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In the beginning:
there was no up

there was no down
there was no side to side

there was no light
there was no dark

nor shape of any kind

there were no stars or planet Mars or protons to collide
there was no up

there was no down
there was no side to side

and furthermore to underscore this total lacking state
there was no here
there was no there

because there was no space

and in this endless void which can’t be thought of as a place
there was no time

and so no passing minutes, hours, days

of all the paradoxes that belabor common sense
I think this one’s the greatest

this time before events

because how did we go from nothing
to infinitely dense?

from immeasurably small
to inconceivably immense?

but before we get unmoored from the question at the start
let’s take a breath and marvel
at when math becomes an art

because against this cosmic canvas
one hears the dance of gravitational waves

testing our understanding
with ripples traversing through this space

and with that final statement, it’s time for me to write
because also every thesis starts with

no up
no down

nor side to side

- Hank Green, Reina del Cid, Jurriaan Langendorff
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Testing general relativity with gravitational wave parameter estimation using
machine learning

by Jurriaan Langendorff1

The ability to detect gravitational waves from coalescing binary black holes has
opened up the possibility of testing general relativity in its most extreme regime
of highly dynamical, strong spacetime curvature. Model-independent methods to
do this exist, which allow for deviations from the predictions of general relativity by
introducing testing parameters at selected places in the mathematical expression for
the waveform, and these are routinely applied to signals from binary black holes.
However, their computational requirements do not scale well with the increased
number of detections expected when considering the upgrades of the LIGO and
Virgo interferometers. Furthermore, the addition of these testing parameters will in-
crease the parameter space needed to explore, thus asking for more computational
resources. Therefore, a faster but equally robust method is urgently needed.

In this research, we present a simulation-based technique to speed up these mea-
surements. To begin with, we consider individual binary black hole signals and
apply a normalizing flow neural network for fast measurements of all parameters.
The testing parameters studied in the thesis relate to the modified dispersion rela-
tion in the propagation of gravitational waves. We show that our presented model
is a reliable method to infer the probability distributions for the testing parameters.
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Introduction

After more than 100 years of rigorous testing, Einstein’s theory of General Relativity
(GR) [1] still stands as one of our best descriptions of gravitational phenomena on
a large range of scales. Over the past century, there have been countless tests look-
ing for deviations in GR, which it passed with flying colors. Two phenomena that
helped solidify the theory were the precession of the perihelion of Mercury [2] and
the gravitational deflection of light [3]. Where Newton’s theory of gravity failed to
explain these experimentally observed phenomena, GR was able to make accurate
predictions.

Nowadays, many other probes test GR in different regimes [3]. The vast majority,
however, probes the non-radiative, weak field dynamics of gravity. While Gravita-
tional Waves (GWs) test GR in its most extreme regime of highly dynamical, strong
spacetime curvature. As early as 1916, Einstein calculated the first description of
GWs [4]. The first indirect measurement came by Hulse-Taylor, who observed vari-
ations in the orbital period of a binary pulsar. Due to the incredibly strong gravita-
tional fields in these types of binary systems, orbital energy was radiating away in
the form of GWs [5].

It took almost a century before technology improved enough to make direct de-
tection. On the 14th of September 2015, the first GW was detected (GW150914) [6],
a major breakthrough in the field. The source, two black holes spiraling towards
each other before merging, radiated about three suns worth of energy in less than a
second. Since then, more than a hundred of these events have been detected [7].

These events are called Compact Binary Coalescence (CBC) and can also happen
with neutron stars. The first of which, GW170817 [8], started a new era of multi-
messenger astronomy because the GW was accompanied by the electromagnetic
emission of the merger [9]. With this observation, we can put constraints on the
difference in the propagation speed of GWs and that of light, limiting their relative
difference to the order of only 10−15, putting strong constraints on alternative theo-
ries of gravity.

Methods to test for deviations from the predictions of GR with GWs exist. Some
of them introduce testing parameters at selected places in the mathematical expres-
sion for the waveform [10]. However, their computational requirements do not scale
well with the increasing number of GW detections that can be expected because of
significant instrumental upgrades. Therefore, a faster but equally robust method is
needed.

To enhance efficiency in these tests, we explore the fast-growing area of research
of Machine Learning (ML) [11, 12]. ML promises a desired speedup over current
methods, whilst maintaining similar precision. In this research, we present a simulation-
based technique to speed up these measurements. We study individual binary black
hole signals and apply a normalizing flow neural network [13] for measurements
of all parameters, including testing parameters. The test considered in this research
studies the propagation of GW with a Modified Dispersion Relation (MDR) [14]. We
show that our ML approach is a promising avenue to explore for the inference of
these testing parameters.
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Part I

Gravitational Waves
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Chapter 1

General Relativity for
Gravitational Waves

1.1 Essential elements of General Relativity

To start understanding GWs on a fundamental level, one needs to familiarize oneself
with our best theoretical description of gravity, GR. First, let us ask the question,
what is wrong with Newtonian gravity? Consider a gravitational potential Φ(x⃗, t),
generated by mass density ρ(x⃗, t). A particle in this potential needs to satisfy the
Poisson equation (which is solved via Green’s function)

∇2Φ = 4πGρ ⇒ Φ(x⃗, t) = −G
∫

dV ′ ρ(x⃗′, t)
|⃗x − x⃗′| , (1.1)

where the integral is over spatial volume V span by mass density ρ in coordinate
system x⃗′. The problem that arises is that a change in ρ(x⃗, t) instantaneously changes
Φ(x⃗, t) throughout all space. The instantaneous action of gravity gives rise to an
action at a distance. Newton knew this was wrong and called it “so great an absurdity
that I believe no man who has in philosophical matters a competent faculty of thinking can
ever fall into it” [15]. Still, he was unable to solve this problem.

An analogous problem arises in electrostatic. Consider a charged particle in an
electric potential Φ(x⃗, t), generated by charge density ρ(x⃗, t). Analogously, the equa-
tions linking potential and density are

∇2Φ = − ρ

ϵ0
⇒ Φ(x⃗, t) =

1
4πϵ0

∫
dV ′ ρ(x⃗′, t)

|⃗x − x⃗′| , (1.2)

which gave the same problem, instantaneous action at a distance. The solution to
this problem were Maxwell’s equations

∂νFµν = Jµ with Fµν = ∂µ Aν − ∂ν Aµ. (1.3)

By combining electro and magnetic potentials Aµ = (Φ, A⃗) and charge dynamics
Jµ = (ρ, J⃗) into one formalism, one could describe the dynamical nature of electro-
magnetism. With this, the change in action now propagates at the speed of light.
Einstein’s challenge was to find the equivalency of Maxwell’s equations for gravity.

Einstein solved this problem by stating his equivalence principle which builds on
the following three principles:

1. Gravity is universal: inertial mass equals gravitational mass and thus local
acceleration is equivalent to local gravitational acceleration.

2. A uniform gravitational field is indistinguishable from uniform acceleration.
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FIGURE 1.1: Illustration showing the likeness of uniform gravita-
tional field (left), uniform acceleration (middle), and an electric field

(right). Image from [16].

3. In a small region of spacetime, the laws of physics are reduced to those of
special relativity.

For an illustration of the equivalence principle, see figure 1.1. Note that (gravita-
tional) acceleration acts differently than an electric field, in which direction is dic-
tated by opposite charges.

In this chapter, we will use these principles to define the necessary equations
from GR needed for understanding derivations made in this thesis.

1.1.1 Gravity as Curved Spacetime

In GR, space and time are linked, i.e. they are described as a 4-dimensional mani-
fold1, called spacetime. As we know from special relativity, spacetime geometry is
defined by an invariant length element

ds2 = −(cdt)2 + dxidxi = ηµνdxµdxν, (1.4)

where we use Einstein’s summation convention. This is the so-called Minkowski
metric of flat spacetime, described by the metric tensor ηµν. In GR we generalize the
notion of a metric as g, describing the line element

ds2 = gµνdxµdxν. (1.5)

The metric tensor gµν encodes the connection between different spacetime coordi-
nates, for example, it defines fundamental notions like distance, angles, and the ar-
row of time. In this way, the metric tensor tells how spacetime geometry is curved.

1.1.2 Spacetime Curvature and Geodesics

Before we can answer how spacetime is curved by gravity, we have to learn how to
take the derivative of a vector on a curved manifold. The problem with taking the
partial derivative of a vector like ∂αTµ is that it does not transform the same under
coordinate transformations. The solution is to define the covariant derivative,

∇αTµ = ∂αTµ + Γµ
αβTα, (1.6)

where Γµ
αβ are the Christoffel symbols

Γµ
αβ ≡ 1

2
gµρ(∂αgβρ + ∂βgαρ − ∂ρgαβ). (1.7)

1A manifold is a space for which every point can be mapped Euclidean space. I recommend [17]
and [16] as a guide through the mathematical details.
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This covariant derivative conserves the transformation rules2.
A geodesic is the path taken by an observer in freefall. This is obtained by finding

the curve for which the action, S = −m
∫

dτ, is an extremum, i.e. solving the Euler-
Lagrange equation resulting in

d2xµ

dτ2 + Γµ
αβ

dxα

dτ

dxβ

dτ
= 0, (1.8)

the geodesic equation, where τ defines proper time (dτ2=−ds2=−gµνdxµdxν). Observe
that the geodesic equation looks similar to the covariant derivative. The link be-
tween the two is the concept of parallel transport.

Parallel transport involves moving a vector Vµ along a curve xµ(λ) while keep-
ing its orientation the same with respect to the tangent vector of a curve

dxν

dλ
∇νVµ = 0. (1.9)

Using parallel transport, we can give an alternative definition of a geodesic as the
curve along which the tangent vector dxµ/dλ itself is parallel transported, such that

dxν

dλ
∇ν

dxµ

dλ
= 0 ⇒ d2xµ

dλ2 + Γµ
αβ

dxα

dλ

dxβ

dλ
= 0. (1.10)

An important effect of parallel transporting a vector on a curved geometry is that
the direction of the transported vector is dependent on the path. One way of seeing
this is that the covariant derivative does not commute:

[∇µ,∇ν]Vσ = Rσ
ρµνVρ, (1.11)

where Rσ
ρµν is the Riemann tensor and measures the discrepancy of the second co-

variant derivatives to commute. Equation 1.11 is called the Ricci identity, where it is
useful to define the contraction of the Riemann tensor

Rρ
µρν ≡ Rµν = ∂ρΓρ

µν − ∂νΓρ
µρ + Γσ

σρΓρ
µν − Γρ

µσΓσ
νρ, (1.12)

where Rµν is the Ricci tensor. The trace of the Ricci tensor is the Ricci scalar

R ≡ Rµ
µ = gµνRµν, (1.13)

which is an important measure of the local curvature of spacetime. To each point on
a manifold, the Ricci scalar assigns a single real number determined by the geometry
of the metric near that point.

1.1.3 Einstein’s Field Equations

Recall the Poisson equation for a Newtonian gravitational potential (equation 1.1).
Notice that ∇2 = ∂i∂i is the trace of a second derivative. This is similar to the sec-
ond covariant derivative encapsulated by the Riemann tensor, and taking the trace
results in the Ricci tensor. Thus, a valid guess for a relativistic version of the Poison
equation is

R00 = κρ, (1.14)

2To make this less abstract, remember the analog of electrodynamics where we defined derivative
Dµ = ∂µ + iAµ, where iAµ serves a similar purpose as Γµ

αβ in GR.
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where κ is a constant relating curvature to mass density. This is almost the right
equation, or better yet, the set of equations if we extend the indices to include the
spatial components. It turns out not to conserve energy, thus a different formulation
is needed.

An alternative description of curvature is the Einstein tensor,

Gµν ≡ Rµν −
1
2

gµνR. (1.15)

This turns out to be the tensor describing the link between matter and spacetime
curvature, resulting in the Einstein field equations:

Gµν =
8πG

c4 Tµν, (1.16)

where Tµν is the energy-momentum tensor, which encodes the source of the gravita-
tional field:

Tµν =
( T00 T0j

Ti0 Tij

)
=
( density of energy (ρc2) density of momentum

flow of energy (flux) flow of momentum (stress)

)
.

(1.17)
This is how GR describes gravity, or to quote John Wheeler; “Spacetime tells matter
how to move; matter tells spacetime how to curve”.

There is one other term that could be added to the left-hand side of equation
1.16, which is consistent with the local conservation of Tµν, namely a term of the
form Λgµν, resulting in

Gµν + Λgµν =
8πG

c4 Tµν, (1.18)

where Λ is the cosmological constant, which describes the accelerated expansion of
the universe. For the purpose of GWs, we will first consider a static universe as
described by equation 1.16.

1.2 Analytical derivations of Gravitational Waves

Remember from electromagnetism that the Maxwell equations (1.3) allow for elec-
tromagnetic wave solutions. Similarly, the Einstein equations (1.16) admit for prop-
agating waves, i.e. GWs. In this section, we derive an analytical formalism for the
description of GWs.

1.2.1 Linearized General Relativity

Even if there seem to be numerous stars in the night sky, space is mostly empty
[18], thus spacetime can be considered flat. GWs are small ripples in this spacetime,
as we will see. Therefore, we can describe them by a small perturbation around
Minkowski space:

gµν = ηµν + hµν with |hµν| ≪ 1. (1.19)

This is called the weak-field approximation. The perturbation hµν is considered to be
small, thus we will only look at leading order terms. Doing the math gives us the
linearized Einstein tensor

Gµν =
1
2
[
∂ρ∂µhνρ + ∂ρ∂νhµρ −□hµν − ∂µ∂νh − (∂ρ∂σhρσ −□h)ηµν

]
, (1.20)
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where we use the d’Alembertian operator □ = ∂µ∂µ and h ≡ hµ
µ. This expression of

the Einstein tensor can be further simplified by considering the following analogy.
In electromagnetism, it is useful to use the so-called Lorenz gauge, ∂µ Aµ = 0, to

reduce the Maxwell equations 1.3 to a wave equation:

□Aµ = Jµ. (1.21)

We are looking for an analog in linearized gravity. One such condition is Γρ
µνgµν = 0,

the de Donder gauge [17]. Using this gauge, the Einstein tensor greatly simplifies,
reducing the Einstein field equations 1.16 to

□hµν −
1
2
□hηµν = −16πG

c4 Tµν. (1.22)

This can be reduced further by defining the trace-reversed perturbation h̄µν = hµν −
1
2 ηµνh, giving

□h̄µν = −16πG
c4 Tµν, (1.23)

the linearized Einstein field equations. Observe that equation 1.23 has just become a set
of wave equations.

1.2.2 Gravitational Waves through Vacuum and their Effect on Matter

If we now look at equation 1.23 in a vacuum, meaning that there is no source of
energy or momentum, we get:

□h̄µν = 0 ⇔ ∂2

c2∂t2 h̄µν = ∇2h̄µν, (1.24)

which represents a typical wave equation. Solutions for equation 1.24 take the form

ℜ(Hµνexp(ikλxλ)) ⇔ Hµνcos(⃗k · r⃗ − ωt), (1.25)

where Hµν is the polarization tensor and kλ = (ω, k⃗) is the wavevector3.
Naively, the polarization matrix Hµν has 10 components. However, we will show

that only 2 are independent. Similar to hot the Lorenz gauge and other gauge sym-
metries in electromagnetism reduce the number of polarizations from 4 to 2, the de
Donder gauge allows us to impose the Transverse Traceless (TT) gauge (h̄0α = 0 and
h̄α

α = 0) [16, 17], where

∂µh̄µν = 0 ⇒ kµHµν = 0,
H0ν = 0, Hν

ν = 0.
(1.26)

Observe that in the TT gauge, h̄µν reduces to hµν. Without loss of generality, we
consider the direction of propagation in the z-axis, i.e. kµ = (ω, 0, 0, ω/c). Equation
1.26 reduces to only 2 independent polarizations, with the general solution

hTT
µν =


0 0 0 0
0 H+ H× 0
0 H× −H+ 0
0 0 0 0

 cos(ω(t − z/c)), (1.27)

3It is common to drop the real part on the right-hand side, but it should be kept in mind so that the
final solution is real.
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FIGURE 1.2: Visualization of the plus and cross polarisations, adapted
from [19].

where H+ and H× are the plus and cross polarisations respectively. These polarisa-
tions are named after the oscillation pattern they make in the plane perpendicular to
the direction of propagation (x-y plane), defining

h+(t, z) =H+ cos(ω(t − z/c)),
h×(t, z) =H× cos(ω(t − z/c)).

(1.28)

One can show what they look like by studying the spacetime interval

ds2 = −c2dt2 + (1 + h+(t, z)) dx2 + (1 − h+(t, z)) dy2 + 2h×(t, z)dxdy + dz2. (1.29)

Consider a ring of particles in the x-y plane, figure 1.2 illustrates the pattern
imposed if a GW passes through. On the left, we see the change in particle position
when the GW has only plus-polarization (h× = 0). On the right, we see when the
GW has only cross-polarization (h+ = 0).

1.3 Gravitational Wave Generation

To understand the production of GWs, one has to study the inclusion of matter in
the wave equation. In this case equation 1.23 becomes

□hTT
µν = −16πG

c4 TTT
µν , (1.30)

where TTT
µν is the energy-momentum tensor in the TT gauge. Notice that, in the TT

gauge, hTT
0α = 0 and thus allows us to focus solely on the spatial part. One solves

equation 1.30 by integration and using a retarded Greens function4, giving

hTT
ij (t, x⃗) =

4G
c4 Λij;kl

∫
dV ′ T

kl(t − |⃗x − x⃗′|/c, x⃗′)
|⃗x − x⃗′|

, (1.31)

where V is the volume span by Tµν expressed in the coordinate system x⃗′. Λij;kl is
the transformation tensor

Λij;kl ≡ PikPjl −
1
2

PijPkl with Pij = δij − ninj, (1.32)

used to project tensors to the TT gauge, i.e. TTT
ij = Λij;klTkl . ni is the unit vector the

vector along the direction of propagation.

4The detailed derivation can be found in [20, 21].
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1.3.1 Multipole expansion

As in electrodynamics, when far away from a localized charge distribution, it looks
like a point charge, and the potential is, to good approximation, −(1/4πϵ0)Q/r,
where Q is the total charge. For increasing accuracy, one expands this monopole
by incorporating a dipole, then a quadrupole, etc. called the multipole expansion.
One can do the same for gravitational potentials, see [22] for an in-depth deriva-
tion for gravitational radiation. Here we will assume the nth pole has a moment∫

dV ′T00[xi1 xi2 . . . xin ].
We start by assuming that the observer of the GW is at a distance r, which is

much larger than the size of the source x⃗′. Therefore |⃗x − x⃗′| ≃ r is considered to
be a constant. Furthermore, we can define the so-called retarded time tret = t − r/c,
simplifying equation 1.31 to

hTT
ij (t, x⃗) =

4G
c4r

Λij;kl

∫
dV ′Tkl(tret, x⃗′). (1.33)

To start the expansion, first observe that the monopole is zero. This is because in
the TT gauge, hTT

00 = 0 →
∫

dV ′TTT
00 = 0. This is also the case for the dipole moment,

where if we expand ∂a(TTT
aj xi) and use the conservation of energy-momentum, i.e.

∇νTµν = 0 to get:∫
dV ′TTT

ij =
∫

dV ′(∂a(TTT
aj x′i)− (∂a(TTT

aj )x′i
)
=
∫

dV ′(∂0(TTT
0j )x′i = 0, (1.34)

where the first integral is zero because all terms ∂a(...) will evaluate Tµν at the bound-
ary, where no energy or momentum is present if V fully encapsulates the localized
source. The second integral is zero due to the traceless nature of the TT gauge
hTT

0ν = 0. This might be surprising due to the importance of the dipole in electro-
dynamics, but remember, in gravity there are no negative gravitational charges, so
in the center-of-mass frame, the dipole moment can always be set to zero.

