of the models trained on the
validation and test split using emotion-enriched embeddings. The

highest values per split and metric are highlighted in bold.
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APPENDIX A. APPENDIX A.5. COMPLETE TRAINING PERFORMANCE OVERVIEW

Val performance Test performance
Feature type with keyw Precision Recall F1 Precision Recall F1

w2v

avg
yes 0.944 0.943 0.943 0.912 0.912 0.912
no 0.921 0.919 0.919 0.929 0.928 0.929

zero
yes 0.937 0.936 0.936 0.946 0.945 0.945
no 0.922 0.921 0.921 0.913 0.913 0.913

sent
yes 0.926 0.924 0.923 0.947 0.944 0.944
no 0.864 0.864 0.864 0.882 0.879 0.878

biow

avg
yes 0.951 0.950 0.950 0.869 0.867 0.866
no 0.939 0.938 0.938 0.862 0.859 0.859

zero
yes 0.941 0.940 0.940 0.878 0.876 0.876
no 0.942 0.940 0.940 0.865 0.863 0.862

sent
yes 0.915 0.914 0.914 0.895 0.886 0.885
no 0.829 0.826 0.826 0.834 0.822 0.818

mpnet
sent

yes 0.979 0.979 0.978 0.952 0.950 0.950
no 0.929 0.929 0.928 0.929 0.928 0.928

spacy
yes 0.963 0.962 0.962 0.959 0.958 0.957
no 0.921 0.919 0.919 0.934 0.931 0.931

minilm sent
yes 0.970 0.969 0.969 0.935 0.933 0.933
no 0.941 0.938 0.938 0.904 0.893 0.892

Table A.4: Overview of the performances of the unimodal models
trained on the textual modality using the validation and test split.

The highest values per split and metric for the models without
keyword filtering are highlighted in bold. The highest values for the

models trained with keyword filtering are underscored.

A.5.3 Multimodal Training Results
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A.5. COMPLETE TRAINING PERFORMANCE OVERVIEW APPENDIX A. APPENDIX

Val performance Test performance
M1 M2 Fusion Precision Recall F1 Precision Recall F1

w2v
visual

cross 0.920 0.919 0.919 0.923 0.922 0.922
concat 0.925 0.924 0.923 0.919 0.918 0.917

audio
cross 0.912 0.907 0.906 0.912 0.908 0.907

concat 0.909 0.907 0.907 0.923 0.922 0.922

mpnet

visual
cross 0.936 0.933 0.933 0.923 0.919 0.918

concat 0.941 0.940 0.940 0.933 0.932 0.932

audio
cross 0.946 0.943 0.943 0.934 0.931 0.931

concat 0.934 0.933 0.933 0.938 0.937 0.937

hiddenVAD
cross 0.937 0.936 0.936 0.924 0.922 0.922

concat 0.935 0.933 0.933 0.934 0.933 0.933

Table A.5: Overview of the performance of the bimodal models trained
on a combination of modalities using the validation and test split. The

highest values per split and metric for the models are highlighted in
bold. Abbreviations: M1: the features of the first modality. M2: the

features of the second modality.

Val performance Test performance
M1 M2 + M3 Fusion Precision Recall F1 Precision Recall F1

w2v visual. audio
criss 0.912 0.910 0.909 0.928 0.926 0.926

layered 0.915 0.912 0.911 0.920 0.919 0.918
concat 0.920 0.919 0.919 0.926 0.926 0.926

mpnet

visual. audio
criss 0.927 0.921 0.921 0.916 0.907 0.905

layered 0.927 0.924 0.923 0.926 0.920 0.919
concat 0.934 0.933 0.933 0.927 0.926 0.926

visual. hiddenVAD
criss 0.932 0.929 0.928 0.914 0.912 0.911

layered 0.925 0.921 0.921 0.918 0.915 0.915
concat 0.948 0.948 0.948 0.926 0.925 0.925

Table A.6: Overview of the performance of the trimodal models
trained on a combination of modalities using the validation and test

split. The highest values per split and metric for the models are
highlighted in bold. Abbreviations: M1: the features of the first

modality. M2 + M3: the features of the second and third modalities.

A.5.4 Bias Mitigation Training Results
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APPENDIX A. APPENDIX A.5. COMPLETE TRAINING PERFORMANCE OVERVIEW

Val performance Test performance
Bias mitigation Method Precision Recall F1 Precision Recall F1

None - 0.929 0.929 0.928 0.929 0.928 0.928
Pre: oversampling - 0.934 0.933 0.933 0.926 0.925 0.925

Pre: MixFeat

Group 0.935 0.933 0.933 0.929 0.927 0.927
Mixg 0.939 0.938 0.938 0.928 0.927 0.927

Subgroup 0.920 0.917 0.916 0.931 0.928 0.928
Synth 0.906 0.905 0.905 0.913 0.912 0.911

Synth mixg 0.928 0.924 0.923 0.927 0.924 0.923
In: reweighing - 0.930 0.929 0.928 0.935 0.935 0.934

Post: Equal odds - 0.929 0.929 0.929 0.927 0.926 0.926

Table A.7: Overview of the performance of the sentence-level bias
mitigation methods trained on the textual modality using the

validation and test split. The highest values per split and metric for
the models are highlighted in bold. Abbreviations: Mixg:

mixgendered. Synth: synthetic.
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