This means that the leading order term is the mass quadrupole moment, defined by

Mij(tret) ≡
∫

dV ′ T
00

c2 (tret, x⃗′)x′ix′j =
∫

dV ′ρ(tret, x⃗′)x′ix′j, (1.35)

where the 1/c2 serves to convert energy T00 into mass. This term can be found in
equation 1.33 by expanding ∂a∂b(Tabxixj):∫

dV ′Tij =
1
2

∫
dV ′(∂a∂b(Tabxixj) + (∂0∂0T00)xixj)

=
1
2

M̈ij,
(1.36)

where again we assume boundary term (∂a∂b(...)) to be zero. Combining Equations
1.33 and 1.36 results into the quadrupole formula,

hTT
ij (tret) =

1
r

2G
c4 Λij;kl M̈kl(tret), (1.37)

where Λij;kl can be calculated in the TT gauge with the propagation direction in the
z-axis (Λi3;kl = Λ3j;kl = 0). We find expressions for polarizations h+ and h×, defined
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in equation 1.28:

h+(tret) =
2
r

G
c4

(
M̈11(tret)− M̈22(tret)

)
,

h×(tret) =
2
r

G
c4 M̈12(tret).

(1.38)

Note that this expansion depends on the existence of the TT gauge for a given source,
which is true for the GWs considered in this thesis. We focus on Compact Binary
Coalescence (CBC), where massive bodies like Black Holes (BH) or Neutron Stars
(NS) spiral into each other.

Another note is that we only considered this expansion to leading order terms.
In general, one can include Higher-Order Modes (HOM) for more accurate models.
This is usually done by re-expression the h(t) in terms of spin weighted spherical
harmonics Yl,m, where

h(t) = h+(t)− ih×(t) = ∑
l⩾2,m

hm,l(t)Yl,m (1.39)

with −l ≤ m ≤ l, and l ⩾ 2 because lower harmonics are zero (no mono/dipole),
where h2,±2 corresponds to the quadrupole moment. See [23] for further reading.

1.3.2 Quasi-circular inspiral

To find the expressions for h+ and h×, one needs to solve the quadrupole moment
Mij in equation 1.38. Here we will show the quasi-circular inspiral approximation,
where two non-relativistic point masses are considered to be moving on a circular
orbit, slowly shrinking in radius due to gravitational energy being radiated.

Consider the positions of two bodies with mass m1 and m2, which follow a cir-
cular orbit with radius R from the center of mass.

x⃗1(t) =
µ

m1
Rê(t), x⃗2(t) = − µ

m2
Rê(t), (1.40)

where µ = m1m2/(m1 + m2) is the reduced mass and position defined with unit
vector ê(t) = (cos(ωorbt), cos(ι) sin(ωorbt), sin(ι) sin(ωorbt)), where ωorb is the orbital
frequency and ι the inclination angle, as shown in figure 1.3.
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FIGURE 1.3: Representation of the source frame for two point-mass particles on a fixed cir-
cular orbit. With the normal vector n̂ pointing in the direction from which the propagating
GW is observed. Angle ι denotes the inclination angle between orbital momentum vector L⃗

and normal n̂. Adapted from [24].
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The expressions for Mij are obtained by filling in the respective components of
unit vector ê(t) into th mass density ρ(t, x⃗) = m1δ3

(
x⃗ − µ

m1
Rê(t)

)
+m2δ3

(
x⃗ + µ

m1
Rê(t)

)
.

Solving the integral in equation 1.35 yields

M̈11 = −2µR2ω2
orb cos(2ωorbt),

M̈22 = 2µR2ω2
orb cos(ι)2 cos(2ωorbt),

M̈12 = −2µR2ω2
orb cos(ι) sin(2ωorbt).

(1.41)

Using the quadrupole moment and Kepler’s law to substitute R3 = G(m1 +m2)/ω2
orb,

the resulting expressions for the polarisations take the form:

h+(tret) =− 4
r

(
GMc

c2

)5/3 (ωorb

c

)2/3 1 + cos2(ι)

2
cos(2ωorbtret)

h×(tret) =− 4
r

(
GMc

c2

)5/3 (ωorb

c

)2/3
cos(ι)2 sin(2ωorbtret).

(1.42)

The parameter Mc is called the chirp mass and together with mass ratio q describe
the masses of the binary system

Mc ≡
(m1m2)

3/5

(m1 + m2)
1/5 , q =

m2

m1
. (1.43)

Equation 1.42 describes GWs on fixed orbit. In reality, radiated GWs carry en-
ergy, thus orbiting bodies get closer to each other. The energy carried by gravita-
tional waves per time unit through a spherical surface A with radius r is [21]

dEGW

dt
=

c3r2

16πG

∫
dA⟨ḣ2

+ + ḣ2
×⟩. (1.44)

Using equations 1.42 and 1.44 yields

dEGW

dt
=

32
5

c5

G

(
GMcωorb

c3

)10/3

, (1.45)

the energy radiated per unit of time by GWs generated from circular orbits. This
quantity is called the luminosity L of the source.

Using conservation of energy, the radiated energy has to reduce the orbital en-
ergy, i.e. dEorbit

dt = − dEGW
dt . If we assume classical adiabatic inspiral, meaning that

the orbit and thus ωorb change slowly (orbital radius stay constant over one orbit),
orbital energy takes the form

Eorbit = −1
2
(G2M5

c ω2)1/3. (1.46)

Observe that taking the time derivative of the orbital energy yields a differential
equation for ωorb. It is convenient to define the gravitational wave frequency fgw =
ωorb/π, yielding differential equation

˙fgw =
96
5

π8/5
(

GMc

c3

)5/3

f 11/3
gw , (1.47)
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with solution

fgw =
1
π

(
GMc

c3

)−5/8 ( 5
256

1
τ

)3/8

, (1.48)

where τ = tc − t. tc is the coalescence time when the distance between the two
masses approaches zero and the orbital frequency diverges. Defining the GW phase
Φgw(t) = 2ωorbt yields:

Φgw(t) =
∫

dt′2π fgw(t′) = −2
(

5GMc

c3

)−5/8

(tc − t)5/8 + Φc, (1.49)

where Φc is an integration constant and represents the phase at t = tc. The resulting
polarisations h+ and h× for a shrinking orbit take the form:

h+(tret) =− 4
r

(
GMc

c2

)5/3 (π fgw(tret)

c

)2/3 1 + cos2(ι)

2
cos(Φgw(tret)),

h×(tret) =− 4
r

(
GMc

c2

)5/3 (π fgw(tret)

c

)2/3

cos2(ι) cos(Φgw(tret)),

(1.50)

where these equations describe gravitational radiation due to the inspiral of two
massive bodies. Observe that the amplitude scales as 1/r, making the distance of
the source one of the most important features describing how loud the signal is.
Also, notice that the amplitude scales with the frequency. When the orbits get closer,
not only the frequency increases but also the GWs’ amplitude.

In reality, the above approximations break down before this time tc, when or-
bits cease to remain circular. Therefore, we define the Innermost Stable Circular Orbit
(ISCO), with radius RISCO ≃ 6GM/c2, derived in [25]. After RISCO is reached, other
waveform models will be needed to describe the gravitational radiation.
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Chapter 2

Waveform Modeling

In chapter 1, we have considered flat spacetime with a small perturbation on top.
However, the derivation made so far cannot describe the GW behavior further than
the ISCO and even before has shortcomings, because of the strong gravitational in-
teraction at these stages. Unfortunately, the entire set of Einstein equations (1.16)
have no analytical solutions to the two-body problem. To model the complete GW
waveform, one resorts to numerically solving Einstein equations 1.16, which is com-
putationally expensive for the needed accuracy. Therefore, other approximate meth-
ods have been developed for certain regimes of the waveform, such as series expan-
sions and perturbative methods.

In this chapter, we explain the methods used in CBC modeling for BBH events.
Generally, the CBC waveform is split into three distinct phases: inspiral, merger, and
ringdown; see figure 2.1 for a representation. The inspiral phase, which lasts roughly
until the ISCO, is usually approximated with post-Newtonian (PN) techniques [26].
After this, the CBC enters the merger phase [27]. Due to the highly dynamic nature
and strong curvatures when BHs merge, numerical relativity (NR) is needed. In the
post-merger phase, only a single BH remains and undergoes ringdown [28], which
Black Hole Perturbation (BHP) theory can approximate.

FIGURE 2.1: Representation of a GW signal coming from a binary
coalescence with its decomposition in different phases. Adapted from

[29].
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2.1 Gravitational Wave Parameters

In chapter 1 we have only seen 7 independent parameters. To model a waveform
from a BBH event as detected on earth, one can define 15 unique parameters, see
table 2.1.

The only intrinsic parameters considered are the individual masses of the BHs
m1 and m2, and their spin. From observations, we know that any astrophysical sys-
tem will rotate [30]. As we consider GWs from binary systems, we consider BHs
with stellar origin, meaning they also have spin. This spin is characterized by two
vectors, S⃗1 and S⃗2, pointed along the rotation axis of the individual BHs. These spins
define the total angular momentum vector J⃗ = S⃗1 + S⃗2 + L⃗, where L⃗ is the angular
momentum of the orbit. Each spin vector introduces three independent components
for an additional six parameters.

For the extrinsic parameters, we consider the parameters describing the GW
waveform as measured on earth, i.e. the detection frame with the distance r be-
tween the source and earth. We define the inclination angle ι and polarization angle
ψ, characterizing the total angular momentum J⃗ in the radiation frame at the source,
see figure 3.4. The GW arrives at the detector at time tc with phase Φc. To parame-
terize from what direction of the sky the GW came to the detector we use angles θ
and ϕ. The angles ψ, θ, and ϕ are further explained in section 3.1.1.

For modeling purposes and scientific convention, the GW parameters are often
differently expressed. In the derivation of chapter 1 we saw it is convenient to cast
the component masses m1 and m2 into chirp mass Mc and mass ratio q, see equa-
tion 1.43. Also, the sky position of the source is determined by the declination angle
DEC and the right ascension RA instead of θ and ϕ. Because of the earth’s rotation,
angles relative to the earth’s surface (θ and ϕ) will change constantly to point at an
astronomical source. The celestial angles DEC and RA keep a constant skymap, see
[31]. Similarly, The coalescence time tc and phase Φc are measured in GPS reference
time, i.e. when the wave passes Earth’s center, which is why tc is often referred to
as geocentric time. The distance of the source r is on a cosmological scale. Therefore,
we must account for cosmological effects (discussed in section 4.1.1). We replace r
by the luminosity distance DL as a measure of distance.

For modeling spins, coordinates are often expressed in angles between the an-
gular momentum vectors, see figure 2.2. The spin vectors S⃗i are characterized with
the dimensionless spin magnitudeai and the tilt angle θi between S⃗i and L⃗. The dif-
ference between the azimuthal angles of the individual spin vectors ϕ12, and the
polar and azimuthal angles between total and orbital angular momentum θJL and
ϕJL. Inclination angle ι is redefined to θJN .

Intrinsic parameters

m1 Mass of first body
m2 Mass of second body
S⃗1 Spin of first body
S⃗2 Spin of second body

Extrinsic parameters

r Distance
ι Inclination angle
ψ Polarization angle
tc Arrival time
Φc Coalescence phase
ϕ azimuth angle earth
θ polar angle earth

TABLE 2.1: Intrinsic and extrinsic param-
eters describing binary coalescence.

FIGURE 2.2: Coordinates describing total and or-
bital angular momentum J⃗ and L⃗, total spin S⃗ and

propagation direction N̂. Figure from [32].
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2.2 Model Families

For the analysis of GW data, one has to simulate a waveform. Due to the high com-
putational cost of NR simulation, a collection of approximate numerical models has
been established. Current waveform models for data analysis are implemented in
the LSC Algorithm Library (LAL) Simulation [33]. Here we outline three main model
families within LALSIMULATION: TAYLOR, EOB, and IMRPHENOM. The meaning
of their respective pre- and suffixes is summarized in table 2.2, see [26, 34] for a
complete overview.

The TAYLOR waveform uses a plethora of different PN approximation schemes to
get a time-domain waveform of the inspiral phase [35]. These waveforms are then
transformed using the stationary phase approximation (discussed in section 4.1.3)
to the frequency-domain models [36]. One can also incorporate spin into the PN
formalism [30, 37, 38].

Although the inspiral is the largest part of the signal, one would like to model
the complete inspiral-merger-ringdown (IMR) waveform, which approximants EOB
[39, 40] and IMRPHENOM [41–47] aim to do.

EOB uses the Effective One-Body (EOB) approximation, where one considers
the two rotating bodies into one body moving in an effective potential. How one
formulates this in GR is beyond the scope of this thesis, and details can be found in
[39, 40]. Here, one can also use the PN formalism for solving the present potential,
which solution can be extended into the merger phase. Spin effects can also be in-
corporated by modification of the effective potential. With this, one can model the
entire waveform, and calibrate it with NR. One downside of EOB is that it is slow to
evaluate numerically.

The family used in this work is IMRPHENOM. The main goal of the waveform
approximants in this family is to be faster than EOB waveforms while maintaining
a comparable level of accuracy. The IMRPHENOM model is made by “stitching”
together three parts: PN inspiral, merger-ringdown, and the intermediate part be-
tween the former two parts. Each component is parametrized in the frequency do-
main and calibrated using waveforms from NR simulations. This family includes
non-spinning [41], aligned spin [42–44], and spin precession [45] models. The IMR-
PHENOMX subfamily is quite a new Phenom model, which improves upon its older
counterparts, see [47]. In this work, we make use of the spin precession model IM-
RPHENOMPV2 [46].

Model Family pre-/suffix description

TAYLOR

-T Time domain Taylor PN approximant
-F Frequency domain Taylor approximant

SPIN- Spinning case models

EOB
- Effective one-body waveform

-NR Calibrated against numerical relativity
S- Accounting for spin

IMRPHENOM

-A Models non-spinning binaries
-B/C/D Models spinning, but non-precessing binaries

-P(-V2,-V3) Models precessing binaries
-X Updated models for aligned or precessing binaries

-HM Include higher order modes.

TABLE 2.2: Partial overview of waveform approximates and their
pre- and suffixes withing LALSUITE [33, 34]
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2.3 Modeling Techniques

Current waveform models use various methods to find a good balance between
model accuracy and computational speed. This section seeks to sketch the concepts
of the common methods and approximations used to describe the GW emission
of CBC signals. We emphasize that the explanations given here are a qualitative
overview, for an in-depth description of GW Modeling, we refer the reader to chap-
ters 31-40 of [48].

Each modeling method is useful within a given regime. Figure 2.3 shows the
different cases where methods are used in parameter space. The y-axis describes the
masses of the system with the symmetric mass ratio

η =
m1m2

(m1 + m2)2 , (2.1)

where the closer this value is to zero, the larger the difference in masses of the binary.
The x-axis represents the orbital speed of the binary objects. Given Kepler’s third
law, orbital speed scales inversely with radius, such that the x-axis describes how
close to each other the bodies are orbiting, represented by the compactness.

Observe that the PN formalism is a good description for the low-velocity regime,
i.e. the inspiral phase. For the high-velocity regime corresponding to the merger and
ringdown phases, this approximation breaks down. BHP theory is only valid for low
symmetric mass ratios. This can be applied to the ringdown phase. For the rest of
the parameter space, the only accurate method is using NR simulations.

A waveform model combines these different parts. One seeks to make fast-to-
compute models that cannot rely directly on NR simulations. This section describes
how combining the different approaches yields waveform model IMRPHENOMPV2
[46].
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FIGURE 2.3: Illustration of the regions in parameter space where different methods of solv-
ing the GW waveform are used. On the x-axis, the orbital velocities of the bodies (illustrating
compactness), and on the y-axis, the symmetric mass ratio (higher value equals more similar

mass). Figure from [49].
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2.3.1 Numerical Relativity

To establish the theoretical model for a waveform, we need to solve the Einstein
equations (1.16) corresponding to the source of the GW. The only method that does
not make any analytic approximation to the Einstein equations is NR, although some
numerical approximations are needed. Nevertheless, NR is the most accurate tool
for modeling GW sources. One major drawback of this method is that these numer-
ical calculations are computationally intensive, requiring a supercomputer level of
memory. However, there are ongoing efforts to accelerate these numerical methods
and make them more efficient [50].

As a tensorial equation, the Einstein equations are not an explicit partial differ-
ential equation (PDE). This makes their calculations difficult to solve through nu-
merical computation. Therefore, it is necessary to recast the Einstein equations in
a format suitable for numerical calculations. There are several methods to achieve
this, see chapter 9.4 of [29]. NR solves spacetime curvature on a mesh. It took several
decades to develop an NR model that was numerically stable, the solution was to en-
sure a high mesh resolution in areas of high curvature. Techniques such as adaptive
mesh refinement made it possible to create the first GW waveforms [51]. Neverthe-
less, several challenges are still present in modern NR, see [52] for an overview of
state-of-the-art NR models.

Over the last decade, several NR waveforms have been developed and are ca-
pable of describing a variety of elements from CBCs, creating catalogs of publicly
available waveforms, for example, see [53–56]. These waveforms are then used to
make NR surrogate waveforms or to calibrate and test waveform approximants.

2.3.2 Post-Newtonian expansion

In the derivation presented in chapter 1, the Newtonian orbital dynamics (consider-
ing the quadrupolar radiation of orbital energy) in linearized gravity was presented.
However, the inspiral phase can be represented more accurately by using the PN
formalism. The main assumptions in this formalism are that the source is at once
slowly moving and weakly stressed, i.e.

v
c
≪ 1 and

∣∣∣ Tii

T00

∣∣∣ 1
2 ≪ 1. (2.2)

It is conventional to define small dimensionless parameter x, related to orbital ve-
locity v, and is by convention defined to the orbital frequency using Kepler’s law:

x ≡ v2

c2 ≡ (GMωorb/c3)2/3 (2.3)

The idea of this approximation is to Taylor expand the binding energy E(x) and flux
F (x) = −dE/dt of the inspiral waveform in terms of x. For the exact analytical
derivation, we refer the reader to [26, 57].

In this work, we make use of IMRPHENOMPV2 [46], a spin pressesing model of
IMRPHENOMD [44]. The inspiral of this model is based on the standard frequency-
domain PN approximate TAYLORF2 [36], which itself uses elements of its time-
domain counterparts TAYLORT2 [35].

For PN in the time domain, one obtains a pair of parametric equations for GW
phase Φ and time t [57] by expanding the ratio of effective flux over binding energy
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[26, 58],

dΦ
dt

=
v3

M
→ dΦ

dv
=

v3

M
dt
dv

,

dv
dt

= − F
(dE/dv)

→ dt
dv

= − (dE/dv)
F ,

(2.4)

and integrating the expanded forms of E and F over dimensionless parameter x,

Φ(approx)
PN (x) =Φ(approx)

re f + Φ(approx)
N

PN

∑
n=0

Φ̂n(x)xn,

t(approx)
PN =t(approx)

re f + t(approx)
N

PN

∑
n=0

t̂n(x)xn,

(2.5)

with reference quantities Φ(approx)
re f and t(approx)

re f as integration constants, and where

Φ(approx)
N · Φ̂n(x) and t(approx)

N · t̂n(x) are the nth order prefactors of the PN expansion.
The PN expansion takes steps of 1

2 because the expansion is defined in orders of
velocity (vk ∼ xk/2). For TAYLORT2, coefficients for equations 2.5 are derived to the
3.5 PN order, see [57] for their full expressions.

The analog to TAYLORT2 in the frequency domain is TAYLORF2, where we re-
expand the PN series and integrate in terms of frequency f instead of t. One uses
the Stationary Phase Approximation (SPA) (further discussed in section 4.1.3) to re-
express the waveform in Fourier amplitude A( f ) and the Fourier-domain phase
Ψ( f ), where the velocity is related to frequency via v2

c2 = (GMπ f /c3)2/3. This yields

Ψ(approx)
PN (x) =Ψ(approx)

re f + Ψ(approx)
N

PN

∑
n=0

Ψ̂n(x)xn, (2.6)

where Ψ(approx)
re f is a reference phase as integration constants and Ψ(approx)

N · Ψ̂n(x) are

the nth order prefactors of the PN expansion. Also for TAYLORF2 this is done to 3.5
PN order, see [57] for derived expressions for Ψ(F2)

3.5 (x). An important note is that
phases Φ and Ψ can be re-expressed into each other via the SPA.

The amplitude A( f ) of a GW does not change much and therefore often approx-
imated to the leading order as

A(F2)
PN ( f ) ≃ A0 f−7/6 ∝

M5/6

DL

√
2η

3π1/3 f−7/6, (2.7)

with M, η, and DL the source’s total mass, symmetric mass ratio, and luminosity
distance.

For the inspiral part of the waveform model IMRPHENOMD, a combination of
the PN parts from TAYLORF2 and a fitting function are used to construct the phase
and the amplitude,

Φins =Φ(F2)
PN +

1
η

(
σ0 + σ1 f +

3
4

σ2 f 3/4 +
3
5

σ3 f 5/3 +
1
2

σ4 f 2
)

,

Ains =APN + A0

3

∑
i=1

ρi f
6+i

3 ,
(2.8)
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with σi and ρi the fitting parameters, found by fitting the ansatz to NR waveforms
[44, 59].

The complicated phenomenology of precessing BBHs makes waveform model-
ing challenging, but it can be done by the so-called twisting up of IMRPHENOMD
into IMRPHENOMPV2 [46]. This is done via a precession correction to hl,m defined
in the HOM expansion in equation 1.39,

hP
2,m = e−imαPN ∑

|m′|=2
eimϵPN d2

m′,m(−βPN)h2,m′ , (2.9)

where angles α, β, and ϵ are related to the angles between the spin vectors S⃗i and
orbital angular momentum L⃗ and are PN approximated, see [30, 46, 60]. d2

m′,m denote
the Wigner d-matrices, see [61].

IMRPHENOMPV2 uses a single-spin approximation parameterised by the aligned
effective-spin parameter χe f f (which comes naturally out of the 1.5PN order in fre-
quency domain) and the precession effective-spin parameter χp, expressed in the
spin parameters defined in section 2.1:

χe f f =
a1 cos(θ1) + qa2 cos(θ2)

1 + q
,

χp =max
(

a1 sin(θ1),
4q + 3
4 + 3q

qa2 sin(θ2)
)

,
(2.10)

which are often used to describe spin measurements from processing BHs. With this,
we have arrived at the complete description of the inspiral for IMRPHENOMPV2,
where the waveform is described in the frequency domain with amplitude A(Pv2)

ins

and phase Φ(Pv2)
ins .

2.3.3 Black Hole Perturbation

The importance of perturbation theory cannot be understated in the analytical de-
scription of GWs, as we started from perturbed linearized gravity in section 1.2.1.
Historically, perturbative analysis of GW sources has largely focused on PN theory,
which fails to go much further than the inspiral phase. Strong-field perturbation
theory is therefore essential to explain the waveform of the quasi-normal ringdown
following the merger of a binary system. One essential method to describe the strong
field dynamics after the merger is black hole perturbation (BHP) theory.

In BHP, we consider the metrics of perturbed isolated black holes. Isolated, sta-
tionary black hole spacetimes are described by either the Schwarzschild or the Kerr
metric, depending on whether they are non-rotating or rotating respectively. Their
corresponding metrics are studied in extent, for further reading see [16, 17].

We assume the metric and stress-energy tensors can be expanded in powers of a
small parameter ϵ,

gexact
µν =gµν + ϵh(1)µν + ϵ2h(2)µν +O(ϵ3),

Tµν =ϵT(1)
µν + ϵ2T(2)

µν +O(ϵ3),
(2.11)

where gµν is the metric we choose to perturb. The perturbations show up as addi-
tional terms in the Einstein equations 1.16, generally considered only at first order:

G(1)
µν [h(1)] =

8πG
c4 T(1)

µν . (2.12)
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This has then to be solved in a BH metric, the calculations of which are beyond the
scope of this thesis and we refer the reader to [62].

In this case, we study PN initial conditions, in the Close-Limit (CL) expansion
(head-on collisions), where the metric takes the form:

gPN
µν = gSchwarz

µν + hµν, (2.13)

where gSchwarz
µν is the Schwartschild metric of a BH with mass M (total mass of the

binary in one BH). The perturbation hµν in this limit becomes,

hµν = G ∑
n≥0

∑
k≥0

ĥ(n,k)
µν ϵn

PNϵk+1
CL +O(G2), (2.14)

where ĥ(n,k)
µν are the coefficients of the expansion in both, which in turn is done to

PN order n (ϵPN ∼ v2

c2 or known as parameter x in PN literature) and CL order k [28,
63]1. In the CL, we expand under,

ϵCL ∼ r12

r
≪ 1, (2.15)

where the binary separation r12 is sufficiently small compared to the distance r from
any field point to the center of mass of the source. The CL calculations can then
be characterized as a superposition of complex frequencies known as Quasi-Normal
Modes (QNMs), see [65] for an overview of QNM expansions for different metrics
and starting conditions.

This is used in IMRPHENOMD (and by extension in IMRPHENOMPV2) to char-
acterize the features from the end of the merger to the ringdown (MRD) of the GW.
This is modeled by defining the ringdown frequency fRD and its damping frequency
fdamp. The fitting functions for the phase and the amplitude take the form [44, 59]:

ΦMRD =
1
η

(
α0 + α1 f − α2 f−1 +

4
3

α3 f 3/4 + α4 arctan
(

f − α5 fRD

fdamp

))
,

AMRD =A0γ1
γ3 fdamp

( f − fRD)2 + (γ3 fdamp)2)
exp

(
γ2( f − fRD)

γ3 fdamp

)
,

(2.16)

with αi and γi the fitting parameters.
To bridge the gap between the inspiral and the merger ringdown model, an in-

termediate (int) phase and amplitude are provided as ansatz based on NR data,

Φint =
1
η

(
β0 + β1 f + β2 ln( f )− β3

3
f−3
)

,

Aint =A0(δ0 + δ1 f + δ2 f 2 + δ3 f 3 + δ4 f 4),
(2.17)

where βi and δi are fitting parameters, they need to match NR and require the bound-
ary conditions to be met, fixed by matching phase and amplitudes with the merger-
ringdown and the inspiral.

How these parameters are obtained can be found in [44, 59]. Importantly, stitch-
ing together the PN inspiral, intermediate, and merger-ringdown parts yields a
waveform model that is accurate and fast to compute.

1We do also do an expansion in G, called the Post-Minkowskian expansion [64].
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Chapter 3

Detection and Analysis of
Gravitational Waves

The first hints of the existence of GWs came from indirect detections. In 1977, the
measurements of binary pulsar systems, by Hulse and Taylor [5] gave the observa-
tional evidence. Pulsars are rapidly spinning NSs, which radiate a characteristic jet
of electromagnetic radiation out of their polar regions, resulting in periodic pulses
measured on Earth [66]. The Hulse-Taylor binary manifested a decay in the orbital
period. Thr latter matched the prediction made when accounting for energy losses
through GW emission, yielding a Nobel prize for Hulse and Taylor in 1993.

For the measurement of GWs from CBCs, the development of extremely precise
instruments was needed. Many years of experiments with possible detector designs
and data analysis algorithms led to the current detection facilities using laser in-
terferometers [21]. The construction of the Laser Interferometer Gravitational-wave
Observatory (LIGO) [67] and Virgo [68] detectors led to all the 93 GWs confirmed
today, with many candidate GW observations [69] still yet to be confirmed. This
network of detectors is now extended with the KAGRA [70] detector and upgraded
Advanced LIGO [71] and Virgo [72], with the construction of LIGO-Inda [73] on its
way. Development and planning of the next generation of detectors have started,
with projects such as Einstein Telescope (ET) [74] and Cosmic Explorer (CE) [75].
Also, plans of constructing a space-based interferometer LISA [76, 77] have been
formally adopted and accepted by the European Space Agency as of this year. With
these detectors, we can probe a wide range of the GW frequency spectrum, see figure
3.1.

A more recent development to probe GWs is the use of pulsar timing arrays
[78]. Here the periodic nature of pulsars is used as a clock, timing the arrival time
of pulses of electromagnetic radiation. If a GW passes, a slight change in the time
of arrival between pulses can be measured. In 2021, the NANOGrav Collaboration
released 12.5 years of observation [79]. This detection gave the first hints into the
existence of a GW with wavelengths on an astronomical scale, GW background, and
many other insights [80]. However, this area of research is still in its infancy and
further measurements are needed to confirm these observations.

Finding GWs inside of the data is a hard problem. Due to the large sources of
noise for interferometers and the small signal amplitude, extracting the faint signal
requires advanced analysis techniques. In this thesis, we focus on the Parameter
Estimation (PE) of CBC.
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FIGURE 3.1: The spectrum of GWs, showing different source classes
above and sensitive of different detectors below. Figure from [81].

3.1 Laser Interferometers

Although GWs are generated from the densest objects in the universe, spacetime ap-
pears to be quite rigid. When calculating the magnitude of deformation of spacetime
by the time the GW reaches Earth, one finds it is ten thousand times smaller than the
nucleus of an atom [82]. A technique capable of measuring this is the laser inter-
ferometer, pioneered by the experiment of Michelson and Morley [83], originally
designed to measure the luminiferous aether (the historically postulated medium of
light).

The general concept of an interferometer goes as follows: a focused beam of
light is split into two different paths. After some distance is traveled, these paths
are recombined back together. At this point, the light of the two paths interferes
with itself. A photodetector then measures the intensity, measuring constructive or
destructive interference depending on the phase difference between the light from
the two paths. With this, one can study differences on an incredibly small scale,
because of the small wavelength of light.

Current GW detectors use this concept as follows. A laser beam is sent onto a
beam splitter that separates the light between two arms, with lengths L⊥ and L∥,
perpendicular and parallel to the beam. A mirror, or the so-called test-mass, at the
end of the arms, reflects the light. The combined light of the two arms is then col-
lected and the interference is measured with a photodetector. This is called the strain
of the detector. Due to the difference in traveled distance ∆L = 2L⊥ − 2L∥, the ob-
served interference will change. If a GW passes through the detector, it will stretch
and contract the spacetime interval between a ring of particles (test masses) accord-
ing to polarizations h+ and h×, as illustrated in figure 1.2. This introduces a path
difference ∆L. For a schematic visualization, see figure 3.2.

To measure significant displacements, detectors require long arms, with 3 km
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and 4 km for Virgo and LIGO respectively. These arms are maintained under ultra-
high vacuum to ensure the laser is unimpeded by anything that could scatter, refract,
reflect, or absorb its photons. However, this is insufficient to be sensitive to the
contractions caused by a typical GW (order 10−18 m). A slue of optical techniques
is used to get the best sensitivity out of the detector, see the schematic in figure 3.3.
Here we describe the key components of the detector setup, see [84] for a deeper
explanation.

Fabry-Perot cavities: This technique places one semitransparent mirror in each arm,
making the light bounce numerous times between mirrors before it reaches the
detector. This multiplies the path difference around 50 times, greatly increas-
ing the sensitivity [85].

Seismic isolation: The mirrors are suspended masses in a multi-stage pendulum
system. By tuning the resonant frequencies of the suspension system, one can
dampen certain frequencies. This apparatus reduces the undesired motion of
the test-mass due to seismic motion by about a factor of 1012 [86].

Power recycling cavities: Introducing a one-way mirror before the beam splitter,
laser light that would have escaped is recycled back into the system. This
plays a critical role in boosting the laser power within the interferometer arms,
improving sensitivity [87].

Modulators and Mode cleaners: An optical modulator allows precise control over
light properties, typically used to impose a phase modulation. Cleaners help
to maintain the laser beam’s purity and spatial mode. Together they provided
a very well-defined phase, which allows for precise measurements of phase
differences [84].

FIGURE 3.2: Simplified schematic an in-
terferometer.
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FIGURE 3.3: Realistic schematic of the LIGO
interferometer setup. Figure from [84].

3.1.1 Detector Response and Sensitivity

Now that we have shown how the detector allows for the measurement of the GW
strain, we have to characterize how an incoming GW affects this data. The change
in path length of a given arm δL depends on how the GW goes through the detector
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which involves calculating the spacetime interval∫ L∥

0

√
ds2

∥ = L + δL∥ and
∫ L⊥

0

√
ds2

⊥ = L + δL⊥, (3.1)

where L is the arm length if no GW is present. These define the GW strain

h =
∆L
L

=
δL⊥ − δL∥

L
, (3.2)

defined in the detector frame [88]. The description of the spacetime interval in the
radiation frame is given by equation 1.29, but this only describes an incoming GW
propagating along the z-direction in the detector frame. Therefore, we need to trans-
form the polarizations h+ and h× from the radiation (defined by the TT-gauge prop-
agating in the z-direction) into the detector frame (with x and y-axis defined as the
parallel and perpendicular arms of the detector), see figure 3.4. We define the an-
tenna pattern functions: F+ and F×, which are the projection factors to express the
polarizations of the GW source in the detector frame, yielding the strain

h(t) = F+(θ, ϕ, ψ)h+(t) + F×(θ, ϕ, ψ)h×(t), (3.3)

with h+(t), h×(t) the polarisations defined in equation 1.50. The antenna pattern
functions are defined as [88]

F+(θ, ϕ, ψ) =
1
2
(1 + cos(θ)2) cos(2ϕ) cos(2ψ)− cos(θ) sin(2ϕ) sin(2ψ),

F×(θ, ϕ, ψ) =
1
2
(1 + cos(θ)2) cos(2ϕ) sin(2ψ) + cos(θ) sin(2ϕ) cos(2ψ).

(3.4)

Note that for some angles θ, ϕ, and ψ, the pattern functions are zero, meaning that
incoming GWs from these directions will not be measurable. Therefore, an L-shaped
detector has more or less sensitivity depending on the sky position of the source.

Observe that the detector and thus angles θ and ϕ are relative to the Earth’s sur-
face. Therefore, they will change constantly with the rotation of the Earth, when
pointing in a similar position in the sky. To avoid this, the sky position of a source is
often expressed in equatorial coordinates, composed of the right ascension RA and
declination DEC, see [31].
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3.2 Dealing with the Noise

Despite all the technologies used to reduce the noise in a GW detector, their respec-
tive strain data is still riddled with noise. Understanding noise sources is beyond
the scope of this thesis and we refer the interested reader to [89]. A detector’s sensi-
tivity is generaly represented by the Power Spectral Density (PSD) or its square root
Amplitude Spectral Density (ASD), see figure 3.5. The PSD measures the magnitude
of noise at specific frequencies (lower PSD equals less noise).

When a GW is present in the detector, the recorded data d is

d(t) = n(t) + h(t), (3.5)

where n is the noise, and h is the GW strain. When we measure the noise over a
period T and perform a Fourier transform (ñ( f )), it is characterized as

〈
|ñ( f )|2

〉
T =

Sn( f )
2T

, (3.6)

where ⟨.⟩ denotes an average. The function Sn( f ) now illustrates the PSD.

FIGURE 3.5: Amplitude spectral density (square root of the power spectral
density) of the LIGO and Virgo detectors during the third observation run [90].

To compare measurements against the noise, we define the noise-weighted inner
product (one can see this as a noise-weighted average)

⟨a | b⟩ =
∫ ∞

−∞

ã∗( f )b̃( f ) + ã( f )b̃∗( f )
Sn( f )

d f = 4ℜ
(∫ ∞

0

ã∗( f )b̃( f )
Sn( f )

d f
)

, (3.7)

where a and b are arbitrary functions. This allows us to define how well a possible
signal template s matches the data d, i.e. ⟨d | s⟩, without worrying about noise
effects. This procedure is the basis of matched filtering, see [91]. This allows us to
define the Signal-to-Noise Ratio (SNR) ρ, defined by

ρ = ⟨d | ŝ⟩ where ŝ(t) =
s(t)√
⟨s | s⟩

, (3.8)

where ŝ is defined to normalize the signal template.
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Let a template signal s exactly equal a signal GW strain h in data d, and neglecting
noise effects, such that d ≈ h, we can define the optimal SNR

ρopt = ⟨h | ĥ⟩ = ⟨h | h⟩√
⟨h | h⟩

=
√
⟨h | h⟩. (3.9)

This quantifies the best SNR possible for a given signal and is often used to describe
how measurable this signal is. With a network of multiple detectors, one defines the
total SNR of the network as

ρ2
combined =

Ndet

∑
n=1

ρ2
n, (3.10)

where Ndet is the number of detectors. Currently, there are three observing detectors
active, see [92] for the live status of the GW detector network.

Figure 3.6 illustrates the process of signal identification in the data. In the top
row, we see the SNR plotted over time for the best-fitting template for GW170814
[93]. Observe that at the time the template fits the data best, we see a spike in SNR,
meaning a signal could be present. In this case, the GW was detected on the four-
teenth of August 2017. There is a slight time difference between the peaks. This is
due to the different locations on Earth where the detectors are situated, yielding a
small time delay due to the GW propagation speed.

In the bottom three plots of figure 3.6 is plotted the whitened strain data (thin
lines), meaning it is weighted with the ASD to make the noise less visible. The thick
grey line plotted on top shows the 90% best-fitting signal templates.

In reality, detector noise can be non-Gaussian, and so-called glitches can be present
in the data [94]. Therefore, it is important to quantify the statistical significance
before one confirms a detection. One does this by computing the probability dis-
tribution of ρcombined. This can be done by time-sliding the templates per detector
s(t + ∆tshift) where ∆tshift is larger than the travel time between detectors. This en-
sures that the calculated SNR cannot correspond to astronomical origin and thus is
computed over noise. Making a histogram of the ρcombined calculated over many
different values for time yields the so-called background probability distribution of
ρcombined. To quantify a detection, one computes the area under the probability dis-
tribution larger the measure SNR (P(> ρmeasured)). This yields the false-alarm rate,
i.e. the expected time it will take for this SNR to be detected due to purely noise. For
GW170814 this rate was 1 in 27000 years [93].

FIGURE 3.6: Detector SNR and whitened strain of event GW170814.
Adapted from [93].
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3.3 Parameter Estimation

A logical next question is: How to find the parameters of the signal? Let h(θθθ; t)
define a template, with

θθθ = (Mc, q, S⃗1, S⃗2, DL, ι, ψ, θ, ϕ, tc, Φc), (3.11)

the GW parameters of a waveform in the detector frame. In this section, we will
briefly describe the techniques used to find the parameters θθθ that best fit the data,
hence the name Parameter Estimation (PE). The main tool used in PE is Bayesian
inference [95].

Let us start by introducing Bayesian statistics. Let A and B be two parameters,
that are probabilistically conditional on each other. To link different conditional
probabilities, one uses Bayes’ theorem [95]:

P(B | A) =
P(A | B)P(B)

P(A)
. (3.12)

In words, this reads as follows: the probability of drawing parameter B ∼ P(B | A)
given a drawn value of parameter A, equals the probability of drawing parameter
A ∼ P(A | B) given a drawn value of parameter B, times the probability of pa-
rameter value B ∼ P(B) being drawn divided by the probability of parameter value
A ∼ P(A) being drawn. For GWs, A would be measuring data d, and B would be
the presence of signal with parameters θθθ in the data. Usually, the waveform with pa-
rameters θθθ is based on some sort of hypothesis H, for example, the waveform model
chosen to simulate the GW signal. Bayes’ theorem in the context of GWs takes the
form

P(θθθ | d,H) =
P(d | θθθ,H)P(θθθ | H)

P(d | H)
, (3.13)

where the following elements are defined as:

1. Posterior P(θθθ | d,H): The probability of signal h(θθθ, t) given data d(t).

2. Likelihood P(d | θθθ,H): The probability to observe data d(t) containing signal
h(θθθ; t) given certain GW parameters θθθ.

3. prior P(θθθ | H): The probability of parameters θθθ for signal h(θθθ; t).

4. evidence P(d | H): The probability of observing data d(t).

The evidence can be seen as a normalization factor given that it is not dependent
on θθθ. It can be computed to set the total posterior distribution equal to one (i.e.∫

dθθθP(θθθ | d,H) = 1).
To find the probability, we exploit a property of the noise. Assume that the noise

ñ( f ) at a specific frequency is Gaussian, where the variance is given by Sn( f ) at that
frequency. With this, we can construct the Gaussian probability distribution of the
noise

P[n] = N exp
(
−2

∫ ∞

−∞

|ñ( f )|2
Sn( f )

d f
)
= N e−

1
2 ⟨n|n⟩, (3.14)

with N a normalization factor [91]. From equation 3.5, we can define noise as n(t) =
d(t) − h(θθθ; t), which is true under the assumption a signal is present in the data.
Therefore, the likelihood is

P(d | θθθ,H) = P[n] = P[d − h] = N e−
1
2 ⟨d−h(θθθ)|d−h(θθθ)⟩. (3.15)
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One commonly uses the log-likelihood

ln (P(d | θθθ,H)) = ln(N )− 1
2
⟨d − h(θθθ) | d − h(θθθ)⟩ = C + ⟨d | h⟩ − 1

2
⟨h | h⟩, (3.16)

where C is a constant.
With PE one seeks to find the parameter probability distributions (posteriors),

i.e. evaluating the inner products in the equation 3.16 for the complete parameter
space. Because of the high dimensionality, computing the inner products over the
entire space is impossible and inefficient, given that for most of the parameter space
the probability is next to zero. Therefore, commonly used techniques such as nested
sampling and Markov Chain Monte Carlo have been developed to explore the prob-
ability space of the parameters efficiently, see [91] and references therein. They yield
the posterior P(θθθ | d,H), calculated with Bayes’ theorem. They are probability func-
tions for the individual parameters in θθθ that fit the data d the best.

Although these techniques have been very successful, being used in all GW de-
tections so far, computing the posterior of a single signal can take weeks of com-
putational time. Therefore, we use Neural Posterior Estimation (NPE) discussed in
chapter 6, which is a machine learning-based approach. This promises significant
speedups over conventional methods with similar performance.

3.3.1 Hypothesis Testing

Consider two competing hypotheses H1 and H2, for example:

H1: Signal template h(θθθ1) of a BBH event is modeled to be consistent with GR.

H2: Signal template h(θθθ2) of a BBH event is modeled to be consistent with another
theory.

One wants to know which hypothesis is more likely, given the observed data. This
is done via a procedure called hypothesis ranking, where one compares the proba-
bilities for both hypotheses given the data. One can define an odds ratio (also known
as likelihood ratio)

O1
2 ≡ P(H1 | d)

P(H2 | d)
=

P(d | H1)P(H1)

P(d | H1)P(H2)
, (3.17)

where Bayes’ theorem was used in the second step to express the odds ratio in terms
of evidence P(d | H) and prior probability of the hypothesis P(H). One usually
does not have prior knowledge about the hypotheses, so often they are considered
equal P(H1) = P(H2).

To obtain the evidence, one computes the integral over all parameter space, i.e.∫
dθθθP(θθθ | d,H)P(d | H) =

∫
dθθθP(d | θθθ,H)P(θθθ | H) = P(θθθ | d,H), (3.18)

where we used equation 3.13 and
∫

dθθθP(θθθ | d,H) = 1. This gives the odds ratio

O1
2 =

∫
dθθθ1P(d | θθθ1,H1)P(θθθ1 | H1)∫
dθθθ2P(d | θθθ2,H2)P(θθθ2 | H2)

, (3.19)

where θθθ1 and θθθ2 can differ in parameterizations given the models in the different
hypotheses. This odds ratio is used to rank hypotheses: If O1

2 > 1 then the data is in
favor of H1, and if O1

2 < 1 they favor H2. When O1
2 ≈ 1 the data is uninformative

regarding H1 and H2.
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Chapter 4

Test of General Relativity

Modeling CBC signals in modified gravity theories is still in its infancy, with alter-
native waveform models being actively researched on both the analytical [96–99]
and numerical [100–103] fronts. Current waveform models used in GW analysis
rely on approximation and thus lack certain physical accuracy [104, 105], which is
crucial for the precision needed for GR tests. Instead, the strategy for testing GR
is introducing deviation parameters on a given waveform model. These tests have
not seen any statistically significant deviation for GR so far [10], but there are some
caveats. For instance, within GR certain exotic objects exist, such as fuzzballs [106],
gravastars [107], boson stars [108], dark matter stars [109], etc, for which waveform
models have not been studied extensively. Also, detector noise may lead to uninten-
tional observed deviations from GR [105]. Therefore, effects seen by tests of possible
physics beyond GR need to be evaluated carefully.

Generally, one can distinguish three different regimes of deviations in a modified
theory of gravity ( see [110] for a complete overview):

1. Generation: modeling deviations in the dynamical properties of the source and
its radiation. The introduction of additional fields or higher curvature correc-
tions can alter the binary’s properties, such as angular momentum, binding
energy, and flux [96, 111, 112]. This can be modeled by appropriately altering
the inspiral dynamics in the waveform.

2. Polarizations: as seen in section 1.2.2, for a GW only the tensor modes h+ and
h× survive. In general, a network of GW detectors can detect six polarizations1,
hence searching for evidence of the other modes is also an effective way to
probe GR violations.

3. Propagation: GWs can also differ from GR in the way they traverse space.
Phenomena like amplitude damping [113], birefringence [114], and dispersion
[14] of GWs can be different in modified gravity. A subset of these theories
for modified propagation are often called Lorentz invariant violations (LIV)
because they break the Lorentz invariant nature of GWs in GR.

In this chapter, we discuss a modification of GW propagation with a Modified
Dispersion Relation (MDR). We derive the necessary theoretical tools to understand
how to modify GW waveforms and explore the tests of GR already conducted in this
area of research.

4.1 Modified Dispersion Relation

In general, a dispersion relation describes the effect of the interaction between a
wave and the medium it travels in. It relates the frequency ω to the wavenumber

1Any metric theory allows for 6 modes, certain gauges eliminate them, see chapter 7.2 from [3]
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k, resulting in different wave propagation velocities, depending on its frequency. To
understand dispersion relations, we start with the wave-equation (1.24) for GWs in
a vacuum. Filling in the general solution for hµν = Hµνei(⃗k·⃗r−ωt) yields

ω2
GW = c2k2, (4.1)

which is the dispersion relation for GWs in GR. However, these waves are dispersion-
less, meaning that the wave speed is independent on ω and k, and travel at constant
speed c.

This velocity is called phase velocity vp to distinguish it from the group velocity vg
which we will define below. It is the temporal change of a point at a fixed phase of
the wave,

kz − ωt = Constant

d
(kz − ωt)

dt
= 0 →dz

dt
=

ω

k
vp =

ω

k
,

(4.2)

which in the case of this example is constant. A wave is dispersive if the phase
velocity is not constant, i.e. if ω(k) is not a linear function of k.

So far we have looked at propagating waves with a single frequency ω. However,
we have seen that a GW source produces a wave, with a frequency spectrum. Now
imagine we have a dispersive system so that a wave packet consists of different
frequencies traveling at different speeds. This packet, or group of waves, can have
a well-defined shape and thus one can track its propagation speed. It turns out that
this velocity is related to the slope of ω(k) through

vg =
dω(k)

dk
, (4.3)

which is called the group velocity, see chapter 6.3 of [115] for derivations. As the
wave propagates, the differing speeds of the components of this group will spread
out over the propagation direction. In other words, it will disperse. Hence the name
dispersion.

In this thesis, we will consider a Modified Dispersion Relation (MDR) of a grav-
itational wave. In the literature, the dispersion relation is often noted in terms of
energy-momentum instead of frequency-wavenumber. This has its origins in quan-
tum mechanics as the first theories of MDR involved theories of massive graviton
[14]. From particle physics, we know particles are associated with waves, where en-
ergy and momentum are quantized to frequency and wavenumber via the Planck
constant. So,

E = h̄ω and p = h̄k, (4.4)

where substituting these in equation 4.1 gives dispersion relation

E2 = p2c2. (4.5)

Now, we can use the particle-wave duality in quantum mechanics to derive yet an-
other velocity, namely the particle velocity. Imagine a massive particle going through
flat space-time with E = γmc2 and p = γmvpar, where γ is the Lorentz factor. Then,
the particle velocity is

vpar = c2 p
E

, (4.6)
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where we assume that this still holds in curved geometries given that PµPµ(= −m2c2)
should be an invariant quantity.

When looking for MDR, we consider a generalized relation due to an additional
term in the dispersion relation,

E2 = p2c2 + Aα(pc)α, (4.7)

where Aα and α are phenomenological parameters, and find their origin in different
non-GR theories dependent on the choice of α.

4.1.1 Friedmann-Lemaître-Robertson-Walker metric

So far we have considered GWs traversing through a vacuum. However, we know
that our Universe is not as static. Therefore, We have to consider GR on cosmological
scales. Here we will derive the metric description with the following assumption.
If we average on large scales, our universe is homogeneous (the same at every place)
and isotropic (the same in all directions). This is considered the standard model of
cosmology and is mainly supported by observations from the Cosmic Microwave
Background (CMB) [116] and galaxy distribution [117].

The Friedmann–Lemaître–Robertson–Walker (FLRW) metric describes a homo-
geneous, isotropic, and expanding universe. The four-dimensional line element
takes the form

ds2 = −dt2 + a(t)2γijdxidxj, (4.8)

where a(t) is the scale factor, which describes the expansion of the universe. It is
important to note that we have no spatial-time elements (g0i) because of isotropy. γij
defines the spatial metric yet to be defined. For homogeneity and isotropy to hold
everywhere, we must have constant intrinsic spatial curvature. This leads to three
possibilities: flat, spherical, and hyperbolic curvatures, the derivation of which can
be found in [16]. Accounting for this in equation 4.8, the line element becomes

ds2 = −dt2 + a2(t)[
dr2

1 − Kr2 + r2dΩ2], (4.9)

where we have expressed the spatial coordinates in spherical coordinates. K encodes
the curvature and is either zero, positive, or negative depending on flat, spherical,
or hyperbolic curvature.

With the metric obtained, we now want to determine how the line element evolves.
Therefore we need to study the scale factor a(t), with commonly used definitions

H(t) ≡ ȧ(t)
a(t)

, 1 + z(t) ≡ a(t0)

a(t)
, a(t0) ≡ 1, (4.10)

where the index t = t0 indicates today’s value. H(t) is the Hubble constant (H(t0) =
H0 ≈ 70 km/s/Mpc being approximately today’s value2 [119]), and z(t) is cosmo-
logical redshift. Using these definitions, we can start by solving the Einstein equa-
tions for this metric for a perfect fluid,

Gµν = 8πTµν, where Tµν = (ρ(t) + P(t))UµUν + P(t)gµν, (4.11)

2The Hubble Constant has two main measurements: one based on cosmic microwave background
radiation suggesting about 67 km/s/Mpc, and the other involving direct observation of nearby galax-
ies suggesting about 73.8 km/s/Mpc. This discrepancy is known as the Hubble tension [118].
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where ρ and P are energy density and momentum respectively and Uµ the four-
velocity. Here we used the conventional to absorb the cosmological constant term
into the energy-momentum tensor 3.

For the derivation of Gµν, one needs to calculate the Ricci tensor and scalar in the
FLRW metric, which can be found [16]. This results in

G00 = 3
[( ȧ(t)

a(t)

)2
+

K
a(t)2

]
and Gij = −

[
2

ä(t)
a(t)

+
( ȧ(t)

a(t)

)2
+

K
a(t)2

]
gij, (4.12)

where if we plug the equations into the Einstein field equations we get( ȧ(t)
a(t)

)2
=

8π

3
ρ(t)− K

a(t)2 and
ä(t)
a(t)

= −4π

3
(ρ(t) + 3P(t)), (4.13)

the Friedmann and Raychaudhuri equations for the temporal and spatial parts re-
spectively.

Since we are considering a perfect fluid, we can derive a continuity equation for
the evolution of matter in this metric. Considering energy conservation ∇µTµν = 0
in the rest-frame yields

ρ̇(t) = −3
ȧ(t)
a(t)

(ρ(t) + P(t)), (4.14)

with the assumption of a constant equation of state, P(t)/ρ(t) = constant4, with
solution

ρ(t) = ρ(t0)a(t)3(1+P(t)/ρ(t)). (4.15)

With this, we can calculate the critical density today ρcrit(t0) =
3H2

0 c4

8πG ≈ 1.3 ×
1011M⊙Mpc−3. We now present the Friedman equation 4.13 weighted by the value
it takes at t = t0,

H(t)2

H(t0)2 = Ωra(t)−4 + ΩMa(t)−3 + ΩKa(t)−2 + ΩΛ (4.16)

with Ωi ≡ ρi/ρcrit, dimensionless constants relating the different ’densities’ for
i = r, M, K, Λ for radiation, matter, curvature, and dark energy respectively. The
measured cosmological parameters are: Ωr ≈ ×10−4, ΩM ≈ 0.32, ΩΛ ≈ 0.68, and
|ΩK| < 0.005 [120]. We commonly approximate to flat spacetime K = 0 and radia-
tionless Ωr ≈ 0 so that

H(t)2

H(t0)2 = ΩMa(t)−3 + ΩΛ ⇒ H(t)
H0

=
√

ΩM(1 + z(t))3 + ΩΛ. (4.17)

With the foundations derived, we now look at the implications this has on GWs.
Consider the GW emitted in frame t = tem and observed in frame t = tobs(= t0).
A non-dispersive GW propagating in the radial direction in flat space-time would
have a ds2 = 0, giving dt2 = a(t)2dr2, such that

dt2
em = a(tem)

2dr2 and dt2
obs = a(tosb)

2dr2. (4.18)

3Where the energy and momentum are redefined as Tµν − Λ
8π gµν ≡ Tµν, ρ+ Λ

8π ≡ ρ and P− Λ
8π ≡ P.

4P(t)/ρ(t) depend on the fluid considered, where the values are 0 for matter, 1
3 for radiation, and

−1 for dark energy.
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When combined those we find

dtobs =
a(tosb)

a(tem)
dtem = (1 + z(tem))dtem. (4.19)

This means that frequency ωGW [ 1
time ] and energy E = h̄ω are also redshifted,

ωobs =
ωem

1 + z(tem)
and Eobs =

Eem

1 + z(tem)
. (4.20)

As a consequence, the luminosity L = dE
dt and flux F = L

4πr2 change as,

Lobs =
1

(1 + z(tem))2Lem end Fobs =
1

(1 + z(tem))2
Lem

4πr2 . (4.21)

From this, we define the luminosity distance DL, which will replace the distance r of
an observed GW,

DL = (1 + z(tem))r = (1 + z(tem))
∫ tobs

tem

cdt
a(t)

= c(1 + z(tem))
∫ z(tem)

z(tobs)

dz
H(z)

. (4.22)

Using equation 4.17 and implying the t dependency in z, the luminosity distance
takes the form

DL(z) =
c(1 + z)

H0

∫ z

0

dz′√
ΩM(1 + z′)3 + ΩΛ

. (4.23)

One can extend this for the chirp mass Mc, by plugging in the luminosity dis-
tance and GW redshifted frequency in the formula of h(ω) we find:

Mc → Mz
c = (1 + z)Mc. (4.24)

Note that total mass M → Mz = (1 + z)M and thus component masses mi →
mz

i = (1 + z)mi scale the same. This means that the GW parameters absorb all z
dependence; thus, redshift is not directly observable from the GW signal alone. To
obtain the redshift of a GW, one needs to inversely determine it from the measured
luminosity distance, using constants of cosmology from other measurements.

With this metric derived, we now have a canvas on which we can study modified
dispersion relations of GWs on cosmological scales.

4.1.2 Wentzel–Kramers–Brillouin approach

The Wentzel–Kramers–Brillouin (WKB) method is a mathematical technique for ob-
taining approximate solutions to linear differential equations with spatially or tem-
porally varying coefficients. This approach can be used to create an analytical frame-
work for studying GWs and has been developed in [121, 122] However, this ap-
proach is more general. In this thesis, we will follow the derivation in [123].

The WKB method works as follows. Given a differential equation

ϵ
dNy(x)

dxN +
N−1

∑
n=1

an(x)
dny(x)

dxn = 0, (4.25)
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with ϵ a small parameter and an(x) an arbitrary function defining the differential
equation. The WKB method solves the differential equation via the ansatz

y(x) = exp
[1

δ

∞

∑
n=0

δnbn(x)
]
, (4.26)

where bn(x) is to be determined by taking the limit for δ → 0 and solving for increas-
ing order in ϵ/δn. The solution obtained with the WKB approach is valid provided
that parameter ϵ is small. In the case of GWs, we study the evolution of a second-
order differential equation of a time-dependent function h(t), or inversely frequency
h(ω). Here, we study modifications on cosmological timescales of order 1

H(z) . In this
case, ωGW >> H0, meaning the GW parameters’ time variation is much smaller than
the waves’ frequency, making this a good approximation.

In [122], the authors derive the WKB approximation in terms of wavenumber
h(k) at the time of emission and detection. Their dispersion relation reads

ω = ck + ∆ω, (4.27)

where ∆ω encapsulated the modification from the normal dispersion relation.
For a GW emitted at redshift zem, the phase shift takes the form [123]

hMDR(ω) = hGR(ω)e−i
∫ zem

0 ∆ω/H(z)dz = hGR(ω)ei∆Ψ(ω), (4.28)

where hGR is the GW predicted by GR and hMDR the MDR corrected waveform. ∆Ψ
is the overall phase shift caused by the GR modification.

To find an expression for ∆Ψ one can start from equation 4.7 and derive ∆ω

ω2 = c2k2
[
1 + Aα

( h̄ck
a(z)

)α−2]
, (4.29)

where using equation 4.27 gives

∆ω ≈ ω
Aα

2

( h̄ck
a(z)

)α−2
≈ Aαh̄α−2ωα−1

2
(1 + z)α−2. (4.30)

Here we assume that Aα << 1, which is supported by measurements [10]. This gets
us to a simple expression for the phase shift

∆Ψ(ω) ≈ −Aαh̄α−2ωα−1

2

∫ zem

0

(1 + z)α−2

H(z)
dz. (4.31)

It is then conventional to define an effective distance similar to equation 4.23,

Dα(z) =
c(1 + z)1−α

H0

∫ z

0

(1 + z′)α−2dz′√
ΩM(1 + z′)3 + ΩΛ

, (4.32)

so that we end up with

∆Ψ(ω) ≈ −Aαh̄α−2[ω(1 + zem)]α−1

2c
Dα(zem). (4.33)

Note that Aα and Dα are dimensionful parameters but ∆Ψ needs to be dimensionless.
Dα always has dimension distance, while the dimension of Aα depend on the chosen
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alpha ([energy]2−α).
The ∆Ψ phase modification is only due to propagation and thus does not depend

on the source’s characteristics, meaning this holds for any GW. Observe that phase
shift ∆Ψ is defined for a given redshift. However, as we have seen for the FLRW
metric, this redshift is absorbed in the parameters of the GW and thus not a direct
observable. To more directly observe MDR effects, one has to study the effects on
the arrival phase and the relative time delays between frequency components of the
CBC waveform.

4.1.3 Stationary Phase Approximation

Relating the arrival phase of a binary inspiral waveform to the phase shift ∆Ψ can
be done via the Stationary Phase Approximation (SPA). It is common to do GW data
analysis in a frequency-domain (i.e., Fourier domain) representation, as an alterna-
tive to the time-domain waveform. The SPA provides a good way to go from time
to frequency domain [26]. Assume the general form of the waveform is

h(t) = ∑
j

Aj(t)e−iϕj(t), (4.34)

where Aj and ϕj are the amplitude and phase for the jth emission mode in the CBC
waveform. In this thesis, we study waveforms generated by quadrupole radiation
(the j = 22 mode). Here we describe the SPA under arbitrary emission modes as
derived in [123].

The Fourier transform takes the form

h̃(ω) = ∑
j

∫
Aj(t)eiωt−ϕj(t)dt. (4.35)

The SPA is applicable if the waveforms’ amplitude evolution is slower than that of
the phase. This can be done on a mode-by-mode basis,

dln(Aj(t))
dt

=
1

Aj(t)
dAj(t)

dt
<<

dϕj(t)
dt

. (4.36)

In general, this is a good approximation for binary inspiral formulated in GR, see
[124]. Given that we assume only a GR modification in the propagation and not in
the generation, this approximation still holds.

Before solving equation 4.35 using SPA, it is good to study the phase ϕj(t) in
more detail,

ϕj(t) = 2π
∫ t

tj,c

Fj(t′)dt′ + ϕj,c = 2πFj,c(t) + ϕj,c, (4.37)

where tj,c is the time of arrival of the different coalescence frequencies Fj,c(t), where
we take into account that there is a time difference between different modes. ϕj,c is
the phase at the arrival time, all measured in the detector frame. These coalescence
frequencies emitted simultaneously do not necessarily arrive at the same time if we
have different propagation velocities due to an MDR. These different arrival times
are characterized by tj,c.
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Under SPA, the solution of the Fourier transform becomes

h̃(ω) = ∑
j

Aj(tj)

2
√

2π

√
dFj(tj)

dt

eiΨj(ω)dt, where Ψj(ω) = ωtj − ϕj(tj)− π/4.

(4.38)
tj is derived from finding the arrival time of a point in the phase by setting dϕ/dt ≡
ω, i.e.

dϕj(t)
dt

∣∣∣
t=tj

= 2πFj(tj) ≡ ω. (4.39)

Note that by solving this, tj becomes frequency-dependent tj(ω).
Ψj(ω) is the frequency-domain phase, with analogous role as ∆Ψ in the WKB

approach from the previous section. To find the connection, first combine equations
4.37 and 4.38 yielding:

Ψj(ω) = ωtj,c −
∫ ω

ωj,c

(tj(ω
′)− tj,c)dω′ − ϕj,c − π/4, (4.40)

where the integral is the shift in phase corresponding to the time delay between the
different frequency modes compared to the coalescence time. This approximation is
still within GR, where ϕj(t) will not change over time.

If there is a modified propagation of GWs, the coalescence phase at arrival ϕj,c
can be different from the coalescence phase at emission. This happens if the phase
velocity differs from the propagation velocity. Also, since an MDR during propaga-
tion changes the arrival time of different frequencies, the frequency-time evolution
is modified in the detector frame concerning the relation at the emission frame, thus
resulting in a different time ordering of frequencies detected than expected from the
source. This departure from GR in both the coalescence phase and the change in ar-
rival time can be encompassed in the overall frequency-domain shift ∆Ψ(ω), giving

Ψj(ω) = ΨGR
j (ω) + ∆Ψ(ω). (4.41)

4.1.4 Particle, Phase, and Group Velocities

The velocity at which a GW propagates is crucial in determining the travel time of
different frequency components. In this section, we will discuss the main points
explained by the authors in [123]. There are three different types of velocities to
calculating the arrival phase under the SPA:

1. Particle velocity:
A common approach in the literature [125, 126], which associates the particle
velocity to the arrival time.

2. Phase velocity:
The speed of the phase of a given frequency is used to calculate the frequency-
domain phase shift. It is related to the particle velocity.

3. Group velocity:
Here the speed is associated with the arrival of a given frequency in the wavepacket.
The speed of the packet is described by the group velocity [123].
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In this section, we derive the frequency-domain phase Ψ within the SPA, equation
4.40, using the different velocity approaches. We compare and connect them, moti-
vating the use of the group velocity in our approach, making similar arguments as
in [123].

Until recently, the commonly used approach for deriving ∆Ψ caused by MDR
was using particle velocity. This particle is thought of as a massive graviton, carrying
the gravitational force, but one can extend this approach to higher orders in α. In
this interpretation, we assume that the momenta in equation 4.7 are associated with
the propagation speed of a massive particle. Using equation 4.6, we derive that the
linear order of Aα the particle velocity is

vpar ≈ c − 1
2

Aαc(h̄ω)α−2. (4.42)

The phase velocity of a GW is given by ω/k, see equation 4.2. Combining this
with the dispersion relation (4.29), we can also approximate the phase velocity in the
linear order of Aα, giving

vp ≈ c +
1
2

Aαc(h̄ω)α−2. (4.43)

Notice that the particle and phase velocity are equivalent to each other with a dif-
ference in sign of Aα, meaning that both interpretations of propagation under this
version of MDR are indistinguishable.

For the group velocity, we take the derivative dω/dk, see equation 4.3. Comput-
ing the derivative and combining terms to linear order in Aα gives

vg ≈ c − 1
2
(1 − α)Aαc(h̄ω)α−2. (4.44)

The next step in obtaining the frequency-domain phase for the different velocities
is calculating the time delay between each frequency mode. For that, let us take two
different frequencies ω(1) and ω(2) evaluated in the source frame. This is done by
equating the propagated distance of the two frequencies together, which is valid
under the assumption that the time differences are small with respect to the total
travel time. The propagated distance is obtained by integrating over time, giving

r =
∫ t

tem

v(ω(1), t′)
dt′

a(t′)
=
∫ t−∆t

tem−∆tem

v(ω(2), t′)
dt′

a(t′)
, (4.45)

where ∆t is our measured time delay of interest and ∆tem is the time delay between
the two frequencies in the emission frame. We can assume that these time delays are
small compared to the Hubble time, meaning that the last integral becomes∫ t−∆t

te−∆tem

v(ω(2), t′)
dt′

a(t′)
=
∫ t

tem

v(ω(2), t′)
dt′

a(t′)
+ v(ω(2), t)∆t − v(ω(2), tem)∆tem.

(4.46)
Lastly, we consider the product of small terms ∆tAα to be negligible, resulting in the
time difference

∆t ≃ (1 + zem)
(

∆tem − 1
1 + zem

∫ t

te

v(ω(1), t′)− v(ω(2), t′)
c

dt′

a(t′)

)
, (4.47)
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where zem is the redshift to the emission frame. Filling in the respective velocities
and computing the integral gives us time delays of phase and group velocity

∆tp =(1 + zem)
(

∆tem − Aα

2c
Dα

( 1
(h̄ω(1))2−α

− 1
(h̄ω(2))2−α

))
,

∆tg =(1 + zem)
(

∆tem − (1 − α)Aα

2c
Dα

( 1
(h̄ω(1))2−α

− 1
(h̄ω(2))2−α

))
.

(4.48)

For the last step, we need to compute Ψj as defined in equation 4.40, but re-
express it in terms already derived above

Ψj(ω) = ωtj,c −
∫ ω

ωj,c

∆tj,cdω′ − ϕj,c − π/4, (4.49)

where ∆tj,c is now the time delay for the jth mode with respect to the coalescence
time. Given that our velocities in question are not mode-dependent, from now on
we will drop the index j, where every computed phase shift will hold for every
mode. Furthermore, the time delay of equation 4.47 was computed between two
arbitrary frequencies, but in the SPA we had taken the coalescence frequency as a
reference, thus taking ω(2) as ωc and ω(1) as ω. This means that we now can find
∆Ψ, combining equations 4.41 and 4.49, with ΨGR have no modification, where every
term is the same as emitted

ΨGR(ω) = −
∫ ω

ωc

∆tem,cdω′ − ϕem,c − π/4. (4.50)

For the computation of the integral and other terms in Ψ we refer to [123], here
we will only look at the results. For the particle/phase velocity, the resulting ∆Ψ
takes the form

∆Ψ(ω) =

− Aα

2ch̄(1−α)
Dα

(
1

(h̄(1+zem)ω)

)1−α
α ̸= 1

A1
2ch̄ D1ln

(
ω
ω0

)
α = 1

, (4.51)

where we had to split the equation at α = 1 due to a divergence in the general
solution. The normalization frequency ω0 in the case of α = 1 is defined where
ϕ(ω0/e) = ϕem(ω0/e), where e is Euler’s number. In other words, the frequency
at which the phase ϕ is the same as what GR would predict. Unfortunately, this
constraint is not enough to know ω0 beforehand, one has to put extra constraints
on the MDR, usually from particle physics [126]. It is conventional to relate the
frequency to the chirp mass e/ω0 = 2GMc/c3.

For the group velocity, the frequency-domain phase shift takes the form

∆Ψ(ω) = − Aα

2ch̄
Dα

( 1
(h̄(1 + zem)ω)

)1−α
. (4.52)

Observe that with some rewriting this is exactly the same expression as equation
4.33. This shows that under SPA, the group velocity-derived phase shift is the same
as in the WKB approximation. Note that we do not have a divergency at α → 1,
instead at α = 1 there is no frequency-dependent MDR contribution in the leading
order of Aα.
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Notice that at α = 0, both approaches yield the same phase shift. This corre-
sponds to the massive graviton, mostly studied in previous work, [125, 126]. How-
ever, the group velocity approach naturally leads to the WKB approach. In [123],
they compared both the group and particle velocity approaches and demonstrated
how to translate constraints between both approaches for GWs with multiple fre-
quency modes. The inclusion of higher-order modes yields a more accurate descrip-
tion of the waveform and thus these waveforms are appealing for TGR. Given that
WKB formalism is the relevant approach for higher-order modes, the group velocity
interpretation is a sensible choice for studying MDR.

4.1.5 Final Waveform

To construct the waveform used in this thesis, we used a frequency-domain model.
To simplify the MDR correction, we define an effective parameter Ae f f that encom-
passes together with α all of the GR modification

Ae f f (z) =
Dα(z)
DL(z)

(1 + z)α−1Aα. (4.53)

This can be determined by obtaining the redshift with the measured luminosity dis-
tance. Note that for this calculation we assume a flat, matter-energy dominant FLRW
metric for the distances as defined above in equations 4.23 and 4.32.

Now we can formulate the frequency-dependent phase as

∆Ψ( f ) = −πDLhα−2

c
Ae f f f α−1, (4.54)

where we used that h̄ω = h f , with h the plank constant. So, our final waveform
becomes

hMDR( f ) = hGR( f )ei∆Ψ( f ). (4.55)

4.2 Constraints found in the Literature

Binary Neutron Star (BNS) mergers are one of the most direct probes we have for ob-
serving the propagation speed of GWs. On the 17th of August 2017, the Advanced
LIGO and Virgo detectors observed such an event, GW170817 [8, 127]. Near si-
multaneously, a Gamma-Ray Burst (GRB), GRB 170817A was observed at the Fermi
Gamma-ray Burst Space Telescope [128] as well as an Anti-Coincidence Shield for
the Spectrometer for the International Gamma-Ray Astrophysics Laboratory [129].
This combined direct measurements of gravitational and electromagnetic radiation
for the first time. With some conservative assumptions on both the emission time
difference between the electromagnetic and the GW and the travel distance from the
source made in [130], we can put a lower and upper bound on the propagation speed
vGW of GWs, compared to the speed of light

−3 × 10−15 ⩽
vGW − c

c
⩽ 7 × 10−16. (4.56)

This is our first indication that our modification to GR in which vGW = c has to be
orders of magnitude smaller compared to the speed of light, meaning that parameter
Aα, which determines the scale of the deviation in propagation speed is small.



40 Chapter 4. Test of General Relativity

To constrain the order and values for Aα at different α, one has to test different
MDR waveforms against observed GWs. The most recent study is done with GWTC-
3 [10], in which the authors perform a suite of GR tests using CBC signals observed
up to the end of the third observing run. This thesis will only focus on their results
regarding MDR corrections in propagation.

In [10], the MDR test is done on 12 events on top of the 31 events from previous
results from GTWC-1 [131] and GWTC-2 [132], making a total of 43 events. Two
events are identified to be problematic, GW200219D and GW200225B. They have
the lowest residual SNR and are found to have the strongest impact on biasing the
combined posteriors. These events require detailed analysis to understand the rea-
sons for the observed deviations, which is yet to be studied. Thus, their analysis is
performed both including and excluding these events.

Their analysis considers MDR using the particle velocity as defined above (eq.
4.51) and uses waveform model IMRPHENOMXHM [133]. They perform discrete
steps in parameter α of 0.5, excluding α = 2, given that the propagation speed mod-
ification is frequency independent for this value. Figure 4.1 shows violin plots rep-
resenting the posterior probability of Aα, where the redshift is obtained from the lu-
minosity distance [10]. Figure 4.2 shows the upper and lower bounds of the < 90%
credible interval for Aα. A combination and comparison of the bounds found for
GWTC-1, GWTC-2, and GWTC-3 are given in table 4.1. QGR = P(Aα < 0) which
gives the probability to have Aα < 0, where Aα = 0 is the GR value. Thus, large
or small values of the GR quantile indicate that the distribution is not peaked close
to the GR value, with a QGR = 50% implying the distribution is centered on the GR
value.

One can focus on the α = 0 result to predict the graviton mass, where A0 = m2
gc2.

This gives us the 90% credible upper bound of mg ≤ 1.27 × 10−23 eV/c2 [10].
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|Ā

3|
|Ā
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Ā
α
=

A
α
/

eV
2−

α
.

Th
e

<
an

d
>

la
be

ls
de

no
te

th
e

bo
un

ds
on

|Ā
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Part II

Machine Learning
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Chapter 5

Neural Networks

In this work, we have developed a Machine Learning (ML) method, capable of test-
ing an MDR for GW. The use of an ML-based approach is justified by its enormous
speedups over conventional methods. Due to the small effect expected for MDR, one
has to perform PE on a large number of signals to get any meaningful information.
Using conventional methods, described in section 3.3, will take a large amount of
computational time, which is why we use an ML-based method, described in chap-
ter 6. To understand this method, one first has to understand one of its fundamental
components, a Neural Network (NN).

NNs form the basis of Artificial Intelligence (AI), a field that has exploded in
the last few years. When recent generative AI became available to the public, with
models such as GPT [134] and DALL-E [135], people started to be aware of their
immense power. Large language models like these have been a great new tool for
providing meaningful conversations with people. When asked what an NN is, the
AI explains it as follows:

A neural network is a type of artificial intelligence model inspired by the human
brain. It consists of interconnected layers of nodes, known as “neurons”, which
process information using dynamic state responses to external inputs. Each neu-
ron takes in multiple inputs, applies a weight to them, and passes them through
an activation function to produce an output. The network learns by adjusting
these weights based on the error of its predictions during training. This enables
the model to recognize complex patterns and make predictions or decisions based
on input data. -CHATGPT-4

This touches on all major concepts involving NNs. In the coming sections, we will
elaborate on each of them.

Machine Learning

Supervised Unsupervised Semi supervised

Classification

Regression

Clustering

Dimensionality reduction

Clustering

Classification

FIGURE 5.1: Machine learning types and applications [136].
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5.1 Fundamental Concepts of Machine Learning

In general, ML is an umbrella name for algorithms that are designed to interpret
large amounts of data. These techniques can be divided into three subclasses: super-
vised, unsupervised, and semi-supervised [137–139]. This divide is made to charac-
terize the input and output of the algorithm. A supervised model is given a dataset
and the desired target, it aims to “learn” the best mapping from data to the target.
This process is called training. Unsupervised learning aims to find information in
the data, without knowing the desired output. Figure 5.1 shows an overview of
these classes and their applications, see [136] for commonly used ML algorithms.

ML is particularly promising for GW research since it allows us to analyze the big
stream of data in an extremely short time. Many ML techniques have been tested on
several GW analysis tasks, including methods to characterize the quality of data and
classify the noise [11]. ML techniques have also been successful in GW modeling,
detection, and parameter inference [12].

In this research, we employ supervised and unsupervised methods to construct
an ML model, capable of doing PE for GW signals alternated by an MDR.
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a(3)m
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Input
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layers
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FIGURE 5.2: Illustration of the basic structure neural network.

5.1.1 Networks

An NN is a model in ML and part of a subfield called deep learning [140]. It has
its origin as a numerical representation of the neural processes in the brain. It con-
sists of an interconnected network of nodes (neurons) that can process information.
One characterizes the flow of information in so-called layers of nodes, where the
transformation flows from one layer to the next, characterized by the type of net-
work. Figure 5.2 is drawn as a simple representation of a standard neural network,
in which:

Input layer: The input data x.

Hidden layer(s): The intermediate transformations of the data a(i) in the ith layer.

Output layer: The output of the network y.

Here we introduced a new notation x = (x1, x2, . . . , xn) which defines a discrete list
of numbers, in this case, the input data.
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In this chapter, we will focus on the multi-layer perceptron, which consists of
linear layers and non-linear activation functions. However, countless new NN ar-
chitectures are proposed and updated regularly. To list a few commonly found
in the literature: Recurrent Neural Networks (RNNs), Convolutional Neural Net-
works (CNNs), Generative Adversarial Network (GAN), Transformer Neural Net-
works (TNN), and countless more [141].

5.1.2 Multi-Layer Perceptron

The transformation of information between nodes from
input x to output y can be parameterized by a multi-layer
perceptron. In the simplest case, it is characterized by
weights wij and biases bi. Consider the transformation be-
tween two layers a(0) and a(1) as illustrated in figure 5.3,
yields

a(1)1 =
n

∑
j=1

w1j · a(0)j + b(0)1 , (5.1)

which can be expressed as a matrix product,
a(1)1

...
a(1)m

 =

w11 . . . w1n
...

. . .
...

wm1 . . . wmn




a(0)1
...

a(0)n

+


b(0)1

...
b(0)m

 ,

a(1) =W(0)a(0) + b(0),

(5.2)

where the discrete valued weights in matrix W and bias b
parameterize the transformation of the layer connections.

a(0)1

a(0)2

a(0)3

a(0)n

a(1)m

a(1)2

a(1)1

w11w11

w12w12

w13w13

w1nw1n

...

...

FIGURE 5.3: Illustration
of connection between

the layers.

So far, this NN can only describe linear transformations. To improve the net-
work’s expressivity, one introduces a so-called activation function f (a). These are
non-linear functions, introducing crucial non-linearity in the model transformation.
Common activation functions are RELU and GELU functions [142],

fRELU(a) =

{
a a > 0
0 a ≤ 0

,

fGELU(a) =
1
2

a
(

1 + erf
(

a√
2

))
,

(5.3)

where erf is the error function. The transformation to the next layer is then defined
by

a(i+1) = f
(

W(i)a(i) + bi
)

. (5.4)

The transformation from input to output x → y is parameterized by a series of
weights WN and biases bN . N represents the number of layers in the network, called
the neural depth. This collection of layers is called a multi-layer perceptron.

5.2 Training

By tuning the weights and biases, one can change the network output to the desired
target output. This optimization process is called training. When training an NN,
one essentially performs a form of parameter fitting. In this case, the parameters
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are the weights and biases that comprise the network, usually an enormous number
with modern networks reaching an order of a billion parameters [143]. Finding the
optimal point, that best matches the target output, in this parameter space is there-
fore a hard endeavor. Described in this section are the key concepts used to combat
this problem.

One starts by partitioning the data into three parts.

Training set: The dataset used for fitting the network parameters.

Validation set: The dataset used to validate the performance (not used for fitting).

Test set: The dataset used after the model is trained to assess the model’s accuracy.

The training and validation sets are used in the training loop. This loop iterates first
over the training set, where according to the methods explained below, the param-
eters of the network are optimized. To validate this optimization step, data from
the validation set is used, where this data is never used for optimizing but serves
to check if the optimization step was fruitful and to prevent overfitting. Training
a network consists of iterating the above process for a large number of steps. Af-
ter training, the model’s performance is tested on unseen data, i.e. the test set. This
checks if the trained model did not overfit, so the performance should be in line with
the validation set.

5.2.1 Loss function

To characterize which direction the model should move in parameter space, the loss
function L(.) is defined. The inputs of this function are typically the network output
y and the target output ŷ. A common example is the mean-square error (MSE)

LMSE(y; ŷ) =
1
N

N

∑
i=0

(yi − ŷi)
2. (5.5)

The MSE provides a distance from which the output is removed from the target. In
general, the lower this loss gets, the better the fit.

There are many loss functions commonly used in ML. Their use is for a wide
range of network architectures, see [144] for a recent review on this topic. Any loss
function should have at least the following properties: It is continuous and differen-
tiable, with a well-defined gradient with respect to the model parameters. Differen-
tiability is essential because it allows for gradient-based optimization methods.

FIGURE 5.4: 2D representation of the loss function, where the arrow indicates the gradient
descent process going from a high to a low place in the loss landscape. Figure from [145].
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5.2.2 Gradient descent

To optimize the network, one needs to find the minimum of the loss function with
respect to the data and the network parameters. The process of minimizing the loss
is done during the training of the network. The fundamental technique used in this
process is gradient descent.

Consider a loss function L(y; ŷ), where y is parameterized with weights W and
biases b as transformation of input data x. In the context of training, we can consider
x and ŷ to be constant and imply their dependence in the loss function, i.e.

L(y; ŷ) = L(W, b; x, ŷ) = L(W, b). (5.6)

Figure 5.4 illustrates the loss function as a surface, where the height indicates the
value of the loss function. The other axes are the network parameters, in this 2D
representation, these can be one weight and one bias. This forms the loss landscape,
which in reality is a high-dimensional surface spanning all network parameters.

During training, we take small steps ϵϵϵ in parameter space. To first order Taylor
expansion, the loss

L(W + ϵϵϵ, b + ϵϵϵ) ≃ L(W, b) + ϵϵϵ · ∇∇∇L(W, b), (5.7)

where ∇∇∇L(W, b) defines the gradient of the loss function along the step. We want to
ensure that the step we take minimizes the loss, which one can do with

L(W + ϵϵϵ, b + ϵϵϵ) = L(W, b)− γ|∇∇∇L(W, b)|2 ≤ L(W, b). (5.8)

Combining equations 5.7 and 5.8 one finds

ϵϵϵ ≡− γ∇∇∇L(W, b)

(W, b)new =(W, b)old − γ∇∇∇L(W, b),
(5.9)

which defines the step ϵϵϵ taken in parameter space. The parameter γ indicates the
size of the step. This is often called the learning rate, a training parameter chosen to
be not too big to prevent overshooting the loss minimum, but also not too small such
that the minimum is reached in a reasonable amount of time.

This optimization scheme is called Stochastic Gradient Decent (SGD), and to-
gether with an adequate loss function and an expressive network, defines the com-
plete training process of an NN network.

5.2.3 Optimizer

In reality, the high-dimensional surface described by the loss function is often very
complicated. Navigating it with a scheme as SGD is slow and inefficient. Therefore,
other optimizers have been created to aid training efficiency.

In this thesis, we use Adam (derived from adaptive moment estimation) to train
the network [146]. It combines two gradient descent-based elements:

Moment 1: Parameter that takes into account current and previous gradient ∇∇∇L.
Moment 2: Parameter that takes into account squared gradients |∇∇∇L|2.

These moments are estimates of the mean and the uncentered variance of the gra-
dient for each trainable parameter. This enables the optimizer to retain the gradient
information from the previous steps, building up ’momentum’ for each parameter.
This momentum helps to move faster through the loss landscape and avoids getting
stuck in local minima, making training more efficient.
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5.3 Neural Contextualization Methods

As explained above, ML methods are used to study large datasets. Each input can
consist of thousands or sometimes millions of values, for example, images. How-
ever, taking the complete dimensions as input quickly makes NNs enormous, and
often hard to train. Instead, methods have been developed to reduce the dimension-
ality of the data, whilst retaining its information. This can be done both supervised
and unsupervised or a combination of the two.

The goal is to create a transformation that contextualizes the data in such a way,
that it is easier to access its information. Usually, this involves lowering the dimen-
sion of the data in a clever way. See [147, 148] for an overview of data reduction
techniques.

In this research, we make use of two of these methods to represent GW data: Sin-
gular Value Decomposition (SVD) and a Residual Network (ResNet). As explained
in chapter 3, much of the GW data strain is noise. Therefore, these methods seek to
aid in lowering the data’s dimensionality without losing much GW signal informa-
tion, effectively removing some of the noise.

5.3.1 Singular Value Decomposition

SVD is an unsupervised ML technique that performs an eigendecomposition for
non-square matrices. It is a method to decompose real or complex matrices. In
general, ML applications using SVD involve matrix approximation, lowering the
dimensionality of a matrix without losing much of its information [149, 150].

In principle, the SVD is a generalized eigenvalue decomposition, including non-
square matrices. Let n × m matrix X be a data collection of network inputs, then

X = UΣΣΣV†, (5.10)

where U is an m × m unitary matrix, ΣΣΣ an m × n diagonal matrix, and V is an n × n
unitary matrix where V† is the conjugate transpose of V. This reduces to the eigen-
value decomposition if n = m, then U = V. See [151] for a mathematical derivation.

like the eigenvalue decomposition, the SVD offers an orthonormal basis, where
the columns of U represent ’eigenvectors’ of matrix X and ΣΣΣ their ordered ’eigen-
values’ (Σ = diag(σ1, · · · , σm), where σ1 > σ2 · · · > σm). This ordering ensures that
the first vectors in U are on the so-called principle axis, meaning they point in the
direction closest to most vectors in X. One can project the information contained in X
along a selected first number of vectors from U. This yields the mathematically min-
imal mean squared distance between the data points and their projections, finding
the best linear approximation to the data. If there are certain patterns or similarities
in the data, this method will capture them, and use them to represent the data in a
lower dimension.

In the context of GW, we use an SVD approach described in [152]. First, we
define a data matrix H redefining X. Let H consist of waveforms, where h(t) is now
a measurement over discrete time, such that waveforms are denoted as h of length
n. Define

H = {h1, h2, h3, · · · , hm}, (5.11)

then in component from, equation 5.10 becomes

Hij =
m

∑
k=1

uikσkvki. (5.12)
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Therefore, the reduced reconstruction of H is defined as

Hij ≈ H′
ij :=

m′

∑
k=1

uikσkvki, (5.13)

where m′ ≪ m. This drastically reduces the number of basis vectors U needed, but
this new U′-basis still captures most information of the data. It is conventional to
call this the SVD basis, with their vectors u′

k called SVD kernels.
One additional effect of representing the data in an SVD basis is noise reduc-

tion. The SVD basis is made on H containing noiseless GW strains. In this way,
the SVD basis spans a space, optimized to represent GW signals. Noise informa-
tion will roughly be represented equally over each basis vector. Since we reduce the
dimensionality, a significant part of the noise will not be captured.

5.3.2 Residual Networks

Where the SVD basis is the optimal data representation for a generic GW h out of
a dataset H, it is not necessarily the best for a specific GW signal. In this research,
we seek to do PE on a GW strain, which involves specific information from signal h.
This information is captured by specific SVD kernels. Therefore we seek a method
that distills this information and puts it in a more insightful context, further reducing
the dimensionality.

For this task, we employ a ResNet [153]. Suppose a NN that transforms input
SVD representation x in a useful context y. Then this transformation is character-
ized as T (x) = y. When this transformation is sufficiently complex, one needs to
add an increasing number of layers to the network. The results in a problem called
degradation, where additional layers result in problems such as higher training er-
rors, vanishing gradients, and saturated model performance [153, 154].

A ResNet tackles these problems, by introducing the so-called skip connection or
residual connection. These allow deep NNs (many layers) to still retain input infor-
mation by adding the input after the transformation and training the residual (T̂ ),
i.e.

T̂ (x) = T (x)− x, (5.14)

where output is now defined as y = T̂ (x) + x. Figure 5.5 shows how such transfor-
mation could look like, which constitutes a residual block.

In practice, one stacks multiple of these blocks after each other, which has shown
to be an effective method for contextualizing data [155]. The exact residual transfor-
mation depends on the chosen layer transformation under the skip connection.

a(1)

layer 1

f (a(1))

activation

a(2)

layer 2

⊕
add

T̂ (x) + x

f (a(2) + x)

activation
x

skip connection

x

T̂ (x)

FIGURE 5.5: Illustration of a residual block.
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Chapter 6

Neural Posterior Estimation

As discussed in chapter 3, the PE of GWs involves comparing data against simu-
lated strains. Therefore, it falls under the umbrella of simulation-based inference.
This can be done with a variety of classical and ML-based techniques [156]. In this
work, we develop an ML method that can do PE for GW signals changed by an
MDR. The technique used for this application is Neural Posterior Estimation (NPE)
[157]. In this chapter, we will present one of the techniques used to do NPE, called
Normalizing Flows (NFs).

The idea behind NPE is to do the neural equivalent of PE as described in section
3.3. The goal is to get close to the real posterior P(θθθ|d) of a given discretized data
strain d, using via ML methods, hence

PNPE(θθθ|d) ≈ P(θθθ|d), (6.1)

where the probability function PNPE is represented by an NPE method.
For GWs, many NPE methods have been explored for various PE tasks [158–

161]. The main advantage of NPE is its speed during inference compared to classical
techniques [12, 91]. Where classical methods have to explore parameter space by
computing the likelihood for each point (i.e. simulating the waveform and perform-
ing match filtering for each parameter set θθθ), an ML approach fits the data directly to
the posterior because it already “knows” the whole parameter space of θθθ. The NPE
algorithm gets to “know” the parameter space because it is trained on millions of
simulated data. So, the primary distinction between PE and NPE lies in the fact that
NPE transfers the majority of the computation to the training stage. Once trained, it
is highly efficient in deriving the posterior.

This work uses an NPE method based on NFs [162]. NFs offers a natural way to
generate distributions with a neural network. The effectiveness of this method in the
analysis of GWs has been demonstrated in studies such as [158, 163, 164]. Although
this technique provides very fast inference, posteriors can be less accurate than clas-
sical PE methods provide. To combat this, techniques such as importance sampling
[165] and neural tuning [166] have been developed. These methods improve the
posteriors to the desired comparability with conventional techniques, while main-
taining significant speedups.

6.1 Normalizing Flows

The main idea behind NFs is to construct a NN that transforms a simple probability
distribution P(x) to the desired “more complicated” distribution P(y). The simple
distribution from which the transformation starts is called the base distribution and
a popular choice is a normal distribution. During training, one uses the inverse
transformation to transform samples from the desired distribution y ∼ P(y), into
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samples describing the base distribution x ∼ P(x). This mapping allows the samples
to “flow” through the transformation, resulting to be “normally” distributed (when
a normal distribution is chosen as the base), hence the name normalizing flows [13,
162].

Important requirements of NFs are the invertibility and differentiability of the
transformation,

T (x) = y, T −1(y) = x,
x ∼ Pbase(x), y ∼ Ptarget(y),

(6.2)

where x and y are samples from the base Pbase and desired Ptarget distribution, and T
and T −1 the forward en inverse transformation, parameterized by the flow network.
Transformations that are both invertible and differentiable are called diffeomorphisms
and require that input and output have the same dimensionality |x| = |y|. Under
these conditions, target distribution Ptaget is well-defined and can be obtained via
change of variables

Ptarget(y) =
Pbase(x)

|det(JT (x))|
or Pbase(x) =

Ptarget(y)
|det(JT −1(y))| , (6.3)

where the Jacobian matrix JT contains all partial derivatives of T with respect to the
input elements xn,

JT (x) =


∂T (x1)

∂x1
· · · ∂T (x1)

∂xn
...

. . .
...

∂T (xn)
∂x1

· · · ∂T (xn)
∂xn

 . (6.4)

In practice, one uses a NN to parameterize the transformation T .
Total transformation T is often split into layers of smaller transformations, hence

the transformation needs to be composable. Imagine an NF consisting of many layers
a(i) connected with layer transformations Ti. These NF layers together transform
x → y, now defined as a(0) → a(k). If all transformations Ti are diffeomorphic, the
the following identities apply

T =Tk ◦ · · · ◦ T2 ◦ T1,

T −1 =(Tk ◦ · · · ◦ T2 ◦ T1)
−1 = T −1

1 ◦ T2 ◦ · · · ◦ T −1
k ,

det(JT (a(0))) =det(JTk(a
(k−1))) · · ·det(JT1(a

(0))) =
k

∏
i=0

det(JTi(a
(i))),

(6.5)

this is illustrated in figure 6.1, showing how an NF can transform a base distribution
into a desired one.

a(0)x = a(1)
T1(a0)

T −1
1 (a1)

a(i) a(i+1). . .
Ti+1(a(i))Ti(a(i−1))

T −1
i+1(a

(i+1))T −1
i (a(i))

a(k). . .
Tk(a(k−1))

T −1
k (a(k))

= y

a(0) ∼ Pbase(a(0)) a(i) ∼ Pi(a(i)) a(k) ∼ Ptarget(a(k))

FIGURE 6.1: Illustration of an NF network, consisting of many layer transformations.
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6.1.1 Bernstein Polynomials

For a typical NF network, the choice of transformation function is crucial. It not
only affects the speed of the network via the difficulty of computing the inverse
and derivative, but also dictates its expressive power and numerical stability. For
our method, we use Bernstein polynomials that help to mitigate these effects [167].
Consider a transformation function Bn(x) that form the so-called Bernstein basis

Bn(x) =
n

∑
k=0

αk

(
n
k

)
xk(1 − x)n−k with x ∈ [0, 1] , (6.6)

where ( n
k ) is the binomial coefficient and αk a constant that can be tuned to change

the transformation. Note that these polynomials always take input x ∈ [0, 1], this
ensures that the bounds of any nth order polynomial are Bn(0) = α0 and Bn(1) = αn.
If we ensure that all values αk are monotonically increasing (i.e. αk−1 < αk < αk+1

1),
then for all x ∈ [0, 1] the Bernstein polynomials are also monotonic funtions bounded
by Bn(x) ∈ [α0, αn] [169]. This ensures that we can set out bounds for the in- and
output of the transformation, mainly that samples from the base distribution need
to be scaled such that x ∈ [0, 1] and our target samples lay in bounds y ∈ [α0, αn].
By fixing α0 and αn to the desired target range but keeping the rest of αk as trainable
parameters, we ensure that the output y stays bounded, making it very stable.

In fact, one can prove that: among all non-negative bases on a given interval, the
Bernstein polynomial basis is optimally stable [170, 171].

For the inverse of the transformation of a given y, we solve for x ∈ [0, 1],

n

∑
k=0

αk

(
n
k

)
yk(1 − x)n−x =y

n

∑
k=0

(αk − y)
(

n
k

)
xk(1 − x)n−k =0.

(6.7)

Because the Berstein polynomial is monotonically increasing and we have ensured
that y lays within the interval, x has a unique solution. This is solved by performing
a root-finding method [172]. The method we employ is a bisection search. Although
no analytic inverse exists of this transformer, the benefits of numerical stability and
efficiency in expressing complex transformation within fewer parameters make this
the ideal transformer to use for our application.

6.1.2 Coupling Flow

We have seen that GW signals have multiple parameters describing the waveform,
and thus a higher-dimensional posterior to characterize. Constructing an NF net-
work that treats all these distributions separately will greatly increase the number
of computations needed to obtain the Jacobian determinant. To reduce the compu-
tational load, one likes to restrict the Jacobian to a triangular matrix. Its determinant
only depends on its trace, reducing the number of computations significantly. One
method that does this, by “coupling” different parameters together, is called coupling
flow [173].

1We define αk with network parameters θk by first using the softmax function to get positive
values θ′k = fsoftmax(θk) = eθk / ∑n

j=1 eθj . From these values, we determine the coefficients αk =

α0 + ∑j<k θ′k(αn − α0) for k = 1, . . . , n − 1. This ensures that the αk are monotonically increasing in
[α0, αn] [168].
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Let xM be a M-dimensional input vector. A coupling flow layer, see figure 6.2,
works by splitting the input into x1:m and xm+1:M, where m is the element where we
split usually chosen to be m = M/2. Then the total transformation T (xM) = yM is
split into two parts:

The first part of the input x1:m is transform via identity, i.e. x1:m = 1(y1:m) = y1:m.
Thus the first part is left unchanged, but used to condition for the second half.

The second part xm+1:M transformation is more involved. First we define the
so-called coupling network C(x1:m). This couples the parameters x1:m to the other
parameters xm+1:M. The transformation from xm+1:M to ym+1:M is given by the cou-
pling transformation

TC(xm+1:M; C(x1:m)) = xm+1:M. (6.8)

Hence, transformer TC transforms xm+1:M, but is parameterized by C(x1:m)).
Calculating the inverse of a coupling flow layer, see figure 6.2, is simple because

of the following symmetry. Observe that y1:m = x1:m and thus the output of the
coupling network C(y1:m) = C(x1:m). This means that the only function needed to
invert is TC, such that

T −1
C (ym+1:M; C(y1:m)) = xm+1:M. (6.9)

An important observation one should make is that the coupling network C does not
have the restriction of diffeomorphic transformations that NF dictates because it only
parameterizes the transformation. This allows us to use any network, which grants
much more expressive transformations.

x1:d 1 y1:d

xd+1:D TC

forward pass

yd+1:D

C

x1:d 1 y1:d

xd+1:D T −1
C

inverse pass

yd+1:D

C

FIGURE 6.2: Illustration of the coupling transformation and its inverse.

The main advantage of this flow structure is computational efficiency. From
equation 6.2 we know that to compute the change in variables of probability distri-
butions, one needs to compute the determinant of the Jacobian matrix. This usually
involves calculating M × M derivatives and computing a determinant of order M,
so a total O(M3) calculations are needed. The Jacobian matrix of a coupling flow is

JT =

(
∂TC(x1:m;C)

∂x1:m

∂TC(xm+1:M ;C)
∂x1:m

∂TC(x1:m;C)
∂xm+1:M

∂TC(xm+1:M ;C)
∂xm+1:M

)
=

(
1 0

∂TC(x1:m;C)
∂xm+1:M

∂TC(xm+1:M ;C)
∂xm+1:M

)
=

(
1 0

J1:m Jm+1:M

)
.

(6.10)
The Jacobian determinant is |1 · det(Jm+1:M)− 0 · det(J1:m)| = |det(Jm+1:M)|, notice
that the anti-diagonal yield zero, so the derivatives of that part do not have to be cal-
culated. what remains is |det(Jm+1:M)|, which one only has to calculate the deriva-
tives concerning xm+1:M. This greatly reduces the order of computations.
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To the observant reader, this procedure only transforms half of our parameters.
Naturally, one wants to transform all parameters to their desired distribution. This
is solved by introducing so-called permutation transformations or linear flows be-
tween coupling layers [13]. In the simplest case, one shuffles the input parameters
xM before putting it into the next flow transformation. This makes sure that a differ-
ent set of parameters is transformed.

In this work, we make use of a simple anti-diagonal permutation W. Let a(0)M and
a(1)M be M-dimension layers, then our permutation takes form

a(1)M =Wa(0)M(
a(1)1:m

a(1)m+1:M

)
=

(
0 1

1 0

)
·
(

a(0)1:m

a(0)m+1:M

)
=

(
a(0)m+1:M

a(0)1:m

)
.

(6.11)

This switches the untransformed and transformed parts of the coupling flow, so
this permutation ensures that after two flow layers, every parameter is transformed
once. Observe that the absolute determinant of W equals one, so it does not affect
the change of variables for the probabilities distributions in equation 6.2.

6.1.3 Conditional Normalizing Flows

For the application of GW PE, one not only wants to transform to the parameter
posteriors, but one wants to do that conditional on a given data strain, i.e. we want
the transformation, that yields the posteriors of parameters θθθ, to be dependent on
a given data strain d (containing GW strain h(θθθ) within the data). NF models that
perform this are called conditional normalizing flows [174].

The posterior that we want to estimate with NPE will take the following form

PNPE (θθθ|d) = Pbase (x) |det(JT (x; d))|−1 with T (x; d). (6.12)

Where we can impose a d condition on the transformation T . There are several ways
one can implement this, see [174] for an overview.

A coupling flow can incorporate this quite naturally. Remember that the cou-
pling transformation was given by equation 6.8. It is hard to put a condition on the
input (xm+1;M) of transform TC, given it will likely spoil diffeomorphism. On the
contrary, we are free to put the condition on the coupling network C, given that it
does not have the restrictions of an NF transformation. Therefore we construct an
NN that is conditioned by both the first half of xM and GW strain D, i.e. C(x1:m, d).
This can be done by adding more input dimensions to the coupling network. With
a multi-layer perceptron, as described in chapter 5, one can map the output of the
coupling network to the number of parameters that parameterize the coupling trans-
formation TC(xm+1;M; C(x1:m, d)).

6.1.4 Training the Flow

In the sections above we have characterized how one parameterizes an NF trans-
formation and its inverse. What is left is to define how to train the transformation
such that it transforms to the desired distribution. Figure 6.3 illustrates the schemes
followed during training and inference.

The training procedure can be thought of as consisting of three different steps:
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x T −1(θθθ; d)

flow during training

θθθ

d

Signal

x ∼ Pbase(x)

x T (x; d)

flow during inference

θθθ

d

Signal

x ∼ Pbase(x) θθθ ∼ PNPE(θθθ|d)

FIGURE 6.3: Illustration of the flow during training and inference.

Step 1. Data Generation: Simulating GW signals, yielding d and their according θθθ.
One can think of a data generator making samples d, θθθ described by the desired
posterior P(θθθ|d).

Step 2. Inverse Flow: Performing the inverse flow transformation, obtaining pa-
rameters x = T −1(θθθ; d) and the Jacobian determinant |det(J−1

T (θθθ; d))|.
Step 3. Optimize: With the obtained quantities from step 2, one can calculate PNPE(θθθ|d).

Via a loss function, one can characterize how well this probability distribution
describes the desired one. The parameters describing the flow transformation
T are then optimized to minimize the loss.

To optimize the transformation, we use the maximum (log-)likelihood loss LML(.).
This technique is also used in likelihood base inference [175], a widely used method
of doing GW PE classically. The idea behind maximum likelihood is what the name
suggests, maximizing the probability2 according to the parameters describing it, in
the context of ML, these parameters are the trainable parameters of the network. For
NPE, the probability studied is parameterized by the flow transformation given in
equation 6.12, which can be parameterized with the inverse transformation with

PNPE (θθθ|d) = Pbase

(
T −1(θθθ; d)

)
|det(JT −1(θθθ; d))|, (6.13)

where we now have an expression for PNPE that only depends on parameters know
while training.

What we want to find is the best transformation T [parbest], where parbest are the
parameters of the network that yield the optimal transformation. This is done by
maximizing the posterior probability, i.e.

T [parbest] =ARGMAX(par)
[
PNPE (θθθ|d)

]
,

=ARGMAX(par)

N

∏
i=1

[
PNPE(θθθ

(i)|d(i))
]
,

(6.14)

where θθθ(i) and d(i) are the parameters and data strains of one specific GW signal,
where there are a total of N signal samples in the dataset.

2The probability used classically is the likelihood defined by Bayes theorem, hence the name.
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To make this a loss function that one can minimize, one takes the negative log

LML(T ; θθθ, d) ≡ −
N

∑
i=1

log
(

PNPE(θθθ
(i)|d(i))

)
, (6.15)

where we can use equation 6.13 to express the loss in know variables

LML(T ; θθθ, d) = −
N

∑
i=1

[
log
(

Pbase(T −1(θθθ; d))
)
+ log (|det(JT −1(θθθ; d))|)

]
. (6.16)

Notice that it is possible to put any non-negative scalar in front of the equation with-
out changing the minimum of the loss function. In practice, one often takes the mean
log-likelihood, such that the loss takes form

LML(T ; θθθ, d) = − 1
N

N

∑
i=1

[
log
(

Pbase(T −1(θθθ; d))
)
+ log (|det(JT −1(θθθ; d))|)

]
. (6.17)

This is done so that the loss does not depend much on the size of the dataset, which
makes it easier to compare losses. Finding the minimum loss will yield the best
parameterization of T , and thus describes the optimal distribution PNPE given the
data.

After training on millions of simulated GW signals, the transformation of con-
ditional NF is tuned to be at the loss minimum. With this trained transformation
one can infer the parameter posteriors of a GW data signal with only the data d.
One does that by sampling the base distribution and transforming these samples
through the flow as illustrated in figure 6.3.
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Part III

Research and Implementation
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Chapter 7

Methodology

Now that we have laid out the theory, we can focus on the implementation. In this
chapter, we explain the methods used to make our framework for performing NPE
on GW signals with an MDR.

The entire framework is coded in Python using the JAX library [176]. The latter
is similar to NUMPY in its functionality, but with built-in automatic differentiation,
which makes it ideal for ML tasks. It allows for parallelization, using vmap, which
enables fast data generation. Its just-in-time (jit) compiler transforms the code into
a primitive version which allows for high-performance array computing. This can
be run on accelerated hardware like a GPU, which makes the computational time
orders of magnitude faster, and ideal for doing ML.

This chapter is structured as follows:

• First, we give a brief overview of the methods tested during the framework
development and motivate the techniques used in our final framework.

• Secondly, we define the data generation process and talk about the character-
istics of the data.

• Lastly, we present the architecture of the framework.

7.1 Brief Overview of Method Testing

At the beginning of our research, we decided to start with building a framework
around a simple toy model. This was done to have good control over the complexity
of the input data. The toy model used was a simple damped harmonic oscillator,
parameterized by

hHO(A, ω, ϕ, δ; t) = A sin(ωt − ϕ)e−δt, (7.1)

where A, ω, ϕ, and δ are the parameters for the model to infer. The first models were
trained on noiseless data. We found that a conditional coupling flow, discussed in
sections 6.1.2 and 6.1.3, yielded stable and accurate results.

Adding simple Gaussian noise to the signal worsened the performance signifi-
cantly and major adaptation of the network was needed. Performing SVD on the
signal, see figure 7.1, helped with the noise problems, drastically improving the net-
work’s performance. As discussed in section 5.3.1, this technique extracts the main
features of the data and reduces the noise effects. In practice, the method works
as follows. One plots the eigenvalues of the Σ matrix, looking at which kernel the
eigenvalue curve flattens (the point at which the information captured by additional
kernels is minor), determining how many kernels should be included in the reduced
basis. This process is plotted in figure 7.1 where a dataset of toy model signals is
used. Determining from the Σ curve, about 150 kernels are needed. Then, the data
is represented in this SVD basis, yielding a noise-reduced version of the signal. In
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figure 7.1, both the signal with noise (blue) and the SVD representation of this sig-
nal (green) are plotted above each other. On top is plotted the original signal (red)
without noise. Observe that the SVD representation is significantly closer to the pure
signal than the signal with noise, meaning that this successfully reduced the noise.
However, there are some notable artifacts. Some small spikes are still visible, which
is due to spikes in the noise. Although the noise is Gaussian, peaks are still expected.
More interesting is the worsening of the fit from the SVD representation at the end of
the strain. This is due to the data from which the SVD is made. Due to the damped
nature of the harmonic oscillator, the amplitude is significantly reduced towards the
end of most signals in the dataset, leading to less information captured by the SVD
in that area of the signal. Although not all information might be captured with the
SVD representation, it is more than enough to create a working NF model for noisy
signals.

FIGURE 7.1: Example of an SVD of the signal for a damped harmonic
oscillator. Left we represent the eigenvalues, and right the signal with

noise as well as the signal reconstructed based on the SVD.

After this success, we moved on to GW signals generated by the data generator
described in section 7.2. First, we tested this architecture on simplified GWs, mean-
ing the signals were generated with no spin or MDR correction and no noise. After
increasing the dimensionality of the network parameters (to deal with the increased
complexity of the data), this approach yielded satisfactory results. Unfortunately,
the introduction of noise led to a drastically reduced performance. This was solved
by introducing a residual network to better contextualize the SVD basis to condition
the NF on, see section 5.3.2. When gradually increasing the complexity by introduc-
ing more GW parameters, we finally had a model that could do NPE on GW signals
with a modified dispersion relation.

However, during inference, the framework would occasionally present instabili-
ties in the posteriors. Part of the posterior would lay outside of the regions that they
were bound to. The exact cause of this behavior is still unknown, but we believe
it may have been the transformer used. Initially, the NF was built with monotonic
rational-quadratic splines as the transformer function, see [177] for details on spline
transformers. By changing the transformer functions to Bernstein polynomials, the
instabilities were no longer present. As described in section 6.1.1, this transformer
provides optimal stability. This yielded a stable architecture that could be optimized
for doing NPE on MDR-corrected waveforms.
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7.2 Data Generation

In this research, we use simulated waveforms with an MDR correction, explained
in chapter 4. The waveforms are generated according to equation 4.55, where the
GW polarizations are modeled using the IMRPHENOMPV2 waveform [46], as seen
in chapter 21. Because both the derivation of MDR and the waveform model are
defined in the frequency domain, we choose to do the whole framework in this do-
main.

7.2.1 Priors on the Parameters

The data generation starts by choosing the parameters θθθ describing the waveform.
For this, we describe probability functions for each parameter, the prior, to deter-
mine the range of values that parameter can take. When a new signal is generated,
one sample is taken from these prior distributions. Table 7.1 summarizes the prior
configuration of each parameter.

Parameter Prior

Chirp mass (M) U (20, 100)M⊙
Mass ratio (q) U (0.125, 1)
Spin Amplitudes (a1,2) U (0, 1)
Spin tilt angles (θ1,2) Uniform in sine
Spin vector azimuthal angle (ϕJL) U (0, 2π)
Spin precession angle (ϕ12) U (0, 2π)
Inclination angle (θJN) Uniform in sine
Wave polarization (ψ) U (0, π)
Polar sky angle (θ) U (0, 2π)
Azimuth sky angle (ϕ) Uniform in cosine
Luminosity distance (DL) Rescaled to follow SNR (Mpc)
SNR Pbeta(10, 50)
Coalescence time (tc) U (tref − 0.1, tref + 0.1)s
Phase of coalescence (Φre f ) U (0, 2π)
Phenomenological parameter α Chosen from [0, 1

2 , 1, 3
2 , 2, 5

2 , 3, 7
2 , 4]

Phenomenological parameter Ae f f U (−5 × 10−19, 5 × 10−19) peV(2−α)

TABLE 7.1: Summary of the parameters considered and their respec-
tive priors to generate BBH signals.

For most parameters, we consider a uniform prior distribution (U (minimum, maximum)),
as shown in table 7.1. Some angles are chosen to be uniform in sine or cosine. This is
done so that the spherical coordinates of both the spins and sky angles correspond
to be uniform on the sphere.

1The waveforms are generated using the RIPPLE [178] library, more information on this topic is
found in section 7.2.2.



62 Chapter 7. Methodology

To ensure we present our framework with signals in the detectable range, we
choose to sample the signal’s SNR. This is done with a scaled beta distribution

a =1 + TSNR
PSNR − MinSNR

MaxSNR − MinSNR
,

b =1 + TSNR
MaxSNR − PSNR

MaxSNR − MinSNR
,

Pbeta(x; a, b) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1 − x)b−1,

(7.2)

where Γ is the gamma function. We chose the values for SNR temperature TSNR = 15,
peak SNR PSNR = 20, SNR minimum MinSNR = 10, and SNR maximum MinSNR =
50 (see appendix A for an illustration). To adjust the SNR, we scale the luminosity
distance accordingly. Importantly, this scaling is done before adding the MDR cor-
rection, because the phase shift according to the GR modification is parameterized
partly by DL. Because the correction to the waveform due to an MDR only intro-
duces a frequency-dependent phase shift, this does not affect the optimal SNR2.

Each value of phenomenological parameter α describes a different theory, for ex-
ample, the value α = 0 describes a massive graviton. This makes the morphologies
of signals generated with different values drastically different. Therefore, we choose
to keep α constant within the framework and train different models on each value
of α. For the phenomenological parameter Ae f f , a prior found in the literature is
often a symmetric log, where the sample is uniform in the logarithm. However, our
experiments found this leads to biases and unstable posteriors. Therefore, we chose
a uniform prior to sample Ae f f .

The coalescence time and phase are measured at a reference time of 1e9 seconds
GPS time. We vary the coalescence time with 0.1 seconds uniformly around this
time. For real-world signals, one might think that this short time interval is a prob-
lem. However, the network is trained on all possible sky positions at that specific
time. The only thing that changes when measuring at another time is that the earth
has rotated. This means that we can artificially rotate the results for the sky position
to represent the network at a different time. We still introduce a small timeshift be-
cause real strains containing a GW have some uncertainty in the exact coalescence
time, which we like to get a posterior for.

7.2.2 Waveform Generation

As already mentioned, for the generation of the polarizations h+ and h× we use
the IMRPHENOMPV2 model. It takes the parameters sampled from the prior and
generates how the polarizations in the detector frame. This model is part of LAL-
SIMULATION [33] but this package is not compatible with JAX. Therefore, we use
the identical implementation of IMRPHENOMPV2 in the JAX-based library RIPPLE

[178]. This ensures the speedups given in the JAX environment. We implemented
the antenna pattern functions (equation 3.4) in JAX to transform the polarization to
the detector frame. This is tested to be identical to the functions in the BILBY [179]
library.

For the data setup, we use the current detector network, i.e. LIGO Hanford,
LIGO Livingston [71], and Virgo [72]. Their noise realizations are generated from

2This is due to the phase canceling in the inner product, i.e. ⟨hMDR | hMDR⟩ = ⟨hei∆Ψ | hei∆Ψ⟩ =
ei∆Ψ−i∆Ψ⟨h | h⟩ = ⟨h | h⟩.
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their PSD corresponding to their design sensitivity [180, 181]. The waveform gener-
ation is set up in five steps:

1. GW polarizations are generated according to the drawn priors.

2. The polarizations and luminosity distance are scaled according to the sampled
SNR.

3. The GR modification is added to the polarizations according to the sampled
phenomenological parameters.

4. The polarizations are combined into GW detector strain h(t) and whitened
according to PSD of the detector.

5. Gaussian noise is added to the signal to make a realistic whitened data strain

This whitening step is done to normalize the power at all frequencies, such that the
resulting signal d has a standard deviation close to 1. Excess power, such as the
presence of a GW, at any frequency will be more visible in this representation. This
makes it easier for the NPE architecture.

Our data d is generated from a minimum frequency of 20 Hz and with a sam-
pling frequency of 2048 Hz a reference frequency of 20 Hz. The duration of the sim-
ulated data is 10 seconds, making the total dimension of d for three detector strains
in frequency domain (3, 10241).

7.2.3 Flat-Space

The representation of the parameters to the network is also important. Because each
parameter has its own prior, the domain of each parameter is different. For the net-
work to function properly, we need to ensure that these domains are similar to one
another. This is done by so-called flat-space transformations, where we map all pa-
rameters to the same “flat” domain. This is especially necessary for the Bernstein
transformation, given that its inputs can only be on the domain x ∈ [0, 1]. An impor-
tant note is that these flat-space transformations need to be invertible to allow for
both training and inference.

For parameters with uniform priors, this mapping is trivial. One scaled the min-
imum and maximum to be the bounds of the desired domain. For the angles in both
the spin and sky locations parameters, this mapping is more involved. The angles
have periodic properties that are hard to grasp for our model. To solve this we de-
signed a particular flat-space transformation. As an example, consider the sky posi-
tion angles θ, ϕ, and the luminosity distance DL. These parameters give the position
vector r⃗ from earth to the source. This vector spans a spherical volume in Carte-
sian space, which we project to a cubical volume. The x, y, and z coordinates of this
transformation are now not periodic and are used to map to the desired flat-space
domain. Similarly, one can do the same procedure with the spin vectors S⃗1,2.

In the early stages of development, we found that the flat-space domain of [−4, 4]
worked and kept using it. In the Bernstein transformations, this domain is then
again trivially mapped to domain [0, 1].

7.3 Network Architecture

Our network is implemented using JAX-based ML packages EQUINOX [182] and
FLOWJAX [183]. EQUINOX is used for the general architecture of the network, whilst
FLOWJAX is specifically used for the creation of the NF.



64 Chapter 7. Methodology

7.3.1 Context Network

The first step of contextualizing the data is SVD, as described in section 5.3.1. Note
that we generate our signals in the frequency domain, thus the SVD kernels are
complex. During testing, we found that for the phenomenological value of α = 0,
700 kernels in the SVD basis were enough to properly model the signal (see appendix
A for an illustration). This number is kept the same throughout the different values
of α to ensure that the network stays the same size. This number is sufficient for each
value of α considered in this research, given that the MDR significantly changes the
signal. This is due to the phase shift scaling with ∆Ψ( f ) ∝ hα−2 f α−1. As a back-of-
the-envelope calculation, the product between the Planck constant in peV (O(10−3))
and a typical GW frequency (O(102)) will yield a value smaller than 1, thus with
increasing alpha, the phase shift gets smaller.

Remember that the dimension of the generated data d is (3, 10241). After the
SVD this will be reduced to (3, 700). Unfortunately, we cannot feed complex values
to this network architecture, therefore we split the complex and real parts. The input
for the ResNet is (6,700).

To further contextualize the data we use a residual network, as described in sec-
tion 5.5. Figure 7.2 illustrates the architecture of our ResNet. We start with a liner
input layer x that takes the dimension (6, 700) to (1024), this is called an encoder.
We found that layer normalization [184] in this transformation is essential for sta-
bilizing the GW signal information. So, the residual block begins with a GELU ac-
tivation function (equation 5.3) followed by a normalization layer. The first linear
layer transforms the input to four times the dimension (4096). After another GELU
activation and normalization layer, the second linear layer takes the dimension back
to (1024). Moving up and down the dimension enables the network to have enough
parameters to extract the data’s information without changing the input and output
dimensions. This residual block is repeated five times before parsing to the decoder
y. Here, a linear layer transforms the dimension of the context to the output dimen-
sion of (512).

This output y is the context of the data given to the NF network. In the context
of NF, we will represent the contextualized data as d′.

Residual block

×5

x

encoder

⊙ norm( fGELU(a)) a(1)

layer 1

norm( fGELU(a)) a(2)

layer 2

⊕ y
decoder

FIGURE 7.2: Illustration of the architecture of the residual network.
In the blue box is the residual block represented, which is repeated

five times in this network.

7.3.2 Normalizing Flow Architecture

The flow architecture is based on a conditional coupling flow, described in sections
6.1.2 and 6.1.3. An illustration of the flow is given in figure 7.3. The transformation
is parameterized with Bernstein polynomials Bn, see equation 6.6. Our model uses
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the Bernstein polynomial up to order n = 64. This means that the trainable param-
eters describing the transformations have dimension 64, thus the coupling network
C needs to have 64 as its output dimension.

The flow transforms the 16 parameters describing the signal, i.e.

θθθ = (Mc, q, a1, a2, θ1, θ2, ϕJL, ϕ12, θJN , ψ, DL, θ, ϕ, tc, Φre f , Ae f f ). (7.3)

The coupling network C has inputs of half the parameters (8) and the data from the
context network d′ with dimension (512). Figure 7.3 shows the coupling network on
the right. It consists of two linear layers connected via the RELU activation function.
The first layer takes the input dimension (520) to the dimension (50). the second
layer transforms the dimensions to (64), the needed dimension for the Bernstein
parameterization.

As shown left in figure 7.3, the total flow consists of seven repeated coupling flow
layers. The green arrows indicate the flow during inference, while the red arrows
mark the training direction of the flow.

Coupling flow layer

×7

Coupling network

C(a, d′)

x

a(1):d a(2):d

a(1):D a(2):DB64(a; C)

C(a, d′)

d′

θθθ a:d

a:D

d′

a(3) ( fRELU(a)) a(4) B64(a; C)

FIGURE 7.3: Illustration of the architecture of the coupling flow and the cou-
pling network. On the left, we see the flow represented by the arrows, where
green represents the direction during inference and red the direction during
training. On the right, we see the inputs that parameterize the transformation.

The base distribution we use is a truncated normal within the interval of [−4, 4],
where samples from the distribution x are used as input of the flow transformation.
Similar to the flat-space transformation, sampling from this probability distribution
allows us to have good control of the input domain and lets us easily scale to the
[0,1] domain of the Bernstein transformation.

7.3.3 Training

During the training process, about 400 million samples are generated. For training,
we use the Adam optimizer with a learning rate of 1× 10−4, from the OPTAX package
[185]. This allows us to find the minimum of the loss more efficiently, as explained
in section 5.2.3.

Our training procedure consists of 100000 epochs. Each of them starts by taking
4096 samples from the data generator, split into 90% training and 10% validation
samples. During each epoch, samples are parsed through the network in batches of
512, where the network is optimized to minimize the training loss. After training, the
validation loss is calculated. If this is lower than the previous lowest validation loss,
the network parameters are updated. Regardless of whether the network parameters
are updated or not, the validation step marks the end of an epoch. This process is
repeated until 100000 epochs are reached.
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Chapter 8

Results and Discussion

In this section, we present our results. First, we show the posteriors obtained in
the form of a corner plot. Then we test for possible bias using Probability Prob-
ability plots (PP plots). We will conclude with a discussion on measurements of
phenomenological parameter Aα.

8.1 Corner Plots

A common representation of the posteriors of the GW parameters θθθ are so-called cor-
ner plots. These plots visualize the 1d posterior distributions of each parameter on
the diagonal, forming a triangular matrix of plots with the parameters on both axes.
This matrix is filled in with the 2d probability contours of the two parameters located
at that specific intersection of the matrix. This allows us to visualize correlations be-
tween parameters. The parameters θθθTrue (true values) used for the generation of the
injected signal are indicated by the orange lines. The vertical dashed lines in the
1d posteriors indicate the 90% confidence interval of the distribution. The contour
plots correspond to 1, 2, and 3 standard deviations and have decreasing saturation,
respectively. The median and 1 standard deviation values of each parameter are
plotted above each posterior. Complete corner plots of prior sampled signals for
different values for phenomenological parameter α can be found in Appendix B.

The corner plots are made with 15000 samples from the flow base distribution.
We chose to convert some of the inference parameters θθθ, to express them in a more
meaningful context.

For the spin, we use the expression χe f f and χp as defined in equation 2.10. While
gravitational waves depend on spin parameters beyond effective ones, extracting
this information is a complex task due to the limited information per event and bi-
ases due to waveform model misspecification, see [186].

We also convert Ae f f to Aα via equation 4.53. Note that this involves calculating
redshift z. This cannot be obtained directly with GWs, therefore we need cosmolog-
ical constants from other measurements. In this thesis, we use FLATLAMBDACDM
cosmology described by constants obtained from PLANCK15 [120]. The redshift is
obtained by converting the inferred luminosity distance. Given that the prior for
Ae f f is quite small, we choose to plot the values of Aα in 10−19peVα−2.

The coalescence time is represented by a time shift ∆τ = tre f − tc from the refer-
ence time. This is done to keep the number more tractable.

The corner plots, figures B.1 to B.9, show that our model can infer all parameters.
Given that this test of GR using an MDR with the group velocity is relatively new,
there is no current literature on similar models to compare. From our observations,
we can make the following statements.
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1. In general, the network seems to produce similar posteriors that one would
expect for the GW parameters.

2. True values of the injected signals lay in their posteriors as expected.

3. The network can make the difference between positive and negative values
of Aα well. This is interesting, given that classical tests of MDR conducted
in the past have relied on splitting the prior of this parameter in a positive
and negative side [10, 131, 132]. This framework is able to infer both sides
simultaneously.

In figure 8.1 we show some interesting phenomena of the corner plots regard-
ing Aα and luminosity distance DL. These two parameters are correlated with each
other via equation 4.53. This is visible by the shape the contours make, see α = 0
plot, where the contour has a diagonal and slightly curved shape. This is expected
given that the parameters are linearly related, a larger DL means more propagation
distance. For the observed signal to keep a similar phase shift due to the MDR, Aα

has to decrease. Observe that for α = 1 the network is unable to infer Aα and we
have a flat distribution. This is expected because, at this value of α, the phase shift
according to the MDR is frequency-independent, see equation 4.54. This makes the
measurement of Aα degenerate with the coalescence phase of the GW.
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FIGURE 8.1: Corner plots of the posteriors of luminosity distance
dL[Mpc] and Aα[10−19peVα−2] for α = 0 (left) and α = 1 (right).

In figure 8.2 we can also observe interesting phenomena regarding Aα and time
shift ∆τ. These two parameters are uncorrelated with each other for all values of
α except for α = 2. This is visible by the diagonal shape the contours make This
is expected because, at this value of α, the phase shift according to the MDR scales
linearly with the frequency, which is identical to a time translation of the waveform.
Therefore, the inference of these two parameters is degenerate and thus is signifi-
cantly worsened.
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FIGURE 8.2: Corner plots of the posteriors of time shift ∆τ[s] and
Aα[10−19 peVα−2] for α = 0 (left) and α = 2 (right).

8.2 PP plots

To test the network for potential biases, we made PP plots (Probability-Probability
plots). These plots are a measure of certain biases, necessary to have a trustworthy,
i.e. non-biased network. On a PP plot, the cumulative fraction of true values (the
parameter values used in data generation) in confidence interval (C.I.) is plotted
against the width of the C.I. used. To give an example, on the lower 10% C.I. of the
posterior distribution (from 0.0 to 0.1 in the pp-plot), we expect 10% of the injected
values (true values) to lie within that C.I. and on C.I. from 0.0 to 0.5, we expect to find
50%, et cetera. A diagonal line in the PP plot shows that the posterior probability
distributions behave how one would expect. Deviations of the diagonal can indicate
bias but effects from fluctuations due to noise can also influence this.

For the creation of the PP plots given in figure 8.3, our model was tested on a
dataset of 1000 simulated GW strains. Each strain was used to generate a posterior of
15000 samples. This is done for all different values of α. We choose to only infer the
parameters used in data generation, and do no conversion on the spin parameters
and Ae f f . This is done to ensure that we do not introduce unwanted correlations
between parameters, which could lead to perceived biases.

Plotted for each parameter in the label are the p-values. These are calculated with
a Kolmogorov-Smirnov test [187] and are a measure to determine if the difference
between the expected distribution of a parameter and the cumulative distribution
function of the posterior distribution is significant. A p-value of 1 corresponds to a
posterior distribution that is exactly Gaussian around its parameter. The posterior
distributions for GW parameters are much more complicated and one can interpret
the p-value of order 0.1 to be good. Usually, there are some outliers of lower p-
values. If one bad posterior is generated from an outlier in the dataset, the p-value
can be drastically lowered. The low p-values for ∆τ and Ae f f at α = 2 are probably
more susceptible to this due to their correlation. The other low p-values need further
investigation. We expect longer training will improve the p-values further.

From the PP- plots shown in figure 8.3, we can make the following observations:
1. All parameters follow a diagonal line for every value of α, giving no indication

of significant bias.
2. P-values of most parameters are as expected.
3. According to the lines and p-values of Ae f f , the network is stable in inferring

the phenomenological parameter.
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(A) α = 0. (B) α = 1
2 . (C) α = 1.

(D) α = 3
2 . (E) α = 2. (F) α = 5

2 .

(G) α = 3. (H) α = 7
2 . (I) α = 4.

FIGURE 8.3: PP-plots for models trained on different values of phenomeno-
logical parameters α. One can observe that all parameters follow the diagonal,

given no sign of significant bias.
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8.3 Measurements of Aα

To illustrate how well the network can infer phenomenological parameter Aα, we
created a similar plot as figure 4.1. Although not comparable, given that this figure
is acquired by combining multiple signals and using an MDR correction derived for
the particle velocity, a similar plot can illustrate the performance of the network at
different values of α. Therefore, a signal was created with phenomenological pa-
rameter Ae f f = 0, which is the same for all values of α. Figure 8.4 shows such a
violin plot of Aα. The plotted posteriors have their mean indicated by a black dot
and dashed lines reflecting the 90% confidence region.

Observe the expected flat posterior at α = 1, where the phase shift ∆Ψ( f ) accord-
ing to the considered MDR is frequency independent, which makes it degenerate
with the coalescence phase of the GW. In addition, we see that the posterior for α = 0
is the most accurate. This is as expected, given that this value has the strongest effect
on the signal, i.e. the value of the phase shift ∆Ψ( f ) (equation 4.54) scales with 1/h̄2

which is a large number. Remember that this value of α corresponds to a massive
graviton, measuring Aα accurately puts stronger constraints on the graviton mass.
The worse performance at α = 2 can be explained by the degeneracy between phase
shift ∆Ψ( f ) and the time shift ∆τ. In theory, this causes the values of the inferred Aα

and ∆τ to take any combination such that

∆Ψ( f )/ f + ∆τ = −πhα−2

c
Dα(z)(1 + z)α−1Aα + ∆τ = constant, (8.1)

effectively broadening both posteriors considerably. For the other values of α, the
higher order in the Planck constant makes the GR deviation smaller, yielding worse
posteriors. Interestingly, we get more accurate posteriors for the higher values of α,
which is also observed in figure 4.1. This can be explained with similar arguments as
for α = 0, only here the ∆Ψ( f ) depends on increasing order of the frequency. In the
units used here, we have h ∼ O(10−3), so frequencies close to O(103)) will increase
in order alpha, thus taking a bigger role in the overall waveform, yielding a stronger
dependence on Aα.
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FIGURE 8.4: Violin plot of the posterior of Aα inferring the same GW
stain, generated with Aα = 0.
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To further explore the behavior of our framework, we choose to compare three
different values for effective parameter Ae f f , between different SNR values. We do
this analysis on a GW signal for phenomenological parameter α = 0, corresponding
to the massive graviton. Figure 8.5 shows the violin plots obtained, where the GW
signal was generated with constant Ae f f over the tested SNR range, with the values
0 (red), 10−19 (blue), and −10−19 (green). The choice of keeping Ae f f constant is be-
cause this causes the MDR phase shift ∆Ψ( f ) to scale linearly with the luminosity
distance DL. Given that we scale the DL with the SNR, this results in a linear depen-
dence on SNR for the phenomenology of ∆Ψ( f ). We choose to show the posteriors
for phenomenological parameter Aα, where one should note that for larger SNR,
thus a smaller DL, leading to smaller Aα. Therefore, in figure 8.5 the values of Aα

corresponding to the used Ae f f are plotted as back lines.
For the red posteriors corresponding to Ae f f = 0, We observe the posteriors first

shrink and then broaden with increasing the SNR. Given that there is no phase shift
for the value of Aα, this behavior is suspected to come from the way the network is
trained. As explained in section 7.2.1, the network is trained on a beta distribution of
SNR values. This means that the network is primarily trained on samples where this
distribution has the highest likelihood, in this case around SNR=20. This explains
why the behavior of posteriors is the smallest around this point. We expect that
exposing the network to more high SNR signals will improve these posteriors.

The blue and red posteriors, corresponding to Ae f f = ±10−19, show a more in-
sightful correlation between the SNR of the signal and the inferred posteriors. First
of all, observe that all inferred posteriors encompass the true values. This is im-
portant because this shows that this framework can correctly distinguish between
positive and negative values for Aα. Furthermore, we observe that the posteriors
improve with increased SNR. This is as expected because the phase shift ∆Ψ should
be more pronounced with louder signals. At about the SNR value of 30, the posteri-
ors are the same shape. This is expected to be due to the phase shift ∆Ψ( f ) getting
smaller due to shorter DL, making inference of Aα harder.

Considering everything presented, the plots show that this framework is capable
of making measurements of phenomenological parameter Aα.
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FIGURE 8.5: Violin plot of the posterior of Aα inferring the same GW signal with differ-
ent SNR, generated with effective parameter Ae f f = 0 (red), 10−19 (blue), and −10−19

(green) (conversion to Aα are the plotted black lines). The points and dashed lines indi-
cate the mean and 90% confidence regions of the respective colored distribution.
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Chapter 9

Conclusion and Outlook

This work presents a machine learning framework that can infer posteriors for phe-
nomenological parameters describing modified dispersion relations in gravitational
waves. With this proof-of-concept model, we show that a normalizing-flow-based
model is a viable avenue for doing tests of general relativity relating to a modifi-
cation in the propagation speed of gravitational waves. We have shown that our
framework is capable of doing the complete parameter inference of all the gravita-
tional wave parameters in addition to the one describing the modified dispersion
relation.

Current tests of general relativity using conventional methods are time-consuming,
given that they need to do complete parameter estimation for all values of α sepa-
rately. This means multiple runs of methods such as nested sampling and Markov
Chain Monte Carlo [91] per signal. Each run can take in the order of days to analyze
[188–190], making a full analysis to test a modified dispersion relation on a signal
in the order of multiple weeks. With the expected increase in the number of signals
by a factor of ∼ 3.3 in the fourth observing run due to detector sensitivity upgrades
[180], a faster procedure of doing parameter estimation is needed Our procedure
takes only in the order of seconds per signal. This means that this architecture can
be used to do neural posterior estimation on a lot of signals in a matter of minutes.

The modified dispersion relation studied in this thesis was derived from the
group velocity of a gravitational wave [123]. This is a relatively new approach with
no parameter estimation results found in the literature. Therefore, this framework
might give some insights into expected results. Firstly, our results show that it is pos-
sible to do parameter estimation on the positive and negative side of phenomeno-
logical parameter Aα at the same time. This might also be possible with classical
methods. Furthermore, the inference of Aα at α = 1 is degenerate with the phase1,
which might be wanted to be taken out of the analysis, similarly what is done for the
previous test of general relativity [10, 131, 132]. Also, we observed that the analysis
of Aα at α = 2 is degenerate with a time shift. This needs to be taken into account
when doing conventional parameter estimation.

The framework presented in this thesis has a few areas that we consider expand-
ing. First, the waveform model used in this work was IMRPHENOMPV2. The newer
IMRPHENOMXPHM model that includes higher-order modes could be used. We ex-
pect that this model should make it easier to distinguish modified dispersive behav-
ior because higher-order modes have different frequency characteristics, and thus a
frequency-dependent phase shift due to a modified dispersion will be effected dif-
ferently for each mode. In this research, the generation of waveforms was performed
using RIPPLE [178] due to its speed. Unfortunately, the IMRPHENOMXPHM model

1This behavior was previously observed at α = 2 using the phase velocity to derive the dispersion
relation.
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is currently not implemented in RIPPLE. However, preliminary tests using IMRPHE-
NOMXPHM implemented in LALSUITE [33] have shown that this network architec-
ture is trainable on these waveforms and learns the posteriors. Further research is
needed to verify that this also produces more accurate posteriors.

Secondly, to improve the posteriors one can use importance sampling [165]. Tests
have shown that this is a viable approach, although the current framework has some
stability issues. For the use of this method, the posteriors produced need to: encom-
pass the true value, which is the case for the presented framework. The posterior
samples also need to have high efficiency, meaning that individual posterior sam-
ples describe the signal well. This is not the case for the current framework. longer
training to further decrease the loss might solve this, but an additional invention is
needed to be able to implement this.

Thirdly, the current framework can do PE on a single gravitational wave data
stain. However, testing for a modification of general relativity should apply to all
signals equally. Therefore, combining the information of all detected signals, as done
in the literature, is what helps constrain these modified theories more strongly. This
is also an avenue we would like to explore with this framework. There are machine-
learning methods developed to do this combining procedure. Sequential neural
score estimation, developed in [191], is such a method that guides inference using
the approximation of the posterior, obtained from previous results, at the observa-
tion of interest. By sequentially combining signal posterior information, one obtains
a total posterior for all signals analyzed. We think this is a promising method for
combining the posterior information on the phenomenological parameter Aα and
should be explored in future research on this topic.

One challenge that arises when moving to realistic data is noise characteriza-
tion. The framework presented here works on signals generated with the advanced
LIGO-Virgo detector network at their design sensitivity [94]. In reality, a gravita-
tional wave signal could have non-Gaussian in the form of glitches, that one needs
to subtract [192] or find other ways to extract the signal from the noise. For our
framework, this means to adapt the context network. There are machine learning
methods developed for this context, see [193, 194], that one can explore for the adap-
tation of our framework.

One can also think of extending this work to the next generation of detectors like
ET [74] and CE [75]. Due to their higher sensitivity, they will be able to measure the
phenomenology of waveforms far more accurately. Also the LISA [76] telescope will
probe a different regime of frequencies. Because a modified dispersion relation is
frequency-dependent, the LISA will be able to explore different morphologies. Due
to the increased sensitivity of these detectors, we expect a greater number of detec-
tions. Some challenges that arise are that the signals will be longer in the detector’s
sensitive band, i.e. detecting signals from a lower frequency [195]. This means that
the data strains of the signals are longer, so adaptation of the context network is
needed to handle large input data.

To summarize: Due to the expected increase in the number of detections, the cur-
rent method for doing tests of general relativity on gravitational waves will be too
slow. Therefore, the development of faster methods to do these kinds of analyses
is needed. In this thesis, we present our proof-of-concept neural posterior estima-
tion framework using normalizing flows to speed up these analyses significantly.
The tests conducted on our framework show promising results. Once the challenges
mentioned above are addressed, this machine learning approach can be an impor-
tant stepping stone for doing parameter estimation of gravitational waves modified
by a dispersion relation.
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Appendix A

Additional figures

An illustration of the used beta distribution for SNR scaling is given in figure A.1.

10 15 20 25 30 35 40 45 50

1

2

3

4

SNR

Pbeta

FIGURE A.1: Beta distribution with TSNR = 15, PSNR = 20, MinSNR = 10, and MinSNR = 50.

The SVD of a dataset of 10000 GW signals with the MDR correction of α = 0
is represented in A.2. From this is inverted that the SVD basis of 700 kernels is
sufficient to represent data d well. Note that the SVD is done in frequency space and
thus here the absolute value of the eigenvalues is plotted.

FIGURE A.2: SVD kernels and eigenvalues on α = 0 signals for the
three different detectors.
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Appendix B

Additional Results

Here we present example corner plots as described in section 8.1. Figures B.1 to B.9
are corner plots obtained with increasing values of α. Due to the size of the plots,
they start on the next page.
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